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ABSTRACT

NONLINEAR OPTICAL PROPERTIES OF NANOSTRUCTURES

Nonlinear optical properties of nanoscale semiconductors had been a topic of intense

research in recent years in attempts to realize all-optical communication systems. These

semiconductor nanoclusters, in the range of 1-100nm are hosted in a dielectric material

and are considered as a particular example of Conditional Artificial Dielectric (CAD). It

has been reported that the dielectric properties of such materials will be greatly changed

by light intensity.

Two main paths to realize nano semiconductor clusters are reported in this

dissertation. The Pulsed Laser Deposition (PLD) technique is first described. Here we

were investigating the effect of surface modification of nano silicon clusters by

incorporating various gases (H2, Ar, He) during the deposition process. Linear and

nonlinear optical properties of these passivated Si nanoclusters were obtained.

Ion Implantation is another successful method to obtain nano semiconductor

clusters. In order to further enhance the nonlinear optical properties of these clusters, we

incorporated them in optically confining structures, such as three-dimensional photonic

crystals. The latter part of the dissertation is devoted to three-dimensional periodic

structures made of silica spheres (opal) which were implanted with Si, Ge and Er. Linear

and nonlinear optical properties of these novel materials have been measured and

assessed.



NONLINEAR OPTICAL PROPERTIES OF NANOSTRUCTURES

by
Mahesh U. Ajgaonkar

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

January 2001



Copyright © 2000 by Mahesh U. Ajgaonkar
ALL RIGHTS RESERVED



APPROVAL PAGE

NONLINEAR OPTICAL PROPERTIES OF NANOSTRUCTURES

Mahesh U. Ajgaonkar

Dr. Haim Grebel, Disssertation Advisor	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Gerald Whitman, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Marek Sosnowski, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. John Federici, Committee Member 	 Date'
Associate Professor of Physics Department, NJIT

Dr. Zafar Iqbal, Committee Member 	 Date
Senior Principal Scientist, Honeywell International, Morristown, NJ



BIOGRAPHICAL SKETCH

Author: 	 Mahesh U. Ajgaonkar

Degree: 	 Doctor of Philosophy

Date: 	 January 2001

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2000

• Master of Science in Electrical Engineering,
Indian Institute of Technology, Madras, India, 1997

• Bachelor of Engineering in Electronics Engineering,
Bombay University, Mumbai, India, 1994

Major: 	 Electrical Engineering

Publications:

M. Ajgaonkar, Y. Zhang, H. Grebel, C.W. White,
"Nonlinear optical properties of a submicron Si02 spheres (opal) embedded with
Si nanoparticles", Applied Physics Letters, 75(11), pp 1532-1534, 1999.

M. Ajgaonkar, Y. Zhang, H. Grebel, M. Sosnowski, D.C. Jacobson,
"Linear and nonlinear optical properties of erbium-implanted coherent array of
submicron silica spheres", Applied Physics Letters, 76(26), pp 3876-3878, 2000.

M. Ajgaonkar, S.Vijayalakshmi, Y.Zhang, H.Grebel, C.W. White,
"Nonlinear Optical properties of Ion Implanted Si Nanoclusters in Silica
Substrates (short note in " Physics, Chemistry and Application of Nanostructures
Reviews and Short Notes to Nanomeeting'99, World Scientific, edited by V.E.
Borisenko et al).

iv



Dedicated to Bai Aaji and my parents

v



ACKNOWLEDGEMENT

I would like to express my deepest sense of gratitude towards Professor Haim

Grebel for not only introducing me to the fascinating topics of Nonlinear Optics and

nanotechnology but also steering my thesis as advisor, friend and philosopher during the

course of my doctoral studies at NJIT.

I explicitly thank my doctoral committee members namely Prof. Whitman, Prof.

Sosnowski, Prof.. Federici and Dr. Zafar Iqbal for many positive suggestions on the

thesis. My special thanks are due to Prof. Sosnowski and Dr. Dale Jacobson of Bell

Laboratories-Lucent Technologies for preparing samples for my experiment. I am

thoroughly indebted to Prof. Federici and Dr. Iqbal for allowing to use their laboratory

facilities for the research work reported in this thesis.

It gives me pleasure to acknowledge the help offered by Dr. Yan Zhang during

the course of doctoral studies in various fields of sample preparation and

experimentation.

I take this opportunity to extend my kindest regards towards many of my friends

including Mr. Dhawalikar, Mr. Moholkar, Mr. Mokashi, Mr. Kakhkhor and Mr. Jebraj,

Mr. Shah, Ms. Albano and Ms. Anamika, Mr. Raviduth whose generous assistance and

tireless and unquestioning support at different stages of the doctoral studies had been a

source of inspiration.

At this juncture, I would like to express my thanks towards my wife Ms. Archana

and my parents for being understanding and compassionate for the duration of my

studies.

vi



TABLE OF CONTENTS

Chapter	 Page
1 INTRODUCTION 	 1

1.1 Background  	 1

1.2 Theoretical Background 	 3

1.3 Electromagnetic Theory Behind Optical Nonlinearity 	 7

	

1.4 Outline of the Dissertation   10

	

2 LASER ABLATED SILICON NANOCLUSTERS   12

2.1 Introduction 	 12

	

2.2 Laser Ablation    12

	

2.3 Sample Preparation    13

	

2.4 Z-Scan    13

	

2.4.1 Z-Scan Technique   15

2.4.2 Z-Scan Experimental Setup 	 17

2.5 Experimental Results 	 17

2.6 Discussion 	  19

3 SILICON IMPLANTED SILICA OPAL 	 24

3.1 Introduction 	 24

	

3.2 Literature Review   24

	

3.3 Preparation of Silica Opal-A Photonic Crystal   25

3.4 Ion Implantation of Si 	 26

3.5 Experimentation on Si Implanted Opal Structure 	 28

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page
3.5.1 Scanning Electron Micrograph Pictures 	 28

3.5.2 Linear Experimentation 	  32

3.5.2.1 One Dimensional Modeling of Photonic Crystal 	 32

3.5.3 Nonlinear Experimentation 	  44

3.6 Discussion 	  52

	

4 Ge IMPLANTED OPAL MATRIX   56

	

4.1 Introduction   56

4.2 Preparation of Photonic Crystal 	 56

4.3 Ion Implantation of Ge in Opaline Matrix 	 57

4.4 Morphology of Ge Implanted Opal 	  57

4.5 Linear Experiments 	  57

4.6 Nonlinear Experiments 	 62

4.7 Discussions 	  62

5 ERBIUM IMPLANTED SILICA OPAL 	  67

5.1 Introduction 	  67

5.2 Preparation of Silica Opal Structure-A Photonic Crystal 	 67

5.3 Ion Implantation of Er 	  67

5.4 Morphological Details of Er Implanted Sample 	  68

5.5 Linear White Light Experiments 	  68

viii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page
5.6 Nonlinear Experiments 	 70

5.7 Discussion 	  72

6 APPLICATIONS AND FUTURE SCOPE OF RESEARCH 	  81

	

6.1 Wavelength Conversion Using Four Wave Mixing   81

6.2 Raman Amplifiers 	  83

	

6.3 Si Implanted Opal Structure   85

6.4 Erbium Implanted Opal Matrix 	  86

6.5 Pulse Compression & Dispersion Management 	 88

6.6 Optical Logic Gates 	 90

	

7 CONCLUSIONS   92

APPENDIX Z-SCAN THEORY 	  94

REFERENCES 	  103

ix



LIST OF FIGURES

Figure	 Page
1.1 Electron attached to nucleus 	 3

2.1 Laser Ablation setup used to produce silicon nanoclusters 	 14

2.2 Nonlinear refraction measurement through Z-Scan method 	 16

2.3 Z-Scan experimental setup 	  	 18

2.4 Typical Z-Scan data for passivated Si nanocluster samples.... 	 20

2.5 An values for samples with Si nanoclusters passivated in different gases... 	 21

3.1 Schematic of Bragg reflection in opal 	 27

3.2 A scanning electron microscope picture of a silicon ion implanted
`red' opal   29

3.3 A Scanning electron microscope (SEM) picture of a cross section of a
silicon ion implanted 'red' opal  30

3.4 Silicon implanted opal with cluster size 3-4 nm and non-swollen opal
Matrix     31

3.5 Experimental setup for linear characterization of ion implanted opal  33

3.6 White light reflection from nonimplanted opal as a function of angle of
incidence and wavelength 	 34

3.7 White light reflection from Si implanted red opal as a function of angle of
incidence and wavelength  35

3.8 A stratified medium with alternate layers of permittivities e l and 6. 2 	 37

3.9 One dimensional model fit to the experimental data for red opal substrate...... 42

3.10 One dimensional simulation of the reflection data of the silicon implanted
red opal sample 	 45

3.11 Experimental setup for the nonlinear characterization of silicon implanted
opal   46

3.12 Normalized transmission through a Si implanted opal sample as a function of
latitude angle, 8 at two intensities (a) I =1.49X10 3 and
(b)/ = 25X10^3W /cm2 	 48

x



LIST OF FIGURES
(Continued)

Figure 	 Page
3.13 Normalized reflection from a Si implanted opal sample as a function of

latitude angle, 0 at two intensities (a) I =1.49X10 3 and
(b)/ = 25X10^3W/cm2 	  49

	

3.14 Normalized transmission as a function of light intensity    50

4.1	 SEM picture of high concentration Ge implanted, ordered array of 300 nm
silica spheres after annealing at 1100°C  	 58

4.2	 Reflection from Ge implanted opal as a function of incident wavelength and
angle of incidence Oxide 	  59

4.3	 Transmission through a high concentration, Ge implanted 300 nm opaline
sample as a function of incident wavelength and various incident angles... 	  61

4.4	 Normalized transmission as a function of incident angle for high
concentration sample of Ge implanted opal 	  63

4.5	 Transmission as a function of light intensity at the angle of incidence
= 22 ° for high concentration Ge sample 	  64

4.6	 Transmission as a function of light intensity at the angle of incidence
= 38 ° for the low concentration Ge sample 	  65

5.1	 Scanning electron micrograph picture of Er implanted orange opal (i.e. silica
sphere size = 275 nm) 	  69

5.2	 Reflection from red(300 nm size spheres) Er implanted (solid curve) and
nonimplanted (dash curve) opal with E-polarized light 	  71

5.3	 Normalized transmission through the Er implanted opal as a function of
latitude angle for perpendicular (E) polarization 	 73

5.4	 Normalized transmission of the Er implanted opal as a function of input light
(E-polarization) intensity at latitude angle of 0 = 50 ° 	  74

5.5	 Normalized transmission through the Er implanted opal as a function of
latitude angle for parallel (H) polarization 	  75

5.6	 Normalized transmission of the Er implanted opal as a function of input light
(H-polarization) intensity at latitude angle of 0 = 50 ° 	  76

xi



LIST OF FIGURES
(Continued)

Figure Page
5.7 Photoluminescence of (a) nonimplanted and (b) Er implanted regions of a

`green' (245 nm sphere) opal sample excited by 2 = 514nm line of an Ar

laser at an incident angle of 0 = 30 ° from the back and at a viewing angle of
15° 	 79

6.1 Interconnected DWDM networks and need of wavelength conversions 	 82

6.2 Stimulated Raman Scattering 	 84

6.3 Comparative photoluminescence data for Si nanoclusters in different silica
matrices 	 87

5.1 All optical inverter based on Si nanocluster film 	 91

A.1 Coordinate axis configuration for Z-Scan analysis 	 95

xii



CHAPTER 1

INTRODUCTION

1.1 	 Background

In the last three decades the telecommunications industry has been revolutionized by the

advent and deployment of long haul terrestrial and undersea fiber optic communication

links. In the last five years or so, the telecommunication industry has witnessed an

explosive growth of data and internet traffic which is doubling every three months. It is

expected to have 4.5 billion Internet accounts by the year-end of 2003. The major

telecommunication technology able to support this demand appears to be optical

communication [1], [2] which is based on low loss and low dispersion fiber media

coupled with novel devices.

