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ABSTRACT

A DYNAMICAL MODEL OF THE DISTRIBUTED INTERACTION
OF INTRACELLULAR SIGNALS

by
Adrienne C. N. James

A major goal of modern cell biology is to understand the regulation of cell behavior

in the reductive terms of all the molecular interactions. This aim is made explicit by

the assertion that understanding a cell's response to stimuli requires a full inventory

of details. Currently, no satisfactory explanation exists to explain why cells exhibit

only a relatively small number of different behavioral modes.

In this thesis, a discrete dynamical model is developed to study interactions

between certain types of signaling proteins. The model is generic and "connectionist"

in nature and incorporates important concepts from the biology. The emphasis

is on examining dynamic properties that occur on short term time scales and are

independent of gene expression. A number of modeling assumptions are made.

However, the framework is flexible enough to be extended in future studies.

The dynamical states of the system are explored both computationally and

analytically. Monte Carlo methods are used to study the state space of simulated

networks over selected parameter regimes. Networks show a tendency to settle into

fixed points or oscillations over a wide range of initial conditions. A genetic algorithm

(GA) is also designed to explore properties of networks. It evolves a "population"

of modeled cells, selecting and ranking them according to a fitness function which is

designed to mimic features of real biological evolution. An analogue of protein domain

shuffling is used as the crossover operator and cells are reproduced asexually. The

effects of changing the parameters of the GA are explored. A clustering algorithm is

developed to test the effectiveness of the GA search at generating cells which display

a limited number of different behavioral modes. Stability properties of equilibrium



states in small networks are analyzed. The ability to generalize these techniques to

larger networks is discussed. Topological properties of networks generated by the GA

are examined. Structural properties of networks are used to provide insight into their

dynamic properties.

The dynamic attractors exhibited by such signaling networks may provide a

framework for understanding why cells persist in only a small number of stable

behavioral modes.
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GLOSSARY OF BIOLOGICAL TERMS

ADP 	 Adenosine 5'-diphosphate. Nucleotide that is produced by
hydrolysis of the terminal phosphate of ATP. It regenerates ATP
when phosphorylated by an energy-generating process such as
oxidative phosphorylation.

amino acid 	 Organic molecule containing both an amine group and a
carboxyl group. Those that serve as the building blocks of
proteins are alpha amino acids, having both the amino and
carboxyl groups linked to the same carbon atom.

apoptosis 	 Programmed cell death.

ATP 	 Adenosine 5'-triphosphate. Composed of adenine, ribose and
three phosphate groups. ATP is the principal carrier of chemical
energy in cells. Synthesis in cells from ADP is driven by
energy-yielding processes; The terminal phosphate groups are
highly reactive in the sense that their hydrolysis, or transfer to
another molecule, takes place with release of a large amount of
free energy.

autophosphorylation The process whereby a protein kinase phosphorylates itself.

calmodulin

CAMK-II

Ubiquitous calcium binding protein whose binding to other
proteins is governed by changes in intracellular Ca²+
concentration. Its binding modifies the activity of many target
proteins.

CaM-kinase II or Ca²+/calmodulin-dependent protein kinase II.
A multi-functional protein kinase found in all animals but
is especially enriched in the nervous system. Part of a
family of Ca²+/calmodulin-dependent protein kinases which
phosphorylate serines or threonines in proteins. Thought to
function as a molecular memory device since it can switch to
an active state when exposed to Ca ²+/calmodulin and remain
active even when the Ca ²+ is withdrawn. This is because the
kinase undergoes autophosphorylation.

cell cycle 	 Reproductive cycle of the cell. The orderly sequence of events
by which the cell duplicates its contents and divides in two.

cell signaling 	 A relay series of chemical reactions whereby a cell converts an
pathway 	 extracellular signal into a response. The latter stages of the

pathway often involve changes in gene expression.
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GLOSSARY OF BIOLOGICAL TERMS
(Continued)

checkpoint 	 Point in the eukaryotic cell-division cycle where progress through
the cycle can be halted until conditions are suitable for the cell
to proceed to the next stage.

chemotaxis 	 Motile response of a cell or organism that carries it toward or
away from a diffusible chemical.

conformational 	 Spatial location of the atoms of a molecule. For example,
state 	 the precise shape of a protein or other macromolecule in three

dimensions.

cross-talk 	 Communication between two separate linear signal transduction
pathways whereby one molecule in a signaling pathway regulates
the activity of a component considered to be in a separate
pathway.

cyclic AMP 	 Nucleotide that is generated from ATP in response to hormonal
(CAMP) 	 stimulation of cell-surface receptors. Cyclic AMP acts as a

signaling molecule by activating PKA. It is often referred to
as a "second messenger" molecule.

cyclic AMP-	 Also known as PKA or A-kinase. Enzyme that phosphorylates
dependent kinase 	 target proteins in response to a rise in intracellular cyclic AMP.

First identified in skeletal muscle as part of the pathway of
regulation of glycogen breakdown in response to adrenaline.

cytoplasm 	 Contents of a cell that are contained within its plasma membrane
but, in the case of eukaryotic cells, outside the nucleus.

dephosphorylation Removal of a phosphate group from an enzyme (reversing the
effect of phosphorylation) by a protein phosphatase.

differentiation 	 Process by which a cell undergoes changes to an overtly
specialized cell type.

domain 	 Portion of a protein that has a tertiary structure of its own. In
larger proteins each domain is connected to other domains by
short flexible regions of polypeptide.

domain shuffling 	 The process by which a segment of DNA is moved to another
segment on the same chromosome. This causes a rearrangement
of the DNA sequence which can result in the creation of a
new gene. Many genes have common domains, hence the term
"domain shuffling".
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GLOSSARY OF BIOLOGICAL TERMS
(Continued)

DNA 	 Deoxyribonucleic acid. The genetic material of all cells and
many viruses. Polynucleotide formed from covalently linked
deoxyribonucleotide units.

EGF receptor 	 Epidermal growth factor receptor. The first receptor protein
discovered to be a tyrosine specific protein kinase. Binding
of EGF activates the intracellular domain of the receptor and
stimulates the proliferation of epidermal cells (and a variety of
other cell types).

Escherichia coli 	 A rod-like bacterium normally found in the colon of humans and
(E. coli) 	 other mammals and widely used in biomedical research.

enzyme 	 A protein that catalyzes a specific chemical reaction.

eukaryote 	 Living organism composed of one or more cells with a distinct
nucleus and cytoplasm. Includes all forms of life except bacteria
(prokaryotes) and viruses.

fibroblast 	 A cell type found in connective tissue.

gene knockouts 	 Also referred to as "gene targeting" . A fundamental technology
in molecular biology for testing the functional role of a particular
gene in mammals. Gene targeting is most well studied in the
mammalian mouse. Genes are inactivated or modified in the
mouse embryo and the resulting defects are assessed. It is
possible to target a gene in a specific cell type in a particular
region of the brain (e.g., the CA1 region of the hippocampus)
in order to study the effects of the "knocked out" gene on
neurological development or memory.

genome 	 Total genetic information carried by a cell or organism.

glycolytic pathway The sequence of chemical reactions resulting in the breakdown
of glucose (glycolysis).

in vitro 	 Term used to refer to cells growing in culture or processes
occurring in an isolated cell-free extract. (Latin for "in glass".)

in vivo 	 Term used to refer to processes occurring in an intact cell or
organism. (Latin for "in life" .)

lipid bilayer 	 Thin bimolecular sheet of mainly phospholipid molecules that
forms the structural basis for all cell membranes. The two layers
of lipid molecules are packed with their hydrophobic ("water-
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lipid bilayer (ctd)

LTD

LTP

MAP kinase

meiosis

membrane

metabolism

micron (gm)

mitosis

neuron (nerve cell)

hating") tails pointing inward and their hydrophilic ("water-
loving") heads outward.

Long-term depression. Phenomenon observed in some types of
neurons whereby a reduction in synaptic strength can occur over
a long time period.
Long-term potentiation. A specific type of facilitation (increase
in the effectiveness of specific synaptic connections) seen
originally in hippocampal neurons [1] that can last for days or
even weeks. LTP properties are not the same at all synapses. In
the CA1 region of the hippocampus, LTP has three interesting
properties: (i) cooperativity, (ii) associativity, (iii) specificity.
For further detail see [2, 3]

Mitogen-activated protein kinase. A protein kinase that
performs a crucial step in relaying signals from the plasma
membrane to the nucleus. Turned on by a wide range of
proliferation- or differentiation-inducing signals.

Special type of cell division whereby eggs and sperm cells
are produced, involving a reduction in the amount of genetic
material. Comprises two successive nuclear divisions with only
one round of DNA replication, which produces four haploid
daughter cells from an initial diploid cell.

Double layer of lipid molecules and associated proteins that
encloses all cells and, in eukaryotic cells, many organelles.

The sum total of the chemical processes that occur in living cells.

Unit of measurement often applied to cells/organelles (10 -6 m).

Division of the nucleus of a eukaryotic cell, involving
condensation of he DNA into visible chromosomes. (From the
Greek mitos meaning "a thread", referring to the thread-like
appearance of the condensed chromosomes.

Cells specialized to receive, conduct and transmit signals in the
nervous system.

neurotransmitter Small signaling molecule secreted by the presynaptic nerve
cell (neuron) at a chemical synapse to relay the signal
to the postsynaptic cell. Examples include glutamate and
acetylcholine.
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NMDA receptor

nucleus

oocyte

phospholipid

phosphorylase

phosphorylase
kinase

phosphorylation

phosphotransferase

plasma membrane

PP-1

prokaryote

protein

N-methyl-D-aspartate receptor. A highly Ca ²+-permeable,
ligand gated ion channel in neurons.

Predominant membrane-bounded organelle in a eukaryotic cell,
containing DNA organized into chromosomes.

Developing egg; usually a large and immobile cell.

The major category of lipid molecules used to construct
biological membranes. Generally composed of two fatty acids
linked through glycerol phosphate to one of a variety of polar
groups.

The enzyme which breaks down glycogen. Also known as
glycogen phosphorylase.

One of the first Ca²+/calmodulin-dependent protein kinases
to be discovered in 1956. Responsible for activating glycogen
breakdown by activating the enzyme glycogen phosphorylase.

Reaction in which a phosphate group becomes covalently
coupled to another molecule.

An enzyme possessing the ability to transfer a phosphate group
from a donor to an acceptor (e.g., protein kinases). Such
enzymes are very important in metabolism.

Membrane that surrounds a living cell.

Phosphoprotein phosphatase-1; known to be involved in
glycogen metabolism.

Organism made of simple cells that lack a well-defined
membrane-enclosed nucleus (e.g., a bacterium).

The major macromolecular constituent of cells. A linear polymer
of amino acids linked together by peptide bonds in a specific
sequence.

protein kinase 	 Enzyme that transfers the terminal phosphate group of ATP to
a specific amino acid of a target protein (e.g., serine, threonine
or tyrosine).

protein phosphatase Enzyme that removes a phosphate group from a protein by
hydrolysis.
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PKC

postsynaptic
density

pseudosubstrate

receptor

RNA

second messenger

serine/threonine/
tyrosine kinase

signaling molecule

Also known as C-kinase or Ca ²+-dependent protein kinase. A
protein kinase that, when activated by DAG (diacylglycerol) and
an increase in the concentration of Ca ²+, phosphorylates target
proteins on specific serine and threonine residues.

A characteristic feature of a chemical synapse. It is an
accumulation of opaque material on the cytoplasmic face of
the postsynaptic membrane. It represents the aggregation of
neurotransmitter receptors and signaling proteins essential for
synaptic transmission.

Polypeptide that binds in the active site of an enzyme, blocking
and preventing its activation. Some protein kinases remain
inactive for this reason. Activation is achieved by removing
the pseudosubstrate from the active site allowing access for the
protein's substrate. The pseudosubstrate interaction mimics
some aspects of the substrate's structure.

Protein that binds a specific extracellular signaling molecule
(ligand) and initiates a response in the cell. Cell surface
receptors, such as the acetylcholine receptor and the insulin
receptor, are located in the plasma membrane, with their ligand-
binding site exposed to the external medium. Intracellular
receptors, such as steroid hormone receptors, bind ligands that
diffuse into the cell across the plasma membrane.

Ribonucleic acid. Polymer formed from covalently linked
ribonucleotide monomers. All RNA species are synthesized by
transcription of DNA sequences.

A small molecule (or ion) that is formed or released into the
cytosol in response to an extracellular signal and helps to relay
the signal to the interior of the cell. Examples include cAMP,
IP3 and Ca²+.

Protein kinase that phosphorylates serine or threonines or
tyrosines on its target protein.

An extracellular or intracellular molecule that cues the response
of a cell to the behavior of other cells or objects in the
environment.
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signal transduction Relaying of a signal by conversion from one physical or chemical
form to another. In cell biology, the process by which a cell
converts an extracellular signal into a response.

substrate 	 Molecule on which an enzyme acts.

synapse 	 Communicating cell-cell junction that allows signals to pass from
a nerve cell to another nerve cell. In a chemical synapse the
signal is carried by a diffusible neurotransmitter; in an electrical
synapse a direct connection is made between the cytoplasm of
the two cells via gap junctions.

Tar 	 Transmembrane receptor involved in signal transduction during
bacterial chemotaxis in E. coli.

targeting subunit 	 The part of a protein kinase or protein phosphatase which directs
the catalytic subunit to the target locus. The target may be an
organelle or a membrane component of the cell. This subunit
may serve to position the catalytic subunit close to a particular
substrate or to sequester it from other substrates and ligands.

Xenopus 	 African toad. Two species of Xenopus are commonly used
for studies in developmental biology and genetics. These are
Xenopus laevis and Xenopus tropicalis.

x-ray 	 Technique for determining the three-dimensional arrangement
crystallography 	 of atoms in a molecule based on the diffraction pattern of x-rays

passing through a crystal of the molecule.

xxv



CHAPTER 1

INTRODUCTION

"The whole is more than the sum of the parts." —Aristotle (384-322 BC)

Mathematics pervades our everyday lives—"There is no branch of mathematics,

however abstract, which may not some day be applied to phenomena of the real

world." t The "golden age of mathematics" is often referred to as the 19th century

post-Newtonian era where the foundations of modern branches of mathematics

were laid. One might argue that 20th century mathematics has been noted

more for consolidation of existing discoveries rather than for profound innovation.

Nevertheless, mathematics has greatly enhanced revolution in physics and is being

increasingly applied to the biological sciences.

The first application of mathematics to a biological problem was by a British

physician and experimentalist, William Harvey, in 1616 [5]. He used a quantitative

proof to show that the blood circulates continuously around our bodies, an idea

which had been hinted at earlier by Leonardo da Vinci. By 1850, two markedly

different mathematical modeling approaches had emerged. The mathematical laws of

physics had been laid down in differential equation form which enabled small, well-

defined problems to be studied accurately and in detail. Statistical methods had been

developed to study averaged quantities in order to coarsely analyze complex systems.

Nowadays, techniques in non-linear dynamical systems are important in providing

valuable insight into biological problems. The modern theory of dynamical systems

has its foundations in the work of Henri Poincaré (1854-1912). The growing area

of mathematical biology has extended to areas as diverse as developmental biology,

population ecology, evolution, genetics and neuroscience.

t N. Lobatchevsky (179²-1856), from Ref. [4], pp. 90.
‡Newton (164²-17²7) and Leibnitz (1646-1716) led the way with their development of
the calculus.
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Advances in the biological sciences progress at an ever expanding pace, and it

would not be remiss to suggest that mathematicians might be in danger of missing

out on some of the most exciting and interesting scientific problems of the century if

they do not take an interest in some of the unresolved questions posed by biologists.

This kind of research presents its own difficulties, not the least of which requires

establishing a platform of understanding from which a biologist and a mathematician

can communicate and exchange ideas. This work is also further challenged by the

fast pace at which the vast and often contradictory experimental literature expands.

In the research field of cell biology, molecular techniques have propelled a truly

reductionist approach, propounding the widespread view that "to understand better

one need only go smaller" [6]. The announcement earlier last year of the completion

of the first draft of the sequence of the human genome has increased interest in

a variety of problems in genetics. It is currently estimated that there are probably

about 30,000 genes encoded in the human genome. The general problem of predicting

the structure of a protein from its amino acid remains unresolved, and the number

of proteins encoded by the genome is still unknown. Only a small percentage of the

proteins that have been identified has been studied in enough depth to reveal their

structure and mechanisms of catalysis. However, there are wider issues still facing

the community of cell biologists.

Researchers now begin to question whether the sheer complexity of a single

cell may make a reductionist explanation impossible [6]. Could a mathematical

model, which incorporated all this detail provide any useful information at all?

How do all the components inside a cell cooperate to give rise to a complex and

organized unit? Why are there only a relatively small number of different behavioral

modes of a cell (see Figure 1.1)? A cell is, after all, the most fundamental unit of

biological organisms which can be described as being alive. It adapts, self-regulates,

reproduces and contains and organizes all the chemical reactions required for life.
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Despite the amount of detailed information available, even now, in the year 2001,

the most fundamental processes that occur in cells are not fully understood. Never

was Aristotle's observation that the whole is more than the sum of the parts more

evident. The field is ripe for mathematical insight.

Figure 1.1: Cells typically exhibit only a small, finite number of different behavioral
modes. For example, growth, proliferation, differentiation, death (adapted from Ref.
[7]). There is currently no satisfactory explanation as to why an individual cell can
only choose between a limited set of possible outcomes.

A sound mathematical model first requires a good understanding of the

biological problem under investigation and often the mathematics will be dictated

by what is known in the biology. The governing equations that are developed must

provide as realistic a representation of the biological phenomenon as possible. They

must also yield results which can be interpreted by an experimentalist in terms of

predictions or insight which were not possible or practicable otherwise. Biological

systems are complex and highly non-linear and thus realistic models will also tend to
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be non-linear and may require computational methods for solution. Mathematical

modeling has therefore also been aided by the steady progress in the speed and

accessibility of high performance computers.

1.1 A Look Ahead

This chapter takes the reader through some of the biological terminology and

literature necessary to appreciate the challenges involved in developing models of

signal transduction. A glossary of terms is provided at the start of this document.

The traditional manner in which cell signaling pathways are studied is discussed

and the mathematical modeling approach for these "cascade" models is presented.

The drawbacks of these models are then highlighted. The increasing awareness that

pathways interact at many levels requires a shift in modeling approach from individual

cascades to networks. The most well studied signal transduction network is that of the

bacterium E. Coli. A continuum model of this signaling network is briefly discussed.

The difficulties of applying detailed kinetic modeling methods to cellular systems

where the data is less widely available are examined.

An alternative "connectionist" strategy is contrasted with prior approaches.

Three different discrete parallel processing models are selected and discussed in turn:

(a) Neural Networks, (b) Boolean Networks and (c) Cellular Automata. These

discrete models are contrasted with the continuum approach. In particular, one

noteworthy computational study of biological regulation networks is reviewed in

this context. Desirable properties of cell signaling networks are translated into

the mathematical terminology of dynamical systems. The predictive powers of the

discrete versus the continuum modeling approach are also addressed. The specific

modeling approach taken in this thesis is then outlined in light of these data.



5

1.2 Progress in Cell Biology

"In most sciences one generation tears down what another has built, and what

one has established another undoes. In mathematics alone each generation builds

a new story to the old structure." —Hermann Hankel (1839-1873)t

Progress in the biological sciences is very different from that of mathematics.

Many fundamental mathematical techniques had been well formulated by the mid-

nineteenth century. These results still today stand the test of time made possible

by rigorous mathematical proof. Developments in cell biology, however, are often

led by advances in experimental techniques and equipment: the invention of the

centrifuge enabled molecules to be separated according to weight; the development of

chromatography was used to aid the identification of the amino acids and hence the

amino acid content of proteins; X-ray diffraction helped the study of the arrangement

of atoms within proteins and other crystalline substances; the employment of chemical

"tracers" such as radioactive isotopes enabled experimentalists to study the chemistry

of living cells and hence reactions involved with metabolism; the improvement of

microscopy enabled the fine structure of cells to be studied; and the discovery of

dyes to stain parts of the cell meant that aspects of cell behavior could be studied

for the first time (e.g., cell division). Ingenious and carefully controlled experiments

are the crux of good research in molecular biology, biochemistry, biophysics and cell

physiology. Each of these developments (and many more) has played an important

role, and in one way or another contributed to the current understanding of cell

structure and function.

The term "cell" was first used by Robert Hooke in 1665 to describe the small

compartments he observed in cork cells under a light microscope [9]. In order to

give some indication of scale, a light microscope gives enough resolution to discern

shapes on the order of half a micron in length. This is roughly the length of a

tQuotation from Ref. [8], pp. 181
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bacterial cell. A typical animal cell is somewhat larger, roughly of the order of 10-20

microns in diameter. By the early 19th century, light microscopes were useful enough

to establish that all plant and animal tissues were comprised of cells, and that a

single cell was an independent unit of life. In 1839, Theodore Schwann and Mattheis

Schleiden recognized that cells are the elementary particles of all organisms [10]. Their

observations and comparisons in plant and animal tissue indicated that there are basic

features common to all cells (e.g., a cell membrane, nucleus and cell body). They also

noticed that some organisms are unicellular and some are multicellular. This work

was the beginning of "cell theory" and the basis for Virchow's "Cellular Pathology" .

By around 1860, Rudolph Virchow had asserted that all cells were derived from other

cells† [11]. It was becoming clear that all living organisms, no matter how large or

small, began life as a single cell.

The commercial introduction of the electron microscope in the late 1930s

enabled researchers to increase their viewing resolution to scales in the nanometer

range. The physical structure of cells could then be studied in far more detail.

Membrane structure and organelles could be discerned. The age old view of the

cell as a primitive sack of protoplasm was changing; cells were beginning to be viewed

as structures containing a complex, ordered set of molecules.

Researchers then began to study cellular kinetics and were trying to identify

the major pathways by which chemical changes occur in the cell. Part of this analysis

was concerned with the understanding of the mechanisms of individual reactions.

Evidence was emerging that cellular activity is controlled by chemical catalysts. These

chemicals are called "enzymes" . The smooth functioning of these enzymes enable

reactions to proceed at high speed. Nowadays, it is recognized that most reactions

require enzymes to catalyze them. As part of the study of the chains of these reactions

†"Where a cell arises, there a cell must have previously existed, (omnis cellula e
cellula), just as an animal can spring only from an animal, a plant only from a plant."
Ref. [11], pp. ²7.
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or metabolic pathways, researchers were looking at the synthesis and breakdown of

compounds within the cell. They then had the problem of trying to understand how

it is possible for the cell to strike an energy balance in these reactions. By the 1940s,

it was discovered that the cell runs an energy bank which can trap and store energy

that can be regulated on demand.

All enzymes are proteins, thus much of life revolves around the activities of

proteins†. Proteins are important in biological systems as they have structural and

functional roles. The first detailed molecular structure and chemical sequence of

a protein were found for the hormone insulin in 1953 by a Cambridge researcher,

Frederick Sanger [12], for which he was later awarded the Nobel Prize in chemistry.

Insulin had the virtue of being a rather small protein yet was very important to

bodily function. Sanger broke the protein up into smaller peptide fragments, each

containing two or three amino acids. Each of the smaller fragments could be analyzed

via chromatographic methods. Once all the peptide fragments had been identified, the

problem was then how to piece the puzzle back together. To complete the sequence

of the insulin protein took several years, but it enabled the complete structure of

an important molecule to be identified. Nowadays, these procedures are all fully

automated and can be achieved in a few days.

Chemical structures of other important intracellular molecules were also

determined in the latter part of the 20th century, including the structure of DNA,

RNA, proteins, phospholipids and carbohydrates. Small molecules were discovered

which convey information through the cytoplasm of cells from the cell surface to a

target enzyme inside the cell. As a result of this research, many individual reaction

pathways have been identified and are now understood. The study of two of the first

cell signaling pathways to be discovered will be discussed briefly in the next section.

†o protein is a compound made of amino acids.
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1.3 Cell Signaling Pathways as Linear Cascades

Proteins, together with other molecules, integrate the cell's response to its

environment in a way that affects whether the cell divides, differentiates, changes

shape or metabolic rate. It is the proteins which perform the most wide ranging

functions inside cells, and hence these will be the intracellular components that will

be important to consider when developing a mathematical or computational model

of intracellular signaling.

Modeling in cell biology has been dictated to by the manner in which cell

biologists study cell signaling pathways. In order to understand the role of proteins in

these pathways, the way in which proteins can affect one another must be understood.

Signaling events, controlled by proteins, are highly dynamic processes. One specific,

dynamic and reversible, mechanism via which proteins can be modified will be

highlighted. This will be relevant later, as this is considered to be a salient feature of

cell signaling that should be incorporated in any mathematical model. Historically,

kinetic studies of individual signaling pathways have been commonplace. The general

methodology of these studies will be briefly introduced. The problems of the

traditional linear cascade models of intracellular signaling events will be highlighted

in the light of more recent developments in the field.

This section will thus be concerned with the following questions:

• How are cell signaling pathways typically studied?

• What is the role of protein modification in these pathways (specifically, protein

phosphorylation)?

• How are mathematical models for cascades typically developed?

• What are the problems with the cascade theory of signaling?

Every protein has a specific three-dimensional shape or "conformational state" .

This shape will determine how it interacts with other intracellular molecules.

Moreover, the shape of the protein inside the cell can change dynamically during
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Figure 1.2: Phosphorylation (via protein kinases) and dephosphorylation (via
protein phosphatases) reactions provide a dynamic and reversible mechanism for the
modification of proteins.

its lifetime. There are several mechanisms of protein modification of which

"phosphorylation" is known to be the most important. This is the process of adding

a phosphate molecule to an amino acid side chain of the protein molecule. The

phosphate molecule is taken from a molecule of ATP (see Figure 1.2).

In particular, the behavior of a cell is controlled by special classes of signaling

proteins. Kinases and phosphatases form the majority of these signaling molecules.

These signaling proteins affect the way in which the cell responds to hormones

and other extracellular cues. Protein kinases are also controlled by small chemicals

called "second messengers" . Kinases phosphorylate other molecules. Phosphatases

dephosphorylate other molecules.

The covalent attachment of a phosphate group to an amino acid side chain of a

protein causes a conformational (structural) change in the protein. This is because the

transfer of the phosphate group from an ATP molecule to a hydroxl (-OH) group on a

serine (Ser), tyrosine (Tyr) or threonine (Thr) amino acid (see Figure 1.3) introduces
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CHEMICAL STRUCTURE OF AN AMINO ACID

Figure 1.3: Phosphorylation of proteins involves the transfer of a phosphate group
from an ATP molecule to a hydroxl (-OH) group on a Ser/Tyr/Thr residue of an
amino acid. All proteins are made up of chains of amino acids. The amino acids are
made up of C, H, 0 and N. Each amino acid contains a basic group (-NH 2 ) and an
acidic group (—COOH)

two negative charges which can attract nearby postively charged side chains [13]. The

roles of these residues (Ser/Tyr/Thr) during phosphorylation can be investigated by

"site-directed mutagenesis" experiments [14, 15]. These procedures enable specific

mutations of a protein to be performed. For example, a tyrosine (Tyr) amino acid

residue can be replaced by glutamate (Glu). In this case, the negative charge of

the glutamate has the same effect as phosphorylation, so that the protein acts as if

it is phosphorylated. Site directed mutagenesis experiments are therefore useful to

explore the relationship between protein structure and function, and particularly to

explore the role of phosphorylation sites in the activation of enzymes [16, 17]. The

conformational changes resulting from phosphorylation alter the biological properties

of an enzyme, for example changing its affinity for substrates, activators or inhibitors.

Signals are typically received at the cell surface by receptors and are translated

into changes in the activity of intracellular molecules such as the protein kinases and

phosphatases. Signal transduction pathways are studied in one of two ways. The

first approach is a "downstream" one, where the first step is to identify the receptor
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substrate and then work down the pathway. The second is an "upstream" one where

from the cell effect in question, one works backwards towards the receptor in order

to identify the components in the pathway.

In the early 1940s work by Cori and Green [18] on an enzyme, "phosphorylase",

found in rabbit skeletal muscle, indicated that the molecule could exist in two different

forms, the active form, "a" , and the inactive form, "b" . Phosphorylase was known

to play a role in glycogen synthesis and breakdown. The fact that the enzyme could

exist in inter-convertible states led researchers to believe that it played a significant

regulatory role within the cell. Another enzyme was then found to convert the inactive

form of phosphorylase to the active form [18, 19]. The later discovery that ATP was

required for this conversion led to the hypothesis that the enzyme involved in the

inter-conversion was a protein kinase. This hypothesis was correct and the kinase

was later named "phosphorylase kinase" . This was the first time it was realized that

a phosphorylation—dephosphorylation mechanism could play an important role in

cellular processes such as metabolism. Moreover, the realization that these reversible

reactions could occur dynamically inside cells was also important. Other small

molecules [calcium and cyclic-AMP (CAMP), now known as second messengers] were

also shown to be important in affecting the activity of phosphorylase kinase. In fact

calcium was known to play a role in muscle contraction, coupling the breakdown of

glycogen by phosphorylase (an energy-yielding process) with muscle contraction (an

energy-utilizing process).

