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ABSTRACT

EFFICIENT INVERSION METHODS
IN UNDERWATER ACOUSTICS

by.
Xiaoqun Ma

This dissertation describes efficient methods developed and implemented for source

localization and sound speed and bottom depth estimation using sound propagation

in the ocean. The proposed inversion techniques are based on the linearization

of the generally non-linear inverse problem of parameter estimation in underwater

acoustics. These techniques take into account properties of the ocean environment

and are accurate in their estimation results without being prohibitively computa-

tionally intensive. For the inversion, select ray paths are taken into account: the

direct, first surface bounce, and first bottom bounce. Ray travel time derivatives with

respect to parameters that affect path arrival times are obtained analytically. These

derivatives and a first order expansion are then used to find estimates of unknown

parameters through replica and true paths; replica paths are generated using ray

theory for underwater sound propagation and true paths are identified from measured

time series. The linearization scheme works efficiently for the estimation of geometric

parameters such as the source and receiver location coordinates and the depth of the

water column. It is also successful in estimating the sound speed profile in the

ocean using empirical orthogonal functions. In this work, the linearization inversion

technique is applied to marine mammal tracking, and it is also used with real data

collected during the Haro Strait experiment for source and receiver localization. For

the Haro Strait data, inversion using linearization is also compared to matched-field

processing, which estimates source location and geoacoustic parameters through a

full field matching approach.
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CHAPTER 1

INTRODUCTION

Inverse theory plays a critical role in underwater acoustics for the estimation of

geometric parameters (source and receiver location, bottom depth) and environ-

mental parameters (sound speed profiles, sediment densities, attenuations and

sediment layer depths).

A popular approach for inversion in underwater acoustics is matched-field

processing [1, 2, 3]. Inversion of the acoustic field using matched-field processing

techniques requires a combination of wave propagation modeling for the generation

of replica fields at receiving phones and a decision rule that estimates the unknown

parameters. Values of the unknown parameters that maximize the similarity between

replica and true acoustic fields are the desired estimates.

Matched-field processing has been used with excellent results both on synthetic

and real data ([3, 4, 5, 6, 7, 8, 9]). However, as a full-field matching approach, this

method typically requires that the full acoustic field is calculated at a set of receiving

phones and is matched to the received acoustic data. Thus, many parameters enter

the estimation process. Although we might only be interested in estimating the

source location, many factors need to be taken into consideration such as the water

column depth and the properties of the bottom sediment, for example, since those

affect the full field. Uncertainty regarding these parameters has to be incorporated

in the estimation process for accurate inversion. Therefore, the computational load

of matched-field inversion methods could be substantial, especially when the number

of the unknown parameters is large and the signal carries broadband information.

In order to avoid multiple replica field calculation, many attempts have been

made to investigate the potential for matching only select features of the acoustic

1



2

field to corresponding replica features. For example, different inversion methods have

been performed using distinct arrival times ([10, 11, 12, 13]). Also fast linearization

schemes have been successfully implemented in several aspects of inversion in

underwater acoustics and seismic studies ([4, 14, 15, 16, 17, 18]). More specifically,

linearized inversion comparing direct path arrival times at spatially separated phones

was demonstrated in [13] and [16] with excellent results in array element localization.

Linearization for acoustic inversion using arrival times, however, requires identifi-

cation of the nature of each arrival observed in the ocean impulse response (that is,

how many bounces (if any) each path has gone through and with which interfaces

it has interacted). Such identification is not always straightforward, especially when

only limited prior information is available on the propagation environment.

Figure 1.1 Arrivals in the ocean impulse response.

In this dissertation, a linearization inversion method is developed that employs

select ray paths (the direct, first surface bounce, and first bottom bounce ray path,

for example) for source localization and bottom depth and sound speed parameter

estimation. The specific paths were selected in this work, because they are usually
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simple to identify. Often, the direct path is the first detected arrival, the first surface

bounce path is the arrival that follows the direct arrival with its sign different from

that of the direct path, a result of the reflection at the surface; whereas the first

bottom bounce path is the arrival that follows the direct arrival with the same

direction as the direct path arrival. This sign/phase difference is illustrated in

Figure 1.1. In essence, the proposed method is a localization approach through

model-based time-delay estimation, which compares the arrival times of the afore-

mentioned paths to theoretically predicted arrival times for paths of the same nature.

The latter arrival times, which are also referred to here as replica arrival times, are

generated using ray theory for different values of the unknown parameters. Similarly

to matched-field processing, our estimates are those values that maximize the match

between measured and replica path arrival times.

The structure of this dissertation is as follows: Chapter 2 discusses acoustic

wave propagation models used in forward modeling involved in source and ocean

parameter estimation problems. Chapter 3 presents the linearized inversion method.

Chapter 4 presents and discusses results from the application of the method to

synthetic data for source and receiver localization and bottom depth estimation.

Chapter 5 implements the method for sound speed estimation using empirical

orthogonal functions. Chapter 6 demonstrates the application of the linearization

method to the Haro Strait data set for source localization. Chapter 7 discusses

matched-field processing results from the same data. Chapter 8 shows how marine

mammal tracking can be achieved using linearized inversion. The results of this

dissertation are summarized in Chapter 9. Chapter 9 also includes suggestions and

directions for future research.



CHAPTER 2

UNDERWATER SOUND PROPAGATION

Solving an inverse problem involves two components, the forward and the inverse

models. The forward model provides us with a mathematical relationship between

the unknown parameters that need to be estimated and, in our case, the acoustic

field. The inverse model determines the rule that will be used for the calculation of

the unknown parameters given the data (that is, the measured acoustic field) and

the forward mathematical relationship.

To illustrate the structure of an inverse problem, it is assumed that there are

N data measurements, forming vector d:

It is also assumed that there are M unknown parameters m l , m2 , ..., mm forming

vector m:

Here, [.] T denotes transpose.

The forward model allows us to predict d for different combinations of the

components of vector m. The inverse model identifies the values of the components

of m that give the best prediction of d. Figure 2.1 illustrates the process involved

in the solution of our inverse problem.

The present section focuses on the forward component of our problem, which

is here a model for sound propagation in the ocean. Underwater sound propa-

gation is mathematically described by the acoustic wave equation, whose parameters

and boundary conditions relate directly to the ocean environment, the source and

receiver location, and the frequency content of the propagating sound. Here, the

4
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Figure 2.1 Forward and inverse mapping.

wave equation is described briefly and the most common numerical approaches to its

solution are presented. Ray theory is emphasized in particular, since it is the main

approach in this dissertation for solving the forward problem.

2.1 The Acoustic Wave Equation

The acoustic wave equation can be derived from the mass conservation law, Newton,s

Second Law, and the adiabatic relation between pressure and density ([19J):

Here, c is the sound speed in the acoustic environment; p is the fluid density; and p

is pressure.

For constant density, Equation 2.3 becomes:

Equation 2.4 describes acoustic wave propagation in the time domain. Equation 2.4

can be simplified through a mapping from the time domain to the frequency domain.

The trade-off is the evaluation of Fourier transforms for the mapping between the

two domains.
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In the frequency domain, Equation 2.4 leads to Helmholtz Equation:

Here, p is pressure (dependent on space and radial frequency w), and k is the

wavenumber, which is defined as the ratio between frequency and sound speed:

For further information on the wave equation, we refer the reader to [19, 20].

2.2 Numerical Models for the Solution of the Wave Equation

There are essentially five different numerical models for approaching the forward

problem of acoustic propagation [19]:

• Ray theory

Ray theory provides a high-frequency asymptotic solution to the wave equation.

The approximation leads to simple ordinary differential equations in ray

coordinates that can be easily solved. The ray method is capable of providing

important information on sound propagation without calculating the whole

wavefield evolution. Ray theory is computationally efficient and its relationship

to geometry makes it simple to follow and understand.

• Wavenumber integration

The wavenumber integration technique involves the application of integral

transforms to the wave equation for horizontally stratified media. Another term

used to refer to this method is Fast Field Programs because of the use of FFTs

for integral calculations in some implementations. Wavenumber integration

presents stability challenges and is computationally demanding.
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• Normal modes

The normal mode method uses separation of variables to solve the Helmholtz

equation, from which the modal equation is derived. The modal equation has an

infinite number of solutions (modes); the complete acoustic field is constructed

by summing up scaled contributions of the depth-dependent modes. Normal

mode models can be extended for the study of range dependent problems using

coupled modes or the adiabatic approximation. Implementing the coupled

mode approach is particularly computationally intensive.

• Parabolic equation (PE)

The approach starts with the Helmholtz equation and, using Hankel functions

in its solution, arrives at the parabolic wave equation. The method is partic-

ularly attractive in range dependent situations.

• Finite difference and finite element models

Finite difference and finite element models solve the wave propagation equation

through direct discretization techniques, which are capable of solving the two-

way wave equation in inhomogeneous fluid- elastic environments with complex

geometry. These methods are cumbersome to implement from a computational

point of view; they are mostly used when effects from boundary scattering need

to be incorporated in a sound propagation problem.

2.3 Ray Theory

Ray models have been used for many years in underwater acoustics [19, 20, 21].

They are fast and can calculate the acoustic field fairly accurately especially in high

frequency situations, when other models become computationally demanding.
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Ray theory is derived by looking for an asymptotic solution for the Helmholtz

equation (in cartesian coordinates):

The asymptotic solution, referred to as the ray series, is in the form:

By substituting the ray series into the Helmholtz equation and neglecting higher

order terms (high-frequency approximation), two equations are obtained:

Equation 2.9 for the phase function τ (x) is called the eikonal equation and

Equation 2.10 for amplitude A 0 (x) is named the transport equation.

