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ABSTRACT

NEAR-FIELD IMAGING
WITH TERAHERTZ PULSES

by
Oleg Mitrofanov

High spatial resolution imaging is implemented with a novel collection mode near-field

terahertz (THz) probe. Exceptional sensitivity of the probe allows imaging with spatial

resolution of few microns using THz pulses with spectral content of 120 to 1500 microns.

In the present study, the principle of the probe operation as well as the probe design and

characteristics are described.

The probe performance is related to effective detection of radiation coupled into

the probe aperture. Propagation of short single-cycle electromagnetic pulses through

apertures as small as 1/300 of the wavelength is experimentally and numerically studied.

Finite-difference time-domain method is used to model propagation of THz pulses

through the probe aperture in order to optimize the probe design. It is shown that the

probe sensitivity is significantly improved if the detecting antenna measures electric field

coupled through the aperture in the near-field zone rather than in the far-field zone.

Effects of temporal and spectral pulse shaping are described by frequency-dependent

transmission at the near- or below cutoff regimes of the aperture. Imaging schemes,

properties, and artifacts are considered. The technique provides the best to date spatial

resolution capabilities in the THz range of the electromagnetic spectrum.
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CHAPTER 1

INTRODUCTION

After the first demonstration of imaging with far-infrared, or terahertz (THz), pulses in

1995 by Hu and Nuss, the question of spatial resolution has remained at the far front of

THz research. Far-infrared radiation is characterized by a long wavelength, typically 100-

1,500 pm. Imaging of objects, whose size is smaller than the wavelength, is not possible

with conventional techniques because of diffraction. According to Abbe's theory, which

describes image formation by the superposition of interference fringes, the highest

possible spatial resolution is —2/2 [for example, Reynolds et al. 1989, or Born & Wolf

1999]. Solid immersion lenses provide improvement by a factor of n, where n is a

refractive index of the lens, but it is usually not sufficient for a wavelength of few

hundred microns. An obvious solution is application of alternative methods such as near-

field imaging [Pohl et al. 1991].

Optical near-field microscopy is widely used, when resolution of 1/10-1/20 of the

wavelength is required. The concept of near-field imaging includes a variety of methods,

which share one common feature: the technique employs interaction of the sample and a

small external object (a subwavelength aperture or a sharp metallic tip [Knoll &

Keilmann 2000]) placed in the near-zone of the sample. The optical field in the near-zone

(r<<.1) reflects local properties of the sample. If a small object is introduced in the near-

zone, the local optical field is perturbed both by the object and the sample. A measure of

this perturbation reflects the local optical field and, therefore, the sample properties.

1



2

In order to construct the near-field image, the external object is scanned with respect to

the sample and their interaction is measured for every position of the object. The spatial

resolution of this imaging method is determined by the characteristic interaction length.

In the most common aperture-type near-field microscopy, a probe with a small

aperture is introduced into the near zone of the sample. The aperture either illuminates the

sample or it collects the light transmitted or scattered by the sample (the arrangements are

referred to as the illumination and collection mode respectively). The aperture serves to

confine the incident electromagnetic field in the first case and to sample the scattered

field in the second case. The amount of light that couples through the aperture depends on

the optical properties of the sample in the point where the aperture is placed. Spatial

resolution of this method is determined by the size of the aperture or, to be exact, by its

effective size [Durig et al. 1986]. Electromagnetic waves are known to penetrate into

metal [Jackson 1962]. As a result, the field in the plane of the aperture is not confined by

its physical boundary, but extends outside by the value of the penetration depth. At a

frequency of 1 THz the penetration depth of gold is —50 nm and, in principle, light can be

confined to a size smaller than 1 pm (—.1/300) using a small aperture. Therefore, the

aperture-type near-field microscopy potentially is capable of high-resolution imaging.

Despite the fact that resolution is independent of the wavelength in the near-field

imaging, it is a challenge to build an instrument with resolution better than A/20. The

main reason is a low throughput of a subwavelength aperture. A circular hole in a thin

metallic screen with diameter d=.1/20 transmits —10 -6 of the total power in a beam focused

on the hole. Further reduction of the aperture size decreases the transmission at the rate of
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the d 6 law [Bethe 1944]. Consequently, the intensity of light transmitted through the

aperture rapidly drops to a level, at which detection is not possible.

High intensity sources do not solve the problem because a fraction of the incident

power transmits through the aperture screen. The intensity of this wave eventually

exceeds the signal transmitted through the aperture as the aperture size decreases. By

making the screen thicker, transmission through the screen decreases, however,

transmission through the aperture decreases as well, since the aperture acts as an

undersized waveguide, which exponentially reduces the wave intensity along its length.

When the screen thickness becomes comparable with the aperture size, this attenuation

mechanism becomes important and the intensity reduces much faster than the d 6 law as d

decreases. The required optical power increases exponentially and implementation of the

very small aperture becomes impractical.

Extremely strong attenuation of waves transmitted through a subwavelength

aperture limits the spatial resolution. In the visible near-field imaging, the resolution on

the order of —A/20 is sufficient for many applications since the wavelength is short (few

hundred nanometers). In the terahertz (THz) regime, however, the wavelength is so large

that desired resolution is less than 1/100 of the wavelength. The scope of this work is to

investigate possibilities of very high resolution imaging with THz waves. In the course of

this study, a near-field probe, which provides a better resolution than the conventional

near-field technique, has been developed. It was demonstrated that spatial resolution as

high as 7 pm at wavelengths of 120-1500 pm is possible with signal-to-noise ratio >10.

The advantage of the developed collection mode probe design is that the detecting

element is located in the near-zone of the probe aperture. It is known that electromagnetic
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energy is mostly concentrated in the near-zone (at the distance from the aperture smaller

than the aperture size) [Leviatan 1986]. This energy exists in evanescent modes and does

not propagate into the far-field zone (z>>2) [Grober et al. 1996]. The conventional near-

field scanning optical microscope (NSOM) setup only detects light transmitted to the far-

field zone. In the numerical and experimental studies of electromagnetic pulse

propagation through small apertures, it has been shown that evanescent modes dominate

at distance z<d/2. The intensity of electric field within this region is significantly larger

than in the far-field.

Due to relatively long wavelengths of THz waves, it is possible to implement the

idea of near-field detection by fabricating a probe with a few micron large aperture and a

detecting element located at a short distance L<d from it. For instance, a photoconducting

antenna, which is essentially a planar structure -4-2 pm thick, is well suited for his

purpose. A novel fabrication process, which allows building near-field probes with

lithographically defined apertures and the controlled separation between the aperture and

the detecting element has been developed. The sensitivity of these probes is shown to

improve by 1-2 orders of magnitude. In addition, the antenna measures electric field of

the radiation rather than the intensity. The electric field decreases only as the third power

of the aperture size d (the intensity decreases as d 6). Therefore attenuation of the signal

measured using our probe is not as severe as in the conventional probe.

THz near-field probes with an aperture as small as 5 pm (which is smaller than

A/100 for the central wavelength) has been fabricated and tested. Spatial resolution of the

probes is defined by the aperture size and independent of wavelength throughout the
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spectrum of the THz pulses (120-1500 pm). A record-high resolution of 7 pm has been

demonstrated in collection mode. Performance of the probes has been evaluated.

Electromagnetic pulses, especially the THz pulses, which have large fractional

bandwidth, experience spectral and temporal deformation as they transmit through the

subwavelength aperture of the probe (the aperture size is smaller than the central

wavelength). Transmission is wavelength dependent and different spectral components

transmit with different amplitude. In order to study these effects, a numerical method

based on two-dimensional finite-difference time-domain algorithm has been developed to

model the THz pulse coupling into the near-field probe. The simulation has shown a good

agreement with experimental measurements of the waveforms and spectra. The numerical

method allows studying coupling of THz pulses of an arbitrary waveform and spectrum

into the near-field probe, geometry of which can be modeled as well.

Any object in front of the aperture alters the pulse coupling into the probe. In

order to interpret near-field images, the transmission through the aperture has to be well

understood first. The spectral and temporal transformation of the THz pulses in the

process of transmission through a subwavelength aperture has been described. Depending

on the aperture size the spectrum width changes and the central wavelength usually shifts

to the shorter values. The pulse duration changes as well, resulting in effects of pulse

compression and temporal advancing. It has been demonstrated that these effects are

described by wavelength dependent transmission through the aperture.

Reconstruction of the sample properties from a near-field image is a difficult task,

since many parameters such as illumination conditions, field polarization, topography of

the sample, its composition, size, and shape affect the process of image formation.
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Interaction of the sample with the optical field and the probe is a basis of the near-field

imaging and, to our knowledge, it has not been studied in detail for THz pulses.

Description of basic properties of THz near-field imaging, and experimental

demonstration near-field effects, such as variation of signal amplitude with the probe-

sample separation, shallow depth of field, and polarization sensitive image formation is

presented in this work. It is shown that analysis of entire time-domain information is

required for accurate image interpretation.

This work is presented in seven chapters including Introduction and Conclusion

and two appendices. Terahertz time-domain spectroscopy technique (THz TDS), its

principle, possibilities and limitations are described in Chapter 2. Imaging in THz waves

is discussed in Chapter 3, where the concept of the collection mode near-field probe is

introduced. Design of the near-field probe, the issue of efficient coupling of THz pulses,

and details of fabrication are presented in Chapter 4. Propagation of single-cycle THz

pulses through subwavelength apertures and effects of pulse shaping and spectrum

deformation are discussed in Chapter 5. The limit of spatial resolution of the technique is

analyzed in that chapter as well. Chapter 6 is devoted to near-field imaging, where the

system properties, image artifacts, and methods of image analysis are presented. The

appendices discuss in detail characterization of the photoconducting material for THz

dertectors (Appendix A) and one-dimensional finite-difference algorithm for the THz

pulse propagation modeling (Appendix B).



CHAPTER 2

TERAHERTZ TIME DOMAIN SPECTROSCOPY

2.1 	 Introduction

The far-infrared, or terahertz, part of electromagnetic spectrum is one of the least

explored. Until recently, the main reason for the low attention to physical phenomena at

this frequency range had been a lack of efficient sources and detectors. Development of

the Terahertz Time Domain Spectroscopy (THz-TDS) technique induced considerable

interest in the spectral range of 0.1-2.0 THz [for example, Nuss & Orenstain 1998]. The

advantages of the THz-TDS are the exceptional sensitivity and the possibility to access

the amplitude and phase information of the propagating THz waves. In addition,

THz-TDS is a broad-band technique and it provides the possibility of complete

characterization of the dielectric function of materials in the terahertz regime. In this

chapter an overview of THz TDS technique is given, its principle, possibilities, and

limitations are discussed.

2.2 The Principle of THz TDS Technique

2.2.1 Spectral Analysis

THz TDS technique is based on measurements of short electromagnetic pulses, which are

deformed due to transmission or reflection from a sample. If a pulse propagates through a

medium, its waveform and spectrum change due to dispersion and absorption. Most

media are dispersive (i.e. the dielectric constant is a function of frequency of the field)

and the phase velocity is not the same for each frequency component of the pulse.

7
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Consequently different components travel with different speeds and tend to change phase

with respect to one another. This leads to a change in the shape of a pulse as it travels.

Frequency (Fourier) analysis of the pulse waveform allows characterization of the

medium dispersion.

In THz regime, many media are dissipative as well. A travelling THz wave can

excite vibrational or rotational modes of molecules, for example water molecules

[Cheville & Grischkowsky 1999] or proteins [Markelz 2000]. The dissipative effects are

usually functions of frequency of the field and traveling pulse experiences distortion

along with attenuation. The distortion usually appears in long lasting electric field

oscillations, which follow the field transient of the pulse and/or in attenuation of the pulse

amplitude.

As an example, Figure 2.1 demonstrates the effects of transmission on the

waveform and spectrum of the single-cycle pulse. The medium is characterized by a

single absorption line. Since the medium absorbs electromagnetic waves only at

particular frequency ωa, and otherwise is absolutely transparent, most of the spectral

components of the pulse propagate through the medium without a change. At frequency

ωa, however, the electromagnetic pulse excites the molecules, for example into their

rotational states. The coherent ensemble of molecules rotates with rotational frequency

and remits THz radiation after the external force (the incident pulse) disappears. This

emission is seen in the time-domain as slowly decaying electric field oscillations at

frequency at. Collision between the molecules of the ensemble causes dephasing and a

corresponding decay of the emitted THz radiation (and line broadening in the frequency

domain).
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Fig. 2.1. The time domain waveform (a) and the spectral amplitude (b) of a short electromagnetic
pulse transmitted through a medium with one absorption line at ωa/2π=0.8 THz. The incident
characteristics are shown by the dashed curves. The waveform exhibits electric field oscillations at
frequency co lasting after the incident pulse transient. In the frequency domain the spectrum
contains a distinctive absorption line.

The optical properties of the medium are directly obtained from the time-domain

measurements. The electric field transient can be expressed as a superposition of

monochromatic waves.
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E(ω) is a complex function and it is given by the Fourier transform of the time domain

waveform E(t)

The complex amplitude can be expressed in an exponential form, where the absolute

value of E(ω) describes the weight of spectral components in the pulse

Separation of two frequency dependent parameters, the amplitude and the phase, allows

the use of the time domain measurements for the sample characterization at different

frequencies simultaneously. In further discussions, the absolute value notation will be

omitted and E(ω) will be referred to the absolute value of the spectral amplitude.

Next, consider the waveform and the spectrum of the pulse as it passes through a

linear medium with complex index of refraction ñ (ω) = n(1 + i x) . The different spectral

components propagate at different phase velocities and, in general, suffer attenuation

along the path in the medium. After traveling distance l the pulse waveform becomes

Using the exponential representation [Eq. 2.3], the real and imaginary parts of the index

(or the dielectric function) are conveniently expressed in terms of the Fourier transforms

[Eq. 2.2] of the pulse waveforms E(t, x) and E(t, x+1)
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According to the last equations, the complex refractive index of the media can be found

using the experimentally measured amplitude and phase. The technique requires two

measurements: a reference waveform, measured without the sample and, a second

measurement, the waveform of the pulse, which interacts with the sample.

2.2.2 Spectral Resolution and Time-windowing of Data

Short optical pulses (1=100 fs) are used to measure the electric field of the THz pulse in

the TDS setup. The field is sampled using either a gated photoconducting antenna or an

electro-optic crystal [Cai et al. 1998]. The measured electric field corresponds to a

moment when the optical pulse turns on the detector. The time-domain waveform is

constructed by measuring the electric field as the time difference between the arrival of

the THz pulse and the gating optical pulse at the detector is varied. When the instrument

detects the peak electric field of the pulse, it is called to be in the zero time delay state. As

the delay stage is moved and the time difference increases, the electric field of the pulse

vanishes, corresponding to a later moment in time. Calibration of the time-axis is simply

accomplished by transforming the delay stage displacement into the time delay.

The spectral resolution of the instrument is determined by the length of the

recorded waveform [Nuss & Orenstein 1998]. THz pulses, as generated, are very short,

lasting only a half- or single cycle. The only radiation contributing to the non-zero electric

field after the pulse field vanishes is the individual absorption spectral peaks in the
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medium of propagation [Fig. 2.1]. The peak width is inversely proportional to the time

duration of the created field oscillations. A narrow time window allows detection of the

broad spectral peaks. Contribution of the narrow band lines is measured by increasing the

time-domain scan interval. Eventually, a few hundred of picoseconds after the pulse

arrival, the waveform oscillations decay to the noise level. This time interval, T, limits the

useful length of the waveform and, hence, the instrument spectral resolution, defined as

the inverse of the interval

A long time-domain scan is required for high spectral resolution THz TDS

measurements.

Truncation of the waveform allows excluding some of the undesirable signals,

such as substrate reflection, which arrive at the detector at a later time. In principle, this

operation results in limited spectral resolution. However, it simplifies the post

measurement analysis, since the pulse passes through the sample only once, provided that

reflections from the sample interfaces do not overlap in time. Multiple beam interference

effects can be removed also numerically.

2.2.3 Frequency Range of THz-TDS

Frequency range of the THz-TDS is directly related to the generation and detection of the

THz pulses. Short electromagnetic pulses provide substantial fractional bandwidth. The

frequency and time distributions of the pulse field are related [Jackson 1962]
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The duration of the single cycle pulses At is on the order of the inverse of the central

frequency. Consequently, the fractional bandwidth —
Aω 

can be larger than unity.
ω

The lower frequency limit of the THz-TDS technique is defined, as the spectral

resolution, by the measured temporal window. The upper limit, in principle, is determined

by the time increment of the acquired data, but practically, it is limited by the detector

speed, which depends on the detector type and will be discussed later. A typical

THz-TDS system that uses photoconducting antennas as the THz pulse generator and detector

provides a working range of 0.2-1.5 THz. Systems that use electro-optic sampling usually

extend the upper limit to 2-3 THz (if 100 fs optical pulses are used), because the

electro-optic detection scheme is not limited by the carrier relaxation dynamics in

semiconductors.

2.3 THz Transmitters and Detectors

2.3.1 THz Transmitters

A number of various sources of the THz pulses has been developed over the past two

decades [Cai 1998]. The most efficient one in the range of 0.2-1.0 THz remains the

photoconducting (Auston) switch [Cai et al. 1998], which consists of a fast

photoconductor bridging the gap in the transmission line structure. THz pulses can be

also generated in the process of optical rectification in crystals [for example Zhang et al.

1990]. A ZnTe crystal excited by 800 nm optical pulses with duration of 100 fs, for

example, emits mostly at 1 THz and higher. The choice of a particular source is directed

by the application. In this study, the photoconducting dipole antennas are used in most of
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the experiments for its relatively large emission power. Generation of THz pulses using

antennas is discussed in detail in the next section.

2.3.2. Generation of THz pulses using Photoconducting Antennas

It is known that when a short optical pulse is incident on semiconductor in the presence of

dc electric field, a far-infrared electromagnetic transient is emitted. There are two

mechanisms known to account for generation of this radiation: the transient photocurrent

radiation [for example Benicevicz et al. 1994], and optical rectification [Corchia et al.

2000]. The first mechanism is dominant when the electromagnetic pulse is generated in a

biased photoconducting antenna, excited by a short optical pulse with the photon energy

larger than the semiconductor bandgap.

