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ABSTRACT

ANALYSIS OF DISCRETE DYNAMICAL SYSTEM MODELS
FOR COMPETING SPECIES

by
Jerry J. Chen

A discrete version of the Lotka-Volterra (LV) differential equations for competing

population species is analyzed in detail, much the same way as the discrete form

of the logistic equation has been investigated as a source of bifurcation phenomena

and chaotic dynamics. Another related system, namely, the Exponentially Self-

Regulating (ESR) population model, is also thoroughly analyzed. It is found that in

addition to logistic dynamics — ranging from the very simple to manifestly chaotic

regimes in terms of the governing parameters — the discrete LV model and the ESR

model exhibit their own brands of bifurcation and chaos that are essentially two-

dimensional in nature. In particular, it is shown that both systems exhibit "twisted

horseshoe" dynamics associated to a strange invariant set for certain parameter

ranges.
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CHAPTER 1

INTRODUCTION

In the past two decades, an increasing amount of attention has been addressed to the

study of dynamical system models arising from biological systems. This is part of the

development of a rich and diversified field that lies somewhere between mathematics

and the sciences. Mathematical biology is one of the major branches of application

in the study of the field of dynamical systems ([34]). The increasing use of mathe-

matics in biology is inevitable as biological research becomes more dependent on

quantitative analysis. The complexity of the biological sciences makes interdisci-

plinary involvement essential. The best designed models must show how a process

works and then predict what may follow.

In the study of population biology, an accurate prediction of the evolution of

quantities associated to any specific species is crucial and necessary ([22]). There

are three principal types of interaction between two species, namely, prey-predator,

competition and mutualism. It is known that in a prey-predator case, the growth rate

of one species is reduced due to the existence of the other whereas in competition, the

growth rates of both species are decreased while in mutualism, their growth rates are

enhanced ([34]). Models may be used to explore the consequences of particular and

restrictive assumptions which represent only part of the full picture ([52]). In fisheries

biology, it is well-known that the simplest discrete-time population models have the

potential for exhibiting bifurcations to periodic solutions with respect to parametric

variation ([53] and [54]) or much more complicated behavior ([53] and [55]), and

that there are serious concerns regarding the problem of parameter identification.

Useful models should have dynamical behavior that is not too greatly affected by

the small margin of error that is unavoidable in the measurement of environmental

factors. From the biological point of view, a sound mathematical population model

for the interaction of species should at least provide fairly accurate qualitative and

1



quantitative predictions concerning possible extinction of one or more species and

long term (steady state) behavior of the species. There are, of course, several key

biological parameters involved in the formulation of such models, ranging from the

carrying capacity to the presence of the prey and predator. Typically, the dynamical

evolution of the species (both qualitative and quantitative) varies significantly with

these key parameters. To distinguish and categorize each possible type of dynamic

behavior is the primary goal in studying population biology.

The logistic equation (map), as a population model for a single species obtained

from a difference equation analog of the logistic differential equation on the line (see

[9], [10], [13] and [14]), has come to be regarded as perhaps the simplest and best

known paradigm of a dynamical system exhibiting an unexpectedly wide range of

complicated phenomena ([1], [3], [5] and [8]). Its parameter-dependent dynamics

have been extensively studied within the context of iterated one-dimensional maps

and is now almost completely understood ([2]-[4], [6], [9], [11], [14] and [15]). In

this report, an analogous discretization of the Lotka-Volterra differential equations

in the plane for a pair of species in a population ([1], [7] and [10])is investigated

along with an extensive, but by no means complete, analysis of the associated

dynamics of the iterations. It shall be shown that the dynamics of the discrete

Lotka-Volterra equations not only subsumes that of the one-dimensional logistic

map, but also includes very complicated and quite new behavior that is intrinsically

two-dimensional in nature. It is hoped that the results of the investigation will

stimulate further study of the dynamics of the Lotka-Volterra map and related maps

that appear to be useful for modeling the interaction of two or more species in a

population.

As is well known ([1]), the motion of the logistic differential equation is simple

and easy to analyze — which is in dramatic contrast with the discrete dynamics of

the logistic map. The Lotka-Volterra differential equations in the plane also have
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relatively simple dynamics in the phase plane ([1], [12] and [18]). For one thing,

no chaotic motion is possible since the system is autonomous and two-dimensional,

although it should be noted that chaotic regimes do occur in the three-dimensional

version of these equations ([7]). One of the main purposes here is to demonstrate

that the dynamical differences between the Lotka-Volterra differential equations and

the Lotka-Volterra map in the plane are even more striking than in the logistic type.

The Hénon map ([5])is a two-parameter family of maps of the plane which

possesses many of the dynamics and phenomena that we shall show occurring for the

Lotka-Volterra map. Two obvious similarities are the horseshoe and the "strange

repelling set" . To simplify the LV map, the number of parameters can be reduced

via topological conjugacies. It shall be shown that by examining a four-parameter

family of maps, the full range of dynamics of the LV map, including chaotic regimes,

can be characterized.

A horseshoe map is a simplified version of a map first studied by Smale ([17]

and [51]), and, due to the shape of the image of the domain of the map, is called

a Smale horseshoe ([42]). The LV map actually contains a new type of chaotic

regime related to the Smale horseshoe for certain ranges of the key parameters. This

horseshoe is orientation-reversing — exhibiting the standard stretching and folding

of the horseshoe plus a twist. It appears that this twisted horseshoe behavior has

not yet been described in the literature. There is a strange (Cantor-like) invariant

set associated with the twisted horseshoe.

In this thesis, a related system, that we call the Exponentially Self-Regulating

(ESR) population model, is studied in much the same way as the Lotka-Volterra

model. The ESR model includes a self-regulating mechanism (such as cannibalism)

that limits the sizes of the populations. It has been employed with considerable

success in modeling actual populations and has been studied rather extensively ([49]

and [50]). However, there are still many dynamical features of the ESR model that
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are not completely understood. A careful analysis of the two-dimensional (competing

pair of species in a population) ESR model dynamics is then undertaken together

with numerical and statistical investigations. It is shown, for example, that the

dynamics of the discrete ESR equations not only exhibit the same basic features

as the two-dimensional LV map, but also includes very strange behavior that has

not been observed before in discrete population models. This very unusual behavior

corresponds to a strange attractor generated by twisted horseshoe dynamics. As

with the analysis of the LV map, the investigation of the dynamics of the ESR model

is accomplished by a combination of analytical and numerical techniques.

Although the dynamics of the discrete Lotka-Volterra, discrete Exponentially

Self-Regulating and related models have been studied in the literature (see, eg.

Nisbet and Onyiah [49], Costantino et al. [50], Franke and Yakubu [57-60] and

Namkoong and Selgrade [61]), those studies have been restricted to the analysis of

dynamics near fixed points, steady state phenomena and numerical simulation. Our

work represents the first rigorous systematic study of the chaotic regimes that can

arise in such models. In particular, we are apparently the first to identify and prove

the existence of the twisted horseshoe regime. In our opinion, twisted horseshoe

dynamics is the primary mechanism for chaotic dynamics and strange invariant sets

— including strange attractors — in such low-dimensional competing species models.

Unfortunately the data available in the literature on the evolution of real populations

is not well-suited to making comparisons with predictions of the models we studied.

The gathering of such data, preferably in collaboration with a population biologist,

is a priority for our future research.

The dissertation is thereafter organized as follows: In Chapter 2, the first

proposed model, the LV model, is formulated with all needed dynamical preliminaries

followed by the analytical and numerical results. For the second proposed model, an

analogous combination of analytical and numerical results will be described for the
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ESR model in Chapter 3. Our analysis of both models is based on the modern

theory of discrete dynamical systems while the numerical simulations are made

using standard mathematical software such as Matlab. The dissertation concludes

in Chapter 4 with a discussion of both analytical and numerical results obtained for

the two models, a comparison of the dynamics of the two models, some concluding

remarks, and the identification of some possible directions for future research.



CHAPTER 2

THE LOTKA-VOLTERRA MODEL

This chapter is organized as follows: In Section 2.1, we describe first the continuous

form of the Lotka-Volterra dynamical system in the plane and then the associated

discrete version (the Lotka-Volterra map) that is the subject of our investigation.

Also, we discuss some normal forms of the planar Lotka-Volterra dynamical system

that can be obtained using topological conjugacies (coordinate transformations).

Next, in Section 2.2, we introduce some basic dynamical system notation for the

Lotka-Volterra map. Then, we analyze several basic features of the map including

the location and types of its fixed points in Section 2.3. We follow this in Section 2.4

with a brief description of a special uncoupled case of the Lotka-Volterra equations

whose dynamics are essentially determined by those of the logistic map. In Section

2.5, we describe some aspects of the dynamics of a simple coupled quadratic case

of the Lotka-Volterra equations. In Section 2.6, we prove that for certain ranges

of the Lotka-Volterra map parameters, there is a chaotic regime generated by an

orientation-reversing horseshoe map that we call a twisted horseshoe. Moreover, it

is shown that the compact invariant set corresponding to the twisted horseshoe is

essentially locally repelling — indicating that this population state is unstable.