The eikonal equation is a first-order nonlinear PDE. It can be simplified using

the method of characteristics, leading to a linear ODE:

where s is the arc length along the ray path. Equation 2.11 defines the travel time

along the ray path, which can be written as:

The transport equation can also be simplified to a linear ODE:

Integration of this ODE leads to the solution for A 0 .
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Figure 2.2 Impulse response of sound propagation in the ocean.

In this work, sound propagation using ray theory was performed using

BELLHOP [22] and code written by the author. Figure 2.2 shows the impulse

response of the ocean calculated with BELLHOP for a shallow water propagation

environment. The impulse response is calculated at five receiving phones (the

top impulse response corresponds to the shallowest phone). Peaks of the impulse

response correspond to the arriving paths that are used for inversion.



CHAPTER 3

INVERSION USING LINEARIZATION

In this chapter, the kernel of this work is presented: a linearization approach to

the non-linear inverse problem of parameter estimation in underwater acoustics. A

linear system is set up relating time delays between path arrivals and the parameters

that need to be estimated. Time delays and unknown parameters are linked through

derivatives of ray arrival times with respect to the parameters. Different approaches

are discussed for the solution of the linear system for better estimation of the

parameters of interest.

3.1 The Inverse Component

In Chapter 2, forward modeling was discussed, from which the acoustic field in the

ocean can be mathematically expressed given a specific underwater environment and

source and receiver location. Using observed data and a selected forward model,

we now want to "invert" in order to find the source location which resulted in the

generation of an observed acoustic field (data). Using the notation of Chapter 2, the

inversion process can be described as:

d  >f >m

3.2 The Environment

The ocean is an acoustic waveguide limited above by the sea surface and below by

the seafloor. In this work, a shallow water, range-independent environment and a

broadband, high-frequency source are considered. Ray theory is used to model propa-

gation between source and receivers [19]. Short range propagation is addressed, in

order for the ray paths of interest (direct, surface and bottom paths) to be resolvable.

10
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The received fields are measured at several, vertically separated receiving phones. A

sketch of the problem geometry is shown in Figure 3.1.

Figure 3.1 The propagation geometry.

The sound speed plays a critical role in acoustic wave propagation, as shown

from the wave equation (2.4). Sound speed is here treated as constant with range,

but it varies as a function of depth. The ray paths follow Snell,s Law,

where 9 is the ray incident angle, c(z) is the depth dependent sound speed, and p is

defined as the ray parameter which remains constant along each specific ray path.

This implies that a ray path bends locally toward regions of low sound speed. The

importance of the sound speed profile to the inversion model is represented in detail

in the following chapters.

The paths employed in this work for inversion were selected, because they are

usually simple to identify through the arrival order and sign/phase differences, as

mentioned in Chapter 1. Furthermore, the direct and first surface bounce paths

do not interact with the ocean bottom. Acoustic inversion using only these paths

can, thus, be achieved without involving potentially complicated and unknown

bathymetry. If the bathymetry is well known, however, the information can be
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introduced into the localization process improving the results; introduction of

bathymetry information can be achieved through the use of paths that have been

reflected off the seafloor. Those paths could be also used for bathymetry estimation,

as will be shown latter.

3.3 The Linear System

The arrival time t of each specific ray path depends on the geometry and environ-

mental parameters of the underwater problem of interest: source range r, source

depth zs , receiving phone depths Zr , bottom (water column) depth D, sound speed

profile c(z), and the source instant t 0 . For the present, the sound speed profile is

assumed to be known; the arrival time of a path can be written as:

where T represents the ray travel time.

Here the single source case is considered, while the signal is received at multiple

hydrophones. For an array with N hydrophones, if three characteristic ray paths

(direct, first surface bounce, first bottom bounce) are employed, there will be a total

of 3N arrival time measurements (data) which depend on 2N + 3 parameters (two

spatial variables for each hydrophone, source depth, bottom depth, and time instant).

Using the notation of Chapter 2, these measurements can be described as

where d is the vector of measured travel times (d = t); f represents the forward

method, or acoustic model, that relates the measurements to a set of parameters; m
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represents the vector of these parameters:

For the acoustic inverse problem, vector m is estimated using the measured

travel times and forward model f. The inverse process is nonlinear. An effective

approach to the nonlinear inverse process is local linearization and iteration. The

linear approximation to Equation 3.3 can be obtained through a Taylor expansion

to the leading order about an arbitrary initial vector m 0  ([13, 17, 18]):

where 6m is the model perturbation, and J is the Jacobian matrix which contains

the time derivatives with respect to each of the unknown parameters along specific

ray paths. By introducing 6t = d — f (m 0 ), Equation 3.5 yields

Equation 3.6 reflects a linear relationship between arrival times and the

parameters in m.

The time differences δt of Equation 3.6 are measured between path arrivals

in the real signals and replica signals generated using ray theory for a set of initial

values for the unknown parameters. Through Equation 3.6, corrections 6m for the

unknown parameters are obtained, that give a better match between real and replica

times. Depending on the proximity between initial values of the parameters and the

noise level in the arrival times, the system might need to be solved iteratively several

times until it converges.

Equation 3.6 generally leads to an overdetermined linear system. Different

methods for the solution of this system are presented and compared in this work.
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3.4 Ray Travel Time Derivatives

The linearization approach requires the computation of ray travel time derivatives

with respect to the unknown parameters. The derivation of the time derivatives

with respect to source and receiver locations for the direct ray path is presented

analytically in [13]. The approach of [13] is extended in this work for all the geometric

parameters along each characteristic ray path.

The time derivatives with respect to source range r, source depth z s , receiver

depth Zr , and bottom depth D are calculated in the following way:

For the direct ray path:

For the first surface-bounce ray path:

For the first bottom-bounce ray path:
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Here, c(z) is the sound speed at depth z. The ray parameter p, as defined in Equation

3.1, characterizes rays connecting source and receiver (eigenrays).

Notice that the expression for 1-1 is the same for different ray paths. Also

there are only sign differences for both -2- and between the surface and bottom

reflected path calculations. The derivation of these travel time derivatives is further

described in Appendix A.

In fact, along each characteristic ray path, time derivatives 2- and 2- may

change sign due to the geometric shape of the path. This can be further illustrated

through an example of a particular direct ray path.

Figure 3.2 Different geometric shapes of the direct ray path.
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Path A in Figure 3.2 is a typical direct ray path between source and receiver

1, for which the source range r is described as

The time derivatives E- and	 follow Equations 3.8 and 3.9.

However, the direct ray path B between source and receiver 2 is a bell shaped

path. In this case, the equation for the source range r should be presented as

This equation for range is similar to that of range for the surface bounce ray path,

which implies that both δt/δzsandδt/δzrare positive along the path.

Therefore, in practice, the geometric properties of each ray path must be inves-

tigated thoroughly using appropriate prior knowledge of the environment. This is

important for accurate estimation of the ray parameter, which plays a key role in the

time derivative computation. In the next section, different numerical approaches are

presented for ray parameter evaluation.

3.5 Ray Parameter Evaluation

Calculations of ray travel derivatives require the knowledge of ray parameter p.

According to Snell,s Law, p remains constant along each ray path. Newton,s method

is suggested for the evaluation of p for the direct ray path in [13]. This method can

also be applied for both the surface bounce and bottom bounce ray paths. Due to

restrictions of this method, a bisection method is also implemented.
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3.5.1 Newton's Method

Using Newton,s method, the ray parameter can be evaluated iteratively in the

following way ([13]):

Here r is described as a function depending on pi ; r(p) is the known range between

the receiver and source of the replica signal.

Along the first surface bounce ray path, the source range r can be expressed

as a function of p using Snell,s Law:

Using this equation, δr/δp can be derived as follows:

For the first surface reflection, the initial value P 0 is obtained by assuming

straight-line propagation from the source to the ocean surface and from the surface

to the receiver with sound speed cH , where:

The maximum value of the two terms is selected in order for Snell,s Law to hold for

the entire ray path. By definition, P 0 can be written as:

For the replica signal, ray parameter p can be obtained from iterations of

Equation 3.21, until r(p) is approached by r(p 2 ) within a desired tolerance.
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This ray parameter estimation scheme is very efficient due to the fast

convergence of Newton,s method; it takes only a few iteration steps to get good

results. The method can be extended for the first bottom bounce ray path calcu-

lations in a straightforward manner.

Given an arbitrary sound speed profile, both integral Equations 3.22 and 3.23

need to be evaluated numerically (using Simpson,s method, for example). Especially

when the ray parameter p is very small, high precision is required for the integral

estimation. Solution of Equations 3.22 and 3.23 can be, however, facilitated if the

sound speed profile is treated as a piece-wise linear function of depth. Under this

condition, the integral equations can be evaluated explicitly. The following example

illustrates the process.

Assuming that sound speed c(z) is a linear function of z:

leading to:

and

These equations suggest that for the piece-wise linear sound speed profile, r and g
can be first rewritten as a sum of integrals, which are evaluated term by term using

Equations 3.27 and 3.28.

3.5.2 Bisection

The efficiency of Newton,s method was discussed in the previous section. However,

the method fails in certain cases, as shown in Figure 3.3. A turning point exists on
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the direct ray path, at which pc(z) = 1.0 and g 	 Do (from Equation 3.23, which

was derived for the surface bounce but also applies to a direct path of the form shown

in Figure 3.3). Bisection ([23]) is introduced to remedy the problem.

Figure 3.3 Using bisection to evaluate the ray parameter.