A schematic diagram of a typical antenna structure is shown in Figure 2.2(a). The

structure consists of two 10 ,um wide metal lines deposited on a semiconductor surface,

separated by 40-100 µm, and a dipole antenna with a photoconducting gap of 5-10 ,um. A

voltage of about 10V is applied across the two lines, creating a very strong electric field E

near the contacts. A schematic diagram of the response of the voltage-biased

photoconducting antenna to a short optical pulse focused onto the gap between the two

dipole arms is illustrated in Figure 2.2(b-e). The femtosecond laser pulses

(τFWHM =100 fs) are focused to —10 pm diameter spot on the dipole gap. The pulse

generates electron-hole pairs in semiconductor at a rate proportional to the intensity

function Iopt(t) of the incident pulse (b). The current through the antenna rises rapidly due

to the carrier injection and acceleration in the external bias field. The transient

photocurrent radiates THz pulses into the free space (c).



Fig. 2.2. The schematic diagram of the photoconducting antenna (a). Response of the biased antenna to
the short optical pulse excitation (b-e). (b) The photocarrier generation rate follows the optical intensity
function. (c) The photocurrent through the antenna. (d) The radiated electric field as the time derivative
of the current transient and (e) its spectrum.

The current transient in a simple approximation of the ballistic motion of

electrons can be expressed as follows
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The first term gives the number of carriers at the moment t, generated by the optical pulse

at the moment t '. The second term gives the current due to the photocarriers accelerated

in the external field in the ballistic approximation. The carrier recombination process and

electron velocity saturation limit the transient current, which decays with a characteristic

time given by the carrier lifetime re in the semiconductor.

The radiated electric field can be derived from Maxwell's equations, where the

sources of field are the charge p and the current density J. The vector and scalar potentials

are convenient to use. The electric and magnetic field vectors are expressed in terms of

the potentials as follows [Jackson 1962]

The dynamic behavior of the fields is determined by the two inhomogeneous Maxwell's

equations

These equations expressed in terms of the potentials result in two in homogeneous wave

equations if the Lorentz condition is satisfied
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The two uncoupled wave equations for the potentials:

The solution to the wave equation for the vector potential in the infinite space

with current Y as the only current source

The Dirac &function evaluates the surface current in the photoconductor at the retarded

time. Integration is taken over the optically illuminated area. In the far field,

and Eq. 2.17 for the vector potential on the axis perpendicular to the surface current plane

reduces to a simple form

where /, denotes the total surface current in the gap of the antenna.

The equation for the electric field vector [Eq. 2.11] implies that there are two

contributions to the radiated field. One is due to the transient current and the other is due

to created charge density. The latter depends on illumination condition and will not be

discussed here. It must be mentioned, however, that the photogenerated carriers create a

screening field, which reduce the applied external field and, therefore, the transient
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current. Eq. 2.11 and Eq. 2.19 imply that the radiated electromagnetic field due to optical

excitation of the biased photoconducting antenna is proportional to the first time

derivative of the current

The waveform of the radiated field, calculated according to Eq. 2.20 is shown in Figure

2.2 (d). The radiated electric field starts with arrival of the optical pulse. As the transient

current saturates, electric field experiences a negative swing and decays slowly to zero.

Figure 2.2(e) shows the spectrum obtained by applying the Fourier transform to the

electric field function in Figure 2.2(d).

The time-domain waveform of the electromagnetic pulses depends on dynamics

of the carriers as suggested by Eq. 2.20. Generation of THz radiation in semiconductors

and the dynamics of the photoexcited electron-hole pairs have been discussed

theoretically and experimentally by many researchers [for example, Son et al. 1994 and

Benicewicz et al. 1994]. This interesting topic is out of the scope of the present work and

we will mention only few aspects of the problem.

The photocurrent rise depends on the optical field envelope and acceleration in the

external applied field. Motion of the carriers is determined by the band structure of the

semiconductor, the momentum scattering rate, and the size of electric field. The band

structure is important in GaAs, where velocity saturation can occur on a subpicosecond

time scale due to intervalley transfer of the electrons into the low-mobility satellite valley.

If the carriers are injected close to the satellite valleys, the acceleration time can increase

to 2 ps, compared to 200 fs for carriers infected close to the band edge [Hu et al. 1995].
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Because of the time derivative, the radiated field is dominated by the rising edge

of the photocurrent transient, which is determined mostly by the optical pulse envelope

and which is much faster than the decay. The tail of the photocurrent decays at the rate of

the carrier recombination process, which in most semiconductors is large compared to 1

ps. In some materials with high defect density, carrier lifetime is <1 ps, and the tail of the

photocurrent also contributes to the radiated field [Fig. 2.2(d)].

Enhancement of THz radiation can be achieved by focusing the laser beam close

to the electrode corners or fabricating sharp electrode ends. Electric field is stronger at the

sharp features of the electrodes. In addition, band bending at the metal-semiconductor

interface increases the potential slope [Cai et al. 1997].

The transient transport current is not the only source of THz radiation in biased

semiconductors. It has been shown that the THz radiation can be generated by the

displacement current [Planken et al. 1992]. In the presence of the field, electrons and

holes are excited into states that are spatially displaced from each other. This process

results in an "instantaneous" polarization of the electron-hole pairs, time derivative of

which corresponds to a current. The temporal behavior of this transient is as fast as the

optical pulse envelope function. In bulk semiconductors, the displacement component

dominates for photoexcitation below the bandgap [Hu et al. 1994, Kuznetsov et al. 1996].

The mechanism may be also regarded as optical rectification through the nonlinear

susceptibility t ) . A nonlinear dipole moment is also created by displacement of electrons

optically excited into conduction band without any external or surface field [Khurgin

1994].
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Besides the carrier dynamics, the actual dipole structure affects the radiated field.

The dipole antenna narrows the spectrum around the resonance frequency. Provided that

the transient current creates a broad spectrum of radiation, the central frequency of the

radiated field can be tuned by varying the length of the dipole.

2.3.3 Generation of THz Pulses Using Nonlinear Crystals

THz radiation is also generated in large bandgap materials when a short optical pulse

induces nonlinear polarization [Corchia et al. 2000]. The physical mechanism of this

process is bulk optical rectification (Z(2)- difference frequency mixing (DFM)). Short laser

pulses create a time varying dielectric polarization in a nonliner medium, which radiates

electromagnetic transient.

where E^viz is the visible exciting field, ω1 and ω2 are the beat frequencies in the visible

pulse and P is the induced polarization.

Most of the materials used to generate THz radiation (e.g. GaAs and ZnTe) have a

zincblende structure, for which the only non-vanishing elements of t ) are those without

repeated indices, such as %AT [Corchia et al. 2000]. The sum in Eq. 2.11 becomes

2.3.4 THz Detectors

THz transients are usually detected using electro-optic or photoconducting sampling

technique. Both methods rely on changes of some property of the detecting element in the
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presence of the incident THz pulse and a short optical pulse. A relative arrival time of the

THz pulse and the gating optical pulse is varied and the THz field is sampled in time. In

this section the principle of the photoconducting sampling is discuss in detail. A review

of the electro-optic detection of terahertz radiation can be found in Gallot &

Grischkowsky 1999. The performance comparison of the two methods was discussed by

Cai et al. 1998.

2.3.5 Photoconducting Sampling

The electric field of the incident pulses is detected using another photoconducting

antenna [Fig. 2.2(a)]. Electronics are not fast enough to measure the THz transients

directly, and repetitive photoconducting sampling is used instead. In the off-state, when

there is no photocarriers in the photoconducting gap, the antenna is highly resistive. The

incident field induces a bias between the antenna electrodes. Injection of carriers by the

laser pulses causes the resistance to drop substantially. Consequently, a photocurrent

flows through the antenna when both the incident field and the carriers are present. If the

photocarrier lifetime, re, is much shorter than the THz pulse, the photoconducting antenna

acts as a sampling gate, which samples the THz field within a time re . During the

photocarrier lifetime, a current proportional to the instantaneous electric field induced by

the incident THz pulse in the gap flows in the detecting antenna.

The laser pulses, which trigger the transmitter and gate the detector, originate

from the same source. Therefore, the phase relation between the generated THz pulse and

the sampling pulse is controlled by position of the delay stage. By varying the time delay
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of the gating pulse the entire THz transient is mapped without the need for fast

electronics.

The bandwidth of the detector is determined by two factors, the photoconductor

response to the optical excitation and the frequency-dependent response of the antenna

structure. The photoconductor response imposes the high-frequency limit due to finite

duration of the sampling intervals. In general, the photoconductor response is the

convolution of the transient photoconductivity 0(t) and the electric field across the

photoconductor

The electric field in the gap of the antenna is precisely sampled if the transient

conductivity becomes the delta function. The finite duration sampling intervals in a real

antenna, however, removes the high frequency oscillations from the measured signal

Ipc(t). Figure 2.3 illustrates the sampling process in the gap of the antenna. In order to

resolve variations of the electric field at 1 THz, the photocurrent decay time must be less

than —0.5 ps.

The photogenerated electron-hole pairs do not necessarily have to recombine

within 1 ps. One effective way to realize the fast decay of the photocurrent is to introduce

defects with the fast carrier capture rate. The photoexcited carriers are quickly trapped by

the defect states and then recombine with a slower characteristic time. Trapping of

electrons can occur within a few hundred picoseconds, while recombination in

semiconductors with low defect density is usually longer than hundreds of picoseconds.

For example, the recombination time in bulk semi-insulating GaAs is —300 ps. This time

decreases substantially if defects are introduced. This is accomplished during the crystal
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Fig. 2.3. Photoconducting sampling of the incident THz field. The THz pulse induced potential
difference across the semiconductor E(t), the gating optical pulse switched on the conductivity of
the antenna for a short period of time. A current proportional to the convolution of the field and
the photoconductivity flows in the antenna.

growth or afterwards by ion implantation. For example, annealed GaAs epitaxial films

grown at low (below crystallization) temperatures have been shown to have carrier

lifetimes as short as few hundred femtoseconds [Gupta et al. 1991]. Subpicosecond

lifetime has been demonstrated in radiation-damaged silicon-on-sapphire, in which

dislocations are formed by implanting argon, silicon, or oxygen ions [Doany et al. 1987].

The second factor that limits the bandwidth is the resonance properties of the

dipole antenna. The electric field across the gap of the antenna differs from the THz pulse

in free space due to the frequency dependent response of the antenna structure. As in the

case of the antenna radiation, the length of the dipole determines the central frequency of

the detector response In standard spectroscopic measurement, however, this effect is

eliminated when the spectrum of the sample is normalized to the reference spectrum,

measured with the same frequency response.
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2.4 THz-TDS System

In the previous sections, the principle of THz —TDS technique, the THz pulse sources and

detectors were discussed. In this section, the rest of the system components, including a

femtosecond laser, THz optics, and electronics are discribed. A schematic diagram of a

typical THz-TDS system is shown in Figure 2.4. It consists of a femtosecond laser source,

a variable time delay line, the THz pulse transmitter, collimating and focusing optics, the

sample, the optically gated THz detector, a current amplifier, and a lock-in amplifier. The

measurements are automated by means of the computer control of the delay line and the

lock-in amplifier.

2.4.1 Experimental Setup

A solid-state mode-locked Ti:Sapphire laser (Tsunami by Spectra-Physics, Inc., Lexel 480

by Lexel Lasers, Inc.) pumped with Ar-ion laser (Innova 400 by Coherent, Inc.) produces

short τFWHM~100 fs pulses (measured by autocorrelation technique). The central

Fig. 2.4. The schematic diagram of THz-TDS system.
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wavelength is near 800 nm and the repetition rate is 100 MHz. The beam is divided in

two by means of a half-wave plate and a polarizing cube beamsplitter (not shown in the

diagram). One part of the beam is focused onto the gap of the biased dipole antenna using

a 20X microscope objective. The second part passing through the variable time delay

stage is focused on the detecting antenna with a similar microscope objective. Generated

THz radiation is collected using hyperhemispherical Si lens attached to the emitter and an

off-axis parabolic mirror. The collimated beam is then focused on a sample using another

parabolic mirror. After passing through the sample the THz pulses are focused on the

detecting antenna using parabolic mirrors and a Si lens.

The THz photoconducting transmitter and detector require moderate laser power

(<30 mW each). The transmitter bias is modulated using a square shape function

generator (FG) at a frequency of 12 kHz, which results in the highest signal-to-noise ratio.

The dc photocurrent in the detector at the modulation frequency is transferred into a

voltage signal using the current pre-amplifier. This signal is eventually measured using

the lock-in amplifier. When a ZnTe crystal used instead of the biased antenna for

generation of the THz pulses, the optical beam in front of the crystal is mechanically

chopped to modulate the signal. Due to a limit on maximum chopping frequency the

signal is measured in this case at —2 kHz.

2.4.2 Characteristics of THz Pulses.

A typical THz waveform measured in the described setup is shown in Figure 2.5(a). The

source is a LT GaAs antenna with a 10 µm gap and a 60 ,um long dipole biased at 0.5 V.

The detector is a similar antenna with a 45 pm long dipole. Both structures are excited
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with 4 mW (average power) optical pulses. The THz transient exhibits a little more than

one cycle and its spectrum peaks at 0.7 THz.

Fig. 2.5. The THz pulse waveform measured using THz-TDS system (a). The pulse is generated
by a biased (0.5 V) photoconducting antenna based on LT GaAs. The antenna is excited with short
optical pulses (average power 4 mW). The detecting antenna is gated with optical pulses of the
same power. The Fourier spectrum of the pulse (b).
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THz pulses generated by the frequency conversion process in a <110> oriented

ZnTe crystal contain spectral components of considerably higher frequency. The

Fig. 2.6. The THz pulse waveform measured using THz-TDS system (a). The pulse is generated
by the frequency conversion process in ZnTe crystal (<110>) illuminated by the short optical
pulses (average power 50 mW). The detecting antenna is gated with 12 mW optical pulses. The
Fourier spectrum of the pulse (b).
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measured spectrum extends to —2 THz.

The waveforms shown in Figure 2.5(a) and Figure 2.6(a) contain long lasting

electric field oscillations after the pulse. This effect is related to absorption of particular

spectral components by water molecules which are present in air. The THz pulse travels

—80 cm through the air. The spectra show distinctive absorption lines at 0.55, 1.10, 1.17,

1.41, 1.67 THz. Frequencies of the absorption lines coincide with the strongest absorption

lines of the water vapor spectrum measured by Cheville & Grischkowsky 1999. At higher

frequencies (1.7-3.0 THz), density of absorption lines of water increases and individual

lines are not resolved.

The poor spectral resolution in Figure 2.5(b) and Figure 2.6(b) is due to a narrow

time window. Since the waveform is truncated after —30 ps, the spectral resolution is only

0.03 THz. The water absorption lines at normal pressure and temperature are significantly

narrower and the induced oscillations last much longer than 30 ps. In order to increase the

spectral resolution, a wider time window have to be used. Figure 2.7(a) demonstrates the

spectrum obtained using a 150 ps long waveform, which provides the spectral resolution

of 6.7 GHz. This window was also expanded by padding the interval from 150 ps to 300

ps with zeros. This operation corresponds to interpolation in the frequency domain. The

absorption lines, barely distinguishable in Figure 2.5(b) and Figure 2.6(b), clearly appear

in the spectrum of Figure 2.7(a) (the path in air is 55 cm).

Water absorption decreases if the system is purged with dry nitrogen gas. A part

of the system, which includes the sample and the THz transducers, is enclosed into a

vapor-tight box. Nitrogen flow reduces concentration of water molecules in air, making it

less absorptive in the THz range. The waveforms measured in the purged system show



Fig. 2.7. The Fourier spectrum of the THz pulse waveform measured using THz-TDS system with
(dotted curve) and without nitrogen purging (solid curve) (a). Estimation of the absorption

where L=55 cm denotes the length of the pulse path

significantly smaller oscillations after the pulse, and the absorption lines in the spectrum

reduce. Using the measurements with and without purging, the absorption coefficient of

air can be estimated by taking the logarithm of the spectral ratio E(ω)/E0 (ω). The result is

shown in Figure 2.7(b). Note that N2-purging only reduces water absorption. Some lines
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are still present in the spectrum [dotted curve in Fig. 2.7(b)], and the actual absorption of

electromagnetic waves in air is larger.

The present work is focused on near-field imaging applications of THz-TDS.

However, there are many other applications. In the high-speed device and wide-

bandwidth communication field, THz-TDS is used as a characterization tool that allows

studying propagation of picosecond and sub-picosecond pulses. A recent review paper by

Grischkowsky 2000 discussed advances in that field. THz-TDS has been applied to

studies of conformational changes in biomolecules, such as DNA and proteins, which are

traditionally studied with Raman and FTIR. These large molecules have low-frequency

collective vibrational modes, therefore changes in the absorption spectrum of the

molecules reflect the conformational motion [Markelz et al. 2000]. Generation of THz

pulses itself provides a unique possibility to study dynamics of carriers in semiconductors

(Son et al. 1994). Imaging applications of THz-TDS, which will be mentioned in the next

chapter, draw considerable attention of researchers as well.



CHAPTER 3

IMAGING WITH TERAHERTZ WAVES

3.1 Introduction

Imaging technology has progressed rapidly into the THz region of the electromagnetic

spectrum during the last few years [Mittelman et al. 1999]. This advance is mostly due to

development of the THz time-domain (or THz time-resolved) spectroscopy (THz-TDS)

technique. This method covers a wide spectral window from 0.1 THz to 40 THz, which is

rich in electromagnetic phenomena. The THz-TDS system has a small power in the THz

beam, but exceptional sensitivity. This combination makes the THz-TDS technique a

powerful tool for far-infrared imaging with a variety of potential applications.

Most chemical compounds show specific frequency dependent absorption and

dispersion in the THz range. In principle, THz-TDS technique can be applied to

determine the chemical content of an unknown object. Diffraction optics allows spatial

resolution on the order of the wavelength. The first imaging system was demonstrated by

Hu and Nuss (1995). THz pulses were focused to a diffraction-limited spot on the sample,

and the transmitted THz waveforms are acquired at each point of the sample scanned in

the focal plane. Figure 1 shows the first images in THz waves: a packaged semiconductor

integrated circuit, and water concentration in a fresh tree leaf. Further development of the

THz imaging went in two main directions: reduction of the acquisition time for each THz

waveform and developing digital processing algorithms, and improvement of spatial

resolution. A review of the recent advances could be found in the paper

by Mittelman et al. (1999).