To support this growth in the optical communication field, the semiconductor

world also has been driven towards the quantum limit of operating devices. To elaborate

in brief, the semiconductor lasers which started with a threshold current density of few

1000's of A/cm2 [3] in 1970's are now achieving a value of few p A/cm2 in VCSEL

(Vertical Cavity Surface Emitting Lasers) [4]. Correspondingly, the size of the

semiconducting devices is halving every 2 years [5] eventually reaching the nano limit.

With these ever-increasing applications of the optical devices, the need for the

novel optically functional and transparent materials increases. At the same time, the new

optical materials should be adaptable enough to be utilized with prevailing IC

manufacturing technology. It is the aim of this thesis to investigate novel optical

materials which will enable all-optical communication systems.

1
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So far direct bandgap semiconductors have been used in optoelectronics or all-

optical systems. The involvement of phonons in the indirect transitions make their

corresponding optical elements slow and inefficient for the GB/s system applications.

Recent studies, though, show that indirect bandgap materials could be used in high speed

applications [6], [7], [8]. These applications mainly utilize relatively slow devices in

switching. One of our aims in this thesis is to explore the use of indirect bandgap

materials in applications that require much higher speeds.

It is well known that the nonlinear optical properties of a given semiconductor

material are amplified when dimensions are reduced to nanometer scale size. This is due

to effects of quantum confinement in direct bandgap materials and the increased overlap

integral between photon and electron in indirect bandgap materials. For example, the

nonlinear time constant in bulk silicon is on the order of microseconds whereas it is on

the order of sub-nanosecond in nano size silicon clusters [9]. Our goal in this dissertation

is therefore to explore the nonlinear optical properties of nanoclusters.

Our example materials were Si, Ge and Er, which cover a broad applications

potential for the optical communications. Silicon and germanium are most widely used

semiconductors in electronic circuits but rarely in optoelectronic circuits. We wish to

pursue if their nonlinear properties could make them good candidates for optoelectronic

integration of nonlinear functional elements such as, all optical switching and limiters,

wavelength manipulators etc. The use of erbium doped fiber amplifier in optical

communication systems has revolutionized optical communication systems in the last

decade. With this in mind we also investigated erbium implanted photonic crystals.
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In the following section, we give a semi classical [10] treatment of the nonlinear

optics. In the subsequent section we complete the picture by considering basic

electromagnetic theory [11] of nonlinear optics [12]. At the end of the current chapter, an

outline of the thesis is included.

1.2	 Theoretical Background

The classical picture begins with consideration of an electron attached to an

infinitely massive positive charge (i.e. a nucleus) under the influence of a sinusoidally

varying electric field E as shown in Fig 1.1.

Figure 1.1	 Electron attached to nucleus

In above Fig. 1.1, an electron (i.e. negative charge) of mass m is bound to the

positive charge of infinite mass through internal field 	 For linear field, this internal

field is represented by a spring with spring constant k = mω0^2. The displacement of the
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electron from equilibrium is given by x(t). The damping 77 is represented as a reradiated

dipole field shown by the dotted lines as Edipole • Considering only one dimension,

Newton's equation of motion for the system in Figure 1.1 is

where x is the distance the electron has moved from its equilibrium position, m is the

mass of the electron, η  is a damping term, and, coo is the resonant frequency of the

electron. The oscillating macroscopic polarizability is given by the solution x(t) of Eq.

(1.2.1) above as

where N is the number of oscillators per unit volume and d is the dipole moment. For

cos(ωt) where w is the optical frequency, the solution to the

x in the linear Eq. (1.2.2) can be found by substituting

= xo cos(wt) in Eq. (1.2.1) to get

where F =  η/m gives rise to complex polarizability of

The index of refraction and absorption coefficient can be approximated from the above

Eq.(1.2.4) if it is assumed that only one resonance is near the optical frequency and that

the local field that the electron sees is close to the incident field. The polarizability is
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linear in the electric field and can be written as P = xE where x is the complex linear

susceptibility tensor. The linear relationship between P and E results in an index of

refraction and absorption coefficient that is independent of the electric field. That is, for

weak absorption, small local field correction, and only one dominant nearby resonance

ωo, the index of refraction and the absorption coefficient are independent of optical

electric field as observed at low optical intensities, and given by

This simple oscillating spring model seems to predict field-independent indices and

absorption coefficients, but it is note very clear as to why it should be so successful. To

probe further we look at the simple spring model in detail.

The spring model uses a linear (Hooke's Law) restoring force F =kx, where k is

the spring constant or k =moo ' . In general, the charges responding to the oscillating

electric field have been moved from equilibrium point and return to that point when the

field is removed. This is called the stable equilibrium and can be thought of a potential

well that has a minimum point. The potential V can be expanded about the minimum

point located at x = 0

The first two terms of the above equation are zero at x = 0 and , the potential becomes



which results in a force of dV = F • dx , or

The first term in the Eq.(1.2.9) is the linear term of Hooke's law and is the dominant term

for small deviation of the electron from it's equilibrium position. With larger

perturbations, usually associated with large optical fields, the restoring force must include

higher-order terms and would result in more complicated nonlinear behavior.

For a general restoring force derived from a non-parabolic stable equilibrium potential

well, the force equation about minimum potential is

where D, are the coefficients characterizing the nonlinearity of the response. The

solution for small anharmonic contributions is of the form

where c.c. mean the complex conjugate. By equating the coefficients of e'" , the second-

order term x 2 can be found and so on for other higher order terms.

The anharmonic terms result in a nonlinear polarizability which, in general, for three

dimensions is

6
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where E is the total electric field present. The equation above clearly shows the

nonlinear relation between the polarization developed in a material due to the applied

electric field. The first term is the result of a linear restoring force and describes the

linear, low intensity, optical interactions with the material. The second term includes the

second order susceptibility x ijk  (2) and two electric fields E and Ek . This term results

from anharmonic potential well and is only found in crystals without inversion symmetry.

In fact, all the even numbered, higher order susceptibilities are eliminated in materials

that have center of inversion. On the other hand, the third order term, and all higher order

odd terms, are found in all materials assuming that the materials will not suffer a laser

induced damage.

1.3 Electromagnetic Theory Behind Optical Nonlinearity

In this section, we review a few of the concepts of the electromagnetic wave

propagation which lead us to the development of optical nonlinearity [12]. Let us start

with the wave equation for the propagation of light (i.e. electromagnetic field) through a

nonlinear optical medium. We begin with the Maxwell's equations in Gaussian units in

the following form:
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where,

E is the electric field vector, D is the electric displacement vector, B is the magnetic

flux density, and H is the magnetic field, and J is the current density, and all the field

quantities are time dependent. For a nonmagnetic, nonlinear medium, B = H i.e. to = 1,

and

where P is the polarization vector and depends nonlinearly on the local field strength t .

We now proceed to derive the optical wave equation using standard techniques namely,

by taking the curl of Eq. (1.3.3) and using vector identities. The curl of Eq.(1.3.3) with

substitution for 0 x H from Eq. (1.3.4), and assuming source free conditions we get

Substitution of Eq. (1.3.5) leads to

This is the general form of the wave equation for the electric field in source free medium.

To separate the linear and nonlinear parts of the above equation, one can write the

displacement vector as follows:

where
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and

using these equations, the wave Eq. (1.3.7) becomes

If each field component can be written as Fourier series i.e.

with similar expressions for D and P and substituting these expressions from

Eq.(1.3.12) in Eq. (1.3.11) gives:

For the general case of non dissipative dispersive medium, the relationship between E

and D can be written as follows in terms of a real frequency dependent dielectric tensor:

where the subscript n denotes the frequency component under consideration. Substituting

these expressions from Eq.(1.3.12) in Eq. (1.3.13), and keeping in mind that the time

derivative gives cot terms, we get for the wave equation

The above equation can be simplified to yield solution for the individual cases. So far we

have discussed the dielectric tensor and its role in relating the electric field and the

electric displacement vector. For a given frequency, substitution of equation 1.3.12 in

1.3.9 yields the following relation between the polarization and the electric field:



10

(3)where k
)

ii is the second order susceptibility tensor of rank three and x 3) is the third

order susceptibility tensor of rank four etc. The sign in Eq. (1.3.16) denotes the tensor

nature of the product. As can be seen from the Eq. (1.3.16), the polarization of the

medium depends on the electric field strength in a nonlinear fashion. Very high intensity

photon source is necessary to observe such nonlinear effects. The modern Q-switched or

mode locked pulsed lasers with pulse widths ranging from few nano-seconds to femto-

seconds with optical peak intensities in the range of few Gigawatts per cm2 are ideal

means of studying such nonlinear processes.

1.4 Outline of the Dissertation

In Chapter 1: Introduction, we discuss the need for the novel optical materials and

dwelled on basics of nonlinear optics.

In Chapter 2, we discuss the Laser Ablation technique as a possible means to

manufacture semiconductor nanoclusters. Different experimental techniques to

characterize the third order nonlinearity are discussed here. We introduce the technique

called Z-Scan in detail and present results on the passivated laser ablated Si nanocluster

film on glass substrate.

In Chapter 3, we introduce the concept of a photonic crystal in the visible

spectrum of electromagnetic waves. After reviewing a few earlier works in the field we

report a method used to manufacture a three dimensional photonic crystal made up of

silica spheres namely silica opal. We then introduce the concept of ion implanting of
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silica opal films with silicon, and then give a brief description of the experimental

technique used to characterize the same in both linear and nonlinear regime. We discuss

the 1-dimensional Bragg reflector model for the photonic crystal.

In Chapter 4, we describe the erbium doped red opal structure and explain the

linear and nonlinear optical properties of the structure including the photoluminescence

spectra of the same.

In Chapter 5, we introduce a germanium doped red opal structure and describe its

various linear and nonlinear optical properties.

In sixth Chapter, we present different applications of these novel optical

materials which themselves manifest as future research directions in the novel materials

tested during the course of the thesis.

In Chapter 7, we conclude the current dissertation by drawing few broad

conclusions based on the study of different materials studied.



CHAPTER 2

LASER ABLATED SILICON NANOCLUSTERS

2.1 Introduction

The main aim of this chapter is to introduce the laser ablation [13], more commonly

known as Pulsed Laser Deposition (PLD) [14] as a method for preparation of

semiconductor nanocluster. We give a brief description of the laser ablation set-up used

to prepare the silicon nanocluster thin films. We further discuss the experimental

technique for the characterization of third order nonlinearity in thin films namely Z-Scan.