To illustrate the approach, we start from an example for the direct ray path

of Figure 3.3; it is assumed that zs ≤  Zr . Instead of evaluating the ray parameter

directly, the depth zm of the turning point on the path is estimated first using the

bisection method. The upper and lower bounds of z m for the bisection method are

determined from the following facts:

• r(p) is a monotonically increasing function of p, since δr/δp ≥ 0 ;

• p ≤ 1/max(c(z)) holds anywhere on the ray path from Snell,s Law.

Thus:
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where zc,max is the depth where max(c(z)) is attained. Starting from this initial

interval for z,„ the bisection method for evaluating the ray parameter along the

direct ray path can be summarized as follows:

At the ith iteration step, where ; 7, E [zi, zi+d, we have

By comparing ri with r (p) , the source range for the replica signal, the subinterval

for the next iteration step is determined in the following way:

If ri > r (p) , then zm E [zi,zi+1/2];

otherwise,	 zm E [zi+1/2,zi+1]•

Similarly to Newton,s method, ray parameter value p is obtained when r(p) is

approached by r(p i ) within a desired tolerance.

The application of the bisection method to the other ray paths is straight-

forward. With the numerical schemes described here, it is able to estimate all ray

parameters along the ray paths of interest. The time derivatives with respect to the

unknown parameters can be then evaluated employing the ray parameter estimates.

3.6 Numerical Methods for the Solution of the Linear System

In this section, different approaches are discussed for solving the linear system of

Equation 3.6.
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3.6.1 Least Squares

The least squares method solves an inverse problem by finding the parameter values

that minimize a particular measure of the length of the estimated data, namely, its

Euclidean distance (error) from the observations.

Generally, one could quantify error by different norms. If the error e i for each

observation is defined as the difference between the observed and predicted data,

then for N observations:

The Ln norm for the vector e is defined as:

The goal in estimation is the minimization of the selected error norm. Norm

selection is associated with beliefs that we have on the measured data and their

accuracy. Minimizing the Euclidean norm for the errors implies the assumption that

the data follow Gaussian statistics [17, 18]. In this case, it can be shown that finding

the parameter values that maximize the likelihood function formulated under the

Gaussian assumption is equivalent to minimizing the errors in a least squares sense.

Other norms could be selected when other than Gaussian statistics are believed to

govern the errors. When a few outliers in the data are expected to degrade the

inversion process significantly, these outliers can be "suppressed" by assuming that

the errors have a long-tailed probability distribution. Under this assumption, the

outliers will be given little weight (associated with low probability values); as a result,

these outliers will not have a substantial effect on the inversion process. Long-tailed

probability distribution assumptions for the error correspond to lower order norms.

In the case of highly variable data, higher order norms are used, corresponding to

probability distributions that assign substantial weight to all data points.
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For the linear system of Equation 3.6, the least squares method minimizes

quantity X2 ([24, 25]), where:

Quantity x 2 is the "misfit" between data and assumptions that needs to be

minimized. The solution to Equation 3.33 is obtained by first multiplying Equation 3.6

by JT on both sides:

leading to:

If matrix JTJ is not singular, its inverse can be obtained and δm can be easily

calculated. However, when the source localization problem includes both the source

and receiver positions as unknowns, matrix JTJ is usually ill-conditioned, which

leads to an ill-posed inverse problem.

3.6.2 Regularization Method

To obtain stable and physical meaningful solutions to the inverse problem of interest,

regularization can be employed. This method applies prior information on the

unknown parameters to a least squares objective function ([26]).

Setting up the system of Equation 3.35 to solve Equation 3.34 is usually referred

to as the creeping approach in inversion: this approach gives the least squares solution

for the parameter corrections (bm). Since the linear system to be solved is formulated

in terms of the parameter perturbations instead of the parameters themselves, a priori

information for the parameters cannot be processed directly.

In order for prior information to be included, a different formulation of the

linear system can be derived. By introducing vector m0 as the vector of initial
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conditions for the unknown parameters, Equation 3.6 leads to:

Solutions to the linear system of Equation 3.36 give estimates directly for the

parameters instead of their corrections (based on initial conditions). The formu-

lation of Equation 3.36 is referred to as the jumping method [13].

To implement regularization, a new objective function c based on the jumping

method is minimized. The objective function is defined as ([13]):

where H is the regularization weighting matrix, including uncertainties on those

parameters with available a priori information, and m p is the vector containing prior

information (estimated mean value) of the components of vector m. Parameter A is

the Lagrange multiplier. Assuming that the noise for measured data (arrival times) t i

follows a zero mean Gaussian distribution with standard deviation σi , G is a diagonal

matrix defined as:

(In our case, a1 = a2 = = σN ).

The regularized solution is obtained as:

Quantity AHTH of Equation 3.39 stabilizes the inversion solution. A search is

conducted for a value of A that will make misfit x2 achieve or approach its expected

value of N (number of arrival times), which can be expressed as:

Here x2 is defined as:
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where t is the measured data, vector f is the forward mapping method (acoustic

propagation model), and m is the vector of estimates of model parameters.

Equation 3.41 describes the misfit between the measured data (arrival times) and

the data that are generated using the estimated parameters m and forward mapping

method f.

There are various methods for the formulation of regularization matrix H based

on different a priori information. In this work, H is selected as:

where mi represents the uncertainty for the ith parameter. For those parameters

without a priori information, the corresponding term in H can be set to zero.

To implement regularization, an arbitrary initial model could be chosen and

then solve Equation 3.37 iteratively until convergence is achieved. Convergence is

indicated when x2 = N. At earlier iterations, x2 could obtain very high values

(order of 106 ), and finding the right A to decrease x2 could require many iterations.

In this work, it was found practical to first use least squares for the calculation of an

approximate set of estimates before implementing regularization. The least squares

results were used as the initial model for inversion with regularization. Finding

values of A that reduce the x2 quantity required only a few iterations in this case,

accelerating convergence of the estimation process.



CHAPTER 4

INVERSION WITH SYNTHETIC DATA

In this chapter, a simulation study with synthetic data is carried out for source local-

ization using the linearization approach of Chapter 3. The sensitivity of the inversion

results to uncertainties in different parameters (receiver location and bottom depth)

is investigated.

4.1 General Configuration

Figure 4.1 Sound speed profile for synthetic data

To perform the inversion with synthetic data, the sound speed profile is assumed

initially known. The sound speed profile considered here is shown in Figure 4.1.

This is a shallow water profile, simulating propagation in the Mediterranean in the

summer ([19]); sound speed increases to its maximum at 20 m depth, and decreases

from then on. The water depth is 200 m. The receivers are vertically separated

and located between 100 and 150 m. The signal source to be localized is at a range

and depth of 700 and 50 m, respectively. Figure 4.2 shows a ray trace for the chosen

25
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environment and source and receiver parameters. The ray trace presents the different

paths connecting source and receiving phones, including the paths of interest (direct,

surface and bottom bounces).

Figure 4.2 Ray trace plot of sound speed propagation.

4.2 Inversion for Source Parameters

First, it is assumed that receiver depths and ocean depth are exactly known. The

least squares method is applied along with the linearization inversion scheme for the

estimation of source range and depth.

4.2.1 Inversion with Arrival Times Known Exactly

In this section, localization results are studied when arrival times are measured

with no error. It is initially assumed that source and receivers are synchronized

leading to a known absolute time for the arrivals at the receiving phones. Table 4.1

presents location estimates obtained when arrival times of the direct path, first

surface reflection, and first bottom reflection are measured and employed for the

inversion. The initial conditions are 400 m and 30 m for source range and depth.
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The table shows results from three different configurations involving three, five, and

ten receiving phones. The results are excellent, the source location being estimated

accurately only after three iterations.

number of
receivers

number of
iteration steps

r (m) zs (m)

3 3 700.00 50.00
5 3 700.01 50.00
10 3 700.00 50.00

Table 4.1 Source localization employing arrival times along three ray paths.

Table 4.2 demonstrates inversion results with five receivers for various initial

conditions and different numbers of ray paths (direct; direct and surface; direct,

surface, and bottom).

The selected initial conditions (IC) are:

• IC1: r = 400 m, zs = 30 m

• IC2: r = 800 m, z s = 80 m

• IC3: r = 1200 m, z s = 125 m

Again, the inversion results are very good with the exact source location being

recovered in each case. It can be observed that in this simulation experiment,

the choice of initial conditions for the linearization scheme has no impact on the

inversion results or on the iteration steps. However, with more information from

different ray paths involved, the linearization scheme requires fewer iteration steps

for convergence.



IC1 	 	 IC2	 	 IC3 r(m) 	 z, (m)
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inversion resultsnumber of iteration stepsray paths

one path 5 5 5 700.00 50.00
two paths 3 3 3 700.00 50.00

three paths 3 3 3 700.00 50.00

Table 4.2 Source localization with different initial conditions and ray paths,

Tables 4.1 and 4.2 present results obtained assuming synchronization of source

and receivers. In practice, absolute time is not always known in underwater acoustics

problems and synchronization is not feasible. In such cases, the linearization process

becomes more complex.

Two approaches are possible in the case of asynchronized source and receivers.

The first approach is to remove the source instants from the problem by considering

appropriate differences between relative travel times in the data to be inverted. The

second approach is to treat the relative travel times as the data, and include the

source instant as an unknown parameter to be determined in the inversion. The

latter approach, also used in [13], is adopted here since it results in data with smaller

uncertainties. Recall Equation 3.2:

where t0 is the source instant. For the purpose of inversion, it is advantageous to

scale this parameter by a representative ocean sound speed c (1500 m/s is used in

this work) leading to ([13]):

By considering ct0 rather than t0 as the unknown parameter, all parameters

(r, zs , Zr , D, ct0 ) in Equation 4.1 have the same physical units, i.e., distance (scaling
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parameters in this manner generally improves the numerical stability of inversion

algorithms).