Later work indicated that phosphorylase kinase itself was also subject to

phosphorylation. The protein kinase found to modify phosphorylase kinase was

named "cAMP-dependent protein kinase" because its role in cellular function was far

more wide ranging. This led to the description of the first cascade involving protein

kinases in cell signaling (see Figure 1.4) via an upstream or bottom-up approach.



Figure 1.4: The intracellular signaling pathway thought to control glycogenolysis
(adapted from Ref. [20]).

Increased or decreased second messenger levels

Activated or inhibited protein kinases and phosphatases

Altered phosphorylation states of intracellular proteins
(resulting in a modification of their function)

1
Physiological response

Figure 1.5: Typical events in a cell signaling pathway (adapted from Ref. [21]).



Figure 1.6: The MAP-kinase signaling cascade (adapted from Ref. [20]). More
recently discovered signaling events are shown in green [22].

A signal arriving at the cell surface is translated into changes within the cell via a

sequence of events, which are often classically described by the diagram in Figure 1.5.

In this case, a hormone at the cell surface causes alterations in receptor molecules

at the cell surface. This leads to changes in second messenger molecules which in

turn affect the activity of protein kinases and phosphatases, ultimately resulting in

changes in cell function. In the case of the glycolytic pathway, the downstream events

involved one protein kinase phosphorylating and activating another protein kinase,

resulting in a response which is the breakdown of the compound glycogen.

The second protein kinase cascade that was discovered turned out to play a role

in insulin action [20]. This process demonstrated that not only do protein kinases

and phosphatases occur intracellularly, but they are also present in the cell membrane

as receptors. The "Epidermal Growth Factor receptor" (EGF receptor) and the

insulin receptor are special types of protein kinase (protein tyrosine kinase). In the
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case of insulin action, the approach was also an upstream one. Insulin was known

to activate a specific downstream protein kinase, "S6-kinase" , and this kinase was,

itself, thought to be modified by phosphorylation. The S6-kinase was found to be a

substrate of another kinase, "MAP-kinase" (MAP-K), which itself could be modified

by phosphorylation. This led to the discovery of "MAP-kinase kinase" (MAP-KK)

which also existed in phosphorylated and dephosphorylated forms (see Figure 1.6).

By 1993, the search was on to discover the regulator of MAP-KK. A MAP-kinase

kinase kinase was later discovered.

Although the discovery of another kinase signaling cascade was exciting, there

were still no significant studies into questions such as why a cell needs such a

complicated mechanism to regulate hormone action. The upstream and downstream

approaches also overlook the possibility of multiple targets for each kinase in the

scheme [20]. The possibility that branching could occur in the cascades was not

considered in the initial identification of the glycolytic and MAP-K pathways.

The reductionist approach that has been so successful in the biological sciences

has led to the extensive cataloging of biochemical pathways. Cellular processes have

gradually been broken down into their most fundamental components. Advances in

computer technology now enable this information to be provided in databases freely

available over the World Wide Web (see Appendix A).

Early mathematical and computational studies tended to concentrate on

theoretical analyses of specific signaling pathways with a small number of components.

In the late 1970s, Chock and Stadtman studied the properties of mono-cyclic and

multi-cyclic cascades of enzymes in metabolic regulation [23, 25]. One possible role for

cascades was thought to be signal amplification. For example, in the case of glycogen

metabolism, a very small concentration of an extracellular compound can then make

use of a reserve pool of glycogen extremely effectively and quickly. The analytical

results were later tested via an in vitro cyclic cascade system [24]. This study
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Figure 1.7: A mono-cyclic cascade system (studied by Chock & Stadtman [23, 24]).
The higher the levels of cAMP, the larger the fractional number of substrate molecules
in the phosphorylated state. The system reaches a steady state which is independent
of the initial number of molecules of the nano-peptide that were phosphorylated. Even
for this simple cascade system, there are a number of distinct reaction steps that need
to be modeled. The system demonstrates increased flexibility because the activity of
the substrate can be altered by changing the activity of the kinases and phosphatases
either directly or via their effector molecules. An increased level of P i will inhibit the
protein phosphatase therefore enabling smaller concentrations of cAMP to activate
the kinase and give an equivalent steady state level of phosphorylation. Fixing
the concentration of cAMP and increasing levels of Pi causes an increase in the
fraction of phosphorylated molecules of substrate. The change in response becomes
more noticeable at higher levels of cAMP. In fact, increasing levels of cAMP and
increasing levels of P, have synergistic effects as both tend to favor increased levels
of phosphorylation of the substrate.

examined the cyclic inter-conversion of a single enzyme between its phosphorylated

and dephosphorylated forms.

The system consisted of a protein kinase (cAMP-dependent protein kinase)

and a protein phosphatase (phosphoprotein phosphatase) together with regulatory

molecules cAMP as an activator for the protein kinase, and Pi (phosphate) as an

inhibitor for the phosphatase (see Figure 1.7). The system constructed is referred to

as a "mono-cyclic" cascade. The steady state of the system depends on the relative

concentrations of each of these four components. The substrate molecule for the

kinase and the phosphatase was an artificially constructed nano-peptide consisting

of a chain of nine amino acids. By keeping the concentration of ATP sufficiently

large for it to remain essentially constant, it was possible to study the effects of
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altering the concentration of the regulatory or effector molecules cAMP and Pi . The

cascade showed signal amplification and positive cooperativity. The latter feature

of a signaling pathway means that the sensitivity of levels of phosphorylation of

substrate to changes in levels of concentration of effector molecules was much greater

than the sensitivity of the kinase to changing levels of cAMP. Even for this simple

cascade system, there are a number of distinct reaction steps that need to be modeled

(see Appendix B). The classical methods of enzyme kinetics used to study these

reactions [26] involve the construction of a system of differential equations (B.1)—(B.6)

which measure the rate of change of the concentration of each of the components of

the system.

Given the importance of protein phosphorylation reactions inside cells, and as

part of intracellular signaling pathways, it is natural to want to make predictions

regarding the functionality and reliability of these pathways within cells. Cascades

of protein kinases, such as the MAP-K cascade mentioned in §1.3, are postulated to

demonstrate cooperativity, converting graded inputs into switch-like outputs [27, 28].

This has been investigated in the context of maturation of Xenopus oocytes [28]. The

MAP-kinase cascade is thought to cause different cellular responses depending on the

context [27].

Thus, researchers' current understanding of signaling proteins characterizes

them as discrete units in series. Each protein acts as a relay station in a specific

cascade of message amplification [13]. Advances in genetics have now made it possible

to alter one specific type of molecule inside a cell at a time. The function of a

specific protein can be investigated by disrupting its structure to prevent it from

functioning normally. If signaling in the cell really occurs via a series of separate

parallel pathways, then mutating individual proteins critical to these pathways should

change the expected cellular effect. However, this is not always the case. The relative

lack of effect in such "gene knockout" experiments of signaling proteins suggests the
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system has multiple alternative pathways [29]. Modeling of single pathways may never

give insight or provide satisfactory explanations as to why this is the case. There are

also other inconsistencies with this viewpoint.

Figure 1.8: Representing protein activity in phase space. Trajectory T1 shows the
effect that a small level of active molecules of protein type P1 can have on a cascade
of three protein types P1 ---+ P2 P3 (where protein type P1 activates molecules
of P2 which in turn activate molecules of P3). Trajectory T2 shows an example of
periodic oscillations in activity of the three different protein types (not connected in
a linear cascade). T2 therefore represents a closed curve in phase space.

Consider, for example, a cascade of three different types of proteins. As

discussed above, a small change in the input layer can cause an avalanche or

amplification of activity of molecules at lower levels of the cascade. Suppose there

are 10,000 molecules of P1, P2 and P3 freely diffusing in part of the intracellular

medium. Assume that each molecule of protein P1 can activate 100 molecules of P2

during a specified time interval, t, and that each molecule of P2 can activate 100

molecules of P3 in the same time interval. Then, if an input signal activates ten of

the molecules of P1, these in turn, within a time t, can activate 1000 molecules of

P2 and hence 100,000 molecules of P3 can be activated very easily. This change in

percentage activity levels of each protein can be illustrated on a phase space diagram,

shown in Figure 1.8. In such a case, the system will eventually be driven towards the
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corners of the phase space, with a tendency to generate an all or none response (the

latter could occur in the case of negative regulation). The changes that occur can be

monitored by following a trajectory (T1) in the phase space.

If, however, a cascade of negative and positive regulation occurs, the system

may not generate an all or none response. Instead, intermediate levels of activity

may be possible. The system may then lie anywhere in its state space of possibilities

with some probability. If the state of the system is interpreted as an indication of the

total number of possible modes of behavior, there could be a vast number of possible

states. How can this be reconciled with the knowledge that there are really only a

small number of cellular fates (see Figure 1.1)?

In some cases, oscillations in intracellular molecules may occur. This could

be represented by a closed curve (T2) in phase space. However, in such a case,

the molecular species (P1,P2,P3) involved would not interact in series. Cycling

patterns of activity are known to occur in intracellular signaling networks and these

oscillations play functional roles [30]. The "cell cycle" is a prime example of a complex

phosphorylation cycle involving a set series of activation and inactivation of proteins

[31, 32]. At certain critical phases of the cell cycle, called "check-points", the signaling

network is particularly responsive to external signals.

Oscillations of intracellular second messengers such as calcium are also a

common feature of cells [33, 34]. Spontaneous oscillations are observed to occur during

in vitro maturation of mouse oocytes [35]. Calcium oscillations can vary in length

from a fraction of a second in muscle cells, to several minutes when they play a role

after fertilization, to hours for the calcium cycles that control cell division. Calcium

is a ubiquitous second messenger implicated in almost all aspects of intracellular

signaling [36]. Calcium signals are known to trigger life at fertilization, to control

differentiation and cellular development, and also to control cell growth and death.

The duration and amplitude of the calcium signals appear to be extremely important.
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It remains a mystery as to how a calcium signal can be utilized to control vastly

opposing responses: on the one hand as a signal for life and on the other as a signal

for death [37]. The context in which the cell receives its environmental cues therefore

appears to be extremely important [38, 39]. Oscillations have also been suggested to

have certain thermodynamic advantages [40].

Some limitations to the cascade perspective of signaling have been outlined,

but the story is not yet complete. It is just beginning. Further complexities will be

highlighted in the following sections (§1.4, §1.5). There are properties of cells that

cannot be explained with a cascade-type model. The complexities of cell signaling

deepen and as they do, so models must evolve to incorporate the ever changing

biological data.

1.4 Cross-talk Between Linear Pathways: A Signaling Network

Researchers continue to study cell composition and to investigate the chemical

interactions that occur inside cells. As data and information become available, it is

becoming clearer that there is considerable interaction between intracellular signaling

pathways (see Figure 1.9).

Figure 1.9: Interactions between pathways can be extensive. For example, cyclic
AMP and calcium signaling pathways are interlinked at every level (adapted from
Ref. [21]).
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External signals received at the cell membrane by cell surface receptors cause

changes in concentration levels of the second messengers calcium and cAMP. Pathways

activated by calcium and cAMP are often studied independently, but they are in fact

closely interlinked [21]. The simplistic view of cell signal transduction as many linear

cascades is thus gradually being superseded by the realization that there are many

diverse interactions between signaling pathways. In light of this, in this section the

following questions will be addressed:

• How can mathematical models incorporate cross-talk?

• Are there any drawbacks with a detailed kinetic modeling approach?

The concept of the cell as a complex signaling network of molecules is therefore

becoming more widely accepted [41]. A network model for intracellular signaling

would seem more appropriate than a linear cascade model. The most detailed and

extensive kinetic modeling of a small intracellular signaling system existing to date is

that of a bacterial signaling network. The bacterium Escherichia coli is an example

of a cell for which all the intracellular proteins involved in the chemotactic response

have been identified. The components have been purified and sequenced and their

kinetic data is available. The effect of deleting specific components of the signaling

system have also been extensively documented.

Bray et al. [42] have explicitly modeled a proportion of this chemotactic

signaling system using an extensive knowledge of these available data. A bacterium

has the ability to adjust its swimming behavior in response to changes in the

extracellular concentration of attractants and or repellent chemicals. Binding of

these extracellular molecules to cell surface receptor molecules cause changes in the

phosphorylation states of various intracellular protein kinases which in turn affect the

rotation of the flagellar motor of the bacterium, allowing it to change its swimming

behavior. This short term adjustment of the swimming pattern of the bacterium is

achieved in about two tenths of a second.
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The goal of the study by Bray and co-workers [42] was to combine all existing

data into a single model and to predict the behavior of the bacterium in novel

environments. The aim was also to have the potential to predict the effect of, as

yet unperformed, mutation experiments. Standard results from enzyme kinetics were

used to model the binding of the attractant to the cell surface receptor (named Tar).

Protein auto-phosphorylation steps were modeled using Michaelis-Menten kinetics

[26]. In fact the flagellar motor is a complicated structure being comprised of about

forty proteins. Its phosphorylation state appears to determine whether it pauses or

rotates counter-clockwise or clockwise. The resulting model describes the interactions

between about half a dozen key proteins and has twenty-one different functions

associated with it, each representing a single step in the signaling cascade. Computer

simulations were used to study cell performance under a wide variety of different

conditions. Numerical methods were used to solve precise differential equations arising

from the detailed enzyme kinetics.

Despite the existing data available for this model, many aspects of the reaction

pathways are still not clear and so Bray and his colleagues had to estimate the values of

some of the unknown rate constants and average others from different experimental

sources. Some of the reaction steps were purely hypothetical. Their model was

therefore necessarily not correct in every detail. Results of their simulations managed

to reproduce and explain some short term responses of the bacterium quite well but

could not explain others. This is an example of an attempt to model a single, specific

phosphorylation pathway which is part of a larger cell signaling network. It also

contains only about half a dozen components.

It is thus possible to model specific cellular components based on kinetic

parameters obtained via in vitro laboratory analysis. Once the data are known for

several components, differential equations can be developed and predictions can be

made which can then be tested experimentally. However, this approach is painstaking



22

and relies on the accuracy of the experimental data. In some cases, the data obtained

in this manner may also not be representative of the phenomena which actually occur

in vivo in the living cell.

It is still, however, a major goal of cell biology to understand the regulations

of cell behavior in the reductive terms of molecular interactions of the intracellular

signaling proteins. This aim is made explicit by the assertion that understanding a

cell's responses to stimuli requires a full inventory of the details of all the molecular

interactions involved [43]. The inventory of the kinetics and binding constants of

all proteins and other molecules may then be used to construct a precise model of

a cell's behavior. The possible predictive power of an explicit cell signaling model

is potentially very extensive. If a model could be designed which could accurately

predict the response of the cell in a given environment, this would reduce the need

for extensive experimental testing of cells in a multitude of different extracellular

environments. However, constructing a complete model of all the relevant details

of molecular interactions in eukaryotic cells is likely to be a daunting task. This is

evident by our growing knowledge of just a fraction of the proteins involved in cell

signaling. More dauntingly, however, there are also somewhere between 10,000 and

100,000 different proteins inside mammalian cells and yet only a fraction of these

have been studied in detail to the extent that their three-dimensional structures and

mechanisms of catalysis are known. The lack of available data makes it hard to

perform detailed simulations of this kind.

1.5 Further Levels of Complexity

Although many specific reactions inside cells are now well understood, it is the

extensive interconnections between pathways that still make it difficult to predict

the way in which the cell will respond to its environment. There are a multitude of

proteins involved in cell signaling that can interact in a variety of ways. The control
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of the activity of these proteins involves reversible binding and reversible covalent

modification [31, 44, 45, 46]. There are many types of second messengers that bind

to proteins and modulate their function and there are also several forms of protein

modification.

This section will therefore be primarily concerned with:

• introducing further levels of complexity of protein phosphorylation,

• emphasizing the importance of phosphorylation in the control of cell behavior.

Phosphorylation is the most common and widespread form of modification that

changes the activity of a protein [13, 45]. Protein phosphorylation by specific protein

kinases (PKs), and dephosphorylation by specific protein phosphatases (PPs) may

regulate as many as one third of all the proteins inside a cell [47, 48]. There are also

many more protein kinases and protein phosphatases than other types of signaling

proteins. It is estimated that approximately two percent of the genome of budding

yeast and approximately five percent of the mammalian genome contains sequences

encoding for protein kinases [47, 49]. This suggests that around 2, 000 different types

of protein kinases may exist in the mammalian genome [31, 50, 51]. There may also be

about half as many different types of protein phosphatases as protein kinases [31, 52],

although more recently Tony Hunter has estimated that the ratio of PKs:PPs may

be closer to a one to one [53]. While not all of these kinases, phosphatases and other

second messenger systems will be present in every different cell type, conservative

estimates suggest that at least one hundred protein kinases, and more likely between

100 and 1,000 different protein kinases and protein phosphatases will be found in any

one mammalian cell type [48, 54].

There are a variety of ways in which protein kinases and protein phosphatases

interact, but some central themes emerge. Protein kinases generally possess one

catalytic domain that is responsible for substrate recognition, ATP binding and

phosphotransferase activity. There is then either one, or a series of regulatory
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domains that may themselves be regulated by second messengers, phosphorylated

by protein kinases or dephosphorylated by other protein phosphatases. Protein

phosphatases also have a similar functional modular structure [44, 45]. For some

protein phosphatases and protein kinases there are targeting subunits that perform

the regulatory role [55]. These may also be important in directing the protein

to specific intracellular locations. The substrates that any given protein kinase

or protein phosphatase affects are mostly determined by the catalytic domain (for

PKs) or targeting subunit (for PPs). Protein kinases and protein phosphatases can

often phosphorylate substrates on more than one site with different affinities and

this process is known as multi-site phosphorylation [44]. These kinds of interactions

provide a considerable base level of complexity.

Another level of complexity is provided by the interconnections between protein

kinases and protein phosphatases. Many of the protein kinases, phosphatases

and other signaling proteins are thought to form part of pathways from the

plasma to the nucleus or other cellular compartments [13] (e.g., the glycolytic and

MAP-K pathways that were discussed in §1.3). Just as there is evidence for the

involvement of protein kinases in signaling cascades, there is also evidence for protein

phosphatase cascade systems [21]. Protein phosphatases are known to be activated by

other protein kinases. Some protein kinases and protein phosphatases can be found

on the plasma membrane as receptor molecules, others are located in the cytoplasm,

the nucleus, or in other intracellular compartments [31, 44, 52]. Some of the most

common substrates of protein kinases and protein phosphatases in these pathways

are other kinases and phosphatases [31].

There is now growing evidence that these pathways "cross-talk" since protein

kinases and protein phosphatases in one pathway interact with components in

another [31, 41]. Many signaling pathways are now known to be conserved between

prokaryotes and eukaryotes. The MAP-kinase pathway is the most notable of
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these [56]. Many different types of contemporary proteins are built from domains that

have been shuffled and mutated during evolution [57, 58]. This suggests that there is

an elaborate network of interactions between protein kinases and protein phosphatases

inside the cell. The connection patterns for such phosphorylation networks are likely

to be different for each cell type. They are also dynamic since phosphorylation and

dephosphorylation reactions are liable to occur continuously. It is estimated that the

continuous turnover of phosphates on proteins consumes 20% of the cell's ATP [59].

There is also evidence that in red blood cells, approximately 80% of the cell's ATP

is consumed in maintaining the cell's structural integrity [60]. This process involves

phosphorylation reactions.

Since the discovery of a role for protein phosphorylation in glycogen metabolism,

phosphorylation has now been shown to be part of every aspect of the life of a

cell. Diseases such as cancer are now known to be linked to deficiencies in the

cell signaling system and particularly to mutations in protein kinase or phosphatase

genes†. Kinnunen [61] has indicated that cell transformation might be represented

as a transition in the cell system, whereby a change in one sub-cellular system

might induce a transition of other subsystems changing the state of the cell.

Protein phosphorylation is now known to play a role in proliferation, metabolism,

differentiation and movement [62]. In fact, some of the same kinases involved in

signaling proliferation may also play a role in cell death. It has also been suggested

that the cell may have several different options for cell death that can be activated

by different perturbations of the protein phosphorylation signaling system [63].

Protein phosphorylation is now an area of vigorous scientific activity and

numerous reviews on the role of protein phosphorylation have appeared in recent

years [52, 53, 65, 66, 67, 68, 69, 70]. The number of enzymes found to be

controlled by protein phosphorylation appears to be growing in a dramatic manner

†Volume 6, Issue 4, of Seminars in Cancer Biology in 1995 was dedicated entirely to a
discussion of the role of Protein Serine/Threonine Phosphatases in Growth Control of Cells.
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Figure 1.10: The growth in protein phosphorylation research. [Sources: [64] (top)
and [49] (bottom).]
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(see Figure 1.10). Even so, there are very few proteins whose three-dimensional

structures are known for the phosphorylated and dephosphorylated states [53]. The

importance of protein phosphorylation must also be indicated by the increasing

number of databases containing information related specifically to this area of cell

signaling (see Appendix A).

1.6 Proteins as the Computational Elements of Cells

Cellular networks therefore have a very complicated topology. Given the complexity

of the protein kinases and protein phosphatases alone, it is not surprising that there

have been no reports of an explicit model of a complete cell signaling system. Such a

model would have to be different for each cell type. Furthermore, since these models

might be as complex as the cell itself, they may not provide much insight into cell

function [71]. Kauffman [72] has already argued that for any biochemical network to

evolve it must be relatively insensitive to slight differences in enzymatic details. It

may be possible to design a model of intracellular signaling before the precise details

of all the molecular interactions are known.

Over the last decade researchers have begun to think of cells as computational

units, with the protein molecules within them relaying information [39, 48]. The

structure of such an intracellular network depends on molecular encounters that are

limited by diffusion. Changes in the activity of a protein typically alters many target

molecules and may even feed-back on themselves. Bray [41] has indicated that a

protein can be thought of as an input-output device, with a non-linear function

(typically hyperbolic or sigmoidal) which relates the input (substrate concentration)

to the output (protein activity). Timing will be important in intracellular regulatory

circuits and there is acknowledgement that many aspects of cell behavior require a

capacity for information processing that is independent of the genome. Such behavior

is essentially controlled by the activity of many thousands of proteins.
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Bray [41] was the first to suggest that protein networks may have similarities

to neural networks. Specifically, his paper discussed how one might try to model the

response of a liver cell to the hormone glucagon. He suggested that an interconnected

network could be used to model the parallel processes that occur in living cells.

Table 1.1: Major differences between neural networks and cell signaling networks.

Salient
features of
networks

Neural Networks Cell Signaling Networks

(i) nodes all nodes typically identical nodes are not all equivalent in
performance

(ii) structure typically layered with
feed-forward connections only

regulatory signals often give
rise to feedback connections
resulting in cycles

(iii) connectivity highly connected more sparsely connected

(iv) learning rule connectivity altered to perform
a single function e.g., via a
back-propagation algorithm

cells must be able to respond
to multiple stimuli
effectively;changes typically
occur via evolutionary
processes

The classical model for a neural network is a multi-layer perceptron network

which is comprised of several layers, each node in a layer being connected to every

element in the next layer. Multilayer perceptron networks usually consist of a single

type of unit (node), often referred to as a neuron. The feed-forward connections

between the nodes have weights associated with them. The network typically learns

to perform a pattern recognition task based on a training set of inputs and associated

outputs. During this procedure the weights in the network are adjusted to minimize

the error between the actual output of the network and the expected output of the

network. This is generally known as a supervised learning rule. A test set of inputs
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is then used to determine whether the network has learned to perform the desired

task. In such a network the nodes are generally binary decision units which are "ON"

if the weighted sum of inputs into that node is greater than some pre-determined

threshold. Bray compared features of neural networks to cell signaling networks and

acknowledged that there are several fundamental differences that must be considered

when modeling cell signaling networks (see Table 1.1).

A multi-layer perceptron model may not therefore provide a particularly

effective way to study signaling networks with a parallel distributed architecture.

In terms of a more realistically structured neural network model, a Hopfield network

would be a more likely candidate [73]. However, there are important concepts to be

taken from Bray's paper. There are also aspects of a cellular network that can be

modeled in a similar fashion to that of a neural network (see Table 1.2). Bray discussed

how models of cell signaling networks might help to explain how cells may respond

to combinations of simultaneous extracellular signals, how cells robustly respond to

their environment, and also how new signaling pathways may have emerged through

evolutionary changes.

The cell can thus be considered as an information processing system [39, 48]

with the intracellular proteins as the individual computational units of the cell. This

kind of approach does not specifically involve modeling individual kinetic parameters,

but rather concentrates on the resulting properties of the system as a whole. It is

not currently possible to simulate all the detailed interactions inside cells, primarily

because they are not fully understood. This leads us to the idea that to model a cell

it is necessary to extract some essential features and base the simulation on general

properties of interaction of these signaling molecules. This kind of a model is generally

referred to as a "connectionist" model in the literature.

Barabasi et al. [74] have commented that techniques in science to describe

properties of large connected networks of non-identical components are extremely
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Table 1.2: Similarities between neural networks and cell signaling networks.

Structural
Features

Neural Networks Cell Signaling Networks

(i) node a neuron a molecular species

(ii) dependency
of nodes on
input

a weighted sum of inputs
from other neurons is
computed

the concentration of the
molecular species is a function
of regulating molecules and
their binding affinities

(iii) output of the
node

binary 0/1, (neuron fires
or does not fire),
depending on whether
weighted sum of inputs
exceeds a threshold

graded enzymatic activity of
the molecular species is a
complex (often sigmoidal)
function of its inputs

(iv) weights of
connections

represent the strength of
synaptic connections
between neurons

represent cytoplasmic factors
that affect enzymatic activity
e.g., temperature, pH, and
ATP concentration

(v) modification
of
connectivity

occurs via a training rule
which modifies the weights

occurs via evolutionary changes
e.g., via random mutation
events, fittest networks survive

inadequate. However, they also suggest that such networks often exhibit a high

degree of self-organization. A complex, parallel network of intracellular signaling

molecules may possess these emergent properties [41]. These are properties which

cannot easily be predicted by looking at the individual elements themselves. Bray was

the first biologist to suggest that cells might exhibit such features. He suggested that

a parallel processing network, described by a connection matrix which identifies the

interactions between the molecules in the system, might be an appropriate approach

to model a cellular network. In fact, he also suggested that modeling the cell as a

discrete dynamical system would be one way to approach the problem. His seminal

work has opened the door for a different kind of modeling in cell biology.
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1.7 Desirable Properties of Cellular Networks

Biochemical networks at the cellular level are extremely complex. It is natural to

ask whether such complicated networks can function in a stable manner. In fact, it

is important to ask questions such as whether these networks are relatively stable to

small perturbations. For example, are specific reaction rate constants and enzyme

concentrations finely tuned in order for optimal performance of the cell, or is the

behavior of the network as a whole relatively insensitive to the precise details of

the individual components? It has been argued that in order for cells to function

properly, key properties of the system must be fairly robust [75]. Many questions

remain unanswered as to why cell signaling networks are so complicated. Are there

particular advantages of a large distributed system that cannot be obtained by small

networks with only a small number of different molecular components?

Moreover, is the system as a whole stable to structural perturbations? Does the

system fail when a single component is corrupted, as can be achieved nowadays by

gene knockout experiments [39]? The system may well have a degree of redundancy

so that elimination of individual units in a distributed network will not have a

catastrophic result. To survive in an extracellular environment, the cell must be

stable, but not so much so that it is unable to adapt to changes in the external world.

However, it must also not be so fragile that small internal changes causes the network

to collapse. In other words, the cell should display a degree of homeostasis. Table

1.3 illustrates how some of the properties of cells discussed in this section may be

translated into the terminology of dynamical systems. This framework will be useful

when reading subsequent chapters where other dynamical models are discussed.

Bray has suggested that the following properties of cellular networks would be

desirable [48]. Cells should be able to recognize and react to environmental cues; they

should also be robust and resistant to damage. He also suggests that cells may have
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Table 1.3: Cellular properties in the language of dynamical systems. It is suggested
in this thesis that a stable cell behavior may be thought of as a stable attractor state
in the intracellular signaling system.

Cellular Properties Dynamical Systems Description

Relatively small number of persistent
cell behaviors

Relatively small number of stable
attractor states

Homeostasis (stability to small
perturbations)

Sizeable basins of attraction

Adaptable (to environment) Ability to switch between different
attractors via changes in input

the capability of encoding features of the environment. In fact, during evolution, cells

should be amenable to adaptation via mutation and natural selection.

A feature of cell signaling pathways, and thus of cell signaling networks of which

these pathways form a part, is that they are known to produce signal amplification.