We have devoted Appendix A for describing the theoretical background required for the

Z-Scan methodology. We present the results of the experimentation on various gas

passivated Si nanocluster films.

2.2 Laser Ablation

Laser ablation is a simple and versatile method for the deposition of thin films of

a wide variety of materials. The stoichometric removal of the constituent species from the

target during the ablation, as well as small number of control parameters, are two major

advantages of PLD over some of the other deposition techniques like Chemical Vapor

Deposition (CVD), Molecular Beam Epitaxy (MBE), Metal Organic Chemical Vapor

Deposition (MOCVD) etc.

A typical laser ablation setup usually consists of an excimer laser [15] with

collimating and focusing optics and a vacuum chamber where the actual film deposition

12
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takes place. The choice of different gases in the excimer laser gives rise to variety of

wavelength outputs of the laser for example ArF- 193 nm, KrCl- 222 nm, KrF- 248 nm

etc.

2.3 Sample Preparation

The samples containing Si clusters were prepared using the ablation setup shown

in Fig 2.1. A KrF excimer laser beam with specifications 2=248 nm, average power,

<I>=3W, pulse duration = 8 nS and repetition rate =50 Hz, was focussed to a 100 pm

spot size on a silicon wafer target (<100>, n-type, 10 16 cm-3). The silicon target was

cleaned by methanol and HF to remove any native oxide. The glass substrate was cleaned

by acetone and methanol. The glass substrate was positioned 3 cm away from Si target

We prepared the silicon ablated films under the passivating environment of different

gases such as H2, He, and Ar at 10 -5 torr. The glass substrate was maintained at room

temperature and a typical deposition time was 15 minutes.

2.4 Z-Scan

Z-Scan characterization technique was used to determine the sign and magnitude of

refractive index as well as absorption coefficient. This section is further divided into the

explanation of Z-Scan [16] technique followed by the experimental configuration used.



Fig. 2.1 	 Laser Ablation setup used to produce silicon nanoclusters

14
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2.4.1 Z-Scan Technique

Z-Scan technique can be described as measuring the transmittance of a nonlinear

medium with a finite aperture in the far field, as a function of the sample position z '

measured with respect to focal plane. In the following paragraphs we explain in detail

how such a trace is related to nonlinear refraction of the sample.

To understand the Z-Scan [10], let's assume that the nonlinear index of the thin

film under test is positive, and the sample is in prefocal position as shown in Fig. 2.2. The

Kerr type nonlinear thin film may be viewed as a lens if we assume that the response of

the film follows the transverse light profile. In the far field the beam opens up more

owing to combined diffraction from the nonlinear lens and the focussing lens. It remains

collimated over shorter distance in the near field; and diverges at larger beam angle in the

far field correspondingly reducing irradiance at the detector. When the same sample

passes through the focal point to postfocal point position, the positive lensing of the

nonlinear thin film tends to reduce beam divergence, which in turn results in increased

irradiance at the detector in the far field. Hence one would observe a characteristic valley

and peak in transmission spectra when a positive index nonlinear material is scanned

from prefocal to postfocal region. The situation is reversed if negatively nonlinear index

thin film is under Z-Scan test. The characteristics of the scan are peak and valley as the

sample is scanned. In open aperture Z-Scan, we collect the entire light output from the

sample. This yields the information on its nonlinear absorption properties. While in the

close aperture experiment, we limit the detector reading to light propagating along the

z ' axis. This yields the information about the nonlinear refraction of the sample.
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Fig. 2.2 	 Nonlinear refraction measurement through Z-Scan method (dark lines
denote beam propagation without nonlinear sample in the path)
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2.4.2 Z-Scan Experimental Setup

The experimental set-up used during Z-Scan is shown in Fig. 2.4, which is

completely automated using LabView
TM

 and being. The main laser source used in the

experimentation is Q switched Nd:YAG laser which is frequency doubled to give 10

pulses every second each of duration 10 nS at 2 = 532 nm. To perform experiments at

other wavelengths, the green (2 = 532 nm) output from the Nd:YAG pumps a dye laser

which generates other output wavelengths. For example solution of Rhodamine B dye

prepared in Methanol results in 590 nm, Cresyl Violet dye when prepared in Methanol

gives 645 nm and Nile Blue dye when prepared in Methanol results in 710 nm; all of

which are pumped with 532 nm from Nd:YAG laser [17].

Both the open aperture and close aperture Z-Scan signatures are collected. During

the data collection, care was taken to see that the laser power fluctuations are less than

5% of the peak value. This was done through monitoring the reference signal collected by

the beamsplitter in the beam path and writing a small signal processing subroutine in

LabView™ .

2.5 Experimental Results

In present section we present few of the results at different wavelengths on the

silicon ablated films grown on the glass substrate under the different gaseous passivating

medium. The curve fitting procedure adopted for the data is by writing a subroutine in

KaleidaGraph™, a curve fitting software package. We start the curve fitting procedure by



Fig 2.3 	 Z-Scan experimental setup
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giving the initial guess value for the wo i.e. the beam waist for the open aperture data

according to Eq. (A.27) and the best fit value of the same parameter returned by the

program is later used for the close aperture curve fitting according to Eq. (A.14). The

error in fitting the curve is observed to be less than 5%.

In figure 2.4, we show a representative Z-Scan normalized transmission data as a

function of 'z' coordinate for close aperture, open aperture experiments. Negative values

of 'z' represent sample being closer to the lens and positive values of 'z' represents

sample closer to the detector placed in the far field. One can clearly observe the close fit

between the theory and experimental values obtained through our Z-Scan experiments.

We repeated the same curve fitting procedure for all the three passivated samples tested

at different wavelengths.

In following graph, presented in figure 2.5, we present the maximum

change in nonlinear refractive index An as a function of 2 , the wavelength at which the

Z-Scan experiment is performed (the intensity values are in the decade 1-10MW/cm 2)

[18]. One can observe the variation in the An values at different wavelengths for the

samples passivated in different gases.

2.6 Discussion

The variation in An for different silicon ablated samples with respect to different

wavelengths at approximately similar incident peak powers were presented in figure 2.5.

The graphs clearly show the variation of An for different passivating gases. For example



20

Fig. 2.4 	 Typical Z-Scan data for the passivated Si nanocluster samples
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Fig 2.5 	 An values for samples with silicon nanoclusters passivated in

different gases
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the films passivated in He show the maximally negative An as compared to those

passivated under H2 and Ar in that order. The present An results are about 1/10 th to 1/2 of

the non passivated films at 2 = 532 nm [19]. Our An results when compared to the

porous silicon are larger by an order of magnitude.

Our results elucidate the role of surface states in the nonlinear process. Linear

absorption measurements indicate an absorption peak around A = 650 nm. Samples

grown in He or H2 did exhibit an enhanced nonlinear refraction in that spectral range

whereas samples grown in Ar environment exhibited that tendency at longer wavelength.

This characteristic of samples grown in Ar is similar to the characteristics of films grown

in high vacuum, with the exception of a much lower linear values in the present case.

Since all films show a reduced nonlinearity when compared to films grown in vacuum,

one may lead to believe that the crystallographic nature of these films is different. Films

grown in high pressure tend to possess cubic symmetry, whereas films grown in vacuum

of 10-6 torr tend to show more of hexagonal symmetry [20,21]. This point is still under

investigation. Though all films are grown under the same gas pressure, no obvious

dependence on the gas mass density is observed. It is widely believed that scatterings

between the ablated species and the ambient gas is critical to the nucleation process. Let

us examine the gas equation of states PV = NRT , where P is pressure, V is volume R is

gas constant, T is temperature and N is number of gas moles in the volume. Since all

parameters are kept constant the ablation process should not discriminate between

various gases unless a chemical reaction takes place. This may be true for hydrogen but
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not for other gases. Thus, one may conclude that unlike a simple evaporation, laser

ablation is sensitive to atomic mass of the gas in the growth chamber.



CHAPTER 3

SILICON IMPLANTED SILICA OPAL

3.1 Introduction

The three-dimensional periodic structures made at different pitch size, so called

"Photonic Crystal [22]" along the electromagnetic wave spectra have been a topic of high

interest research for the last decade. Photonic crystals have the similar effect on photons

as semiconductor crystals have on electrons.

In this chapter, after a brief review of the earlier work done on the topic of

photonic crystal, we give the procedure of growing such a photonic crystal namely the

Silica Opal. After reviewing few basic linear optical properties of this opal we also

present the one-dimensional simulation for this structure. We further wish to present the

nonlinear experimentation performed on the silicon implanted opal structure.

3.2 Literature Review

The concept of electronic band structure is well known from solid state physics

and electronics: due to the periodic potential variations in a crystal, electron motion is

restricted and electrons of certain energy are not allowed to travel through the crystal at

all. This phenomenon leads to " forbidden bands" and forms the basis of the most

microelectronic devices known to date. In analogy to electronic band gaps in a

semiconductor crystal with a lattice constant on the order of fractions of nano-meter

range, a periodic refractive index modulation created by a lattice composed of dielectric

building blocks could yield a band gap for photons energies or equivalently frequencies.

24
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This was the basic idea behind the original proposals of a photonic crystal as conceived

by Eli Yablonovitch [23] and Sajeev John [24] in 1987. While Yablonivitch's approach

was more concentrated on inhibiting the spontaneous emission from semiconductors,

Sajeev John was concerned about the localization of the photon. After few experiments in

the microwave region of the electromagnetic spectrum [25], [26] it was the explosive

growth of optical communication in last decade which made scientist to explore novel

materials operative at visible and near IR region which are of great interest to

communication society.

The processing of photonic crystal can be divided in two different paths. In one,

selective patterning and etching of the semiconductor wafers would lead to a three

dimensional photonic crystal [27]. The other approach uses a slow sedimentation of

colloidal particles of silica [28] or TiO2 [29] yielding the three-dimensional photonic

structure.

3.3 Preparation of Silica Opal - A Photonic Crystal

Precious opals are composed of amorphous silica spheres and their colors are due

to the light diffraction from regular packing of these uniform silica spheres. These silica

opals are available in nature [30]. The silica spheres, 150-400 nm in diameter, are of

colloidal size, and are prepared by a well-known methodology called TEOS [31], [32].

The face centered cubic (FCC) structure of synthetic opal which consist of sub-micron

size silica spheres can be grown on glass or quartz substrates by self-assembly.

The nano meter size silica spheres in alcohol are prepared by the hydrolysis of

tetraethoxysilane (TEOS) in a mixture of ammonium hydroxide, water and ethanol.
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Spherical silica particles are obtained when sufficient ammonia is present in the initial

reaction mixture at room temperature. The final opal size depends mainly on the initial

water and ammonia concentration. Silica powder is then obtained by evaporating the

excess ethanol and ammonia and heated at 600 °C for three hours. Then, the particles are

dispersed in ethanol again to form a suspension. The opal films are then self-assembled

by laying the suspension on fused silica or quartz.

Owing to the Bragg's law, opal samples with silica diameter of 200, 245 and 300

nm scattered blue, green and red colors respectively in reflection when viewed at normal

angles. The brightness of the reflection also gives an estimate of the periodicity and

uniformity of the grown opal films. A schematic of the Bragg reflection occurring in the

opal structure is shown in figure 3.1.