Table 4.3 presents localization results obtained when relative arrival times of

the direct path, first surface reflection, and first bottom reflection are available. The

initial conditions are 400 m and 30 m for source range and depth; the table shows

results from three different configurations involving three, five, and ten receiving

phones. Localization is accurate and fast; comparing Tables 4.1 and 4.3, it is

observed that, in the unknown source instant case, only a few more iteration steps

are required for the inversion.

number of
receivers

number of
iteration steps

r (m) zs (m)

3 5 700.00 50.00
5 5 700.00 50.00
10 4 700.00 50.00

Table 4.3 Source localization results using the linearized approach with relative times,

Table 4.4 shows the impact of initial conditions and different ray paths on

the linearization scheme in the relative time case. The different initial conditions

appear to have no influence on the inversion results in either absolute or relative

time cases. However, when only the arrival times along the direct ray paths are

taken into account, the method requires several iteration steps for convergence,

and the inversion results deviate from the true source location coordinates. By

taking advantage of more arrival time information along other ray paths, the exact

source locations can be recovered accurately with fewer iteration steps. Comparing

Tables 4.2 and 4.4 reveals that knowing the source instant can significantly improve
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localization results (it is, however, more realistic in many cases to assume that only

relative arrival times are available).

ray paths number of iteration steps
ICI	 	 IC2	 	 IC3

inversion results
r (m)	 zs (m)

one path 9 9 9 634.97 55.56
two paths 5 5 5 700.00 50.00

three paths 4 4 4 700.00 50.00

Table 4.4 Source localization with five receivers using different initial conditions and
ray paths and relative times.

4.2.2 Inversion with Uncertain Arrival Times

In this section, the localization results are studied when arrival times are uncertain.

The uncertainty is taken into account through the addition of random noise to the

arrival times. Five hundred Monte Carlo realizations are obtained in order to study

the linearization method quantitatively. The initial conditions are set as: r = 400 m

and zs = 30 m.

Figure 4.3 shows the inversion results for source range and source depth

with absolute arrival times obtained along two and three paths, respectively. The

temporal noise is drawn from a zero-mean Gaussian distribution with 0.5 ms standard

deviation.

Figures 4.3 (a) and (b) show the histograms of the inversion results for the

two path case; Figures 4.3 (c) and (d) present the histograms of the results for the

three path case. The histograms show that the mean values of the simulation results

match well with the exact source location with very small standard deviations (std).

It is also noticed that the error in the inversion results is of the same order for both

two and three path inversion. The average number of iteration steps is 6, indicating

that the linearization method is efficient.
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Figure 4.3 Histograms calculated from Monte Carlo simulations for source localization
using absolute arrival times: (a) source range in two path case; (b) source depth in two
path case; (c) source range in three path case; (d) source depth in three path case.

Meanwhile, as expected, the histograms of Figures 4.3 (a) and (b) have a wider

spread than those of Figures 4.3 (c) and (d). This indicates that the linearization

method yields better inversion results when it explores information from more ray

paths (recall that bottom depth is assumed to be known).

Table 4.5 shows the inversion results with different time uncertainties (that

is, standard deviation of the Gaussian distribution for the time errors) using arrival

times for five receivers and three paths. The mean values for source range and depth

are very close to the exact solution even for the larger values of time uncertainty.

The standard deviations for the estimation of both parameters are increasing almost

linearly with respect to time uncertainty.



time uncertainty mean r std r mean zs std zs

0.5 ms 699.98 0.20 49.97 0.89
1 ms 699.97 0.42 50.07 1.79
2 ms 700.05 0.91 49.82 3.67
4 ms 700.09 1.81 49.67 7.13

Table 4.5 Source localization results with different arrival time uncertainties.

The Monte Carlo results for the relative arrival time case are shown in

Figure 4.4. Figures 4.4 (a) and (b) shows the histograms of the inversion results for

source range and source depth in the two path case; Figure 4.4 (c) and (d) present

the histograms in the three path case. The histograms show that the mean values are

very close to the exact source locations in the three path case. Again, as anticipated,

the histograms in the two path case have a larger spread than in the three path case

leading to a larger error in the estimation. In fact, the standard deviations for both

parameters in the two path case is about 6 times larger than in the three path case.

It is also noticed that when only relative arrival times are available, the inversion

errors for source range are much bigger than those for source depth.

Figure 4.5 presents scatter plots of source range and source depth from the

Monte Carlo inversion. Figure 4.5 (a) shows a scatter plot of the inversion results for

the two path case and Figure 4.5 (b) presents a scatter plot for the three path case.

Comparing Figures 4.5 (a) and 4.5 (b) demonstrates in a different fashion that the

inversion results are superior in the three path case compared to those in the two

path case, showing the reduction of the spread in range estimation.

The scatter plot of Figure 4.5 (a) shows nicely the linear relationship between

source range and depth which is implied by the linearizing nature of this work. This

32
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Figure 4.4 Histograms calculated from Monte Carlo simulations for source localization
using relative arrival times: (a) source range in two path case; (b) source depth in two
path case; (c) source range in three path case; (d) source depth in three path case.

relationship can be also illustrated using the following simple analysis. Assume that

td is the travel time along the direct path from source to receiver; and i s is the travel

time along the first surface bounce path. These two travel times can be expressed

as:

where r is the source range, z s and Zr are the source and receiver depths, and C is

the sound speed. Therefore,

C
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Figure 4.5 Monte Carlo simulations for source localization using relative arrival times:
(a) scatter plots of depth vs. range in two path case; (b) scatter plots of depth vs. range
in three path case,

For fixed Zr , it can be concluded that

which explains the linear pattern in the inversion results. This relationship also

reminds us that for a large range r, the time difference between direct path and

surface reflection becomes very small, whereas it increases as the source is positioned

in deeper water.

time uncertainty mean r std r mean zs std zs

0.5 ms 700.64 11.16 49.97 0.90
1 ms 696.55 22.07 49.93 1.81
2 ms 705.96 45.39 50.17 3.72
4 ms 687.45 88.37 50.21 7.55

Table 4.6 Source localization results with different arrival time uncertainties using
relative arrival times.
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Table 4.6 shows inversion results with different time uncertainties, using arrival

times for three paths. As time uncertainty increases, the mean value for source range

starts to deviate from the true range. However, the mean value for source depth is

still very close to the true depth. The standard deviation for source range is about

10 times larger than that for source depth. This indicates again that for the relative

arrival time case the localization error is dominated by the source range. This is

expected since ray travel times depend on ray travel distance. In the case when

r >> zs and r Zr , the variations in source range contribute much more to variations

in travel time than other parameters.

Comparing absolute and relative time cases (Table 4.5 and Table 4.6) shows

that the inversion results for source depth in both absolute and relative arrival time

cases have similar errors. However, in the relative time case, the standard deviation

for source range is fifty times larger than that in the absolute time case. In general,

however, the linearization inversion results are still very good in the relative time

case, with an average of 10 iteration steps required for convergence. In summary,

good localization results are obtained with small computational requirements.

4.3 Inversion for Source Parameters in an Uncertain Environment

In the previous section, the inversion results were presented for the case when the

ocean bottom depth, receiver hydrophone depths, and sound speed profile are all

known exactly. In practice, it is often difficult to obtain accurate information for

some of these parameters. In this section, parameter uncertainties are considered in

the localization process.
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Figure 4.6 Monte Carlo simulations for source coordinate inversion using relative arrival
times and introducing an error in one receiver depth: (a) histogram of source range; (b)
histogram of source depth.

4.3.1 Inversion Sensitivity to Receiver Depth

The arrival times along three paths are used (including the first bottom bounce

path) to study the uncertainty in receiver depths. Figure 4.6 shows the Monte

Carlo inversion results with a 5 m error for the top receiver depth (the exact top

receiver depth is 110 m and the assumed receiver depth is 115 m).

Comparing Figures 4.6 (a) and (b) to Figures 4.4 (c) and (d) shows that the

mean values of source range and depth are both off from the true values when there

is error in the receiver depth information. The source range has an 8 m error and the

source depth has an error of approximately 1 m. However, the standard deviations

for source depth and source range are almost the same whether the receiver depth

is accurately known or not (it appears as if the distributions of the estimates have

been shifted because of the receiver depth error).
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4.3.2 Inversion Sensitivity to Ocean Bottom Depth

To study the uncertainty with respect to the ocean bottom depth, the arrival times

along three paths are employed including the first bottom reflection path. Figure

4.7 shows the inversion results with a 5 m error for bottom depth (the exact bottom

depth is 200 m and the assumed bottom depth is 205 m).

Figure 4.7 Monte Carlo simulations for source coordinates inversion using relative arrival
times and introducing an error in bottom depth: (a) histogram of source range; (b)

histogram of source depth.

As in the receiver depth mismatch case, comparing Figures 4.7 (a) and (b) to

Figures 4.4 (c) and (d) shows that the mean values of source range and depth are both

off from the true values when there is error in the bottom depth information. The

source range has a 42 m error and the source depth has an error of approximately 4 m.

However, the standard deviations for source depth and source range are still almost

the same whether the bottom depth is accurately known or not. The observation of

a range shift with a bottom depth error has been extensively discussed in [4, 15, 27].
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In order to reduce localization errors due to lack of accurate information

on bottom and receiver depth, these parameters are included as unknowns in the

inversion process. The process is started by studying the problem of inversion for

the depth of the water column.

