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ABSTRACT

NUMERICAL SIMULATION OF STRESS-INDUCED CRYSTALLIZATION OF
INJECTION MOLDED SEMICRYSTALLINE THERMOPLASTICS

by
Jianxin Guo

Injection molded semicrystalline plastic products exhibit variable morphology along their

thickness directions. The processing conditions have a significant effect on the

crystallinity distribution in the final parts. However, because of the lack of sound

theoretical models for stress-induced crystallization kinetics in thermoplastics,

simulations of the injection molding process of semicrystalline plastics with the

consideration of stress-induced crystallization have been scarce.

A stress-induced crystallization model for semicrystalline plastics is proposed

based on the theory that stress induced orientation of polymer chains increase the melting

temperature of the plastics, and hence, the supercooling which is the driving force for

crystallization. By assuming that the effect of stress on crystallization is only by

increasing the equilibrium melting temperature, the basic quiescent state crystallization

equation can be directly applied to model stress-induced crystallization kinetics. A simple

experimental technique such as rotational rheometric measurement, can be used to

determine the melting temperature shift. The model predicts the most prominent features

of stress-induced crystallization: with the application of shear stress, crystallization rate

becomes higher, the crystallization temperature range is broadened and the peak of

crystallization rate shifts to higher temperatures. The main advantage of the model is that

the parameters in the quiescent state crystallization model do not change and the



parameters in the equilibrium melting temperature shift model are easy to determine. And

the unknown constants are kept to a minimum.

The injection molding process of semicrystalline plastics was simulated with the

proposed stress-induced crystallization model. A pseudo-concentration method was used

to track the melt front advancement. The simple Maxwell stress relaxation model in

combination with WFL equation was used to investigate the importance of stress

relaxation on the development of crystallinity during the injection molding. Simulations

were carried out under different processing conditions to investigate the effect of

processing parameters on the crystallinity of the final part. Other results such as skin

layer build-up and mold pressure were also simulated. The simulation results reproduced

most of the features that were obtained by the experiments reported in the literature.



NUMERICAL SIMULATION OF STRESS-INDUCED CRYSTALLIZATION OF
INJECTION MOLDED SEMICRYSTALLINE THERMOPLASTICS

by
Jianxin Guo

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mechanical Engineering

Department of Mechanical Engineering

January 2001



Copyright © 2000 by Jianxin Guo

ALL RIGHTS RESERVED



APPROVAL PAGE

NUMERICAL SIMULATION OF STRESS-INDUCED CRYSTALLIZATION OF
INJECTION MOLDED SEMICRYSTALLINE THERMOPLASTICS

Jianxin Guo

Dr. Kwabana A. Narh, Dissertation Advisor 	 Date
Associate Professor of Mechanical Engineering, NJIT

Dr. Rong Y. Chen, Committee Member	 Date
Professor of Mechanical Engineering, NJIT

Dr. Costas G. Gogos, Committee Member 	 Date
Professor of Chemical Engineering, NJIT
President of Polymer Processing Institute, Newark, NJ

Dr. Zhiming Ji, Committee Member	 Date
Associate Professor of Mechanical Engineering, NJIT

Dr. Pushpendra Singh, Committee Member	 Date
Assistant Professor of Mechanical Engineering, NJIT

Dr. Marino Xanthos, Committee Member	 Date
Professor of Chemical Engineering, NJIT
Director of Research, Polymer Processing Institute, Newark, NJ



BIOGRAPHICAL SKETCH

Author:	 Jianxin Guo

Degree:	 Doctor of Philosophy in Mechanical Engineering

Date:	 January 2001

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mechanical Engineering,
New Jersey Institute of Technology, Newark, New Jersey, 2000

• Master of Science in Mechanical Engineering,
Beijing University of Chemical Technology, Beijing, P. R. China, 1987

• Bachelor of Science in Mechanical Engineering,
Beijing University of Chemical Technology, Beijing, P. R. China, 1984

Major:	 Mechanical Engineering

Presentations and Publications:

Guo, J. and K. A. Narh (2000)
"Computer Simulation of Stress-Induced Crystallization in Injection Molded
Thermoplastics Part I: A Model for Stress Induced Crystallization Kinetics and
Parameter Formulation," submitted to Polymer Engineering and Science.

Guo, J. and K. A. Narh (2000)
"Computer Simulation of Stress-Induced Crystallization in Injection Molded
Thermoplastics Part II: Result of Simulation," submitted to Polymer Engineering
and Science.

Guo, J. and K. A. Narh (2000)
"On the Prediction of Crystallinity Distribution in Injection Molded
Semicrystalline Thermoplastics" Proceedings of SPE-ANTEC Conference,
May 7-11, 2000, Orlando, Florida, pp538-542 (selected for publication by
Journal of Reinforced Plastics and Composites).

iv



Guo, J. (2000)
"A New Finite Difference Formulation of 2-D Partial Differential Equations",
Ninth Annual Uni-Tech Conference, April 28, 2000, Newark, New Jersey.

Guo, J. and Narh, K. A. (2000)
"Buckling Analysis on the Stud Assembly and Simulation on the Spacer Punching
Process", Simulations, in press.

Narh, K. A., J. Guo, M. Xanthos, U. Yilmazer and V. Tan (1999)
"Product Design with High Value Recyclable Plastics Waste Streams,"
Proceedings of SPE-ANTEC Conference, May 2-6, 1999, New York, pp3294-
3298.

Narh, K. A., J. Guo and Z. Li (1998)
"Measurement and Molding of Flow and Mechanical Properties of ASR-Filled
Polymer Composites," Polymer Composites, vol. 19, pp787-792.

Guo, J. and K. A. Narh,
"Evaluation of Rheological and Mechanical Properties of ASR/PE Composites,"
Eighth Annual Uni-Tech Conference, April 24, 1998.

Guo, J. (1998)
"Characterization of ASR-Filled Plastics and Simulation of Some Application on
Recycled Plastics", Presentation at monthly student meeting, Multi-life-cycle
Engineering Research Center, NJIT, March 1998.



To my beloved family

vi



ACKNOWLEDGEMENT

I would like to thank my dissertation advisor, Dr. Narh, for his valuable guidance and

suggestions during my dissertation research. I would also like to thank Dr. R. Chen, Dr.

Gogos, Dr. Z. Ji, Dr. P. Singh and Dr. M. Xanthos for serving as dissertation committee

members, and for providing many valuable suggestions for my doctoral research.

Special thanks to the Multi-life-cycle Engineering Research Center, New Jersey

Institute of Technology, for providing financial support for my PhD studies from

September 1997 to May 2000, and thanks also to the Mechanical Engineering

Department, NJIT, for funding an assistantship from September 1996 to August 1997, as

well as the Fall semester, 2000.

Also, I would like to express my appreciation to Dr. Gogos, Dr. Xanthos and Dr.

Tan of the Polymer Processing Institute, for providing useful information and suggestions

for this study.

vii



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Injection Molding Process 	 1

1.2 Crystallization in Polymers 	 5

1.2.1 Amorphous and Crystalline States 	 5

1.2.2 Crystallization Under Quiescent State 	 6

1.2.3 Stress Induced Crystallization 	 11

1.2.4 Effect of Crystallinity on the Properties of Polymers.... 	 13

1.3 Injection Molded of Semicrystalline Plastics.... 	 15

2 LITERATURE REVIEW 	  18

2.1 Simulation of Injection Molding Process 	 18

2.2 Simulation of Injection Molding of Semicrystalline Plastics 	 20

	

3 MOTIVATION AND OBJECTIVES   29

4 A MODEL FOR STRESS-INDUCED CRYSTALLIZATION
KINETICS OF POLYMERS 	  31

4.1 Crystallization in Quiescent State 	 33

4.2 Determination of Parameters for Quiescent State Crystallization  	 36

4.2.1 Brief Description of the Experiment 	 36

4.1.2 Determination of the Kinetic Parameters Using
Experimental Data 	 37

	

4.3 Shear Induced Crystallization    42

4.4 Determination of Parameters for the Kinetics of

	

Stress Induced Crystallization    46

viii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

	4.5 Summary    56

5 MELT FRONT TRACKING TECHNIQUE 	 58

5.1 Problem Statement 	 58

	

5.2 F-Smooth Technique    62

5.3 Special Treatment during Advancement of Melt Front 	  64

6 MATHEMATICAL MODEL 	  67

6.1 Hypothesis and Assumptions 	 67

6.2 Governing Equations 	 68

	

6.3 Initial and Boundary Conditions    72

6.4 The Rheological Model 	 74

6.5 Transport Equations of Induction Time Index and Crystallinity 	 76

6.6 Governing Equations for Post Filling Stage 	 77

	

6.7 Stress Relaxation Model.     77

7 FINITE ELEMENT EQUATION FORMULATION 	 79

7.1 Introduction 	 79

7.2 Finite Element Equations 	 82

7.2.1 Finite Element Equations for Velocities and Pressure 	 82

7.2.2 Finite Element Formulation for Pseudo-Fluid,

	

Temperature, Crystallinity and Induction Time Index    86

	

7.3 Computation Procedure    86

7.4 Computation Time Saving Consideration 	 88

ix



TABLE OF CONTENTS
(Continued)

Chapter	 Page

8 SIMULATION RESULTS AND DISCUSSIONS 	 90

8.1 Simulation of Injection Molding of PET 	 90

8.1.1 Parameters Used in the Simulation 	 90

8.1.2 Crystallinity at the End of Filling Stage 	 92

8.1.3 The Effect of Stress Relaxation on the Development
of Crystallinity 	 97

8.1.4 Effect of Injection Speed 	 100

8.1.5 Effect of Mold Temperature... 	 105

8.1.6 Effect of Holding Time 	 110

8.1.7 Effect of Melt Temperature 	 112

	