The cell can translate a small change in concentration of a chemical in its surrounding

environment into a specific response such as the breakdown of glycogen. Cells need

to be able to respond to relative changes in the extracellular environment. Often only

a limited degree of amplification is required. The cell also needs mechanisms to shut

off these signals. One may speculate that this is why cells have developed dynamic

positive and negative regulatory mechanisms such as protein phosphorylation and

dephosphorylation.

The level of protein phosphorylation in the steady state will also have

considerable impact on levels of ATP consumption. In fact, it has been suggested

that the cell signaling system would conserve energy if molecules remained primarily

in their phosphorylated or dephosphorylated states [59]. In the literature, it has

been noted that sometimes the formation and hydrolysis of ATP occurs continuously
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and yet does not seem to perform any obvious functional role. These apparently

futile cycles of ATP may play a role in maintaining cell stability by controlling

phosphorylation states of important intracellular proteins.

One may also speculate that the cell signaling system may have evolved in

such a way as to minimize the metabolic cost of information. In a study of the

metabolic cost of neural information Laughlin and co-workers [76] have suggested

that in noise-limited signaling systems, "a weak pathway of low capacity transmits

information more economically, which promotes the distribution of information among

multiple pathways" . They estimated that a chemical synapse uses approximately 10 4

ATP molecules to transmit a single bit of information. Information processing in cells

is therefore likely to have significant impact on its utilization of energy.

1.8 Discrete Dynamical System Models

Suppose a researcher were to think of constructing a discrete dynamical systems model

for a single cell as Bray has suggested. A neural network model has been shown to

be inadequate for such a task. So, how might one set about actually doing it? This

section will be concerned with information that will help in answering this question,

by first posing some more fundamental ones:

• How can the desirable properties of cells be translated into the language of

dynamical systems?

• Can simple discrete, dynamical models generate complex behavior?

• How complicated would the dynamics of an n-dimensional discrete model be?

• What types of discrete models have typically been studied in the biological field?

When studying dynamical systems, there are general properties of the system

in question that one would like to investigate. For example, one goal might be to

predict the large-time behavior of the system and to determine all the possible states

that the system can occupy. Given a set of final states of the system, it would also be
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desirable to know the initial conditions that led to these final states. If the system is

restricted in its phase space somehow, one would like to be able to analyze why and

whether these sets of states are stable with respect to small perturbations.

The desirable properties of cellular networks discussed in the previous section

can be described within the mathematical framework of dynamical systems.

Homeostasis is a stability to small perturbations, both structural and temporal. In

view of the fact that cells exhibit only a small number of different behaviors, it

is possible that the states that a cell can occupy at any given time are somehow

restricted. Stable states can be thought of as stable dynamic attractors, either fixed

points or limit cycles. Each stable state will have a basin of attraction associated with

it which is related to the homeostatic property of cellular networks discussed in the

previous section. The response of any dynamical system to a given stimulus (initial

condition) will be related to its current state and therefore the context in which a

signal is received will be important. Changes in some nodes may cause a transition

from one attractor to another. The ability to switch from one attractor to another has

been demonstrated for a number of connectionist networks [72, 77]. These network

models will be discussed in some detail in §1.8.2 and §1.8.3. If certain stable states

can exist independently of extracellular signals then these patterns may determine

how the cell senses the extracellular cues. In this case it may be inappropriate to

view cell signaling as a problem of understanding how a series of proteins respond to

an extracellular stimulus. It may be more useful to view extracellular stimuli as cues

that shift the cell from one intrinsic dynamic attractor to another.

To return to the mathematics for a moment, and to answer the second

question posed above, a non-linear model will be discussed here. Linear systems

are more straightforward to study, but biological phenomena often exhibit non-linear

characteristics. Mathematically speaking, even a simple one-dimensional, non-linear

map can give rise to extremely complicated behavior. The logistic map, described
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by Equation 1.1, is known to display chaotic behavior in certain parameter regimes.

In fact the behavior of the system is critically dependent on a single parameter, p:

A map in a single dimension, controlled by a single parameter, is also easy to visualize

graphically. Cob-web diagrams [78, 79] and bifurcation diagrams can be drawn to

explore the properties of the mapping.

In the case of a one-dimensional map, the asymptotic stability of fixed points

may be determined by studying the first derivative of the map. Consider the mapping,

xn+1 = f (xn ), xn E [0,1] Vn, where f is differentiable at all points of the domain. A

fixed point, x o , satisfies the relation f (x0 ) = xo . If |f'(x0)| < 1 then the fixed point

is said to be asymptotically stable. If If (x 0 )1 > 1 then the fixed point is said to be

asymptotically unstable. Similarly, suppose that x o were a k-periodic point of f , then

fk (x0 ) = xo , where k E IN and fn(x0) xo for n = 1,2, ... , k — 1. The asymptotic

stability of the k-periodic orbit can be studied by examining the derivative of the

new map F(x) = f k (x) . One can also construct and study one-dimensional maps

where the function f is non-differentiable. For example, the tent map is differentiable

everywhere except at a single point.

The parameter p, lies in the range (0, 1]. Here the function f is a map f : [0,1] -+

[0,1]. This map exhibits attracting sets for certain values of the parameter t

(see Appendix E for the definition of an attracting set).

To return to the question of whether simple models can generate complex

behavior, it is thus not necessary to look any further than a simple one-dimensional,

non-linear, discrete dynamical system. What happens when such a system is studied

in multiple dimensions? Does it become so complicated that we can make no
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sense of it? These questions will be addressed in the next three sections in the light of

three different types of discrete dynamical models. Each of these mathematical models

has been extensively studied and has its own applications in the field of biology.

1.8.1 Cellular Automata

Complexity is everywhere in nature, even in a tiny object like a single bacterial cell.

One might imagine that biological systems may be impossible to characterize and

describe mathematically. What is the nature of the complexity? How simple could a

model be and still generate the complexity that mimics the real world of biology?

Von Neumann was fascinated by these very questions. He was the first person

to study a certain class of mathematical models known as "cellular automata" [80].

He proved that a system requires a certain minimum level of complexity in order to

replicate. In 1970, Conway developed what is now one of the most famous cellular

automaton models of all—"The Game of Life" [81, 82]. This automaton has since

been shown to be equivalent to a "Turing machine" . Turing had developed this

idealized model which he showed had the potential for universal computation [83].

Turing's work essentially laid the foundations for the modern theory of computation

and computability, but he too found his inspiration from the complexity of the

natural world around him. Cellular automaton models have since been used to study

biological pattern formation, bacterial growth, the immune system and have even

been used in the field of population biology. (For a discussion, see [84].)

A cellular automaton model is a discrete non-linear dynamical system comprised

of a lattice of finite-state automata at each site. Each site takes input from a local

region of the lattice (from the k nearest neighbors). The state of any given site is a

function of the state of its neighbors. Cellular automata models demonstrate that via

local interactions, complex dynamical properties can emerge and the system can self-

organize from random initial conditions. The dynamics of cellular automata can be
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Table 1.4: Qualitative properties of cellular automaton models. There are four
classes of cellular automaton behavior. Conway's "Game of Life" is a famous example
of a cellular automaton model.

Category Cellular Automaton
Description

Dynamical Systems
Description

Class I evolution to a spatially
homogeneous fixed state

evolution to fixed points

Class II evolution to a sequence of
simple or periodic
structures

evolution to limit cycles

Class III chaotic, aperiodic behavior chaotic behavior associated
with strange attractors

Class IV complex localized
structures, some
propagating

no direct analogy with
theory of dynamical
systems; long transients
observed

observed qualitatively from computer simulations and can be classified into four broad

categories [85] (see Table 1.4). Their dynamics can also be studied quantitatively [86].

1.8.2 Random Boolean Networks

The first connectionist study of a network of components inside a cell was performed

by Kauffman [87]. He studied the behavior of large, randomly connected networks of

binary "genes" called "Boolean networks" . His results suggested that even randomly

connected networks can exhibit a degree of stability.

A random Boolean network is a complex, parallel network. Genes regulate one

another inside this network according to rules of interconnection described by random

Boolean functions. The emergent global behavior of the network is controlled by the

local features of gene interaction. Each gene is modeled as a binary device in that

it can only take one of two possible values. The output of a gene at time t 1 is
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determined by applying a Boolean function to its inputs and therefore depends only

on its activity at the previous time step, since the random Boolean function is fixed

once it has been chosen. The state of the network is described by a vector which

lists the current values (0 or 1) of each gene in the network. The current state of

the network determines the next state and so forth; time evolves in discrete steps. A

genetic network is constructed by selecting the number of genes in the network (N)

and the number of inputs to each gene (K). Each node (gene) is then assigned a

random Boolean function. From this moment on, the network evolves state by state

according to a deterministic rule. There are a finite number of possible states that

the network can enter (2 N in total). As a direct consequence of this, the network

must eventually re-enter a previous state. The networks modeled by Kauffman do

not use external inputs.

The system is investigated by randomly assigning Boolean functions and initial

random values for each gene in the network, varying the network parameters N and

K, and observing the resulting behavior. In particular, Kauffman calculated average

network properties and examined the effect of small perturbations on the system. The

latter fall into two categories—structural and minimal perturbations. The emergent

network features vary from chaos to stability depending on the choice of K.

Kauffman's 1969 paper on "Homeostasis and Differentiation in Random Genetic

Control Networks" suggested that his randomly constructed networks were in fact

dynamically stable and exhibited the kinds of behavior expected from a complex,

parallel network of interacting genes. His simulations used networks of 1000 elements

with randomly assigned binary inputs and an update rule where the present state

of the network determined the next state according to a Boolean logic rule. The

many biological parameters that he needed for his networks were not known at that

time. He overcame this problem by using statistical parameters and investigating the

biological plausibility of the resulting networks.
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In particular, when K = 2 the networks exhibit spontaneous cyclic behavior

through small numbers of states and order emerges from random initial conditions.

This is a direct consequence of the fact that networks have only a finite number of

states. The systems also possess stable dynamic attractors. These are states which

are stable to small perturbations. In other words, networks with different starting

conditions sometimes reach the same cycle. These cycles were interpreted as temporal

modes of behavior of the network.

A network satisfying K = N displays maximally disordered, chaotic behavior

with a high degree of sensitivity to changes in initial conditions. There are a small

number of cycles (≈ N/e) with an average cycle length of approximately 2 N/² . When

K = 2, networks exhibit spontaneous collective order with minimal sensitivity. There

are roughly √N  cycles with an average cycle length of √N . When K = 1, networks

break into isolated loops. Thus, a fully connected network with K = N = 200

would have 2 ²0° different states and an average cycle length of 2 100 1030 . At one

microsecond per transition, it would take longer than the known age of the universe

to traverse all the states of the attractor. However, a network of 100,000 nodes with

only two inputs per component (K = 2, N = 100, 000), has 2100,000 different states

but only possesses around 370 state cycles. In other words, the actual number of

states (or stable attractors) that the system occupies is much smaller than the total

number of possible states.

Kauffman then asked the question of how realistic and relevant the simulations

were. Typically, in the genetic networks of living things there are perhaps no more

than about ten interactions per gene. Gene interactions can be described using

canalizing functions which are a subclass of Boolean functions. A canalizing function

is one where a change in at least one input can guarantee a monotonic change in the

output function. He compared an attractor with a cell type and the number of nodes

in the network with the number of genes in an organism. Since he could predict the
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number of attractors in his networks, it meant that he could estimate the number of

cell types in an organism. It also meant that he could predict cell cycle lengths as

the length of the state cycle attractors. The cycle lengths of bacterial cells and other

organisms appear to fit his predictions. In a similar way, the stability of cells can

be related to the stability of the attractors in the networks. Cell differentiation can

be explained as a process which carries a cell into the basin of attraction of another

cell type. Kauffman also assumed that the number of genes is proportional to the

amount of DNA in a cell, enabling him to estimate the number of genes and cell types

in humans. These predictions are also in the right range. Mainstream biology has,

however, for the most part ignored his results.

1.8.3 "Connectionist" Protein Signaling Networks

Very few connectionist models of cell signaling networks have been developed. One

approach to studying biological regulation networks is to consider a model which has a

sufficient level of abstraction to make it biologically plausible and yet computationally

tractable. Chiva and Tarroux [77] have utilized some of the ideas suggested by

Bray and have developed a connectionist model of a biological regulation network.

A genome is used to encode the architecture of the network and the individual nodes

of the network represent proteins with a continuous level of activity. Their model is

deterministic, recurrent and synchronous. The activity of each node in the network

describes the concentration of each protein. The activation of each node is updated

by computing the weighted sum of inputs into that node. This assumes that protein

interactions are additive and independent. The signaling network is represented by a

matrix of weights Wij , the activity of the network, at a given time step t, is represented

by a vector 4 t) and the state of the network is described by another vector x! t) E [0, 1].

The network is updated with the following rule:
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and

where T is the mean interactivity level between units.

Each node i has a genome vector, G i , associated with it. The genome for

each protein determines its conformational structure which, in turn, determines the

interactions of that protein (see Figure 1.11). Each weight element Wij is determined

by how well the conformational structures of the two proteins i and j match. This

is achieved by performing correlations between the part of the protein j that can be

regulated and the part of the protein i that tries to regulate it.

Figure 1.11: Simplified diagram of the Chiva Tarroux model (adapted from Ref.

[ 77]).
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Networks are evolved using a "Genetic Algorithm" , (GA), which is used to

mimic evolution. The genetic algorithm allows the network to change over time.

The goal was to develop an algorithm to allow the regulation networks to adapt to

environmental cues. The resulting efficiency of the system as well as the resulting

structural changes in the architecture were then discussed.

A population of cells is altered by selecting a number of "parents" at random

and allowing crossover between the chromosomes of the parents. Offspring only

replace parents when they have a higher fitness than the worst cell in the population.

Mutation events can also occur randomly during each generation of the GA. The

fitness function is designed to select networks that are robust to short perturbations

and adapt to long lasting perturbations. In other words, fitness is a measure of

adaptability to different environmental contexts. Two mechanisms are also allowed

to increase the genetic material from time to time. This is achieved by firstly adding a

new gene at random and secondly allowing duplication of previously existing genetic

material.

The resulting simulations illustrate several interesting properties. The first

observation is that the weight matrix develops a hierarchical structure. Units emerge

where the size of the weights on the input connections of some of the nodes are

much lower than the weights of their output connections. These are described as

canalizing units. They also identified a phase transition parameter, T = T, below

which the networks could not sustain limit cycle behavior, where T is the mean

interactivity parameter and controls the steepness of the sigmoidal fitness function.

At low interactivity, random networks exhibit a high degree of homeostasis with

a small number of attractors. The networks always evolve to a small number of

stable states, irrespective of initial conditions. At higher interactivity parameters,

networks exhibit a larger number of attractors and are sensitive to perturbations in

the extracellular environment. Networks with a smaller number of nodes exhibited



43

less varied behavioral modes. Also implementing the GA with only one of the two

operators, mutation and crossover, limited the fitness of the population.

The Chiva and Tarroux model cleverly uses some important aspects of the

biology. Specifically, they have used a genetic algorithm approach which mimics

properties of evolution and have based their network model on the fact that the

manner in which proteins interact depends on their conformational structure. The

protein structure, in turn, is controlled by a modeled genome. However, there are also

several drawbacks of their approach. The values at the nodes are used to represent the

concentration of proteins which occur in discrete quantities, but yet the representation

used is continuous. The weight matrix for their model signaling networks is fully

connected, whereas real signaling networks will tend to be more sparsely connected.

Networks of only 20 to 30 nodes were examined whereas in a real cell there may be

somewhere between 100 and 1000 components or more.

1.9 Cellular Observables

There are thus several different types of dynamical models and approaches which

one might try to use to model cellular processes. There is the highly detailed

approach which would involve the development of systems of differential equations

based on rate constants and known chemical reactions. In contrast, there is the

more abstract connectionist approach which relies on extracting some fundamental

features of the biology, which hopefully captures the most essential properties of

the system under study. In either case, the model should provide some new insight

into intracellular events that have already been observed but not yet satisfactorily

explained, or alternatively should suggest new experimental paradigms or make

testable predictions. In this section the following questions will be explored:
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• What types of features of cells can currently be studied by biologists in real-time?

• What kinds of predictions can be made by connectionist models of intracellular

signaling?

• Are there any important problems in biology to which such a model could be

applied?

Freely diffusible second messengers, such as calcium, can already be studied in

real-time. Features of calcium signaling were discussed briefly in §1.3. Techniques

are likely to become available in the near future to study fluctuations in levels of

ATP inside cells. The gradual development of cellular techniques (for example, the

development of fluorescent markers) which enable monitoring of the interactions of

proteins in real-time, and in intact living cells, will eventually enable researchers

to monitor the dynamics of intracellular signaling both spatially and temporally.

This will give crucial insight into signal transduction. In fact, review by Hunter

[53] indicates that it is becoming possible to monitor, in real-time, the movement of

protein kinases inside living cells.

A generic or connectionist model of intracellular signaling would never hope to

reproduce the complete range of intracellular protein interactions nor would it expect

to predict how any particular cell performs specified tasks. The questions addressed

concern predictions about observables that are the averaged and conserved features of

cells. For example, is there a constant and optimal ratio of kinases to phosphatases

in a cell? What is the typical degree of divergence in a signaling pathway? On

average how many target substrates does a kinase or a phosphatase have? What is

the probability of disrupting a cellular function by a gene knockout experiment? How

many distinct behaviors can one cell type display? How many of the cell's signaling

proteins show oscillations in activity and what is the range of periodicities? It could

thus provide a different kind of insight into properties of cell signaling networks to

those of more explicit models.
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Protein phosphorylation plays a fundamental role in processes in the central

nervous system. In particular, it is thought to be important in changes in

communication between neurons in the brain. Long term potentiation (LTP) is

the long lasting increase in strength of synaptic transmission following certain

types of high frequency stimulation of neurons. In the hippocampus this appears

to involve certain receptor types (NMDA receptors) and certain protein kinases

(e.g., CAMKII, PKC). LTP is a specific type of synaptic plasticity thought to underlie

all constructs of learning and memory, but the cellular mechanisms responsible

for these changes are not well understood. The mechanisms may be presynaptic,

postsynaptic or involve changes in both neurons. There are several phases of LTP,

but the early phase of LTP (1 hour) does not involve changes in gene expression. A

generic model may be able to be used to predict the types of intracellular interactions

that may be important in such processes.

1.10 Research Purpose and Design

Cells can undergo a variety of changes in activity during their lifetime. These activities

may include aerobic or anaerobic metabolism, a mitotic or meiotic cell cycle, crawling

movements, differentiation or apoptosis [13]. Although not precisely defined, these

types of activity are generally regarded as examples of different modes of cell behavior.

The switching between these kinds of behaviors can be triggered by external stimuli,

such as hormones in multicellular organisms, or can occur autonomously, as in some

developing embryos.

A cell is an inherently parallel structure like the brain. The brain can be thought

of as a complex interwoven structure made up of components known as neurons. The

cell can be viewed as a network of signaling molecules in much the same way. Proteins

control the cell's response to its environment, resulting in the management of cell

reproduction, cell differentiation, cell metabolism and cell stability. In the attempt to
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understand how cells work, it is therefore natural to turn to a model based solely on

these signaling molecules. Although many different kinds of proteins exist inside the

cell, kinases and phosphatases can be identified as playing a particularly important

role in the cell's control mechanism. Each protein has a highly complex structure and

this structure dictates how it interacts with other molecules. Each protein regulates

many others forming a complicated network inside the cell.

The rapidly growing data on cell signaling pathways make it difficult to envisage

how a model, which includes all this detail, could provide any insight into cell function.

It has, however, been assumed that a complete knowledge of all the molecular details

of interactions are a prerequisite to constructing any model of how all these different

cascades interact [43]. In any case, constructing such a highly detailed model would

be daunting and may also provide no additional insight into how such a complex

system works [71]. It may be many years before this information is complete. Other

approaches are needed to complement existing techniques if researchers are to gain

insight into how cells function and behave.

Some features of cell signaling may not require a full list of details. It has been

suggested that the more traditional, reductionist approach of studying individual

components and cascades in detail may not be adequate [39]. A study of individual

components of a cell may miss essential features of the system as a whole. Rather

than trying to model a cell in all its detail, it may be more expedient to try to model

the system at a greater level of abstraction.

The goal of this project has been to develop a generic discrete dynamical system

model of the interactions between protein kinases and protein phosphatases. In

particular, the emphasis has been on examining dynamic properties on short term

time scales that can occur independently of gene expression. This is a reasonable

assumption since these proteins are known to be some of the most important

intracellular signaling components of cells. The model is general and holistic in that it
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attempts to represent cell behavior in terms of the overall activity of all the signaling

proteins in the cell. In contrast to simulating a few proteins in detail, in our model

there as many as one hundred highly idealized protein kinase and protein phosphatase

components. The model is designed with a view to building in more detail in later

versions.

This type of modeling is similar to that of recurrent neural networks designed

to provide insight into the functioning of the brain [73], or of Boolean networks

designed to understand homeostasis in gene regulation networks [72, 87]. The model

concentrates on the rapid time scale 10 mins) epigenetic information processing

ability of cells that is to some extent independent of the genome and predominantly

controlled by protein phosphorylation networks [48].

A discrete dynamical system model is developed to model the intracellular

dynamics. Monte Carlo methods and a Genetic Algorithm are used to explore the

state space of simulated networks. These simulations are intended to investigate

whether simplified random networks of signaling components can display limited

numbers of dynamic attractor states (in a manner analogous to the studies of

Kauffman on genetic regulatory circuits). The purpose has not been to represent

any particular cell type but to examine how the general features of signaling proteins

may generate the limited range of behaviors that are seen in living cells.

The dynamical states of the system are explored both computationally and

analytically. The hypothesis is that the attractor states of the intracellular signaling

system may be the biophysical correlate of the behavioral mode of the cell. The

activity of the signaling proteins in the cytoplasm of cells may be organized around a

limited number of high dimensional dynamic attractors. It is suggested here that the

stability of the attractors may provide a framework for understanding why a cell may

persist in forms of cell behavior such as crawling. Moreover, since cell behavior is a

rather poorly defined concept, ascribing the different attractors in the cell signaling
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network to different modes of cellular behavior may actually help introduce it as a

more precise concept. A shift in cell behavior may correspond to a change in the

attractor dynamics (i.e., a switch from one attractor to another). This may provide

a framework to help explain why:

• there are only a finite, limited number of stable cell behaviors,

• cells display sensitivity to some external signals but not to others,

• gene knockout experiments do not always abolish the desired behavior.

The ultimate goal of such a project is to make general statistical predictions

about the range of network parameters that is possible for building any functional cell

signaling network. Once the complete genome of a number of eukaryotic organisms,

and the expression pattern in specific cell types are known, it may be possible to verify

the ratio and specificity of PPs to PKs in a real cell. From these data we could judge

the extent to which evolution has moved the range of different types of cells in nature

away from the average features of all possible cell types. Statistical predictions might

also be made to see how often the elimination of a component protein type disrupts

the dynamics of an attractor. This could offer an insight into why some gene knockout

experiments that eliminate signaling proteins appear to have very little effect upon

cell function [29]. The overall frequency and potency of disruptions of cell behavior

by such gene knockouts may represent the kind of observable in cell biology that is

only predictable by a generic model of intracellular signaling. It may also be possible

that a network with a large number of signaling elements with a relatively low level

of connectivity can provide cellular networks with the stability that they need.
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1.11 Thesis Outline

In this section, an outline of the thesis layout is presented. Chapter 2 develops a

discrete dynamical systems model based on salient features of signal transduction

networks. The model concentrates on control of proteins by phosphorylation. The

assumptions and limitations of this modeling approach are presented.

The numerical and analytical techniques that are used to study the model are

outlined in subsequent chapters. In Chapter 3 a Monte Carlo simulation method is

described and utilized to study dynamics of networks over large parameter regimes.

In Chapter 4 a Genetic Algorithm (GA) is designed and developed to study

networks in a more localized parameter range. The GA is designed specifically to

incorporate certain important evolutionary concepts drawn from the biology. The

effects of systematically altering parameters of the algorithm are discussed. This

chapter also compares the Monte Carlo approach with the genetic algorithm.

The dynamics of networks evolved by the GA are analyzed with the use of

a clustering algorithm presented in Chapter 5. The hypothesis that cell signaling

networks may possess a limited number of attractor states is discussed in light of

these data.

Chapter 6 examines the dynamic properties of small networks with the aid of

various mathematical and numerical tools. Specifically, proofs of local stability of

fixed points and periodic limit cycles are given in certain specialized parameter cases.

The relevance of analyzing approximations to the fully discretized model is argued.

Chapter 7 presents a short collection of insights that can be gained from studying

topological networks via graph theoretic methods. The signal amplification properties

observed in cascade models will be discussed in the context of this model. The

structure of a network generated by the GA is also examined.

In Chapter 8, the results of these data are summarized. The flexibility of this

model is discussed and ideas for future work are presented.



CHAPTER 2

DEVELOPING A CONNECTIONIST MODEL

2.1 Basic Assumptions

This chapter will be concerned with developing the discrete dynamical model. To

construct the model a number of idealizations have been made concerning the

interactions between signaling proteins. These are summarized below:

• Consider only interactions between PKs and PPs. Inputs to the system are not

explicitly represented.

• The model of intracellular signaling is designed to concentrate on aspects of

intracellular signaling that occur epigenetically (i.e., independently of the genome).

• As shown in Figure 1.2, a phosphorylation reaction requires a molecule of ATP. It

is therefore assumed here that there is an unlimited supply of ATP available inside

the cell. In fact, in an average cell it is estimated that approximately 10 9 molecules

are available for use [13].

• The time scales of diffusion are taken to be small when compared to protein

phosphorylation. This is a reasonable assumption for small cells (e.g., platelets)

and for smaller cellular compartments or synaptic cleft regions.

• All regulatory processes are taken to occur on the same time scales, leading to a

synchronous updating rule.

• No compartmentalization is included. The cell is essentially considered as a

homogeneous stirred medium.

• The initial model considers only one regulatory domain per protein type.

• It is assumed that addition of phosphate groups activates proteins.

• It is also assumed that all proteins have equal affinity for substrate molecules and

that all attempts to phosphorylate and dephosphorylate are independent.

• The concentration levels of all protein types are the same. This is controlled by the

parameter ()max .

50
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2.2 Model Development

The main focus of this study is on the control of protein activity by phosphorylation.

This simplification seems reasonable since kinases and phosphatases make up the bulk

of the different types of elements in the intracellular signaling network and are known

to control many features of cell behavior [32, 45]. Some cell surface receptors also

appear to be directly linked to kinases and phosphatases [52].

The functional structure of a protein kinase usually consists of separate units.

The first is a unit with catalytic activity; the second unit (or more commonly a series

of units) is referred to as a regulatory unit. The latter are so named because they can

be regulated by other molecules. For example, they can be phosphorylated by other

protein kinases. Protein kinases work by using the free ATP in the cytoplasm to

attach a phosphate molecule to the regulatory site of another specified target protein

(see Figure 2.1).

Figure 2.1: Schematic diagram of regulatory and catalytic domain structure and
phosphorylation. In the initial model only one phosphorylation site per regulatory
domain is considered.

Protein phosphatases have a similar functional organization with a single

catalytic unit and separate regulatory units [44, 45]. The phosphatases bind to specific

phosphorylated proteins removing the phosphate molecule from the regulatory site.

The attachment of phosphate groups by protein kinases is assumed to be stable unless

removed by specific protein phosphatases. It is the phosphorylation status of the one
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or more regulatory units that determines the activity of the catalytic unit of each

kinase or phosphatase. The specificity of the output for a kinase (i.e., the target

it will phosphorylate) is generally determined by a region in the catalytic unit that

recognizes a specific part of the regulatory units of other proteins. For some kinases

and phosphatases there are targeting subunits that perform the same role [55].

The simplified generic network, therefore, consists of kinases and phosphatases

that are cross-coupled to interact with one another (Figure 2.2). A particular

collection of kinases and phosphatases and their interactions can be thought of as

a particular cell type. The initial emphasis is on exploring the intrinsic dynamics of

the phosphorylation system and not so much the specific tasks it performs. Inputs to

and outputs from the system have not been explicitly represented.

Figure 2.2: Schematic diagram of interactions between signaling proteins. Each
box represents a particular type of signaling protein with kinases represented by solid
boxes and phosphatases by dashed red line boxes. Each protein type consists of a
regulatory site and a single catalytic subunit. The interactions between proteins are
represented by lines emanating from the catalytic unit linking to target regulatory
sites. Connections are randomly assigned with predefined probabilities. Each protein
type can regulate a number of other types (kinase or phosphatase). Some proteins
may be self-regulating.
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The time for diffusion of proteins around the cell is imagined to be fast compared

with the time for phosphorylation reactions. This is a reasonable assumption for

small cells (e.g., platelets) or intracellular compartments. The diffusion coefficient of

an average sized protein is estimated to be between 10 -7 and 10-8 cm² /s [88, 89, 90].