2.1 The Lotka-Volterra Map

We start with the Lotka-Volterra system of differential equations in the plane which

we take to be of the form ([4 [12] and [18])

where the parameters A and are both positive numbers and the parameters (or

coefficients) are all nonnegative numbers and a+b+c+d> 0 in order to eliminate

6
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the possibility of (2.1) being linear. In analogy with the association of the logistic map

to the logistic differential equation, we define the (two-dimensional) Lotka-Volterra

(LV) map to be the real analytic function F : R2 → R2 defined by

where the six parameters are subject to the same conditions as in (2.1). Note that

F depends on the parameters H := (A, a, b, c, d) and should therefore perhaps be

denoted by Fri ; in some cases in the sequel we shall explicitly denote this parameter

dependence, but in most cases we shall simply maintain this slight and essentially

harmless abuse of notation.

In certain cases the LV map can be recast in simpler (normal) forms that

actually reduce the number of parameters. For example, when both a and d are

positive, (2.2) is topologically conjugate to

with A, it > 0 and a, 8 > 0 via the conjugacy So : R2 →  R2 defined by

On the other hand, with A, > 0, if a = d = 0 and b, c > 0, (2.2) is conjugate to

via the topological conjugacy φ(x, y) := (cx, by). We remark here that we have

made obvious definitions or re-definitions of the parameters in the above normal

forms. There are clearly other normal forms for other parameter choices, but we

shall not consider them in the sequel. In particular, we shall investigate only (2.3)

and (2.4), with comparatively little space being devoted to (2.4).
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2.2 Dynamical Preliminaries

In what follows, we shall assume that the reader is familiar with the basic concepts

of smooth discrete dynamical systems such as are to be found in [1, 5, 8, 16 and 17].

Nevertheless, a few preliminary remarks are in order since the iterations of F (under

composition of functions) do not quite satisfy the requirements of such dynamical

systems. The smooth (actually analytic) semigroup action Z+ x R2 →  R2 defined

by

does constitute a smooth semidynamical system on R 2 , where Z+ is the additive

semigroup of nonnegative integers, R2 := {(x, y) : x, y E R} is the Euclidean plane,

Fn is the n-fold composition of F with itself and X := (x, y) is a point in R2 which

will be treated as a row or column vector whenever contextually appropriate.

As the inverse of the LV map, F-1 is not globally defined, and not even locally

definable at singular points of F. There is of course no canonical way to extend

the above semigroup action to a group action of the integers Z on R2 . The crux of

the problem is that the inverse (relation) F -1 of F is a multivalued function such

that it has four values almost everywhere (in the sense of Lebesgue measure on R 2 )

on the image of F, but may have as few as one value or as many as a continuum

of values. In APPENDIX A, we derive the equation that will allow us to solve the

four possible pairs of inverse values of (2.2) by using Matlab. However, the map F is

regular (=nonsingular) almost everywhere so that it follows from the inverse function

theorem that its inverse is locally defined as an analytic map almost everywhere on

the image of F. Consequently, we may define a sort of pseudo-action Z x R2 —> R2

via

with the understanding we have to choose a particular local analytic branch of

at each regular value of F. Perhaps one should say that the iterations of F
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and the iterations of F -1 , when defined (almost everywhere) upon selection of an

analytic local branch, comprise a smooth pseudo-dynamical system. But this is

rather awkward, and if we are careful and keep in mind the above caveats — and the

modification they require in such notions as orbits and unstable manifold — it shall

do no harm to abuse notation in the sequel by referring to the above pseudo-action

as a smooth discrete dynamical system.

2.3 Analytical Results of the LV Model

In this section, we shall formulate the analytical results of the location and types of

the fixed points of F.

2.3.1 Location of Fixed Points

Let us first determine those points where F does not have a local inverse; namely,

the singular or critical points. For this, we locate the zeros of the determinant of the

derivative of F, F', by computing

which leads to the following conic of singular points:

Next we find the location and types of the fixed points of F. These points

X = (x, y) are solutions of the equations

which yield the following four fixed points:
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wherever the formulas make sense. For example, if a = 0, the second point in (2.6)

does not exist unless A = 1, in which case every point on the x-axis is fixed, if d = 0,

the third point does not exist unless /.4 = 1, in which case every point on the y-axis

is fixed and if ad — be = 0, the fourth point does not exist unless the ranks of the

matrices

are equal, in which case it corresponds to a whole line of fixed points satisfying

2.3.2 Stability Analysis

Here we find the types of fixed points of F. The derivative at X0 is

so X0 is a sink if A, μ < 1, a source if A, > 1, a saddle if one of A, μ  is less than one

and the other greater than one, and is degenerate if one or both of A, p is equal to

one. If the fixed point X 1 exists, we compute that

with eigenvalues 2 — A and a [A(a — c) + c]. So, for example, this is a (orientation-

reversing) source if A > 3 and μ > aA[A(a — c) + c] -1 . At the fixed point X2 , we find

that

dμ[μ(d — b) + b] -1 , then X2 is a (orientation-preserving) saddle. Finally, we compute

that the eigenvalues of F'(X3) are
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where x3 and y3 are the x- and y-coordinates of X3, respectively, A := 1— 2ax 3 — by3

and B := 1— cx 3 — 2dy3 . Note that the eigenvalues are both real whenever x 3y3 > 0.

It is useful to observe that both the x-axis and the y-axis are invariant manifolds

for the discrete dynamical system of F. This is obvious for the forward iterations

since if X has the second (first) coordinate equal to zero, then the same is true of

F(X). For inverse iterations, that are in general multivalued when defined, it is

easy to verify that at least one determination of F -1 maps the x- and y-axes into

themselves. Observe also that the restriction of F to either the x-axis or y-axis is

either a simple linear map or is conjugate to the logistic map.

2.4 A Simple Uncoupled Case of the LV Model

Here we shall briefly consider the special uncoupled case of the LV map (2.3) with

a = = 0; namely,

There is really nothing new in the dynamics of (2.7) since this case is essentially

determined by the logistic map owing to the fact that F is just a product of logistic

maps; i.e.,

Nevertheless, we shall point out a few of the features of the iterations of this map.

Keeping in mind the underlying theme of the LV map as a population model,

it makes sense to restrict F to the first quadrant of the plane or more precisely to the

square r := [0, 1] x [0, 1]. If both A, it < 1, it is clear that (0, 0), the only fixed point

of the restricted map F1 12, is a global attractor for the discrete dynamical system.

Recall the period-doubling bifurcation value sequence for the logistic map (see [28]

and [41]):
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Fix (51 < < 62 and let A increase up to 60„) . Then the iterations of ƒλ x ft, experience

a period-doubling cascade culminating at (p, 8„„) ) in three invariant aperiodic sets of

the form

where S is the usual aperiodic attractor for the logistic map fA obtained as the limit

of its period-doubling cascade and {y(1), y (2) I

}

 is the attracting two-cycle of ft,. The

set E2 is an aperiodic attractor of F1 /2, while the aperiodic invariant sets, E0 and

E1 , are attractors for the restriction of F to these sets and repel nearby points off

their respective horizontal lines.

Of course, one encounters chaotic dynamics for (2.7) in certain ranges of the

parameters. For example, when A, p > 4 the motion is chaotic on a strange repeller

R C 12 which is the Cartesian product of a pair of two-component Cantor sets. In this

case the set of periodic points of FI R , Per(FI R), is dense in R and contains periodic

points of arbitrarily large periods. FIR has a dense orbit and it exhibits sensitive

dependence on initial conditions signaled by two positive Lyapunov exponents. Chaos

also occurs in less extreme forms; for example, there exist parameter values 0 < A <

L and 6,0 < p < 4 such that (2.7) has chaotic orbits having only a single nonzero

Lyapunov exponent.

When A = the map (2.7) enjoys the additional property of being symmetric

with respect to the reflection (x, y) 1-4 (y, x); i.e., this map is a conjugacy of F with

itself. In this case F has, in addition to the x- and y-axes, the diagonal line y = x

as an invariant manifold and F restricted to the diagonal is also a logistic map.

The above examples illustrate the following basic fact concerning (2.7):

Although it subsumes the logistic map, its behavior is actually completely determined



13

by the one-dimensional dynamics of the logistic map iterations. Consequently, all of

its dynamical properties can be easily derived from those of the logistic map.

2.5 A Simple Coupled Case of the LV Model

In this section we shall investigate the dynamics of the simple, fully quadratic,

coupled special case of the LV map given by (2.4); namely,

As we shall see, some interesting elements of the dynamical behavior of (2.8) are also

essentially logistic in nature.

We begin with some general observations. It follows from the discussion in

Section 2.3.1 that the fixed points of the map defined by (2.8) are

The orbit structure for points in the unit square / 2 is particularly simple when

A, 11 < 1.

Lemma 1 If 0 < A, μ  < 1, the unit square 1 2 is invariant with respect to the map

F defined by (2.8). Moreover, (0, 0) is a global (exponential) attractor for F1 12.