4.3.3 Ocean Bottom Depth Inversion

In this section, the ocean bottom depth is included as an unknown parameter in

the linearization inversion process. First, the least squares method is employed

for the solution of the linear system. Arrival times along three paths including

the first bottom reflection are taken into account. The initial conditions are: r =

400 m, zs = 30 m, D = 180 m. Figure 4.8 shows the simulation results using

absolute arrival times, with zero mean and 0.5 ms standard deviation for temporal

uncertainty. Figures 4.8 (a), (b) and (c) show the histograms for source range, source

depth and bottom depth, respectively.

Figure 4.8 Monte Carlo simulations for source and bottom parameters inversion using
absolute arrival times and three paths: (a) histogram of source range (b) histogram of
source depth (c) histogram of bottom depth
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Comparing Figure 4.8 to Figure 4.3, it can be observed that, with unknown

bottom depth, the inversion results for source location still match well with the exact

parameter values in the absolute time case.

Figure 4.9 Histograms calculated from Monte Carlo simulations for source and bottom
parameters inversion using relative arrival times and three paths: (a) histogram of source
range (b) histogram of source depth (c) histogram of bottom depth.

Figure 4.9 shows the simulation results using relative arrival times. Comparing

Figure 4.9 to Figure 4.4 shows that, when only relative arrival times are available,

source localization results are degraded when bottom depth is added as an unknown.

This observation is mainly based on the increased values of standard deviation for the

uncertain bottom depth case. The mean values and standard deviations for source

range and depth are comparable to those of the two path case when the bottom

reflection path is not included. However, source location estimates in the mean value

sense are satisfactory.
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When a priori information on the bottom depth is available, regularization

instead of simple least squares can be employed in the linearization process.

Figure 4.10 shows the simulation results in the relative arrival time case assuming

that bottom depth is approximately known with an uncertainty of 5 m. The standard

deviation in the temporal uncertainty is still 0.5 ms.

Figure 4.10 Histograms calculated from Monte Carlo simulations for source and bottom
parameters inversion using regularization and relative arrival times: (a) histogram of
source range (b) histogram of source depth (c) histogram of bottom depth.

Comparing Figure 4.10 to Figures 4.9 and 4.7 shows that when the bottom

depth is inaccurately known, better results can be attained by introducing the

regularization method in the inversion process. The mean values of source range

and source depth (and also the bottom depth) agree closely with the true values of

the parameters. When bottom depth is inverted for, the standard deviations in the

estimation of the unknown parameters are substantially reduced when regularization

is introduced.
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Comparing Figure 4.10 to Figure 4.4 shows that the inversion results using the

regularization method and three paths are much better than those from the two-path

inversion. The standard deviations of the source range and source depth are only

slightly larger than those of the three path case when the bottom depth is known.

Figure 4.11 Results from Monte Carlo simulations for source and receiver parameters
inversion using relative arrival times and three ray paths with known receiver depth: (a)
scatter plot using the least squares method with bottom depth known exactly; (b) scatter
plot using the least squares method with bottom depth unknown; (c) scatter plot using
the regularization method with bottom depth unknown.

Figure 4.11 presents the scatter plots (source range vs. source depth) from

different inversion schemes. A comparison of the scatter plots shows once again the

reduction in the spread (error) in source location estimates when the regularization

method is employed exploiting prior information on the unknown bottom depth.

Naturally, the smallest spread is observed when the bottom depth is perfectly known.

Figure 4.12 presents the scatter plots of source range vs. bottom depth.

Both scatter plots show linear patterns with positive slope. This linear trend has

been frequently discussed in the underwater inversion literature; it is the source of
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Figure 4.12 Monte Carlo simulations for source range and bottom depth inversion using
relative arrival times and three ray paths: (a) scatter plots using least squares method;
(b) scatter plots using regularization method.

the range shift previously discussed when there is an error in the bottom depth

assumption.

4.4 Including Receiver Depths in the Inversion Process

In the previous subsections, the sensitivity of the inversion results to receiver depth

and bottom depth were discussed. In the case of uncertain bottom depth, linearized

inversion was employed with least squares and regularization inverting for both

source location and water column depth. However, when the receiver depths are

uncertain and are treated as unknown, the linearization inversion using least squares

generally gives unstable results ([13]). In this section, inversion using regularization

is performed for the case of uncertain receiver depths.

Initially, the top receiver depth is approximately known within 5 m and the

bottom depth is assumed to be known exactly.
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Figure 4.13 shows the simulation results in the relative arrival time and three

path case (the standard deviation of arrival time error is 0.5 ms).

Figure 4.13 Monte Carlo simulations for source and receiver parameter inversion using
regularization and relative arrival times: (a) histogram of source range (b) histogram of
source depth (c) histogram of top receiver depth.

Comparing Figure 4.13 to Figures 4.4 (c) and (d) shows that the inversion

results using regularization and one uncertain receiver depth are still good, with

standard deviations in the estimation slightly increased because of the receiver depth

uncertainty.

Finally, inversion results using regularization are obtained when all receiver

locations and bottom depth are uncertain. Figure 4.14 shows the histograms

calculated from Monte Carlo simulation results. These results incorporate all uncer-

tainty considered so far and represent estimates that would be obtained in practice

when many parameters are not accurately known.



44

Figure 4.14 Monte Carlo simulations for source and receiver location and bottom
depth inversion through regularization with relative arrival times and three ray paths:
(a) histogram of source range (b) histogram of source depth (c) histogram of receiver
depth (d) histogram of bottom depth.



CHAPTER 5

INVERSION FOR SOUND SPEED PROFILE

In this chapter the impact of sound speed knowledge on source localization is inves-

tigated. First, localization is performed assuming an isovelocity sound speed profile.

Then, the sensitivity of the inversion process is studied with respect to other sound

speed errors. Finally, inversion for sound speed is implemented using empirical

orthogonal functions.

5.1 Localization under the Assumption of an Isovelocity
Sound Speed Profile

Table 5.1 presents source localization results (three path case) when the sound speed

profile is assumed to be a depth independent constant (mean of the sound speed

profile in Figure 4.1). The table shows that when the sound speed profile is approx-

imated with its mean value in the water column, the inversion results are degraded

in both absolute arrival time and relative arrival time cases.

arrival time case zs (m)
Absolute time 702.25 39.19
Relative time 732.85 37.33

Table 5.1 Source localization results using a constant sound speed profile in the three

path case.

The approximation of the refracted ray paths using straight-line rays (due to the

constant sound speed profile) generates significant errors in arrival times and leads to

poor source localization results. This indicates the importance of the knowledge of

the true sound speed in the source localization process. The results of Table 5.1 were

45
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calculated with no uncertainty in the arrival times. Localization is further degraded,

when temporal uncertainty is considered.

5.2 Sensitivity of Source Localization to Sound Speed Uncertainty

The purpose of this section is to study the sensitivity of the linearization inversion

method to errors in sound speed profile assumptions using two approaches (see

Figure 5.1):

Figure 5.1 Sound-speed profile mismatch

1. a depth-independent error of 5 m/s is added to each sound speed in the water

column;

2. a normally distributed error with zero mean and 5 m/s deviation is added to

the sound speed.

Table 5.2 shows the localization results from both approaches in the relative

arrival time case. From the results it can be observed that results are still close to
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SSP r zs
offset 696.54 49.37
random error 652.02 52.35

Table 5.2 Source localization results under sound speed uncertainty in the three path
case with relative arrival times known exactly.

the true location values in the case of the sound speed offset; however, in the random

error case, the inversion generates a localization error, especially for the source range.

5.3 Sound Speed Profile Inversion

5.3.1 EOF Model

Sound speed estimation is one of the key goals in ocean acoustic tomography ([4, 14,

15, 28, 29, 30]). In this work, inversion for sound speed is approached using empirical

orthogonal functions (EOFs) [31]. The true sound speed profile c is modeled as:

where cm (z) is a mean sound speed profile, v i (z) is the eigenvector (corresponding

to the largest eigenvalue) of the "excess" sound speed covariance matrix constructed

from different sound speed profile measurements and c m (z), and /I is the unknown

multiplicative coefficient of the perturbation that needs to be estimated. The

presence of v 1 (z) in the EOF model is due to the fact that larger eigenvalues are

more statistically significant than smaller ones. Smaller eigenvalues are more subject

to noise and their associated eigenvectors are more related to sampling errors than

to actual physical phenomena.

Assuming that there are N measured sound speed profiles [c 1 , c2 , 	 cN], cm is

given by:
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The ith vector of the excess sound speed matrix E is then defined as:

The excess sound speed covariance matrix V can be obtained by:

from which eigenvector v 1 is determined.

In order to perform the inversion of the sound speed coefficient ,ti, time

derivatives with respect to are required. The derivation is presented in Appendix B.

In the following sections, the sound speed coefficient inversion is studied with

simulated data.

5.3.2 Inversion without Temporal Noise

To apply the EOF model for the sound speed coefficient inversion, five estimated

sound speed profiles are simulated and considered as "collected" data as shown in

Figure 5.2.

The mean sound speed cm (z) and the eigenvector v i (z) are then calculated and

presented in Table 5.3.
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z (m) cm(z) v i (z)
0 1538.0 -0.5
20 1537.4 0.3
55 1514.0 0.5
80 1513.8 -0.4
300 1510.4 -0.2

Table 5.3 Sound speed profile data for EOF model

The true sound speed profile follows Figure 4.1, corresponding to /1=2. To study

the inversion in more detail, three different sets of initial conditions are chosen:

• IC1: r = 400 m, z s = 30 m

• IC2: r = 800 m, z s = 80 m

• IC3: r = 1200 m, z s = 125 m

The inversion results from the linearization method using least squares showed

that, when arrival times (either absolute arrival times or relative arrival times) are

assumed known, the estimated results agree well with the true data under any group

of initial conditions (IC1-IC3).