3.4 Ion Implantation of Si

The red (i.e. silica ball diameter = 300 nm) opal films were ion implanted [33] at

room temperature by Si ions at 400-KeV and current of approximately 30 p A to a dose

of 6 x 10 17 cm-2 resulting in a peak excess Si concentration of 2 x1022 cm-3 . The red opal

substrate was air cooled during Si implantation eliminating heat damages to the periodic

opaline structure. These ion implanted opal samples were further annealed at 1100 °C for

1 hour in flowing 4%H2 in Ar to form surface passivated Si nanocrystals inside the silica

spheres. The projected range of the implanted ions was 600 nm with an average full

width at half height of 300 nm.



Fig 3.1	 Schematic of the Bragg reflection in opal

27
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3.5	 Experimentation on Si Implanted Opal Structure

This section is subdivided into two parts mainly linear and nonlinear characterizations.

We start by analyzing a few of the linear optical properties including the white light

reflection and transmission of the sample and 'virgin' opal. We discuss in detail the one-

dimensional modeling of the silica opal structure. We then proceed to describe the

nonlinear experimentation performed on these sample.

3.5.1 Scanning Electron Micrograph Pictures

We took the SEM [34] pictures of the nonimplanted and implanted red opal

samples with the SEM model ESEM2020, EDX Super Dry.

One can appreciate the regularity of opal sphere in the silica opal in the Scanning

Electron Microscope picture shown in Fig 3.2. of the red opal implanted by silicon. The

other SEM picture in Fig. 3.3 shows the cross sectional view of the silicon implanted red

opal sample. One can easily see the swollen opal film after annealing although the

underlying opal film is intact. The swelling has taken place only in the first four layers of

the opaline structure as viewed from the SEM picture. This result is consistent with

average aimed projected range of the implantation.

In fig. 3.4, we show the SEM picture of the silicon implanted red opal matrix with

average cluster size 3-4 nm and one can see the non-swollen opal matrix.
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A scanning electron microscope (SEM) picture of a silicon ion

implanted 'red' opal. The featureless region is the swollen top

layer.
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Fig. 3.3 	 A scanning electron microscope (SEM) picture of a cross section

of a silicon ion implanted 'red' opal. The smooth featureless region

indicates the swollen region.
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Fig. 3.4	 Silicon implanted opal with cluster size 3-4 nm and non-swollen

opal matrix
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3.5.2 Linear Experimentation

Linear white light reflection and transmission experiments [35] on non-implanted

and implanted opaline samples were made to verify the presence of a periodic structure

and to determine the effective refractive index of the samples.

The linear white light reflection and transmission experiment is done with the

help of SPEX white light (Tungsten filament) source and monochromator (CD2B). The

experimental configuration is shown in figure 3.5.

The experiments are performed on nonimplanted opal and repeated for implanted

samples. The reflection data were normalized to the input intensity. Data for

nonimplanted and ion implanted red opal samples as a function of wavelength are

presented in figures 3.6 and 3.7 respectively. One can easily appreciate the presence of

periodic nano size silica opal structure by the typical Bragg resonance seen in figure 3.4

for the non implanted sample. From Fig. 3.7 one can infer the survival of the periodic

opal layers beneath the first few silicon implanted layers. This has already been

confirmed through the cross-sectional SEM picture in figure 3.3.

3.5.2.1 One Dimensional Modeling of the Photonic Crystal

Here we model the 3-dimensional photonic crystal in our case namely silica opal as a

periodic layered media. Periodic layered media are a special class of layered media in

which layers of dielectric material are stacked in a periodic fashion. Wave propagation in

these media is directly correlated to the remarkable colors of some of the beetles and

butterflies and silvery skin and scales of some of the fish.



Fig. 3.5 	 Experimental setup for the linear characterization of ion implanted opal
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Fig. 3.6 	 White light reflection from the nonimplanted opal as a

function of angle of incidence and wavelength.
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Fig. 3.7 	 White light reflection from the Si implanted red opal as a function

of angle of incidence and wavelength
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Reflection Coefficient of a Periodic Layered Media [36], [37]

Consider a plane wave incident on a stratified isotropic medium with boundaries at

The (n+1) th region is semi-infinite. The permittivity and permeability in the region is

denoted by e1 ,62 and μ1 ,μ2respectively. Such a structure is represented in Fig. 3.8. The

plane wave is incident from region 0 and has the plane of incidence parallel to

x - z plane. This implies that all field vectors are dependent only on x and z only and

independent of y. Since a/ ay = 0, the Maxwell equations in any region 1 can be

separated into TE and TM components governed by Ely and Illy . We obtain,

The TE waves are completely determined by the first three equations while the later three

equations are for the TM waves. One can also easily observe the duality in the TE and

TM equations.



Fig. 3.8 	 A stratified medium with alternate layers of permittivities e l and e2
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For a TE plane wave, Ey = Eoe-ikzz+ikxx , incident on the layered medium, the total

field in region 1 can be written as

One can easily see that the solution of (3.5.2.1.7) satisfies the Helmholtz equation in

(3.5.2.1.3). We obtain the dispersion relation by substituting equation (3.5.2.1.7) into

equation (3.5.2.1.3) to get

We have not written subscript 1 for the x component of k as a consequence of phase

matching conditions. Truly, there are multiple reflections and transmissions in each layer

1. The amplitude thus represents all wave components that have a wave velocity

component along positive z direction, and B, represents those with velocity component

along negative z direction.

We may also note that in region 0 where 1= 0 ,

In region t where 1= n +1= t , we have
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because region t is semi-infinite and there is no wave propagating with a velocity

component in the positive z direction. We denote the transmitted amplitude by T .

The wave amplitudes A, and B, are related to wave amplitudes in the

neighboring regions by the boundary conditions. At z = —di , boundary conditions require

that Ey and H, be continuous. We obtain

There are n +1 boundaries which gives rise to (2n + 2) equations. In region 0, we have

an unknown reflection coefficient R and in region t , we have an unknown transmission

coefficient T . There are two unknowns namely, A, and B, in each of the regions

Thus we have a total of (2n + 2) unknowns from (2n + 2) linear

equations. This systems of equation can be solved by in the matrix form with the

unknowns forming a (2n + 2) column matrix and the coefficients forming a

square matrix. And the solution is obtained by inverting the square

matrix. With this procedure being tedious although straightforward; we describe a

simpler method to solve the problem.

a. Reflection Coefficients:

Since we are interested in finding the reflection coefficient for the layered medium,

we derive below the closed-form formula for R . This is obtained by solving

(3.5.2.1.15) and (3.5.2.1.16) for A, and B, to obtain,



AA

is the reflection coefficient for waves in region l , caused by the boundary separating

regions l and l + 1. We note from equation (3.5.2.1.19) that,

implying

Hence the reflection coefficient in region l + 1, R (41)1 , caused by the boundary

separating regions l + 1 and l , is equal to the negative of R (1+1) , .

Calculating the ratio of A, and B, i.e of equations (3.5.2.1.17) and (3.5.2.1.18)

we get,
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Through equation (3.5.2.1.23) we have introduced notation for the continued

The reflection coefficient due to the layered medium is I We get,

This closed-form solution is programmed using MATLAB and MathCad to obtain the

1-dimensional equivalence of the three dimensional photonic crystal in our case

namely silica opal.

A typical reflection data, as a function of wavelength and normalized to input

intensity, is shown in figure 3.9, for a red opal nonimplanted sample at an angle of

incidence of 0 = 20 ° with respect to normal to the sample. The fit obtained by the

model is justified because the beam spot size was large thus emulating a plane wave.

The state of polarization was perpendicular to the plane of incidence i.e. E-

polarization. The one-dimensional curve fit of the same is shown on the same figure

by dark lines. The one-dimensional model is based on a periodic structure made of

succession of layers with alternating refractive indices, which correspond to mixed air
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Wavelength [nm]

Fig. 3.9 	 One dimensional model fit to the experimental data for the

red opal substrate (The peak reflection is set to unity)
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and glass layer (layer 1) and pure core silica layer (layer 2). Thus in our case, a 300

nm diameter size opal structure is broken into two consecutive layers of thickness,

i.e. two thirds of the silica sphere diameter and d2 = 0.075 μm i.e. one

third of the silica sphere diameter for the glass/air layer and solid glass respectively.

We had corrected for the interplannar spacing along <111> direction that is 0.8165

times the silica sphere's diameter. The refractive indices of these layers is calculated

with the help of the loading equation [38]

where no , ,n02 are the refractive indices of the corresponding glass n o , = 1.45, and air

n02 = 1.0, respectively. The filling factor F , for only the first layer of glass/air i.e.

layer 1 is taken as, F = 0.45, based on the geometry of the close packing structure

and width of the same layer is assumed to be half of the air/glass layer i.e.

. For the rest of the structure, the filling factors for air/glass

sub-layer (i.e. layer 1) and the glass layer (i.e. layer 2) are taken to be F = 0.55 and

F = 0.91, respectively. These calculations of F is based on the amount of glass or

silica present in each sub layer. A pure opal structure has F = 0.74 , i.e. it contains

26% air voids.

After Si implantation and subsequent annealing, we observe the broadened

reflection peak and slightly blue shifted as can be clearly seen in figure 3.9. Apart

from this, we observe formation of two side bands around 2 = 500 and 430 nm, and a

shoulder at 650 nm. A one-dimensional model for this implanted structure is also

simulated and is shown in figure 3.9. In this model, we assumed that the implantation

of Si into opal has changed the refractive index of the opal structure. The index
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sequence is 1.3, 1.42, 1.3, 1.42, 1.7, 1.95, 1.4, 1.42, 1.3, 1.42, 1.25, 1.42, 1.25, 1.42,

 , keeping the layer widths same as discussed before. We have assumed an

asymmetric implantation profile due to the varying local slope of each silica sphere

with respect to ion beam direction.

3.5.3 Nonlinear Experimentation

The nonlinear experimentation [39] on the ion implanted silica opal samples are

conducted with the help of the Q-switched frequency doubled

Nd:yttrium-aluminium-garnet (Nd:YAG) laser system. The laser emits 10 pulses every second with pulse

duration of 10 nS at X=532 nm. The experimental setup is shown in figure 3.11.

The Si implanted red opal sample is kept at the focal point of a lens with

f =15cm . The reflection and transmission for the nonimplanted and implanted sample

was obtained as a function of latitude angle between surface normal and laser beam. The

experiment is done at different i/p intensities by varying the neutral density filters in the

path of the laser beam.

In figure 3.12, we show the transmission through the Si implanted sample as a

function of latitude angle, 0 , at two input light intensities falling on the sample for H-

polarized light. The curves are normalized to the data obtained for nonimplanted opal

samples. The actual transmission values were 20 to 40%. In figure 3.13, we represent

the reflection data at two intensities. The reflection data includes all diffraction orders

and is normalized as in the case of transmission to the reflection from the nonimplanted

opal. The normalized reflection data oscillates as a function of the latitude angle 0 ,
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Fig. 3.10 One dimensional simulation of the reflection data of the

silicon implanted red opal sample (The peak reflection is

set to unity)
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Fig. 3.11	 Experimental setup for the nonlinear characterization of silicon implanted

opal
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indicating the effect of the difference between Bragg reflections from the implanted and

nonimplanted opal layers in <111> crystallographic direction.