Proof: We first verify that F(1 2 ) c /2 . But this is easily accomplished because

0 <= x, y <= 1 implies that 0 <= λx(1 — y) <= A < 1 and 0 <= μy(1- x) <= < 1 owing

to the hypothesis.

As for the remainder of the theorem, we first note that (0, 0) is the only fixed

point of F in /2 . A simple computation shows that F'(0) has eigenvalues A and

so (0, 0) is a sink. It is obvious from the invariance of the x- and y-axes that positive

semiorbits starting on the coordinate axes in / 2 converge exponentially to (0, 0) with
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exponents A and p, respectively. The exponential convergence to (0, 0) of iterations

of F beginning in the interior of / 2 can be immediately inferred from the following

inequality

Thus the proof is complete. 0

If A = p, we have a special symmetric case of (2.8) where logistic dynamics

is the dominant feature. In this case, F is symmetric with respect to the reflection

(x, y) —+ (y, x) in the sense that it is conjugate to itself via this linear isomorphism.

As a consequence, the diagonal y = x is an additional invariant manifold for F, and

the restriction of F to the diagonal is the logistic map f : R R defined by

Thus as A is varied, F experiences the complete range of one-dimensional dynamics

exhibited by the logistic map, including chaos for A > 800 . In fact, in the symmetric

case, it is possible to characterize the global dynamics of (2.8) and in doing so

establish that the only really interesting behavior derives from that of the logistic

map. A key ingredient is the following simple result.

Lemma 2 Define the lines

Proof: This inclusion follows immediately from the fact that

and this completes the proof. 0
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The next result illustrates how one may obtain a global description of the

dynamics in the symmetric case. A simple proof can easily be fashioned using the

above remarks and Lemma 2.

Lemma 3 If A = > 1 in (2.8), the dynamical system of iterations of F have the

following properties:

(i) F has precisely two fixed points: a source at (0, 0) and a fixed point at (y) (1,1)

that bifurcates from a saddle into a source at A = 3.

(ii) F has precisely three linear, codimension-one, invariant manifolds: the x-axis,

the y-axis and the diagonal y = x. F restricted to both the x- and y-axes is

an expanding linear map of the form x Ax, while the restriction of F to the

diagonal is the logistic map f (x) = Ax(1 — x).

(iii) The invariant diagonal is a global repelling set; in fact, d(Fn(X), 4 7) =

λnd(X, Lσ ) for all X C R2 and n C Z+ , where d denotes the distance between

the point and the set.

(iv) The dynamics of F exhibit logistic period-doubling bifurcation and chaos along

the diagonal as A is increased.

Proof: Property (i) is a direct result from the analysis shown in Section 2.3.1.

The three manifolds in Property (ii) are in fact linear and invariant by virtue of

their respective locations. Property (iii) is easily understood since for A > 1 and as

n co, d(Fn (X), L 0.) = An d(X , L0.) ∞ . Along the diagonal, y = x, we obtain

the logistic map f : R R. defined by

and it exhibits logistic periodic-doubling bifurcation and chaos as A increases. This

completes the proof. 0
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By way of contrast, let us consider the highly asymmetrical case where A = 4

and = 3/2. This case does not exhibit any chaotic behavior in the square / 2 . To

see this, we first note that the only fixed points are the origin and

both of which lie in /2 . It is easy to see that X0 = (0, 0) is a source and that X3 is a

saddle point with eigenvalues 1 ± 2. The stable and unstable manifolds of F'(X3 ),

respectively, are the lines

which are local approximations of the stable manifold W 8 and the unstable manifold

Wu of F at X3 , respectively. It is also useful to note that F is singular along the line

and that F(x, y) = (u, v) has at most a pair of solutions given by

wherever these formulas make sense and have real solutions.

Horizontal and vertical lines through X3 subdivide /2 into the following

rectangles:

Observe that there is a closed disk A centered at X3 and contained in the interior

of /2 of sufficiently small radius such that
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Moreover, it is easy to see that the following properties obtain:

Using the above properties, it is easy to see the following facts regarding the

dynamics of F: The stable manifold W S is a smooth open manifold and its closure

Ws is contained in I2 and satisfies Ws\Ws  = 1(0, 0), (1, 1)1. The unstable manifold

Wu is a smooth open manifold that exits / 2 at points along the rightmost edge of I1

and the uppermost edge of /3 and then never returns to 12 . For points not on W 5

or Wu; i.e., for X C I2\(Ws U Wu), the positive semiorbits all eventually exit / 2

through its upper or right edge. As a matter of fact, the same type of analysis can

be applied to prove the following more general result.

Lemma 4 Let the LV map (2.8) be such that A, p, > 1 and (A — 1) (μ —1) < 4. Then

the map F has the following dynamical properties on 12 :

(i) F has precisely two fixed points: a source at X 0 = (0, 0) and a saddle point

X3 = (, ql) in /2 and F has no other periodic points in 1 2 .

(ii) The stable manifold Ws for the point X3 is a smooth, open 1-dimensional

submanifold of R2 contained in int 12 and its closure contains the additional

points X = (0, 0) and X = (1,1).

(iii) The unstable manifold Wu for the point X3 is a smooth, open one-dimensional

submanifold of R2 that is unbounded and exits 1.2 at points on the upper and

right edges and then never returns to 12 .

(iv) The iterations of any point in I2\(WsUWu) under F eventually exit .12 through

its upper or right edge.
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The rather tame dynamical behavior described in Lemma 4 is illustrated in Fig. 2.1

for the case A = 4, u = 1.5.

Figure 2.1 Dynamics of (2.8) for A = 4„u = 1.5. The fixed points are (0, 0)
and (0.3, 0.75) in two red 'x'-marks with eigenvalues (4, 1.5) and (2.2247, —0.2247),
respectively.

We conclude this section with a conjecture about the dynamics of F in the case

where the inequality on (λ— 1)(μ — 1) in Lemma 4 is reversed. It appears that the

only complicated behavior in this case is of the one-dimensional logistic variety. In

particular, it should be possible to prove the following result using graph transform

techniques ([16]).

Conjecture 5 If the LV map (0.8) is such that A, p, > 1 and (A — Wit — 1) > 4,

then it has the following dynamical properties on 1 2 :

(i) The only fixed points of F are a source at the origin and a source at ( 11; 1 ,A-A1).
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(ii) There exists a one-dimensional, F-invariant C 1 -manifold of the form M =

{(x, {(x, φ(x)) :φ 	 : R → R} passing through the fixed points of F such that  φ

is monotone increasing and the restriction F|m  is a unimodular map exhibiting

the same range of motion as the logistic map. In particular, F lu has chaotic

dynamics when A + p, is sufficiently large.

(iii) The iterations of any point X C I2 \M eventually leave I 2 and never return.

Part (i) of this conjecture is trivial as shown in Section 2.3.1. The tricky part to prove

is (ii), but if this can be done, it should be relatively easy to verify (iii). Figure 2.2

supports this conjecture for the case A = 4, μ  = 3.5.

Figure 2.2 Dynamics of (2.8) for A = 4, = 3.5. The fixed points are (0, 0) and
(0.7143, 0.75) in two red 'x'-marks with eigenvalues (4, 3.5) and (3.7386, —1.7386),
respectively.
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2.6 Additional Chaotic Regimes of the LV Model

Here we examine some interesting dynamical regimes for (2.3), which represents a

fairly general form of the LV map that we repeat for convenience as

where the parameters a, 0, A and p are all positive numbers. First we summarize

some basic features of this map and its dynamics. The number and types of the fixed

points of F depends on the parameters. We illustrate this with a few cases and leave

the remaining cases for future studies.

(Cl) A 0 1, p 0 1 and a/3 0 1: In this case, F has four fixed points; namely, Xo =

The fixed point X0 is a sink if A, p < 1, a source if A, p > 1 and a saddle if

A < 1 < p or p < 1 < A.

(C2) A = 1, p 0 1 and a/3 0 1: The fixed points of F are X0 = X1, X2 and

X3 = -1 1,--75( E--4)(--a, 1), and X2 is a saddle if one of -,; la - (a - 1)pl and

12 - |2-μ| is less than one and the other is greater than one.

(C3) A 0 1, p 0 1,a18 = 1 and (μ-1/μ) - NT, i) 0 0: Then X0, X1 and X2 are the

only fixed points of F and X1 is a source if both 12 - Al and 10 - (0 - 1) AI

are greater than one.

of F and every point on the line x + ay = y is fixed. Moreover, all points on

this line are degenerate fixed points.

As usual, both the x-axis and y-axis are F-invariant and, as we shall demonstrate in

the sequel, F may have an additional distinguished invariant set.