8.1.8 The Effect of TCR    116

8.2 Simulation of Stress-Induced Crystallization in Injection
Molded Polypropylene 	 118

8.2.1 The Material Properties of PP 	 120

8.2.2 Filling Stage 	 124

8.2.3 Crystallinity in the Final iPP Part. 	 127

8.2.4 Crystallization Evolution During the Injection
Molding Process of iPP 	  129

9 CONCLUSIONS AND FUTURE WORK 	  132

	

9.1 Conclusions    132

9.2 Recommended Future Work 	 135

APPENDIX A TAYLOR GALERKIN METHOD FOR
THE HYPERBOLIC EQUATIONS 	  136



TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX B TAYLOR-GALERKIN METHOD FOR ENERGY
EQUATION, INDUCTION TIME INDEX AND
CRYSTALLINITY DISTRIBUTION EQUATIONS 	 139

APPENDIX C COMPUTER PROGRAM 	 143

REFERENCES 	 171

xi



LIST OF TABLES

Table 	 Page

1.1 Comparison of general characteristics of semicrystalline
and amorphous thermoplastics (Belofsky, 1995) 	 14

4.1 Equilibrium temperature shift with the shear stress 	 49

8.1 Induction times and equilibrium melting point shifts of PP 	 121

xii



LIST OF FIGURES

Figure	 Page

1.1	 A schematic drawing of an injection molding machine
(Johannaber, 1985) 	 2

1.2	 A Schematic illustration of polymer flow in mold cavity
(Osswald and Menges, 1995). 	 3

1.3	 Configuration of amorphous and crystalline states
of plastics (Belofsky, 1995).. 	 5

1.4	 Crystallization process: (a) Nucleation State; (b) Growth
and Nucleation; (c) Growth; (d) Impingement of crystals
and completion of crystallization process.. 	 7

1.5	 Microscope cross-polarized pictures taken during
evolution of spherulities. Left: During isothermal
growth; Right: Upon completion of primary
crystallization (Baer and Moet 1991).. 	 7

1.6	 Two-dimensional fringed-micelle model of semicrystalline
plastics (Mandelkern, 1964) 	 8

1.7	 Crystallization rate versus temperature 	 9

1.8	 Crystallization process in polymers 	 10

1.9	 Experiment shows the effect of shear stress on
crystallization of isotactic polypropylene at different
shear rates (Titomanlio et al. 1997) 	 11

1.10 Induction time for flow-induced crystallization as a function
of shear rate for HDPE with M w =1.89 x 10 4 ,	 =1.38 x 10 4 ,

A: T=125°C; B: T=126°C; C: T=129°C (Lagasse and Maxwell, 1976) 	
13

1.11 Microstructure in the thickness direction of injection molded HDPE,
depicting various morphology regions (Tan and Kamal, 1977) 	 16

2.1	 Hsiung and Cakmak's crystallization model shows increased
crystallization rate and temperature shift under shear stresses 	 23

2.2	 The stress induced crystallization model of Titomanlio et al. for
Polypropylene shows broadened crystallization temperature,
fixed maximum crystallization rate 	 25



LIST OF FIGURES
(Continued)

Figure Page

4.1 Plot of isothermal crystallization rate constant as a function
of temperature. Solid circles represent the experimental data
(Narh et al.,1995a). The solid line represents the best fit
according equations (4.4) and (4.5) 	 39

4.2 Avrami plots for isothermal crystallization at various temperatures.. 	 40

4.3 Comparison of prediction result using isothermal parameters
with the experimental data: lines are predictions, points are
experimental result 	 41

4.4 Shear stress versus shearing time showing the effect of
Shear rate and temperature on the onset of crystallization
(Narh et al. 1995b): (a) shows the shear dependence and
(b) shows the temperature dependence 	 48

4.5 Temperature shift as a function of shear stress: data points
are calculated from the experiment work of Narh et al.(1995b),
line is the best fit result 	 50

4.6 Kinetics of crystallization of PET under effect of shear stress.
The results show the crystallization process shift to higher
temperatures with increased crystallization rate 	 52

4.7 Crystallization process of PET with/without the application
of shear stress under constant cooling rate of 20°C/min 	 53

4.8 Comparison of Hsiung and Cakmak's model with present
model. Dotted lines are Hsiung and Cakmak's model, solid
lines are present model with the parameters formulated from
parameters given by Hsiung and Cakmak (1991) 	 54

4.9 Equilibrium temperature shift versus shear stress according
Hsiung and Cakmak's model for PPS. Solid line represents the

5.1 Representation of the Flow field in pseudo-concentration technique .... ..... . 	 60

xiv



LIST OF FIGURES
(Continued)

Figure	 Page

5.2	 Smoothing and updating of the F-space 	 63

5.3	 Triple points  	 64

5.4	 Non -slip condition at the triple point shows no
advancement at the contact point 	 65

5.5	 Melt Front Advancement with 0.1 cm free slip length
apart from the triple point 	 66

5.6	 Melt front advancement with 0.2 cm free slip length 	 66

6.1	 Mold cavity dimensions 	 68

6.2	 Calculation Domain 	 69

6.3	 Boundary conditions for the mold flow analysis using
pseudo-concentration technique 	 74

7.1	 Finite element model 	 81

7.2	 Flow chart of computation procedure 	 88

7.3	 Computation region during the filling process 	 89

8.1	 Induction time index distribution at the end of filling stage.... 	 94

8.2	 Crystallinity distribution at the end of filling stage with
different injection speeds 	 96

8.3	 Comparison of different stress relaxation models: A: No stress
relaxation is considered; B: Stress effect is not considered in
the cooling stage; C: Stress remains constant in the skin layer,
but relaxed completely outside skin layer; D: Stress relaxation
follows the WFL model. Injection rate: Q=5 cm 3 / s ,
Mold temperature: 90°C  	 98

xv



LIST OF FIGURES
(Continued)

Figure

8.4

Page

Comparison of different parameter selections for stress relaxation:
Injection rate: Q=5 cm 3 Is ; Mold temperature:90°C .... 	 99

8.5	 Effect of Injection speed on the final crystallinity distribution
across the thickness: material PET; melt temperature 270°C;
mold temperature 90°C 	

8.6	 Skin layer thickness at the end of filling with different injection
speeds. PET: melt temperature 270 °C, mold temperature 90 °C

8.7	 Cavity pressure at the end of filling for different injection speeds.
Material: PET; Melt temperature: 270 °C ; Mold temperature: 90 °C........

8.8	 Effect of mold temperature on the final distribution of crystallinity.
Material: PET; Injection rate: Q=5 cm 3 / s 	

8.9	 Effect of mold temperature on the build-up of skin layer at the
end of filling stage. Material: PET; Injection rate: Q=5 cm 3 Is

8.10 Pressure in the mold cavity under various mold temperatures 	
Material: PET; Injection rate: Q=5 cm 3 / s 	

8.11 Effect of packing time on the crystallinity distribution across
the specimen thickness at geometrical center of the molding:
Injection rate: 5 cm 3 Is ; Melt temperature: 270°C;
Mold temperature: 90°C; TCR in packing stage:
lx 10 -5 m 2 — K I W ; TCR in cooling stage: 1x10 -3 m 2 — K I W 	

8.12 Effect of melt temperature on the final crystallinity
distribution in the final part. Injection rate: 5 cm 3 Is ;
Mold temperature: 90°C 	

8.13 Effect of melt temperature on the skin layer build-up at
the end of filling.. 	 114

8.14 Pressure in the mold cavity at different melt temperatures 	 115

102

103

104

107

108

109

111

113

xvi



LIST OF FIGURES
(Continued)

Figure	 Page

8.15 Effect of TCR on the crystallinity distribution. Injection rate:
5 cm 3 /s ; Melt temperature: 270°C; Mold temperature 90°C 	 117

8.16 Comparison of crystallization rate of PP and PET 	 119

8.17 Equilibrium melting temperature shift for PP as a function
of shear stress 	 122

8.18 The effect of shear stress on the crystallization rate of PP 	 123

8.19 Induction time index at the end of filling stage. x--flow direction,

	

y--distance to the center, z--induction time index    125

8.20 Crystallinity at the end of filling stage: x—flow direction,
y—distance from the center, z—crystallinity(%) 	 126

8.21 Final crystallinity of Injection molded PP at different
processing Conditions. X: Flow direction; Y: Distance
from center; Z: crystallinity (%) 	 128

8.22 Crystallinity evolution during the post filling stage with the
consideration of shear stress. Injection rate Q=5 cm 3 / s ,
Mold temperature: T=50°C 	 130

8.23 Crystallinity evolution in the post-filling stage without
considering the effect of shear stress Injection rate:
Q=5 cm 3 Is , Mold temperature: 50°C 	 131

xvii



LIST OF SYMBOLS

Material constant for induction time

Material constants in WFL model (°C)

Material constant in melting temperature shift model (°C)

Material Constant in melting temperature shift model (Pa)

Heat capacity (J/Kg-K)

Heat of fusion of 100% crystals (J/Kg)

Pseudo-concentration for imaginary fluids

Cut-off value of pseudo concentration for determining the melt front

Shear modulus (Pa)

Gibbs free energy of the melt (J/Kg)

Gibbs free energy of the crystalline phase (J/Kg)

Enthalpy of the crystalline phase (J/Kg)

Enthalpy of the melt (J/Kg)

Heat of fusion (J/Kg)

Avrami isothermal crystallization rate constant

Nonisothermal crystallization rate constant

Thermal conductivity (J/s-m-K)

Spherulite growth rate ( K 2 )

Number average molecular weight

Weight average molecular weight

xviii



LIST OF SYMBOLS
(Continued)

Avrami index

Power law index for viscosity

Pressure (Pa)

Injection speed ( cm' /s )

Gas constant (J/mol)

Entropy of the crystalline phase (J/Kg-°C)

Entropy of the melt (J/Kg-°C)

Entropy of fusion (J/Kg-°C)

Time (s)

Crystallization half time (s)

Induction time (s)

Induction time index

Material constant in cross-exponential model, reflecting the effect of

temperature on viscosity (°C)

Glassy transition temperature (°C)