In figure 3.14, we present the normalized transmission of the Si implanted red

opal sample as a function of light intensity at 0 = 20 ° . One can clearly see the large

change in the transmission as the i/p intensity is varied by only one order of magnitude.

The intensity values on the order of 10 4W/cm2 are of particular consideration as

compared to 10 7W/cm2 for the Si implanted in plane silica [40]. We checked the

nonimplanted opal samples for this behavior, but they show a flat transmission response

in the intensity range of 10^3-10^7W/cm2  .

A simplified model can be constructed to fit the normalized transmission data of

the Si implanted red opal structure. The transmission through the sample T , in the <111>

crystallographic direction and away from longitudinal resonance condition, is composed

of the transmission through the implanted film, Ts;_„,, and the transmission through the

nonimplanted portion of the opal, Topal, . Hence total transmission through the ion

implanted sample may be written as

Hence normalized transmission of only the implanted film may be written as

The implanted film is very thin (few monolayers of 300-nm size opal) and hence can be

treated as a nonlinear phase grating. Therefore, overall normalized transmission in the far

field can be written as
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Fig. 3.12 	 Normalized transmission through a Si implanted opal sample as a function

of latitude angle, 0 at two intensities (a) I =1.49X10 3 and (b)

I = 25X10 3 W / cm 2 ( Normalization is done with respect to non-implanted

sample)



49

Fig. 3.13 Normalized reflection from a Si implanted opal sample as a function of the

latitude angle, 0 at two intensities (a) I = 1.49X10 3 and (b)

I = 25X10 3 W/cm2 (Normalization is done with respect to non-implanted

sample)
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Fig. 3.14	 Normalized transmission as a function of light intensity. The curve is

normalized to the transmission obtained for a nonimplanted opal. The

solid curve is a fit to the data based on equations 3.5.3 and 3.5.7
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Here, A , is the relative amplitude, J0 is the Bessel function of the first kind and zeroth

order, and m is the modulation index. In general, the modulation index m may be

written as

where, k0, is the propagation wave number in the vacuum, n(I) , is the intensity

dependent effective refractive index of the grating at a given peak i/p intensity I , L eff is

the effective thickness of the implanted film which is given by

where 0" is the angle of the optical beam inside the implanted film with respect to the

normal to the sample surface. The modulation index of the implanted film is the unknown

and is used as a fitting parameter in the form

The calculation of the nonlinear refractive index change is based on the results for

the Si implanted flat silica samples [37]. We assume that the electronic properties of the

Si nanoclusters in opal do not substantially differ from those incorporated in flat samples.

We approximate the saturation of the refractive index of the implanted samples as

where n 20 is the saturation coefficient. The nonlinear coefficient y is fitted to the data

and It also. Finally at a given angle, we plot equation (3.5.3) and (3.5.7) as a function of

peak intensity I . The result of such a modeling procedure is shown in figure 3.11 with

solid curve.
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This fit to the experimental data is consistent with the modulation index that is

described by equations 3.5.4 and 3.5.6. The assumptions made during the modeling

procedure are: neff =1.91, n 20 = 0.53 , with the resulting fit parameters:

y = 3X10^-5cm2 / W and I, = 5000W / cm 2 . A similar curve fit when employed for the Si

ion implanted flat silica samples had resulted y = 8.4X10 -9 cm 2 W and

I, = 6.5MW / cm 2 . Thus, we interpret the efficiency in the transmission results arising

from the nonlinear effective phase grating with a large modulation index; m(I) 2.4g ;

when the zeroth order maximizes and the first order of diffraction minimizes.

3.6	 Discussion

After the Si implantation and subsequent annealing at 1100 °C, the opal film

showed swelling, although the opaline structure beneath is intact as seen in the SEM

picture (Fig 3.2) This film swelling is consistent with the average projected range of the

Si implanted layers. One expects that above a certain implantation thresholdthe silica

spheres will be damaged. From Fig. 3.3, we observe that the damage was pronounced for

the first layer even though the peak concentration of the implanted Si lies approximately

600 nm below surface. Therefore, we expect the swollen region to occupy a width of

1.2 pm which is in good agreement with Fig. 3.3 .As shown through white light

experiments, the refractive index of the swollen film is inhomogeneous and retained it's

periodicity. Optical inspection of the top implanted layers before and after annealing

revealed no visible change which implies that the matrix damage and the swelling is a

result of only implantation process and is related to the implantation energy and dosage.

The possibility of opal matrix melting during the implantation is small as the substrate
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was air-cooled during implantation and the elevated temperature due to poor glass

conductivity is estimated to be no more than 200 °C which is far less than melting

temperature of glass. Recently the deformation of opal matrix by the 4MeV Xe ion beam

implantation dose of 10 14 cm2 is reported [41]. We will discuss in later chapters, whereby

the opaline matrix implanted by 2.7 MeV Er + [42] ion beam dose of 10 14 cm2 leaves the

opaline structure intact.

The qualitative agreement between our one-domensional model and experimental

data suggests that the refractive index distribution in the swollen layers of the implanted

film retained some degree of periodicity. Despite its simplicity compared to some of the

other models [43], the model accounted for the sideband formation. Nonlinear

experiments also support the idea of periodic dispersion of silicon nano clusters followed

the periodic structure of opaline template even after the collapse of top layers of opal

matrix. The one-dimensional theoretical model for the opal matrix indicates that the

distribution of ion-implanted region around the peak concentration is asymmetric. This is

due to the fact that local surface normal of the opal sphere was not parallel to the ion

beam direction and varies form point to point. The implantation range varies roughly as

the cosine of the angle between the ion beam direction and the surface normal, which

results in a shorter and asymmetric range profile. The reflection Bragg peak does not

change when H-polarized incident light is used which re-emphasizes the fact that major

contributions to the reflection data are from longitudinal Bragg planes. Transmission data

on the other hand depends on the input polarization state and on the opal symmetry

because of accumulated lateral scattering from various crystallographic planes.
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For the nonlinear experiments, the normalization procedure [39] may be

complicated by the fact that the in-plane symmetry is that of a hexagonal structure as

seen in Fig. 3.2. Thus, one may argue against the validity of the normalization procedure

on the basis that the azimuthal (rotations within plane) angle is unknown. We checked

this point by measuring the transmission dependence of the nonimplanted sample and

implanted sample as a function of latitude angle, 0 , at various azimuthal angles, 0 .

Nonimplanted opal did not show any major change in normalized transmission profile,

where as silicon implanted sample showed random oscillations within error margins.

The assessment of the angular dependence of the beam propagation within the

opal matrix is based on the Figs. 3.4 and 3.5. If the process originated from a longitudinal

Bragg condition along <111> crystallographic plane, then, 2n(I)d1cosθ"= sλ , with

s =1,2,3,.... and d 1 , the interplanar spacing and 0" , the angle of transmission inside the

implanted film. In this case, tan 0"A0" A2/2 . On the other hand, if there is a transverse

confinement component, the Bragg condition reduces to 2n(I)d 2 sin 0"= s2 and thus,

ctgθΔ"Δθ " A/ 1/2.Based on the white light reflection experiments, AAA16. Taking

0 = 20 ° , we find from the Snell's law and by using n =1.99 and that 0" r=110 ° . Based

on the later equation we estimate AO 2 ° which is in excellent agreement with the data

presented in Fig. 3.5. We hence conclude that the experimental values imply a transverse

confinement process.

Thermal effects associated with the silicon nanoparticles usually posses negative

y values; while here we calculate positive values. Also, thermal effects which are related

to mechanical displacements or refractive index changes in the opal structure, would
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result in curve's oscillation when plotted as a function as a function of the light intensity.

This is due to the fact that they involve only the implanted film and not the nonimplanted

layers. If we were to assume that the Si implanted region is made of a homogeneous

implanted material, then we may treat it as a dielectric slab. Based on the white light

experiments, we concluded that we operate away from any longitudinal Bragg reflection.

Therefore we are able to calculate the nonlinear index change. We calculate An = 0.55

per decade of intensity change around I 10 4 W / cm', compare to An = 0.53 at

I 15MW / cm' for Si implanted in smooth silica matrix.[40]. Since the thickness of the

silicon implanted flat and opaline films are comparable, we arrive at the conclusion that

the opal provided additional confining environment, which enabled the nonlinear

properties of silicon nanoclusters. For the same reasons outlined above, we propose that

the enhanced nonlinear effects are the result of a transverse beam confinement in the

opaline matrix.



CHAPTER 4

Ge IMPLANTED OPAL MATRIX

4.1 Introduction

In the current chapter we probe into the germanium implanted opal structure for its

various linear and nonlinear optical properties. Quite interestingly, both the Si and Ge

group IV semiconducting elements from the periodic table although widely used in

semiconductor industry, are not being used extensively in the optoelectronic industry

owing to their indirect bandgap [44].

This chapter is organized into the sections on sample preparation, scanning

electron micrograph pictures portraying the morphological details of the physical

structure of the sample followed by few linear and nonlinear optical experimentation and

finally winding with discussions.

4.2 Preparation of Photonic Crystal

We follow the TEOS procedure outlined in chapter 3, section 3.3.1 whereby the

sub-micron sized photonic crystal is prepared by the hydrolysis of TEOS

(tetraethoxysilane) in a mixture of ammonium hydroxide, for the preparation of a

photonic crystal with the periodicity in the visible wavelength. FCC structure of the silica

spheres is grown on the glass. As discussed earlier, owing to Bragg's law, opaline matrix

scatters red, green and blue colors in reflection for the feature size of 300, 245 and 200

nm respectively.
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4.3 Ion Implantation of Ge In Opaline Matrix

The opaline matrices prepared above are ion implanted by Ge ions. The ion

implantation was done at 150 KeV with fluence levels ranging between 2 x 10 14 to 2 x

10 15 cm2 . The corresponding germanium peak concentration was estimated to be 3 x 1020

to 3 x 1021 cm-3 respectively. At the above said energy, the range of implantation is 925 °A

with a straggle of 266 °A i.e. occupying only the first monolayer of the silica spheres.

The above Ge ion implanted opal samples are further annealed at temperature of

1100°C in flowing Ar. Subsequently the Ge precipitates into nano-size crystallites within

the nano-size opal matrix, to create the nano within nano structure.

4.4 Morphology of The Ge Implanted Opal

As in the case of Er implanted opal structure, we found that the implantation

dosage of Ge at an energy of 150 KeV has left the opal matrix undamaged which is

further concluded with the linear white light experiments. We present the SEM picture of

the Ge implanted red opal matrix after annealing in Fig. 4.1.

4.5 Linear Experiments

Linear white light experiments [45] were performed on the Ge implanted red opal

matrix with the help of the experimental arrangement discussed in chapter 3, section

3.4.2. As concluded by the SEM photographs in previous subsection, we indeed observed

clear Bragg peaks in reflection for the Ge implanted red opal structure. The normalized

reflection with respect to input intensity from the Ge implanted red opal matrix is shown

in Fig. 4.2. This again confirms conclusively that the opal matrix was not damaged by



Fig. 4.1 	 SEM picture of high concentration, Ge-implanted, ordered array of

300-nm silica spheres after annealing at 1100 °C.
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Fig. 4.2 	 Reflection from the Ge implanted opal as a function of incident

wavelength and angle of incidence (Normalization is done with

respect to input intensity)
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the Ge implantation into it at the dose level described in section 4.2.2.