5.3.3 Inversion with Uncertain Arrival Times

Next localization results are obtained using least squares with arrival time uncer-

tainty, which is again taken into account through the addition of random noise to

the arrival times. The temporal standard deviation is 0.5 ms.

Figure 5.3 shows the inversion results from 500 Monte Carlo runs with

absolute arrival times obtained along three paths: Figures 5.3 (a), (b) and (c)

show the histograms of the inversion for source range, source depth, and sound
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Figure 5.3 Histograms calculated from Monte Carlo simulations for source localization
and sound speed coefficient estimation using three ray paths and absolute arrival times:
(a) histogram of source range (b) histogram of source depth (c) histogram of sound
speed coefficient.

speed coefficient, respectively. The mean values for the estimated parameters are all

very close to the true parameter values with small standard deviations.

The sensitivity of the inversion to various initial conditions was also studied in

this case. It turns out that the same inversion results are produced from all initial

condition sets.

Figure 5.4 shows the inversion results with relative arrival times obtained

along three paths, with Figures 5.4 (a), (b) and (c) showing the histograms of the

inversion for source range, source depth, and sound speed coefficient. As expected,

the inversion results with uncertain relative arrival times have larger errors than

those with uncertain absolute arrival times. Nonetheless, localization gives range

and depth estimates close to their true values. Also the sound speed coefficient ,u,
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Figure 5.4 Histograms calculated from Monte Carlo simulations for source localization
and sound speed coefficient estimation using three ray paths and relative arrival times:
(a) histogram of source range (b) histogram of source depth (c) histogram of sound
speed coefficient.

is recovered successfully, although, because of the short ranges considered here, the

sensitivity to μ is not very pronounced and the standard deviation is not negligible.

It has been shown in this chapter as well as in Chapter 4 that the source

localization using the proposed linearization method can be achieved successfully

under various circumstances.

All uncertainties considered so far are summarized here and include in the

localization process bottom depth, receiver locations, and sound speed coefficient as

unknowns. Regularization is employed for the inversion.

Figure 5.5 presents the histograms of estimation results for the following

parameters: source range, source depth, bottom depth, receiver locations, and
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sound speed coefficient (all receiver locations are here uncertain). The uncertainties

for each receiver depth and bottom depth are 5 m. The uncertainty for μ is 10.

The regularization method in applied for inversion. The arrival time noise is again

simulated using a zero mean Gaussian distribution with 0.5 ms standard deviation.

Range and depth are recovered successfully. The other unknown parameters are

also accurately estimated. Comparing Figure 5.5 to Figure 5.4, it is particularly

noticeable that the standard deviation in the sound speed coefficient drops signifi-

cantly, when regularization is employed instead of least squares.

Figures 5.6 and 5.7 presents the histograms of inversion results when the

temporal noise standard deviation for the arrival times is increased to 1 ms and

2 ms, respectively. As expected, standard deviations in the estimation increase with

increasing noise level; the mean values are hardly affected.
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Figure 5.5 Histograms from Monte Carlo simulations for source localization using
regularization with three ray paths and relative arrival times (0.5 ms temporal noise):
(a) histogram of source range (b) histogram of source depth (c) histogram of bottom
depth (d) histogram of top receiver depth (e) histogram of sound speed coefficient.



Figure 5.6 Histograms from Monte Carlo simulations for source localization using
regularization with three ray paths and relative arrival times (1 ms temporal noise):
(a) histogram of source range (b) histogram of source depth (c) histogram of bottom
depth (d) histogram of top receiver depth (e) histogram of sound speed coefficient.
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Figure 5.7 Histograms from Monte Carlo simulations for source localization using
regularization with three ray paths and relative arrival times (2 ms temporal noise):
(a) histogram of source range (b) histogram of source depth (c) histogram of bottom
depth (d) histogram of top receiver depth (e) histogram of sound speed coefficient.



CHAPTER 6

INVERSION WITH REAL DATA

In this chapter, linearized inversion is applied to real data from the Haro Strait

experiment. Both least squares and regularization are employed in the inversion

process for comparison and discussion.

6.1 Haro Strait Experiment

This experiment was carried out in June of 1996 at Haro Strait, on the east coast of

South Vancouver Island. The experiment took advantage of the MIT/WHOI system

of vertical line arrays (VLAs) and data acquisition system. The underwater sound

speed profile, measured using a velocimeter, was found to be independent of depth

with a value of approximately 1482.5 m/s.

The surveyed area was range dependent with respect to bathymetry, with

the depth ranging roughly between 150 and 200 m. Each VLA consisted of 16

hydrophones with a vertical spacing of approximately 6 m between phones, and a

total aperture of 100 m (Figure 6.1). Acoustic data were recorded at a sampling rate

of 1750 Hz.

Sound signals were provided by standard household light bulbs that were

deployed using a fishing line apparatus. Light bulb shots were triggered at depths

of 30-70 m. The signals generated by the light bulb contain broadband information

(100-800 Hz). Figure 6.2 shows the locations of three VLAs (NW, SW, NE) and the

light bulbs deployed in the Haro Strait.

56
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Figure 6.1 A sketch of the Haro Strait experiment.

6.2 Localization Results

In this section, the linearization inversion approach is applied to acoustic data

recorded at the NE, SW, and NW array.

6.2.1 Reference Data

The source and VLA position were estimated during the experiment. Approximate

location information was made available to us along with the data. The accuracy

of these estimates was about +25 m in the range, and +3 m for the source

and hydrophone depths [32]. Coordinates made available to us were recorded in

geodetic latitude, longitude, and height. The data were then converted to cartesian

coordinates (see Appendix D).
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Figure 6.2 Locations of the light bulbs and hydrophone arrays.

6.2.2 NE Data

Figure 6.3 shows the arrival times recorded at the NE-array. Hydrophone 1 represents

the shallowest receiver and hydrophone 16 the deepest. For hydrophone 1 to

hydrophone 3, the arrivals of the direct ray and the first surface reflected ray

overlap. Meanwhile, the arrivals of the first surface reflected ray and the first

bottom reflected ray overlap for the hydrophones that are located deeper than

hydrophone 8. Therefore, the raw data from hydrophone 4 to hydrophone 8 were

used in the linearization process; for these hydrophones, the signal arrivals along

the direct, the first surface bounce, and the first bottom bounce, ray paths can be

clearly identified.

Source localization is carried out using the linearization method both with least

squares and regularization.
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Figure 6.3 Raw light bulb pressure signals, recorded at the NE-array.

1. Least squares inversion:

Table 6.1 shows the inversion results for source range (between source and

hydrophone 4), source depth, and bottom depth, assuming that hydrophone

depths are known exactly. The inversion results are accurate compared to prior

knowledge on source location, with a 5 m difference in source range and a 4 m

difference in source depth.

2. Regularization:

As mentioned earlier in this chapter, the hydrophone locations are uncertain.
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parameter reference result (m) estimated value (m)

r 604.29 609.06
zs 50.00 46.35
D 150-200 169.60

Table 6.1 Source localization using LS - NE array.

Thus, regularization was applied using the experimental estimated hydrophone

depths as a priori information with uncertainties of ±5 m. The inversion results

are shown in Table 6.2.

parameter reference result (m) estimated value (m)

r 604.29 607.38

zs 50.00 46.75
D 150-200 171.53

Table 6.2 Source localization using regularization - NE array.

Unlike the synthetic case, the acoustic inversion of real data from Haro Strait

is subject to different errors that make the inversion process more challenging:

• "Low" sampling frequency:

The acoustic data were recorded at a sampling rate of 1750 Hz, which indicates

a time step of 0.57 ms between consecutive samples in the time series.

This creates ambiguity for arrival time identification, as can be observed

from Figure 6.3. In many cases, arrival time differences between adjacent

hydrophones along the same ray paths are within or very close to one time

step.

• Environmental noise:

background or ambient noise, shipping noise.
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Given the presence of these errors, source localization results obtained here

using either the least squares method or regularization are very close to the expected

source location coordinates. These results are encouraging, indicating the potential

of the inversion method for accurate and fast estimation with real data.

6.2.3 NW Data

Figure 6.4 Raw light bulb pressure signals, recorded at the NW-array.

Figure 6.4 shows the arrival times recorded at the NW-array. Hydrophones

10, 12, 14, and 16 were not operational in that phase of the experiment. From
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hydrophone 1 to hydrophone 9, the arrival times from direct, first surface and first

bottom reflected ray paths can be clearly identified. In order to reduce the error

level caused by the sampling, hydrophones 1, 3, 5, 7, 9 are chosen for the acoustic

inversion. Source localization is carried out using the linearization method with both

least squares and regularization in this case as well.

Table 6.3 shows the inversion results from the least squares approach for source

range, source depth, and bottom depth; Table 6.4 shows the inversion results using

the regularization method.

 parameter reference (m) estimated value (m)

r 511.60 542.82
zs 70.00 63.20
D 150-200 206.44

Table 6.3 Source localization using LS - NW array.

parameter reference (m) estimated value (m)

r 511.60 509.31
zs 70.00 60.27
D 150-200 200.45

Table 6.4 Source localization using regularization - NW array.

Source range r denotes the distance between source and hydrophone 1. The

inversion results are very good compared to the reference data; results appear to be

improved when regularization is employed. These results can be further compared

to estimates obtained by Jaschke ([32D, and shown here in Table 6.5.