When A, p < 1, the positive semiorbits of F starting in 12 all converge to 0 for

certain ranges of the parameters a and /9. But it is useful to note that, unlike the
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case described in Lemma 1, some of the iterations may belong to the complement

of /2 . The restriction of F to the x- and y-axes are both logistic maps, so typical

logistic map bifurcation and chaos occur along the coordinate axes. It is easy to see

that when A = it/ and a = f3, the diagonal y = x is an additional F-invariant set. The

restriction of F to the diagonal in this case is the logistic map x 1—> λx[1 — (a + 1)x],

so it follows that F can have a one-dimensional chaotic regime distinct from those

that may occur along the coordinate axes. Thus we see that the map (2.11) can

exhibit one-dimensional chaotic behavior of the logistic type just like those of the

more specialized LV maps that we considered in the preceding sections. It is natural

to ask if (2.11) is capable of dynamical behavior that is chaotic in a form different

from that of the logistic map and that is intrinsically two-dimensional? We shall

devote the remainder of this section proving that this question has an affirmative

answer.

In order to prove the existence of fully two-dimensional chaotic regimes, it is

convenient to first introduce some notation and discuss some properties of (2.11).

We shall assume in the remainder of this section that the parameters in (2.11) are

restricted to the following ranges:

Then according to (Cl), F has four fixed points:

In this case, where the parameter ranges are defined in (2.12), X o is a source, X1

is an orientation-reversing saddle with its unstable manifold along the x-axis, X2 is

an orientation-reversing source and X3 is an orientation-reversing saddle. We note

here that it is easy to verify that the x-component of X 1 is greater than that of X3.
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Observe that the restriction of F to the x-axis is the logistic map

with fixed points at x 0 and x = -)V and the restriction of F to the y-axis is the

logistic map

with fixed points at y = 0 and y =(μ-1)/μ. We note that the line

which passes through the points (0,1) and (1,1-0), is mapped onto the x-axis by F.

Our intention is to define a trapezoidal region in / 2 that is bounded below

by the x-axis and above by the line L 1 defined in (2.13), has its remaining two

sides vertical, contains the fixed point X3 in its interior, and on which F acts like a

(orientation-reversing) horseshoe map. We denote this trapezoidal region by R o and

define it as follows:

Owing to (2.12), it is easy to verify that X3 is in the interior of Ro . Of course, X 1 lies

on the bottom edge of Ro strictly between its endpoints (vertices) which we denote
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We compute that

Hence the F-images of the bottom edge and top edge of R o are two disjoint closed

intervals in the interior of the bottom edge of R o , with the image of the top edge of

Ro lying to the left of the image of the bottom edge of R o (see Figure 2.3).

Figure 2.3 The action of F' and F -1 on Ro . A l is marked by 'x'.
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The image of the left edge of Ro is the parabolic curve defined as

and image of the right edge of R0 is the parabolic curve defined as

An example of these parabolas is shown in Figure 2.3. It can be shown that for

the case under consideration (as defined in (2.12)) both of the parabolas F(ei) and

F(er ) attain their maximum heights at points in /2 above the line L 1 . Moreover, the

maximum height of F(ei) is greater than the maximum height of F(er ) and these two

parabolic segments have precisely one intersection point — a point that lies above

the line L 1 . In APPENDIX B, we derive the location of the intersection point of the

parabolas F(ei) and F(er ) by solving two equations with two unknowns and yield

the solution

Consequently, we conclude that F(R0) is obtained from R0 by squeezing (essen-

tially in the horizontal direction), stretching (approximately in the vertical direction),

applying a single twist and then folding over so that it intersects R o in two essentially

vertical curvilinear rectangular regions as illustrated in Figure 2.3 and 2.4. Hence,

it is quite natural to refer to the restriction of F to R0 as a twisted horseshoe.

In preparation for the proof of our main theorem that relies on making what is

by now a rather obvious connection with the standard horseshoe map of Smale (see

[5], [8] and [17]) and its symbolic dynamics, we need to introduce some additional

notation. Define
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Figure 2.4 The action of F± 2 and F' on Ro . A2 is marked by 'x'.

for all positive integers n. Observe that A, has 2' essentially vertical curvilinear

rectangular components in Λo for all n >= 0, and the width of these components goes

to zero as n ∞  at an approximate rate of (A — 2)". Now define A 10 to be the

leftmost component of Λ 1 in Λ0 and A ll to be the rightmost component of A 1 in

Λ0. Continuing in this fashion, we inductively define Λ1( so) where (s) is a binary

sequence of length k — 1, to be the leftmost component of Ak in Λ1(s) and Λ1(s1) to

be the rightmost component of Λk in Λ1(s ). In this manner we uniquely define the

region Λ1(s) for all finite binary strings (s).

We need to exercise some care in extending the definition (2.15) to negative

integers, if we are to realize our goal of completing the analog between our twisted
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horseshoe and the standard horseshoe. Toward this end, we inductively define the

for all positive integers n >= 2. Here F -1(Λ0 ) is the preimage of Λo under F and not,

strictly speaking, the image of o under F -1 . The reason for this is that the relation

F -1 is not well-defined as a function. F-n(Λo) is then unambiguously defined via

induction as the preimage of F-(n-1)(Λo) under F. It is easy to verify that A-1

has two disjoint components in o , each of which is a nearly horizontal, curvilinear

rectangle, where the uppermost component shares its upper edge (in the line L 1 ) with

o and the lowermost component shares its lower edge (along the x-axis) with o . In

fact, it is straightforward to show that A, has 2n essentially horizontal curvilinear

components in o for each n >= 1 such that the uppermost component shares its

upper edge with o , the lowermost component shares its lower edge with o and the

thickness (or height) of these components goes to zero as n→ co at an approximate

rate of μ-n (see Figure 2.3 and 2.4). Define A_10 to be the uppermost component

of A_ 1 in o and A_ 11 to be the lowermost component of A_ 1 in o . Proceeding in

this fashion, we inductively define A_ 1 ( s) for all binary strings (s) as follows: Let (s)

be a binary string of length k - 1. Define Λ-1(so) to be the uppermost component of

Λ-k in Λ-1(s) and A_1( s 1) to be the lowermost component of k in A-4s).

Now we have assembled just about all of the information needed to prove our

main theorem. The set defined by
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is obviously a compact, F-invariant set contained in Λ0, and it is straightforward to

show that this set is homeomorphic with

where K is the standard 2-component Cantor set. Observe that the fixed points

X1 and X3 both belong to A and that for any point X in the bottom edge or top

edge of Λ0, respectively, Fn (X) E bottom edge of Λ0 for all n >= 0 or n >= 1, and

Fn (X) -4 X1 as n ∞ .

Theorem 6 Let the parameters in the map (2.11) satisfy (2.12) and let A be as

defined in (2.17). Then the following properties obtain:

(1) A is a compact, F-invariant subset contained in R2 .

(ii) The restriction of F to A, FA , is topologically conjugate to the shift map

(iii) The forward iterations under F of points in

eventually leave Λ0 and never return, while the forward iterations under F of

points in

converge to A as n ∞ .

Proof: Property (i) is obviously a direct consequence of the definition (2.17). In

order to prove (ii), one simply uses the itineraries of the points in A in what by now

is a quite standard and routine argument. For example, the method of proof is very

nicely outlined by Devaney[5] for the Hénon map in a series of exercises. We shall
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describe a few of the details. It helps to observe that owing to the definition of A,

although F is not invertible on o , the restriction FA has a smooth inverse F-1Λ. The

desired conjugacy φ : Λ → 2^ Z, the itinerary map, is defined as follows:

where A10 and A 11 are as defined above after the formula (2.15). It is then a straight-

forward exercise to verify that isis a homeomorphism. Whence the fact that yo is

a topological conjugacy between FA and the shift map is a trivial consequence of

its very definition. It is worth noting that under this conjugacy the fixed point X3

corresponds to the element of 2Z having a constant value of zero and X 1 corresponds

to the function having a constant value of one.

To prove (iii), we first note that it is an immediate consequence of the

construction of the sets A_ 1 (3) that any point in

must leave o and never return after finitely many forward iterations. Therefore it

remains to show that if

then Fn (X)→  Λ as n 	 ∞ . Of course, it is an immediate consequence of the

definition of the sets A_ 1 (3) that Fn(X) E o for all nonnegative integers n. The

result is obviously true if X E A, so we may assume that

Clearly, Fn(X) E A for all n >= 0. Suppose that the distance from X to A is d > 0.

Then as Fn (X) E o for all n >= 0, and since it follows from our construction that F

contracts o horizontally by a scale factor not exceeding (A — 2), we readily infer that
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the distance from Fn (X) to A can be no greater than (A — 2)nd. Hence Fn(X)→  Λ

as n -4 oo, and the proof is complete. ❑

We note that by interchanging A and p and a and /3 in (2.12), it is possible to

create twisted horseshoe behavior for F in a trapezoidal region bounded by a line

segment on the positive y-axis instead of the positive x-axis. The parameter ranges

for twisted horseshoe dynamics are by no means maximal; such behavior can also be

observed for parameter values lying outside of the intervals specified in (2.12). For

example, the parameter values used in drawing Figures 2.3 and 2.4 are as follows:

a = 0.1055, 0 = 0.8055, A = 2.5 and p = 11.25.