In Fig. 4.3 we present the transmission (normalized to input intensity) through the

300 nm size opal spheres in FCC lattice implanted by Ge ions. As seen the transmission

exhibited two main features: one transmission dip centered at A = 550 nm and other dip

around A = 400 nm. The first dip at 550 nm is attributed to complement of the enhanced

reflection of <111> (across the opal sample) crystallographic plane of opal matrix. The

other dip towards A = 400 nm, is attributed to mid-Brillouin zone, direct transition within

Ge nanoclusters. This transition is found to be independent of the fluence used during ion

implantation process. Since the final Ge concentration and hence the final nanocluster

size for a given annealing temperature depends on the ion fluence, one may conclude that

this transition is cluster size independent. Fitting this transmission data for both the

samples near the direct transition with the equation

where, T is the transmission through the sample, E is the photon energy and Eg is the

bandgap energy of the nanocluster, we found Eg = 2.26 eV (A = 549 nm) which is in

good agreement with the size dependent, direct transition found for germanium colloids

[46]. The curve fitting is done using KaleidaGraph software and by writing a subroutine

for the equation 4.1.
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Fig. 4.3 Transmission through a high-concentration, Ge-implanted 300 nm

opaline sample as a function of incident wavelength and various

incident angles (Normalization is done with respect to input

intensity)
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4.6 Nonlinear Experiments

The nonlinear transmission experiments [45] were performed on the germanium

implanted red opal matrix using the Q-switched Nd:YAG frequency doubled laser

emitting 10 Hz pulses each of duration 10 nS at A = 532 nm. The experimental setup

used for nonlinear characterization of the sample is described in detail in chapter 3 under

the section 3.5.

As in the case of earlier samples of silicon and erbium doped opal structures, we

found the nonlinear transmission through the implanted samples peaking at angles of 22 °
and 38 ° for the high and low dose Ge samples. The transmission normalized tio input

intensity through the high dose, Ge implanted opal sample as a function of different angle

of incidence at three different intensities is shown in fig.4.4, while the transmission at

angle of incidence of 9 = 22 ° for various input intensities is plotted in fig. 4.5.

4.7 Discussion

In this chapter, we describe the germanium implanted photonic crystal with

feature size in the visible wavelength range, namely silica opal. The samples were

fabricated by ion implanting the opal at different implantation dose at 150 KeV energy.

From the SEM pictures taken of the Ge implanted opal structure, we observed that

none of the opal layers were destroyed by the germanium implantation dose unlike

silicon implanted opal matrix discussed in chapter 3.
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Fig. 4.4 	 Normalized transmission as a function of incident angle for high

concentration sample of Ge implanted opal (Normalization is done with

respect to input intensity)
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Fig. 4.5 Transmission as a function of light intensity at the angle of incidence 0=22° for

the high concentration Ge sample (Normalization is done with respect to input

intensity)
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Fig. 4.6 	 Transmission as a function of light intensity at the angle of incidence

9=38° for the low concentration Ge sample (Normalization is done with

respect to input intensity)
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Linear white light experiments performed on the germanium implanted opal

structure which displayed the Bragg peaks in reflection and corresponding decrease in the

transmission through the sample. This is one of the typical characteristics of the photonic

crystals. These experiments also support the conclusion of survival of the three

dimensional periodic opal matrix after the germanium implantation. From the white light

transmission results, we also verified the size-independent direct transition for the Ge

colloids occurring at 2 = 549nm.

Photoluminescence experiments were performed on the germanium implanted

opal samples, but they failed to show any signal in the range of 600-850 nm.

The nonlinear experiments were done on the samples at 2 = 532 nm. As in the

earlier samples of silicon implanted opal and erbium implanted opal, we found the

nonlinear transmission of the germanium implanted opal samples peaks at different

angles of incidence namely 0 = 22 ° and 0 = 38 ° for high and low implantation dose

samples.



CHAPTER 5

ERBIUM IMPLANTED SILICA OPAL

5.1 	 Introduction

Over the past decade the fiber optic communications has been revolutionized by the

advent of erbium doped fiber amplifier, which boosts the maximum length and the

transmission capacity of the optical communication link. [47].

In this chapter, we will briefly review the procedure to grow such a Er implanted

silica opal. We present different linear properties obtained from the white light

experiments along with photoluminescence results on the Er implanted opal structure. We

conclude the chapter after presenting different nonlinear results.

5.2 	 Preparation of Silica Opal -A Photonic Crystal

The TEOS [31], [32] method outlined in the third chapter in 3.3.1 is followed to

fabricate opaline matrix with different periodicities in visible wavelengths. Opal samples

with silica sphere diameter 200, 245, 275, 300 nm scattered blue, green, orange, red

colors in reflection.

5.3 	 Ion Implantation of Er

The opaline matrix was ion implanted [33] by erbium ions to a dose of 10 14 
CM

-2
,

aimed to reach the fifth layer of the FCC structure. For example, aiming at an

implantation depth of 750 nm with a straggle of 90 nm for the 300 nm size opal matrix.
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The implantation was done with an energy of 2.7 MeV. The peak Er concentration was

estimated to be 1.8 x 10 19 cm 3 . The ion implantor used for the sample preparation is of

National Electrostatics Corporation's (5SDH-4) employing tandem Linear Accelerator.

The ion source is Middleton type employing cesium sputtering source.

The implantation process was followed by one hour of annealing in flowing Ar at

a temperature of 850 °C [48]. A color change made the implanted region visible after

annealing, for example the implanted region of the red opal was seen as green, the orange

sample turned bluish green, the green sample turned red, and the blue sample turned

yellow. As observed in nonimplanted opal, complementary colors are seen in

transmission for erbium implanted opal structures.

5.4 Morphological Details of Er Implanted Sample

We took the SEM pictures [34] of the implanted orange opal samples shown in

Fig 5.1. As clearly seen in the SEM picture none of the opal layer was damaged or

destroyed by the implantation process, unlike Si [39]or Xe [41] implanted samples. One

can also see the uniformity of the opal size across the sample.

5.5 Linear White Light Experiments

Linear white light reflection and transmission experiments on the erbium

implanted and nonimplanted opal samples were performed. The experimental

configuration used for the linear characterization of the erbium implanted opal is the

same as used for Si implanted opaline structure and drawn in Fig. 3.4 in section 3.4.2.
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Fig. 5.1 	 Scanning electron micrograph picture of the Er implanted orange opal (i.e.

silica sphere size = 275 nm).
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In Fig 5.2 we show the linear reflection characteristics of the erbium implanted

regions of a red sample [42] for two latitude angles of incidence (reflection is normalized

to input intensity). The characteristic Bragg reflection pattern observed in these curves

reconfirms the conclusion of non damaged opaline structure drawn from the SEM picture

of the Er implanted opal structure. It also confirms the presence of a periodic opaline

structure in crystallographic <111> direction perpendicular to the sample surface. The

blue shift of the Er implanted opal structure with respect to the nonimplanted structure

signifies the relative refractive index change in two regions. Although this change takes

place only in the buried and implanted monolayer, it can be equivalently represented by a

grating with effective refractive index neff = 1.22 , (as compared to neff = 1.35 for

nonimplanted opaline matrix) which is responsible for such a spectral shift.

5.6	 Nonlinear Experiments

Nonlinear optical experiments [42] were conducted on the Er doped opal samples.

The experimental configuration is drawn in Fig 3.5. The sample is placed at the focal

point of a lens with f =15cm. A 100 ,um focussed beam from a Q-switched Nd:YAG

laser (Repetition rate = 10 Hz, Pulse duration =10 nS, 2= 532nm ) was impinging on the

sample. The transmission and reflection from the Er implanted and nonimplanted regions

of the sample were measured as a function of latitude angle between the sample normal

and laser beam. The output from the photodetectors is collected using the lock-in

amplifiers (Stanford Research SR510). We have used the averaging algorithm in the
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Fig. 5.2 	 Reflection from a 'red' (300 nm size spheres) Er implanted (solid curve)

and non-implanted (dash curve) opal with E-polarized light

(Normalization is done with reference to input intensity)



72

LabView™  to take the readings with laser power fluctuations less than 5-10% of it's

nominal value.

The normalized transmission of the Er implanted opal with respect to the nonimplanted

opal substrate is plotted for both the i/p polarizations in Fig 5.6 and 5.7. The polarization

of the incident beam is varied by inserting the polarizer in the beam path. Figures 5.8 and

5.9 show the normalized transmission as a function of peak i/p intensity at a latitude

angle 0 = 50 ° . Based on the discussion in the earlier chapter on Si implanted opal

structure and the Fig. 5.2, we note that such a normalization procedure helps to eliminate

the effects of scattering from the opaline matrix in crystallographic <111> direction

normal to opal surface.

5.7 Discussion

In this chapter, we probed the erbium implanted opal structures with respect to

different linear and nonlinear optical properties.

From the SEM pictures, we clearly observe that none of the opaline layers were

destroyed by the implantation dosage of Er, contrasting with the opal ion implanted with

silicon as discussed in previous chapter.

The white light reflection experiments on the Er implanted and nonimplanted opal

samples show distinct Bragg peaks, which themselves confirm the presence of periodic

opal layers seen in SEM pictures. The blue shift of the reflection for the implanted layers

shows the effect of the Er implantation on the refractive index profile of the combined i.e.

opal and erbium implanted monolayer, structure.
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Fig. 5.3 Normalized transmission through the Er implanted red opal as a

function of latitude angle for the perpandicular (E)

polarization.(Normalization is done with reference to non

implanted sample)



Fig. 5.4 	 Normalized transmission of the Er implanted red opal as a function of

input light (E-polarization) intensity at latitude angle of 0 = 50 °
(Normalization is done with reference to non implanted sample)
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Fig. 5.5 Normalized transmission through the Er implanted red opal as a function

of latitude angle for the parallel (H) polarization. (Normalization is done

with reference to non implanted sample)
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Fig. 5.6 Normalized transmission of the Er implanted red opal as a of function

input light (H-polarization) intensity at latitude angle of 0 = 50 ° .
(Normalization is done with reference to non implanted sample)
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The results of the nonlinear optical experiments may be explained as follows. The

opaline matrix is composed of three dimensional periodic grating structure. The grating

with a wave number K, affect the dispersion of the propagating optical beam with a

wave number, kn , inside the opal matrix. A resonance occurs when the following

dispersion relation is met [49]

Thus a resonance occurs at specific incident angles. If we treat cross section of opaline

matrix as composed of two perpendicular gratings. The longitudinal periodicity along

<111> direction being m, 0.816D = 277K  , due to the close packing along the specified

crystallographic plane where, D is the diameter of opal sphere. The transverse

periodicity in the t direction has two gratings in the crystallographic directions namely

<100> and <110>. Hence the transverse periodicity in opaline structure is either,

One combination

contributes to a transmission only mode i.e. D = 300nm, neff =1.22, mz =1 (a

monolayer of Er implanted silica spheres) and m 1 = 2 in the <100> direction. Two magic

incident angles exist: 0= 7.7 ° and 0= 48.8 ° . The later is in very good agreement with

our experimental value of 0 r=150 ° . Due to experimental limitations, we could not verify

the experiment at the other angle namely 0=7.7 ° .
Photoluminescence [50] experiments were performed on the Er implanted opal

samples. The excitation used in the luminescence experiments is a 400 mW Ar ion laser

emitting a 514 nm green line. The excitation beam from Ar ion laser impinged from the

back at a given latitude angle and the photoluminescence light was collected by a quartz
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lens and focussed onto the spectrometer through a bandpass filter. We took care to see

that the bandpass filter did not contribute to the luminescence characteristics. Neither

excitation nor the viewing angle affected the spectral shape of the luminescence curve,

although it did affect the amplitude of the same. For example, erbium implanted green

(silica ball diameter = 245 nm) showed an increased signal at large angles. The largest

luminescence signal is obtained for the orange (silica ball diameter = 275 nm) opal

samples. While Er implanted red and blue opal samples exhibited spectra typical of

nonimplanted opal samples. Representative of the luminescence results at room

temperature of the Er implanted green opal and nonimplanted substrate of the same

sample are shown in Fig 5.7. The data for samples before annealing at 850 °C resembles

that of a nonimplanted opal matrix. The Er line [47] at 1.54μm serves as a reference. Also

we detected a peak at A = 0.9μm for the Er implanted region as opposed to a peak at

= 1.1 μm for nonimplanted opal matrix.