Jaschke,s results were computed using a time matching approach as well.

However, Jaschke,s method does not employ linearization; instead, he used a Monte

Carlo optimization scheme, matching the arrivals of three paths identified from the
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parameter mean (m) std

r 505.7 4
.z, 60.5 2.5

Table 6.5 Mean and standard deviation of localization parameters from Jaschke's
method - NW array.

real data to arrival times of theoretically predicted ray paths for different values of

source range and depth. Jaschke,s method required arrival time computation for

a large number of different source locations in contrast to the linearization scheme

which only required few forward model calculations to arrive at almost identical

results.

Figure 6.5 "Measured" and mean sound speed profile - NW array.

In the NW case, the regularization method is further applied for sound speed

inversion using EOFs. It was assumed that five different profiles were measured and

made available. These profiles, presented in Figure 6.5, were obtained by perturbing

the reference sound speed of 1482.5 m/s with Gaussian distributed sound speed shifts

with zero mean and 2 m/s standard deviation.
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The mean sound speed .cm (z) and the eigenvector v i (z) corresponding to the

largest eigenvalue of the excess covariance matrix are then calculated as shown in

Table 6.6.

z (m) cm (z) v i (z)
0 1482.9 -0.74
50 1483.1 -0.58
150 1482.2 -0.32
200 1481.7 -0.07
350 1481.0 0.05

Table 6.6 Sound speed profile data for sound speed inversion - NW array

To estimate the unknown parameters using regularization, a priori information

is taken into account: for the receiver depths, the means are set according to the

reference data with 5 m uncertainty; for the bottom depth, the mean is set to 200 m,

with 10 m uncertainty; and for the sound speed coefficient, the mean is 0, with

uncertainty of 10. Figure 6.6 shows the considered sound speed profiles.

Figure 6.6 Sound speed profile estimation using EOF model,

The inversion results for the sound speed coefficient, along with source range,

source depth, and bottom depth are given in Table 6.7. The estimated sound speed



65

coefficient has a small value, indicating that the true sound speed is actually very

close to the originally assumed isovelocity profile.

parameter reference (m) estimated value (m)
r 511.60 514.18
zs 70.00 60.32
D 150-200 202.18
μ -0.26

Table 6.7 Source localization with uncertain sound speed - NW array.

Finally, estimates for the five receiver depths and ranges (employed during the

inversion) are presented in Table 6.8. The differences between the reference values

and estimates are within 3 m. As can be observed, the receiver locations follow the

general pattern of Figure 6.1, representing the believed array shape.

receiver
No.

reference depth
(m)

estimated depth
(m)

reference range
(m)

estimated range
(m)

1 52 53.24 511.60 514.18
3 64.49 65.06 511.60 512.52
5 76.95 78.15 511.60 511.98
7 89.32 90.29 511.60 510.17
9 95.47 96.27 511.60 509.18

Table 6.8 Receiver location estimation - NW array.

6.2.4 SW Data

Figure 6.7 shows the arrival times recorded at the SW-array. All hydrophones were

operational in the experiment. The receiver hydrophones 3, 5, 7, 9, 11 are employed

for source localization, for which the arrival times along three paths (direct, first

surface bounce, and first bottom bounce) are clearly separated.
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Figure 6.7 Raw light bulb pressure signals, recorded at the SW-array.

Table 6.9 shows the inversion results from the least squares method for

source range (between source and hydrophone 3), source depth, and bottom depth;

Table 6.10 shows the inversion results using the regularization method.

The source range in this case is much longer compared to the source range in

the NE and NW cases. The inversion results are again very close to the reference

data.



parameter reference (m) estimated value (m)
r 1197.02 1171.78
zs 50.00 57.74
D 150-200 199.08

Table 6.9 Source localization using LS - SW array.
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parameter reference (m) estimated value (m)
r 1197.02 1189.25
zs 50.00 58.08
D 150-200 200.08

Table 6.10 Source localization using regularization - SW array.



CHAPTER 7

MATCHED FIELD INVERSION WITH THE HARO STRAIT DATA

As discussed in the introduction and using the notation of Chapter 2, matched-field

processing is an approach that estimates parameters that affect underwater sound

propagation by matching the measured field d to fields predicted with a model f for

different sets of values of the components of vector m. Conventional matched-field

processing is achieved by obtaining an inner product between the measured field at

a given frequency and a predicted field (replica) at the same frequency [1]. The

inner product is calculated for different vectors m, generating an ambiguity surface.

The vector m that leads to the maximum value of the ambiguity surface gives the

estimates of the unknown parameters.

Broadband matched-field processing can be achieved by calculating and subse-

quently averaging ambiguity surfaces at several frequencies. Broadband matched-

field processing is usually preferable to single frequency matched-field processing

because the multiple frequency information helps in the reduction of uncertainty in

the estimation process. This uncertainty is especially pronounced in shallow water

problems, where sound interacts significantly with the seafloor which is frequently

poorly known. If bathymetry, the seafloor structure, and other environmental factors

are not modeled properly in the generation of the replica fields, the estimates obtained

from matching the true and replica fields can vary substantially from the true values

of the unknown parameters.

Matched-field processing was here applied to the Haro Strait data for source

localization. It is assumed that the bathymetry is range independent (setting the

bottom depth at 200 m). Figure 7.1 shows the environment that was constructed

using information from references studying the Haro Strait region [11, 32]. Ambiguity
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Figure 7.1 Assumed acoustic environment for MFP.

surfaces for each case were computed at 234 frequencies varying between 100 and

800 Hz (the bandwidth of the Haro Strait data) with a 3 Hz spacing. The frequency

domain data were generated by applying Fourier transforms to the received time

series at the 16 hydrophones (12 phones for the NW data, because four of the phones

were not operational in that case). Replica fields were generated using normal modes

for the same number of phones and phone locations and for source range varying

between 0 and 2 km with a step of 10 m and source depth varying between 0 and

150 m with a step of 3 m.

Figure 7.2 shows a time series received at one of the hydrophones at the NW

site and its Fourier transform, demonstrating the frequency content of the received

signal.

Figure 7.3 shows the matched-field ambiguity surfaces computed for the three

different sites. Dark red areas on the ambiguity surfaces indicate similarity between

received and predicted fields; ideally these areas of high similarity should be observed

at the region of the correct source location. It can be found that the maxima of the
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Figure 7.2 Arrival time series recorded in Haro Strait - NW site.

ambiguity surfaces occur at a range and depth of 0.05 km and 150 m for the NW

site, 0.06 km and 93 m for the NE site, and 1.19 km and 138 m for the SW site. None

of these results are close to the reference value or the localization results obtained

with the linearization method. The errors in localization can be attributed to the

assumptions involved in generating the replica fields (range independent bathymetry

fixed at 200 m, range independent properties of the seafloor sediments, fixed receiver

locations).

To perform a more thorough attempt at localization using matched-field

processing, optimization with genetic algorithms (SAGA [33]) is also used to invert

for the unknown source location for the NW site assuming an uncertain propa-

gation environment. A range independent environment is assumed here as well. In

addition to the source location, a search for the bottom depth and the properties

of the seafloor is also performed. Localization results for the NW case are 0.36 km

and 54 m for range and depth, respectively. The bottom depth was found to be

162 m, and the sediment thickness was estimated at 72.4 m, while an array tilt of
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Figure 7.3 Matched-field processing results for three different sites.

1.8° was also calculated. The location estimates are now closer to the true source

location; however, the linearization results (Tables 6.3 and 6.4) are much closer to

the reference and Jaschke,s results. The linearization method was also substantially

faster, since it involved a few iterations and derivative calculations. On the other

hand, matched-field inversion involved full field modeling using normal modes for

a large number of source and receiver locations and values of the environmental

parameters.



CHAPTER 8

OCEAN MAMMAL TRACKING

Source tracking in the ocean has been explored from different approaches such as

matched-field processing ([34, 35, 36, 37] ), optimization with simulated annealing

([38]), or multipath correlation matching ([10]). Most of the source tracking work

presented in the literature assumes either constant speed of the source or substantial

prior knowledge on the source motion statistics. This chapter focuses on investigating

the application of the linearization scheme to source tracking.

8.1 Description of the Tracking Approach

A broadband source is assumed to transmit sound in a shallow water environment

(a sperm whale generating clicks, for example). The source moves with a velocity

which is unknown and is not assumed to be constant.

The distinct path arrivals are straightforward to identify at the receivers for an

impulse-like source function such as a click. Figure 8.1 gives an example of recorded

clicks generated by a sperm whale. These clicks are separated by approximately three

seconds, an interval larger than the duration of the impulse response of the ocean

in the environments that are considered. It is, thus, relatively simple to identify

distinct arrivals.

When reception of the signal begins, the arrival times of the direct, first surface

bounce, and first bottom bounce paths are identified and compared to arrival times

identified on replica paths that would originate from a source at an assumed location.

The source location is estimated through the linearization inversion process.
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Figure 8.1 Clicks generated from a vocalizing marine mammal (provided by Centro
Interdisciplinare di Bioacustica of the University of Pavia, Italy).

When a new signal is detected at the receivers (corresponding to a source that

has moved to a new location), the same process is repeated. However, the initial

conditions considered are the source location estimates obtained from the previous

signal reception. The system solution leads to source location estimates for the

second transmission. This procedure is repeated as other new signals are detected.

Usually a single iteration is required for convergence at any location after the first.