Theorem 6 shows that the basin of attraction of A has (Lebesgue) measure zero

and that almost all nearby points are repelled by A. This propensity for points near

A to exit Λ0 after finitely many forward iterations by F is illustrated in Tables 2.1

- 2.3. In practical terms, twisted horseshoe dynamics is not likely to be observed

for competing species whose behavior can actually be modeled by a Lotka-Volterra

map — it would require a fortuitous initial positioning of the two species to produce

this type of chaos. More probably, if the species start near A, they will at least for

a reasonable period of time evince the dynamics that appears to be of the chaotic,

twisted horseshoe type. Such short-time correlation with this type of chaotic regime

may provide at least a partial verification of the discrete Lotka-Volterra model.

Here we list three tables showing iterations of points in six different locations.

If the initial point is located near the x-axis or the saddle, X3 , more iterations are

generated than for points are relatively far from both X3 and the x-axis.
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i x(i) y(i) i x(i) y(i)
0.500000000 0.000001000 0.550675210 0.467542035

1 0.624999868 0.000006719 1 0.550673978 0.467543058
2 0.585936475 0.000037534 2 0.550674294 0.467543918
3 0.606531505 0.000222950 3 0.550674050 0.467538921
4 0.596591930 0.001282225 4 0.550674868 0.467561238
5 0.601473238 0.007474517 5 0.550671318 0.467462702
6 0.598072208 0.042720128 6 0.550686967 0.467897419
7 0.594215866 0.228541703 7 0.550617932 0.465977907
8 0.566990357 0.752861151 8 0.550922697 0.474420345
9 0.501195083 -1.775008454 9 0.549581140 0.436646287

10 0.555561512 0.592744572
11 0.530427820 -0.268397953

Table 2.1 Left: Iterations of point near x-axis. Right: Iterations of point near the
saddle, X3.

i x(i) y(i) i x(i) y(i)
0.610000000 0.500000000 0.570000000 0.300000000

1 0.514306250 0.048628125 1 0.567648750 0.812919375
2 0.617892007 0.293828377 2 0.491850976 -2.470709909
3 0.542368765 0.689077680
4 0.521939821 -0.976424348

Table 2.2 Left: Iterations of point in Ro n F1(Ro). Right: Iterations of point not
in Ro n F1(Ro ).

i x(i) y(i) i x(i) y(i)
0.590000000 0.300000000 0.560000000 0.300000000

1 0.558066250 0.758548125 1 0.571690000 0.840105000
2 0.504920098 -1.775604145 2 0.485477608 -2.841037323

Table 2.3 Left: Iterations of point in R 0 n Fl (R0 ) n F2 (R0 ). Right: Iterations of
point not in Ro n F 1 (R0 ) 11 F2 (R0 ).



CHAPTER 3

THE EXPONENTIALLY SELF-REGULATING MODEL

This chapter is organized as follows: In Section 3.1, we discuss some properties of

the one-dimensional Exponentially Self-Regulating (hereafter, ESR) model. Next,

in Section 3.2, we focus our discussion on the two-dimensional ESR model. We

describe first the continuous form of the ESR dynamical system in the plane and

then the associated discrete version (the ESR map) that is the subject of our investi-

gation. Also, we discuss some normal forms of the planar ESR dynamical system that

can be obtained using topological conjugacies (coordinate transformations). Then,

in Section 3.3, we analyze several basic features of the two-dimensional ESR map

including the location and types of its fixed points. As in the case of the LV map,

we follow this in Section 3.4 with a brief description of a special uncoupled case of

the ESR equations whose dynamics are determined primarily by those of the one-

dimensional ESR map. We depict some aspects of the dynamics of a simple coupled

case of the ESR equations in Section 3.5. We then prove in Section 3.6 that for

certain ranges of the ESR map parameters, there is a chaotic regime generated by an

orientation-reversing horseshoe map that we dub a twisted horseshoe with a bending

tail. Furthermore, it is shown that the compact invariant set corresponding to the

twisted horseshoe with bending tail is almost globally attracting — indicating that

this population state is stable.

3.1 One-dimensional ESR Model

The discrete version of the one-dimensional ESR model for a single population is

31
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where a, b > 0. This actually has just one fundamental parameter, for the scaling

yn = bxn converts (3.1) (via a conjugacy) to

It is straightforward to prove that (3.2) exhibits essentially the same qualitative

parameter-dependent dynamical behavior as the logistic model. We illustrate this

briefly in the following few paragraphs.

The iterations in the difference equation (3.2) are generated by the function

Here, we take a > 0 so that a population that is initially positive remains positive.

In order to solve for the location of the fixed points of (3.3), we set

and obtain two fixed points:

Thus y = 0 is the only realistic fixed point unless a > 1. If 0 < a <= 1, it is easy to

show that y = 0 is a global attractor on the interval [0, oo), and so the dynamics are

rather uninteresting. Therefore we shall assume that a > 1.

Before examining the types of the fixed points, we compute the derivative of

Now we determine the stability at the two possible fixed points.

The derivative at yo is

so yo is a repelling fixed point since a > 1.
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The derivative at m_ is

so m_ is an attracting fixed point if 1 < a < e 2 , a repelling fixed point if e 2 < a, and is

degenerate if a = e 2 . Figure 3.1 shows the first 200 forward iterations of ga (y) with

an initial value, y o = 2. It is apparent that the one-dimensional ESR map exhibits

dynamics similar to the logistic map, including the period-doubling route to chaos.

Figure 3.1 Dynamics of (3.3) for various values of a with y o = 2. We have in
(A), steady state with a = 5; in (B), period-doubling bifurcation with a = 10; in
(C), period four orbit with a = 13; in (D), period six orbit with a = 16; in (E),
randomness with a = 19; in (F), period three orbit with a = 23; and in (G), period
five orbit with a = 24.

The following table, showing the various dynamics of g a (y) with 1 < a < 100, a E Z+,

makes it easier to predict the dynamics of the one-dimensional ESR map.
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Type of Dynamics a
Steady State 2-7

Period-Doubling 8-12
Period Three Orbit 23, 66, 81, 97
Period Four Orbit 13, 14, 29, 37, 51
Period Five Orbit 24
Period Six Orbit 16

Randomness
(Chaos)

15, 17-22, 25-28, 30-36, 38-50
52-65, 67-80, 82-96, 98, 99

Table 3.1 Various dynamics of (3.3) with y o = 2 and 1 < a < 100, a E .

Next, we will discuss the one-hump dynamics associated with (3.3) for y >= 0. It

should be noticed that the one-dimensional ESR equation has an exponential factor,

e-y, that plays a dominant role in the dynamics for large values of y. The graph

of the one-dimensional ESR map has one intersection point with the x-axis at the

origin and looks like a concave-down parabola with an endless tail approaching the

x-axis as x oo. In Figure 3.2, periodic points are dotted in red, except in (E) that

shows the one-hump dynamics which has the maximum height of a/e at y = 1. We

provide more figures with other values of a for the one-hump dynamics in Figure 3.3.

3.2 Two-dimensional ESR Model

It is not difficult to show the two-dimensional system of differential equations

exhibits phase plane behavior similar to the two-dimensional Lotka-Volterra differ-

ential equations. Here, A, it > 0 and the parameters a, b, c, d >= 0 and a + b + c + d > 0

so as to avoid the trivial case where (3.5) is linear. In analogy with the association

of the logistic map to the logistic differential equation, we define the (n-dimensional)

Exponentially Self-Regulating (ESR) map to be the real analytic function G
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Figure 3.2 Periodicity of (3.3) for various values of a. In (A), the steady state with
a = 5; in (B), period-doubling bifurcation with a = 10; in (C), period four orbit with
a = 13; in (D), period six orbit with a = 16; in (E), randomness with a = 19; in (F),
period three orbit with a = 23; and in (G), period five orbit with a = 24.

where A(x) is an n x n real matrix function with entries of the form
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Figure 3.3 One-hump dynamics with various values of a. In (A), a = 27; in (B),
a = 33; in (C), a = 44; in (D), a = 59; in (E), a = 74; in (F), a = 89; and in (G),
a = 99.

for all n >= 0, where xn+1 = G(xn ) for all n > 0. Several studies have shown that

discrete ESR models can accurately predict the dynamics of some actual populations

(see, e.g. [50D.

We shall confine our attention to discrete ESR models for a pair of species and,

in the interest of concreteness, further restrict our investigation to diagonal ESR

maps of the form
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where the six parameters are subject to the same conditions as in (3.5). Note that G

depends on the parameters := (A, it, a, b, c, d) and should therefore be denoted by

G. In some cases in the sequel we shall explicitly denote this parameter dependence,

but in most cases, we shall simply maintain our slight and essentially harmless abuse

of notation.