Equilibrium melting temperature (°C)

Melting temperature for stressed material (°C)

Melting temperature shift from equilibrium melting temperature by shear

stress (°C)

xix



LIST OF SYMBOLS
(Continued)

Reference temperature in WFL model (°C)

Reference temperature in cross-exponential viscosity model (°C)

Mold wall temperature (°C)

Temperature under which crystallization process ceases (°C)

Material constant for induction time (s)

Temperature (°C)

Equilibrium melting temperature (°C)

Melting temperature under shear stress (°C)

Velocity in x direction (m/s)

Activation constant (J/mol)

Velocity in y direction (m/s)

Density (Kg 1 m 3 )

Apparent viscosity (Pa-s)

Zero shear rate viscosity (Pa-s)

Viscosity enhancement factor by crystallinity

Absolute crystallinity (%)

Ultimate absolute crystallinity (%)

Relative crystallinity

Stress (Pa)



LIST OF SYMBOLS
(Continued)

Shear stress at which shear thinning begins (Cross-Exponential model) (Pa)

Shear strain

Shear rate (1/s)

Relaxation time (s)

Relaxation time at reference temperature (s)

Degree of orientation

xxi



CHAPTER 1

INTRODUCTION

1.1 Injection Molding Process

Injection molding process is one of the most widely used operations in the polymer

processing industry. It is characterized by high production rate, high automation, accurate

dimensional precision. Products ranging from as small as small plastic gears to as large as

automobile bumpers and bathtubs can be injection molded. Injection molding process is

accomplished in an injection molding machine (Fig. 1.1) which basically consists of two

essential components: the injection unit and the clamping unit. The function of the former

is to melt the polymer and inject it into the mold cavity, whereas the clamping unit holds

the mold, opens and closes it automatically, and ejects the finished products.

The most common type of injection molding machine is the in-line reciprocating

screw type. The screw both rotates and undergoes axial reciprocating motion. When the

screw rotates, it acts like a screw extruder, melting and pumping the polymer. When it

moves axially, it acts like an injection plunger, pushing the polymer melts into the mold

cavity. The screw is generally driven by a hydraulic motor and its axial motion is

activated and controlled by a hydraulic system. The raw material is supplied to the

injection molding machine through the feed hopper, which is located on top of the

injection unit. The screw takes in the material and conveys it to the screw tip. On its way,

the plastic passes through heated barrel zones, while the rotation of the screw results in a

continuous rearrangement of the plastic material in the flights of the screw. Shear and

heating from the barrel wall cause a largely homogeneous heating of the material. The

conveying action of the screw builds up pressure in front of the tip. This pressure pushes

1
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back the screw. As soon as there is enough supply of melt in front of the screw, the

nozzle thrusts against the sprue bushing of the mold and the screw moves forward to

inject the molten material into the mold cavity.

The injection molding process can be divided into three stages: filling, packing

and cooling.

Figure 1.1 A schematic drawing of an injection molding machine (Johannaber, 1985)

During the filling stage the molten material is injected into the mold cavity under

high pressure by the piston movement of the screw. As the polymer melt enters the mold

cavity, the pressure in the mold rises slowly. The flow is unsteady and the polymer starts

cooling as soon as it touches the mold wall. Polymer flow into the cavity does not cease

when the melt fills the whole cavity of the mold. Extra polymer melt should be

introduced into the cavity to compensate for the shrinkage during the cooling. At this
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stage, the viscous polymer is compressed and the cavity pressure rises to its maximum.

This stage is called packing stage. During the cooling stage, through the heat exchange

with the walls of the mold, the polymer melt solidifies to form the final shape of the part.

A continuous decrease of the pressure in cavity can be observed at this stage.

Figure 1.2 A schematic illustration of polymer melt flow in mold cavity
(Osswald and Menges, 1995).

The mold filling process itself involves all the interesting and complicating

aspects of polymer processing: non-isothermal, transient flow of non-Newtonian fluids in

complex geometries with simultaneous structuring and solidification. The polymer melt

flow in the mold cavity during the filling stage can be roughly divided into two regions: a

fountain flow region and pure shear flow region (Fig. 1.2). In the fountain flow region,

the polymer melt flows from the cavity center towards the wall of the mold due to the

fountain effect. Once the melt touches the cold mold wall, it cools down and solidifies

into a frozen layer. The fluid far behind the fountain front is under pure shear flow.
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The fountain effect during the filling stage can have significant influence on the

mechanical properties of the final product. According to the model proposed by Tadmor

(1974), both the orientation in the close neighborhood of the wall and the transverse

orientation originate from the fountain type of flow in the advancing front region,

whereas the source of the rest of the orientation is primarily from the shear flow upstream

the front. Within the fountain flow region, the melt has approximately undergone a steady

elongational flow. As a result of the fountain type of flow, an oriented polymer layer is

deposited on the cold wall of the mold. The surface layer solidifies upon contact with the

cold wall, retaining the maximum elongational orientation. Further away from the

surface, the fully developed shear flow behind the front is responsible for any molecular

orientation that may be present in the final product.

The mechanical and physical properties of the injection molded parts do not

depend only on the chemical constitution of the material and its corresponding properties.

The processing conditions such as temperature, pressure and velocity distribution in the

mold cavity during the molding cycle, exert a considerable influence on the mechanical

and physical properties of the final parts. The polymer properties and molding conditions

interact to produce the thermo-mechanical history experienced by the polymer melt,

which determine the microstructure distribution and, therefore, the ultimate properties of

the molded parts.
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1.2 Crystallization in Polymers

1.2.1 Amorphous and Crystalline State

The basic distinguishing feature of the structure of a high polymer is a long molecular

chain or backbone. The many unusual and valuable physical properties of polymers arise

directly from this feature of their molecular structure.

There are two possible order types between molecular segments and their

neighbors: amorphous and crystalline. An amorphous state is defined as having a purely

random structure, or implies the absence of the characteristic regular arrangement of the

polymeric chains, as illustrated in figure 1.3a, while the crystalline state corresponds to

the highly organized pack of molecule chains (Fig.1.3b).

(a) amorphous state	 (b) crystal

Figure 1.3 Configuration of amorphous and crystalline states of plastics
(Belofsky, 1995)

Practically, all polymers can be found in the amorphous state at sufficiently high

temperatures. When the polymer melt is rapidly cooled to below its glass transition

temperature, the molecules do not have the time to rearrange their conformation and their
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random structure will be frozen and the polymer will maintain their amorphous state. In

highly amorphous polymers, there may be some preferred orientation induced by stresses

in processing, as in drawn fibers or films. Injection molded amorphous plastics may show

local areas of orientation due to frozen-in flow patterns.

1.2.2 Crystallization under Quiescent State

When a semi-crystalline polymer melt is cooled down into its crystallization temperature

range, crystallization starts around discrete points called 'nuclei', and the crystals grow

around nuclei to form what is referred to as 'spherulites'. Once all the spherulites meet

their neighbors, the crystallization process is complete. This process is illustrated in

Figure 1.4. Figure 1.5 shows the picture taken during the crystallization process. It

clearly shows the crystal growth and completion of the crystallization.

Many observations have indicated that the microstructure of semicrystalline

plastics can be adequately represented by the so-called fringed-micelle model (Fig. 1.6).

The molecular chains arrange themselves in thin, plate-like lamellae. In polymer that has

been crystallized from the melt, those ordered, planar domains are separated, and the

spaces between lamellae are filled with amorphous and randomly arranged

macromolecules. The function of the amorphous material is to tie all of the lamellae

together. In the single lamella the molecular chains are folded to form organized

microstructure (Fig 1.3b). The combination of the lamellae is a spherulite, tending to

grow spherically outward.
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Figure 1.4 Crystallization process: (a) Nucleation stage; (b) Growth and nucleation; (c)
Growth; (d) Impingement of crystals and completion of crystallization process.

Figure 1.5 Microscope cross-polarized pictures taken during evolution of sperulities.
Left: During isothermal growth. Right: Upon completion of primary crystallization

(Baer and Moet, 1991)
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Figure 1.6 Two-dimensional fringed-micelle model of semicrystalline plastics
(Mandelkern, 1964)

In bulk polymers, crystallization does not extent throughout because of the long

chain nature and irregularities, such as molecular branches. Bulk polymer can be

semicrystalline at most. The non-crystalline part is amorphous. Also not all polymers are

able to form the close-packed, ordered structures called crystallites or spherulites; only

molecules that have regular, periodic location of chemical groups can pack closely

enough. For a given polymer, the extent of crystallization attained during melt processing

depends upon the rate of crystallization and the time during which the temperature is

maintained.

The rate of crystallization in pure polymers depends on the product of the rate of

two processes: nucleation and crystal growth. Nucleation rates are high at low

crystallization temperatures, where the chains are characterized by low energy levels. On

the other hand, high crystallization temperatures favor rapid crystal growth rates. It is
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expected that the rate of crystallization will have a maximum at some crystallization

temperature, as illustrated in Figure 1.7.

Figure 1.7 Crystallization rate versus temperature
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Figure 1.8 Crystallization process in polymers

Figure 1.8 shows a typical plot of crystallization process in polymers. Unlike low

molecular materials, polymers do not crystallize immediately once they reach their

crystallization temperature. The molecular chains need time to rearrange their

configuration to favor the formation of crystals. This time is called induction time, as

illustrated in Fig. 1.8. The crystallization process usually starts slowly and the crystals

grow rapidly. The time at which the crystallinity reaches half of the maximum

crystallinity that can be attained by the polymer is usually used to determine the

crystallization rate of the polymers. At the end of the crystallization process, because of

the impingement of the growing crystals and decreased non-crystallized regions, the

crystallization rate decreases.
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1.2.3 Stress Induced Crystallization

The shear stress and molecular orientation have significant influence on the

crystallization process in polymers. Since most of the polymer processing operations

always involve the application of shear to the polymer material, shear induced

crystallization is a very common feature in semicrystalline plastics. The effect of shear

stress on the crystallization process in plastics can be observed by a simple experiment.