8.2 Tracking Results Using Synthetic Data

Figure 8.2 shows the true track and one estimated track of the source using the

process outlined in the previous section. The tracking results are obtained using

relative arrival times with two paths (direct and first surface bounce). Time arrival
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Figure 8.2 Source tracking using relative arrival times with two paths.

uncertainty is represented with zero mean Gaussian distribution with a standard

deviation of 0.1 ms.

two paths three paths
(bottom depth unknown)

three paths
(bottom depth known)

range error (m) 8.9 6.9 2.0
depth error (m) 0.5 0.4 0.3

Table 8.1 Rms tracking errors using different paths. The standard deviation for the
arrival time uncertainty is 0.1 ms.

Table 8.1 shows the rms errors for source range and depth from Monte Carlo

simulations of 100 estimated tracks. Different cases are compared including two paths

(direct and surface bounce) and three paths (including the first bottom bounce).

For the three path situation, two cases are studied including the case of unknown

bottom depth which needs to be estimated, and the case in which the bottom depth

is exactly known. Results are shown for a standard deviation of 0.1 ms in the

arrival time measurements. Localization is successful in all cases; the best estimates
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(smallest errors) are obtained when three paths are considered and the bottom depth

is known. This result was expected, since the three path with known bottom depth

case makes use of more information than the other cases. The second best set of

results is obtained when three paths are considered and the bottom depth is unknown.

This approach should be preferred over the two-path estimation, when the bottom

reflected path can be clearly identified.

two paths three paths
(bottom depth unknown)

three paths
(bottom depth known)

range error (m) 104.2 73.4 16.2
depth error (m) 5.0 3.8 1.4

Table 8.2 Rms tracking errors using different paths. The standard deviation for the
arrival time uncertainty is 1 ms.

Tracking results for 1 ms standard deviation in the arrival time uncertainty

are shown in Table 8.2. Although errors increase as the noise level becomes higher,

estimation of the source location is still good. In the three path with known bottom

depth part of the study, errors are quite small, allowing a good understanding of the

true motion of the source.



CHAPTER 9

CONCLUSIONS

In this work, an inversion method was developed for source localization of a

broadband source in shallow water environments. The method arrives at estimates

through a matching process between measured and replica arrival times of different

ray paths. The matching is performed with a system, that provides a linear approx-

imation to the inverse process. The system involves derivatives of time with respect

to the unknown parameters and is solved using simple least squares or a more

sophisticated regularization technique.

The proposed inversion method was initially applied to synthetic data. Several

cases were examined, studying the effects of factors such as initial conditions, source

instant knowledge, noise in the arrival times, and number of selected paths on the

localization results. Also, the sensitivity of those results with respect to uncer-

tainties in bottom depth, receiver location, and sound speed were investigated. The

inversion method was found to be accurate and efficient requiring minimal forward

model computations. The quality of the inversion improved when prior knowledge

on parameters was available and was explored using regularization in the solution of

the linear system. With the help of regularization, an inversion scheme was finally

implemented inverting for bottom depth, receiver locations, and sound speed along

with source location.

Subsequently, inversion using linearization was performed with data collected

during the Haro Strait experiment. Results matched reference estimates and were

obtained in an efficient manner. Similarly to the simulated data studies, regular-

ization was employed for multiple parameter estimation, including hydrophone and

source localization, bottom depth and sound speed estimation. Inversion results were
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also obtained for the same data using matched-field processing. The method involved

substantial computations and its results differed from the reference values.

Finally, an application of the linearized inversion for tracking broadband

sources was presented. The method is ideal for sources such as sperm whales

that transmit high frequency broadband signals, generating distinct paths easily

identifiable at the receivers.

The method developed in this work can be further extended. It has been

applied to near range shallow water problems. Short range and shallow water are

not limitations of the technique, however. Addressing problems with further range

and/or deeper water would just imply the need for the selection of different paths.

The inversion method can be also extended to involve range dependent bathymetry

(the necessary time derivatives for a sloping seafloor are presented in Appendix C),

and to invert for other parameters such as sound speed and thickness of seafloor

sediments.

Although linearized inversion gave excellent inversion results in this work, it

can only provide limited information compared to full field matching approaches

when used with the appropriate uncertainty modeling. It is here proposed that,

when full inversion (source and receiver localization and environmental inversion)

is desired, the developed linearized inversion method is used as a preprocessor to

an approach such as matched-field processing. The linearized inversion provides

accurate information on some of the parameters of interest that can be used to reduce

the search space in which matched-field processing will look for the global solution,

reducing substantially the computational requirements of the latter approach and

improving its estimates.



APPENDIX A

THE DERIVATION OF ARRIVAL TIME DERIVATIVES ALONG
RAY PATHS

It is assumed that a given ray travels from medium 1 to medium 2, as shown in

Figure A.1, with c 1 and c2 the sound speeds in each region, and 0 1 and 02 the two

incident angels in each region. From Snell,s Law:

_LRay parameter p is introduced, satisfying equation p = sinθi/ci From Snell,s Law, it

can be concluded that p is a constant along each ray path.

Now consider a stack of infinitesimal isovelocity layers:

Figure A.1 Sound propagation through infinitesimal isovelocity layers,

For the ith laver, we have

Along the direct ray path from z 1 to z2 , range r can be described as
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From Snell,s Law:

Equation A.3, thus, leads to:

Also, since

we can write:

where t is the ray travel time from z 1 to z2 .

Note that p = p(r, z 1 , z2 ), that is, p depends on source/receiver locations.

Now the partial derivatives can be derived. These derivatives are needed for

travel-time inversion. We start with the derivation of ass  the first surface

bounce ray path, where

From Equation A.9:

From Equation A.8:
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Note that r and z s are independent of each other, indicating that if,' = 0. Partial

Using this result in Equation A.10 and simplifying, the following equation is obtained:

Time derivatives with respect to other parameters along different ray paths can

be derived following the same procedure, and the results are shown in Section 3.3.



APPENDIX B

THE DERIVATION OF ARRIVAL TIME DERIVATIVES FOR
SOUND SPEED COEFFICIENT

The sound speed profile is described as:

where cm is the mean sound speed vector, v l is the first eigenvector of the sound

speed covariance matrix, and u is the sound speed perturbation coefficient. Sound

speed is modeled as a piece-wise linear function of depth z.

To derive the time derivatives with respect to the sound speed coefficient,

we start from the simplest case where c(z) is linear for z E [zi-1 , zi ], and assume

zi- 1 ≤  zs ≤  zr ≤  zi .

Given that

c(z) can be written as

From Equations B.2 and B.3, Equation B.4 results in

Therefore, we have:
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To simplify, we define
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Next, 	 is derived along the direct ray path. Recall that:

Differentiating t with respect to μ, we obtain:

Since:

we can write:

Combining Equations B.13 and B.11, 2- can be eliminated and we have:



To integrate, we write sine = pc(z). From Equation B.9:

By changing variables, Equation B.14 becomes

By changing variable 0 back to z, we can finally write:

When the sound speed profile consists of several linear functions of depth, we

obtain:

where c(z) is linear Vz E [z i-1 , zi], and

Time derivative	 is given as:
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where coefficients ac,i, bc,i, aμ,i, bμ,i, 	 areare defined in (B.7) and (B.8).



APPENDIX C

THE DERIVATION OF ARRIVAL TIME DERIVATIVES FOR
RANGE DEPENDENT ENVIRONMENT

It is assumed that the ocean has a sloping bottom with constant angle α. Time

derivatives with respect to the unknown parameters along the direct and first surface

bounce ray paths remain the same as in the independent environment. However,

the slope of the bottom has an impact on all derivatives of arrival times of bottom

bounce ray paths. In particular, the focus is on the first bottom bounce ray path.

Figure C.1 Bottom bounce ray path in slope bottom case.

Snell,s Law still holds in this case, which indicates:

where p 1 and p2 stand for the ray parameters for each part of the bottom bounce

path respectively: from source to bottom, and from bottom to receiver. Angles 0 1

and 02 are shown in Figure C.1. At the turning point, the relation between the two

angles is described as
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From here, we can derive the relation between the two ray parameters:

From the previous equation:

where DT is the bottom depth of the site where the ray is reflected from the seafloor.

From Equation C.4,

where zs is the source depth, and

To derive the time derivative with respect to source depth zs , we start from

the integral expressions for range r and travel time t:
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Both ray parameters p 1 and p2 and bottom depth DT are dependent on z 8 ; thus,

from Equation C.7 we have:

Assuming that the bottom depth of the receiver position is DR, from geometry:

where r2 is defined as the range the bottom bounce ray travels from the reflection

point to the receiver. From Equation C.8,

Equation C.10 can be further expressed as:

From Equation C.11,



For simplification, we define I1 and J1 as:

From Equations C.5 and C.12, Equation C.9 can be written as

Partial derivative az, can be obtained from Equation C.8, given that source

range and source depth are independent of each other:
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For simplification, we also define I 2 and J2 as:

From Equations C.5 and C.12, Equation C.16 can be written as
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From Equation C.19, r can be obtained and used in Equation C.15. Finally,

we have

Following similar procedures, other time derivatives can be derived.



APPENDIX D

COORDINATES CONVERSION BETWEEN GEODETIC SYSTEM
AND CARTESIAN SYSTEM

The transform from geodetic to cartesian coordinates is performed as follows ([39]):

X = (N h) cos φ  cos λ ,

Y= (N+h) cos φ sinλ,A,

Z = (N(1 - e2) h) sin φ ,

where:

0: geodetic latitude

A: geodetic longitude

h: height

X ,Y, Z: cartesian coordinates

a: Equatorial Radius (6378137.0 m)

b: Polar Radius (6356752.3142 m)

N: radius of curvature in prime vertical =41 — e 2 sin2

e2 : eccentricity squared =2f — f 2

f: flattening =(a — b) I a.
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