We observed that although the luminescence spectrum was independent of the

excitation or viewing angle, the efficiency of the luminescence was angle dependent

illustrating coupling of the excitation wavelength to the periodic structure of silica opal.

The luminescence is an incoherent process with a broad spectrum. Hence, the respective

sample's geometry is the reason behind different sample's luminescence efficiency. In

addition, as the implanted region occupied only a monolayer of silica spheres; hence we

postulate the maximum luminescence efficiency correlated to the optimized imaging

conditions. The self-imaging distance [51] for sub-wavelength spheres is analytically

unknown, but may be given by, with s = 1,2,3, 	  At an optimal
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Fig. 5.7 Photoluminescence of (a) non-implanted and (b) Er implanted regions of a

'green' (245 nm sphere) opal sample excited by a X=0.514 μm line of an

Ar laser at an incident angle of 630 0 from the back and at a viewing angle

of 15 ° .
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wavelength, the implanted depth, Limp contains integral number of self-imaging distances

from various opal planes. For example, the optimal peak wavelength for the Er implanted

"green" opal (i.e. sphere diameter = 245 nm) D = 245nm and Limp = 612.5 ± 80nm ,

results in 2,„p, 1000nm = 1 μm . The radiation from Er implanted silica, which possesses

two radiation peaks in the spectral region, namely A. = 0.85μm and I = 0.98μm is

therefore enhanced by this lensing effect. The optimal peak wavelength of Er implanted

"red" opal with D =0.3pm and Lamp =0.75pm , is λ opt=1.3 μm.

The luminescence peak around 2 =1.1 pm i.e. 0.9 eV for non-implanted "red and

"blue" samples is attributed to the existence of defect states between Si nanoclusters and

silica matrix of opal [52]. Non passivated dangling bonds are responsible for the

luminescence signal although in the past, this band was observed at low temperatures.

The existence of Si nanoclusters in our non implanted opal samples was confirmed

through the X-Ray Diffraction (XRD) [50].



CHAPTER 6

APPLICATIONS AND FUTURE SCOPE OF RESEARCH

During the course of present chapter, we introduce possible applications of the

materials discussed in the dissertation and projections for the future directions of

research.

6.1 Wavelength Conversion Using Four Wave Mixing

Wavelength Division Multiplexed (WDM) [53] networks make very effective

utilization of the fiber bandwidth and offer flexible interconnects based on wavelength

routing. In high capacity WDM networks, blocking due to wavelength contention can be

reduced by wavelength conversion [54]. Wavelength conversion addresses a number of

important issues including transparency, interoperability and network capability. The

number of wavelengths in WDM networks determine the number of independent

wavelength addresses or paths. Although this number may be large enough to fulfill the

required information capacity, it is often not large enough to support large number of

nodes. In such cases, the blocking probability rises due to possible wavelength contention

with two channels at the same wavelength at the same output. This point is illustrated in

Fig 6.1, whereby the network operators 1, 2, and 3 are responsible for their own

subnetworks and wavelength assignments within the subnetwork which are independent

of other network operators. But the need of the wavelength conversion arises with the

linking between these subnetworks. This is shown as points of wavelength conversion in

Fig. 6.1.
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Fig. 6.1 	 Interconnected WDM networks and need of wavelength conversion

Wave-mixing rises from a nonlinear optical response of a medium when more

than one wave is present. The outcome of the wave-mixing effect is another wave whose

intensity is proportional to the product of the interacting wave intensities. The phase and

frequency of the generated wave is a linear combination of those of the interacting waves.

Hence, the wave-mixing preserves both phase and amplitude information, and therefore

is the only category of wavelength conversion that offers strict transparency as compared

to other wavelength conversion techniques including optoelectronic conversion, cross

gain and phase modulation in semiconductor amplifiers.

A semiclassical picture of four-wave-mixing [10] includes the formation of a

grating and scattering of a wave off the grating. Two optical waves form a grating due to
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intensity patterns in the nonlinear medium. This can either be a standing wave grating if

the two waves have identical frequency and no relative phase jitters. The nonlinear

material in our case the silicon naocluster film responds to this intensity grating by

forming a refractive index grating so called Kerr grating. If two waves differ in

frequency, the grating pattern sweeps in space at a rate corresponding to the frequency

difference. The third beam present in the film is scattered by the grating. This scattered

wave is the wave generated as a result of the four-wave-mixing interaction of the three

incident waves. The frequency of the generated wave is offset from that of the third wave

by the frequency difference of the first two waves. The intensity of the generated beam is

related to the intensities of the interacting beam and the magnitude of the third order

susceptibility,

The high values of the x (3) obtained for the Si nanoclusters prepared by the laser

ablation makes them an ideal candidate for the application of wavelength conversion in

WDM networks.

6.2 Raman Amplifiers

For quite some time in the past, the microwave communication links were

preferred to optical ones due to the availability of the amplifiers in the microwave

domain. The optical links had to follow 3R regeneration i.e. retiming, reshaping and

reclocking optical-to-electrical and electrical-to-optical conversion. This drawback of the

optical links is overcome by the use of rare earth doped fiber amplifiers (EDFA) [48]. Of

late a new kind of amplifier based on the Stimulated Raman Scattering (SRS) [55] has
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attracted the mind of many fiber optics communications researchers as this may convert

the attenuating piece of transmission media i.e. fiber into a gain medium. Raman

amplification has the advantage of being all optical process also stretching the link length

longer than before. As compared to EDFA, one does not have to use a separate portion of

erbium doped fiber of few meters length.

SRS is a strong scattering process whereby a photon of frequency w is destroyed

and a photon at the Stokes shifted frequency co, = co — co,, is created leaving the molecule

in an excited state. This process is shown in Fig. 6.2.

Fig. 6.2 	 Stimulated Raman scattering

The spatial evolution of the Stokes wave follows the following equations given by [12]

and a, is the Stokes absorption coefficient given by

where,
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Stokes frequency,

refractive index at the Stokes frequency,

speed of light in vacuum,

real part of the third order susceptibility,

= amplitude of the pump optical field

The laser ablated silicon film described in the second chapter with high valued

nonlinear third order susceptibility values is a good candidate for the Raman amplifier

films.

6.3 	 Si Implanted Opal Structure

Photoluminescence (PL) studies [35] carried out on the silicon implanted

opal structures reveal a large PL signal in comparison to the silicon implanted in flat

silica matrix. Also we observed different PL signal intensity for the different silica opal

feature size i.e. ball diameter. In Fig. 6.2 we represent the comparative PL signals for 3

samples namely the silicon implanted in smooth silica and in two of the opal matrices

with feature size of 245 nm i.e. green opal and 300 nm i.e. red opal. This PL data were

obtained with Ar laser at k=514 nm (100 mW average power) and a SPEX spectrometer

with a cooled photomultiplier tube.

The PL signal enhancement in the case of opaline samples may be attributed to

the difference between the flat and opaline matrix's material i.e. the difference in the

preparation of silica matrix and hence thereby to the surface states. The matrix geometry

also plays an important role in optimum coupling of the Ar pump light to the Si

nanoclusters as can be grasped by the magnitude difference in the green and red
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implanted samples. This kind of luminescence itself may be very useful for the optical

devices based on the silicon technology. Also through the use of the three dimensional

photonic crystal in this case silica opal and changing the feature size of the same one may

tune the PL efficiency of the silicon nanostructures embedded within the opal matrix.

This kind of tunable PL intensity with respect to the opaline matrix feature size would

pave the way for the silicon based optoelectronic transmitters.

The nonlinear behavior of the silicon implanted opal matrix might be used as a

built in limiter for the laser with the silicon nanocrystals, which would reduce the output

light from the silicon implanted opal structure for high intensities. Embedding different

organic dye molecules within the opal may achieve the lasing action in the opal structure.

In these kind of application the opal matrix is being used as a highly reflecting mirror in

three dimensions and one can have a microcavity formed within the opaline matrix.

6.4 Erbium Implanted Opal Matrix Aplifier

In the past few years, erbium doped fiber amplifiers (EDFA) [48] have enabled

fiber optic transmission systems to increase in capacity by more than a hundred-fold.

EDFAs open the way to all-optical amplification of the transmission signals. With the

recent explosive growth in optical transmission networks, both undersea and terrestrial,

the fiber amplifying fabric has become an essential building block these networks. The

attenuation of the signal in the optical fiber link can be counteracted by employing the

EDFA along the link. As we discussed in chapter four, with the erbium ion implanted

silica opal of appropriate feature size, one would have a photoluminescence signal at
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Fig. 6.3 	 Comparative photoluminescence data for Si nanoclusters in different silica

matrices
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1.54 pm , which is where the third window of the fiber optic communication is located.

With this kind of amplifying medium, one would be able to have an all optical amplifier

with a thin opal matrix implanted with Er ions of thickness of few microns rather than

using few meters of length of erbium doped silica glass fiber.

During late 1980's or so the optical fiber communication links in the second

optical fiber communication window are laid in different parts of the world. This window

was much useful due to zero or low dispersion offered by the silica fibers when operating

in the 1.3 p m wavelength region. It is an estimate that about 50m million kilometers of

standard fiber whose performance is optimized for 1.3 p m operation. Clearly these

communication links would benefit from the optical amplifiers operating near 1.3 p m. It

has been long known that the praseodymium (Pr) doped silica fibers [56] are the

amplifying medium for the 1.3 p m communication window. One may also test the gain

possibility of praseodymium (Pr) doped opal in the future work on the amplifiers in the

1.3 μm region.

6.5 Pulse Compression & Dispersion Management

Basic idea of optical pulse compression is borrowed from chirp radar where

chirped pulses at microwave frequencies are compressed by passing them through

dispersive delay line i.e. a combination of frequency chirp followed by the dispersion

compensator. Periodic structures such as diffraction gratings are historically used for

achieving pulse compression. Photonic crystals such as silica opal which comprises of

three dimensional diffraction gratings have the potential of being used for the same

purpose.
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Recent studies [57] have paved the way of achieving the nonlinear optical pulse

compression by incorporating the silicon nanoclusters in the silica opal through the ion

implantation. Unlike Bragg fibers, here the researchers employed a transverse scheme,

namely, the dispersion is achieved via transverse Bragg reflections while maintaining

non-resonance conditions along the direction of propagation of the optical pulse.