Figure 1.9 Experiment shows the effect of shear stress on crystallization of isotactic
polypropylene at different shear rates (Titomanlio et al. 1997)

Fig. 1.9 shows a typical experimental result on the stress induced crystallization

process of isotactic polypropylene (iPP), which is a semicrystalline thermoplastic

(Titomanlio et al. 1997). The experiment was performed in a rotational rheometer under

constant shear rate at 135°C. Under quiescent state at a temperature of 135°C, it takes
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several hours for iPP to start crystallizing. It was seen from the experiment that, after a

time, which decreases as shear rate increases, the stress undergoes a sharp increase,

indicating the start of crystallization. The larger the shear stress imposed on the polymer

melt, the sooner the start of the crystallization and the faster the crystallization process.

Actually, the crystallization temperature range becomes broader and the crystallization

rate becomes higher as the shear stress increases. Similar results were observed by Haas

and Maxwell (1969) and Narh et al. (1995a).

Optical microscopy observations (Haas and Maxwell, 1969) showed that the

application of a shear stress to a polymer melt leads to large increases in the number of

crystalline structures formed and to the formation of oriented morphologies. The shear

stresses cause the chain alignment in the molecules and favor the formation and growth

of crystals. The driving force for the polymer crystallization is the supercooling, which is

the difference between the melting temperature and the crystallization temperature. In

accordance with the theories of Flory (1956) and Krigbaum and Roe (1964), the

associated decrease in entropy of the melt may be considered to increase the

supercooling. Under high stresses, crystallization occurs more rapidly at high

temperatures because of the increased supercooling. At extremely low shear stresses, the

molecules relax faster than the stress induced orientation. In that case, no significant

effect can be observed on the crystallization process by the stress. Figure 1.10 indicates

the nucleation induction time as a function of shear rate (Lagasse and Maxwell, 1976). It

shows that the induction time decreases with increasing shear rate, while the

crystallization rate increases. This is because the chain alignment favors the formation of
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nuclei. At low shear rates, the induction time is not affected, because the chains relax

during the flow process.

(Lagasse and Maxwell, 1976)

1.2.4 Effect of Crystallinity on the Properties of Polymers

The crystalline nature of a bulk polymer has a major effect on its properties. Table 1.1 is

the comparison of general characteristics of semicrystalline and amorphous plastics. The

crystalline phase is highly ordered and compacted; the crystallized polymer has higher

strength and higher stiffness than that of the amorphous polymer. Other properties such

as service temperature and stress relaxation properties are also improved. Since the
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crystallization process is closely related to the thermal history and processing conditions,

to some extent, the morphologies or the properties of the semicrystalline plastics can be

controlled by varying processing parameters. For example, injection blow molding is

generally used to produce PET bottles. The injection speed must be limited to prevent

stress-induced crystallization. Then the preform must be quenched on the chilled core pin

and mold wall to retain the amorphous state. In the stretching and blowing stage, the

preform is reheated to about 100°C and is simultaneously stretched and inflated, small

and uniformly distributed crystallites form, and the product retains the transparency of

the amorphous state. However, it is much stronger and tougher than either the amorphous

state or the spherulitic crystalline forms.

Table 1.1 Comparison of general characteristics of semicrystalline and amorphous
thermoplastics (Belofsky, 1995)

Semicrystalline Amorphous

High strength High toughness

High stiffness High ductility

High density Low density

High mold shrinkage Low mold shrinkage

Opacity Transparency

Resistance to fatigue Lower residual stresses

Higher service temperature Closer molding tolerance

Higher energy to process Lower post-mold shrinkage
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1.3 Injection Molded Semicrystalline Plastics

The semicrystalline plastic products from the injection molding process may exhibit a

range of morphologies resulting from the processing conditions. A typical skin-core

morphology is generally developed in the moldings. The high shear stress near the mold

wall gives a high orientation in the polymer crystallites, while the low shear stresses in

the core region of the mold allow the melt to crystallize three dimensionally to form

spherulites. The injection molded semicrystalline plastics have unique microstructure

across the thickness, since the stress and heat effect vary dramatically from the skin to the

core region. In the skin layer or near the skin surface, row nuclei are formed by chains

aligned in the direction of flow (extensional flow) on which lamellae grow in the plane

perpendicular to the filling direction. At the layer just below, row nucleation still persists,

but there the lamellae are perpendicular to the mold surface, but randomly oriented with

respect to the filling direction. Shear flow orientation in combination with the prevailing

temperature gradients is probably responsible for this morphology. Both shear and

elongational flows are capable of producing chain orientation that is intense enough to

create row nucleation. Spherulitic morphology, indicative of little or no orientation, is

observed in the core region. An example of complex morphologies of injection molded

plastics is shown in Fig. 1.11.

Generally, the following features can be observed from an injection molded

plastics part at different processing conditions (Hsiung et al. 1990):

(i)	 At low mold temperature and high injection speed, a uniform amorphous product

can be obtained.
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(ii) At intermediate mold temperatures above the glass transition temperature and low

injection speed, a three-layer structure can be observed in the final product: (a)

amorphous skin layer, (b) crystallized layer and, (c) amorphous or semi-

crystallized core.

Figure 1.11 Microstructure in the thickness direction of injection molded HDPE,
depicting various morphology regions (Tan and Kamal, 1977)

(iii)	 At a processing temperature near the cold crystallization temperature, the

products exhibit uniformly crystalline morphology, where the structure

development is primarily dominated by the thermally induced crystallization.

These structural features are a result of complex interactions between flow

behavior and thermal effects such as fast cooling and crystallization. It is therefore clear



17

order to simulate the injection molding process of semi-crystalline polymers, the stress

effects and non-isothermal effects should be considered.

In order to quantitatively analyze the behavior of the polymer melt as it interacts

with a processing system, it is necessary to formulate and solve the equations which

describe the process. The governing equations include the general conservation equations

(mass, momentum, and energy) and the constitutive equations which describe the

properties of the material being processed. For the semi-crystalline plastics, the kinetics

of crystallization should also include the effect of the shear stress during the injection

process, as well as the stress evolution in the post filling period. Furthermore, the

influence of crystallinity on the flow behavior of the melt should also be included.



CHAPTER 2

LITERATURE REVIEW

2.1 Simulation of Injection Molding Process

In the past few decades, the injection molding process has widely been studied

experimentally and theoretically. The analysis of mold filling in injection molding,

started with the work of Spencer and Gilmore (1950) in the early 50's. They employed an

empirical equation for capillary flow and coupled it with a quasi steady-state

approximation to calculate the filling time. Since then, different models have been

proposed to describe the molding cycle with varying degrees of complexity. One-

dimensional rectangular flow was proposed by Ballman, et al. (1959) and Staub (1961).

Harry and Parrot (1970) considered a one-dimensional quasi-steady state flow analysis

coupled with an energy balance equation. Williams and Lord (1975) made a significant

contribution by considering all the components of a one-dimensional non-isothermal

flow. A similar model was presented by Thienel and Menges (1978) - using a different

solution technique.

In order to study a more representative one-dimensional flow, a number of

analyses were carried out on the radial filling of a center gated disc mold. Kamal and

Kenig (1972) proposed an integrated mathematical treatment of the filling, packing, and

cooling stages of the injection molding cycle. Similar simulations were carried out by

Berger and Gogos (1973), Wu et al. (1974), and Stevenson (1978). An analytical solution

for a two-dimensional flow in a rectangular cavity was presented by Kuo and Kamal

(1976), and Kamal et al. (1975). Ryan and Chung (1980) used a conformal mapping

technique to solve a similar set of equations. A combined finite element/finite difference

18
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method for the solution of a two-dimensional flow was presented by Hieber and Shen

(1980). A modified version with an improved numerical scheme for the solution of the

pressure field has been provided by Hieber et al. (1983). Van Wijingearden and

Dijiksman (1982) analyzed the non-isothermal two dimensional flow into a rectangular

cavity, taking into account the orientation and corrective effect due to the formation of

the solid layer at the wall.

None of the above models took into account the fountain effect due to the

transient surface flow in the cavity during the filling process. Tadmor and Gogos (1979)

presented a semi-quantitative model to describe the molecular orientation in injection

molding, in which the effect of fountain flow was considered. The flow was analyzed in

two parts: a fully developed flow away behind from the flow front, and a planar

stagnation flow in the vicinity of the flow front. By assuming isothermal and

incompressible flow, the complex flow near an advancing fluid front was taken into

consideration for reacting fluids by Domine and Gogos (1980), and Gogos et al. (1986),

using a Marker-and-Cell (MAC) finite difference method. They were able to predict, by

simulation, the experimental result by Schmdit (1977) which clearly revealed the fountain

flow existence. Kamal et al. (1986) used the MAC method to simulate the fountain flow

with viscoelastic rheological model. Their results showed that the temperature

distribution in the front region is dramatically modified by the fountain effect. Fountain

flow also influences the stress distributions near the melt front. Papathanasiou and Kamal

(1993) and Kamal and Papathanasiou (1993) used a finite difference method to simulate

the filling stage of injection molding. By using Boundary Fitted Curvilinear Coordinates

technique, they were able to extend the finite difference method to complex shaped mold
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geometries. Mavridis and Hrymak (1986) investigated the free surface shape of the melt

front using finite element method. They used a moving boundary system and assumed

isothermal viscous flow. Sato and Richardson (1995) simulated isothermal fountain flow

for viscoelastic fluids.