31
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The major limitation of THz, or Tray, imaging is poor spatial resolution

(-1-2 mm) due to the long wavelength, which does not allow resolving small object

features with conventional optical methods. The resolution can be significantly improved

by implementing the concept of near-field scanning optical microscopy [Pohl 1991].

Subwavelength resolution is achieved if the source of radiation is spatially confined to a

Fig. 3.1. THz image of a packaged semiconductor integrated circuit (plastic packaging) (a). THz
image of a fresh tree leaf (b). Attenuation of THz radiation through the leaf is largely due to
water within the leaf (left image). Another image shows the same leaf after 48 h. Water has
evaporated from the leaf except from the stems, where transmission remains small.
Reference: Hu and Nuss (1995)
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size smaller than the wavelength and it is placed close to the object, so that it only locally

illuminates the object. The transmitted waves carry information about the point of the

object, where the source is placed. By scanning the object over the source one constructs

a near-field image. Most of the near-field imaging setups use a small illuminated aperture

as a subwavelength source. Spatial resolution in this case is defined by the aperture size

and is not limited by diffraction [Pohl 1991]. Near-field scanning optical microscopy

(NSOM) developed very quickly over the past two decades. Various modifications of the

original system were proposed and demonstrated [Betzig et al. 1987, Reddick et al. 1989,

Knoll & Keilmann 2000].

Several imaging systems based on the THz-TDS setup and near-field approach

have been introduced, pushing the resolution limit to a few tens of microns. Hunsche et

al. (1998) demonstrated 2/4 resolution by focusing the THz beam into a tapered metallic

tip with a small (50-100 µm) exit aperture and scanning the sample in the near-zone of

the aperture. Brener et al. (1998) showed similar improvement with the aperture placed

close to the THz source for better radiation coupling. Another approach uses the fact that

the THz emission point is itself much smaller than the THz wavelength. By placing the

sample close to the point of THz generation, one can use spatial confinement of the

generation process for subwavelength resolution imaging [Wynne & Jaroszynski 1999].

An alternative solution, developed by Q. Chen et al. (2000) and named as a

dynamic aperture approach, potentially can improve resolution to a few microns. In this

system, a focused optical beam creates a local electron-hole plasma in the sample, which

absorbs the THz beam in a —10-20 pm diameter region. By measuring THz transmission

and scanning this optical beam, the response of the sample can be mapped. However,
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application of this method is limited to semiconductor surfaces and images are related to

the concentration of photogenerated carriers.

In this work, a THz imaging system based on the aperture-type near-field probe is

described. The method provides a very high spatial resolution and has all the advantages

of the THz-TDS. The technique can be used in two modes, illumination and collection,

with spatial resolution of few microns independent of the wavelength of the radiation

(120-1500 pm). The combination of the near field microscopy concept with the THz-TDS

allows for studying the temporal evolution of the electromagnetic field in the near field of

objects. The broadband coherent THz source potentially provides the possibility of

spectroscopy on a micrometer scale. The principle of the THz near-field imaging system

is discussed in this chapter.

3.2 NEAR-FIELD IMAGING

3.2.1 The Principle of Near-Field Imaging.

Subwavelength spatial resolution in the near-field zone can be realized in various

configurations. The collection mode in transmission will be considered in this section

primarily because most of the experiments discussed in the present work were performed

in this arrangement.

Consider a flat object illuminated by a monochromatic wave [Fig. 3.2]. The

electric field in the plane of the object can be expressed as a superposition of field with

spatial frequencies kx and ky
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where the spectral amplitudes are related to the field distribution in the plane by the

Fourier integrals

Given that the total wave vector is k, and the spectral amplitudes satisfy the propagation

relation, the optical electric field in arbitrary point is described in terms of the field in the

object plane z=0 and the exponent, which constitutes the z-dependence

If the object field has spatial frequency components 1c, and ky such that

the corresponding spectral amplitudes A(kx, ky, z) are evanescent decreasing exponentially

with increasing z. These spatial frequencies can not propagate into the far-field rigeon

(z>>2) and, therefore, conventional imaging techniques are unable to reproduce

subwavelength features in the image.

Fig. 3.2. The schematic diagram of the collection mode near-field imaging using a
subwavelength aperture.
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However, the high spatial frequency components can be sampled by a small

aperture (or any small scattering object) introduced in the evanescent field zone as

schematically shown in Figure 3.2. A fraction of the incident wave transmits through the

aperture to a detector. Since the field that passes through the aperture is determined by the

object field at the point of the aperture entrance, the object field can be sampled by the

aperture. If the aperture is placed close enough to the object, so that the evanescent

components of the object field are strong, the subwavelength resolution imaging can be

realized. An image of the object can be constructed by scanning the aperture over the

object and detecting the amplitude of the transmitted wave.

The amplitude of the wave that emerges from the aperture is related to the electric

field E(x,y,z) averaged over the aperture area. In general, the field transmitted through the

aperture can be expressed as some average of the field in the object plane multiplied by a

transfer function of the aperture, which depends on the distance to the object h, the

aperture size d, and the wavelength.

The near-field zone of the object can be defined as a region, where the amplitude

of the high spatial frequency evanescent components of the object field is large. For a

transverse vector kt, which satisfies the condition in Eq. 3.4, the amplitude decreased

exponentially in the z-direction with a characteristic length
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An aperture of size d is capable of sampling spatial frequencies with a transverse vector kt

smaller than π/d. The characteristic decay length of the field with kt = led in the limit that

the aperture size is much smaller than the wavelength is δ=d/π. The decay length is larger

for the field with a smaller kt. Therefore, by sampling spatial frequencies with the

transverse wavevector kt up to d, the aperture-size resolution can be achieved. The

separation between the aperture and the object has to satisfy inequality

so that the spatial frequencies k,	 / d have non-vanishing amplitudes at the distance

from the sample h, where the aperture is placed.

It is worth stressing two important properties of the near-field imaging: (1) spatial

resolution does not depend on the wavelength, and (2) the technique is characterized by a

very shallow depth of field. The first one is particularly important for imaging with THz

pulses, which contain a broad band of wavelengths. Imaging can be implemented with the

same spatial resolution for the whole spectrum of the THz pulse. This property also opens

the possibility for the high spatial resolution spectroscopy with THz pulses. The second

characteristic limits application of the technique only to thin samples.

It must be mentioned that any external object, introduced in the near-field zone of

the object under investigation, perturbes the field distribution and results in artifacts. In a

conventional NSOM setup, the aperture fabricated on the tip of a fiber. In our near-field

probe, the aperture is realized in a plane metallic screen. The presence of the conducting

plane in the vicinity of the object affects the field distribution. However, the plane is
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uniform and its interaction with the object does not limits the resolution capability of the

method.

3.2.2 Subwavelength Aperture Transmission

When an electromagnetic wave is incident of a metallic screen with a subwavelength

aperture in it, most of the power is reflected back from the screen. Only a small fraction

passes to the other side of the screen. Because of the weak coupling, the near-field

technique suffers a substantial reduction of the signal amplitude, which in many cases

limits the spatial resolution.

Power losses can be estimated in the transmission experiment when an aperture is

placed in the focal point of a freely propagating THz beam. A schematic diagram of the

Fig. 3.3. The shematic diagram of the experimental setup for the aperture transmission studies.

experimental setup is shown in the Figure 3.3. Single-cycle electromagnetic pulses with

the center frequency of 0.8 THz are generated using photoconducting dipole antenna. The

radiation is focused on the aperture cut in a 25 pm thick stainless steel screen. A

hyperhemispherical Si lens is attached to the aperture screen at the entrance side for

efficient radiation coupling. The lens has a high value of numerical aperture and the beam
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can be focused at the backside of the lens to a small size. Radiation, transmitted through

the aperture radiation, is collected with a parabolic mirror (N.A.=0.4) and guided to the

photoconducting antenna detector.

The THz beam transmitted through a 500 µm-diameter aperture suffers almost no

attenuation. Absence of losses shows that the high refractive index hyperhemispherical

lens (n=3.6) focuses the beam to the size smaller than 500 µm. The beam waist before the

lens is estimated to be —1.6 mm (full width half maximum of the electric field amplitude).

Attenuation increases as the aperture diameter decreases. Figure 3.4 shows waveforms of

the THz pulse transmitted through apertures with diameter d=50 - 500µm.

Fig. 3.4. THz pulse transmitted through apertures in a 25 gm thick stainless steel foil.

The peak amplitude of the pulse transmitted through the 50 pm aperture is —150

times smaller than that of the pulse transmitted through the 500 ,um aperture. Different

spectral components transmit through the aperture with different efficiency. Fourier
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transform of the waveforms shows that the longer wavelengths are suppressed more than

the shorter ones. Figure 3.5 presents the spectra of the transmitted pulses.

Fig. 3.5. The spectra of the THz pulses transmitted through apertures of different sizes.

Further reduction of the aperture size decreases the amplitude of the transmitted

waves even more. In the limit that the aperture size d is much smaller than the

wavelength, the amplitude of the transmitted wave decreases as the d 3 law [Bethe 1944].

We can expect that the THz pulse would suffer —10 -5-10-6 attenuation in amplitude after

transmission through a 5 ,um aperture (2/100). Note that the corresponding intensity of

the pulse reduces by the factor of 10 -1040-12 .

3.2.3 Near-Field Detection of the Field Coupled through the Aperture

It is obvious that very small apertures are not practical in the approach described in the

previous section. However, efficient detection of the field that couples through the

aperture can be realized if the field is measured in the near-zone of the aperture. In this
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case, the imaging setup has to be in the collection mode, when the object is uniformly

illuminated and the aperture is located behind it.

Electromagnetic energy of the field behind an illuminated subwavelength aperture

is mostly concentrated in the near-field zone and does not propagate away from the

aperture [Leviatan 1986]. The field density decreases with the distance from the aperture

at a close to an exponential rate. The non-radiating field, also regarded as the evanescent

field, is not detected in the setup previously described. The contribution of the evanescent

components to the total field in the near zone is substantially larger than that of the

Fig. 3.6. The schematic illustration of the advantage of the near-zone detection of the coupled
through the aperture field.

radiating component. Therefore, the imaging probe can benefit from moving the detecting

element into the near zone of the aperture. Figure 3.6 schematically demonstrates the

advantage of the near-field detection. For every order of the sensitivity improvement, the



42

aperture can be reduced by a factor of two without degradation of the signal-to-noise

ratio.

3.3 High Spatial Resolution THz Imaging System

In order to realize the idea of detecting the coupled through the aperture field in the near-

zone of the aperture, an integrated near-field probe that combines the subwavelength

aperture and the detecting element was developed. Sensitivity of the technique improves

by approximately two orders of magnitude compared to the far-field detection. Using the

integrated near-field probe, THz pulses transmitted through apertures as small as 21300

(for the spectral component with the largest wavelength) were detected. The probe with 5

,um aperture demonstrated spatial resolution of 7 ,um with a practical signal-to-noise ratio

(-30). In the following sections the integrated near-field probe and the setup of the

imaging system is described.

3.3.1 Integrated Near-Field Probe

The probe is designed to measure locally the electric field of the THz pulse transmitted

through an object. To improve the sensitivity, the probe detects the evanescent modes of

the THz field that exist in the near zone behind the aperture of the probe. As the distance

from the aperture increases, the evanescent field decay rapidly, but it is relatively high in

the close proximity of the aperture. The probe integrates a subwavelength aperture and a

photoconducting antenna so that the antenna dipole is located in the near-field zone of the

aperture.
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A schematic diagram of the near-field detector is presented in Figure 3.7. An

entrance subwavelength aperture is lithographically defined on a surface of the probe in a

gold film evaporated on a thin GaAs layer. A GaAs protrusion through the aperture

enhances the field coupling into the probe. The photoconducting dipole antenna is

Fig. 3.7. The schematic diagram of the collection mode integrated near-field probe.

embedded between a thin layer of GaAs and a sapphire substrate. The antenna is

fabricated on a 1 µm thick low temperature grown GaAs epilayer. The sapphire substrate

supports the structure and allows the optical gating pulses access to the antenna from the

substrate side. The GaAs layer is removed on the side of the probe for access to the

antenna contacts.

3.3.2 Experimental Setup

The integrated near-field probe is placed in detector site of the THz-TDS setup. The

electric field measurements are conducted in the same manner as in the regular THz-TDS
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method, except for a location of the sample, which in the near-field measurements is

placed a few microns away from the probe. An additional element of the setup is a

translation stage, which scans the object in front of the probe. A schematic diagram of the

collection mode imaging setup is shown in Figure 3.8(a).

Fig. 3.8. The schematic diagrams of the near-field imaging system based on the integrated
probe in the collection (a) and illumination modes (b).
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The same design of the probe can be also used in illumination mode. In this case,

the antenna of the probe is used as the THz emitter. When the emitter is located less than

a wavelength way from the aperture, coupling of the radiation out the probe is more

efficient than in the conventional setup [Fig. 3.3]. However, experimental estimation of

losses shows that sensitivity of the collection mode setup is higher than that of the

illumination mode setup by approximately a factor of two.



CHAPTER 4

NEAR-FIELD PROBE DESIGN AND FABRICATION

4.1 Introduction

High sensitivity of the collection mode near-field probe is achieved because the electric

field is measured immediately behind the probe aperture before the transmitted radiation

diverges and the electric field amplitude drops. Design is absolutely crucial, because the

probe performance depends on its sensitivity, which is directly determined by geometrical

parameters. Sensitivity of the probe strongly depends on the separation between the

aperture and the detecting element. The coupling of radiation through the aperture

depends on the geometry of the dielectric tip protruding through the aperture. Two issues

are mainly discussed in the first part on this chapter: how the amplitude of the

electromagnetic field decreases with distance form the aperture, and how the probe

geometry affects field coupling into the aperture. Effects of the aperture size will be

considered separately in Chapter 5.

Geometry effects are usually difficult to study experimentally. Numerical

simulation techniques are of a great value if they predict the effects without time

consuming fabrication and testing. Numerical modeling of the THz pulse coupling into

the aperture of the probe is presented in this chapter. The modeling uses the finite-

difference time-domain method and takes into account the probe geometry and the pulsed

nature of the radiation.

The last part of the chapter describes the fabrication process, which includes the

photoconducting antenna and the integrated probe fabrication.

46
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4.2 	 THz Pulse Propagation inside the Near-Field Probe

4.2.1 Overview of the Wave Propagation through a Subwavelength aperture

The problem of diffraction of electromagnetic waves by a small aperture in a conducting

screen directly applies to aperture-type near-field microscopy. The main practical aspect

of the problem is the calculation of the amount and the spatial distribution of the

transmitted radiation. For the collection mode near-field probe, which integrates a

subwavelength aperture and a detecting element, this problem directly corresponds to the

sensitivity issue.

The propagation of electromagnetic waves through a subwavelength aperture in a

metallic screen has been studied by many authors [Bethe 1944; Bouwkamp 1950,

Leviatan 1986; Novotny 1994; Roberts 1989]. The standard analytical Kirchhoff s

method for solution of diffraction problems is inadequate for the treatment of the

subwavelength apertures. This method does not satisfy the boundary conditions in the

plane of the aperture. The formulation of the problem is more appropriate to the case of

the aperture in a perfectly absorbing screen. As result, Kirchhoff s method leads to an

incorrect solution.

The classical analytical solution for a circular aperture was derived by Bethe

(1944). The solution is based on an analytical form of the electromagnetic fields in the

plane of the illuminated aperture. This form was obtained only for the elliptical apertures,

however, the result is quite general and the solution can be used to analyze transmission

properties of a small hole of an arbitrary shape. The Bethe's expression for the fields

behind the screen is correct only in the far-field zone of the aperture (z>> .1), as was
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pointed out by Bouwkamp, who corrected the Bethe's solution for the near-field zone

(z<<2) [Bouwkamp 1950].

An analytical solution for electric field in the near-field zone in a general case is

difficult, and numerical techniques are widely used [Leviatan 1987, Grober et al. 1996].

Various methods allow increasing the complexity of the problem, by specifying the

geometry of the aperture and materials characteristics [Roberts 1989, Novotny 1994,

Vasilyeva & Taflove 1998].

In the classical formulation of the problem, a small circular hole in an infinitely

thin conducting screen is illuminated by a plane electromagnetic wave. Green's theorem

can be used to describe electromagnetic fields on the other side of the screen. The electric

field at any point F behind the screen is

with the retarded Green's function

The integral is taken over the surface, which encloses the whole space. A unitary vector

ii defines the surface of integration and points inside the volume. In order to find the field

inside the volume, it is necessary to know the values of the field and its normal derivative

on the surface S.

Note that Kirchhoff' s diffraction theory is inadequate for this problem. The

Kirchhoff s approximation consists of the assumptions that (1) the electric field and its

derivative vanish everywhere except in the aperture; and (2) the values of the field and
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derivative in the aperture are equal to the values of the incident wave in the absence of

any screens. The approximation fails in the case of a small aperture in the metallic screen,

because of significant perturbation of the field inside the aperture. This effect is

particularly strong for the aperture of a size much smaller than the wavelength. Also, the

boundary condition at a perfectly conducting surface does not require the normal to the

surface component be zero, as it is assumed in the Kirchhoff s approximation. An

absolutely different approach is necessary.

Green's theorem (4.1) can be rewritten in an alternative way [Jackson 1962]

This expression must be satisfied everywhere in the volume. However, for a point at the

screen, the second and the third terms in the integral give rise to a tangential component

of electric field and, therefore, violate the boundary condition at the conducting screen

surface. Only the first term satisfies the boundary condition, giving electric field normal

to the surface. Therefore, only the first term must remain in the expression [Bethe 1944].

The integral in Eq. 4.3 has a physical interpretation in terms of sources of charge

and current. The wave transmitted through the aperture is considered as arising from

equivalent currents in the aperture. The first term in the integral is equivalent to 'magnetic

currents' in the plane of the aperture in a same way as the curl of the magnetic field is

related to electric current.