Dispersion management is an important aspect of today's optical fiber

communication systems whereby the ill effects of pulse spreading by the communication

grade fiber are undone by the use of a Dispersion Compensator. The problem of

dispersion compensation has become more relevant with the deployment of fiber

amplifiers whereby loss of the fiber is no more a limiting factor for the optical link

length. In some sense, optical amplifiers solve the loss problem but worsen the dispersion

problem since, in contrast to the electronic regenerators , an optical amplifier does not

restore the amplified signal to its original state. As a result the dispersion induced

degradation of the transmitted signal accumulates over multiple amplifiers. Usually the

dispersion management is undertaken by using a Dispersion Compensating Fiber (DCF)

which offers opposite signed dispersion as offered by the communication grade fiber. The

typical attenuation offered by the DCF is on the order of 0.5 dB/km at 1.3 ,u m. The

nonlinear dispersion properties of the photonic crystals can be used in this direction. In a

broader perspective one may be able to use the above mentioned Er implanted opal

structure for both purposes of achieving optical gain and tackling the dispersion

management problem.
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6.6	 Optical Logic Gates

Switching is an essential operation not only in telecommunications but also in

digital computers and signal processing etc. One of the fundamental building blocks for

switches is the logic gate. The current rapid deployment of all optical networks has

created a need of high capacity repeaters and terminals for processing optical signals and

therefore a need of high speed optical logic devices [58].

Optical logic operations are preferred over the electronic logic due to following

basic reasons:

a. Speeds exceeding 50 GB/s can be achieved with optical logic which is beyond the

rates at which electronic systems can be expected to operate.

b. By processing optically we avoid the bottlenecks caused by the conversion between

optics and electronics. This is of particular interest to the all optical networks where

the information enters and leaves the node in optical format.

The simple thin film containing the Si nanoclusters studied during the dissertation

may be employed for the purpose of realizing an all optical inverter, OR logical gate.

In high intensity region the optical absorption coefficient can be modelled as

where in our case typically fl is negative.

Consider an all optical inverter as shown in Fig. 6.3. The input laser beam is split

by the beam splitter into the splitting ratio of 95:5 into II and 12 i.e. into a strong and

weak beam respectively. The strong and the weak beams are focussed onto the same spot

on the laser ablated Si nanocluster film. When the strong beam is on, the transmission

through the nonlinear film increases and hence one will get high transmission of the weak



Fig. 6.4	 All optical inverter based on Si nanocluster film

beam and vice versa for the other case. The obvious advantage of the collecting the

reflected beams to get the NOT of the above operation gives an added advantage to the

all optical logical devices. One can also get the logical OR functionality by making 2

strong beams and one weak beam interacting in the nanocluster film.
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CHAPTER 7

CONCLUSIONS

During the course of this dissertation, two different nano systems are studied with respect

to their linear and nonlinear optical properties. One was Laser Ablated silicon

nanoclusters passivated under the influence of Ar, H2 and He. The other class of materials

consisted of ion implanted species of Si, Ge and erbium within silica opal — a three

dimensional photonic crystal.

Our investigations into the laser ablated films containing silicon nanoclusters

grown under the passivation of Ar, H2 and He, revealed that the nonlinear refractive

index change An for these films was about 1/10 th to 1/2 of the values of the non

passivated Si nanocluster films. The maximum value of the An was —0.2 for the He

passivated film at A = 640 nm. We observed nonlinear refractive index variation with

respect to the different passivating environment, which we believe is a step towards

understanding the role of surface states in the nonlinear process.

The remaining of the dissertation was devoted to semiconductor implanted

photonic crystals. We chose to implant the silicon and germanium nanoclusters into the

silica opal owing to their wide spread use in the electronic world. Through the

experimentation on the silicon implanted opal structure, we found that, we have achieved

very large nonlinear index change at intensities which are about three orders of

magnitude lower than those used for non-opaline structures. The large nonlinear

refraction was correlated with transverse scattering perpendicular to the direction of wave

propagation.
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Lastly we investigated the Er implanted silica opal structure and found that the

implantation dose of 10 14 cm-2 at 2.7 MeV had left the opal matrix undamaged. Large

nonlinear transmission obtained through the Er implanted photonic crystal is once again

correlated to the transverse Bragg planes inside the photonic crystal.

These nano materials and structures open the door for novel optoelectronic

devices. The 'nano with nano' concept obtained through incorporating nano

semiconductor clusters within periodic silica structures may hold a true solution to low

intensity nonlinear all optical switches and filters.



APPENDIX

Z-SCAN THEORY [16]

In this section we formulate the theoretical background for analyzing the Z-Scan

technique.

In general, for the case of cubic nonlinearity, the index of refraction n is expressed in

terms of nonlinear indices n2 (esu) or y (m2/W) through

where no is the linear index of refraction, E is the peak electric field (cgs), and I denotes

the irradiance (MKS) of the laser beam within the sample. (n 2 and y are related through

the conversion formula n 2 (esu) = (cno / 40π)γ(m2 / W) where c(m / s) is the speed of

light in vacuum.) Assuming a TEM00 Gaussian beam of light waist radius w 0 travelling in

+ z direction, we can write E as

curvature of the wavefront at z , zo = kw 0 2 / 2 is the diffraction length, i.e., the

Rayleigh Distance of the beam, k =271 1 2 is the wave number, and 2 is the laser

wavelength, all in free space. E0 (t) is the radiation electric field at the focus and contains

the temporal envelope of the laser pulse. The co-ordinate axis used for the Z-scan

theoretical analysis are depicted in Fig. A.1. The e -*" ) term contains all the radially

uniform phase variations. Since we are only concerned with calculating the radial phase
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variations ΔØ(r), the slowly varying envelope approximations (SVEA) [16] applies, and

all other phase changes that are uniform in r are ignored.

Fig. A.1	 Co-ordinate axis configuration for Z-scan analysis

If the sample length is small enough that changes in beam diameter within the

sample due to either diffraction or nonlinear refraction can be neglected, then we may

regard this medium as "thin," in which case self refraction is regarded as "external self

action". For linear refraction, this implies that L <<zo , and for nonlinear refraction,

L <<zo /ΔØ (0) [59]. In most of the Z-Scan experiments the second critical condition is

automatically met since AO is small. Also it is found that first criterion can be made less

restrictive to L <zo [16]. This assumption simplifies the problem considerably, and the

amplitude -ii and 0 of the electric field as a function of z' are governed by SVEA by a

pair of simple equations:
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where z' is the propagation depth in the sample and a(I) , in general includes linear and

nonlinear absorption terms. Note that z' should not be confused with the sample position

z . In the case of cubic nonlinearity, Eq. (A.3) and (A.4) are solved to get the phase shift

AO at the exit surface of the sample which follows the radial variation of the incident

irradiance at a given position of the sample z . Thus,

where A00 (t), is on axis phase shift at the focus, and is defined as

with L the sample length and a the linear absorption coefficient. Here Δno = γI0(t) with

/0 (t) being on axis irradiance at the focus (i.e. z = 0 ). We ignore Fresenel reflection

losses, for example /0 (t) is the irradiance within the sample.

The complex electric field exiting the sample E e now contains the nonlinear phase

distortion
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From the Huygen's principle, one can obtain the far field pattern of the beam at the

aperture plane through a zeroth-order Henkel transformation of Ee . We follow a method

called "Gaussian Decomposition" [59] which is more suitable for Gaussian beams. In this

method, we decompose the complex electric field at the exit plane of the sample into a

summation of Gaussian beams through a Taylor series expansion of the nonlinear phase

in Eq. (A.8). That is

Each Gaussian beam now propagates to the aperture plane where it will contribute to

reconstruct the beam. We write the resultant electric field pattern at the aperture as

Defining d 1 as the propagation distance in free space from the sample to the aperture

plane and g =1+ d 1 / R(z) the remaining parameters in Eq. (A.10) are expressed as
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The expression given by Eq.(A.10) is a general case derived by Weaire whereby the

collimated beam of R = 0 is considered for which g =1.

The Transmitted power through the aperture is obtained by spatially integrating

Ea (r,t) up to the aperture radius ra , giving

where co is the permittivity of vacuum. Including the pulse temporal variation, the

normalized Z-Scan transmittance T(z) can be calculated as

is the instantaneous input power within the sample and

is the aperture linear transmittance, wa denoting the beam radius

at the aperture in the linear regime.

For the cubic nonlinearity and a small phase change the on-axis Z-Scan

transmittance can be obtained by letting r = 0 in Eq. (A.10). Also due to small phase

only two terms in Eq. (A..10) are retained. One arrives at the

normalized Z-Scan transmittance as given by
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The far field condition d >> z o , can be used to further simplify Eq. (A.13) to get the

geometry independent normalized transmittance as

The Z-Scan theory described above can be extended to include the nonlinear

absorption effects in the nonlinear sample. To develop this theory, we analyze two-

photon absorption (2PA), in semiconductors with Eg <2hω< 2Eg , where Eg is the

bandgap energy and a is the optical frequency. The third order nonlinear susceptibility is

considered to be a complex quantity, given by,

The imaginary part is related to the 2PA coefficient through

and real Dart is related to y through

We neglect the free-carrier effects as we are concerned with low excitation regime. In

view of this approximation we write:
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This yields the irradiance distribution and phase shift of the beam at the exit surface of

the sample as

and

Combining Eq. (A.19) and (A.20), we obtain the complex

field at the exit surface of the sample as

Above equation reduces to Eq. (A.8) in the limit of no two photon absorption. A zeroth

order Henkel transform of Eq. (A.21) gives the field distribution at the aperture which

then can be used in Eq.(A.11) and (A.12) to yield the transmittance. For |q| <1, following

a binomial series expansion in powers of q, Eq.(A.21) can be expressed as an infinite

sum of Gaussian beams similar to the purely refractive case described earlier as follows:

where Gaussian spatial profiles are implicit in q(z, r, t) and E(z,r,t). The complex field

pattern can be obtained as we derived in Eq.(A.10). The result is represented by Eq.

(A.10) if we substitute the (iΔØ0  (z, t))m/m! terms in the sum by
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with 10 =1. Note that the coupling factor  β/ 2kγ is the ration of the imaginary to real

part of the third order nonlinear susceptibility. x (3)

As evident from Eq. (A.23), the absorptive and refractive contributions in the far

field beam profile and hence open and close aperture Z-Scan transmittance are coupled.

When the aperture is removed, however Z-Scan transmittance is only a function of

nonlinear absorption.. The total transmitted fluence in the open aperture case can be

calculated by spatially integrating Eq. (A.19) without having to include the free space

propagation process. Integrating Eq. (A.19) at z over r , we obtain the transmitted power

P(z,t) as follows:

temporally Gaussian pulse above equation can be integrated to give the normalized

energy transmittance

For 1q 0 1 < 1, this transmittance can be expressed in terms of peak irradiance in a

summation form more suitable for numerical evaluation:
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Thus once the open aperture Z-Scan is performed, nonlinear absorption coefficient fi can

be determined. Usually a simplified form of the above Eq. (A.26) is used by considering

only first two terms of the summation and is given by
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