2.2 Simulation of Injection Molding of Semicrystalline Plastics

Although there have been many studies to simulate the injection molding process, the

efforts to simulate the injection molding of semicrystalline polymers are rather rare

because of the lack of practical model for crystallization kinetics that incorporates the

influence of stress or strain. Eder et al. (1988) proposed a theoretical explanation for

shear-induced crystallization. In this theory, the nucleation rate, as well as the crystalline

growth rate, were supposed to be functions of the disentanglement or the orientation

fraction in the melt. The orientation fraction of the melt depends on the shear rate,

shearing time and stress relaxation. The theory can qualitatively explain the mechanism

of shear-induced crystallization at isothermal conditions with constant shear rate. With

practical injection molding, the shear rate changes continuously with time along the flow

path of a fluid particle under non-isothermal conditions. Under these circumstances, the

solutions to the theory will not be straight-forward and the method may fail. Moitzi and

Skalicky (1993) used Eder's theory to fit the experimental results for isotactic

polypropylene under isothermal conditions and constant shear rate. The parameters in

the theory were derived by curve fitting to experimental data. For non-isothermal

conditions, the parameters in the theory such as nucleation rate and growth rate, as well
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as the relaxation time, are all coupled together. It is very difficult to get the parameters

involved in the theories, hence, they are rarely applied to the real process.

Several attempts were made to include crystallization kinetics into the process

simulation of injection molding of semicrystalline polymers in order to predict the

microstructure development in the moldings or to incorporate the heat release due to

crystallization during processing. Lafleur and Kamal (1986) used a MAC (Maker-and-

Cell) type finite difference method for a non-isothermal viscoelastic fluid, and considered

a kinetic equation of crystallization combined with heat transfer to simulate the injection

molding process. They were able to predict the melt front progression as well as the

residual stress and crystallinity distribution. Since a fast crystallizing polymer was

considered in their model, the stress effect was not included. Chiang et al. (1991)

simulated the filling and post filling stages of the injection molding process by using

temperature dependent thermal properties of the polymers to account for the heat

generated by crystallization. Han and Wang (1997) predicted the volumetric shrinkage of

slow-crystallizing thermoplastics in injection molding. The crystallization kinetics and

their effect on the viscosity were considered, but flow induced crystallization was

neglected.

The kinetics of crystallization models involved in the above simulation studies are

quiescent state models. Because of the nature of the injection molding process, the

polymer melt undergoes high shear rate and high cooling rate. Many observations have

shown that the shear stress has significant effect on the crystallization kinetics and,

consequently, affect the microstructure distribution in the molded part. To successfully

simulate the injection molding process of a semi-crystalline polymer, the effect of shear
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stress on the kinetics of crystallization should be included. Hsiung and Cakmak (1991)

developed a simple model for the simulation of slow-crystalline polymers. Based on the

observation of the crystallization behavior of semi-crystallizing polymers, they proposed

a computational model of crystallization kinetics, in which parabolic log functions for

crystallization rate constant, K, and the shear stress, r , were expressed in the form:

where subscript q represents the parameter value under quiescent state, subscript p

represents the peak value, T crystallization temperature. A, B and C are material constants

that can be estimated from literature.

Figure 2.1 shows the overall crystallization rate as a function of temperature

under the effect of shear stress according to the model of Hsiung and Cakmak (Eq. 2.1a-

c). It can be seen that the model predicts that shear stress increases the crystallization rate

and shifts the crystallization process to higher temperatures. The same relations were

used between the crystallization rate constant and temperature, induction time and stress,

and induction time and temperatures. Hsiung and Cakmak also considered the

crystallization heat by relating the specific heat capacity to the evolution of crystallinity.

They were able to evaluate the effect of major operating parameters such as injection

speed, mold temperature and holding time on the crystallinity gradients. However, the
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material constants involved in the model were estimated from literature data, some of

which were not from the same material.

Figure 2.1 Hsiung and Cakmak's crystallization model shows increased crystallization
rate and temperature shift under shear stresses.

Considering the enhancement of crystallization kinetics as a consequence of flow

as well as during solidification, Titomanlio et al. (1997) simulated the injection molding

process on the basis of Lord and Williams model. Titomanlio's model was derived from

the quiescent state model, in which only one parameter of the model was modified

according to the effect of stress. The model may be expressed as follows:



where K(T, r) the crystallization rate constant; is a function of temperature and shear

stress. K, is the maximum crystallization rate, T the maximum crystallization

temperature, and D a parameter that considers the effect of stress. According to

Titomanlio et al. (1997), D can be expressed as:

where, D o is the value in quiescent state. s and b are material constants that can be

estimated from experimental results.

Figure 2.2 shows the crystallization rate as the function of temperature with the

effect of stress in Titomanlio's model for polypropylene. It is clear from the model that

the shear stress increases the crystallization rate by broadening the distribution of the

crystallization rate over temperature, while the maximum crystallization rate and

maximum crystallization temperature remain constant. The main advantage of

Titomanlio's model is that it has only one extra material constant to be determined by

experiment. However, the model can not predict the fact that the peak crystallization rate

temperature shifts to higher temperatures.

In the most recent work of Guo et al. (1999), a so-called unified approach (Isayev

et al. 1995) was employed to model the crystallization kinetics of isotactic polypropylene

(iPP) during the injection molding process. In the unified approach, it was assumed that

the effect of shear stress on the crystallization kinetics is only on the induction period,

i.e., once the crystallization starts, the crystallization process follows the crystallization

kinetics under quiescent states. Thus, the basic quiescent state crystallization kinetics
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equation does not need to be modified, and can be applied directly to the stress induced

Figure 2.2 The stress induced crystallization model of Titomanlio et al. (1997) for
polypropylene shows broadened crystallization temperature, fixed maximum

crystallization rate

For the effect of stress on the induction period, Guo et al. (1999) introduced an

extra term in the induction time expression. This extra term takes into account the effect

of shear induced molecular orientation:
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where t i (T , c1)) is the induction time under effect of stress, tqi (T) the induction time in

the quiescent state, J shear-induced orientation factor, and lc a material constant called

flow enhanced coefficient.

According to the work by Eder et al. (1988), the orientation factor (13 can be

expressed as:

where 2% a is the activation shear rate, X, is the molecular relaxation time, is is the shear

time. Expression (2.4) was obtained by assuming that the initial value of orientation

factor is zero.

To characterize the molecular deformation of polymer melt due to flow, Guo et al.

(1999) set up two sets of extrusion experiments: extrusion-quenching and extrusion-

relaxation-quenching. By observing the microstructure on the cross section of the

extrudate, the thickness of the skin layer was determined. By calculating the shear rate at

the interface of the skin-core layer, the material constants involved in equation (2.4) were

obtained. To determine the flow enhancement coefficient x in Eq. (2.3), a separate

instrument -parallel plate rheometer was used. Using the unified model, they were able to

predict the crystallinity distribution as well as the microstructure gradient in the injection

moldings. The unified model has a few advantages:
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(i) Since it is assumed that the effect of shear stress on the crystallization process is

only on the induction period, it is possible to make use of quiescent state

crystallization kinetics to model the process.

(ii) It is possible to use the model to predict the crystal size distribution. The detailed

microstructure can be simulated.

However, the model still has some disadvantages that need to be addressed:

(a) Although the model seems to be simple compared with other stress-induced

crystallization model, extra complication is introduced in the model since there

are too many parameters that needed to be experimentally determined.

(b) To determine the material constants in the model, two separate experiments need

to be set up. One is the extrusion experiment to determine the constants involved

in the orientation factor. The other is the determination of flow enhancement

coefficient. It is generally difficult to accurately control the extrusion experiment.

Therefore, the parameters thus obtained are subject to significant errors.

(c) The simplification that the stress has no effect on the crystal growth stage can not

be applied for most polymers. Several reported experimental results have shown

that shear stress not only accelerates the nucleation rate, but also increases the

crystal growth rate (Haas and Maxwell, 1969; Tan and Gogos, 1976).

In the injection molding process, high stresses are generated in the filling stage.

However, in the cooling stage, the stresses would relax due to the nature of the polymer

material. For the material still in the molten state at the end of filling, the stress vanishes

immediately once the flow stops. Isayev and Hieber (1980) used a Leonov constitutive

model and calculated idealized one dimensional flow, and non-isothermal stress
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relaxation, after cessation of the flow. Their result showed that the shear stress relaxes

rapidly, following the cessation of the flow. It remains frozen in the skin layer but relaxes

in the core region. The relaxation of stress during the cooling stage implies a decreased

effect of stress on the kinetics of crystallization after filling. Therefore, a realistic model

of crystallization during injection molding should also consider the effect of stress

relaxation.



CHAPTER 3

MOTIVATION AND OBJECTIVES

The injection molding process is a very complex process, which includes all the

interesting aspects of polymer flow, heat transfer and solidification. As discussed in

Chapters 1 and 2, the processing conditions have significant effect on the microstructure

of injection molded semicrystalline plastic parts, and, consequently influence their

ultimate mechanical properties of the final part. This is particularly important for high

precision injection molding since the crystallinity will increase the shrinkage and cause

dimensional variation. Therefore, it is important to take into account the kinetics of

crystallization process during the simulation of injection molding process. Because of the

lack of sound practical model for the crystallization kinetics that incorporates the effect

of stress, most of the existing simulations did not include the kinetics of stress-induced

crystallization. The available stress-induced crystallization models for the simulation of

injection molding are either empirical (Hsiung and Cakmak 1991) or have difficulties in

formulating the parameters involved in the model (Guo et al. 1999). The simple model of

Titomanlio et al (1997), which has only two constants apart from quiescent crystallization

model, did not clearly explain the crystallization behavior of the stress induced

crystallization in polymers. So it is imperative to develop a realistic stress induced

crystallization model for the numerical simulation of the injection molding process of

semicrystalline plastics. The model should be able to predict the behavior of stress

induced crystallization of plastics, and yet be easy enough to be incorporated into the

numerical simulations.

29
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The primary objective of this work is to simulate the injection molding process of

semicrystalline plastics with the consideration of stress induced crystallization. The

simulation work includes the following tasks:

(1) Develop a realistic model of stress induced crystallization for semicrystalline plastics,

which not only can depict the stress induced crystallization process, but also has

theoretical basis.

(2) The main feature of the mold filling stage is the fountain flow. Fountain flow

influences the material distribution, temperature distribution, molecular orientation

and crystallinity distribution. Consequently, the fountain flow was considered in this

work.