In certain cases the ESR map can be recast in simpler (normal) forms that

actually reduce the number of parameters. For example, when both a and d are

positive, (3.6) is topologically conjugate to

with A, ti > 0 and α, β > =0 via the conjugacy : R2 -4 R2 defined by

On the other hand, with A, ti > 0, if a = d = 0 and b, c > 0, (3.6) is conjugate to

via the topological conjugacy 0(x, y) := (cx, by). We remark here that we have

made obvious definitions or re-definitions of the parameters in the above normal

forms. There are clearly other normal forms for other parameter choices, but we

shall not consider them in the sequel. In particular, we shall investigate only (3.7)

and (3.8), with comparatively little space being devoted to (3.8).

3.3 Analytical Results of the ESR Model

In this section, we shall express concisely the analytical results concerning the

location and types of the fixed points of G as in the case of the LV model.

3.3.1 Location of Fixed Points

First, let us find those points where G does not have a local inverse; namely, the

singular or critical points. So, we locate the zeros of the determinant of the derivative



of G, G', by computing

which leads to the following conic of singular points:

Then we determine the location and types of the fixed points of G. These

points X = (x, y) are solutions of the equations

which give the following four fixed points:

wherever the formulas make sense. We are only interested in the dynamics in the first

quadrant of the plane. Note that X 1 and X2 are in the first quadrant only if A > 1

and > 1, respectively, and X3 is in the first quadrant only if ad — bc, d In A — b In p

and a in — c In A all have the same sign.

3.3.2 Stability Analysis

Here we determine the types of fixed points of G. The derivative at Xo is

so Xo is a source when A, g > 1. If the fixed point X1 exists, we compute that

with eigenvalues 1— In A and 0- 5. So, for example, this is a (orientation-reversing)

source if A > e2 and p > A. At the fixed point X2 , we find that
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with eigenvalues Ap- aand 1 — In p. For example, if p > e2 and A < p ia, then X2 is

a (orientation-reversing) saddle. Finally, we compute that the eigenvalues of G'(X3 )

We observe that both the x-axis and the y-axis are invariant manifolds for

the discrete dynamical system of G. This is apparent for the forward iterations

since if X has the first (second) coordinate equal to zero, then the same is true of

G(X). Observe that the restriction of G to either the x-axis or y-axis is basically

the one-dimensional ESR map.

3.4 A Simple Uncoupled Case of the ESR Model

In this section we shall analyze some features of the special uncoupled case of the

ESR map (3.7) with a = = 0; namely,

As the coordinates of G depend only on x and y, respectively, the dynamics is

essentially one-dimensional. Note that G is just a product of one-dimensional ESR

maps; i.e.,

A few of the features of the iterations of this map are summarized below.

Since the ESR map is used as a population model, it makes sense to limit G to

the first quadrant, Q1 , of the plane. When both A, .p > 1, it is obvious that the fixed



When A, u > e 2 , all of the fixed points are repellers for the discrete dynamical system.

In Figure 3.4, we illustrate the dynamics for A = 30 and μ, = 40.

Figure 3.4 An uncoupled case of G with A = 30 and μ = 40 and initial values of
xo = 5 and yo = 2. In (A) and (C), we plot the first 200 forward iterations for x i

and yi , respectively; in (B) and (D), we plot the one-hump dynamics for x i and yi ,
respectively.

When A = p, the map (3.11) also has the property of being symmetric with

respect to the reflection (x, y) H (y, x); i.e., this map is a conjugacy of G with itself.

In addition to the x- and y-axes, G has the diagonal line y = x as an invariant

manifold and G restricted to the diagonal is a one-dimensional ESR map.

A basic fact can be drawn concerning (3.11): Although it subsumes the one-

dimensional ESR map, its behavior is indeed totally determined by the dynamics of
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the one-dimensional ESR map iterations. Accordingly, all of its dynamical properties

can be readily obtained from those of the one-dimensional ESR map.

3.5 A Simple Coupled Case of the ESR Model

In this section we shall look into the dynamics of a simple, fully nonlinear, coupled

special case of the ESR map given by (3.8); namely,

As we shall see, some interesting elements of the dynamical behavior of (3.12) are

also basically logistic-like.

It is useful to begin with some observations. From the discussion in Section

3.3.1, the fixed points of the map defined by (3.12) are as follows: If both A, > 1,

there are just two fixed points in Q 1 given by

if 0 < λ,μ < 1, X0 is the only fixed point in Q1 ; if A = 1, p 0 1, the whole x-axis

consists of fixed points; and if both A, u = 1, both the x- and y-axes are comprised

of fixed points.

When A, < 1, the orbit structure for points in the first quadrant Q 1 is very

simple.

Lemma 7 If A, p < 1, the first quadrant Q 1 is invariant with respect to the map G

defined by (3.12). Furthermore, (0, 0) is a global attractor for G|Q1 .

Proof: First we verify that G(Q 1 ) C Q1 . This is effortlessly done because 0 <= x,

0 < y implies that 0 <= Axe and 0 < /Lye' owing to the given hypothesis.

Then we note that (0, 0) is the only fixed point of G in Q1 . A simple calculation

shows that G'(0) has eigenvalues A and p, so (0, 0) is a sink. It is apparent from the
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invariance of the x- and y-axes that positive semiorbits starting on the coordinate

axes in Q 1 converge exponentially to (0, 0) with exponents A and ii, respectively. The

exponential convergence to (0, 0) of iterations of G starting in the interior of Q 1 can

be directly inferred from the following inequality for x 2 + y2 > 0

So the proof is complete. 0

We have a special symmetric case of (3.12) where logistic-like dynamics is the

governing feature with the condition λ=μ . In this instance, G is symmetric with

respect to the reflection (x, y) →  (y, x) in the sense that it is conjugate to itself via

this isomorphism. The diagonal y = x is an added invariant manifold for G, and the

restriction of G to the diagonal is the one-dimensional ESR map g : R -4 R defined

by

Therefore as A is changed, G undergoes the complete range of one-dimensional

dynamics exhibited by the one-dimensional ESR map, including chaos and multiple

periodic orbits. It is not difficult to verify in the symmetric case that the only

interesting dynamical behavior results from one-dimensional ESR iterations.

A global description of the dynamics for the symmetric case is given in the

following:

Lemma 8 In (3.12), if λ=μ  > 1, the dynamical system of iterations of G have the

subsequent properties:

(1) G has exactly two fixed points: a source at (0, 0) and a fixed point at (ln A, In A)

that bifurcates from a saddle into a source at A = e2.

(ii) G has exactly three linear, codimension-one, invariant manifolds: the x-axis,

the y-axis and the diagonal y = x. G restricted to both the x- and y-axes is
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an expanding linear map of the form x -4 Ax, while the restriction of G to the

diagonal is the one-dimensional ESR map gλ(x) = λxe^-x.

(iii) The dynamics of G exhibits chaos and multiple period orbits of a one-

dimensional ESR map along the diagonal as A is increased.

Proof: Property (i) is an immediate result from the analysis shown in Section 3.3.1.

The three manifolds in Property (ii) are in fact the only G-invariant, one-dimensional

linear manifolds in the first quadrant as can readily be seen by tracking the iterations

of points not on these lines. Along the diagonal, y = x, we have the one-dimensional

ESR map g : R R. defined by

and it exhibits chaos and multiple period orbits of the one-dimensional ESR map as

A increases. This ends the proof. ❑

The proof of the following result can readily be obtained by making the rather

obvious modification of the proof of Lemma 4 of Section 2.5.

Lemma 9 If the ESR map (3.12) satisfies A, /1 > 1 and 0 < In A In < 4, then the

following properties obtain:

(1) G has exactly two fixed points: a source at X 0 = (0, 0) and a saddle point X3 =

(ln in A) in Q 1 and G has no other periodic points in Qi.

(ii) The stable manifold Vs for the point X3 is a smooth, open 1-dimensional

submanifold of R2 contained in int Q1 , but not in any compact subset of Q1 ,

and its closure contains the additional point X = (0, 0).

(iii) The unstable manifold Vu for the point X3 is a smooth, open one-dimensional

submanifold of R2 that is unbounded, and eventually exits any square of the

form [0, a] x [0, a], a > max{ln A, In µ}, at points on the upper and right edges

and then never returns to the square.
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(iv) The iterations of any point in Q1\(Vs U Vu) under G eventually depart from

any square of the form [0, a] x [0, a], a > 0, through its upper or right edge.

The rather tame dynamical behavior described in Lemma 9 is portrayed in Figure

3.5 for the case A = 2„u = 12.

Figure 3.5 Dynamics of (3.12) for A = 2, u = 12. The fixed points are (0, 0) and
(2.4849, 0.6931) in two red 'x'-marks with eigenvalues (2, 12) and (2.3124, —0.3124),
respectively.

We end this section with a conjecture about the dynamics of G when

(lnλ) (lnμ) > 4 in Lemma 9. It seems that the only intricate behavior in this

case is of the variety of the one-dimensional ESR map.

Conjecture 10 Suppose the ESR map (3.12) satisfies A, ,u, > 1 and (lnλ)(lnμ) > 4.

The dynamical properties are then as follows:

(i) The only fixed points of G are a source at the origin and a source at (ln μ, ln λ).