Using a diffusion constant, D, of 5 x 10-8 cm²/s, the diffusion equation can be used

to show that this corresponds to the protein molecule being found within a root-

mean-square distance, x , of 0.1µm from its initial position† in roughly tmix = 1 ms

(±² = 2Dtmix ). The turnover rate for most enzymes operates in the interval

of 10 -3 to 10-² seconds [88], but these can vary [91]. Turnover rates for protein

kinases are more likely to be in the range 0.1 to 1 second. Therefore, in small cells or

intracellular compartments reaction rates are determined by the turnover rate, rather

than the diffusion rate (tturn tmix) [88].

The exact manner in which the phosphorylation of each of the regulatory units

affects the catalytic activity is not generally known. In this initial presentation

complex interactions between regulatory units have not been investigated. All protein

types have a single regulatory site. The activity of each type of kinase or phosphatase

is simply determined by the occupancy of available phosphate sites.

The model of signaling proteins consists of a set of interacting nodes where

each node represents a "type" of kinase or phosphatase. In the description of the

dynamics of the model, the "activity" of a protein refers to the mean activity of all

the molecules of that specific protein type across the cell rather than the behavior

of a single molecule (see Figure 2.3). A connection matrix is used to represent the

specific set of interactions between kinases and phosphatases in any given network.

Each of the modeled signaling proteins has a single regulatory unit and thus all

of the interactions between proteins are represented in a single connection matrix M ij .

Non-zero elements in the position (i, j) of the matrix indicate that the catalytic site of

†The radius of an average eukaryotic cell varies from between 5 pm and 50 pm.



Figure 2.3: A single node in the network represents a pool of molecules. Not all of
the molecules will be phosphorylated at any given time. The node illustrated in this
figure is shown with thirty molecules, and is represented schematically by a single box
in Figure 2.2. Here, 20 of the 30 molecules are phosphorylated (i.e., have a phosphate
group attached). These are considered to be active molecules.

node (protein type) i interacts with the regulatory unit of node j. If i is a kinase, then

the non-zero elements are +1, and if i is a phosphatase, the non-zero elements are

—1. The nodes in the network are labelled in such a way that the upper rows of the

matrix are always different protein kinases and lower rows are distinct phosphatases.

Each instance of a network, with a specified set of nodes and a connection matrix

determining how they interact, corresponds to an individual cell type. Different cell

types (Mij)can be generated using the following control parameters:

• total number of different types of signaling proteins: N

• the fraction of protein types that are kinases or phosphatases: fk; fp = 1 - fk

• the probabilities of interaction of each type of kinase and phosphatase: pk, ph.

The set of interactions for each protein of each cell type is randomly selected

using the probabilities pk and ph. Some proteins in the networks may have no

regulatory input and others may be self-regulating (Figure 2.2). In any given network
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every kinase has the same pk value (similarly for phosphatases). Later simulations

are presented where protein kinases and protein phosphatases do not have the same

output specificity.

2.2.1 Simulating the Dynamics of a Single Cell Type

A deterministic rule, called the update rule, is implemented. This changes the activity

of the proteins within any network over time as proteins influence one another. The

activity of the catalytic unit and level of phosphorylation (phosphate occupancy) of

the regulatory unit of any node i (at a specified instant in time t) are denoted by

aC t) and IP ) respectively, where 1 < i < N. The activity of each node represents2

the number of active molecules of protein type i. A molecule is activated when it

is phosphorylated and inactivated when it has no phosphate group attached (i.e., it

is in the dephosphorylated state). Since the activity and occupancy of each protein

type represent information about the properties of a limited number of molecules,

they are represented by integer values in the range [0, () max ], where omax = 10, 000. A

maximum activity of ten thousand was chosen as a plausible estimate of the maximum

number of molecules of any protein type in a real cell. The occupancy of any protein

type is the average number of molecules of that type whose regulatory units have

become phosphorylated. See Figure 2.3. For example, if .9 t) = 9, 000, then 90% of

the molecules of type i are phosphorylated.

At each time step t, the change in occupancy of each node depends on its current

occupancy, which other nodes interact with it, and their level of activity. If a node is

currently highly occupied (i.e., many molecules are already phosphorylated) it is more

difficult for interacting nodes to increase this level than if the level of phosphorylation

were low. The level of activation of each node represents the instantaneous, average

activity level of all the molecules of a particular type of kinase or phosphatase.
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The dynamic behavior of each network is evaluated by a simulation based on

a non-linear, synchronous, recursive update rule which determines the activities of

the proteins at a series of discrete time steps. All allowed phosphorylation and

dephosphorylation reactions occur between consecutive time steps. The iteration

is repeated for a specified number of time steps, T. The time for diffusion of proteins

within the cell is assumed to be negligible compared with the time for phosphorylation

reactions. The occupancy level of each node at time t + 1 depends on its current

occupancy, which other nodes interact with it, and their level of activity at time t.

The model, therefore, synchronizes all of the changes in binding and makes

a simplification by having all of the regulatory processes occur on the same time

scale. The update rule also has all signaling proteins with the same dynamic range

of concentration and all attempted phosphorylations and dephosphorylations occur

with equal probability (i.e., the substrate affinity of every kinase and phosphatase is

the same).

2.2.2 Derivation of Dynamical Update Rule

Given an interaction matrix and the activity state of the network, it is possible

to estimate whether on average there are more phosphorylation attempts on any

node than dephosphorylation attempts. This is calculated through Equation 2.1.

It is assumed that all phosphorylation or dephosphorylation attempts by kinases

or phosphatases are independent, so that the number of attempts to bind a new

phosphate to any node j, bj , is calculated from the weighted sum of inputs into that

node:

It is also assumed that affinity for substrates is the same for each protein kinase and

protein phosphatase (i.e., that all attempts to phosphorylate and dephosphorylate
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have equal weighting). If bj is greater than zero, then on average there are more

kinase molecules influencing that node than there are phosphatase molecules trying

to dephosphorylate molecules of type j. If, however, bj is less than zero, then on

average there are more phosphatases trying to dephosphorylate node j than there

are kinases trying to attach phosphates. If the number of phosphorylation and

dephosphorylation attempts exactly balance, then bj will be zero. Therefore, given

the current occupancy of node j and the proteins that interact with it,† the number of

attempts to phosphorylate protein molecules of this type can be calculated. It is then

possible to calculate the new occupancy of node j resulting from these interactions.

From the computation of b3 , basic probability theory can be used to estimate how

many of the binding attempts were successful, given the fact that a proportion of the

protein molecules of type j were already phosphorylated. Not every attempt to bind

a phosphate group will be successful. Suppose, then, that o f molecules of node j are

phosphorylated (out of a possible omax = 10,000 molecules).

The probability of a phosphate group being added to a "free" molecule which

is currently in a non-phosphorylated state is simply

Similarly, the probability of removing a phosphate group from a molecule which is

currently phosphorylated is

Then the number of attempts needed, on average, to bind one new phosphate group

is 1/pf and the number of attempts needed to remove one phosphate group from

the pool of molecules is 1/pe . The underlying assumption here is that phosphate

†These can be found by looking at the non-zero elements of column j of the interaction
matrix M44.
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groups are added or removed at random. In other words, it is assumed that all

molecules exist in a homogeneous stirred medium and are free to diffuse at random.

To bind one new phosphate group to a molecule in the pool requires, on average,

attempts. After this many attempts, oj + 1 molecules will now

be occupied/phosphorylated. Therefore, the number of phosphorylation attempts

required to bind two new phosphate groups, N1 , assuming that each attempt to bind

is independent, is written as follows:

This formula is generalized to obtain the average number of attempts required to

bind n new phosphate groups (i.e., to go from a total of oj to oj + n phosphorylated

molecules). This is given by Equation 2.2.

Similarly, the number of attempts required to dephosphorylate a single

phosphorylated site is equal to omax/oj . Hence, the number of attempts required

to dephosphorylate two molecules, Ne , is given by:

Thus, to remove n phosphate groups (i.e., to go from oj to oj —n sites phosphorylated)

requires a certain number of attempts (see Equation 2.3).

Equations 2.2 and 2.3 are Riemann sums for the following integrals, where o'j = oj +n,

implying > 0 when the overall effect of binding attempts is to attach new phosphate
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groups and b'j < 0 where the overall effect is to remove phosphate groups†, respectively

(see Equation 2.4).

On average, the number of attempts needed to bind a new phosphate molecule

increases as oj increases since it is harder to find an unphosphorylated molecule.

Similarly, the number of attempts required to remove a phosphate increases as o j

decreases since there are more chances to bump into molecules which are already

dephosphorylated.

The problem is as follows. If there are b3 attempts to attach or remove

phosphates (as calculated from Equation 2.1) then how many molecules will be

become phosphorylated as a result? The known quantities oj , bj are used to

calculate the unknown quantity dj . Evaluating the integrals in Equation 2.4 gives

(respectively):

Each summation can be approximated by an integral because °max is large.

These relations can be equated with the expression for b3 given in Equation 2.1.

Since bj and oj are known, o can be calculated by integrating and rearranging the

equations in (2.5). There are three cases to consider: (i) b j < 0 (more attempts to

dephosphorylate), (ii) b3 > 0 (more attempts to phosphorylate) and (iii) b3 = 0.

†In the latter case, the binding variable, b3, is defined to be a negative quantity in order
to distinguish between overall phosphorylation and dephosphorylation attempts which are
computed from Equation A.



The number of new sites filled at the next time step, or 1) , is dependent on the

number of new attempts to bind and the current number of phosphorylated molecules

of that protein type. The saturation function f places upper and lower bounds on

the occupancy level (or number of phosphorylated molecules) for each protein type

since the occupancy level must be non-negative and the upper bound is a result of

the finite concentration of any protein type in the cell (see Figure 2.4). Currently

each node has the same ()max value.

Figure 2.4: The updating function f (o (t) , MO).

†where [x] denotes the "flooring" function (the greatest integer smaller than x) in
Eqn. 2.6.
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Note that the update rule implies that if a node has zero input, its level of

phosphorylation remains constant. Also, the function f is continuous at b (jt) = 0 and

A function g determines the relationship between the activity level of a protein

at time t + 1 and the occupancy of its regulatory site at the same time step. As an

initial simplification, g is the identity function (Equation 2.7). At time t, therefore,

the state of the network (cell) is described by an N-dimensional vector 0( 0 from which

the activity vector a(t) is calculated:

This iteration is repeated for a specified number of time steps, T. The symbols used

in the model development are included in the "List of Symbols" section for reference

purposes.

2.3 Summary

A number of modeling assumptions were listed at the start of this chapter. Despite

these apparent restrictions, the model is flexible enough to be extended in a manner

which allows several of these assumptions to be relaxed. This will be briefly touched

upon here and discussed in more detail in the final chapter.

The model also incorporates several concepts that were introduced in the

previous chapter. While intracellular signaling in biological cells utilizes many

different types of molecules, the proteins are considered to be some of the most

important computational elements of cells. A network of protein phosphorylation

reactions is considered here. This simplification seems reasonable since kinases

and phosphatases make up the bulk of the different types of elements in the

intracellular signaling network and are known to control many features of cell behavior
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[32, 45]. Some cell surface receptors also appear to be directly linked to kinases

and phosphatases [52]. This was discussed earlier in §1.5. The effect of changing

model parameters can be used to investigate the effect of altering the ratio of kinases

to phosphatases. The current assumption of equal numbers of each type may not

be unreasonable [53]. The model also incorporates the idea of cross-talk. This is

captured by the connectivity parameters and the fact that the each modeled cell type

is represented by a matrix of interactions.

An important feature of the model is that the new occupancy level depends

both on the activity and occupancy values at prior time steps so the network shows a

hysteresis effect. The model synchronizes all of the changes in binding, and implicitly

assumes that all of the regulatory processes have the same time scales. The possibility

of incorporating different time scales into the model will be discussed in Chapter 8.

The model also currently assumes that there is only one regulatory domain per

protein. Using several sites would involve considerations of how protein domains

interact. Biologically speaking, this relates back to the concept of multi-site

phosphorylation which was discussed in the introductory chapter.

Another limitation of the current model is that all protein types currently

exist at the same concentration levels. This assumption can be relaxed by careful

consideration of the parameter o max . This will be discussed further in the final

chapter.

Second messenger molecules could be included by feeding additional nodes into

the network to create signals that feed into the phosphorylation network. The model,

as it stands, can be used to examine effects of changes in inputs to the network, if

nodes with no inputs are considered to be external influences. Hence, changes in

initial conditions of such a network mimic the effect of external signal perturbation.

This will be seen in Chapter 5.



CHAPTER 3

MONTE CARLO SIMULATIONS

3.1 Introduction

In the previous chapter, a discrete dynamical model for interactions between signaling

proteins is developed. The model is designed from a knowledge of the biology. The

primary goal of the model is to extract some generic features from the biological

system, and it is also intended to capture essential features of the intracellular

signaling system. The basic model is considered, where there is no distinction between

activity and occupancy of signaling proteins. The model remains sufficiently general

to be extended and improved upon in later versions.

The Monte Carlo simulation method is outlined in §3.2. The motivation

for this approach is that it is an effective way to sample a broad spectrum of

different parameter cases. The simulations randomly sample the dynamics of modeled

networks over the parameter space. It is important to understand whether even the

simplest version of the model can generate rich dynamic behavior or whether the

modeled networks simply exhibit highly unordered, chaotic features. Previous work

on connectionist models by Kauffman [87], Hopfield [73], Wolfram [85] and Chiva and

Tarroux [77] indicate that the latter properties would be unlikely. Nonetheless, the

model properties must be thoroughly explored.

Data are presented in §3.3 from a systematic study of certain parameter regimes

of the model via the Monte Carlo simulation approach. Specifically, it examines the

effect of increasing the connectivity within simulated networks. Parameters are always

maintained within a biologically plausible range. Resulting networks are classified into

two different types depending on their dynamic properties. Some of the drawbacks

with this classification will be discussed. A biological indicator of dynamic behavior

is also suggested in §3.4.

63
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3.2 Method

The Monte Carlo simulation method is outlined in this section. A set of C "modeled"

cell types are constructed by generating a set of randomly constructed connection

matrices constrained by the parameter values defined in §2.2. Fixed values for N =

100 and fk = fh = 0.5 are used. Connectivity parameter values are chosen in a

biologically realistic range, varying pk = ph from. 0.01 to 0.10, incrementing in steps

of 0.01. To examine the variety of behaviors of the modeled networks, each network

is investigated from a series of S random initial starting states (see Figure 3.1).

Figure 3.1: The Monte Carlo simulation method. The random cell type shown here
has the following parameters: N = 10, fk = 0.5, ph = pk = 0.2.
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Typically, between one hundred and one thousand random networks and

starting conditions are simulated. For low connectivity values, each network is

simulated for T ranging from 100 to 500 time steps. In a model where the function

g is the identity function, an occupancy vector o is sufficient to characterize the

starting state of the network. The phosphorylation level of each protein type is

set independently as a random integer, with 0 <= oj<=oma x,where 1 <=j<=N.

The dynamics of the proteins are then simulated over a series of T time steps using

the update rule defined in §2.2.2. A summary of symbols used in the Monte Carlo

simulation method can be found in the "List of Symbols" .

3.3 Results

For each set of parameters, [ph , pk , fh , N], the behavior of one hundred randomly

selected cell types are investigated, each from one hundred random initial conditions.

A striking feature of these networks is that they settle down to states where many

nodes do not change at all or change by less than 10%. This is seen at all values

of ph = pk , but particularly at low probabilities (0.01, 0.02, 0.03). Other observed

features are that protein types within networks are seen to oscillate in and out of

phase with one another at the same frequencies. This will be discussed in Chapter 6

in the light of more rigorous analysis of smaller networks.

Figure 3.2 broadly illustrates some of the general features of the simulations.

Typical dynamic behaviors are stable fixed points and stable limit cycles. The network

shown in this figure settles into two different stable configurations within 150 time

steps from two different starting states. One configuration is a fixed point (A) and

the other is an oscillation with a period of twenty-eight time steps (C).

Figures 3.3 and 3.4 show examples of protein activities from some sample

networks with ph = pk = 0.01, 0.05 and 0.10. It can be seen that oscillations

occur in the activity of both kinases and phosphatases even at low interaction



Figure 3.2: Sample dynamics from a single cell simulation from two different starting
states. The cell parameters are [ph, Pk, fh, T, N, 	 = [0.03, 0.03, 0.5, 500, 100, 100].
The left hand plots (A, C) illustrate the change in the activity state of the proteins in
the network over time. Each row represents the activity of the one hundred different
protein types in the network (one pixel represents one protein type), and each column
represents the change in activity of the protein over time. Proteins with low activity
values are shown in blue and a graded color scale is used with highly active proteins
shown in red. The corresponding right hand plots show the same example, but
illustrate how the sum of the activity of all the kinases (bold line) and phosphatases
(dashed line) varies during the respective simulations. Plot A (and B) shows an
example where the protein activities settle into a fixed point configuration. Plot C
(and D) illustrate the same cell, but from a different starting configuration. The
network settles into a limit cycle oscillation. In (A) and (B) every protein settles to a
fixed activity value whereas in (C) and (D) some of the proteins are cycling through
a regular pattern of activity values.
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Figure 3.3: Protein activities and range of fluctuations are shown for typical
networks with ph = pk = (A,B) 0.01, (C,D) 0.05. The left hand diagrams (A,C) show
the variation in activity, over time, of those protein types which show fluctuations in
activity values. Protein types which stabilized to fixed values are not shown. The
protein activity plots in (A,C) are stacked on top of one another, kinases first. The
ordinate axis is drawn so that the full range of activity of each fluctuating protein
is shown. The corresponding plots (B,D) illustrate, in each case, the percentage of
the total number of proteins that are found to fluctuate against their corresponding
fluctuation range. A window of w = 50 time steps and a run-in of 200 time steps are
used. (See text for description of method.) In the ph = pk = 0.01 network (A,B), only
two oscillating proteins are found, one kinase and one phosphatase. The period of
the oscillation is 15 time steps and the network has a settle time T, < 50 time steps.
In (C,D) there are nine kinases and seven phosphatases oscillating with a period of
140 time steps and T, 100 time steps.
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Figure 3.4: Protein activities and range of fluctuations are shown for a typical
network with ph = pk = 0.10. This figure follows the same format as Figure 3.3.
The plots (A,B) indicate that over the first 600 time steps, more than 20% of the
proteins are found to be fluctuating by more than 60% (twelve kinases and twelve
phosphatases), this is because the network is still in a transitory period. The network
finally settles after about 15,000 time steps into an oscillation of length 1,000 time
steps (C). At this time four proteins are found to be oscillating, three are kinases and
one is a phosphatase.
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probabilities. The settle time, Ts , or the number of time steps required for networks

to stabilize, of more densely connected networks (where ph = pk = 0.10) can increase

dramatically from T, < 100 to T3 > 1, 000. However, instances at higher connectivity

are found with T, < 100. Steady states (fixed points) are still apparent at these

higher connectivities. However, settle times are typically much longer, with networks

undergoing rapid fluctuations in activities for early times. This kind of behavior is not

unexpected, as increasing the probability of interaction between modeled kinases and

phosphatases is likely to increase the complexity of interactions within the cell types,

thereby increasing the variety and complexity of the network evolution. Figure 3.4C

with ph = pk = 0.10 shows an example where the network settles into an oscillation

with a period of 1,000 time steps after an initial settle time of T, 15, 000.

Networks which display only fixed point behavior are unlikely to be

representative of real biological signaling networks. Oscillations are readily observed

features of real cells, as discussed in Chapter 1. In order to eliminate those networks

which show stability over all simulated starting conditions, a classification criterion

is introduced.

The difference, Δw, between the maximum and minimum activity of each

protein in any given network is measured after a suitable "run-in" time and over

a specified number of time steps called a "window" . Any network with no proteins

satisfying Δw/omax > 0.6 (over all of the simulated starting conditions) is said to be

a "Type I" network†. Otherwise, the constructed network is said to be a "Type II"

network. The Type II networks shown in Figure 3.5 are either networks which contain

oscillations in protein activity levels, or networks that were still undergoing transient

fluctuations in protein activity levels before finally stabilizing. This classification,

while being somewhat crude, is enough to enable some preliminary observations on

network stability to be made. Figure 3.5A, illustrates that the dominant property of

†Recall that in this model, activity and occupancy are the same, and hence () max also
represents the maximum activity level of any protein type.
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networks is that many nodes do not change, indicating a degree of stability. At higher

connectivity, fixed point behavior is still common. For ph = 0.1, approximately 10%

of the simulated networks are classified as Type II.

Figure 3.5: Average properties of Type II networks as ph = pk is varied. For each
of the values of ph tested, one hundred different random networks are simulated,
each from one hundred random starting conditions. (A) The percentage of Type II
networks found (of the 100 different networks simulated) is plotted as a function of
the interaction probability, ph . The number of Type II networks increases as the
probability of interconnection increases. This is reasonable since the interactions
within the matrix will be more complex. (B) For each Type II network, at a given ph

value, the number of protein types satisfying Δw/omax  > 0.6 is computed and divided
by the total number of protein types in the network. This number is then averaged
over the 100 different simulations for each Type II network and then averaged again
over all Type II networks. It is this "Average percentage of fluctuating nodes" found
in Type II networks that is plotted against the interaction probability. The average
number of fluctuating proteins per network found also increases as ph increases.

Figure 3.5B examines the number of fluctuating nodes found in Type II

networks. At low connectivities, typically only one or two proteins are found to

fluctuate within any given network. However, as ph = pk approaches 0.10 nearly

10% of the proteins are found to be changing by more than 60% in any typical

network. The cut-off of Δw/omax  = 0.6 is chosen from a frequency plot of the



Figure 3.6: A frequency plot of number of proteins against the difference in their
maximum and minimum activity values over a series of Monte Carlo simulations.
Networks have ph set between 1% and 10% . Data are grouped into activity range
bins of size 1000. A total of 10, 000 random networks were simulated, each with
100 protein types, giving a total sampling of 10 6 protein types for each connectivity
parameter tested.

range of fluctuations in protein activities over all simulated networks (see Figure 3.6).

This distribution is bimodal with more than 90% of all nodes fluctuating less than

10%, with the remainder, especially at higher connectivities, fluctuating through 90%.

The minimum in this distribution occurs at around the cut-off value.

There are several limitations of this classification strategy that are worth

mentioning here. The classification will obviously not capture the richness of the

dynamics of the random networks. It may also misclassify networks if the run-in

time is too narrow or the window too small. In the latter case, networks with large

settle times will be classified as Type II if the window is too short, and networks

with large periodicities will not be captured if the window is too small. Also, the

network shown in Figure 3.3A might be classified as Type I network if a cut off value

of 0.6 is used. However, it is likely that it would be classified as Type II once a
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large number of simulations are performed from different random initial conditions.

This said, the purpose of this classification is not to illustrate all the dynamic features

of networks. Instead, it is used as a powerful tool to illustrate very clearly that stable

states dominate at low connection probabilities.

3.4 ATP Consumption in Modeled Networks

Given the fact that as yet no simple technique exists for looking at real-time

oscillations in kinase activity (or phosphatase activity) in real cells, one might question

the relevance of examining activities of individual protein types in simulated networks.

This point will be addressed later in §5.4.

Figure 3.7: Estimate of ATP consumption for sample oscillating networks with
ph = pk = (A) 0.04, (B) 0.06, (C) 0.10. Three oscillatory networks are shown here.
The estimate of ATP consumption is based on the fact that one molecule of ATP
is used for each phosphorylation event. (See Figure 1.2.) Hence, the ordinate axis
represents a summation of the total kinase activity in each network and gives a
measure of the ATP requirements of the modeled cell. More complex ATP oscillations
are seen in network with higher connectivities and this is usually coupled with an
increase in periodicity.
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It was noted in Chapter 1 that a single phosphorylation reaction utilizes one

molecule of ATP. Summing the total kinase activity at any given time in a simulated

network, therefore, gives a measure of the ATP requirements of a simulated cell at

that instance in time. ATP is a small, freely diffusible intracellular molecule, and it is

likely that techniques in cell biology will enable the monitoring of ATP levels inside

cells in the very near future. Thus, it is prudent to examine the ATP consumption

patterns of modeled cell types as part of this study. Figure 3.7 shows some sample

plots of ATP consumption in networks which show spontaneous oscillations in protein

activity. More complex oscillations are seen in networks with higher connectivities

and this is usually coupled with an increase in periodicity.

3.5 Summary

Given any fixed ph and pk value within a biologically plausible range, any individual

matrix produces different types of behaviors (e.g., rapid settling to a fixed point or

oscillations). These behaviors are classified into two types (Type I and Type II).

More variety occurs with increasing ph, pk, although no obvious phase transition

phenomenon has been identified. Phase transitions have, however, been observed

in other connectionist models [77, 92].

Some networks show a tendency to settle into fixed points over a wide range

of initial conditions. Other networks typically show a core set of oscillating proteins

whose amplitude and periodicity shift when the initial conditions are varied. At higher

probabilities, a change in the initial conditions can alter the core set of oscillating

proteins. This is often accompanied by a change in the settle time and nature of the

network periodicity.

As yet, no simple technique exists for looking at real-time oscillations in kinase

activity in cells. A novel suggestion here is the idea that ATP consumption may

reveal information about the intracellular dynamics. This indicator might, in the
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near future, be a measurable quantity in the laboratory. (Currently, the signal to

noise ratio for ATP measurements is poor.) It might then be possible to carry out

a laboratory "test-tube" experiment in which ATP levels of a mixture of kinase and

phosphatase molecules could be measured.



CHAPTER 4

A GENETIC ALGORITHM

4.1 Introduction

In the previous chapter, the Monte Carlo simulation method was discussed. The

main purpose of this chapter is to introduce a computational technique for large

search problems is a "Genetic Algorithm" (GA). GAs are used in engineering and

operations research, image processing and pattern recognition, and have also been

applied to biological problems [93].

The high dimensionality of the modeled signaling networks dictates that a

random selection samples only a minute fraction of the parameter space. A more

robust and effective search technique, a GA, is implemented to complement the

Monte Carlo simulation method. The GA is used in order to search more effectively

for phosphorylation networks displaying a wide range of dynamic properties from a

given set of random starting conditions. Since responsive and dynamic activity in the

intracellular protein phosphorylation system is a characteristic feature of real cells,

the genetic algorithm search is designed to select networks which contain proteins

that exhibit different patterns of activity in response to different input patterns (i.e.,

where a protein can switch on or off or oscillate in a variety of ways according to

the state of its neighbors). The genetic algorithm developed here is also designed to

mimic some of the processes which occur naturally during the evolution of real cells.

In this chapter, a comparison is also made between the Monte Carlo simulation

method and the genetic algorithm approach. The data show that the latter approach

provides a more efficient search strategy with which to explore network properties.

Moreover, not only does the GA provide a more effective way to search for networks

with certain specified properties, it is also designed to be more biologically motivated.
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A study of the effect of changing certain parameters of the genetic algorithm is

presented in §4.4. A specific network generated by this algorithm will be discussed in

some depth in §5.4. Results of the clustering algorithm are shown for this network.

In light of these data, the hypothesis that networks may exhibit limited numbers of

attractor states will be discussed.

4.2 GA Development

A standard genetic algorithm uses a combination of operations, called reproduction,

crossover and mutation [93]. In such algorithms the search problem is generally

encoded as a string of data, typically a string of binary digits [94, 95]. A population

of strings is then evolved according to these three operators. Survival to the next

generation is determined by a "fitness" function. In this implementation, networks are

selected based on properties of the dynamics of the protein interactions within them.

It is the model cells themselves that are reproduced. Modeled proteins are composed

of domains which are defined as regions of the protein that perform a particular

function. Since duplication and shuffling of these functional units, or domains, is

thought to have occurred during evolution [57, 58], crossover and mutations are carried

out upon the analogue of protein domains within the cells. Each cell represents a single

"species" in the genetic algorithm simulation. The general structure of the algorithm

is described below.

A starting population of cells is generated at random, as described in §3.2. The

cellular dynamics are then investigated from a series of random starting conditions

and for a series of T time steps, as before. The population is then ranked according

to fitness (see §4.2.1). The best cells are selected for reproduction and the new

population is subjected to crossover and mutation (see §4.2.2). The process is then

repeated for a specified number of generations, G.
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4.2.1 The Construction of a Fitness Function

The fitness function is designed to select networks which demonstrate a variety of

distinct dynamic behaviors. Most networks at low connectivity settle into stable

patterns of activity within fifty time steps. The level of activity of each protein in

the network at the final time step T is compared over the set of S random starting

conditions. If the protein activity always remains stable at the same fixed value over

a variety of starting conditions, the protein does not appear to have the potential to

switch its activity according to a different signal. If a protein has a wide range of

stable fixed state values at time T, it may exhibit the richness of behavior desired.