(3) Since the ultimate microstructure of injection molded parts is significantly influenced

by the processing conditions, simulations were carried out to simulate the effects of

processing parameters on the development of microstructure in the final parts. The

processing parameters considered include injection rate, melt temperature, mold

temperature, holding time, as well as the thermal contact resistance (TCR) between

the plastics and the mold wall.

(4) The crystallinity distribution and evolution during the injection molding process was

also simulated.



CHAPTER 4

A MODEL FOR STRESS-INDUCED CRYSTALLIZATION
KINETICS OF POLYMERS

Polymer processing always involves the application of shear or deformation and heat to

transform the polymeric material into various shaped products. As a result, the products

exhibit different microstructures at different locations. The mechanical properties of the

product strongly depend on the microstructure of the material. Thus, it is important to

take into account the structure development during the modeling of the processing

operations. The kinetics of crystallization of polymers in quiescent state, i. e. in the

absence of stress and flow, has received extensive investigation (Chan and Isayev, 1992,

1994; Eder et al., 1983; Hammani and Methrotra 1995; Hammani and Spruiell, 1995; Liu

et al., 1997; Schneider and Koppel, 1988). And there have been theoretical models to

describe the quiescent state crystallization, either isothermally (Avrami 1939, 1940,

1941; Hoffman et al., 1976) or non-isothermally (Nakamura et al., 1972). There have

been some experimental studies on the stress-induced crystallinity in thermoplastics

(Haas and Maxwell, 1969; Kim and Kim, 1993; Liedauer et al., 1993; Moitzi and

Skalicky, 1993; Sherwood and Price, 1978; Stein, 1976; Narh et al., 1995b). However,

due to the difficulties involved in the experimental measurement of the stress induced

crystallization process, there has been no thorough study of the effect of shear or stress on

the crystallization process in polymers. There have been some theoretical models to

analyze the stress induced crystallization process (Eder et al., 1988). However, it is very

difficult to incorporate the theoretical models into the modeling of real process. Some of

the models used in the numerical process modeling are based solely on empirical model

(Hsiung and C akmak, 1991).
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In the present studies, a stress induced crystallization model is proposed based on

the kinetics of quiescent state crystallization. The model is based on the hypothesis that

the equilibrium melting temperature will shift to higher temperatures in the stressed or

oriented state.

It is important to note the following relative to the fountain flow:

(1) It certainly takes place during the mold filling process and may be "

reasonably" simulated.

(2) By its very nature it forces the fluid near the advancing front to undergo

extensional flow.

(3) The orientation induced because of such extensional flow is "frozen in"

because of the contact of the melt with the cold wall, forming a "skin" with

high orientation for amorphous polymers or of unique, nucleation dominated

crystallizing morphology for crystallizing polymers.

(4) The skin region may have, as a result, distinct mechanical properties affecting

the injection molded product properties.

Despite the above, it is also noted here that no experimental or theoretical work

has been conducted to relate the effect of extensional flow on crystallization kinetics, that

is, there is no extensional flow induced crystallization studies analogous to the work

conducted in bi-conical flow (Tan and Gogos, 1976) or parallel plate flow (Nark et al.

1995a). It is for this reason that we decided to neglect the fountain flow entirely, noting

that our simulation results do not hold for the skin region, rather than to produce fictitious

results or results which were obtained under shear flows.
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4.1 Crystallization in Quiescent State

The Avrami equation (Avrami, 1941) has been widely used to describe polymer

crystallization kinetics under isothermal conditions in the form:

where, 0(t) is the relative crystallinity at time t, x(t) is the absolute crystallinity at time t,

% co is the ultimate absolute crystallinity, n is the Avrami index, k is the Avrami

isothermal crystallization rate of constant.

The Avrami equation (4.1) did not consider the induction time for the

crystallization process in polymers. An empirical relation between induction time t i and

crystallization temperature T is generally used (Godovsky and Slonimsky, 1974):

where 6, and a are material constants, T is the crystallization temperature, ti the induction

time at temperature T and Tm° the equilibrium melting temperature.

For non-isothermal conditions, on the basis of isokinetic conditions and the

assumption that the number of activated nuclei is a constant, Nakamura et al. (1972)

developed the following equation from the Avrami theory:
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where K(T) is the non-isothermal crystallization rate constant. Its relationship to the

Avrami isothermal crystallization rate constant k can be expressed in the form:

indicates the overall rate of isothermal

crystallization. Assuming that the number of nucleation sites is independent of

temperature and all sites are activated at the same time, Hoffman et al. (1976) developed

the following expression to describe the overall rate of crystallization as a function of

temperature:

where T is the crystallization temperature, R is the universal gas constant, AT = T m° — T

is a correction factor accounting for the

reduction in the latent heat of fusion as the temperature is decreased, u* is the activation
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energy for the transport of crystallizing units across the phase boundary, T∞ is the

temperature under which such transport ceases, Kg the spherulite growth rate. According

to Hoffman et al. (1976), the parameters U * and Too can be assigned "universal" values of

6284 J/mol and Tg — 30K, respectively. Tg is the glass transition temperature. The

a pre-exponential factor that includes all the terms which are

independent of temperature.

The original Nakamura equation did not consider the induction time for

nucleation. Sifleet et al. (1973) suggested that "during a non-isothermal process any

amount of time spent at a temperature increased the relative completion of the induction

time by the amount of that time spent divided by the induction time at that temperature."

When the accumulated induction time index (T) reaches unity, the induction period is

assumed to have been completed and the crystallization begins. Mathematically, this can

be expressed in the form:

where t i (T) is the isothermal induction time as a function of temperature. When (I)

reaches unity, the upper limit of integration is taken as the non-isothermal induction time

t 1 . In this approach, one essentially assumes that the non-isothermal process during the

induction period consists of many infinitesimal isothermal steps.
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Differentiation of Eq. (4.3) leads to the differential form of Nakamura equation:

which is more useful in process modeling.

The spontaneous formation of nuclei is not considered in Eq. (4.7), which gives a

zero initial rate of crystallization, resulting in a zero solution. Therefore, a non-zero initial

condition is required for a successful numerical treatment of Eq. (4.7). The non-zero

initial value of relative crystallinity should be small enough so that it has no direct effect

on the final solutions, generally in the range of 10 -1040-15 (Patel and Spruiell, 1991).

4.2 Determination of Parameters for Quiescent State Crystallization

The parameters involved in the crystallization kinetics equation (4.5) can be determined

experimentally. Narh et al. (1995a) conducted extensive experimental investigations on

the kinetics of crystallization, including isothermal and non-isothermal crystallization of

polyethylene terephthalate (PET). The experimental data used in the present studies are

based on those experimental results.

4.2.1. Brief Description of the Experiment

The material used was polyethylene terephthalate (PET) resin (Kodapak 7532) supplied

by Tennessee-Eastman. The isothermal and non-isothermal crystallization kinetic studies

were carried out using a differential scanning calorimeter (DSC). All the samples were

pre-dried in a vacuum oven at 120 °C for about 24 hours. Then, the samples were first
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heated up to 300°C and kept for about 10 minutes in the DSC cell to completely melt any

remaining crystals, and remove any orientation history. Isothermal crystallization

experiment runs were carried out in the temperature range of 115-230°C. The melted

samples were cooled down rapidly to the crystallization temperature and kept under that

temperature for a desired period of time.

4.2.2 Determination of the Kinetics Parameters Using Experimental Data

By assigning the 'universal values' to U* and T. suggested by Hoffman et al. (Hoffman et

and Kg , which need to be

determined. It is generally suggested (Chan and Isayev 1992) that a non-linear regression

method is to be used to fit the experimental data by Eq. (4.5). The fitted values of the two

parameters under isothermal condition according to Eq. (4.4) and Eq. (4.5) are

represented by the solid line in Fig. 4.1, in which

Kg=3 .83 x105 (K2) are used.

The Avrami index was obtained by plotting ln[-ln(1-θ)] vs ln(t). The slopes of the

plotted lines are the Avrami indexes. Figure 4.2 shows reproduction of the experimental

results, and the regression plots. The Avrami index so obtained was in the range 1.5-2.5

(Nark et al., 1995a). In the modeling of crystallization kinetics, an average value of n=2

is used.
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The parameters involved in the induction time (Eq. 4.2) can be obtained from

literature. Chan and Isayev (1992) have carried out similar experimental studies using the

same grade of PET. By fitting Eq. (4.2) with their experimental data, the following

constants were obtained:

For the non-isothermal conditions, the differential form of the Nakamura equation

(4.7) can be used with the isothermal parameters. Figure 4.3 shows the predicted results

from the isothermal parameters compared with the experimental results at various cooling

rates. It is clear that the calculated results show a good agreement with the experimental

data.
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Figure 4.1 Plot of isothermal crystallization rate constant as a function of temperature.

Solid circles represent the experimental data (Nark et al. 1995a).

The solid line represents the best fit according to

equations (4.4) and (4.5).
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Figure 4.2 Avrami plots for isothermal crystallization of PET at various temperatures.



Figure 4.3 Comparison of prediction result using isothermal parameters with the
experimental data: lines are predictions, points are experimental results.

41
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4.3 Shear Induced Crystallization

All plastics processing operations involve the application of heat and stress, resulting in

deformation of the polymer melt, often at a high shear rate. Due to the unique, long chain

nature of the molecules of polymers, deformation of the melt will result in molecular

orientations. This orientation process when acting during crystallization may affect the

rate of crystallization and the morphology of the final product. The following discussion

is based on the paper of Haas and Maxwell (1969).

A polymer melt at rest consists of coiled and intercoiled molecules which assume

a "most random" set of conformations which maximize their entropy. The application of

shear stress to the melt will result in the chain orientation of the polymer molecular

chains. From statistical mechanics, it is known that an oriented polymer molecule has

fewer possible conformations than a coiled one and, therefore, a lower entropy, i.e.,

where Su, is the entropy of the melt, km Boatsman's constant, and Q number of

conformations of the molecules.