Distribution of the surface magnetic currents K inside the circular (or elliptic)

aperture can be chosen to satisfy the boundary conditions everywhere in the plane of the
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screen [Bethe 1944]. Then the integral over the entire surface can be reduced to the

aperture area

This simple result implies that electric field of an illuminated aperture can be

calculated everywhere as produced by magnetic currents inside the aperture. The

Fig. 4.1. Electric field in the cress-section of a subwavelength aperture of radius a=0.1 A,
according to the Bethe's theory (solid curve). Polarization of the field is perpendicular to the line
of cross-section. The amplitude is normalized to the amplitude of the incident wave. The dashed
line shows the Kirchhoff's approximation, which assumes that the field is unity everywhere
inside the aperture.

magnetic field determination is similar, although it involves introduction of 'magnetic

charges' beside the currents. As an example of field calculation, Eq. 4.5 gives the Bethe's

tangential components of electric field in the plane of the circular hole. The hole radius is

a and the incident electric and magnetic fields are É0  and ho respectively.
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The first term is non-zero only if the plane wave is incident on the aperture at an angle.

The last term is produced by the tangential incident field and, therefore, corresponds to a

wave normally incident on the aperture screen. Figure 4.1 shows the electric field

amplitude in the radial cross-section of the aperture, calculated using only the last term of

Eq. 4.5. The aperture radius is 1/10 of the incident wavelength. The amplitude is

normalized to the incident electric field. In the plane of the aperture, the field is clearly

smaller than unity, as assumed in the Kirchhoff's approximation.

The field distribution depends also on the ratio of the aperture size to the

wavelength. It implies that the transmission coefficient is not simply proportional to the

aperture area. In fact, the total transmitted power of the normally incident plane wave can

be found proportional to the sixth power of the aperture size and inversely proportional to

the forth power of the wavelength

where C is a constant. The emission is in the normal direction and polarization is the

same as of the incident wave. Note that the transmitted electric field scales as a 3 when the

ratio of the aperture size to the wavelength decreases. If the electric field is measured, the

signal attenuation is only a square root of the intensity attenuation.

Distribution of the fields behind the aperture is particularly interesting in the near-

field zone. Bethe's theory, however, gives the correct analytical solution only for the

distant fields. The near-field correction to the theory is discussed by Bouwkamp (1950).
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The problem of finding the fields in the near-field zone can be also treated numerically.

As discussed above, the radiation due to the aperture is equivalent to the field due to the

surface magnetic currents. Using the current distribution obtained by Bethe, the magnetic

field is obtained by numerical integration. Leviatan (1986) studied decay of the

transmitted fields as a function of the distance from the aperture, as well as the issue of

field confinement by the aperture.

The result shows that there are three spatial regions with various characteristic

behaviors of the fields.

(1) Very close to the aperture the magnitude of the field remains constant as the

distance z increases from 0 to about z=0.1a.

(2) In the interval from about z=0.1a to about z=10a, the field falls off with distance

at an increasing rate, and approaches z -² dependence.

(3)	 The field amplitude decreases monotonically as z -1 at longer distances.

The electromagnetic fields of the aperture can be interpreted as consisting of two parts:

the radiating wave, which dominates at z>/112, and the evanescent wave, which

contributes only at z<10a.

Spatial confinement of electromagnetic fields behind the aperture plays an

important role in near-field microscopy. The radiation emanating from a small aperture is

first collimated to the aperture size rather than the wavelength. The radiation remains

confined within a distance of approximately one aperture radius. The pattern diverges

rapidly beyond this confinement length.
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4.2.2 Numerical Simulations based on FDTD Method

In all the methods discussed above, the incident field is assumed to be harmonic. The

solution depends on the frequency of the field as ω². . In addition, it is valid only if the

aperture size is much smaller than the wavelength. THz pulses contain a broad spectrum

of frequencies, and some components have wavelengths on the order of the aperture size

and smaller. Propagation of the THz pulses can be studied using the finite-difference

time-domain (FDTD) numerical technique [Taflove & Hagness 2000]. The method is

used to solve Maxwell's equations for electromagnetic fields in arbitrary space, and,

therefore, the probe structure can be accounted in calculations. The time domain

formulation allows the use of an experimentally measured waveform of the pulse as an

incident field. Subsequently, the simulation results are compared with experimental

findings directly. The FDTD method has been already applied to study THz pulse

waveform transformation due to propagation through wide slits [Bromage et al. 1998]. A

good agreement with experimental findings was shown in this work.

Fig. 4.2 Analogy between an aperture and a slit oriented parallel to the electric field
polarization. The electric field lines are shown by the vertical dashed lines. Electric field
distributions along the cross-section AA through the aperture and along the cross-section A'A'
through the slit are similar.
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Complete calculations of the fields in a specified volume can be time consuming,

because the algorithm considers every point of the space in every time step. However, the

problem can be reduced to a two-dimensional case, which corresponds to an infinitely

long slit. We can make this simplification because the electric field distribution in the

cross-section of a square-shaped aperture is similar to that of a slit oriented parallel to the

polarization direction [Fig. 4.2]. The two-dimensional model provides a good qualitative

description of the pulse propagation, but reduces the computation time substantially. The

model can be used to compare various designs of the near-field probe in order to optimize

the probe performance.

Certain requirements must be satisfied in order to model THz pulse propagation

inside the near-field probe.

(1) The incident field must be modeled as a plane wave with specified propagation

direction, polarization, and time waveform.

(2) The incident field must have constant amplitude in any plane parallel to the

wavefront, and the waveform profile and amplitude must remain constant as the

pulse propagates in the modeling space, except when it diffracts at the aperture.

(3)	 The probe structure must be completely specified in the FDTD grid.

The scattered field formulation is used for calculation of the diffracted field. This

approach is based on the linearity of Maxwell's equations. The physical total electric and

magnetic fields can be decomposed in the following manner:
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E;,, and	 are the values of the incident-wave fields. These are the fields that would

exist in vacuum if there were no material in the modeling space. The algorithm requires

that Einc and	 are known at all points of the space lattice at all time steps. Esc at and

//scat are the values of the scattered-wave fields, which are initially unkown. These fields

result from the interaction of the incident wave with the material in the space lattice.

The incident-field is calculated using the FDTD method. The incoming x-

polarized THz pulse propagates in z-direction, therefore fields are invariant with respect

to y-coordinate. This allows considering the propagation problem in one-dimensional

space, instead of the whole modeling domain. The E-field is specified at the left boundary

at every time step, and the incident field in every lattice point is subsequently found using

equations

The calculations simulate the E- and H-field of a plane wave propagating along the z-

direction. The wave has a time waveform specified at the left boundary. The amplitude

and the time dependence are maintained as the wave propagates through the space.

The boundary condition for the E-field is defined using the experimentally

measured time waveform of the THz pulse. The electric field of the pulse is usually

measured with a time step of —30 fs. In the FDTD calculations, however, the time step

has to be about 10 times smaller in order to obtain a stable and accurate solution. To

generate the boundary condition with a required time increment, the measured waveform
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must be interpolated and E-field values found for the refined time vector. The boundary

condition, defined in this manner, models a pulse waveform very accurately, but it adapts

the experiment-related noise. High-frequency noise can result in significant discrepancy

of the solutions, because the probe structure exhibits high-pass properties. A small

aperture preferentially transmits the high frequency components of the incident field,

while it significantly attenuates the slower varying fields. Therefore, the transmitted field

contains noise at a much higher level, compared to that in the incident field. In order to

reduce the error, the boundary condition is generated applying Fourier frequency filter

before interpolation. Figure 4.3 shows the experimentally measured E-field of the pulse

(∆ t=33 fs) and the waveform for the boundary condition ( ∆ t=4.7 fs), generated using

Fourier filter and interpolation.

Given that the incident field is specified at every point of space and time, the

algorithm separately calculates the scattered field. The total E- and H-field time

waveform are obtained by adding the computed incident-field time dependence and the

scattered-field time dependence at each point.

The scattered field is calculated as a result of interaction of the incident field with

the probe structure. At the surface of the metallic screen, there must be zero total

tangential E-field (in the perfect electric conductor (PEC) approximation)

Therefore, by Eq. 4.6(a):



Fig. 4.3. Measured electric field of the THz pulse (squares), and the waveform used in FDTD
simulation.

must hold at the structure surface at all time steps. The scattered wave has surface

tangential components equal and opposite to those of the incident wave. Therefore, the

surface of PEC acts as a source of scattered field.

The incident field induces also polarization and currents in dielectric structures.

The scattered-field equations, therefore, contain terms, corresponding to these

contributions. Losses in the dielectric are not included in the model (σD=0), which is a

good approximation for semi-insulating GaAs 010 7 Ohm•cm). Starting with Maxwell's

curl equations for the total field, the scattered-field equation can be derived by subtracting

the equation for the incident field. The curl equation for magnetic field, for example,

The incident field is defined as propagating in a vacuum
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Therefore, the scattered field equation can be written as follows

The last term in Eq. 4.11 describes response of the dielectric media to the incident wave.

The equation can be realized numerically substituting the space and time derivatives by

the central differences

Equations 4.7, 4.8, 4.10, and 4.12 completely describe THz pulse propagation in

the modeling space. The near-field probe geometry is specified by defining dielectric

permitivity in every cell of the space lattice. The PEC condition [Eq. 4.10] is applied to

the cells that correspond to the metallic screen. The model reproduces the probe geometry

(in the two dimensional space) and simulates the THz pulse coupling into the probe.

An example of the probe geometry, modeled in two-dimensional space, is shown

in the Figure 4.4. The perfectly conducting screen divides space into two media with

dielectric constants of e=1 (air) and 6=- 13 (GaAs; shown gray on the diagram). The

discontinuity of the screen models a 30 2-D aperture (slit). The dielectric extends into
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the air half-space for a precise modeling of the probe geometry. A uniform Cartesian two-

dimensional space lattice with a 1 µm² cell and a 4.7 fs time step is used for calcuations.

The computational domain size is 460x350 µm², and the modeled time interval is 7 ps.

The calculated field distribution map is shown by contour lines of equal intensity.

The simulations demonstrate that the electric energy density of the THz pulse (time

integrated E²) is confined immediately after the aperture. The field of the pulse diverges

rapidly as the pulse propagates inside the probe.

The scattered field formulation works well for propagation of 0.5 THz pulses

inside the near-field probes with apertures as small as 30 ,um. Application of the

described method to smaller apertures can create a computational error, also known as

subtraction noise. Inside the probe, the incident and the scattered fields are nearly equal

and opposite. The normal computational uncertainties in the scattered and the incident

Fig. 4.4. Two-dimensional map of the pulse intensity (JE ²dt) inside the near-field probe
integrated over time. The intensity is normalized to its value at the aperture center.
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field can be magnified in the process of adding the two fields in order to obtain the total

field.

This effect is strongly pronounced if the incident field is defined analytically,

rather then by applying the FDTD algorithm in free space. In this case, the incident-field

component does not suffer phase errors due to numerical dispersion. The scattered field,

on the other hand, is forced to propagate through the FDTD space lattice and, therefore,

gain the phase errors. If the incident field is found using the same numerical algorithm as

for the scattered field, the phase errors in the incident and scattered field tend to

compensate. The complete cancellation, nevertheless, is not possible, because the incident

and scattered field are not identical. For accurate computation of fields transmitted

through smaller apertures, another algorithm, known as the total field formulation, is

required [Taflove & Hagness 2000].

4.2.4 Experimental Study of the Pulse Propagation inside the Probe

Propagation of the THz pulse inside the probe can be studied experimentally as well. One

of the main questions is how the amplitude of the transmitted field decreases as a function

of the distance from the probe aperture. To observe the electric field decay close to the

aperture experimentally, near-field probes are fabricated with various separations between

the probe aperture and the photoconducting receiving antenna. A schematic cross-section

of the probe is given in Figure 4.5. The probe is based on a LT GaAs photoconducting

switch (with a 10 pm gap and a 60 pm long dipole antenna), which is mounted on a

transparent sapphire substrate. A 600 nm thick gold film is deposited on the surface of the

GaAs layer except for a 30x30 µm² square-shaped aperture below the dipole. The GaAs

layer thickness can be adjusted by mechanical polishing before depositing metal. Probes
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Fig. 4.5. The schematic cross-section of the near-field collection mode probe. L, thickness of the
GaAs layer, sets the distance from the aperture to the dipole antenna.

with five aperture-to-dipole separations: L=7, 16, 21, 47, and 110 pm were studied. The

separation is measured by a profilometer with an accuracy of 1-2 pm. A GaAs protrusion

extends through the aperture by —3.5 pm to achieve more efficient coupling of the THz

radiation into the aperture. An optical pulse from a Ti:Sapphire laser gates the

photoconducting antenna through the sapphire substrate. The 0.5 THz single-cycle pulse

beam generated by a separate photoconducting switch is focused to a —2 mm diameter

spot, and is normally incident on the probe. This arrangement is similar to a near-field

microscope in collection mode, where a uniformly illuminated sample is scanned in front

of the probe [Betzig et al. 1987].

The black circles in Figure 4.6 indicate the measured electric field peak amplitude

of the THz pulse. Clearly, the amplitude decreases rapidly as the aperture-to-dipole

separation increases. The probe with the shortest aperture-to-dipole separation (L=7 pm)

senses the electric field at the peak of the pulse, which is —12 times stronger, compared to
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the probe with L=110 pm. It can be seen that the electric field amplitude drops

approximately as L -1 (dash-dotted curve). The solid curve in Figure 4.6 shows the

calculated electric field peak amplitude as a function of the distance from the aperture

along the z-axis passing through the center of the aperture. As the pulse propagates inside

the dielectric, the field amplitude drops rapidly and approaches a decay rate of L -1/² for

distances greater than —80 pm. The decay rate is slower compared to the experimental

findings, because the model does not take into account the field divergence in the

direction perpendicular to the yz-plane. However, the field divergence is small

immediately behind the aperture, and both the experiment and the simulations give

comparable results for the electric field strength.

Accuracy of the experimental measurement relies on the precise fabrication of the

samples and the setup alignment. In order to decrease the error, electric field peak

Fig. 4.6. Measured (circles) and calculated (solid line) electric field amplitude of the pulse as a
function of the distance from the aperture. The dash-dotted curves represent E l and E 11² behavior
for comparison.
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intensity is averaged over few measurements, each taken after the system realignment.

The error bars indicate the standard deviation from the mean value.

An important property of a subwavelength aperture is a frequency dependent

transmission coefficient. An incident pulse, scattered by the aperture, changes its time-

domain waveform and the spectrum. This effect is observed experimentally and the

waveform agrees with the numerical simulations. Figure 4.7(a) shows the calculated field

7 pm away from the plane of the aperture (solid line) as well as the waveform,

experimentally measured using the probe with L=7 pm (dots). The normalized incident

pulse waveform is shifted upward for clarity and is shown in dash curve as a reference.

The single-cycle waveform of the incident pulse transforms into the faster oscillating

waveform. The spectral content of the detected field shifts to higher frequencies

compared to the spectrum of the incident pulse.

It should be mentioned that the measured THz pulse exhibits longer oscillations

compared to the simulated waveform, though the initial temporal transformation of the

pulse is in good agreement with the simulations. The blue shift of the spectrum is well

modeled by the simulations, as can be seen in the Figure 4.7(b). The central frequency of

the calculated spectrum matches the experimental findings, although the spectral width of

the measured pulse is smaller. The frequency dependence of the transmission coefficient

of the subwavelength aperture will be discussed in detail in Chapter 5.

The results demonstrate that the sensitivity of the collection mode probe based on

a photoconducting antenna can be significantly improved if the THz electric field is

detected in the immediate vicinity of the collection aperture. As verified experimentally,

the spatial resolution of the probe is not affected by the changes in the distance between



Fig. 4.7. Transformation of the single-cycle 0.5 THz pulse after transmission through the aperture. (a)
normalized measured (dots) and calculated (solid line) time domain waveforms for the L=7 gm probe.
The dashed line represents the normalized waveform of the incoming pulse shifted upward for clarity.
The corresponding spectra are shown in (b).

the aperture and the photoconducting antenna, since resolution is determined solely by the

aperture size. The proposed computational method models the pulse propagation inside

the near-field probe. The waveform deformation and the spectral shift are in good

agreement with experiment, while the electric field decay can only by treated

qualitatively.

4.2.4 Modal Analysis

The field in the near-field zone of the subwavelength aperture can be divided into modes

with real and imaginary longitudinal k-vectors [Grober et al. 1996]. The latter are usually

referred to as evanescent modes. Electric field amplitude of the evanescent modes is

significantly larger than that of the propagating modes at the distances from the aperture

z<d/2. As the distance z increases the amplitude of both types of modes decreases, but

decay is more rapid in the case of the evanescent modes. At a distance approximately

equal to the aperture size their contribution is comparable. Further out (z>d) the
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evanescent modes are practically negligible. Only modes characterized by real

wavenumbers can transfer energy into the far-field zone (z>>2). However, if the detecting

element is moved sufficiently close to the aperture, the evanescent modes contribute to

the measured field and, therefore, increase the probe sensitivity.

The mode contribution to the signal at different z can be estimated using the

modal analysis. Electric field distribution in the plane of the aperture (from the Bethe's

theory) is expressed as the Fourier integral of the spatial frequencies similar to Eq. 3.1.

Amplitudes of the spatial frequencies are found by the inverse Fourier transform [Grober

Fig. 4.8. Measured (circles) pulse amplitude as a function of the distance from the aperture. The
solid line shows amplitude of the evanescent components only calculated for 2=430 ,um, and the
dashed line shows E l behavior for comparison.

et al. 1996]. Components with the transverse vector kt exceeding the value of the incident

field wavevector 2π/λ are evanescent. The electric field of the evanescent waves decays

with the distance from the aperture. The solid curve in Figure 4.8 shows the field

amplitude due to the evanescent components of a 2=430 pm wave incident on a 30 pm-
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diameter aperture. The wavelength corresponds to the spectral maximum of the THz field

experimentally detected by the probe. The space behind the aperture is filled with a high

refractive index material that reduces the effective wavelength.

In spite of the single wavelength approximation, the calculated evanescent wave

amplitude agrees well with the experimental data at z<d/2, where contribution of the

evanescent modes is dominant. Starting at the distance z-15 pm, corresponding to —d/2 in

normalized units, the calculated amplitude of the evanescent modes becomes smaller than

the measured amplitude. This fact confirms the diminishing contribution of the waves

with imaginary k-vector at large z.

4.3 Radiation Coupling through the Probe Aperture

It was mentioned earlier that the radiation coupling through a subwavelength aperture is

very weak. The small signal restricts near-field microscopy to a certain spatial resolution,

defined by the aperture size. Improvement in radiation coupling into the probe, therefore,

yields the better image clarity. In the developed near-field probe a high refractive index

cone, protruding through the aperture, helps to transmit more energy of the THz pulse

through the probe aperture.