(ii) There exists a one-dimensional, G-invariant C1-manifold of the form N =

{(x,Ψ(x)) : 	 : R 	 R} passing through the fixed points of G such that



45

is increased monotonously and the restriction G| N is a map that is conjugate

to a one-dimensional ESR map. In particular, GI N has chaotic dynamics when

(A + p,) is large enough.

(iii) The iterations of any point X C Q 1 \N converge to the x-axis or the y-axis.

Part (i) of this conjecture is trivial (cf. the conjecture in Section 3.3.1). The critical

part to prove is (ii), but if this can be done, it should be relatively simple to verify

(iii). Figure 3.6 substantiates this conjecture for the case A = 20, u = 30.

Figure 3.6 Dynamics of (3.12) for A = 20, a = 30. The fixed points are (0, 0) and
(3.4012, 2.9957) in two red 'x'-marks with eigenvalues (20, 30) and (4.192, —2.192),
respectively.

3.6 A Particular Case of the ESR Model

Now we shall study the ESR map (3.7) more carefully, with an eye toward finding

two-dimensional chaotic regimes similar to the twisted horseshoe dynamics exhibited
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by the LV maps. The map to be studied is

where the parameters a, /3, A and are all positive numbers. First we summarize

some basic features of this map and its dynamics. The number and types of the fixed

points of G depends on the parameters.

As expected, both the x-axis and y-axis are G-invariant and, as we shall

describe in the sequel, G may have an added distinguished invariant set.

When 0 < A, < 1, the positive semiorbits of G starting in Q 1 all converge

to (0, 0) for all positive values of the parameters a and 0. The restriction of G to

the x- and y-axes are both one-dimensional ESR maps, so typical one-dimensional

ESR map chaos and multiple period orbits occur along the coordinate axes as A

and it are varied. It is simple to see that when A = and a = 0, the diagonal

y = x is an added G-invariant set. The restriction of G to the diagonal in this

case is the one-dimensional ESR map x H λxe-(a+1)x, so it follows that G can

have a one-dimensional chaotic regime distinct from those that may occur along

the coordinate axes. So we see that the map (3.14) can show chaotic behaviors

of the one-dimensional ESR type just like those of the simpler ESR maps that we

considered in the Sections 3.4 and 3.5. Can it possibly be that (3.14) is capable of

dynamical behavior that is chaotic in some kind of two-dimensional form essentially

different from that of the one-dimensional ESR map? We shall attempt to answer

this question in the affirmative in the sequel. As a matter of fact, we shall confirm

the existence of a strange attractor for certain parameter ranges.

Our intention now is to define a rectangular region in Q 1 that is bounded below

by the x-axis, has its remaining two sides vertical, contains the fixed point X3 in its

interior, and on which G acts like a (orientation-reversing) horseshoe map with a
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bending tail. We denote this rectangular region by

It is easy to verify that X3 is in the interior of R1. Of course, X 1 lies on the bottom

edge of R1 strictly between its endpoints (vertices).

The G-image of the bottom edge of R 1 is a small closed interval contained in

the interior of the bottom edge, while the G-image of the top edge is a small, almost

straight curve segment in the interior of R 1 that lies near and is almost parallel to

the bottom edge of R 1 (see Figure 3.7).

Hence the G-images of the bottom edge and top edge of R 1 are two disjoint

closed intervals in the interior of the bottom edge of R 1 , with the image of the top

edge of R1 lying to the left of the image of the bottom edge of R1 (see Figure 3.7).

The left and right edge image curves of R 1 exhibit the same orientation-

reversing one-hump dynamics as the one-dimensional ESR map, and an example

of this is shown in Figure 3.7. It can be shown that for the case under consideration,

both of the image curves attain their maximum heights at points in Q 1 below the top

edge of R1 . Moreover, these two curve segments have precisely one intersection point

— a point that lies below the top edge of R 1 . Consequently, we conclude that G(R1 )

is obtained from R1 by squeezing (essentially in the horizontal direction), stretching

(approximately in the vertical direction), applying a single twist and then folding

over so that it intersects R 1 in two approximately vertical curvilinear rectangular

regions as illustrated in Figure 3.7 and 3.8. Note that the bending tail atop the

x-axis is a result of having a larger coefficient value of the exponential term of y in

the second component of G. Hence, it is quite natural to refer to the restriction of

G to R 1 as a twisted horseshoe with a bending tail.

Theorem 11 For the range of parameters



Figure 3.7 The action of G 1 on R 1 showing the twisted horseshoe with bending tail.

the ESR map

exhibits chaotic dynamics on a compact strange attractor A contained in the rectangle

A is the closure of the unstable manifold of the fixed point

CI A is conjugate to a subshift and the basin of attraction of A in the first quadrant

is the whole first quadrant minus the y-axis.
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Figure 3.8 The action of G2 and G1 on R 1 .

Proof: First we define the rectangle

and set C equal to the closure of R 1 \R 1 . Let e l and er denote the left and right sides

of the rectangle R, , respectively. It is easy to show that for the specified parameter

ranges G maps R, as shown in Figure 3.7. We call the mapping in R 1 a twisted

horseshoe with bending tail and note that we can assume that G is a diffeomorphism

on G(R 1 ) with inverse obtained by choosing the proper branch of G -1 on R1 .

Obviously the set defined as
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is a G-invariant set contained in R 1 , and it is certainly compact. It is clear from

the construction of A that it is just the closure of the unstable manifold of the fixed

point X3. We note also that A is a local attractor in the first quadrant inasmuch

as it follows from its construction that the forward iterations under G of any point

in R 1 converge to A. In fact, a closer inspection of G shows that forward iterations

of any point in the first quadrant, except those on the y-axis, eventually wind up in

R1 . Therefore we conclude that the basin of attraction of A in the first quadrant is

To see that the dynamics of G|Λ are chaotic, we observe that it follows from

the construction of A that it contains points of transverse intersection of the stable

and unstable manifolds of the saddle point X3. Consequently, by a theorem of Smale

([17], [51]), G|Λ is conjugate to a subshift (i.e., for some positive integer m, Gm is

conjugate to the shift map on the space of doubly-infinite binary sequences). Hence

A is a strange attractor (which is homeomorphic to the product of an interval and a

two-component Cantor set) and G|Λ is chaotic. Thus the proof is complete. 0

By interchanging A and p, and a and β in (3.14), we note that it is feasible to

create a twisted horseshoe with bending tail behavior for G in a rectangular region

bounded by a line segment on the positive y-axis instead of the positive x-axis. The

parameter values used in drawing Figures 3.7 and 3.8 are as followed: a = 0.0043,

= 0.048, A = 2.91 and it = 29.3.

Here we provide a couple more figures showing forward iterations of randomly

selected points. In Figure 3.9, all 1000 points are selected randomly within R1,

and their first three forward iterations are shown with different colors. In Figure

3.10, a random point, G°, is chosen within R1 and its first 500 forward iterations,

G 1 , G2 , . , Gn, are plotted as shown.



51

Figure 3.9 Randomly selected 1000 points' iterations within R 1 : first 3 forward

iterations.
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Figure 3.10 The track of one random point: first 500 iterations of G.



CHAPTER 4

DISCUSSION, CONCLUSIONS AND FUTURE WORK

In Section 4.1, we will discuss the similarities and differences between the LV model

studied in Section 2.6 and the ESR model investigated in Section 3.6. Then, in

Section 4.2, we draw conclusions on each of the models discussed. In the end, we

describe some possible directions for future work in Section 4.3.

4.1 Discussion

In Chapters 2 and 3, we have investigated the LV model and the ESR model, respec-

tively, using a combination of analytical and numerical techniques. It is now our

intention to look into their similarities and differences and to discuss some inferences

that can be made from a careful comparison of these two discrete population models.

4.1.1 Similarities between the LV and ESR Models

Within physically reasonable parameter values, both (2.11) and (3.14) may have

as many as four distinct fixed points, and by choosing the ranges of parameter

values correctly, we can force the fourth fixed point (lying in the interior of the first

quadrant) to be a saddle point. For certain parameter ranges, the dynamics of the

LV map is essentially that of the logistic map and the dynamics of the ESR map

is essentially that of the one-dimensional ESR map, and the dynamics of both one-

dimensional maps are qualitatively the same. If we expand the right hand side of

(3.14) in a Taylor series, we find that

53
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Then if we discard the higher order terms in the expansions above, we see that

which is just the same as the right hand side of (2.11). Thus we see that the LV

map approximates the ESR map up to quadratic terms. If we take more terms in

the expansion of (4.1), for example,

it is likely that the dynamical behavior of the map on the right should more closely

approximate that of the ESR map, but more work needs to be done to confirm this.

4.1.2 Differences between the LV and ESR Models

An obvious difference between the LV and ESR models is that one of the species in

the LV map may vanish (become extinct) over time, while in the ESR model neither

of the two species can become extinct, although each of the populations can become

extremely small. This difference can be linked with the lack of higher order terms in

the LV map described above.