At the equilibrium melting temperature, the Gibbs free energy of the crystal equals

the free energy of the amorphous melt so that the melting temperature may be written as:
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where Al-If is the heat of fusion; ΔSf is the entropy of fusion; H. and H, are the

enthalpies of the amorphous melt and crystalline phases, respectively; S„, and S, are the

entropies of the melt and crystalline phases, respectively.

For an oriented melt, the decrease in entropy may be considered to increase the

melting temperature and, therefore, the supercooling. Flory (1956) has applied this idea

to the thermodynamics of a cross-linked system subjected to a tensile force by

considering a model of axially oriented crystalline regions coexisting with an amorphous

zone. Applying the requirement of thermodynamic equilibrium between the two phases,

an expression was derived which predicts that the melting temperature increases with an

increase in the applied tensile stress.

The polymer melt during crystallization under shear flow can be treated as a

system of two independent phases (Krigbaum and Roe, 1964). Assuming that the free

energy of the crystalline phase was independent of the shear strain so that:

where G, and G. are the Gibbs free energy of the crystalline phase and melt phase,

respectively. Then, we arrive at the following relationship:
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When a polymer melt is deformed, a portion of the energy is dissipated in viscous

flow and the remainder elastically stored. The left hand member of the above equation

represents the stored energy, and for shear, may be written as:

where y is the elastic or recoverable shear strain. The integral can be approximated by

assuming Hooke's law in shear, i.e., τ=Gγ, where G is the elastic shear modulus. Then

Eq. (4.11) becomes:

The first term on the right side can be thought of as the increase in the equilibrium

melting temperature, that is:

If it is assumed that the effect of stress on the kinetics of crystallization is only to

increase the equilibrium melting temperature, i. e., by increasing the supercooling, then,

by replacing t), in Eq. (4.5) by Tm as expressed in Eq.(4.13), we can rewrite Eq.(4.5) as:
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where:

have the same meanings as in equation (4.5). They are independent of

stress.

The effect of shear stress on the induction time can also be obtained by replacing

the equilibrium melting temperature in Eq. (4.2) with the increased equilibrium melting

temperature, Tm , from Eq.(4.17):

There have been experimental results to support the shift of equilibrium melting

temperature by the effect of shear stress. In the work of Tan and Gogos (1979) on the

crystallization behavior of polyethylene (PE) above its melting point, it was pointed out

that a better fitting of the experimental data to the kinetic theory could be obtained by
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shifting the equilibrium melting point to a higher temperature. For PE, a shift from 140.5

°C to 160 °C was recommended. And the authors also suggested that the best fit might be

obtained by a functional relationship between the equilibrium melting temperature shift

and shear stress. However, no model was proposed by these authors.

4.4 Determination of Parameters for the Kinetics of Stress Induced Crystallization

Since it is very difficult to follow the stress induced crystallization process, the efforts to

investigate the effect of stress on the kinetics of crystallization have been scarce. By

assuming that shear stress only affects the equilibrium melting point of the polymer, the

parameters needed to be determined in the stress induced crystallization kinetics are kept

to a minimum. Consequently, it is possible to model stress induced crystallization with

the available experimental methods.

Equation (4.14) is based on the assumption that shear modulus is independent of

applied shear stress. However, the relationship between the shear modulus and shear

stress in a polymer is very complicated. Therefore, the equilibrium melting temperature

shift may not necessarily follow the quadratic function expressed in Eq. (4.14).

At low shear stresses, the polymer molecules do not receive enough energy for

their chains to extend. Hence, there is usually a critical stress or shear rate for the

orientation of the molecules (Eder et al., 1988). The effect of shear stress on the

crystallization process is prominent only when the stress exceeds a critical stress

(Titomanlio et al., 1997). However, in an extremely high stress range, when the

molecules are fully extended, any further increase in shear stress will not cause further

orientation of the polymer molecules. The effect of stress on the crystallization process in
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a high stress range should tend to a constant value. Consequently, we propose that the

relationship between the equilibrium melting temperature shift and the shear stress T, is

of the form:

where C 1 and C2 are material constants that can be determined by experiment.

Rotational viscometer is a common device used to study flow-induced

crystallization in polymer melts (Titomanlio et al., 1994; Eder et al., 1989; Narh et al.,

1995b). In the parallel plate rotational viscometer, constant shear is applied to the melt at

constant temperatures by the relative rotation of the plates. The sudden rise in viscosity

with time was interpreted as the onset of crystallization. Figure 4.4 shows typical stress-

time plots for PET melt subjected to rotational shear (Narh et al., 1995b). The sudden rise

in the stress-time plot gives us the critical time (induction time) for the onset of

crystallization. This critical time can be used to determine the constants in Eq. (4.20).

Table 4.1 lists the induction time for two shear rates at two different temperatures. The

following formulation is used to derive the equilibrium melting temperature shift.

From Eq. (4.19), we have:



Then:
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Figure 4.4 Shear stress versus shear time showing the effect of shear rate and
temperature on the onset of crystallization (Nark et al., 1995b): (a) shows the shear

dependence and (b) shows the temperature dependence.
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The parameters tm and a are chosen from the results of Chan and Isayev (1992)

for the same grade of PET, which give t m = 4.68 x 10 13 s and a=6.40. The calculated

values of Tshift are listed in table 4.1.

The constants c, and C2 can be obtained by fitting the experimental results with

Eq. (4.20). Figure 4.5 shows the best fitting result with the following constants:

Table 4.1 Equilibrium temperature shift with the shear stress

Temperature (°C) Shear stress (Pa) ti (s) Tshift (°C)

230 14000 40 26.8

230 4500 133 13.9

240 6000 175 21.82

Figure 4.6 shows the effect of stress on the rate of crystallization of PET. It is

clear that the shear stress increases the rate of crystallization. The distribution of the

crystallization rate constant is broadened by the effect of shear stress. The highest

crystallization rate shifts to higher temperatures. Figure 4.7 shows the crystallization

process with and without the application of stress under constant cooling rate of 20

°C/min. It can be seen that the crystallization process is completed at a higher

temperature and a faster rate in the stressed state than in the quiescent state.



Figure 4.5 Temperature shift as a function of shear stress: data points are calculated form
the experimental work of Narh (1995b), line is the best fitting result
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The results of the present model are compared with Hsiung and Cakmak's

empirical model (Hsiung and Cakmak, 1991) of stress-induced crystallization of

polyphenylene sulfide (PPS). The equilibrium melting temperature shifts are obtained by

fitting the present model to the same highest crystallization rate temperature as that in

Hsiung's model. Using this approach, the following parameter values in the present

model were obtained:

Figure 4.8 shows the comparison of the two models. Figure 4.9 shows the

equilibrium melting temperature shift with the effect of shear stress according to the data

given by Hsiung and Cakmak for PPS. It can be seen that the proposed model shows

good agreement with Hsiung and Cakmak's model, except that the proposed model shows

the broadened distribution not only towards higher temperatures but also towards low

temperatures. Compared with Hsiung and Cakmak's model, the proposed model also

shows increased crystallization kinetics at low temperature range.



Figure 4.6 Kinetics of crystallization of PET under effect of shear stress.
The results show the crystallization process shift to higher temperatures with increased

crystallization rate
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Figure 4.7 Crystallization process of PET with/without the application of shear stress
under constant cooling rate of 20 °C/min



Figure 4.8 Comparison of Hsiung and Cakmak's model with present model.
Dotted lines are Hsiung and Cakmak's model; solid lines are present model with the

parameters obtained from Hsiung and Cakmak (1991).
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Figure 4.9 Equilibrium melting temperature shift with shear stress from Hsiung and
Cakmak's model for PPS (solid points). Solid line represents the fitting function given by:
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4.5 Summary

The proposed model is based on the hypothesis that the orientation of the polymeric

chains caused by the shear stress lowers the entropy of the polymer, and, hence increases

the equilibrium melting temperature and the supercooling. The model predicts that the

application of shear stress not only increases the rate of crystallization, but also broadens

the crystallization temperature range. The temperature corresponding to the highest

crystallization rate shifts to higher temperatures with increasing shear stress. Since it is

assumed that the effect of shear stress on the crystallization process is by increasing the

supercooling, the basic kinetics equation by Hoffman et al (1976) is not changed and the

parameters needed to be determined are kept to a minimum. This will certainly reduce the

complexity of the modeling of the stress-induced crystallization process, which is

generally very difficult to follow. Simple experimental methods such as rotational

viscometer can be used to determine the parameters for the temperature shift model.

As stated in Chapter 1, elongational flow during the mold filling stage is the

major cause of molecular orientation in the surface layer in injection molded plastic

articles. The proposed model did not consider the elongational flow effect on the kinetics

of crystallization. The main reason is that the no technique to measure the elongational

flow effect on the kinetics of crystallization of plastics is available; nor is there a

theoretical study for extensional flow. Thus, the application of the model to the injection

molding process will fail to predict the crystallinity in the surface layer. However, due to

the fast cooling in the skin layer, the melt temperature may fall below the crystallization

temperature in a short time, and no significant amount of crystallinity forms. This is

especially true for slow crystallizing thermoplastics molding in molds with temperature
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below or near their glass transition temperature. On the other hand, the high elongational

flow orientation surface layer will still be present of effect in a small portion of the

thickness. The molecular orientational crystallization in the other portion across the

thickness is mainly shear induced.