The transmission coefficient of a subwavelength aperture is a function of both the

aperture size and the wavelength. According to the Bethe's solution [Bethe 1944], the

electric field amplitude of the transmitted wave decreases as the third power of the

aperture size and the second power of the inverse wavelength. This wavelength

dependence can be effectively used to improve the near-field probe performance. The

wavelength of an electromagnetic wave becomes smaller inside a dielectric medium,
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therefore the aperture, embedded inside the dielectric, passes more radiation. The factors

that can increase the transmission coefficient of a subwavelength aperture and improve

the near-field probe performance are considered in this chapter.

4.3.1 Subwavelength aperture on dielectric interface.

An electromagnetic wave in dielectric medium is characterized by its wavelength —2° ,
n

where 20 is the vacuum wavelength. From the theory of metallic waveguides, the cutoff

frequency decreases if a dielectric material fills the volume of the waveguide. Therefore,

a higher transmission is expected if the aperture is filled with the dielectric material.

To demonstrate the effect of the dielectric media on the exit side of a

subwavelength aperture, we model an aperture in free space and an aperture at a vacuum-

dielectric interface. Transmission is compared for the two cases using the 2-D FDTD

numerical method (Sec. 4.2). A single-cycle THz pulse is normally incident on the

Fig. 4.9. Electric field amplitude of the pulse transmitted through the 30 ,um aperture.
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aperture. The size of the aperture is chosen to be 30 µm, which is --11° for the central
17

wavelength of the incident pulse. The electric field amplitude of the pulse along z-axis is

shown in Figure 4.9. In the case of the aperture on the dielectric, the pulse peak intensity

is higher by —15% at z<3 µm. The difference becomes more evident further out. The

radiating part is the dominant contribution to the electric field of the transmitted pulse at

the large distances z. A shorter effective wavelength inside the dielectric allows a larger

part of the pulse spectrum to propagate through the aperture with less attenuation.

Therefore, the far-field transmission coefficient is higher for the aperture on dielectric.

4.3.2 Improvement of Radiation Coupling by means of a GaAs Cone.

Placing the aperture on the high dielectric constant interface has a drawback of inducing

additional reflection from the dielectric surface. The reflection can be reduced by means

of a dielectric cone. Protruding through the aperture, a tapered dielectric tip decreases

reflection and, therefore, the radiation coupling through the aperture improves.

The tapered dielectric cone is known to decrease reflections from the interface

[Zucker 1961]. The taper gradually changes its effective refractive index from the tip to

the base. The effect can be demonstrated using 2-D FDTD simulations. The near-field

probe geometry is modeled as a perfectly conducting screen, which has a 30 µm wide

opening. The computational space is divided using a uniform Cartesian two-dimensional

lattice with a 1 µm² cell. The GaAs protrusion is modeled by assigning the dielectric

constant e---13 to selected cells. Three cases include a GaAs cone of 45° half-angle, a 3

pm dielectric protrusion with a flat surface, and a plane aperture at the flat air-GaAs

interface. An incident plane wave is simulated using a single-cycle temporal profile of the
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0.5 THz pulse measured experimentally with a regular photoconducting antenna. The

electric field is polarized parallel to the slit edge (x-direction).

Fig. 4.10 shows the field intensity of the transmitted through the aperture THz

pulses for these three cases, compared to an aperture in free-space (air). The intensity of

the pulse is calculated by integration of the E² over the duration of the pulse, and is

normalized to the value in the middle of the aperture without the protrusion. Results

demonstrate that the full cone probe is more efficient than the other two. The peak

Fig. 4.10. Maps of intensity distribution of the transmitted THz pulse for various probe designs.

amplitude of the electric field of the transmitted pulse as a function of distance from the

aperture is shown in Figure 4.11. The peak amplitude in the case of the full cone is —25%

higher compared to the plain aperture probe and —15% higher compared to the probe with

the small (3 pm) GaAs protrusion. Waveforms calculated at a distance of 7 pm from the

aperture plane, and the corresponding spectra are presented in Figure 4.12. The full cone

enhances coupling of the high frequency components more than the low frequency

components. Consequently, the spectrum shifts.
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Experimental estimation of the effect of the probe geometry for a small aperture

probe is difficult. The far-field transmission coefficient is very small, thus the

measurements are not very accurate or even impossible. The error is even higher for the

near-field zone measurements, because a small variation in the aperture-dipole separation

brings a significant change in measured electric field.

The amount of radiation transmitted to the other side of the aperture, depends also

on the thickness of the metallic screen. In general, the aperture can be considered as a

metallic waveguide, where the length is very small. Propagation inside the waveguide is

described by the classical equations for various modes [Jackson 1962]. All the TM and

TE modes are characterized by the imaginary k-vector, if the cross-section of the

waveguide is smaller than -4/2. In this case, the wave amplitude decays exponentially

along the waveguide, and the waveguide length defines the total attenuation. It must be

mentioned that the metallic screen can not be made infinitely thin, because it becomes

Fig. 4.11. Electric filed of the transmitted pulse as a function of distance from the aperture.
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Fig. 4.12. Calculated pulse shapes and corresponding spectra at a distance of 7 ,um from the
aperture plane.

transparent for THz pulses. The penetration depth of gold, for example, at f=1 THz

is —50 nm. The screen thickness has to be large enough to block the THz pulse to the

level of the noise signal. The issue of the screen thickness will be considered in the next

chapter. It must be mentioned, however, that a 600 nm gold screen can be considered

infinitely thin for the 30 ,um aperture.
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4.4 	 Fabrication of the Integrated Near-Field Probe

In this section, fabrication of the near-field probes is described. The process includes

three main stages: preparation of low-temperature grown GaAs epilayer, lithographic

printing of the dipole antenna, and fabrication of the integrated near-field probe. The

quality of the photoconductor is very important and the related issues are discussed here

as well.

4.4.1 Low Temperature Grown GaAs

Fast optical response of the material is a crucial quality for the THz detectors. The

response time is mainly determined by the dynamics of nonequilibrium charge carriers.

Various classes of semiconductors, e.g. radiation-damaged, impurity-dominated,

polycrystalline, and amorphous [Ganikhanov et al. 1995, Chin et al. 1996], have been

investigated for the fast carrier lifetime and detection of THz radiation. In the past two

decades, low-temperature grown (LT) III-V semiconductors with subpicosecond carrier

lifetime were developed. The fast optical response in LT semiconductors is due to the

incorporation of excess group-V atoms during LT growth [Leitenstorfer 2000]. Annealed

GaAs films grown by molecular beam epitaxy at temperatures 180-300°C, far below the

temperature of crystallization, have the properties of high resistivity, high carrier

mobility, and short carrier lifetime. These crucial qualities make LT GaAs an excellent

material for THz detectors. The carrier lifetime defines the bandwidth and mobility

determines the sensitivity of a detector. Low dark current provides a large dynamic range.

The excess arsenic atoms form As anticites and Ga vacancies during the growth

[Warren 1990, Look 1990]. In as-grown materials photoexcited electrons are rapidly
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trapped in the point defects. This process is followed by a slow recombination. The

anticites (AsGa) have energies close to the center of the band gap and can be in the neutral

charge As° state or in the positive charge As state. Since the As donor centers are

compensated by the Ga-vacancies acting as acceptors, the As equilibrium concentration

is determined by the density of the Ga-vacancies and is usually less then the tenth of the

As° concentration [Liu et al. 1994]. The energy levels of the Ga-vacancies are located in

the lower half of the band gap.

An optical pulse with energy exceeding the band gap creates carriers mainly

through interband and As °-conduction band (CB) transitions. After the fast intraband

carrier thermolization, the carriers are trapped in the As centers with a subpicosecond

characteristic time [Seigner et al. 1996]. The fast removal of electrons from the CB is not

due to electron-hole recombination, which occurs at a longer time scale [Lochtefeld et al.

1996]. The density of the As traps is a combined density of the As centers in

equilibrium and the centers created by the optical As °-CB transition. As a result, an

effective depopulation of the CB is limited by the availability of the charged As trapping

centers.

The carrier lifetime in LT GaAs depends on growth temperature and post-growth

annealing conditions. At lower growth temperatures, the recombination of the trapped

carriers becomes slower, whereas the carrier trapping becomes faster [Siegner et al.

1996]. This correlates to the fact that the growth temperature varies the amount of excess

arsenic incorporated into the epilayers. The lower growth temperature results in the

higher content of the excess arsenic, evaluated using the TEM cross-sectional analysis of

the LT GaAs epilayers [Liliental-Weber et al. 1993, Harmon et al. 1993].
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As-grown LT GaAs is highly conductive, however, after annealing to

temperatures of 600°C and higher, the GaAs becomes insulating. On the other hand, the

carrier lifetime increases with the annealing temperature. The annealed samples form

precipitates of the excess arsenic [Melloch et al. 1990, Warren et al. 1990]. The size and

the spacing between the precipitates depend on the annealing temperature, varying

between 2-20 nm and 10-100 nm respectively. The higher the annealing temperature the

larger the precipitates and the spacing between them tend to be. The material is

characterized by a subpicosecond relaxation time if the precipitate spacing is smaller than

—20 nm (Harmon et al. 1993).

The carrier lifetime can be determined from the measurements of the transient

reflectivity or absorption induced by an ultrashort pump laser pulse through carrier

excitation. By measuring the intensity of a weak probe pulse, either reflected or

transmitted, as a function of the delay between pump and probe pulses, the free carrier

Fig. 4.13 Normalized transient differential reflectivity of typical LT GaAs (T=300°C).
Variation of the annealing condition results in changes of the dynamics of the carriers.
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concentration dynamics after the pump pulse can be extracted. Figure 4.13 shows

transient differential reflectivity traces for typical annealed LT GaAs samples. The

transient reflectivity experiments and carrier dynamics in LT GaAs are discussed in detail

in Appendix A.

4.4.2 Photoconducting Antennas

A 1-pm thick layer of GaAs is grown at a below crystallization temperature of 280-300°C

by molecular beam epitaxy on <100> oriented semi-insulating GaAs. The material is

subsequently annealed at 600°C for 1 min in forming gas.

The dipole antenna is fabricated on LT GaAs surface by using conventional

lithography and the photoresist lift off technique. The structure consists of two 1 mm long

parallel metallic striplines separated by a distance of 30-100 pm (5), and a dipole antenna

located between the striplines [Fig. 4.14(a)]. A 5-10 ,um photoconducting gap in the

center of the dipole antenna is used for optical excitation. Performance of various antenna

designs is discussed by Cai in his in dissertation (1998). To form a good contact with the

semiconductor surface a metallic layer containing Ge/Au/Ni/Au — 165/335/200/3000 A is

deposited on the surface. Alternative recipes may be used as well (e.g.,

Ge/Ni/Ge/Au/Ag/Au-50/50/132/268/1100/3000A, or Ni/AuGe/Ni/Au-

100/800/200/3000A). Antennas fabricated according this recipe can be used for

conventional generation and detection of THz radiation.

4.4.3 Integrated Near-Field Probe

Design of the integrated near-field detector requires a thin GaAs layer. This can be

achieved by transferring the antenna on a transparent substrate. Optical gating of this
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antenna type is realized through the transparent substrate. The antenna is glued to the

transparent substrate, such as sapphire, with a high temperature optical epoxy (Epotek

353ND), with metal electrodes facing the sapphire. The epoxy is cured according to a

three-step schedule (80°C — 1 h., 120°C — 1 h., 150°C — 1 h.) for higher strength in order

to withstand chemical etching. The GaAs substrate is thinned by means of mechanical

polishing to a desired thickness, which can be made as small as a few microns.

For the near-field probe, an aperture with a protruding GaAs taper is formed

above the gap of the photoconducting antenna. First, the taper is etched on the surface of

GaAs when the surface is masked with a circular or square photoresist pattern. An

isotropic etching solution of hydrobromic and nitric acid (HBr : HNO3 : H20 - 2 : 2 : 17)

provides a relatively fast etching rate (0.5-1.0 µm/min depending on temperature and

freshness on the solution). The etching process results in a taper with a cylindrical

symmetry and a smooth surface. The etching solution undercuts the photoresist

sharpening the taper. The process is continued until a required thickness of GaAs is

etched (usually —1-5 pm). The photoresist remains on top of the taper and, covering the

etched structure, serves as a mask to form the metallic aperture. The photoresist is

removed after deposition of a 600 nm thick gold film (10 nm of Ti is deposited before Au

as a gluing layer). The final structure contains the metallic film with the aperture defined

by the shape of the photoresist mask, and the GaAs taper, protruding through the aperture.

The aperture is separated from the dipole antenna by the GaAs layer.

In order to reach the contacts of the photoconducting antenna buried between the

sapphire substrate and GaAs, the GaAs layer is etched away on the side of the structure.

First, the metal screen is removed in this area and the remaining part of the structure is
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Antenna Pattern 

A. I .. 
2mm -I : : 

B. Antenna on GaAs 

Photoresist 

Sapphire Substrate 

c. 

Metallic Screen -f--i~ 
-iiiil!!lllj •• !!llBJ#--ffI-- GaAs Layer 

Metal Contacts -+---, 

Fig. 4.14. Stages of fabrication of the integrated near-field probe. (A) A pattern used for the 
photo conducting antenna on LT GaAs. (B) Lithography: bonding of the antenna and a sapphire substrate, 
polishing of GaAs, aperture masking, tip etching, and metal evaporation. (C) The schematic diagram of 
the probe. The contacts are opend at a side of the device by etching. 
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covered by the photoresist. GaAs is etched in a citric acid-based solution (50% citric 

acid:H20 2 - 5:2) [Moon et aZ.1998]. The etching rate is about 0.4 J.1m per minute at room 

temperature. After etching, only the metal contacts remain on the sapphire surface, 

bonded by the epoxy, since gold and epoxy are inactive to the citric acid-based solution. 

Finally, the probe is mounted on a chip carrier. Figure 4.15 shows an example of the 

packaged antenna. In the case of the near-field probe, the top surface is covered with the 

gold screen and the aperture is formed in the place of the lens. 

Fig. 4. 15. The packaged antenna on the sapphire substrate with a hyperhemispherical Si lens. 

It is worth mentioning that the fabrication process is reproducible. The 

geometrical parameters - the aperture shape and size, the protruding tip, and the position 

of the antenna with respect to the aperture - are easily controlled. The process uses the 

conventional lithography techniques and requires standard clean-room facilities. 



CHAPTER 5

TRANSMISSION OF TERAHERTZ PULSES THROUGH
SUBWAVELENGTH APERTURES

5.1	 Introduction

Transmission of single-cycle THz pulses through a subwavelength aperture is a central

problem in THz near-field imaging. The electric field amplitude decay in the near zone of

the aperture has already been discussed in Chapter 4. It was demonstrated that the

sensitivity of the near-field probe significantly improves if a detecting element is placed

in the near-field zone of the probe aperture. Another issue, which leads to a practical limit

of spatial resolution with the aperture-type probe, is the throughput of a small aperture

(d<λ/100). It is also important to know how the aperture alters the spectral content and

temporal characteristics of the pulse. Diffraction of the broad band pulses on small

objects results in significant changes in the pulse waveforms [Nahata & Heinz 1996,

Bromage et al. 1998]. Understanding of the transmission process and the related effects

helps to interpret images constructed using a subwavelength aperture.

The effects of the aperture size on transmission of THz pulse are discussed in this

chapter. These effects are studied experimentally using the THz-TDS and a collection of

subwavelength apertures of different sizes. The THz-TDS system allows characterization

of the singe-cycle THz pulse deformation as a result of transmission process. Fourier

analysis allows extracting the frequency dependent transmission coefficient and the phase

information. Measuring the transmitted pulse in the near-zone of the aperture improves

sensitivity and, therefore, apertures as small as A/300 can be experimentally studied.

79



80

The transmission process alters the pulse temporal waveform and spectrum, resulting in

pulse broadening and compression, time advancing, and spectrum blue-shift.

The Bethe's theory of transmission through small apertures [Bethe 1944] is

combined with the classical waveguide theory for the analysis of the THz pulse

propagation through the probe aperture. The waveguide model takes into account the

physical thickness of the aperture screen.

5.2. Method

Transmission of the THz pulses through subwavelength apertures can be studied in a

setup similar to the near-field imaging setup, described in previous chapters. A schematic

diagram is shown in Figure 5.1. The electric field of pulses transmitted through

subwavelength apertures is measured in the near-field zone of the aperture by a

photoconducting antenna placed in point 0, at a short distance from the aperture.

Attenuation of the signal amplitude in this case is not as severe as in the case of the far-

Fig. 5.1. A schematic diagram of the experimetal setup for measurements of THz pulses
transmitted through small apertures. The detecting antenna is located at point 0 at a distance of
4 ,um from the aperture plane.
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field detection. In addition, the aperture is surrounded by high refractive index materials,

which reduce the wavelength of the incident radiation. For example, transmission

coefficient is —10-4 for the effective aperture size nd=λ/300.

In the experimental setup, the THz pulses are generated by a transient current in a

photoconducting antenna. THz radiation is collected and focused on a square-shape

aperture by a system of parabolic mirrors and Si lenses. The aperture is lithographically

formed in a 600 nm thick gold screen on GaAs surface. A small cone on the surface fills

the volume inside the aperture with GaAs. A 4 pm layer of GaAs separates the aperture

from a detecting photoconducting antenna. Apertures with different sizes ranging from

d=5 pm to d=50 pm (d is the square side) were investigated.

The cutoff frequency of a square aperture (TE01) surrounded by a dielectric with

refractive index n is related to the aperture size d [Jackson 1962]:

Spectral components above the cutoff frequency propagate through the aperture, while the

components below the cutoff suffer extensive attenuation. Table 5.1 summarizes the

cutoff frequencies for the tested apertures.

Aperture size, d (pm) Cutoff frequency, vc (THz)

50 0.86
30 1.43
20 2.14
10 4.29
5 8.57

Table 5.1. Cutoff frequencies for the square apertures with side d calculated using Eq. 5.1.
Refractive index of the medium n=3.6.
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The central frequency of the incident THz pulses (0.5 THz) is below the cutoff

frequency for all the apertures. However, the high frequency tail of the pulse spectrum

extends above vc and, therefore, suffers little attenuation. The amplitude of the spectral

components above vc can become larger than amplitude of the suppressed central

frequency. In this case, a large deformation of the temporal and spectral characteristics is

expected. Figure 5.2 shows the waveform and the spectrum of the incident pulse. The

cutoff frequency of the largest aperture (d=50 µm) lies within the measured spectrum of

Fig. 5.2. The waveform and the spectrum of the incident THz pulses. The vertical dashed lines
in (b) indicate the cutoff frequency for different aperture sizes.
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the incident pulse. The cutoff of the apertures d<20 µm is significantly above the

spectrum. Note, that in principle the high-frequency end of the incident pulse spectrum

extends to infinity with decreasing amplitude. In Figure 5.2, the spectral components

above 2 THz are not resolvable due to instrument noise.