If, however, this occurs because the protein is not a substrate of any of the other

proteins in the network, then this is less interesting. The final activity state of every

protein i in any given cell of the population can be recorded at time T for each of

aidS simulations. These states are stored in a matrix a ij where 1 <=i <= S (S is

the total number of simulations for cell C) and where 1 < j <=NandNis the total

number of protein types in cell C. The superscript T indicates that all data is taken

from the final time step of each simulation. For each protein in any given cell the

mean of these final activity values, over all starts, is calculated (Equation 4.1).

The mean absolute deviation in activity from this value, a j , for each protein j

in a specified cell is then calculated using Equation 4.2. The proteins with a low A j

value will be those which settle into nearly the same activity state for most of the

simulations.
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A second measure is used to indicate the variation in the activity of individual

proteins over each of the S simulations. This value, denoted by S ij,  is determined by

evaluating the absolute change in activity of a protein between consecutive time steps,

and then summing over the T time steps of the simulation. The maximum of this

value for protein type j is calculated over all S simulations and is denoted Sj . This

value will indicate the maximum variation in activity of that node for all simulations

of any chosen cell in the population. If a protein never changes its activity, then either

it has no inputs or the effects of the other nodes upon it always exactly balance. In

general, those proteins with a low Sj value can be proteins with either no inputs or

proteins whose activity value typically changes only slightly over time. The rows of

the matrix 49 denote the activity vector of simulation i at time step t.

A threshold is then set for both of the parameters A j and Sj . The number of

proteins in any specified cell of the population passing both thresholds (i) and (ii) of

Relation 4.5 is evaluated.

These thresholds are set based on a typical simulation of length T = 500. This

simple test is designed to eliminate those proteins with high A j yet low Sj values

(and vice versa). The set of proteins, for a given cell c in the population (1 <= c <= C),

passing both thresholds in Relation 4.5 is denoted by {pc} and is used as a measure

of fitness, 1', by which to rank the cells. A fit cell has a high percentage of proteins

which pass the thresholding criteria.
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During the course of the search, cells are penalized if high fitness results from

a network structure consisting of a few control nodes, with high output connectivity,

whose substrate nodes themselves have no substrates. If the controlling nodes of

such networks show a wide range of different activity values, then the nodes they

influence may also demonstrate the same properties which causes an artificially high

fitness value. Protein kinases that are active and do not influence other elements of

the cellular network can be thought of as molecules which use ATP but perform no

functional role. Usage of valuable ATP resources in the cell in this manner would not

be of selective advantage.

Cells which have large numbers of proteins with no inputs will perform poorly

when tested with the threshold criteria of Relation 4.5. The additional condition

mentioned in the previous paragraph penalizes cells where many proteins have no

outputs resulting in a reduction of their fitness. The fitness value is then calculated

by counting the number of proteins in the intersection of the two sets {pc} and {pco }.

The latter is the set of proteins in cell c (1 < c <= C) which satisfy Mod = 0, where

1 <= j <=N.

At each generation the population of cells is ranked according to fitness. By

ranking cells in order of fitness, rather than weighting cells by fitness, highly fit cell

species are prevented from dominating the population at the early stages of the genetic

algorithm. The best F cells from the current generation, G, are compared to a record

of the F fittest cells found in all prior generations up to and including generation

G — 1. The fittest cells from the combined list are allowed to reproduce, but the

number of cells introduced from the previous generations is restricted. This selection

process allows some of the parent cells to survive in the population, but the remaining

cell strains die off and do not survive to the next generation. The overall population

size, C, remains constant, and each parent produces the same number of offspring.

Variation in the offspring is achieved through crossover and mutation (see §4.2.2).
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In some simulations, random cell strains, R, are introduced into the population at

specified generations. The overall structure of the GA is shown in Figure 4.1.

Figure 4.1: Genetic algorithm construction.

4.2.2 The Crossover and Mutation Operators

Protein domain shuffling is mimicked by swapping rows or columns within the

daughter cell connection matrix. This corresponds to shuffling catalytic or regulatory

domains between protein types, respectively. The crossover rate, pc , determines the

number of rows or columns that are shuffled within each daughter cell. The crossover

rate is obtained by dividing the number of domains to be swapped by the total
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number of protein types in the cell. The total number of connections in each cell

remains constant, although the number of outputs from and inputs to each protein

varies. Exchanging regulatory domains alters the number of regulatory inputs of

the proteins involved. Swapping the catalytic domains of two proteins alters their

substrate specificity. This allows greater flexibility in the connection matrices (cell

types) because the parameters ph , pk , described in §2.2, may vary. A protein will

have Npk output connections if it is a kinase and Nph output connections if it is

a phosphatase. Therefore, some time after the genetic algorithm is initiated, the

number of output connections per protein will no longer be identical. The crossover

operation is illustrated in Figure 4.2.

Figure 4.2: Crossover in cells during the genetic algorithm.

Mutations are generated by choosing a cell at random and selecting an individual

connection (matrix element) to mutate. A zero connection in M23 is mutated to +1

if protein i is a kinase, or —1 if protein i is a phosphatase. If mutated, a non-zero

connection is set to zero in order to keep the total number of connections in the matrix
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Figure 4.3: Mutation in cells during the genetic algorithm.

constant. When a zero to non-zero mutation is performed, a balancing non-zero to

zero mutation is also made. This means that a row i of a connection matrix may,

after some number of generations, have no positive or negative connections. If a

zero connection in such a row is selected for mutation, a decision to introduce a

0 -4 +1 or 0 -+ — 1 mutation is made at random. Hence, this algorithm allows

variation in the ratio of kinases to phosphatases. Some proteins may change so that

they evolve to a state where they have either no input interactions (the protein is

essentially unregulated) or no output connections (no substrates are present). The

mutation rate, pm , is defined as the number of mutated connections divided by the

total number of non-zero connections of the cell's connection matrix. Some of the

different types of possible mutations are illustrated in Figure 4.3.
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4.3 Comparison of Genetic Search and Random Search

Simulating the dynamics of cellular networks of one hundred components requires an

investigation of a vast state space, not to mention the effects of altering individual

network parameters. The Monte Carlo simulation method is highly useful for a

preliminary investigation into properties of random networks over large connectivity

ranges. Data are presented here that compare the designed GA to an equivalent

number of Monte Carlo simulations.

Figure 4.4: Monte Carlo simulations on 10,000 randomly generated cell types.
The networks have the following parameter restrictions: [Pin Plc, fh, T, N, S] =
[0.03, 0.03, 0.5, 500, 100, 100]. The majority of the cells have low fitness values. Note
the logarithmic scale used on the vertical axis. The graph illustrates the distribution
of fitness of the random cells simulated without the use of a GA. Of the 10,000 cells
simulated, 5,628 cells have a fitness level of one percent or below. There are 7,742
cells of fitness less than 2%. The best cell has a fitness of 26%.
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The cell types in the Monte Carlo simulations are generated at random according

to the following set of parameters: [ph , Pk , fh , T, N, 8] = [0.03, 0.03, 0.5, 500, 100, 100].

In order to compare the results of this data with the GA, 10,000 networks are

simulated using the Monte Carlo method. (See Figure 4.4.)

The GA is run for 100 generations with a fixed population size of one hundred

cells, C = 100. Of the resulting 10,000 cells generated during this time, the best

one hundred cells have the following properties. The best cell has a fitness of 26%

(see Figure 4.4) and the mean and median fitness of these one hundred cells are

11% and 10% respectively. The worst of these cells has a fitness of 8%. These

data are comparable to a population of the GA at generation 100, provided that

the population at each generation contains 100 cells. Even with a poor choice of

parameters for the GA, the search still outperforms random search in the sense that

the fitness of the best one hundred cells at a comparative point is higher when the

GA is used. Implementation of the GA provides a more efficient way to search for

cells with varied dynamic properties. From this point forward, all the data presented

are from networks that have been evolved via the GA.

4.4 A Parameter Study

The GA has several parameters associated with it: the mutation and crossover

rates, the population size and the number of offspring per parent. This section will

methodically examine how each of these factors affects the quality of the local and

global properties of this search algorithm.

Figure 4.5 illustrates data from simulations where the mutation and crossover

rate have been systematically varied. The fitness of each cell at each generation

is evaluated from its dynamics, as described in §4.2.1. The cellular dynamics are

investigated by simulating each cell from a set of one hundred random initial activity

vectors for T = 500 time steps.
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Figure 4.5: The effect of varying the mutation and crossover rates on the
performance of the GA. Each simulation uses the same random initial population of
cells whose parameters are [Ph,Pk, fh , T, N, S] = [0.03, 0.03, 0.5, 500, 100, 100]. The
parameters of the algorithm are set at [G, pm , pc , C, F]: (A) [500, 0.0067, 0.02, 100, 20],
(B) [500, 0.033, 0.02, 100, 20], (C) [500, 0.0067, 0.10, 100, 20], (D) [500, 0.033,
0.10, 100, 20]. For the first five generations, R = 20 randomly generated cells
are introduced into the population. A maximum of three cells are re-introduced
into the population at each generation G. Each plot shows the maximum, minimum,
mean and median fitness in the population at each generation.
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The data of Figure 4.5 show cells whose parameters are set as follows:

[Ph, Pk, fh,T, N, S] = [0.03, 0.03, 0.5, 500, 100, 100]. At every generation, the twenty

fittest cells are selected for reproduction. Together, these selected cells then give

rise to the population at the next generation. These twenty cells each generate

four offspring for the first five generations and during this time twenty randomly

generated cells are also introduced into the population. The reason for this is to

prevent the algorithm from locking into one or two cells early in the simulated

evolutionary process. Thereafter, each cell generates five daughters and no more

random cells are introduced into the population. After this point, the average fitness

of the population is usually much higher than the fitness of a randomly generated cell,

so continuing to introduce these cells into the population has no effect. The size of the

population remains fixed as the algorithm progresses. Protein domains are swapped

between proteins within any given cell at a specified rate, pc. Every daughter cell

in the population undergoes crossover. Every cell has an even number of mutations

determined by the mutation rate, pm . This ensures that the cell connectivity does

not increase steadily through the simulation (see §4.2.2). No more than three of the

fittest cells from generation G — 1 are reintroduced into the population at generation

G. All the data shown in Figure 4.5 illustrate the change in fitness of a population of

one hundred cells over G = 500 generations.

In Figure 4.5, the fitness of the best and worst cell at each generation are shown

together with the mean and median percentage fitness of the entire population at

each generation. In panel A, the crossover and mutation rates are set at [pc , pm] =

[0.02, 0.0067]. At generations G > 5, the fittest twenty parents each generate five

offspring which, after mutation and crossover, become the new population at the

next generation. Every daughter cell possesses one hundred different protein types

of which one pair of proteins, chosen at random, exchange regulatory domains. The

mutation rate allows an average of two mutations per cell. The population fitness
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increases rapidly in the first fifty generations. By generation 25 all cells are descended

from one single parent from the initial population. During certain periods of evolution,

the fitness appears to increase in small bursts G E [0, 50] and G E [200, 250] and then

plateau. After five hundred generations, the best cell has a fitness ti 52%. The mean

and median of the cell population are similar, at 34% and 35%, respectively. The

median is slightly higher, indicating that the distribution is slightly biased towards

cells of lower fitness. The minimum fitness of the population always remains near zero

indicating that even small perturbations of high fitness cells can drastically reduce

cell fitness.

In Figure 4.5B, [pc , pin] = [0.02, 0.033]. The increase in the mutation rate to an

average of ten mutations per cell causes a sharp increase in fitness in the early stages

of the algorithm. A cell of 40% fitness is reached in fewer than fifty generations,

although the average population fitness takes over five hundred generations to reach

30% fitness, as compared to 250 generations in panel A. The population fitness shows a

steadier gradual increase, as compared to panel A, although the fitness level fluctuated

much more widely between consecutive generations. The maximum, mean, median

and minimum fitness after five hundred generations are [58, 29, 30, 0] respectively.

In Figure 4.5C, pc = 0.10, pm = 0.0067. In this case, five pairs of domains

per cell are swapped at random. The increase in the crossover rate, as compared

to panel A, causes a substantial reduction in the average population fitness and

increases the noise component in the evolution of cell fitness. There are sharp rises

and falls in the maximum population fitness, but there is a smoother increase in the

average population fitness. A cell of 40% fitness is not generated until after nearly

200 generations. After five hundred generations the maximum, mean, median and

minimum fitness of the population are [39, 14, 14, 0]. The fitness progression is more

rugged; a larger perturbation from the peaks in the landscape appears to have a

detrimental effect on the mutated offspring. In Figure 4.5D, pc = 0.10, pm = 0.033.
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Here, the effect of higher crossover and mutation rates is marked, although the

population shows greater improvement after fifty generations, as compared to panel C.

The population graph is similar to Figure 4.5C but the magnitude of noise component

is larger. At the final generation the maximum, mean, median and minimum fitness

are [38, 14, 12, 0] respectively.

In each case there is a general improvement in the fitness of the population as

the algorithm progresses. The fluctuations or noise present in the graphs increases

noticeably from panels A to D in Figure 4.5. This corresponds to an increase in both

the mutation and crossover rates. Lower values for pc and pm allow more exhaustive

search in the local neighborhood of the best cells which leads (via small steps) towards

a few local peaks in the search space. Higher mutation and crossover cause larger

leaps across the search space. If this search space consists of many sharp peaks or

ridges, a few large steps may cause a drastic decrease in fitness (into local minima)

from which it is harder to recover (Figure 4.5D). Comparing Figures 4.5A and 4.5D

after one hundred generations, the difference in fitness of the best cell at the final

generation is 14 percent.

Each graph shows a two to three-fold rise in fitness within the first twenty

generations. All the graphs show the greatest improvement in fitness in the early

generations G E [0, 50]. This may be due to the nature of the fitness function and

the choice of the number of offspring per parent. The fitness of the overall population

will also depend on the quality of the starting population. From an analysis of the

evolutionary history of the cells, it is evident that the entire population is descended

from one single parent from the starting population.

Figure 4.6 illustrates the effect of varying the number of offspring per parent

and the number of parent cells allowed to reproduce to the next generation. In the

instance where the population size is kept fixed, an increase in the number of offspring

per parent will automatically reduce the the number of parents that can be selected
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Figure 4.6: The effect of varying the number of offspring per parent on the
progression of the GA. The population size is different from Figure 4.5. Each
simulation is performed using the same random initial population of two hundred cells
whose parameters are set as follows [ph , pk , fh , T, N, S] = [0.03, 0.03, 0.5, 500, 100, 100].
The parameters of the algorithm are [G, pm , pc , C, F]: (A) [500, 0.0067, 0.02, 200, 100,
(B) [500, 0.0067, 0.02, 200, 20. No randomly generated cells are introduced into the
population at any stage. A maximum of three cells are re-introduced into the
population at each generation G from the previous generation. The maximum,
minimum, mean and median fitness of the population are shown in each plot.
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for reproduction at each generation. The GA parameters [G, pm , pc , C, F] are set at

(A) [500, 0.0067, 0.02, 200, 100] and (B) [500, 0.0067, 0.02, 200, 20]. In this case, no

random cells are introduced into the population at any stage. The population size

is increased to two hundred cells. In panel A, one hundred parents are selected for

reproduction and each parent is allowed to generate two offspring which are then

subjected to mutation and crossover. In panel B, twenty parents are selected and

each of these cells then gives rise to ten offspring. Each daughter cell has on average

two mutations, and a pair of regulatory domains are swapped between one pair of

proteins per cell. This is designed to detect whether the search can be improved by

altering the parent to offspring ratio.

The fitness graph of Figure 4.6A is broadly similar to that of Figure 4.5A,

although the curves are more rugged. The initial phase of the population fitness

growth during generations 0 to 50 appears to be qualitatively similar to the same

phase of Figure 4.5B. Increasing the number of parents, but reducing the number

of offspring per parent, allows the algorithm to maintain variety in the population

for longer. It takes approximately fifty generations until the entire population is

ancestrally related to a single parent. This is longer than in all the simulations shown

in Figure 4.5. The population fitness, however, does not outperform that shown in

Figure 4.5A. There is clearly a penalty in reducing the number of offspring per parent.

In Figure 4.6B, a larger number of offspring per parent appears to improve the search.

In both panels A and B, a cell of 40% fitness is not generated for approximately one

hundred generations (which is comparable to Figure 4.5A). In Figure 4.6A, at the

final generation the maximum, mean, median and minimum fitness are [49, 26, 30, 0].

In Figure 4.6B, the cell fitness properties began to plateau after about 250

generations. The mean and median even decreased slightly during the last one

hundred generations. After about 15 generations, every cell in the population is

descended from a single parent. The minimum cell fitness in each generation is
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higher and, at G = 500, the maximum, mean, median and minimum fitness are

[60, 42, 41, 0]. A larger set of parents allows exploration of more areas of the fitness

landscape (potentially more peaks) but a smaller set of offspring per parent allows

less effective search in the local region around these peaks.

4.5 Summary

This section has been concerned with the design and development of a genetic

algorithm. The GA is used to study networks in a more localized parameter range

than the Monte Carlo simulations. The three main aspects of the algorithm are the

fitness function, the crossover operator and the mutation operator. A population of

cells are evolved according to these operators. Symbols and parameters of the GA

are summarized in the "List of Symbols" pages at the start of the thesis.

The fitness function is designed to select networks which demonstrate a variety

of distinct dynamic behaviors. Cells are ranked according to fitness and reproduce

asexually to the next generation. The crossover operator results in exchange of protein

domains. This is designed to mimic the evolutionary mechanism of protein domain

shuffling. The mutation operator is a common feature of most genetic algorithms.

This is also motivated by the biology as genetic mutations occur at a low rate in all

cells.

The GA was compared to the performance of the Monte Carlo method and found

to perform better with respect to the designated fitness measure. The parameter

study of §4.4 illustrated that if the mutation and crossover rates are set too high,

then this can have a detrimental effect on the cells' offspring. The fitness landscape is

highly rugged. Large perturbations in cell connection structure have a large impact

on fitness. Lower values for pc and pm allow more exhaustive search in the local

neighborhood of the best cells. Increasing the population size and allowing more

offspring per parent also appears to improve the search. With a fixed population



92

size, increasing the number of parent cells that are allowed to reproduce restricts

the number of offspring per parent. A larger set of parents allows exploration of

more areas of the fitness landscape (potentially more peaks). In all cases tested the

GA showed the greatest improvement in early generations and the population always

contained a significant number of cells of low fitness. This point will be addressed

again in the final chapter.



CHAPTER 5

DETECTING DYNAMIC ATTRACTORS

5.1 Introduction

In this chapter, a numerical method is presented which is designed to test the

hypothesis that modeled networks exhibit only a relatively small number of different

attracting states. The algorithm that is developed is an adapted form of a standard

clustering technique. In order to cluster data, a distance metric must be defined. A

generalized form of the Hamming distance metric (a discrete metric) is applied to

modified activity state vectors. The difficulties in classifying data with clustering

methods are discussed. An error measure for the clustering algorithm is defined.

The clustering method is used to detect similarities in the stable states of a

network selected from the final generation of a genetic algorithm simulation. It has

been noted in previous chapters that networks typically exhibit fixed point behavior

and also oscillatory states. The clustering algorithm is designed to deal with behaviors

of these types. The results of the clustering technique are presented in §5.3.

The cell that is chosen has the highest fitness in the final generation of the GA.

The cluster grouping of the network states is presented in §5.4. ATP consumption

properties are examined for several of the cluster groups. These data not only

provide evidence of the effectiveness of the clustering algorithm, but also illustrate its

limitations.

5.2 A Clustering Technique

A clustering algorithm is developed to verify that the fitness criteria selects networks

which display a relatively small number of dynamic behaviors. It is an adapted form

of "k-means" clustering [96]. The algorithm classifies similarities in activity states at

the end of each of S simulations for a given cell C. A distance measure is required to

quantify the similarities in these states. The distance of vectors within a cluster (the

93
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intra-cluster distance) from the cluster center should be small, whereas the distance

of states in other clusters to this cluster center (the inter-cluster distance) should

be large. Typical difficulties that can arise when clustering data are illustrated in

Figure 5.1.

Figure 5.1: Examples of potential difficulties with classifying clusters within data.
A good clustering procedure should find natural groupings in the data. If the data are
normally distributed, a covariance matrix would constitute a compact representation
of the data. It would indicate the amount of scatter in different directions from a
mean representing the center of gravity of the cloud of data points. However, in the
case where the structure of the data is non-normal, this representation would not
capture all of the features of the data, see (C) and (D). Another problem can arise
during partitioning of data. Occasionally a partitioning may split a cluster incorrectly
because the mean square error is slightly reduced (the goal being a partitioning of
the data with the smallest error). This can occur when there are outliers in the data,
as in (A). In (B) one would need to decide whether the data lie in one large cluster
or in two clusters that lie close together.

The fittest cell from the final generation G of a genetic algorithm simulation is

studied, although in principle, any cell from any generation could be chosen. The set

of proteins {pc} passing the thresholding criteria of Relation 4.5 are examined. Those

proteins with no inputs have already been eliminated (i.e., those whose state is purely

determined by their initial random starting condition). They can be thought of as

input nodes to the network which can be altered by the action of an external agent.



95

These can be thought of as input parameters to the network. The proteins which

always tend to settle into the same final activity state, regardless of input, have also

been discarded. The reason for this is that a working hypothesis for a desirable

property of a protein in a signaling network is that it should be able to shift its

activity readily according to the states of the proteins interacting with it. Similarly,

proteins with no output connections have also been rejected (see §4.2.1). The goal

is to study the possible number of dynamic behaviors of cell types of high fitness

by using an algorithm which can quantify in some manner the distance between the

states of the network. For example, if the modeled cell type shows a small number of

stable attractor states, one would expect to see a small number of clustering centers

with the clustering algorithm.

Given a set of proteins, {pc}, the clustering algorithm first detects whether the

protein type shows:

(i) a high/low fixed activity level, or

(ii) oscillations in activity.

To detect proteins with oscillatory activity, proteins with significant fluctuations

in activity were chosen. This simplifying assumption (i.e., that fluctuation implies

oscillation) is based on the observation that network behaviors generally appear to be

either fixed equilibrium points or limit cycle oscillations. The initial transient period

[0, T — w] is ignored, so that the network settles into its stable behavioral mode, where

the observation window has length w. Potential errors of measurement caused by an

early transient period are eliminated. The fluctuation in activity of a protein j, where

1 < j < N, is measured over the window t E [T — w + 1, 7] for each of the simulations

i, where 1 < i < S. This variable is denoted by Δij. Denote the dimension of the set

{pc} as p. Equation 5.1 is used to calculate the size of the maximum fluctuation in

activity of the protein over the specified windowing period.
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Preliminary simulations indicate that proteins generally fluctuate through the

entire range of activity or remain stable. A protein j is considered to be fluctuating

during simulation i if its corresponding value is found to be more than half the

maximum activity range. Proteins which are thought to be oscillating are denoted

using the symbol "X" . The final activity state of the proteins from one of the S

simulations of the chosen cell has then been reduced to a vector with fewer than N

components. Each component takes one of three possible values (0,1,X). The new

matrix aij contains this modified data representation (see Equation 5.2).

The distance between components of a vector is then calculated using a

distance measure that is a generalization of the Hamming distance or discrete

metric. This metric satisfies all the standard properties of a distance metric.

The distance between two activity vectors is calculated by summing the difference

between each corresponding pair of components. A symmetric distance matrix, D,

is generated whose elements represent the distances between pairs of final activity

vectors (Equation 5.3):

The clustering algorithm is initialized with a preliminary set of L cluster centers.

These are chosen either by:

(i) randomly generating binary vectors of length p where each component of the

vector was chosen at random from 10, 11, or
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(ii) taking a set of cluster centers randomly selected from the data set (i.e., a set of

rows from the matrix et).

Clustering of high dimensional data is a difficult problem if the number of attractors

and shape of data clustering are not known, which is the case here. The algorithm

must therefore be tested with different numbers of initial cluster centers.

Once the initial cluster centers are set, the distance measure is used to calculate

the closest cluster center to each data point. Each data point is defined by a simplified

activity vector, denoted by a i , where 1 < i < S (see Equation 5.2). This data point is

then added to the cluster nearest to it. When all the data points have been assigned

to a cluster (call it cluster 1, say) the corresponding cluster center vector, V1, where

1 < =l <= L,is adjusted to an estimate of the average of the data points within that

cluster. For example, if the majority of points in the cluster have a component equal

to zero, then the corresponding component of the cluster vector is set to zero. If

equal numbers of points have the value 0, 1 or X then the value of the corresponding

component of the cluster center is selected at random from the set {0,1,X}.

For each clustering, an error measure is defined which indicates how well the

clustering algorithm is performing. The lower the error, the better the clustering.

The error of a vector in a cluster is given by its distance from the cluster center. The

error for cluster 1, E1 , is defined as the sum of the distances of each data point in

the cluster to the cluster center vector V1 . The size of cluster 1 is denoted c1. The

total error E of the clustering algorithm is defined by Equation 5.5. A new permuted

list of activity vectors is generated from the clustering algorithm. The new matrix

a contains the vectors regrouped by cluster. It is essentially a matrix obtained by

permuting the rows of matrix a.
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A data point (representing a modified final activity vector) is chosen at random

and the effect of moving it into a new cluster is estimated. The data point is moved

into a new cluster only if the total error measure decreases. The cluster selected is

the one which results in the largest decrease in the value E. This process continues

until the error E reaches an asymptotic value.

The data points are thus regrouped by cluster. The distance matrix of Equation

5.3 is recalculated. The clustering algorithm results in a permutation of the original

distance matrix D. Other information on inter and intra cluster point distances are

also computed. Although the algorithm is designed to find the best clustering using

a fixed number of cluster centers, by systematically varying the number of cluster

centers it is possible to estimate the value of L which provides the best clustering of

the data.

The final clustering provides information on the similarities in the data set. In

particular, the smaller the number of cluster centers, the greater the likelihood of

the data falling into a small number of highly similar activity states. This provides

evidence of a restriction in the possible state space that the network can occupy, and

thus an indication of the possibility that the network may settle into a relatively small

number of stable attractor states.

5.3 Performance of the Clustering Algorithm

In this section a specific cell type is examined in some detail and the results of

the clustering algorithm are presented. The GA is run for five hundred generations

with its parameters set as follows: [G, pm, pc , C, F] 	 [500, 0.1, 0.1, 200, 50]. Every

daughter cell undergoes crossover (one pair of proteins, chosen at random, exchange

regulatory domains) and mutation (on average two mutations per generation). Each

cell generates three offspring for the first five generations, and during this time fifty

randomly generated cells are also introduced into the population. After this time,
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every parent cell generates four offspring. A maximum of three cells are re-introduced

at each generation. Individual cell simulations are performed with the following

parameter set: [ph , pk , fh , T, N, S] = [0.10, 0.10, 0.5, 500, 20, 100]. Each cell contains

twenty protein types where each protein has output interactions with two others.

The dynamics of the best cell selected from the final generation of the GA are

analyzed from one hundred starting states. The initial random starting states for each

of the S (=100) different simulations of this cell are shown in Figure 5.2. Each row

represents an activity state vector (e.g., row 1 represents the initial random activity

state of the network for simulation 1). Protein types that are inactive are displayed

in blue, and protein types that are active are shown in red. The graded color scale

is shown alongside this plot. The corresponding final activity states are shown in

Figure 5.3.

Figure 5.2: One hundred random
starting activity states for the fittest
GA network. Each state is shown
horizontally.

Figure 5.3: Activity states for the
same cell after T = 500 time steps.
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The selected cell has a fitness of 85%. The clustering analysis is therefore

performed using seventeen out of the twenty proteins. The proteins which pass the

fitness criteria defined in §4.2.1 are used in the clustering method. From the new

matrix of states defined from these proteins, a, the data are clustered according to

the algorithm defined in §5.2.

Figure 5.4: The clustering error decreases as the algorithm progresses

The change in error of the clustering algorithm is shown in Figure 5.4. A

good cluster separation is obtained with five cluster centers (see Table 5.1). The

number of data points grouped into each cluster is indicated by a number beside the

corresponding row of the distance matrix. The number seven beside row one (denoted

[1: 7]) indicates that seven data points are grouped into cluster one. Each data vector

has dimension seventeen (i.e., seventeen proteins, of a possible twenty, from the cell

selected pass the fitness criteria).