Another important dissimilarity in the dynamics of these two maps concerns

the nature of their chaotic regimes: The twisted horseshoe dynamics of the LV map is

associated with a Cantor-like invariant set that repels all nearby points except those

in a subset of measure zero, while the chaotic dynamics of the ESR map essentially

occurs on a Cantor-like strange attractor that attracts all points in the first quadrant

except those on one coordinate axis.

4.1.3 Comparison of LV and ESR Models

At the end of Chapter 2, we showed three tables of forward iterations of points for

the LV map, where six types of locations of initial points were chosen randomly. It



has been shown that the invariant set corresponding to chaotic LV dynamics,

repels almost all nearby points. Here, we present a similar compilation of iterations

for the ESR map which shows the attracting property for randomly selected initial

points in the first quadrant. Figure 4.1 illustrates four types of locations of

the randomly selected initial points, G° , and their first 1000 forward iterations,

G 1 , G2 , ... , Gm, generated by (3.14).

Figure 4.1 Four types of locations of randomly selected initial points and their first
1000 forward iterations. In (A), the initial point is one unit to the right of X3; in
(B), the initial point is one unit to the top of X3 ; in (C), the initial point is one unit
to the right and the top of X3; and in (D), the initial point is at (0.01, 0.01). The
location of X3 is (0.9702, 0.2191).

It is harder to visualize the orbit of the forward iterations when the initial

point is just one unit away from the saddle point than it is when the initial point
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is chosen to be close to the saddle point X3. To show this, in Figure 4.2, an initial

point is chosen to be close to X3 and within R 1 and its first 2000 forward iterations

are shown.

Figure 4.2 An initial point, (0.969, 0.28), is chosen randomly within R 1 and its first
2000 forward iterations are depicted: in (A), iteration #1 — 500; in (B), iteration
#501 — 1000; in (C), iteration #1001 — 1500; and in (D), iteration #1501 — 2000.

Now, it is easier to see the orbit of the forward iterations that exhibits the same

structure of dynamics for each of the 500 forward iterations as shown in (A)-(D) of

Figure 4.2.

4.2 Conclusions

In this dissertation we have introduced and proven the existence of twisted horseshoe

and twisted horseshoe with bending tail chaos for the discrete LV and ESR models,
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respectively. This has provided new insights into the surprising complexity of

competing species dynamics. Our analysis has been extensive but not exhaustive,

so there remain many open problems for future research. We should note that the

seeming lack of relevant field data in the literature has prevented us from making

the kinds of comparisons that would demonstrate the applicability of our models to

actual populations. This is something that we plan to work on in the future.

We have undertaken quite an extensive analysis of the dynamics of both the

two-dimensional discrete LV and ESR population models. Therefore, we are now in

a position to make some significant concluding remarks about each of these models.

In Chapters 2 and 3, we introduced and analyzed discrete versions of the

Lotka-Volterra (LV) and Exponentially Self-Regulating (ESR) differential equations

as dynamical models for the interaction of two competing species. These choices of

models are quite plausible for two-species systems: they certainly contain enough

parameters to cover the important phenomenological features of most competing

species scenarios. Moreover, they are quite natural in light of what we know about the

effectiveness of using a discrete (difference) form of the logistic differential equation as

a model for the evolution of a single species. Both the discrete LV and ESR systems

produce, as one might expect from what is known about the comparative properties

of the discrete and continuous logistic models and one-dimensional discrete ESR

model, respectively, a far richer assemblage of dynamics than does the continuous

model. For example, our analysis shows that both the two-dimensional discrete LV

and ESR systems can exhibit period-doubling cascades leading to chaotic regimes

that are essentially one-dimensional and something more — for certain parameter

ranges, the discrete dynamics includes orientation-reversing horseshoe maps that we

have dubbed twisted horseshoe and twisted horseshoe with bending tail maps. Hence,

not only do the LV and ESR maps subsume all the dynamics of the one-dimensional

discrete logistic model and the one-dimensional discrete ESR model, respectively,
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they can generate a fully two-dimensional form of chaotic behavior. The chaotic

regime is unstable for the LV map, bot almost globally attracting (stable) for the

ESR map. This robustness of the chaotic regime for the ESR model renders it

observable for actual populations.

Although we have in Chapters 2 and 3 undertaken a rather thorough investi-

gation of the dynamics of the discrete LV and ESR models for a pair of competing

species that has apparently revealed, at least in a qualitative sense, all of its possible

dynamical features, our study has not been exhaustive. We have not obtained a

complete breakdown of all the dynamic properties correlated with the entire domain

of meaningful parameter values. It may in fact be too ambitious even to attempt such

a complete correspondence between the parameter domain and range of dynamical

behaviors. Nevertheless, it would certainly be useful to obtain more precise estimates

of the parameter regions that support some of the more interesting and exotic

dynamics — for example, twisted horseshoes and twisted horseshoes with bending

tails — especially when it is possible to identify certain special cases of the discrete

LV and ESR systems that can serve as useful predictive models for actual competing

species in real environments.

Our last comment concerning the need for additional analysis of discrete LV and

ESR systems that have demonstrable applications to population biology is especially

pertinent. For it remains to identify meaningful examples of competing species

systems to which the LV and ESR maps can be applied as a predictive tool in a

way that compares favorably with the results of field data and simulation. If it is

found that the LV or ESR maps do not work as effective models for a wide class of

competing population scenarios, it would then be natural to ask what kind, if any, of

minor modifications of the LV or ESR maps can produce a significant enlargement of

the class of real problems in population biology to which they are applicable. It has

already been shown that ESR models provide rather effective predictive capabilities
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for a wide class of competing population scenarios ([49] and [50]). These and some

related questions are something we plan to address more thoroughly in the near

future.

4.3 Future Work

A more general version of the two-dimensional ESR model we studied can be written

In (4.4), if we set the parameter values to be

then, we obtain the following system of equations

which is just the so-called pioneer-climax model studied by Nisbet and Onyiah ([49]).

Although it would be more difficult to analyze the dynamics of (4.4) than it was for

the diagonal ESR model investigated in this thesis, we suspect that the more general

system has the same dynamical features as the diagonal system. This conjecture

is certainly worthy of additional attention, and we may conduct a more thorough

investigation of this matter in the future.

A three-dimensional version of the more general ESR model can be written as
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In (4.6), if we set the parameter values to be

and replace (xn, yn, zn) by (La, Pn, As), then, we obtain the following system of

eauations

which is the model investigated by Costantino et al. ([50]). This system was used

to model the dynamical behavior of the flour beetle Tribolium, where Ln , Pn and

An represent the larvae, pupae and adult populations at time n, respectively, of the

total beetle population. The researchers found that for certain parameter values,

the predictions of the dynamical model agreed very well with experimental field data

collected from a selected Tribolium colony. We hope to find additional biological

applications of our ESR models in our future research.

We plan to investigate a number of open questions concerning Lotka-Volterra

(LV) models, Exponentially Self-Regulating (ESR) models and other related discrete

dynamical system models that can be usefully applied in the study of population

biology. It is our hope to collaborate with some population biologists in order to

focus our attention on important and relevant problems arising in this field.

There are several possible directions for future research on the models we have

studied in Chapters 2 and 3. To name a few, the two-dimensional prey-predator

population model and the cooperation population model. Also, it is logical to

examine three-dimensional and higher dimensional population models of all three
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types of interactions between species. It should be interesting to see how well the

LV and ESR models work for three or more types of interacting populations.

Returning to the field of two-dimensional models, recently, it has come to

our attention that there is a model, rather closely related to both the LV and ESR

models, that is actively being studied by both mathematical scientists and population

biologists: Franke and Yakubu ([57]-[60]) and other researchers such as Namkoong

and Selgrade ([61]) have studied the pioneer-climax model for two interacting species

It appears that the techniques that we have developed to study the LV and ESR

models can be used to provide some new insights into the dynamical behavior of

pioneer-climax models. This is something that we plan to investigate in the very

near future.

Finally, we hope to locate some suitable experimental field data to use to

make comparisons with the predictions obtained from LV, ESR and related discrete

dynamical models in order to further demonstrate the usefulness of our work. It is in

this endeavor that collaboration with one or more experts in the field of population

biology would be very helpful.



APPENDIX A

DERIVATION OF THE PAIR OF INVERSE POINTS

In Section 2.6, in order to find the equation that will allow us to solve for the four

By using the Matlab command, roots([c4 c3 c2 c1 ca]), we obtain four possible

inverse values for y. We choose one of the four branches of F-1 (x, y) that overlaps

the original region. Then, we can subsequently solve for the corresponding x values

to get our pair of inverse points by simply substituting the two y values of this branch

into (A.4).
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APPENDIX B

LOCATION OF THE INTERSECTION POINT IN FIGURE 2.3

In Section 2.6, we observe in Figure 2.3 that there exists an intersection point of the

parabolas F(el) and F(er). Here, we have

and we want to solve the system of two equations

with two unknowns, x int and yint . So, by solving the equation

we obtain

Therefore,
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