The time domain waveform of the transmitted THz pulse was measured for every

aperture. The incident THz pulse is measured using a similar setup without the gold

screen in front of the detecting antenna. Applying Fourier analysis we can extract

transmission coefficient and phase shift at all the measured frequencies.

The frequency dependent transmission coefficient and the phase shift for an

aperture of size d is defined as follows

where Eo(ω) and 0(ω) is the spectral amplitude and the phase of the measured incident

pulse. Attenuation of the THz pulses, the transmission coefficient and the phase shift, as

well as deformation of the pulse waveform and spectrum are discussed in the following

sections.

5.3 Transmission of THz Pulses

5.3.1 Attenuation of THz Pulses

An essential question of the aperture-type near-field probes is the reduction of power

coupled into the aperture as d decreases. The theory of transmission through small

apertures in the infinitely thin screen predicts the d 3-law for the electric field amplitude
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in the limit of .1>>d [Bethe 1944, Bouwkamp 1950]. However, thickness of the screen

has to be taken into account for a physical aperture.

The aperture is approximated with an undersized waveguide model. The

eigenvalue equation for the lowest TE10 mode of a rectangular waveguide with cross

section dxd filled with dielectric material n

where the cutoff frequency is defined in Eq. 5.1. If the condition λ <2dn holds for the

vacuum wavelength, the wavevector is imaginary and there is no propagating solution

inside the waveguide. The wave amplitude exponentially decreases with the waveguide

length

The exponent is almost unity for relatively large apertures (d>>1), for which the metallic

screen can be assumed infinitely thin. The effect becomes significant when d becomes

comparable to 1. In this limit (nd<<λ), the exponential term conveniently reduces to

where 1 is the screen thickness. A simple wavelength independent expression

for the transmission through a small physical aperture is therefore

The transmission coefficient calculated using this model is shown in Figure 5.3.

The wavelength dependence is implicitly included in a scaling factor T, which is found

comparing the curve to the measured RMS value of electric field of the transmitted THz
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pulses. The model partly explains the sub d3-law at small d. In addition, for the 5 ,um

aperture the distance between the aperture and antenna becomes larger than the

characteristic length of the near-field zone d/2. Outside of this zone, the amplitude of the

electric field is smaller [Chapter 4]. The RMS value of the electric field of the pulse is

used in order to exclude the effects of the pulse distortion, which usually affects the peak

to peak value shown in the figure in open squares for comparison.

Fig. 53. Reduction of the peak-to-peak amplitude (open squares) and the RMS value

(circles) of the THz pulse field with the aperture size. The solid curve

shows the d 3-law with the finite screen thickness correction.

Note that Eq. 5.6 does not contain the refractive index of the medium inside the

aperture. In this limiting case, the exponential attenuation factor depends only on the ratio

of geometrical parameters 1 and λ. However, the refractive index as well as the

wavelength implicitly enters factor T, and coupling through the aperture is better for

smaller effective wavelength λin.
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5.3.2 Temporal and Spectral Deformation

Temporal deformation of THz pulses is directly measured in theTHz-TDS setup. The

time domain waveforms of the THz pulse transmitted through apertures of different sizes

are shown in Figure 5.4. The temporal characteristic of the incident pulse changes as

result of diffraction on a small aperture. The deformation is related to the high-pass

properties of subwavelength apertures.

Spectral components above the cutoff propagate through the aperture without

significant change in amplitude, while the rest of the spectrum experiences the frequency

dependent attenuation. For the 50 pm aperture, this process results in a severe pulse

deformation: the duration extends to —5 ps, and the spectrum becomes narrow and shifted

to higher frequencies [Fig. 5.4(b)]. As the aperture size decreases and the cutoff

frequency moves further from the pulse spectrum, the variation of the transmission

coefficient with frequency reduces. Suppression of the red end of the spectrum reveals

amplitudes above 1.5 THz, which are not resolved in the incident spectrum due to the

instrument noise [Fig. 5.4(a)]. This effectively increase the bandwidth of the pulse

transmitted through the 5 pm aperture. The pulse maintains its single-cycle characteristic

and shows faster electric field oscillation than the incident pulse [Fig. 5.4(0].

Besides the frequency dependent attenuation, the aperture also imposes a phase

delay on the transmitted wave. The phase shift that the wave experiences as it passes

through the aperture, in general, consists of two parts: the phase shift associated with the

wave coupling in and out of the aperture ∆φ c. , and the phase delay due to the waveguide

∆φ WG
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The corresponding time shift due to the waveguide is negligible since the screen

thickness is small (0.6 pm) and the accumulated time delay is —10 fs for propagating

waves. The evanescent waves tunnel through the waveguide and do not experience any

delay inside the waveguide.

Therefore, the experimentally measured phase shift is attributed to the aperture coupling.

Figure 5.5(b) shows the time shift as a function of frequency measured for all apertures.

Experimental data shows clearly that spectral components with frequency larger than the

cutoff frequency propagate through the aperture without any delay. Below the cutoff,

however, there is a negative time delay, which corresponds to time advancing of waves

through a subwavelength aperture. The THz pulse incident on the 5 pm aperture appears

on the other side —0.7 ps earlier [Fig. 5.4(0].

A possible explanation to this phenomenon is the 'chirp' of the incident pulse

(asymmetric waveform). The electric field in the front of the THz pulse varies faster in

time than at the pulse end. Given that higher frequencies suffer lower attenuation, the

leading part of the pulse is preferentially transmitted through the aperture while the

slower varying tail of the pulse is suppressed. Note, that the amplitude of the transmitted

pulse is —104 of the incident pulse amplitude.
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Fig. 5.4. Waveforms of the incident pulse (a) and the pulses transmitted through the apertures:
d=50 µm (b), 30 µm (c), 20 µm (d), 10 µm (e), 5 µm (f).
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Temporal advance of the peak of the THz pulse transmitted through a

subwavelength aperture has been reported before [Wynne et al. 2000]. However, this

effect was observed on strongly deformed pulses, and the center of gravity of the pulse,

had positive delay in these experiments. Our observation with 5 ,um and 10 pm apertures

demonstrates that the center of gravity of the THz pulse can also experience the temporal

advance in the transmission process. The conditions required to observe this effect are

summarized below:

(1) the pulse waveform is asymmetric with faster varying temporal characteristic in

front of the pulse;

(2) the transmission coefficient increases with frequency.

(3) the spectral amplitudes of the pulse above the cutoff is vanishing;

The first two are the conditions of the preferential transmission of the front of the pulse.

The third one ensures that all the spectral components are in the evanescent modes and

the pulse does not experience significant dispersion, which is particularly strong near the

cutoff frequency. Consequently, the pulse waveform stays compressed.

The third condition is not satisfied, for example, in the case of the THz pulses

generated by a ZnTe crystal and transmitted through the 10 pm aperture. Substantial

amplitude of the components at the cutoff frequency results in deformation of the pulse

waveform similar to the case presented in Figure 5.4(b). The spectrum of the incident

pulse contains above the cutoff components, for which the time delay is positive. Since

the amplitude of these components almost does not decrease in the transmission process,



Fig. 5.5. Spectral content of the radiation transmitted through the small apertures (a), and the frequency
dependent time shift (b). The dashed horizontal line shows the time shift of —0.66 ps, found for the
center of gravity of the pulse transmitted through the 5 ,um aperture.
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the measured electric field mostly consists of the high frequency part of the incident

spectrum, and the time advance of the pulse is not observed.

5.4 	 Spatial Resolution Limit

The metallic film on the surface of the probe screens the antenna from the incident field

and allows electromagnetic wave to propagate only through the aperture. The film

thickness has to be sufficient to attenuate the undiffracted wave to a level below the

noise. However, the thicker the screen, the stronger the attenuation of the wave, which

tunnels through the aperture. The wave attenuation inside the metallic film and

attenuation in the aperture need to be balanced in order to optimize signal to noise ratio

and achieve the best probe performance. In the previous section, dependence of the

transmitted wave amplitude on thickness of the screen and the aperture size was

discussed. Here, the analysis of the THz pulses attenuation by a metallic film is given.

5.4.1 Theoretical Consideration of Attenuation of THz Pulses by a Metallic Film.

A wave incident on the metallic film suffers reflections from the film interfaces and a

progressive attenuation as it propagates through the film. In the assumption that

frequency of the incident field is smaller than the plasma frequency of the metal, the

electric field E satisfies the wave equation inside the metal

where 6 is the electrical conductivity of the metal. The last term implies that the wave is

damped. In the monochromatic approximation, this equation can be written as
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where

n and K are real and imaginary parts of the refractive index of the metal n = n(1 + ik) .

The formal solution to the equation is a plane time-harmonic wave with a

complex wave number k

Attenuation is given by the exponential term with imaginary part of the refractive index.

The quantities n and K can be expressed in terms of the material constants

The dielectric constant and the conductivity of gold, in general, depend on the frequency

of the external field. However, these parameters can be approximated by their static value

at THz frequencies. The plasma frequency of gold is approximately 2-3 orders higher

than frequency of the THz field. Therefore, the product or, where r is relaxation time, is

much smaller than unity, and the conductivity reduces to

The dielectric constant in Eq. 5.10 represents the contribution from the bound

electrons, which is small, compared to the contribution from the free electrons. As the

mechanism of electric polarization in metals is not fundamentally different from that of E
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dielectric, it may be assumed that E is of the same order of magnitude. Hence, provided

n xis large, one can deduce from Eq. 5.12 and Eq. 5.13

Under these assumptions the attenuation term in Eq. 5.4 becomes

The decay of the electric field amplitude inside the metal can be expressed in

terms of the absorption coefficient a; or the penetration depth &d ¹

where

Figure 5.6 shows the calculated refractive index and penetration depth for gold

(σAu=5.8 -105 cm-¹Ohm-¹). Note that the penetration depth varies as the square root of the

incident wavelength.

Losses due to reflections from the metallic film interfaces need to be included in

order to calculate the total attenuation. The transmission coefficient of the metallic film

can be calculated according to the formula of transmission through thin films [Born &

Wolf 1999].



where for the case of normal incidence

tij and rid are the transmission and reflection coefficients for the interfaces i-j

For transmission and reflection at the surface of the metallic film we have
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Fig. 5.6. Calculated refractive index and penetration depth for gold. The conductivity of gold is
assumed to be equal to its dc value.



The reflection and transmission coefficients at the second interface (metal-

Substituting expressions for the transmission and reflection coefficients [Eq. 5.25-5.28]

into Eq. 5.22, the total transmission is obtained

Figure 5.7 shows the calculated attenuation of a wave of frequency 0.5 THz for a gold

film on surface of GaAs (n=3.6). If thickness of the gold film exceeds a value of 150 nm,

the attenuation inside the film is so strong that the effect of multiple beam interference is

negligible. The expression for the amplitude of the transmission coefficient then reduces

to a simple form
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[The corresponding formula in Born & Wolf 1999 carries a wrong factor of two in the

exponent].

Fig. 5.7. Attenuation of a monochromatic wave v=0.5 THz by the gold film on surface of GaAs
(n=3.6). Solid curve includes the multiple beam interference effect. The thick film
approximation is shown by the dashed line.

The transmission coefficient found using Eq. 5.30 asymptotically approaches the exact

curve at 1>150 nm. For sufficiently thick metallic films, the effect of multiple interference

vanishes, since the amplitude of the reflections is negligibly small due to damping in the

metal. THz pulses contain a broad band of frequencies, for which the parameters in

Eq.5.30 change. Given the fact that variation of the refractive index of GaAs I An lis only
n )

0.25% in the interval between 0.25 THz and 1.5 THz [Grischkowsky et al. 1990],

transmission coefficients 2¹² and z²3 are essentially constants in this frequency range. The

penetration depth is expected to vary as a square root of the frequency from —120 nm at

0.25 THz to —50 nm at 1.5 THz. However, as discussed in the next section, the



97

experimentally measured penetration depth remained —50 nm throughout this interval of

frequencies.

5.4.2 Experimental Results on Attenuation by a Metallic Film.

The measured transmission coefficient is slightly different from the theoretical

estimations. As discussed, the total attenuation includes losses at the interfaces and

damping inside the metallic film. Their respective contribution can be distinguished in a

set of transmission measurements involving metallic films with different thickness.

In a general case of a thick (/>>6) gold film on a dielectric substrate, the

transmitted amplitude can be expressed as follows

where 'tub is an attenuation factor that includes absorption of the wave in the substrate

and losses at the substrate-air interface. The metallic film interface contribution is

eliminated by comparing transmission coefficients for samples with different film

thickness 1. The damping inside the film due to additional thickness Al equals to the ratio

of the measured amplitudes for the films with lengths l and 1+01. Furthermore, the

penetration depth o) is directly obtained by taking the logarithm of the ratio of the

transmitted fields

Transmission through Au films with thickness of 100 nm, 150 nm, and 180 nm

was measured in order to characterize the penetration depth of Au. The films were
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deposited on a GaAs substrate. The pulse amplitude exponentially decreases with the film

thickness as expected, however, the rate is more rapid than predicted by the theory.

Fig. 5.8. The experimentally measured and calculated penetration depths of gold at THz frequencies.

Figure 5.8 shows the penetration depth of Au found experimentally using expression

Eq. 5.32. Note that 8 does not follow the theoretical square root frequency dependence,

but rather maintains a constant value of 8 —45-50 nm over the range of 0.2-1.5 THz. In

this respect, it is important to mention that at sufficiently high frequencies the theoretical

penetration depth becomes comparable to the mean free path, which is —30 nm for Au. In

this case, the homogeneous field approximation (j= 6E) breaks, leading to the anomalous

skin effect.

The transmission coefficients at the interfaces can also be measured by comparing

transmission through the film with transmission of the plane substrate. The ratio of the

amplitudes in this case is
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Fig. 5.9. The experimentally measured interface transmission coefficients of the gold film.

Using the experimentally found penetration depth function, the product of the interface

transmission coefficients 2¹² 2²3 can be found. The result is presented in Figure 5.9. The

measured transmission coefficients and the penetration depth of gold can be used to

estimate attenuation of the THz pulses for a larger film thickness.

5.4.3 Spatial Resolution Limit

As the size of the aperture in the near-field probe decreases, the amplitude of the detected

field decreases as well. In order to maintain the signal at a higher level than the

background field, which is due to the wave penetration through the aperture screen, the

thickness of the screen needs to be increased. On the other hand, an additional thickness

results in higher attenuation of the aperture field. The amplitudes of the signal and the
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background can be related through the geometrical parameters of the aperture.

Consequently, the spatial resolution of the near-field probe, which is equal to the aperture

size, can be related to the required metal screen thickness and the expected attenuation.

Amplitudes of the signal and the background can be expressed as

where is and tb are the experimentally determined constants. Both expressions contain

terms that exponentially decrease with 1. In principle, for any d, such that d>πδ, there is 1,

for which Es>Eb. Solving equation Es=Eb for l with d as a parameter, the minimal

thickness of the screen required to attenuate the incident THz pulse to the level of the

amplitude of the pulse transmitted through the aperture, can be found. The dashed curve

in Figure 5.10(a) shows the solution. The required thickness exponentially increases as

the aperture size decreases. The solid curve shows a practical thickness when the signal

Fig. 5.10. Condition for the thickness of the aperture screen (a), and attenuation of electric field
corresponding to the aperture size d (b).
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amplitude is 10 times larger than the background. The corresponding attenuation curves

are shown in Figure 5.10(b).

The practical limit of spatial resolution is determined by the available intensity of

the source. The near-field probe with the aperture size d-4 pm is expected to suffer —10" 6

attenuation in electric field. As d approaches the value of a few penetration depths, which

is —50 nm at THz regime, the aperture fails to confine the electromagnetic fields due to

penetration into walls and our considerations become invalid.

The smallest aperture realized in the THz near-field probe was a 5 pm square

aperture. The signal to noise ratio in this case was —30 for the peak of the pulse. In

principle, a probe with 2-3 pm can be realized with the same experimental conditions and

the signal to noise ratio of —3. Further improvement of resolution requires a larger power

in the THz source, which the photoconducting antenna is unable to generate. Figure 5.10

(b) suggests that spatial resolution of —1 pm can be achieved.



CHAPTER 6

NEAR-FIELD PROBE PERFORMANCE

6.1 Introduction

Any optical system has to be characterized in order to interpret images meaningfully. It is

especially important for complicated imaging systems such as the THz near-field

scanning microscope. The question of THz pulse propagation through small apertures

was discussed in Chapters 4 and 5. A general conclusion states that the pulse waveform

and the spectrum experience transformations due to the aperture. Characterization of the

probe performance involves a more complicated problem of the THz pulse coupling

through the aperture in the presence of objects. In addition, the object itself perturbs

electric field of the pulse. In collection mode arrangement, when the object is illuminated

uniformly, electric field distribution in the image plane is determined not only by the

local optical constants, but by the whole object. The image rather represents the electric

field in the object plane.

The problem of near-field image formation is being discussed in the literature.

Due to the complexity of the near-field interaction and a variety of near-field microscope

schemes, the problem is very broad and many numerical modes were proposed [Novotny

et al. 1994, Barchiesi et al. 1996, Vasilyeva & Taflove 1998, Hochman et al. 2000]. The

image of an object in the near-field depends greatly on illumination conditions [Girard

1998, Valle et al. 1999], polarization of the incident field [Bozhevolnyi et al. 1999],

probe-sample arrangement and the separation between them [Pohl 1991], the object size,

102
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shape and optical index [Martin et al. 1995]. In addition, in THz imaging, the instrument

measures instantaneous electric field of the wave, which varies in time.

The image formation in near-field setups that use pulsed THz radiation is a

relatively unexplored problem. Furthermore, the technique has not been applied

extensively and there is not much of available experimental data. This chapter is devoted

to discussion of the basic properties of near-field images, including spatial resolution,

depth of field, and polarization sensitivity.