Table 5.1A is a distance matrix comparison, A3 , of the average distance

between points in cluster i from cluster j, calculated as the distance from the cluster

center j. Distances are rounded to the nearest integer and the maximum distance

between end states is seventeen. The data show that the distance between data points

in the same cluster is low (diagonal elements). The average distance between data

points in cluster i to cluster j, j i, is higher (off-diagonal elements). Note that
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Table 5.1: Data from the analysis of the clustering algorithm (§5.2). One
hundred final activity states are compared from a selected cell taken from the
final generation of a GA simulation. The simulation has the following cell
parameters: [ph, pk, fh, 	 N, S] = [0.10, 0.10, 0.5, 500, 20, 100]. The GA parameters
are: [G,	 pc , C, F] = [500, 0.1, 0.1, 200, 50]. Good separation is obtained with five
cluster centers. The data in (A) are evidence for distinct attractor states in the state
space. Table A is a distance matrix comparison, D 23 , of the average distance between
points in cluster i to cluster center j. Distances are rounded to the nearest integer and
the maximum distance between end states is seventeen. The corresponding cluster
centers are listed in (B), together with the average distance of points in the cluster
from the cluster center. An "x" denotes that the protein is fluctuating, a zero denotes
that the protein is "OFF" , and a one denotes that the protein is "ON".

(A) Intra- and Inter-Cluster Distances:

(1) (2) (3) (4) (5)

Cluster 1 (1: 	 7) 1 5 5 15 14

Cluster 2 (2: 68) 5 0 5 17 17

Cluster 3 (3: 8) 5 4 1 15 15

Cluster 4 (4: 8) 15 17 15 1 17

Cluster 5 (5: 9) 14 17 15 16 0

(B) Symbolic Representation of Cluster Centers:

Cluster Center Vector Avg. Dist. to C1. Center

Cluster Center (1) xxxx0xxxx0x0xx00x 0.71

Cluster Center (2) xxxxxxxxxxxxxxxxx 0.47

Cluster Center (3) xxxx1 xxxx1x 1xxx 1x 1.00

Cluster Center (4) 11110110110001111 1.38

Cluster Center (5) 00001001001110000 0.00
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some of the clusters are relatively close (see Table 5.1B). For example, cluster centers

2 and 3 are four units of distance apart, but clusters 2, 4 and 5 are maximally distant

from one another.

The corresponding cluster centers are listed in Table 5.1B, together with the

average distance of points in the cluster from the cluster center. An "x" denotes that

the protein is fluctuating, a zero denotes that the protein is inactive ("OFF') and

a one denotes that the protein is considered to be active ( "ON" ). Clusters 4 and 5

contain stable points, with all proteins either "ON" or "OFF" . In fact, all proteins

have precisely opposite characteristics in these two clusters. A protein which is "ON"

in cluster four is "OFF" in cluster five (and vice versa). Although the components

of these two cluster centers are in opposite states, this is not generally the case. In

cluster 2 all the proteins selected are oscillating. Clusters 1 and 3 are similar to cluster

2, but several of the proteins have stable values.

The clustering process can only identify similarities in composition of dynamics

at the level of "ON" or "OFF" or "oscillating" (i.e., it cannot detect differences in

phase or frequency between oscillating proteins). Low diagonal elements and high

off diagonal elements indicate that points in cluster i are generally not close to points

in the other clusters. These are precisely the properties that one would expect for a

reasonable clustering of the data.

Figure 5.5 illustrates the symmetric distance matrix, D, prior to clustering.

In this example, the maximum distance between any two state vectors is 17. A

graded color scale is shown to the right. Vector pairs that are maximally distant are

shown with a red pixel, and those that are highly similar are shown in blue. After

the clustering algorithm has completed, (see Figure 5.6), the data points have been

regrouped into the clusters shown in Table 5.1. The data indicate that the algorithm

is extremely effective.
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Figure 5.5: Distance matrix comparison of end states, D ij , 1 < i, j, < S,
prior to clustering.

Figure 5.6: Distance matrix after clustering.
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5.4 Numerical Evidence for Dynamic Attractors

The evidence that a single cell can settle into a variety of patterns of stable activity

according to the initial signal provided to the cell was seen earlier in §3.3. Table 5.1

illustrates data for a particular cell generated by the genetic algorithm and highlighted

the similarities between cellular states. In this section, data points from two of the

clusters described in the previous section will be shown in more detail. Figure 5.7

shows the dynamics from two different starting states which are grouped into cluster

five. Cluster center five is denoted, for the purposes of the cluster analysis, as

"00001001001110000". Only 17 of the proteins are used for the clustering process.

If the proteins are labeled in order, 0 to 19, the proteins not used in the clustering

are numbered 1,16,18 The latter are marked with arrows in Figure 5.7. The actual

activity vector of the network is represented by "0*00010010011100*0*0".

The left hand plots of Figure 5.7 denote the change in activity of the proteins

over time during simulations from two different randomly generated starting states.

In each case, the network settles into the same stable steady state. Protein activity

is shown horizontally and time is plotted downwards. A horizontal snapshot of the

network therefore shows the instantaneous activity of the proteins in the network.

The right hand plots indicate the change in summed activity of all kinases (solid

line) and all phosphatases (dashed line). The format of the data is the same as in

Figure 3.2. The initial transient phase is different in each case, but the network settles

into the same state after approximately two hundred time steps. In the lower figure,

the network seems to start with an oscillation which eventually diminishes to the

steady state.

Figure 5.8 shows data from two different starting states which settle into the

same pattern of oscillation. The data shown here are from the same cell as in

Figure 5.7. The dynamics are different because the network settles into a limit

cycle oscillation in a different part of the state space. Again, the initial transient



Figure 5.7: A cell settles into the same stable steady state configuration from two
different starting states. Diagrams (A) and (C) illustrate the change in activity of the
network of proteins over a simulation of T = 500 time steps. Protein activities are
illustrated horizontally and the time axis is shown vertically. Time increases in the
downward direction. Proteins with high activity values are shown in red and inactive
proteins are shown in blue. The color scale is graded in-between. Plots (B) and (D)
show the total summed activity of the protein kinases (solid line) and the protein
phosphatases (dashed line) in the cell against time. The network falls into the same
fixed point attractor, despite the difference in initial conditions. Both these states
are found in cluster group five shown in Table 5.1.
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Figure 5.8: The same cell (as in Figure 5.7) settles into a similar characteristic stable
oscillation from two different random starting states. The figure has the same format
as Figure 5.7. Some proteins in the network have a stable activity level, but the
remainder show a periodic oscillation in activity. Both these states fall into cluster
group two shown in Table 5.1. The oscillation repeats every 28 time steps.
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is different and is also short-lived as the network settles into the oscillation after less

then 50 time steps. Note that the summed activity of the kinases and phosphatases

are very similar. The period of the oscillation is 28 time steps. These data points

are selected from cluster two. The proteins not included in the clustering process are

also marked with arrows. The actual activity vector of the network is represented by

In fact, it is possible to flip between these states by forcing an internal change

in the network (see Figure 5.9). Activation of a single node inside the network forces

a change in the state of the entire network. Many nodes that were inactive become

activated, and vice versa. This is because this node is highly connected. This point

will be discussed in Chapter 7 in light of structural analysis of this network using graph

theoretic methods. At time step t=500 an oscillation is forced in node 19. This causes

a switch to a state where all the nodes are oscillating (excluding the three input nodes

labelled as 1, 16 and 18) which is similar to that shown in Figure 5.8. Interestingly, a

subsequent return of node 19 to an inactive state does not return the network to its

original state. The network has undergone a permanent shift of state arising from a

transient change in one of the internal nodes.

Figure 5.10 shows data from three different starting states which settle into the

same pattern of oscillation. The data here are from the same cell as Figures 5.7 and

5.8. These data points are also grouped into cluster two. This is a good illustration

of the fact that the clustering algorithm only captures some of the features of the

data. The right hand plots show the similarity in the oscillation pattern in the three

cases. Although the periodicity is not identical in each case, the network shows a

period of relative inactivity where all proteins appear to maintain a constant level

of activity. This is followed by a period of change until the network returns to the

previously stable phase. The oscillation period is approximately 180 time steps in

the upper and lower plots, but the central data plot appears to have a slightly longer
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Figure 5.9: A switch between attracting states can be induced by an internal change
in the network. The color map is shown to the left. At time step 250, node 19 is
switched ON. At a later time (t=500), an oscillation in node 19 can force a shift in the
entire network to a different state. Once this node is shut off (t=790), the network
returns to a steady state. Interestingly, the network does not return to its initial state
after this transient internal change.



Figure 5.10: A cell can have many different oscillatory states. The same cell settles
into an oscillation of different frequency to that shown in Figure 5.8. The cell is shown
starting from three different random initial conditions settling into a new pattern of
oscillation. These data points are also classified into cluster group two shown in
Table 5.1. The center diagrams (C,D) show a slightly longer period of oscillation,

220 time steps (compared to 180 time steps in the upper and lower plots). The
period of the oscillation appears to be governed by the time for the phosphatase
activity to reach a critical value, denoted by arrows on the right hand plots.
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period of around 220 time steps. There is a period of time (denoted by an arrow on

the right hand plots) which determines when the stable phase of the oscillation ends.

The phosphatase activity reaches a critical value, triggering the change, allowing the

oscillation to complete.

Figures 5.7 to 5.10 demonstrate that a single network can settle into the same

steady state configuration from a different starting state. The cell can also settle into

different patterns of oscillatory behavior from different points in the state space. The

dynamics show a degree of stability, in that certain changes in initial conditions do not

affect the network behavior, yet other changes do alter the nature of the stability. For

example, the cell can flip from a steady state configuration to a limit cycle, or change

from one limit cycle oscillation to another. Figure 5.11 illustrates the dynamics of

three proteins selected from the cell whose dynamics are shown in Figures 5.7 to

5.10. The relative activities of these proteins (labeled as 2,5,17) are shown using a

three-dimensional phase space portrait. The phase portraits in Figure 5.11A,B are

from the two simulations of Figure 5.8. The phase space plots in Figure 5.11C,D

are from the two simulations of Figure 5.7. The proteins settle to a steady state

value, which is indicated with an arrow. The plots of Figure 5.11E,F,G are from

the three simulations of Figure 5.10. Data from the same attractor are therefore

shown horizontally, and data from different attractors are shown vertically. There

is a striking similarity in the horizontal plots and a distinct difference between the

vertical plots in Figure 5.11A,C,E. These phase space portraits provide a useful way

of distinguishing between different states in the cellular dynamics. As mentioned in

§3.4, the ATP plots for each of the cases shown in Figure 5.11 are also considered as

a useful way of distinguishing the intracellular states (see Figure 5.12).



Figure 5.11: Phase space portrait of proteins in a network selected by the GA.
The relative activities of three proteins (labeled as 2, 5, 17) are shown for the
seven cases that are illustrated in Figures 5.7 to 5.10. (A), (B) are the protein
activities corresponding to the two simulations of Figure 5.8. (C), (D) are from the
two simulations of Figure 5.7. The proteins settle to a steady state value which
is indicated with an arrow. (E),(F),(G) show data from the three simulations of
Figure 5.10. This figure illustrates how relative protein activities differ when their
dynamics are compared between clusters (vertically) and within the same cluster
(horizontally) .
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Figure 5.12: Plot of ATP consumption against time for the cases shown in
Figure 5.11. The plots are organized in the same respective order as in Figure 5.11.
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5.5 Summary

In this section a clustering algorithm is developed to analyze the dynamic states of

simulated protein networks. The algorithm modifies the activity states of proteins

and groups them into three different categories: (i) "ON" , (ii) "OFF" , or (iii)

"OSCILLATING". Thus, activity states are represented as vectors whose components

take the symbolic values "0" , "1" and "X" , respectively. A distance measure

is introduced (modified Hamming distance/discrete metric) in order to evaluate

similarities between data points. The error of the clustering algorithm is also defined

in order to measure its performance. The notational symbols used in the clustering

algorithm are summarized in the "List of Symbols" pages at the start of this thesis.

The clustering algorithm is used to evaluate the performance of the GA.

Numerical work shows that the genetic algorithm has successfully selected for

networks which display a relatively small number of distinct attractor basins. Despite

widely different initial conditions, the network settles into a small number of different

patterns of protein activities. The properties of GA networks will depend heavily on

the nature and design of the fitness function.

Figure 5.9 indicates that a transient internal change in a network can have a

significant impact on dynamics. In fact, in this example, a transient oscillatory change

in a single internal node shifts the network from one equilibrium state to another. In

fact, the new state of the network appears to be different from the states detected

by the clustering algorithm. Both these points will be discussed further in the final

chapter.

The stability of fixed point and limit cycle behaviors in simulated networks

will be examined analytically in the next chapter. The topological structure of the

network shown in this chapter will be discussed in Chapter 7. A combination of

insights from graph theory techniques and small network analysis are important in

order to gain a deeper insight into the dynamic properties of simulated networks.



CHAPTER 6

SMALL NETWORK ANALYSIS

6.1 Introduction

In the model developed in Chapter 2, the activity state of any node represents the

instantaneous activity of a discrete number of molecules of any given protein type.

Since a molecule that is 90% bound is still not fully bound, a decision was made to

truncate the occupancy variable at each step (see Equation 2.6, §2.2.2). The numerical

results presented in Chapters 3 through 5 are, therefore, based on an updating rule

which involves discretization at each time step.

The updating rule for a node j in a simulated network, 1 <= j <= N, is

summarized below for reference:

In this chapter, this truncated updating rule will be denoted by

Therefore, at the start of each of the numerical

simulations presented in the aforementioned chapters, the variable di ) is set to a

random integer value in the range 0 < o (; ) <= omax, , where ()max is currently set to

10, 000. The function f is applied to each node and the resulting real value obtained is

then truncated to the nearest integer. The numerical function f obtained is, therefore,

a function acting on a set of integers:

114



115

The properties of the non-discretized updating rule, f, are examined in this

chapter

The reason for studying properties of the non-discretized rule f is because the

discretized rule is not easily amenable to analysis with dynamical systems methods.

Numerical results are presented in this chapter which illustrate the strong

similarities in the dynamic properties of both these rules. It is argued in light of

these data that analytical results of the non-discretized mapping, f, are useful to

provide insight into the discretized numerics (using f). The remainder of this chapter

is concerned with proving results regarding the stability of persistent dynamic states

of some small networks (when the non-discretized updating rule f is used).

When the input to any given node in the network is only positive or negative,

networks can be examined easily for fixed points. Their local stability is established

with the use of linear stability analysis (see §6.2.1). However, the cases where the

inputs for each node can vary between positive and negative values over time require

more care. In these instances, it is difficult to study the stability of fixed points with

f written in the form shown in Equation 6.1. In the basic model studied in this

thesis, where g is the identity function, the non-discretized rule f can be re-written

in a simplified form:

where H(x) represents the Heaviside function:
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Another approximation to f (and referred to in this chapter as f introducedtanh isis

which smoothes out the discontinuity in its derivative:

The parameter k controls the steepness of the tanh function. In the limit IC ∞  the

function 
1
—
2

[1 + tanh(kx)] approaches H(x). Results will show that this enables the

resolution of these difficulties. Numerical data for the three different versions of the

dynamical rule (f, f, and ftanh) show good agreement (see §6.4).

A four node network which exhibits simple periodic behavior under certain

parameter regimes is discussed in some detail. The usefulness of analysis in the phase

plane for interpreting features of the dynamics will be evident. Analysis is used

to verify the numerical results for a specific parameter case. The locally attracting

property of the limit cycle will be proved with the aid of the Banach fixed point

theorem [97]. Global stability of the limit cycle is conjectured. The variation in

periodicity of this limit cycle is also examined for a number of different parameter

cases. Data relating to this four protein network will be discussed again in Chapter

7 in the context of a larger, more realistic protein network generated by the GA.

6.2 Examples of Fixed Point Stability Analysis.

In this section, a linear stability analysis is used to examine the local stability of fixed

points of some simple networks. The non-discretized updating rule, f, is used for this

analysis. Analysis is shown in §6.2.1 for a network with two protein types. A network

with four protein types is considered in §6.2.2.
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6.2.1 A Network with Two Protein Types: 2PKs

The network examined in this section contains two nodes which represent modeled

protein kinases. The connection matrix for this network is also shown (see Figure 6.1).

Figure 6.1: A two node graph.

In this example, the non-discretized updating rule, f, takes the form

The bj 	= 1, 2) terms are found by computing the weighted sum of inputs for

each node (see §6.1). The fact that g represents the identity function in the simple

model, means that activity and occupancy are the same (i.e., 4 ) = oft) , Vt). Hence,

Here, the updating rule also simplifies because

.. 1Fixed points of the system satisfy (t+1) o1(t) o and o2(t+1)= o2(t)=o2The

following system of equations must then be solved:

The two fixed points lie at
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The local stability of these points is considered next. This is examined by

making a small perturbation, away from the fixed point (o 1 , 6²):

Each of the fixed points is examined in turn by substituting the expressions from

Equation 6.6 into Equation 6.4. The eigenvalues of the resulting linearized system,

in the new variables (x (t) , y (t) ), are then calculated.

Analysis of fixed point at (0, 0):

Expanding the exponential terms in a Taylor series gives

After grouping terms of similar orders, only the 0(E) terms are retained. The 0(1)

terms balance and terms of higher order are neglected. The eigenvalues of the

resulting linear system in Equation 6.9 (denoted A i), determine the local stability

of the fixed point:

In this example, the eigenvalues are found to be Al = 0 and A² = 2, indicating that

the fixed point at (0, 0) is unstable to small perturbations.
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Analysis of fixed point at (omax, omax ): (omax,  omax):

As before, expanding the exponential terms in a Taylor series yields

The resulting linear system (Equation 6.12) follows from equating the coefficients of

the order E terms. Writing a =

This time the matrix is diagonal, so the eigenvalues can be read directly from the

diagonal elements of the matrix.

In this example, the eigenvalues are equal and 	 < 1, i = 1, 2. Therefore, the fixed

point at (omax, omax) stable to small perturbations.omax) is

To summarize, this two node network (where both nodes represent protein

kinases) has two equilibrium states. The trivial state, where neither node is active, is

locally unstable. The state where both nodes are maximally active is locally stable.

Numerics indicate that the fixed point at (0, 0) is globally unstable and the fixed

point at (°max, Omar ) is1 is globally stable. Similar stability analysis results for other- 

small networks with monotonic node input can be found in Appendix C.
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6.2.2 A Network with Four Protein Types: 2PK, 2PP

In the case where the input for any given node may vary between positive and negative

values over time, the analysis becomes more involved. In this section a simple four

protein network is considered (see Figure 6.2).

Figure 6.2: A small network of four proteins.

The matrix for this network is written alongside, with the labeling of proteins

as indicated in the figure. Since the activities of nodes 3 and 4 are fixed by the given

initial condition, the values of these nodes will be denoted by the parameters µ i and

P²) respectively. The bj (j = 1, 2) terms can be found, as before, from the weighted

sum of inputs for each node:

Substituting the expressions for b1(t) and le into the non-discretized updating

rule f (see §6.1) gives
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By inspection it is possible to find two fixed points. One occurs when all nodes

are inactive (i.e., when = /2 ² = 0 and o1
(
t) = = 0). The second case occurs

when the inputs for nodes 1 and 2 exactly balance. In such a case, the fixed point

will occur where o1(t ) = µ i and 4 ) = /1² .

Numerical work suggests that in the cases where 0 < LL IL < 0r 1) - - max the network

possesses a single unstable fixed point at (4 ) , (t ) ) = (4,11² ) around which there

appears to be a single globally attracting limit cycle orbit (see Figure 6.3). A proof

of the instability of this fixed point is outlined in the next section. The limit cycle

properties will be discussed further in §6.3.

It is not easy to prove analytically the instability of the fixed point at (on 4 ) ) =

11²). The direction of the perturbation away from the fixed point affects how each

node is updated at the next time step (see Figure 6.4). The different values of b (1 ) ,

j = 1, 2, in these quadrants are shown in Table 6.1.

Table 6.1: The rule for updating each node depends on the sign of the input b (; ) ,
j = 1, 2. The motion in the (4 ) , (4 ) ) phase plane is different in each of the quadrants.

For the cases where either µ1 or 1/ ² take their minimum or maximum values, the

equilibrium points are listed in Table 6.2. Note also that in the cases that µ i = 0 or

11² = 0 the network is reduced to a three node network. The results of this analysis

agree with the data presented in Table C.1 (Appendix C).
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Figure 6.3: Limit cycle oscillation in the 2PK-2PP network for two selected pairs
of input parameters: Ga l , /12 ) = (A) (5000, 5000), (B) (2500, 7500). The network is
tested from several different initial conditions in each case. The limit cycle seems to
be globally attracting, with the exception of the fixed point at (a l , 62 ) = (µ i , µ² ). The
input parameters to the network tune the amplitude and frequency of the oscillation.
Global stability remains to be proven analytically.



Figure 6.4: Analyzing the iterative map in each of the four quadrants of the (01 , 0² ) phase plane. Quadrants QI-QIV and
lines LI-LIV are identified because the map is different in each of these regions and on each of these lines. The point (o h o² ) =
(µ1, µ2 ) is a fixed point for the map.
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Table 6.2: Fixed points for the 2PK-2PP network when one of the input parameters
takes either its maximum or minimum values.

6.2.3 Analysis of the Unstable Fixed Point for the 2PK-2PP Network: A
"Tanh" Approximation

In simple cases, therefore, when the input to any given node in the network is only

positive or negative, small networks can be examined easily for fixed points and for

their stability (as discussed in §6.2.1). The following method has been considered as

a way to examine the local stability of fixed points when the inputs for each node

can take on positive and negative values. This involves using an approximation to

the updating function, f.

In this section, a fixed point of the 2PK-2PP network is considered. The analysis

is performed for the single binding site model where activity and occupancy are the

same. A single closed form expression for the updating rule for a node j (which is

independent of the sign of the inputs to the node, b (1 ) ) makes the stability analysis

more tractable.

The resulting surface (Figure 6.5) can be compared to that illustrated in

Chapter 2, Figure 2.4. The use of this rule is vindicated by numerical work. (See

§6.4, Tables 6.3 & 6.5.) In practice, IC = 0(100) gives good numerical results.



Figure 6.5: Surface plot of the updating rule with the tanh function ( f 1(f tanh ) •

A C°° approximation of the original updating rule, f, is considered here. It is

referred to as fJ tanh:

where the parameter k  controls the steepness of the tanh function. In the limit k 	 ∞

the function ½[1 + tanh(kx)] approaches H(x).
2

When the continuously differentiable function fJ tanh is used, the occupancy

values for nodes 1 and 2 of the four protein network shown in Figure 6.2 are
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The fixed point at (4 ) (µ1,µ2) can be found by inspection. A linear

stability analysis is performed by making a small perturbation from the fixed point

where c is a small parameter and x(t), y(t) are 0(1) quantities. If the tanh and

exponential terms are expanded in a Taylor series, then the following is true:

After further manipulation and grouping of terms of similar orders, the new

linearized system is

The eigenvalues of this new system are found to be A j = 1 ± i/2, which satisfy

I Aj I > 1, for j = 1, 2. The fixed point at (µ1, t1²) is, therefore, locally unstable. Note,

this analysis applies to the updating rule f tanh which is a C°° approximation to the

function f . The non-discretized updating rule, f , is not differentiable on the lines

0 1 = µ i and 0² = µ² . The fixed point at (µ 1 , /2² ) lies precisely where these lines

intersect.



Figure 6.6: The limit cycle has four main phases, corresponding to the four
quadrants of Figure 6.4.

6.3 Stability Analysis of the Limit Cycle of the 2PK-2PP network

In this section, the periodic orbit of the 2PK-2PP network is examined. Firstly, a

qualitative explanation for the existence of the oscillation is presented. Secondly, a

specific parameter case is examined, (//1, /12) = (4000, 4000), for which the network

exhibits a periodic orbit of length 14 time steps. The local asymptotic stability of the

orbit is examined. Finally, the effect of varying the input parameters to the network

is considered.

6.3.1 Qualitative Explanation for the Periodic Orbit

The periodic orbit can be divided into four distinct phases. This is discussed with

reference to Figure 6.6. In the first phase, which corresponds to points (on on
which lie in QII, the value of node 2 is increasing because its input is positive. This

can be seen by noticing that the occupancy value of node 1 lies above the critical line,
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(t) 	 (t) 	 (t)o1(t) = µ1. Recall that the input for node 1 at time step t is given by bit) 	µ² — o²

and the input for node two is b2(t) = 	 — µ i . At the same time, the occupancy of

node 1 is decreasing, because its input is negative. The occupancy of node 2 will

continue to increase until the occupancy of node 1 decreases below the critical line
(o1(t)= µ1. This occurs at time step 3 (see Figure 6.6). At this juncture, the data

point has moved into quadrant three and the second phase of the oscillation starts.

Now the input for node 2 is negative because the value of node 1 has fallen below its

critical value (µµ1). In this phase, both occupancy values start to decrease. Once the

value of node 2 has crossed its critical line, 4 ) = µ² , the input for node 1 becomes

positive. This occurs at time step 7. The point (4 ) , 4 ) ) has now moved into QIV

and phase three starts. The value of node 1 starts to increase (now 4 ) < µ² ). This

phase continues until node 1 crosses its critical value again. At time step 11 the input

for node 2 becomes positive and now its occupancy value starts to rise. The point

enters QI at this time. The fourth and final phase of the oscillation corresponds to an

increase in the occupancy values of both nodes until finally node 2 crosses its critical

value at time step 13. The data point returns to quadrant II and at time step 14

returns to its initial starting position. The phases of this periodic orbit illustrate why,

in the cases when either µ 1 or µ² are set at the upper or lower limits, no oscillations

are observed.

6.3.2 Proof of Local Asymptotic Stability of the Orbit

The goal of this section is to show that the 2PK-2PP network has a locally

asymptotically stable periodic orbit of length 14 time steps when (µ1, P²) =

(4000, 4000). Numerical evidence is presented which shows that a small neighborhood

close to the limit cycle is mapped back completely within itself for the first time after

14 time steps. The eigenvalues of the Jacobian of the iterated map, D f (14) , are shown

to have magnitude less than 1. The Banach fixed point theorem is then applied to
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demonstrate that the orbit is locally attracting with a period of 14 time steps. In

order to apply the theorem, it must first be shown that the limit cycle points never

lie on the lines where f has a discontinuity in its derivative. These are the lines

The expressions for updating the occupancy of nodes 1 and 2 in this network

are as follows:

These expressions simplify in each of the four quadrants (QI-QIV) (see Equations

6.19-6.22 and Figure 6.4):
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The lines LI-LIV (see Figure 6.4) are also considered separately, because

the map has a discontinuity in its derivative there. The map is continuous

everywhere else and derivatives of all orders exist away from these lines. The point

is a fixed point. The mappings of these lines are shown in

Equations 6.23 to 6.26.



Figure 6.7: Pre-images of the discontinuity (critical) lines o 1 = ,a1, 02 = p2 . The left plot shows each of the pre-images of
LI-LIV together with the limit cycle points. The right hand plot shows a blow up of the point which looks close to the pre-image
of LII. The data show that no limit cycle point ever maps onto the discontinuity lines.



Table 6.3: A period 14 limit cycle. Comparison between different schemes: (a) Numerics using f, (b) Numerics using I, (c)
Numerics using ftank with = 100. Double precision numerical data is given to 8 d.p., the periodic repeat is evident when
comparing data at time steps 5000 and 5014.

Pi Time
step

(a) Using f (b) Using f (c) Using ftanh

5000 (6372.28057609, 5270.83217239) (6375,5271) (6372.28057608, 5270.83217245)

P4 5001 (5611.81505542, 6269.57863244) (5614, 6270) (5611.81505537, 6269.57863248)
P5 5002 (4472.36049082, 6824.89821878) (4473, 6825) (4472.36049077, 6824.89821880)

P6 5003 (3371.73187339, 6971.39038937) (3372, 6971) (3371.73187334, 6971.39038937)
P7 5004 (2504.99686350, 6546.87524636) (2505, 6546) (2504.99686346, 6546.87524633)

P8 5005 (1941.77005738, 5637.76415528) (1941, 5637) (1941.77005736, 5637.76415523)
P9 5006 (1648.43036676, 4589.01115527) (1647, 4588) (1648.43036675, 4589.01115522)
P10 5007 (1554.14013796, 3627.36903939) (1552, 3626) (1554.14013796, 3627.36903934)
P11 5008 (1863.06748499, 2840.33390303) (1862, 2838) (1863.06748502, 2840.33390300)

P12 5009 (2754.02126035, 2293.84251438) (2754, 2291) (2754.02126040, 2293.8425143)

P13 5010 (3890.58569704, 2025.12310497) (3892, 2022) (3890.58569710, 2025.12310496)
P0 5011 (4985.45233807, 2003.08613948) (4988, 2000) (4985.45233812, 2003.08613948)
P1 5012 (5893.16838644, 2753.55889692) (5896, 2752) (5893.16838648, 2753.55889697)
P2 5013 (6374.44375307, 4003.39409082) (6377, 4003) (6374.44375309, 4003.39409088)
P3 5014 (6372.28057609, 5270.83217239) (6375, 5271) (6372.28057608, 5270.83217245)
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Although from a first glance at Figures 6.6 and 6.10 it seems as though the

13th iterate lies on the line LII, in actuality it does not (0 2 	4000). See Table 6.3,

data at time step 5013. This is true for all versions of the updating rule (f, f and

ftanh) • Exact expressions for the pre-images of the lines LI-LIV can be found. For

example, consider the line LI. Only points in QIV can map to LI. A point

which lies on the line LI satisfies the following conditions:

A relationship between (4 ) , o2(t) can be determined from this

information using Equation 6.22. Pre-images of LII-LIV are computed similarly and

are shown in Figure 6.7 in relation to the points of the periodic orbit.