6.2 Image Quality — Spatial Resolution

Image quality is evaluated by the size of the smallest resolvable object feature. In the

near-field imaging, the probe aperture selects the local electromagnetic fields in front of

the probe, therefore the spatial resolution is defined by the aperture size. Due to

diffraction of waves at the object, an image reproduces the object features only if the

probe to object distance is very small. Unless this requirement is satisfied, diffraction

effects smear the image and spatial resolution is determined by the distance to the object,

rather than by the aperture size.

Various criteria are commonly used for evaluation of the image quality. The most

common is the measure of how well the system can resolve a two-point object. However,

an edge object is more practical and convenient to use for the THz microscope, and a thin

metallic film edge is scanned in the resolution test. The choice of the edge object over the

two-point object is justified by a relative simplicity of the amplitude function. The

metallic film edge is of high contrast: when the film blocks the aperture, no light couples

into the probe and the measured signal is zero (assuming that transmission through
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metallic film is negligible), when the film clears the aperture, the probe measures the full

pulse amplitude, if there were no film at all.

Resolution is experimentally determined by scanning the edge of a 600 nm thick

gold film deposited on a transparent substrate (GaAs). The clear and opaque regions of

the sample represent the two limits of detected signal: the full strength signal and

complete absence of the signal (or background). The transition region with boundaries

defined at a level of 10% and 90% of the full strength signal determines the spatial

resolution. Levels of 20% and 80% are also used, especially if substantial noise prevents

from an accurate measurement of resolution.

The imaging THz-TDS setup allows measurements of the pulse amplitude, as well

as the amplitude and the phase of the spectral components as functions of spatial

coordinates. Consider the pulse amplitude distribution. In this case, the variable time

delay of the setup is fixed on the peak of the pulse [Fig. 6.1]. The amplitude of the signal

Fig. 6.1. The waveform of the pulse measured with the 5 ,um aperture probe. The circle shows
the time delay at which the resolution curve is measured.
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reflects the amplitude of the THz pulse, provided that the waveform does not change.

Figure 6.2 shows the amplitude distribution as a function of the spatial coordinate across

the edge position measured using a probe with 5 ,um aperture. The sample is scanned at a

distance of 1-2 pm. The signal contrast is developed over a sample translation of 7 pm

(10%-90%). The positive position corresponds to the metallic film in front of the

aperture.

The fact that the spatial resolution is defined by the aperture size rather than the

wavelength can be demonstrated by measuring the whole pulse waveform and performing

Fourier transform for every position of the metallic edge. By doing this, the amplitude

distributions are obtained for all the spectral components of the THz pulse. Fig. 6.3(a)

shows selected edge profiles at different frequencies, measured using the 10 pm aperture

probe. Identical resolution curves are obtained for a wide spectral window (0.2-2.5 THz),

limited only be the noise level. Resolution tests performed on the near-field probes with

Fig. 6.2. Resolution edge test for the probe with d=5 pm and L=4 ,urn. The edge is oriented
prallel to the polarization of the incident THz field.



Fig.6.3. Resolution at different frequencies, measured by the 10 ,um probe with L=7 ,um (a).
The edge is oriented parallel to the polarization of the incident THz field. (b) A similar
resolution curve is measured for the peak pulse amplitude.

larger apertures (up to d=50 ,um) showed that resolution always equals approximately to

the aperture size. It must be mentioned that features smaller than the aperture size can

create significant perturbation of the field and, hence, can be visible. Nevertheless, their

shape does not reproduce correctly in the image.

6.3 Probe-Sample Separation

Near-field imaging provides high resolution only if the sample is placed close to the

aperture, at a distance smaller than d/3. Samples are not necessarily flat and often the

probe-sample separation varies during the scan. It is essential to have an understanding of

the signal variation due to the changing probe-sample gap.
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6.3.1 Approach Curve

In a typical transmission microscope setup the probe and the sample are separated by a

small air-gap as shown in Fig. 6.4. The THz pulse passes through the air gap interfaces,

reflections from which induce changes in the detected field. The problem of pulse

Fig. 6.4. Schematic diagrams of the THz beam transmission through the air gap between the
sample and the probe in collection (a) and illumination (b) modes.

transmission through the air gap between the sample and the probe is similar to the

problem of transmission through the air gap between two dielectric media. The air-probe

interface, of course, is more complicated, because the transmission coefficient is

frequency dependent and its value is much smaller, compared to the simple air-dielectric

interface. Nevertheless, the problem is quite general and the solution is helpful in

understanding the field coupling into the probe in the presence of a sample.

Consider the pulse transmission through the air-gap between two dielectric media.

An electromagnetic wave incident on an interface between two dielectric media with

different indices of refraction is partially transmitted into the second media. The relative

amplitudes of the reflected (ER) and transmitted (ET) fields are given by the Fresnel

formulas, and for the case of normal incidence are
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When the two interfaces are present, the incident wave experiences multiple reflections

between interfaces. A part of the wave bounces off the interfaces gaining an additional

time delay. The total transmitted and reflected waves are the results of the reflections

interference, and for a monochromatic light the total transmission coefficient is an

oscillatory function of the air-gap width and the wavelength.

If the incident field is a short pulse, the transmitted field becomes a train of pulses

with decreasing amplitude. Figure 6.5 demonstrates calculated transmission and reflection

of a THz pulse from the air-gap between two dielectric materials with nA=3.1 (sapphire)

and nc=3.5 (GaAs). The result is obtained using FDTD method for the one-dimensional

wave equation (Appendix B). The incident pulse has a unitary amplitude in the first

media and propagates to the right. The pulse impinges on the dielectric-air interface,

where it experiences partial reflection. The transmitted part propagates through 300 pm

wide air-gap (indicated by the dashed lines in Figure 6.5(a)) and transmits partially

through the second interface. Therefore, loosing a portion of its energy in reflections, the

pulse passes into the second media.

A part of the pulse that reflects from the second dielectric continues bouncing

inside the air-gap. Each time this 'trapped' pulse impinges the air-dielectric interface, a

portion of the energy transmits into one of the dielectrics, resulting in the trains of pulses

with decreasing amplitudes, which propagate away from the air-gap. At the moment of
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the snapshot of Figure 6.5(a), the incident pulse has already experienced multiple

reflections. The main pulse in the region C is followed by the weaker pulses at a distance

corresponding to an additional double-pass through air-gap. Note that there is a phase

reversal when a wave reflects from the interface with n1<n2². An even number of such

reflections brings the phase back, therefore the forward propagating pulses have the

original phase. In contrast, the backward propagating pulses experience an odd number of

reflections. All of them, except the first one, have the reversed phase. The first back-

propagating pulse is a result of the reflection from the dielectric-air (n1>n2) interface, and

therefore, it preserves its phase.

As the air-gap width decreases, the interval between the pulses reduces, and

eventually their waveforms overlap. It becomes no longer possible to resolve temporally

each reflection when the air-gap width, h<100 pm. In the limit of h=0 all the forward

propagating pulses constructively interfere and the total transmitted field has the same

time domain waveform as the incident. Contrary the backward propagating pulses

interfere destructively as shown in Figure 6.5(b).

Variation of the transmitted field as a function of the air-gap width can be shown

by sampling electric field at a fixed time, corresponding to the amplitude peak of the

pulse [Fig. 6.6]. At large distances, the signal is at a level of the maximum amplitude of

the first transmitted pulse. All the other subsequent pulses do not contribute to the signal

because they arrive at the detection point latter in time. The function minimum

at h=55 pm corresponds to the overlapping of the first pulse with the second that is

delayed by approximately the half-cycle period. In this case, the minimum of the second

pulse arrives at the detection point at the same moment as the maximum of the first pulse.
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Fig. 6.5. Calculated reflection and transmission of the THz pulse at the air-gap (region B)
interfaces with dielectrics A and B. The air-gap width is (a) 300 ,um and (b) 2 ,um. Interfaces
are indicated by the dashed lines, and the arrows show directions of propagation.

For smaller h, the amplitude of the detected signal increases and approaches a level that

corresponds to the no air-gap case. This level, as well as the large h limit, is directly

found using the Fresnel formulas.

The signal dependence on the distance between the sample and the probe is

usually referred to as an approach curve. The signal is an instantaneous measured or

calculated electric field at a fixed time (usually peak of the pulse). Two general properties
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Fig. 6.6. Calculated variation of the electric field measured at a fixed time delay. The inset
shows the waveform of the incident pulse. The dashed lines indicate the limiting cases of
the large h and h=0, directly calculated using Fresnel formulas.

of the 'approach curve' can be deduced for the case of the air-gap between two plain

dielectrics.

(1) The signal stays constant at h> 2c/2, where r is the pulse duration, and reaches a

definite value in the limit of h=0. The limits are determined by the refractive

indices of the two dielectric media.

(2) The approach curve shape is defined by the pulse waveform at the intermediate

distance h.

Figure 6.7 shows an experimentally measured approach curve. The first dielectric in

experiment, a sapphire plate, is placed in front of the detecting antenna on GaAs that

serves as the second dielectric. The approach curve is measured by sampling the electric

field at a time delay that corresponds to the peak of the first transmitted pulse. Using its

peak amplitude, one finds the limiting cases of the approach curve (shown as the

horizontal lines in Figure 6.7). The minimum of the approach curve at h=105 ,um exactly



Fig. 6.7. Measured approach curve for the case of two dielectrics, sapphire (n=3.1) and GaAs
(n=3.5). The inset shows the waveform of the incident pulse. The dashed line denotes the h=0
limit estimated using the Fresnel formula.

matches a half-distance between spatial locations of the maximum (t=0 ps) and the

minimum (t=-0.7 ps) of the unperturbed waveform [inset of Fig. 6.7]. Clearly, the

experimental observations demonstrate the multiple reflections between the two closely

spaced dielectrics.

Now consider the pulse propagation through the air-gap between the probe and a

dielectric sample. The major difference from the two-dielectrics case is that reflection

from the probe surface is almost unity. In fact, the probe can be considered as a mirror.

Only a negligible portion of the incident pulse is transmitted through the aperture and

detected. Since the problem of pulse propagation can be simply reduced to the problem of

the reflections interference, the detected electric field is expressed as a summation of

pulses with diminishing amplitude
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Ras is the reflection coefficient for the air-sample interface. Transmission and reflection

operators T and R are the frequency dependent characteristics of the probe aperture.

Using the fact that almost all the radiation is reflected from the subwavelength aperture,

the reflection operator is assumed to be unity. Action of the transmission operator T on

the incident electric field waveform is directly measured in experiment

where ns is the refractive index of the sample.

Equation 6.5 is a simple expression for the electric field dependence on the probe-

sample separation. It allows estimation of the approach curve in collection mode using

only the measured waveform and the refractive index of the sample. The formula uses the

plane wave approximation and neglects the frequency dependent transmission function of

the probe aperture. Nevertheless, the approach curves calculated using Eq. 6.5 are in a

good agreement with experimental measurements for apertures smaller than 30 pm. As

the size of the aperture decreases, the reflection from the probe becomes closer to unity,

and our approximation becomes closer to reality. Figure 6.8 shows the approach curve

measured for the 10 pm aperture probe (b) and the whole waveforms for the two limiting

cases h=0 and large h (a). A uniform flat sapphire sample, index of refraction of which

n5=3.1, is used in this experiment. Figure 6.9 demonstrates the reflection contribution to



Fig. 6.8. Variation of the electric field detected using the 10 ,um probe with the probe-sample
separation, h. Sample is a sapphire plate (n=3.1). (a) The waveforms of the limiting cases h=0 and
h=500 ,urn. (b) The approach curve, measured (circles) and calculated (solid line).

the signal at various probe-sample distances. The individual reflections are shown with

arrows in the time domain waveform.

The illumination mode setup [Fig. 6.4(b)] exhibits a similar signal dependence of

the probe-sample separation. Calculation of the approach curve is more involving, since
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the probe radiates into a wide solid angle. Therefore, the general Fresnel formula applies

instead of Eq. 6.1, and the additional pass for the reflected pulse includes the direction of

propagation.

It must be mentioned that the high-resolution near-field imaging always requires

the probe and the sample being almost in contact. Within this limit, the waveform of the

detected THz pulse does not depend on the probe-sample separation, and only the pulse

amplitude varies. In the near-field image, this variation of the signal can be caused by

Fig. 6.9. Time domain waveforms measured at various probe-sample separations, h. Arrows
show individual reflections. The aperture size is 10 ,um.
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either the non-constant distance between the probe and the sample, or by a non-uniform

optical density on the sample surface.

6.3.2 Depth of Field

It was mentioned in Sec. 3.2.1 that the high spatial resolution near-field imaging requires

the probe-sample separation to be smaller than —1/3 of the aperture size. This shallow

depth of field limits the range of samples that can be studied with the near-field method

[Novotny et al. 1994]. Since the system operates in transmission, the thickness of the

sample structure needs to be smaller than the depth of field. Separation between the probe

and the sample must be kept small and constant throughout the scan. As the sample-probe

separation, h, increases, the image sharpness decreases. Shallow depth of field can be

demonstrated experimentally by performing the resolution test at various h.

Fig. 6.10. Results of the spatial resolution edge tests (10%-90%) on the near-field
probe with d=10 ,um and L=4 ,um in collection mode at various probe-sample
separations.
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Figure 6.10 shows results of the edge tests (10%-90%) for a probe with d=10 pm.

Resolution degrades with increasing distance h approximately linearly for small values of

the probe-sample separation. This behavior is a general property and similar results are

obtained using probes with different aperture sizes, d, and aperture-antenna separations,

L. The experiments are performed in collection mode, however, the results are similar in

illumination mode.

The shallow depth of field of the instrument implies the following important

conclusion for imaging of dielectrics with near field probes d<<λ. The dielectric function

contrast decreases with the probe aperture size. When imaging spatial distribution of the

refractive index (or the dielectric function), the measured signal variations arise from the

index-dependent coupling into the probe, the phase shift AO and absorption (if the

dielectric is lossy) due to the pulse propagation through the sample. The later

contributions are directly proportional to the thickness of the sample. For the phase shift

we have

where s is the thickness of the sample, which is smaller than or equal to the depth of field.

In the high resolution imaging the phase shift becomes very small and, therefore, difficult

to image, since the signal-to-noise ratio also decreases.

Similarly, absorption in the sample decreases with the thickness. For example,

decay length for THz pulses (0.6 THz) in water is —250 pm. Biological samples, which

mostly consist of water molecules, are not expected to produce a strong contrast on 5-10

pm resolution level.
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6.4 Polarization Dependence

When the incident electromagnetic wave interacts with a small (compared to the

wavelength) object, the field distribution around the object is extremely sensitive both to

the physical properties of the object (shape, size, and optical index) and properties of the

incident wave [Martin et al. 1995]. A detailed understanding of this optical interaction

between the sample and the optical field is one of the most serious challenges in near-

field microscopy.

Polarization of the incident THz field is particular important when a sample

contains metallic features, e.g. a pattern of an integrated circuit. Boundary conditions at

the metallic edges require the tangential component of electric field to disappear. The

normal field components contrary are singular at the metallic edges, because the field

induces charges at the boundary. As a result, metallic edges appear differently in near-

field images depending on orientation of the incident pulse with respect to the

polarization.

For instance, consider a plane wave incident on an edge of a thin metallic screen.

Electric field energy distribution of a wave propagating past the edge is schematically

Fig. 6.11. A schematic diagram of electromagnetic wave diffraction on a metallic edge in the
cases of polarization parallel to the edge (left) and perpendicular to the edge (right). Solid

²
contour lines show |E .
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shown in Figure 6.11 for two principle polarization directions. The wave is nonnally 

incident on the screen from the top. If electric field vector oscillates parallel to the screen 

edge (left figure), the field vanishes everywhere on the metallic surface. The screen 

creates a well-defined shadow zone as the wave passes it. Continuing its propagation, the 

wave diffracts and bends slightly over the edge. 

In the second case, when electric field vector is perpendicular to the edge (right 

figure), the incident wave induces charge on the screen. The charge density is maximal at 

the edge, decreasing as a square root of distance from the edge [Jackson 1962]. The 

electric field vector, perturbed by the induced charge, points to the edge, where it abruptly 

vanishes. The wave continues propagation after passing over the screen, however, in the 

second case the wave is strongly deflected from the initial direction. In principle, the 
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Fig. 6.12. A near-field image of square-shaped gold antenna pads lithographically printed on a 
semiconductor surface. Gray level corresponds to electric field amplitude measured at the THz 
pulse peak (at a fIXed time delay). The image is constructed using a probe with a 30 f.l1I1 aperture. 
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wave can propagate along the metallic screen, perpendicular to its original direction.

This diffraction process produces polarization related artifacts in the near-field

images of the metallic patterns. Edges parallel to polarization appear sharper in the image

than ones perpendicular to polarization. Figure 6.12 shows a near-field image of large

(500x500 µm) square-shaped metallic pads deposited on GaAs surface. A probe with a 30

,um aperture is used in this experiment and polarization of the incident beam is along y-

direction. The square-shaped pads appear elongated in x-direction because the horizontal

borders are not as sharp as the vertical ones.

The polarization sensitivity has its effect on the resolution measurements

discussed in Sec 6.2. In the resolution test, the edge object is used to produce a sharp field

contrast between two halves of the sample. Only incident polarization parallel to the edge

serves this purpose.

Fig. 6.13. An optical microscope image of the periodic cross pattern lithographically printed on
dielectric surface (GaAs, n=3.6). The lattice period is 26.4 ,um, width of the cross-bars is 4.8 ,um,
and a gap between crosses is 3.2 ,um.
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Another polarization related effect occurs when the metallic object parts are on 

the order of the aperture size or smaller. As an example we consider a periodic structure 

that consists of metallic crosses on surface of a dielectric substrate. The crosses are 

arranged in a simple square lattice with a period of 26.4 J1m as shown on an optical 

microscope image in Figure 6. 13. Width of the cross-bars is 4.8 J1m and the substrate 

index is 3.6 (GaAs). The periodic cross-shaped structure has a narrow absorption 

resonance at --115 J1m (2.6 THz) [Moller 1999]. At larger wavelengths the structure is 

relatively transparent. A vertically polarized (y-direction) THz beam uniformly 

illuminates the sample and near-field images are constructed in collection mode with 5 

J1m and 10 J1m aperture probes. Spatial resolution of the probes is --7 J1m and --10 J1m 

respectively. Figure 6.14 shows an image obtained at a fixed time delay, when the 5 J1m 
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Fig. 6.14. A near-field image of the metallic crosses shown in Fig. 6.13. Gray level 
corresponds to electric field amplitude measured at the THz pulse peak (at a fixed time delay). 
The image is constructed using a probe with a 5 f.JlIl aperture. 
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probe measures the peak of the THz pulse. The vertical bars of the crosses (parallel to 

polarization) are clearly developed in the image, while the horizontal bars are almost 

invisible. 

Note that the brighter areas in the image correspond to the vertical metallic bars. 

The electric field amplitude of the pulse coupled into the aperture is larger when the 

probe is located behind the bars. This effect is present even if the aperture size is larger 

than the bar width. Figure 6.15 shows an image fragment of the same sample constructed 

using 10 J1ffi aperture probe. The vertical bars, which are only 5.8 J1ffi wide, produce an 

image similar to Figure 6.14. The horizontal bars, contrary, do not produce noticeable 

traces in the images. The field 'wraps' around the small metallic structures and passes 

without significant perturbation. It is worth mentioning the principle of wire grid 

polarizers, which strongly absorb waves with electric field oscillating along the direction 
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Fig. 6.15. A near-field image of the metallic crosses shown in Fig. 6.13. Gray level 
corresponds to electric field amplitude measured at the THz pulse peak (at a fixed time delay). 
The image is constructed using a probe with a 10 f.lII1 aperture. 
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of the wires. The orthogonal polarization passes the grid of wires almost without changes,

if the wire diameter and the separation between wires are smaller than the wavelength.

Polarization effects exist for dielectric objects as well. Webber et al. 1996

experimentally showed that the same dielectric subwavelength object produced inverse

contrast for two polarizations, TE and TM.

6.4 Analysis of THz Near-Field Images

6.4.1 Introduction

A near-field image corresponds to the electric field distribution in the vicinity of an

object, which in general differs from the object physical structure. The purpose of image

analysis is to link the near-field measurements to the object's properties. This task is very

difficult, especially when various artifacts are present. Object reconstruction is an inverse

scattering problem, and there is more than one configuration that results in the same near-

field image. It is usually helpful to have some preliminary information about the object,

such as composition, surface quality, etc, in order to obtain accurate information.

Scanning microscopy with time domain measurements generates a large amount

of data. There is an array of electric field values for every point in the object plane. Using

the data, various types of images can be constructed: the monochromatic images

throughout the spectrum of the THz pulses or the time series of instant field images. The

acquisition time substantially decreases if only a time slice of the full data is measured.

This approach, however, looses some of the available information. The image evolves in

time and the object features may appear differently at various instants of time. This raises

a practical question: can a single time slice of data provide sufficient information about
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an object? This section discusses the correspondence between an object and its instant

images. The analysis is carried out on example of a metallic dipole antenna pattern

prepared on a dielectric surface.

6.4.2 Evolution of the Image

The antenna is lithographcally printed on a sapphire substrate and consists of two 20 µm

wide striplines separated by 105 gm, and two sharp-ended 50 gm long and 20 pm wide

arms, slightly shifted with respect to each other. A schematic diagram of the antenna is

shown in Figure 6.16(a). The object contains only gold features oriented either parallel to

the direction of polarization (dipole arms) or perpendicular to it (strip lines). The images

are constructed in collection mode using a 10 pm aperture probe (L=4 pm) at consequent

moments in time.

The series of frames in Fig. 6.16 demonstrates changes of the image with time.

Frames (b) ps) and (d) (t=0) correspond to the negative and positive peaks of the

pulse waveform. The images are similar except for polarity. The dipole creates a shadow

in the center, which extends slightly toward the striplines. Oriented perpendicular to the

incident field polarization, the striplines exhibit weaker contrast than the dipole in these

images.

All object features develop well in frame (c) (t=-0.33 ps), which corresponds to a

moment between the negative and positive peaks of the THz pulse. Both the striplines

and the dipole arms are clearly seen. However, the object parts oriented perpendicularly

to the polarization direction appear brighter, and the parts oriented parallel to it appear

darker with a higher contrast. Resolution is comparable in both directions.
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Fig. 6.16. A schematic diagram of a planar antenna on sapphire (a). Series of near field images taken at 
different time delays of the gating optical pulse(b-f). The gray level corresponds to the measured electric field. 
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In the frame (e) there is electric field enhancement in the middle of the antenna

between the dipole arms. This effect is due to sharp corners of the electrodes, where

induced charge and, therefore, electric field are singular [Jackson 1962]. Frames (e)

(t=0.17 ps) and (f) (t=0.33 ps) show another effect. The dipole arms are imaged as bright

spots with high contrast. Both images correspond to the positive time delay, when the

background electric field amplitude has already decreased.

It is informative to consider time domain waveforms measured at various points

of the object. Figure 6.17 shows THz waveforms measured aside from the structure

(dotted curve), at a stripline (dashed curve), in the middle between the striplines (dash-

dotted curve), and in the area of the dipole (solid curve). A schematic diagram in the right

corner shows the locations of the test points. One can see an obvious perturbation of the

electric field due to the dipole. A waveform measured shows slower temporal

Fig. 6.17. THz waveforms measured in various point of the object. A schematic diagram in the
right corner shows location of the test points: aside from the structure (A), at a stripline (B), in
the middle between the striplines (C), and in the area of the dipole (D). The vertical lines in the
plot indicate the instants in time-domain, which correspond to the image frames in Fig. 6.16.
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characteristic and a delayed phase, compared to a waveform measured away from the

antenna. Therefore the dipole appears glowing after the peak of the incident pulse has

passed (t-0.2-0.5 ps). Very bright areas in frames (e) and (f) imply that there is electric

field enhancement at the dipole. Effect of the striplines is less pronounced. The waveform

measured at point B resembles the incident waveforms, and the image contrast of the

striplines is weak.

6.4.3 Time-Domain vs. Frequency-Domain Imaging

From the analysis above, one can deduce two effects that mainly determine the

appearance of this object in the near-field image: the polarization effect, which was

discussed in the previous section and the effect of pulse deformation due to the object.

The later is due to resonant properties of the dipole antenna structure. It is known that a

dipole antenna absorbs and radiates within a narrow band, which corresponds to the

dipole length. As a result, electric field near the dipole oscillates slower with a central

frequency drawn closer to the resonant frequency of the antenna.

It is obvious that for studies of the resonant effects the full set of the time-domain

data must be considered. Fourier spectra are obtained for every point of the object.

Monochromatic images are then constructed using the spectral amplitude or phase

information. Resonant structures, such as the considered dipole antenna, are expected to

produce frequency dependent images.

One of the applications of this method, which can be called the THz spectroscopy

in the near-field zone, is the transient current studies in switches. The current distribution

in photoconducting switches is directly related to the geometrical structure of electrodes
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and the carrier dynamics in the active area. Simulations of this process for the switch

performance optimization are quite complicated. The current transients in principle can

be directly measured with resolution of 5-10 pm using our near-field probe. The carriers

tend to move faster in the center of the switch, where electric field is higher. The slower

carriers move on the sides. This dynamics is expected to reflect in the monochromatic

THz near-field images. Some effects, such as charge screening, are difficult to model in

simulations, and experimental technique can provide important information about

dynamics of the carriers in the switch and help in the performance optimization.

It should be mentioned that electric field waveform measured by the collection

probe is not a direct replica of the field at the object. The aperture of the probe changes

the waveform and the spectrum due to the frequency dependent transmission, as

discussed in Chapter 5. In principle, the original waveform can be extracted if the transfer

function of the aperture is known. For a simple aperture in a thin metallic film this

transfer function only affects the amplitude of the spectral components of the pulse. The

phase shift can be assumed to be equal to zero. (The effective phase shift due to

asymmetric temporal characteristic of the THz pulse is automatically taken into account

applying frequency dependent amplitude attenuation.)

The knowledge of the field spectrum before transmission through the aperture

provides the correct ratio of the spectral amplitudes. However, for the monochromatic

images, where brightness corresponds to the relative amplitude of a particular spectral

component, this information is not necessary.



CHAPTER 7

CONCLUSION

7.1 Main Results

Application of the near-field scanning microscopy principle to the long wavelength

terahertz radiation substantially improves spatial resolution capabilities. The practical

limitation, related to the rapid decrease in sensitivity of the aperture type near-field probes

with a decreasing aperture size, has been overcome in the new probe design. The

collection mode near-field probe, which uses a subwavelength aperture to sample the

electric field of an object, detects the coupled into the probe field in the aperture near-

zone. The probe detects the electric field, which mostly consists of the aperture

evanescent modes. Sensitivity of the new design improves by few orders of magnitude

(depending on the aperture size) compared to the conventional design, where only the

propagating modes are detected. The highest achieved spatial resolution of the probe

is —7 pm, which is three times better then the best of the other currently available THz

imaging techniques.

A simple two-dimensional model describes propagation of the THz pulse through

subwavelength apertures. Numerical calculations based on time-domain finite-difference

method demonstrate that the model predicts deformation of the pulse waveform and

spectrum. The time-domain formulation provides the solution without the need for the

long wavelength approximation, which, in fact, is not valid for the broad band THz

pulses. The pulse deformation, described as the wavelength dependent process, shows

two distinct regimes: below- and above the aperture cutoff frequency. The effects of the

129
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waveform shaping and the spectral shift differ in these regimes. The relative phase of the

spectral components causes the effect of the pulse advance through the deep-

subwavelength aperture with a negative time shift.

Images constructed using time resolved electric field measurements carry various

artifacts. Some of them, such as the polarization related or the probe-sample separation

related artifacts, are well known in optical microscopy. The other are related to the pulse

shape deformation.

Aperture size determines the spatial resolution of the developed imaging system.

With decreasing aperture size, the electric field coupled through the aperture decreases, as

predicted by the Bethe's theory with the finite-thickness screen correction. The resolving

power of the system can be further improved to the level of —1 ,um if a more powerful

THz source is available.

7.2 Practical and Scientific Value

7.2.1 Practical Value

The developed imaging system provides currently the highest spatial resolution for the

long wavelength THz radiation. Resolution is independent of the wavelength throughout

the spectrum of the THz pulses (120 pm —1500 pm), and spectroscopy at THz

frequencies can be implemented with high spatial resolution.

The technique is valuable for studies of near-field image formation. Given the

large scale of the wavelength, the system can be used as a model of the near-field

scanning optical microscope. The image formation mechanisms and artifacts can be
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studied using enlarged samples. In the studies of the probe-sample separation effects, for

example, the leading contribution of interference of reflections is demonstrated.

7.2.2 Scientific Value

Coupling of the broad band THz pulses through subwavelength apertures is a relatively

unexplored problem. The interest to this problem arises form the fact that the cutoff

frequency of the aperture is usually within the spectral bandwidth of the THz pulses. In

this regime, the electromagnetic pulses experience the temporal and spectral

deformations. The current study provides the analysis of the problem with explanation

and experimental demonstration of certain effects. The experimental work gives a

valuable data on electromagnetic wave transmission through apertures as small as 1/300

of the wavelength.

The two-dimensional model is demonstrated to describe the transmission of the

THz pulses through small apertures. The numerical calculations predict the waveform and

the spectrum deformation, give the qualitative field description in the near-zone, and

allow studying effects of the probe geometry. Decay of the electric field amplitude with

the distance from the aperture is characterized experimentally in the near-zone. The mode

analysis demonstrates that the evanescent modes produce the dominant contribution

within the distance equal to the aperture radius.

For apertures ranging from 50 pm to 5 ,um, the electric field amplitude of the

coupled field decreases approximately as the third power of the aperture size. A

correction due to the finite-thickness of the aperture screen is required as the aperture size

decreases. The resulting amplitude function decreases faster then the third power law

when the aperture size is on the order of the screen thickness.
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7.2.3 Future Studies

Detailed understanding of image formation in THz near-field scanning microscopy

remains one of the serious challenges. The image formation is, essentially, the problem of

electromagnetic wave coupling through the aperture in the presence of an object. The

current study only considered few aspects of this broad problem. Extensive experimental

work and numerical modeling yet need to be accomplished. Another direction of the

potential research is development of THz spectroscopy. The spectral analysis can be

realized with the existing setup. However, the critical issues, such as frequency

dependence of the probe sensitivity, have not been addressed.



APPENDIX A: CHARACTERIZATION OF CARRIER LIFETIME IN LT GaAs
BY THE TRANSIENT REFLECTIVITY MEASUREMENTS

For the optimum performance of THz detectors, the carrier lifetime in the

photoconducting material must be short, so that the incident electric field is slowly

varying on the time scale of the photocurrent transient. The short lifetime is usually

achieved by introduction of impurities in the semiconductor. In the same time, the dark

resistivity must be high for the low noise detector. The perfect material for the switch has

the high mobility and the short carrier lifetime.

The post-growth annealing balances these properties in LT GaAs [Smith et al.

1997]. As-grown LT GaAs is highly conductive, but after annealing the resistivity of the

material increases up to 10 7 Ohm cm. However, exposure to the temperatures increases

the carrier lifetime in LT GaAs. Estimation of the lifetime from specified growth and

annealing conditions is rarely accurate due to variations in the growth process and

difficulties of exact temperature measurements at the surface of the material. To optimize

the THz detector performance, it is important to have an apparatus for determining the

carrier lifetime in the LT GaAs epilayers.

The methodology for determining the carrier lifetime is based on the femtosecond

transient pump-probe technique [Bennett et al. 1990, Loka et al. 1998]. In the

experiment, an intense ultrashort pump laser pulse induces changes in the optical

properties of the sample. Photons with energy larger than the bandgap generate the

electron-hole plasma in the semiconductor that dissipates through trapping,

recombination and diffusion. The dynamics of the carriers is determined by measuring

the intensity of a weaker probe pulse, either reflected or transmitted, as a function of the

133



134

delay between pump and probe pulses. Free carrier concentration due to the pump pulse

can be extracted from the measured reflectivity or absorption transients.

Short optical pulses of —100 fs duration at 100 MHz repetition rate are generated

by the laser system, which consists of an Artion and Ti:Sapphire lasers. A pulse is

divided in two: a pump pulse and a weaker probe pulse. The pump beam is chopped by

the acousto-optic modulator at frequency of 1MHz. Each pulse carries energy ranging

from 0.1 nJ to 20 nJ. The probe pulse is typically one or two orders weaker and it is

cross-polarized with the pump. An optical delay line allows sampling the transient

reflectivity induced by the pump. The beams are focused onto the sample to a 100 pm

and 70 pm diameter spots for the pump and probe respectively. The reflected light

intensity is measured with a photodiode and processed using the lock-in amplifier.

A number of physical effects contribute to the pump-induced change in the

dielectric constant and, consequently, in the reflection coefficient [Loka et al. 1998].

Bandfilling, free carrier absorption, bandgap shrinkage are the effects with the leading

contribution. The lattice heating due to scattering of the excited electrons changes

reflectivity as well. The relative contribution depends on the intensity of the pump and

the energy of the photons [Janz et al. 1996, Sosnowski et al. 1997, Segschneier et al.

1997]. As a result, the change in reflectivity differs in shape, amplitude, and sign

depending on the experimental parameters. The detailed analysis of the effects that

change the reflectivity can be found in the paper by Bennett et al. (1990).

Despite the complexity of the data, the transient reflectivity usually behaves as a

two step relaxation process (besides the initial rise time). Immediately after the

excitation, the reflectivity of LT GaAs relaxes with a characteristic time of a fraction of
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picosecond, followed by a relatively slower decay. This implies that the electrons are

trapped on the midgap states first, and recombine with the holes later. The trapping time

is on the same order as the carrier cooling time. Table 1 summarize the carrier dynamics

in LT GaAs [Grenier and Witaker 1997]. The fast and long recombination are associated

with two different types of midgap traps.

Process Time Constant,
ps

Carrier cooling (e/h) 0.1-0.2/0.3-0.4

Carrier Trapping 0.7-2

Fast Recombination —10

Long Recombination >300

Table Al. Typical carrier dynamics in LT GaAs (Reference: Grenier and Witaker 1997).

Typical transient reflectivity traces are shown in Figure A2. The plot

demonstrates that the dynamics depends on the annealing conditions. As the temperature

Fig. Al. Normalized transient differential reflectivity of typical LT GaAs (T=300°C). Variation
of the annealing condition results in changes of the dynamics of the carriers.
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or/and the annealing time increases, the relaxation time increases. The growth

temperature also affects the relaxation time as shown by many research groups [for

example Loka et al. 1998].

The control of growth and annealing temperatures can be used to optimize the fast

response of the photoconducting antenna. The trapping and trap emptying times increase

with increasing the annealing temperatures. However, the post-growth annealing is

required to lower the dark conductivity of the material.



APPENDIX B: ONE-DIMENSIONAL NUMERICAL SOLUTION OF THE PULSE
TRANSMISSION THROUGH DIELECTRIC LAYERS

Transmission of an electromagnetic pulse through an air-gap between two dielectric

media is numerically solved using FDTD method in one-dimensional space.

Consider the one-dimensional scalar wave equation in a lossless dielectric

medium with the dielectric constant e

In the finite-difference approximation of the Eq. B.1 the solution Er' at a grid point i is

The approximation has a second-order accuracy in both space and time. Eq. B.2 is an

explicit expression for electric field. All wave quantities on the right-hand side are

obtained during the previous time steps, n and n-1. Upon performing Eq. B.2 for all space

points of interest, the process is continued again to obtain the next set of E, 1. 1+² . The

algorithm employs a central spatial-difference scheme that requires knowledge of the

field one cell to each side of an observation point. Central difference can not be

implemented at the outermost boundary of the space lattice, since there is no information

about the field at points outside the boundaries.

Electric field just outside the boundaries can be found using one-way-wave

equations. Application of the one-way equation numerically absorbs outgoing waves

impinging on the boundary. For a scalar wave propagating in one-dimensional space

domain [0, Lb the one-way equation at the z=0 boundary:
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and for z=L boundary:

In the finite-difference approximation, electric field value at the boundaries is computed

by

where v is the speed of light propagation in dielectric.

The incident THz pulse is modeled by assigning electric field at the boundary z=0

at every time step (t is in picoseconds):

After the pulse is completely launched into the computational space, electric field at point

z=0 is calculated according to Eq. B.5. Dielectric materials in the space lattice are simply

modeled by defining the speed of light at each point of the lattice.
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