Figure 6.8: Mapping the lines LI-LIV.

The mapping of each of these lines is illustrated in Figure 6.8. Note that LI

maps to QI, LII maps to QII and so forth. At this juncture, it is noted that in this

four node network the rule can be represented in the form shown in Equation 6.27.

The movement of any point is a combination of a translation and a scaling:
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This can be seen clearly when the mapping of a small region is followed through the

quadrants (see Figure 6.9). A four-sided polygonal region is considered in Quadrant

I. When considered in the original phase plane (01, 02), then the neighborhood is a

rhombus of side length Omaxє where f = 0.001. Its vertices are labeled A—D in a

counterclockwise direction, starting from the lower-most vertex.

Successive iterates of this region are shown in Figure 6.9. The data points

within the polygon are shown. At each successive iteration of the map, the edges of

the original polygon AB,BC,CD and DA are approximated by straight lines joining

the mapped vertex points. This provides a good approximation to the region as is

seen in Figure 6.9. When the mapped region crosses the discontinuity line at the time

step t = 2 (Plot C of Figure 6.9) the polygonal approximation is improved by adding

in two new vertices E and F which correspond to the points where the sides AD and

CD crossed the discontinuity line LII at that time step. The new six sided polygon is

shown in plot D which is obtained by mapping the 6 vertices from the previous time

step. Straight lines are used to approximate the mapped region. After 14 time steps

the four sided region ABCD (which has become AEBCFD) maps back within itself

for the first time. This is shown in illustration A of Figure 6.9.

The nth-iterate of a point, P, under the map, f , is written fn(P). If there exists

a cycle of k distinct points, Pi = fj (Po ), where

then f has a periodic orbit of length k. A map F : (Y, d) 	 (Y, d) of a metric space

into itself, where d is a given metric for Y, is called d-contractive if 3 a < 1 such

If S is a complete metric space and F

is d-contractive, then F has a unique fixed point. This is a statement of the Banach

fixed point theorem (BFPT) [97].

Consider the 14th iterate of the mapping f, where

For a point P lying in B(Po ; f) C Y, then in regions where f is C2:



Figure 6.9: Evolution of a small neighborhood close to the limit cycle. Note that in
panel (A) the mapped region after 14 time steps is also shown. This illustrates that
the starting region ABCD maps back completely within itself for the first time after
14 time steps.



Figure 6.9 (ctd)



. 	 ,

Figure 6.9 (ctd)

This can be seen by generalizing the following from a scalar function f of a single

variable

to a vector valued function of two variables:

in a sufficiently small ball, B(Po ; R) which does

not intersect the lines LI-LIV. An estimate for the radius of this ball can be found.
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The region of interest is now scaled to the unit interval in lie, denoted here as I,

The new variables

The parameters pi and /12 are also rescaled so that ILµ1  = µ1/omax, P2 = I-12/ Omax •

The metric subspace (I, d) is complete because I is a compact subset of 11=e, which is

complete. The local asymptotic stability of the orbit is determined by the eigenvalues

of the linearized map D fk (Po). By the chain rule, this is equivalent to

The exact form of f depends on the sign of the input b (;) into each node j each of

the four quadrants (see Equations 6.19-6.22 and Figure 6.4 ). The Jacobian matrix

D f is computed for each of these cases. They are denoted DfQi to DfQiv. To

simplify the Jacobian matrices, let
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The eigenvalues of the composition of these matrices are computed numerically

since the points, Pi , i = 0, ... , 13 are known (see Table 6.3). The original

data points have been scaled to the region I. At each mapping stage (i.e.,

at each point Pi , 0 < j < 13) in Table 6.4) the eigenvalues of the mapping

are shown, together with their corresponding

eigenvectors. The magnitude of the largest eigenvalue is shown in the rightmost

column. Thus, the eigenvalues of D f 14 can be read off from the bottom row of the

table: A l = 0.9320, A 2 = 0.1996. Both of these eigenvalues are smaller than one,

showing that the map f" is contractive.

This completes the proof of the existence and local asymptotic stability of the

periodic orbit. Global stability of this orbit is conjectured, but not proven. Numerical

work suggests that the periodic orbit is strongly attracting (see Figure 6.10).

6.3.3 Parameter Variation

A systematic test of the (ph /22) parameter space indicates that the periodicity of the

limit cycle does not vary smoothly with changes in these two parameters. Data are

shown here for the truncated rule j (see Figure 6.11).



Table 6.4: Eigenvalues of the iterated map f 14 . At each mapping stage the eigenvalues of the composed map are
computed, together with its eigenvectors. For example, at point Pj , 0 < =j<= 13, the eigenvalues of the mapping
D f (Pj).D f (Pj-1 ) . . . D f (P1).D f (Po) are shown, together with their corresponding eigenvectors. The magnitude of the largest
eigenvalue is shown in the rightmost column. The eigenvalues of Df 14 can be read off from the bottom row of the table:
a l = 0.9320, A2 = 0.1996. Both of these eigenvalues are smaller than one, showing that the map f 14 is a contraction mapping.

Pi Quad. Eigenvalues of Composed
Maps 01, A2)

Eigenvectors 	 of 	 Composed 	 Maps

(v1,v2)

Magnitude
of 	 Largest
Eigenvalue

|λ|max

Po : (0.49854523, 0.20030861) QI 0.8626 ± 0.5438i (-0.5995 - 0.0481i, 0.7989i) + c.c. 1.0197
P1: (0.58931684, 0.27535589) QI 0.4819 ± 0.8680i (-0.6226 - 0.0155i, 0.7824i) + c.c. 0.9928
P2: (0.63744438, 0.40033940) QII -0.0823 + 1.0331i (-0.6884 - 0.1017i, 0.7182i) + c.c. 1.0364
P3: (0.63722806, 0.52708322) QII -0.5669 ± 0.8060i (-0.7093 - 0.2155i, 0.6711i) + c.c. 0.9854

P4: (0.56118151, 0.62695786) QII -0.7788 ± 0.4359i (-0.7008 - 0.3364i, 0.6291i) + c.c. 0.8925
P5: (0.44723605, 0.68248982) QII -0.8005 ± 0.1154i (-0.7353 - 0.4865i, 0.4719i) + c.c. 0.8088
P6: (0.33717319, 0.69713904) QIII -0.6438, -0.8754 (0.3772, -0.9261), (0.0517, 0.9987) 0.8754
P7: (0.25049969, 0.65468752) QIII -0.5794 + 0.3198i (0.3605 - 0.1781i, 0.9156i) + c.c. 0.6618

P8: (0.19417701, 0.56377642) QIII -0.3761 + 0.4408i (0.4528 - 0.1564i, 0.8778i) + c.c. 0.5794
P9: (0.16484304, 0.45890112) QIII -0.2018 ± 0.4780i (0.5291 - 0.1367i, 0.8375i) + c.c. 0.5188

P10: (0.15541401, 0.36273690) QIV 0.1885 ± 0.4793i (0.5605 - 0.4113i, 0.7188i) + c.c. 0.5150

P11: (0.18630675, 0.28403339) QIV 0.4633 ± 0.1421i (0.2326 - 0.7579i, 0.6095i) + c.c. 0.4846

P12: (0.27540213, 0.22938425) QIV 0.9132, 0.2232 (0.9842, -0.1769), (-0.5603, 0.8283) 0.9132

P13: (0.38905857, 0.20251231) QIV 0.9320, 0.1996 (0.9960, 0.0889), (-0.4698, 0.8828) 0.9320



Figure 6.10: An example of how parameter adjustment leads to a low period orbit
which appears to be strongly attracting. The non-discretized rule, f, is used to iterate
several initial starting points in each of the four quadrants and also a point in the
interior of the limit cycle. The plot in the bottom right hand corner shows that all
points are attracted to the same period 14 orbit. The critical lines 0 1 = pi, 02 = P2
are shown on each plot.



Figure 6.11: Variation of periodicity of the limit cycle for the rule f as the
parameters µ1 and /12 are varied. (A) A parameter range for (p i , /12) was taken to
be 100 <= p i < 9900, incrementing p i in jumps of 100 (similarly for ,u 2 ). The largest
periodicity value detected was 2,169 time steps. In this plot (p i , /12 ) = (100, 100) is
the data point at the top left, and (µ1, µ2) = (9900, 9900) is the point at the bottom
right corner. Limit cycles of short periodicity appear in blue. The graded color map
is shown to the right. (B) Histogram plot of periodicities as p and p, 2 are varied.
Data are grouped into bins of size 10.
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Table 6.5: Comparison of truncated and double precision numerical results for the 2PK-2PP network with (µ1, µ 2) =
(5000, 5000). The starting state used for the network is (1000, 9000, 5000, 5000). The truncated rule (column 2) indicates
an exact repetition every t = 435 time steps. The non-discretized rule, f, gives a repeat time of t = 435 (5 d.p. precision) after
10,000 time steps. The fourth column illustrates data from the application of the updating rule ftanh, where K = 200.
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6.4 Comparison of Truncated and Double Precision Numerics

In the previous sections in this chapter, f has been considered as the mapping

function. Here data are presented for the truncated numerics, which utilize the

function f. A comparison between all three of the rules used is presented. Table

6.5 illustrates data between the three rules (Col 2: I, Col 3: f, Col 4: ftanh with

K = 200). The parameter case selected here is (µ1, µ2) = (5000, 5000)). The four

protein network of §6.2.2 is considered and the initial state of the network is set to

(1000, 9000, 5000, 5000). The strong agreement between the simulations is evident.

Even after 50, 000 time steps, the numerical values remain "close". When the

distance between respective components in the vectors (on 4 ) ) is compared, each is

never more than d = 8.14030 apart over t = 50, 000 time steps, using the following

metric (L0 norm):

Recalling that the 2-D space is restricted to the region

approximately 8 parts in 10000. This is demonstrated in the scatter plot of Figure

6.12

6.5 Summary

The suggestion in this thesis has been that a stable cell behavior might be thought

of as a stable dynamic attractor in the intracellular signaling system. It is therefore

important to investigate stability properties of equilibrium states of the model. The

simple example shown in §6.3 illustrated an attracting limit cycle generated by a

network with only four different protein types. The network stability was investigated

numerically and also analytically. Local stability properties of fixed points was also

established in other simple networks. It would be useful to be able to enumerate the

total number of different attractors in the intracellular dynamics of any given network.
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Figure 6.12: Scatter plot comparing data from truncated & double precision
numerics. The data are generated by comparing the distance between respective nodes
(1,2) in the network. In the case where the numerics is truncated , p (t+1) = f(p(t)),

the variable p is used to distinguish the truncated occupancy. The absolute distance

02
(t) 

— P2
(t) , is (t) (t)

.s plotted against 1 o1 — I The limit cycle is strongly attracting, so thePi 1I
data remain close (i.e., within a 10x 10 grid). The initial starting data for the cycle is
(1000,9000,5000,5000), and the simulation is run for 50,000 time steps (upper). Data
are also collected after a transient time of 20,000 time steps (lower). Note that in the
right hand plot, the data are less scattered.
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However, this proves to be a difficult prospect for a system of such large dimension.

Nonetheless, analysis for some simple cases sheds light on possible procedures for

predicting properties of larger networks.



CHAPTER 7

TOPOLOGICAL PROPERTIES OF NETWORKS

7.1 Introduction

Previous chapters have been devoted to studying dynamic properties of networks

both numerically and analytically. In this chapter, topological properties of networks

will be explored, particularly the manner in which network structure can affect

dynamics. Some terminology from graph theory is necessary, but any concepts

used in this chapter are summarized for reference purposes in Appendix D. Section

7.2 explores the properties of a signaling cascade of PKs, and examines whether

the model developed in this thesis can exhibit the qualitative features of biological

signaling cascades. The following sections explore the relationship between structural

properties and propensity of networks to generate oscillations.

7.2 Amplification Properties of Cascades

A graph can be used to describe the structure of a network. If the network structure

is a linear cascade with no feedback, the graph is described as a "tree" . A tree is

an acyclic, connected graph satisfying the property that E = V — 1, where E is the

number of edges in the graph and V is the number of vertices. Every node of the

graph has an "in-degree" of one, which means that there is one input edge for each

node of the graph (see Figure 7.1). With the synchronous updating rule, it takes one

time step for a signal to propagate down one level of the tree. Since each node has

a single input, the activity of each node can only increase or decrease monotonically.

Eventually the activities of the nodes within the tree will converge to a steady state.

In the cascade shown in Figure 7.1 all nodes represent types of kinase, the

activity values of the nodes will increase monotonically. Assume the null state and

make a small perturbation in the value of the input node (Node 1), set or = 100.

This 1% activation of the input node causes a cascade of changes which filters

147
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Figure 7.1: (A) A tree structure, (B) Positive amplification in a cascade of seven
levels of protein kinases. A small change (1%) in the input level can cause a rapid
increase of phosphorylation levels in protein types at lower levels. There is little
change in the sigmoidal response beyond five levels of the pathway.
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down the tree. The changes in activity of nodes 1, 2, 3, 5, 6, 7 and 9 are shown in

Figure 7.1. A steeper sigmoidal response is observed in nodes at lower levels of the

tree. However, there does not appear to be a significant change in response benefit

beyond five levels of hierarchy.

Lemma 7.1 (Monotonicity principle) (i) If the input to node j, bi t) >= 0, then

its occupancy increases monotonically. The occupancy 0 (1 ) is bounded above by °max •
(ii) If the input to node j, b (1) < 0, then its occupancy decreases monotonically. The

(t)occupancy oj is bounded below by zero.

7.3 The Effect of Structural Properties on Oscillations

By the monotonicity principle, nodes with a "tree" (cascade) structure (with no

feed-forward or feed-back loops) cannot oscillate in activity. This cannot occur even

with a transient or sustained oscillatory input to the tree. A question of more general

interest is whether a general acyclic graph can exhibit oscillations in activity. A simple
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example illustrates that an acyclic graph can, in fact, oscillate in the special case when

its input is sustained and oscillatory (see Figure 7.2). In general, an acyclic graph

must equilibrate if the input signal is maintained at a constant level.

Figure 7.2: Oscillating nodes in an acyclic graph. (A) A three node acyclic graph.
(B) An acyclic graph can have oscillating nodes if one of the inputs is oscillating.

If an acyclic graph can oscillate only if its input nodes oscillate, what kind

of network structure can sustain an oscillation? An example of a small four node

network which exhibits stable oscillations under certain conditions was demonstrated

in §6.2.2. If a node oscillates, must it lie on a cycle? A simple counterexample suffices

to show that the statement that an oscillating node must lie on a cycle is false. This

is achieved by adding a single node and two extra edges to the four protein graph of

Chapter 6 (see Figure 6.2). The new graph (Figure 7.3) illustrates that, under certain

conditions, the activity of the additional node will oscillate. Must there, however, be

at least one node that lies on a cycle in order to generate an oscillation?

Suppose that the inputs to the graph are sustained at a constant value. The

following observations are noted. A node which receives input from an oscillating node

does not necessarily oscillate itself. By the monotonicity principle, a node receiving

a single input from an oscillating node will eventually stabilize. If a node oscillates,



Figure 7.3: Oscillating nodes need not necessarily lie on a cycle. (A) A five node
graph constructed by adding a single node and two edges to the graph studied in
Chapter §6.2.2. (B) Under certain conditions, node 5 can oscillate, but it does not
lie on a cycle.

Figure 7.4: Illustration of conditions under which nodes may or may not oscillate.
If a node is oscillating, then at least one of the nodes on its input perimeter must
also be oscillating (left). This is not true for nodes on its output perimeter (right).
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then there must exist an input to this node which is oscillating, since otherwise

the node would equilibrate. If a graph exhibits oscillations, but the inputs to the

graph are constant, then there must exist at least one cycle in the network. It is

therefore important to consider the input and output perimeters of any given node

(see Figure 7.4).

Common techniques used to traverse and study the structure of graphs are

depth-first search (DFS) and breadth-first search (BFS) algorithms [98]. Depth-first

search is particularly useful when one is interested in studying structural properties

of graphs. DFS algorithms exist to search for cycles in graphs, to detect the strong

components of a directed graph or even to search for the block/articulation point

structure of a graph. A graph, G, is said to be strongly connected if there exists a path

between every pair of vertices in G. An articulation point is defined as a vertex whose

removal splits the graph into disjoint components. For example, node 8 in the graph of

Figure 7.5 is an articulation point. Such a node could play a critical role in controlling

dynamic patterns of modeled networks. One might imagine that information on the

strong component structure of a graph would be a reasonable indicator of a tendency

of a network to have large groups of oscillating nodes. Once one node starts to

oscillate, the signal propagates throughout the component. However, as noted before,

the signs of the inputs into any given node will be important in determining whether

or not that node can oscillate.

Once strong components are embedded inside larger graphs it becomes harder

to predict the dynamics of the network as a whole. In Figure 7.5 nodes 2 and 6 form

a strong component and they are both oscillating. However, nodes 3, 7 and 8 form

another strong component„ yet they are not oscillating. This is primarily because

once the size of the positive input of node 8 (from node 3) rises above the amplitude

of the oscillation of node 6, the input into node 8 saturates. This shuts off node 7,

which prevents the nodes in the strong component from oscillating.



Figure 7.5: Nodes that are part of a strong component need not necessarily oscillate.
(A) A network constructed to illustrate that, under certain conditions, nodes that are
part of a strong component need not necessarily oscillate. (B) Plot of the activity
of selected nodes against time. The values of nodes 1, 4, 5 were set to 2000, 1000,
8000, respectively. Nodes 3, 7, 8 form a strong component, but none of these nodes
is oscillating.

Changes in structural properties can cause changes in the allowable range of

dynamic behaviors of networks. For example, the three node graph shown in Figure

7.6, whose fixed points are listed in Table C.1, can never oscillate. The addition

of a new node can introduce new behaviors under certain parameter regimes. The

oscillatory behavior of the four node network in Figure 7.6 was examined in some

detail in Chapter 6. Attention will be given in the next section to the structural

properties of a network generated by the GA.

Figure 7.6: Structural changes can introduce new dynamics. The left graph can
never show oscillations in activity. However, the introduction of a single extra vertex
(node 4) can introduce new behaviors in certain parameter ranges.



154

7.4 Structural Features of a Network Generated by the GA

Tests on networks from the final generation of the GA search shown in §4.3 show that

they often posses one large strong component, with some nodes with an "in-degree" of

zero, which can essentially be regarded as input nodes. Tests on the block structure

of these networks also indicate a small number of articulation points and hence a

small number of large blocks. More sophisticated algorithms are needed to shed light

on how the network structure can affect its dynamical properties. This is discussed

further in the final chapter.

Figure 7.7: Graphical structure of the fittest network generated by the GA
simulation of §5.4. Input nodes are shown in red. Dashed lines denote negative
interactions. This graph was generated using a DFS algorithm. All nodes (excluding
nodes 1, 16, 18) form one large strong component. Note the genetic algorithm
has altered the ratio of types of protein kinases (PKs) to protein phosphatases
(PPs) in the network. The fundamental cycles of the graph were found to be:
(2,3,6,14,0,2); (5,15,4,19,8,2,3,6,14,0,5); (3,6,14,3); (19,8,2,3,6,19); (19,8,2,3,7,19);
(5,15,4,19,8,2,3,9,5); (5,15,4,19,8,2,11,17,5); (19,8,2,19); (15,4,19,12,15). The starting
vertex for the DFS algorithm was node 16.
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An algorithm [98j was implemented to detect the fundamental cycles of a

directed graph. The cycles detected are noted in the caption of Figure 7.7.

Oscillations in activity of many nodes were clearly evident under certain input

conditions (see Chapter 5). The detection of closed structural loops is not

sophisticated enough to elucidate a structural explanation for oscillations, as the sign

of the inputs into each node is important. This is where the mathematical analysis

of small networks becomes important.

The four node substructure discussed in Chapter 6 is embedded in this larger

network:

Nodes 4 and 9 will oscillate provided that neither of their inputs hits the upper or

lower activity limits, and provided that the negative input from node 6 to node 19

is greater than the positive input of node 2. Similarly, nodes 2 and 8 will oscillate

provided that neither the activity of node 0 nor the combined activity of nodes 19 and

7 hits the upper or lower limits. Nodes 3 and 6 will oscillate under the condition that

the positive inputs of nodes 2 and 14 to node 3 outweigh the negative input of node

17, and that neither of the inputs to nodes 3 and 6 hits the maximum or minimum

levels. This preliminary analysis helps to shed light on why oscillations might be such

a prevalent feature of this network. However, more detailed analysis is required.

7.5 Summary

In this chapter, some attention was given to trying to understand how structural

properties of graphs affect their dynamics. However, structural properties alone are

not sufficient to elucidate all the complexities. Fundamental cycles were examined and

the strong component structure of graphs was studied in certain special examples. For
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example, the nodes in the GA network, excluding the three input vertices (1, 16, 18),

form one large strong component. This may explain the tendency for all nodes in the

graph to oscillate. In Chapter 5 a transient change in node 19 was shown to have

significant impact on the dynamic properties of the network. Structural analysis of

this network indicates that node 19 has the greatest number of output connections.

This may explain why this node is so critical to the state of the network. The

sensitivity of the network state to changes in individual nodes could be interesting to

explore in any future work.

A "tree" structure was studied and shown to possess the typical signal

amplification properties seen in real signaling cascades. The benefit of studying

several small networks in depth becomes clear when properties of larger networks are

considered. The four node network configuration studied in Chapter 6 is embedded

inside the network generated by the GA studied in this chapter. It then becomes

more obvious why the network dynamics typically show large numbers of oscillating

nodes.

It is of interest to examine whether there are certain underlying structural

principles governing the design of intracellular signaling networks. For example,

studies of "small-world" networks [99] indicate that graphs with a high degree of

local clustering but with a short characteristic path length between vertices may

have advantages over completely random or completely regular networks. This is

discussed further in the final chapter.

Since gene knockouts experiments are also possible in real signaling networks, it

would be interesting to study the effect of deleting nodes in simulated networks. This

would be a fruitful area of study for future work. In this thesis, a decision was made

to concentrate on mathematical analysis of several specific small example networks in

order to try to understand the mathematical basis for the generation of oscillations.



CHAPTER 8

DISCUSSION

A correspondence between the nodes in the simulated networks and the signaling

proteins in a cell has been described. When these networks are compared with real

cells, any specific matrix of interconnections is analogous to the fixed set of kinases and

phosphatases found in a particular cell type (i.e., one connection matrix represents

one generic cell type). Since the number of model cell types that can be generated

is enormous, the initial Monte Carlo search technique was replaced with a more

efficient search algorithm known as a genetic algorithm [77]. The advantage of using

a genetic algorithm is that a population of cells can be compared and evolved using

a biologically motivated fitness function.

One clear feature of simulations of these signaling protein networks is that

the activities of protein kinases and protein phosphatases settle rapidly into limit

cycle attractors or fixed point attractors at low levels of connectivity. Even randomly

selected networks seem to show a reduced set of distinct patterns of behavior. Protein

types appear to show oscillations in activity that vary through the entire range,

while stability appears to occur at the upper and lower saturation limits. As the

average network connectivity is increased, the occurrence of periodic oscillations in

activity also increases. Networks with a fixed set of interconnections are capable

of maintaining themselves in distinct steady states or cyclical configurations. It is

possible that these features may be observed in real cells. Futile cycles of ATP [59]

may play a role in maintaining cell stability by controlling phosphorylation states of

important intracellular proteins. These kinds of phenomena may be readily achieved

in phosphorylation networks with a reasonable degree of interconnection.

These phenomena occurred with simulations of networks containing twenty

protein types and one hundred protein types. Data from one hundred protein

networks also showed evidence of attractor basins, although the dynamics were

157
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more complex. Regardless of their exact nature, the settling into a dynamic attractor

indicates that there is a considerable restriction in the number of possible states that

the complete cell signaling system can occupy. This suggests a degree of spontaneous

order in network behavior [71, 72].

These initial observations are similar to those seen in other models of complex

biological systems (e.g., immune system and neural network models [100, 101]). The

strong tendency to settle into attractors is also a feature of a previous generic network

model of intracellular protein-protein interactions [77]. This work can be seen as

modeling an epigenetic system that operates in the cytoplasm of cells on a faster time

scale. The genomic regulatory system and cell signaling networks may be viewed as

slow and fast lattice automata respectively [102]. In fact, the time steps in the model

can be interpreted in terms of real time scales. One time step is probably readily

interpretable as approximately one second of real time. This interpretation is based

on turnover rates of protein kinases (as discussed in Chapter 2).

The model of Chiva et al. differs from that presented here in the sense

that their protein-protein interaction is even more generic. In this study, a more

specific analogue of the most common form of protein regulation, namely protein

phosphorylation, has been modeled. In their model, simulated networks are also fully

connected.

The dominance by attractors is also seen in one of the original presentations of a

connectionist model applied to cells [87]. Kauffman has shown that Boolean networks

that are constructed with biologically plausible constraints placed upon the number

and type of connections can display a limited number of dynamic attractors [72]. The

Boolean rules in the networks are considered to represent different types of regulation

of gene expression in the nucleus of cells. The attractors in such genomic networks

are suggested to correspond to distinct differentiated cell types [103]. In contrast to

gene regulation networks, the attractors in the networks presented here may represent
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a form of epigenetic cell stability that exists principally in the cytoplasm of cells. It

probably operates on a faster time scale than that which involves changes in gene

expression.

The protein kinase and protein phosphatase based signaling networks simulated

here show evidence of a finite, relatively small number of distinct attractor states.

Since the connection pattern in a particular network is fixed, this shows that any

one modeled cell can display a variety of different and stable dynamical patterns.

Each attractor pattern may correspond to a mode of cell behavior. This suggests

that the rules of signaling proteins may readily give rise to a small variety of distinct

modes of cell behavior. These stable patterns exist as a consequence of simulating

protein-protein interactions and are not dependent upon changes in gene expression.

Real cells can show stable states, or even stable changes in behavior, in the

absence of expression of new protein. This is illustrated by a process such as long-term

potentiation in hippocampal neurons where changes in synaptic transmission can

occur for up to about four hours without new gene expression [104]. For a review

see [3].

The short-term effects of insulin on a cell amounts to a variety of kinases and

phosphatases switching on, or off, in a manner that defies easy explanation as a

single cell signaling pathway, or as a simple gene switch response [105]. However,

it is readily interpretable as a shift of the cell from one signaling attractor to

another. Interestingly, there is also evidence that some uncharacterized persistent

epigenetic state accounts for the differences in the transformation potential of cultured

fibroblasts [106]. Epigenetic and cytoplasmic states have also been suggested to

underlie various modes of cell movement [107].

Nevertheless, in most biological instances, any network of stability in the

cytoplasm will be interwoven with constant changes in the concentration of proteins

involved in signaling. These fluctuations in protein concentrations could be included
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in future models of protein kinases and protein phosphatases of this type. The

simulated cell may then resemble the structure of modified cellular automata lattices

where sets of rules interact on a fast time scale, but the rules themselves change on

a slower time scale [102].

In practice it may be difficult to observe directly a range of different attractor

patterns that this study predicts to exist in a real "resting" or stimulated cell. It

may require the recording of the activities of many proteins in a single cell on a time

scale of a few seconds. However, some simulations have suggested that observing

the dynamics of the most variable three proteins in real-time may reveal signs of the

distinct underlying attractor states. In addition, a novel suggestion presented by this

work suggests that the pattern ATP usage may reflect the state of the cell and the

underlying dynamics of the intracellular signaling network. This would be similar to

the manner in which EEG recording reflects the complex dynamics of the activity

of billions of neurons in the brain. Measuring the rate of use, or else the precise

concentrations, of ATP in a living cell may be possible in the near future. Currently,

the signal to noise ratio in experimental ATP measurements is poor.

It is suggested here that the finite number and character of different attractors

in a given network could be an indication of the range of allowable distinct modes of

cellular behaviors that any one cell type can display. A different perturbation of the

initial state may shift the network into a new state, either a different stable state or

limit cycle attractor. Altering the activity of some nodes may not alter the activities

of the other proteins, but altering other nodes may have a more dramatic effect.

It will be difficult to test some of these ideas since there is really no precise

way of defining a cell's behavior. In fact, as a converse, a particular attractor of the

intracellular signaling system may be a new way of defining a behavioral state of a

cell.
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8.1 Relaxing Model Assumptions

The simplifying assumptions that were used in developing the initial model were

listed in Chapter 2. The model structure is flexible enough to enable several of

these assumptions to be relaxed. Most importantly, though, it incorporates certain

important aspects from the biology:

• Dynamic Regulation of Proteins: A network of protein phosphorylation reactions

has been considered in this thesis. This seems reasonable as kinases and phosphatases

make up the bulk of the different types of elements in the intracellular signaling

network and are known to control many features of cell behavior [32, 45].

• Crosstalk: This is captured by the connectivity parameters and the fact that the

each modeled cell type is represented by a matrix of interactions.

• Parameter Encodings: Parameters allow the ratio of protein kinases and

phosphatases to be varied, as well as the degree to which they interact with other

protein types. Networks of different sizes can also be simulated. The current

assumption of equal numbers of each type may not be unreasonable [53].

The flexibility of the framework allows future investigation into:

• Multiple regulatory domains per protein type: For example, Boolean logic rules

could be used to determine the interactions between regulatory sites. This would

translate into a more complicated function relating the activity of protein types to

their occupancy. Biologically speaking, this relates back to the concept of multi-site

phosphorylation that was discussed in the introductory chapter.

• Asynchronous updating: Currently the updating rule acts in a synchronous

fashion. It would be interesting to investigate the effect of adding stochastic noise to

asynchronize nodal updating. This would remove the assumption that all regulatory

processes occur on the same time scales. For example, the shortest time-scale could be

established first and updating performed relative to this. This is the method used in

Morton-Firth's stochastic simulation program "StochSim" [108]. The role of noise in
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signaling systems is another current topic of interest [109, 110]. However, stochastic

models of signaling networks are still uncommon [108, 111].

• Variation in concentration levels of proteins: A change in the maximal concentration

of each protein type involves a change in ° max . This number could be varied over time

or made to be different for each node. This would then involve the addition of a new

state of the network representing concentration levels of all the nodes within it.

• Addition of genetic complexity: Additional levels of complexity, such as gene

expression, could be linked to changes in concentration levels of nodes (as mentioned

in the previous point) to mimic the feedback of genetic information to the protein

signaling network.

• Addition of second messengers: Second messenger molecules could be included by

introducing additional nodes into the network to create signals that feed into the

phosphorylation network. The model, as it stands, can be used to examine effects of

changes in inputs to the network, if nodes with no inputs are considered to be external

influences. Hence, changes in initial conditions of such a network mimic the effect of

external signal perturbation. The phosphorylation network could be considered as a

subnetwork of intracellular signaling processes.

• Connection to an extracellular environment: The simulation results presented in

this thesis have concentrated on the internal or intrinsic dynamics of cell signaling

networks. There are no explicit connections to an extracellular environment. This is

not unreasonable as there are examples of biological systems which can change their

state independently of "external" receptor inputs (e.g., developing embryos and some

protozoa). However, such connections could be achieved by designating particular

nodes in the networks as "receptors" whose activity state would be determined by

some parameter outside the network. It would then also be possible to select networks

via a genetic algorithm designed to have the cells perform specific computational

tasks [94, 112].
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8.2 Genetic Algorithm Improvement

A genetic algorithm was developed in Chapter 4 to select networks demonstrating a

variety of distinct dynamic behaviors. The GA provided an effective "hill-climbing

strategy" as it allowed a simultaneous, parallel search of a rugged landscape by

evolving a population of cells against a "fitness" criteria. Cells were ranked according

to fitness and reproduced asexually to the next generation. The crossover operator

was designed to mimic the evolutionary mechanism of protein domain shuffling. The

mutation operator is a common feature of most genetic algorithms. This is also

motivated by the biology, as genetic mutations occur at a low rate in all cells.

The mutation and crossover rates, together with the population size and number

of offspring per parent, were seen to have an impact on the performance of the

algorithm. Increasing the population size by allowing more offspring per parent

appeared to improve the search. The GA generally showed the greatest improvement

in early generations and then fitness levels would often plateau. Future improvements

to this algorithm might include a mutation or crossover rate that could be varied over

time.

The GA fitness function was designed to search for networks with varied

dynamical properties after fixing the levels of connectivity. (The search was restricted

after initial investigations via Monte Carlo simulations.) A more biologically

motivated fitness function might be possible using techniques from information theory.

The information processing ability of cells is important and addressed in the literature

[48, 114 The concept of mutual information has also been used to study properties

of cellular automaton models [86]. One possible approach might be also be to start

the GA with a population of small networks, but allow addition of protein types to

"grow" networks.
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8.3 Small Network Analysis

The main reason to study a dynamical rule whose nodal representation takes discrete

values is that the interpretation of the activity is related to the number of protein

molecules, which is a discrete quantity. Another reason for studying a discretized

mapping was to take an approach that was different from the study performed by

Chiva Tarroux [77] where their nodal description of protein activity was based on

continuous variables. However, the form of the dynamical rule used to study protein

interactions has been difficult to analyze mathematically,

In Chapter 6 the stability of fixed points in several small networks was examined

by analyzing properties of the the non-discretized map, f. This chapter was also

concerned with understanding how oscillations arise in small networks. A proof of

the existence and local stability of a periodic orbit was presented for a simple network

containing only four protein types. The premise for these studies was that there

was good agreement between numerical studies for the truncated map, f, and the

non-discretized map, f. Plausible arguments were given for useful methods to study

stability of fixed points in these networks. This said, however, the correlation between

these data has not been proven conclusively and needs to be studied further. The

truncation alters the space on which the function is acting from the reals to the

integers, and so some further justification of the correspondence should be provided.

When large numbers of molecules are concerned one might argue that it would

be reasonable to move to a continuum model and consider the percentage of activated

protein molecules as a continuous quantity. In this case, the analysis provided in this

chapter could be used. In the case of small numbers of molecules, both the rule and

the mathematical simplifications necessary to analyze it fall short of the requirements

set by the biology.

The analysis in the phase plane of §6.3 illustrated in a certain special case, how

the mapping takes different forms depending on inputs to each node. This made the
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local stability analysis of the fixed points more involved. Analysis of these points

was achieved by considering an approximation of the map (the rule ftanh )• This

analysis may extend the realms of possibilities for predictive methods for stability

of fixed points. However, the fixed points lie precisely where f has a discontinuity

in its derivative. Therefore, care must be exercised when interpreting these results

and using them to gain insight into properties of the truncated map f, or the non-

discretized map, f. Global stability of fixed points and periodic orbits also remains

a further area for analysis.

In Chapter 6 it was noted that the periodicity of the limit cycle of the four

protein network was sensitive to changes in input parameters. This was based on

an analysis of an exact repeat time using the updating rule, j. The biological

interpretation of periodicity might be better represented by the dominant frequency

response.

8.4 Graph Theory Analysis

Chapter 7 was concerned with investigating how network structure affects function.

The strong component and block structure of a network generated by the GA was

investigated. These data indicated that most networks generated by the GA consisted

of one single strong component with a small number of articulation points. Data

visualization (i.e., the presentation and layout of complex graphs) is also of some

interest. A depth-first search algorithm was used in this study to investigate the

topology of a GA network.

Topological structure of signaling networks will impact their robustness to

nodal deletion (analogous to "gene knockout" ). It would be interesting to study

systematically the effect of knocking out individual nodes on the dynamic properties

of evolved networks. The sensitivity of the network state to internal changes in

individual nodes appears to be important. This was seen in Chapter 5, where changes
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in a single, highly connected internal node shifted the network from one attracting

state to another. Transient changes in internal nodes may also cause a permanent

shift of state. These remain areas for future study.

Watts and Strogatz [99, 114] have suggested that signaling networks might

have a selective advantage were they to have a "small-world" structure. Small-world

networks are defined to have a high degree of clustering and a short characteristic

path length. The characteristic path length is a measure of the typical separation

distance between vertices in the network and can be considered to be a global property

of the network. The characteristic path length is a measure of the "cliqueishness"

of a typical neighborhood of any given vertex in the network and, hence, is a local

property of the network. Small-world networks are conjectured to have a structure

which provides enhanced signal propagation speed, computational ability. It is also

suggested that in such networks nodes can synchronize their activity more easily than

if the network possessed an regular or random structure. GA networks could be tested

for such properties.

Jeong et al. have shown that metabolic networks taken from 43 different

organisms possess the same topological scaling properties. "Scale-free" properties

of metabolic networks were first suggested by Barabasi and co-workers [74]. The

probability that a substrate participates in k reactions follows a "power-law" scaling:

P(k) k -7 . Similarly, the probability that any chosen substrate is produced by k

reactions, not only possesses the same scale-free property, but a log-log plot of P(k)

against k is a straight line with the same gradient. Furthermore, the constant 7 also

appears to be independent of organism. GA networks could also be tested for similar

"scale-free" features.

It might also be interesting to construct a generic network which possesses

structural properties analogous to the bacterial chemotactic signaling network to see if

qualitative properties of the model presented here and the Bray model are comparable.
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8.5 A Model for Long-Term Potentiation

The process by which the nervous system changes and adapts over time is described

as "neuronal plasticity" . The cellular mechanisms involved are not yet clearly

understood. There may be changes at the morphological level (e.g., narrowing of

the synaptic cleft or the enlargement of functionally active synaptic areas), at the

electro-physiological level (e.g., at the membrane level), or at the biochemical level

(e.g., involving regulatory changes at the molecular level or changes in transmitter

release or metabolism) [104]. Long-term potentiation (LTP) is the process by which

the response of a postsynaptic neuron is enhanced and sustained following certain

types of high frequency stimulation. It is a type of activity-dependent modification of

synapses and it is currently thought that this may underlie the formation of certain

types of memory in the brain. LTP is generally seen when the presynaptic and

postsynaptic cells are both active simultaneously. This is often explained as an

NMDA channel effect. It is generally accepted that there are three phases of LTP

which are on different time scales. There are short term, intermediate and long

term changes. Short term changes may involve post-translational mechanisms such

as conformational changes of molecules; intermediate changes may be changes in the

structure of the synapse, and long term changes may involve gene expression [104].

Different types of molecules may be involved in LTP at different synapses. The

morphology of synapses may also be important, as well as the age of the tissue

sample. There is also no general consensus in the literature regarding whether the

mechanism of LTP is presynaptic, postsynaptic, or whether retrograde messengers

(such as nitrous oxide (NO) or arachadonic acid (AA)) are involved in signaling.

There is, however, evidence for an explicit role of signaling proteins in LTP and also

in long-term depression (LTD). Specifically, certain types of kinases and phosphatases

play an important role in LTP in some neurons (e.g., CAMK-II, PKC, PP-1).
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CAMK-II has been identified as a major protein in the postsynaptic density

of synapses and is therefore ideally situated to respond to calcium influx through

the NMDA receptors. CAMK-II has also been shown to be controlled by auto-

phosphorylation in vitro. This kinase can auto-phosphorylate and maintain activity

in the absence of calcium/calmodulin which triggers its activity. Lisman [115, 116]

has suggested that CAMK-II can become a bistable molecular switch which may be

responsible for the maintenance of LTP. The activity of CAMK-II has been shown

to be increased for long periods, up to one hour subsequent to the induction of LTP.

It has been suggested by Lisman that the number of molecules of phosphorylated

CAMK-II might correspond to the strength of the synapse. Genetically modified

mice with a specific form of CAMK-II "knocked out" have been shown to have a

spatial memory deficit [117, 118].

One idea for future uses of a generic model of the type presented in this

thesis is to attack problems like LTP where the data are predominantly unknown.

The intermediate form of LTP (which is independent of gene expression) could be

considered and a genetic algorithm developed to search for networks which display

some of the dynamics features of LTP [119]. This kind of modeling might therefore

provide insight into the kinds of intracellular interactions that may underlie changes

in cellular behavior such as synaptic efficacy. Different topological structures of

networks may underlie LTP in distinct cell types. A shift from normal synaptic

transmission to enhanced synaptic transmission could be interpreted as a shift from

one attractor to another as a result of changes in input conditions (stimulation

paradigms). Time scales of interaction would then become important as synaptic

transmission occurs on a much faster time scale than post-translational changes such

as protein phosphorylation.
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8.6 Modeling Complex Networks

The structure and dynamics of complex networks are of general interest to the

scientific community. Electronic communications networks, metabolic networks,

neural networks, and social networks impact upon our lives in one way or another.

Intracellular signaling systems illustrate some of the difficulties that arise when

studying the properties of such ensembles. Not only do these systems possess inherent

non-linearity, but complexity is also added due to the large number of different types

of interactive elements involved. Furthermore, the structural properties of the network

are in a constant state of flux, changing over time as the intracellular signals alter

gene expression. Cells are also structurally compartmentalized, and so some signaling

events will occur exclusively within membrane bound organelles (e.g., the nucleus).

Advancing techniques in cellular and molecular biology continue to propel the

reductionist approach. The ultimate underlying and understated assumption is that

once the details are known, everything will be understood. However, one only has to

look into the intracellular world (see Figure 8.1) to wonder how all the databases of

detailed and sometimes conflicting information can be integrated into a framework

that sheds light on how and why cells behave in the way that they do.

Mathematical modeling in the area of cell biology presents many challenges. A

researcher must decide what kind of detail to incorporate into a model. Mathematical

techniques to analyze the dynamics of networks with massive structural (and hence

dimensional) complexity are minimal. The predictive goals will most likely dictate

the choice of the model. If the decision is to develop a continuum model, how will

the model differ from previous work? What are its primary aims? What predictions

might it suggest to experimentalists? How are the parameters set for the enzymatic

equations if the data are not known? How sensitive is the model to changes in

its parameters? What happens when there are only a small number of molecules

of a particular molecular species present? Does the continuum model break down in
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Figure 8.1: A modern representation of signaling pathways that involve MAP-kinase
and the EGF receptor. Taken from Ref. 2, Appendix A. Models must take into
account the cross-talk between pathways. It is interesting to compare this modern
view of EGF signaling to the signaling pathway presented in Chapter 1, Figure 1.6.
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these circumstances? The model should also be accessible, understandable and usable

by biologists. This has motivated the discussion and development of novel software

platforms for modeling metabolic networks [108, 120, 111, 121, 122]. Some of these

are now freely available on the Web.

Continuum models of biochemical systems therefore exist in many forms.

Specific intracellular components have been particularly well studied. Calcium

dynamics have been of special interest because of the fact that real-time techniques

already exist to study the spatio-temporal properties of calcium signals [36, 123, 124].

Limited numbers of studies address the issues of whether there are oscillations in

protein phosphorylation levels in cells [125, 1261. This is because the biochemical

techniques to monitor real-time changes in protein phosphorylation simply do not

exist. Stage-specific changes in phosphorylation levels (e.g., during development)

require painstaking gel electrophoresis work [127].

The intracellular signaling network of E. Coli remains the most well studied

in the context of bacterial chemotaxis. It is the first system where some behavioral

events have been explained at the molecular level [128]. This is because of the small

number of intracellular components involved, which enables a comprehensive listing of

features. The enzymatic components and data are thus fairly complete. This not only

allows testing of models for predictive ability, but also permits investigation of the

structural properties of this network and its sensitivity to parametric perturbations.

In fact, it has been suggested that some functional properties of bacterial chemotaxis

are robust to perturbations and some are not [129]. This suggests the question

of how structure affects function. Are there any underlying design principles

common to all intracellular networks, regardless of organism? Conservation and

transmission of signals is evident across species by the MAP-K pathway [130], but

it is not currently known whether signal transduction mechanisms are more evolved

in mammalian cells [131].
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Topological properties of complex networks are also a topic of current interest

in the literature. Watts & Strogatz have suggested that a "small-world" structure

may have important dynamical consequences for complex networks [99, 114].

Metabolic networks also seem to possess "scale-free" features seen in other large

networks [74, 132]. Continuous addition of new nodes is also a common feature of

real world networks. The addition or deletion of vertices are often not distributed in a

uniformly random pattern. Such networks, therefore, exhibit some form of preferential

connectivity [74]. Cell signaling networks are no exception. Jeong et al. have proposed

that the most "connected" intracellular substrates may be preserved between species

[132]. However, as in other complex systems, detailed topological data are currently

unavailable for many intracellular signaling networks.

The more one becomes embroiled in the data the more one wonders whether

there isn't a place for generic models of signaling networks which will necessarily not

include all the detail. These types of models would not be used to predict what a

specific cell will do when a particular chemical is applied in certain concentrations.

However, what they can do are develop frameworks to address more statistical

questions that are are not well addressed by more detailed continuum models. Such

models might offer insight into why some gene knockout experiments appear to

have very little effect upon cell function [29]. The overall frequency and potency

of disruptions of cell behavior by such gene knockouts may represent the kind of

observable in cell biology that is only predictable by a generic model of intracellular

signaling. It may also be possible that a network containing a large number of

signaling elements with a relatively low level of connectivity can provide cellular

networks with the stability that they need. These models may follow in the footsteps

of other connectionist models [87, 101, 133, 134]. Whatever modeling approach

researchers decide to take will depend on personal bias and beliefs. However, they will

still need to think about the question: How much of the detail is really important?
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8.7 Concluding Remarks

With all the recent excitement in the human genome project [135], endeavors of

bioinformatics, proteomics, and genomics may well be the emphasis of biology in the

21st century. It must be remembered, however, that beyond the genome, there is also

the combinatorial complexity of the protein machinery. Many different proteins can be

encoded in a single gene, and proteins themselves have their own epigenetic regulatory

mechanisms. The genome may once have been thought to be the blueprint for life,

but the subtleties of control mechanisms inside cells still remain largely elusive. Cells

are the most fundamental units at which "life" properties emerge. Living systems are

not chaotic, nor are they completely random or completely deterministic. It has also

been proposed that living systems may naturally evolve towards a region showing

complex, or "edge of chaos" characteristics [72, 86].

Despite the rapid accumulation of genetic data, the most well studied signaling

network is still that of the bacterium E. Coli. There is no satisfactory explanation as

to why any given cell type exhibits only a limited number of behavioral modes. Very

few mathematical or computational models currently exist to address this question.

For these reasons, the dynamics of intracellular signal transduction networks will

remain a fruitful area of study for the future. Perhaps a combination of different

modeling approaches will finally shed light on these mysteries. In any case, the road

ahead will be, no doubt, an exciting one.

"Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the difference."

Robert Frost (1874-1963)1

I An excerpt from "The Road Not Taken" by Robert Frost (1916), pp. 70, Ref. [136].
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CELL SIGNALING SITES & PROTEIN DATABASES

Web Site (Cited March 25, 2001) Description

1. http://vlib.org/Science/ The WWW Virtual Library: Cell
Cell_Biology/ Biology—with information on other
signal_transduction.shtml signal transduction sites of interest

2. http://www.grt.kyushu– Signaling Pathway Database-
u.ac.jp/spad/ contains diagrams of cell signaling

pathways
3. http://geo.nihs.go.jp/csndb/ Cell Signaling Networks Database—a

signal transduction database [137]
4. http://www.sdsc.edu/kinases/ The Protein Kinase Resource—data

available on the enzymology, genetics,
molecular and structural properties of
protein kinases [138]

5. http://www.expasy.ch/sprot/ SWISS PROT Database—contains
protein sequences with functional and
structural information [139]

6. http://www.expasy.ch/prosite/ Prosite Pattern Database—contains
information on protein families and
protein domain structure [140]

7. http://www.cbs.dtu.dk/databases/ PhosphoBase—a database of
PhosphoBase phosphorylation sites in proteins [141]

8. http://www–lmmb.ncifcrf.gov/ Phosphoprotein Database—site
phosphoDB dedicated to protein phosphorylation

9. http://www.rcsb.org/pdb PBD Brookhaven Crystallographic
Database—a protein data bank
containing 3–d structural X-ray
crystallographic data [142]

10. http://www–nbrf.georgetown.edu/ Information ResourceProtein
maintains a protein sequence
database, the PIR-International
Protein Sequence Database [143]

11. http://www.ncbi.nlm.nih.gov/ National Center for Biotechnology
Information

12. http://www.ncgr.org/software/ PATHDB: Metabolic Pathways
pathdb Database—contains information on

pathways relating to metabolism in
plants.
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APPENDIX B

A MODELED CASCADE SYSTEM

The mono-cyclic cascade system [23, 24] consisted of a protein kinase (cAMP-

dependent protein kinase) and a protein phosphatase (phosphoprotein phosphatase)

together with regulatory molecules—cAMP as an activator for the protein kinase, and

Pi (phosphate) as an inhibitor for the phosphatase (see Figure 1.7). The steady state

of the system depends on the relative concentrations of each of these four components.

The substrate molecule for the kinase and the phosphatase was an artificially

constructed nano-peptide consisting of a chain of nine amino acids. By keeping

the concentration of ATP sufficiently large for it to remain essentially constant, it

was possible to study the effects of altering the concentration of the regulatory or

effector molecules cAMP and Pi . The cascade showed signal amplification and positive

cooperativity. The latter feature of a signaling pathway means that the sensitivity of

levels of phosphorylation of substrate to changes in levels of concentration of effector

molecules was much greater than the sensitivity of the kinase to changing levels of

cAMP.

Even for this simple cascade system, there are a number of distinct reaction steps

that need to be modeled. The classical methods of enzyme kinetics used to study these

reactions [26] involve the construction of a system of differential equations (B.1)–(B.6)

which measure the rate of change of the concentration of each of the components of

the system. The equilibrium state of the system is studied, whereby the rate of the

phosphorylation reaction (i.e., rate of formation of S-P, the phosphorylated form of

the substrate molecule) in (B.1) exactly balances the reverse reaction (i.e., the rate

of regeneration of 5) in (B.2). The square brackets around the terms in the equations

denotes concentration.
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The phosphorylation of the substrate, S, by the activated catalytic subunit of the

kinase, PKA:

The dephosphorylation of the substrate, S, by the phosphatase, PP:

with associated rate equations:

By mass conservation arguments, the total concentration of the kinase, phosphatase

and substrate can be found. The steady state is defined as the equilibrium state

where the rate of the phosphorylation reaction (i.e. rate of formation of S-P) in (B.1)

exactly balances the reverse reaction (i.e. the rate of regeneration of S) in (B.2).

The system is further complicated by the manner in which cAMP-dependent

protein kinase phosphorylates its substrates. In fact the inactive enzyme is composed

of four subunits—two regulatory units and two catalytic units, and is denoted (R2C2)•

Binding of cAMP to its regulatory domains causes dissociation of the subunits and

activation of the catalytic domains upon separation.
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Symbol List:

Symbol	 Description

substrate
phosphorylated form of the substrate, S
cAMP dependent protein kinase
protein phosphatase
substrate and cAMP-dependent protein kinase complex
phosphorylated substrate and protein phosphatase complex
rate constant for the formation of the substrate-PKA complex
rate constant for the reaction involving the dissociation of the
substrate-PKA complex into substrate and PKA
rate constant for the reaction involving phosphorylation of the
substrate by PKA
rate constant for the formation of the phosphorylated substrate-PP
complex
rate constant for the reaction involving the dissociation of the
phosphorylated substrate-PP complex
rate constant for the reaction involving dephosphorylation of the
phosphorylated substrate by PP
cyclic-AMP
inactive PKA is composed of 4 subunits (R: regulatory subunit, C:
catalytic subunit)
rate constant for the reaction whereby cAMP causes dissociation of
2 of the catalytic subunits of PKA, forming a complex with the
remaining 2 regulatory subunits



APPENDIX C

SMALL NETWORK LOCAL STABILITY ANALYSIS

A summary of local stability analysis of fixed points for some simple networks is

shown in Table C.1. All examples shown here are networks where the nodes have

Table C.1: Summary of fixed points for simple networks using the rule, f, and
where inputs to each node always retain the same sign. Local stability of the fixed
points is examined via linear stability analysis.
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APPENDIX D

GRAPH THEORY DEFINITIONS

Definition D.1 (Graph) A graph, G(V, E), consists of a set V of elements called

vertices and a set E of unordered pairs of members of V called edges. The order of

a graph is the number of vertices in the graph. A directed graph is a graph where a

direction is imposed upon the edges of the graph. The edges are then interpreted as

ordered pairs of vertices.

Definition D.2 (Subgraph) A subgraph of G(V, E) is a graph S(V', E') such that

V' E V and E' E E and the endpoints of any edge in E' are also in V'. Suppose an

edge in the graph is denoted as the unordered pair (u, v), then the endpoints of this

edge are defined to be the vertices u and v.

Definition D.3 (Induced Subgraph) S is an induced subgraph of G if whenever

u E V' and v E V' and (u, v) E E, then (u, v) E E'.

Definition D.4 (Connected Graph) A graph G is connected if and only if every

pair of vertices in G are connected. Two vertices u and v are said to be connected if

there exists a path from u to v. A graph that is not connected is said to be disconnected.

Definition D.5 (Path) A path from a vertex u E V to a vertex v E V in a graph

G(V, E) is an alternating sequence of vertices and edges, v 1 , e l , v2, e2, .. • , ek-1, vk
where all the vertices and edges in the sequence are distinct and successive vertices

vi ,vi+1 are the endpoints of the intermediate edge ei . The length of the path is the

number of edges in the sequence.

Definition D.6 (Degree of a Vertex) The degree of a vertex V is denoted deg(V)

and is the number of edges incident with V .

Definition D.7 (Strong Component) A strong component of a directed graph

G(V, E) is a connected, induced subgraph of G of maximal order, (i.e., a strong

component is a maximally internally connected subgraph of a directed graph G). A

directed graph G(V, E) is said to be strongly connected if there exists a path between

every pair of vertices in G.
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Definition D.8 (Cycle) If the first and last vertices of a path coincide, the resulting

closed path is called a cycle.

Definition D.9 (Non -Separable Graph) A non-separable graph is a non-trivial

graph with no articulation points.

Definition D.10 (Articulation Point) An articulation point or cut-vertex of a

graph G(V, E) is a vertex whose removal increases the number of components of the

graph G.

Definition D.11 (Block) A block is a maximal, non-separable subgraph of a graph.



APPENDIX E

DYNAMICAL SYSTEMS TERMINOLOGY

In this appendix, some basic definitions of dynamical systems are given. These mainly

relate to stability and large-time properties of a discrete dynamical system.

Definition E.1 (Positive Semi -Orbits) Consider the mapping ,

the point x o E Etn . The positive semi-orbit of x o is the set of points

Definition E.2 (Fixed Points) The mapping f : 	 Ili' is said to have a fixed

point, xo, if f(xo) = xo•

Definition E.3 (Asymptotically stable fixed points) Suppose xn is a fixed

point of f . If there exists a neighborhood, U, of x 0 such that limn→∞

U, then the point x o is said to be an asymptotically stable fixed point of f .

Definition E.4 (Domain of attraction of an asymp. stable fixed point.)

Suppose xo is an asymptotically stable fixed point of f . The set of points which

converge to xo via iteration of the mapping f is said to be the domain (or basin) of

attraction of the point xo.

Definition E.5 (Periodic Points) The mapping f : IFS 	 Rn has a k-periodic

point, xo , associated with it if f k (xo) = xo where k E IN and

Definition E.6 (Asymptotically stable periodic points) Suppose xo is a k-

periodic point of f . If there exists a neighborhood, U, of xo such that Fn(x) =

xo Vx E U, and where F = f k , then the point xo is said to be an asymptotically stable

k-periodic point of f (or an asymptotically stable fixed point of F ).

Definition E.7 (Domain of attraction of an asymp. stable periodic pt.)
Suppose x o is an asymptotically stable k-periodic point of f . The set of points which

converge to xo via iteration of the mapping fk is said to be the domain (or basin) of

attraction of the point xo.
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Definition E.8 (Aperiodic points) A point xo is called an aperiodic point of the

mapping f if the orbit of x o is bounded and there is no value of k E IN such that

Definition E.9 (Attracting Sets) A critical or fixed point, x o , of the map x92+1 =

f (xn ) in Er is called a positive attractor if there exists a neighborhood U of x = xo

such that if x t E U for some t > 0 and t E IN, then limn→∞  xt+n = xo.

For non-degenerate fixed points, a critical point, which after linearization is

a positive attractor, is also asymptotically stable. However, there are examples of

systems with critical points which are attracting but are not asymptotically stable

(see pp. 62 of [79]).

Definition E.10 (Invariant Set) A set M C lit is (positively) invariant under

Definition E.11 (Attractor) An attractor is a closed invariant set, A, such that

there is an open set U D A such that if x E U fn(x) A as n co,

An attractor is also sometimes referred to as an attracting set that contains a dense

orbit [144].

Definition E.12 (Bifurcation point in 1 -d discrete dynamical systems)

Suppose we define a one-dimensional dynamical system

where it is a regarded as a parameter. Then, if the stability number or type and

stability of fixed points of the mapping changes as we pass through a specific parameter

value µ = µo,then,[tois said to be a bifurcation point.
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