CHAPTER 5

MELT FRONT TRACKING TECHNIQUE

5.1 Problem Statement

The major challenge in modeling the mold filling stage is to accurately track the flow

fronts. In the mold filling stage, two flow regimes can be distinguished: the main flow

domain, and a front flow. The fountain effect occurs in the front flow, while a simple 2D

flow exists only in the main flow. There are a number of techniques that have been

presented in the literature dealing with free boundary problems. Marker-And-Cell (MAC)

method (Harlow and Welch 1965) is a finite difference method. In MAC, every mesh cell

in the flow field is marked with a flag that indicates the status of the cell: for example, E

stands for the empty cell that needs to be filled, S represents the surface cell, B represents

the boundary cell. The flow front is some where in the surface cell. This technique has

been applied to the analysis of injection molding process (Domine and Gogos 1980;

Manzione 1981; Gogos and Huang 1986; Kamal, Chu et al. 1986). The volume of fluid

method (VOF) by Hirt and Nichols (1981) defines a function F(x,y,t) that is equal to

unity at any point occupied by fluid and zero elsewhere, and the discontinuity in F

propagates according to the pure convection equation:

which states that the interface is a material line. For the purpose of calculations, the

interface is approximated by a straight line through the element or cell. This method has

been used to simulate the injection molding processes (Isayev, 1991), as well as the gas-
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assisted injection molding process (Gao, 1997), in which the gas penetration can also be

tracked by VOF.

In the present studies, a pseudo-concentration technique derived from the VOF

method is employed to track the flow front advancement. Using concentrations to follow

the movement of an interface between two immiscible fluids was first used in the

simulation of fluid flows associated with oil reservoirs (Argyris, 1984). Later on,

Thompson (1986) extended this technique to the transient viscous flow analysis by

assigning appropriate concentration values (pseudo-concentration) to the empty regions.

A number of examples were presented, including injection molding and forging

problems. The pseudo-concentration technique has been successfully applied to a metal

casting problem (Usmani, 1992). Most recently, Hetu et al. (1998) used pseudo-

concentration technique to simulate the filling stage in injection molding process with 3D

finite element method. This approach was implemented in a fixed mesh system with flow

fronts passing through it. An imaginary pseudo-concentration function F is assigned to

the flow field, in which a critical value, F, , represents the interface between the melt front

and the vacant mold cavity. The transport of pseudo-concentration F is expressed in the

Eulerian representation by Eq. (5.1)

The melt front position is explicitly expressed by the pseudo-concentration. For

example, the region of F > F, is filled with polymer melt, and the in the region of

F < F, , the mold cavity is empty and need to be filled. The melt front is represented by

F = . The flow field for a pseudo-concentration technique is shown in figure 5.1



Figure 5.1 Representation of the flow field for pseudo-concentration technique

In order to model the flow of a fluid using a pseudo-concentration approach, it is

necessary to define the fluid properties throughout the entire mesh and have it transported

by an artificial fluid in regions where the real fluid is not present. It is possible to specify

a viscosity for the artificial material to be low enough to ensure that its presence has no

effect on the motion of the real fluid. Because the empty region is filled with air, the flow

properties of air can be used. An alternate approach is to assign imaginary values of flow

properties to the pseudo fluid. The imaginary values should be small enough so that no

significant error occurs in the result. However, if too low a value is specified for the

viscosity of the artificial fluid, the finite element equations become ill-conditioned.

Generally, the suitable values of the viscosity of the artificial fluid should be two or three

orders of magnitude smaller than the viscosity of real fluid without a noticeable

difference in the resulting flow pattern.
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The main advantage of the pseudo-concentration technique is that no special

treatment is needed to deal with the melt front. The boundary conditions in the melt front

are implicitly incorporated into the momentum equations. The position of the flow fronts

is obtained directly by solving the hyperbolic equation. There is no need for treatment of

special cases or the need to define how the volumes are filled.

The following boundary and initial conditions can be assigned for the transport

equation of pseudo-concentration as follows:

where d represents the distance between the flow region and the melt front.

In the region where F < Fe , i. e. the empty region, a sufficiently small value for

the material property is used, usually two or three order less than that of the real polymer

melts. For example, the viscosity of polymer melt is usually in the order of

10 2 —10 7 Pa • s and the density is in the order of 10 3 kg I m 3 . The appropriate values for

the pseudo-fluid are p = 1kg I 7n 3 , ij =1Pa • s .

The transport equation of F (Eq. 5.1) is a hyperbolic equation. The velocity field

has direct influence on the transport of F. If the velocity is zero in some portions of flow

field, then, by definition, F is not conveyed in such area. If no slip conditions are imposed

on the mold walls, then the velocity field is such that F in these areas will be given by a

solution at t=0. In other words, the value of F near the walls will not change as the fluid

fills the cavity. The use of non-slip boundary conditions on the cavity walls, applied to
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the polymer melt and pseudo-liquid, leads to unrealistic solutions where the melt would

never touch the walls. Therefore, the boundary conditions for the vacant portion should

be modified. In the present studies, a non-slip boundary condition will be imposed on the

filled portion. In the pseudo-fluid portion of the mold cavity, the pseudo-fluid is free to

move and leave the mold cavity by the advancing fluid. Mathematically, these can be

expressed as:

where n is the outward normal direction of the boundaries, a the stress tensor and p the

pressure.

5.2 F-Smoothing Technique

For a given F representation, one may obtain transport of F over a number of time steps

without redefinition of F. When the variations of F in the neighboring zone of melt front

become less smooth, it is necessary to redefine F. This treatment is called the smoothing

of F. It involves:

1. Representation of abrupt melt front (melt-air interface) by a smoother function (F-

space) via the introduction of F-values having smooth variations over the melt-air

zones. A particular value of F, called the cut-off value F, , defines the melt-air surface.

The variation of F is a linear function of minimum distance from the melt front,

F > F, in the filled zone and F < F, in the unfilled zone.
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2. Transport of the melt front in F space by solving Eq. (5.1)

3. Tracking the new melt front from the transported values of F

4. If necessary, redefine the values of F (smoothing)

In this study, the values of F are updated at each time step in order to avoid error

accumulation in the F values. The slope of F is adjusted as follows:

where A is positive for a node in the filled region and negative in the unfilled region. d is

the distance of the node to the melt front. The redefinition of F is shown in Figure 5.2.

Figure 5.2 Smoothing and updating of the F-space
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5.3 Special Treatment during Advancement of Melt Front

Using the above pseudo-concentration method to simulate the advancement of melt front

during the filling stage, it is should be noted that the non-slip boundary condition can not

be strictly applied on the point of melt front that contacts the wall, as shown in figure 5.3.

This point is called triple point, at which melt, air (pseudo-fluid) and wall meet together.

If the non-slip condition is imposed on this point, the values of F near this point will not

change as the polymer melt fills the cavity. It is generally accepted that the triple point

actually slides along the mold wall within a small distance of the interface. The length

that is allowed to freely move along the wall will affect the shape of the melt front.

Figure 5.3 Triple points

Figure 5.4 shows the melt front advancement during the filling process at a time

interval of about 0.0075 seconds with the non slip boundary condition applied to the

triple point. The melt front curve remains in contact with the wall at the initial position,

and will not move forward. Figure 5.5 shows the melt front advancement under the
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condition that the free slip length within the contact point is 0.1 cm, at which the node

closest to the triple point is set to be free to slip. If the length is increased to 0.2 cm,

about 2 wall nodes near the triple point in the melt is free to slide, the melt front curve

becomes flatter. Therefore, the selection of the free slipping length has influence on the

final solution, and must be carefully determined. According to the test computation of the

filling problem, a suitable selection of the free slipping length is about one element long.

Figure 5.4 Non-slip condition at the triple point shows no advancement at the contact

point



Figure 5.5 Melt Front Advancement with 0.1 cm free slip length apart from the triple
point
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Figure 5.6 Melt front advancement with 0.2 cm free slip length



CHAPTER 6

MATHEMATICAL MODEL

6.1 Hypothesis and Assumptions

The hypothesis upon which this dissertation study is based presupposes that stress

relaxation of high molecular weight polymers has a significant effect on the

crystallization kinetics of semicrystalline polymers during the injection molding process.

In particular, it is hypothesized that shear stresses have a significant effect on the

crystallization in the filling stages of the injection molding process. However, the

relaxation of stress during the cooling stages implies a decreased effect of stress on the

kinetics of crystallization. Therefore, a realistic model of stress-induced crystallization

should also consider the effect of stress relaxation to test the above hypothesis. The

following assumptions are made:

(1) Polymer melts are incompressible fluids.

(2) The viscosity of polymer melt is very high. The gravity force and acceleration

force are very small compared with the viscous force, and will be neglected.

(3) At every time instant, the flow is thought of as steady flow. The flow region for

the next time step is obtained from the velocity field of last time step.

(4) The stress developed during the flow has significant effect on the crystallization

process.

(5)	 During the post filling stage, the stress relaxation phenomenon follows a

prescribed model.
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6.2 Governing Equations

Most injection molded plastics products are of thin thickness. The shear rate and shear

stress during injection molding process change dramatically across the thickness,

resulting in multi-layer morphologies in the final product, especially for the semi-

crystalline polymers. Consequently, a simple geometry slit cavity with half thickness of h

(Fig. 6.1) is considered in this study.

Figure 6.1 Mold cavity dimensions
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Figure 6.2 Calculation domain

Assuming that the width of the cavity is much larger than its thickness, transverse

flow across the width (z direction in figure 6.1) can be neglected. The fountain flow

phenomenon during the injection molding process will be considered, because it will

influence the material transportation and temperature distribution, as well as shear stress

and, the crystallinity distribution.

In general, the governing equations for a fluid flow problem are expressed by the

conservation equations of momentum (known as Stokes equations), mass and energy. For

the problem specified above, the governing equations can be simplified as follows:

Momentum Equation:



Continuity Equation:

where x and y represent the flow direction and thickness direction, respectively. u and v

are the velocities in x and y directions. P is pressure, η  apparent shear viscosity.

The flow in the mold cavity during the injection molding process is a transient

process in the sense that both the flow velocity and flow region change with time. Time

derivatives should, therefore, be included in the governing equations. This will certainly

increase the complexity of the problem. For such a problem, an efficient method is using

a quasi-steady treatment: At any instant, the flow region is considered to be constant, and

the flow is assumed to be a steady state flow at this instant. The are computed according

to the steady state boundary conditions, and the flow field for next time step is calculated

according to the velocity results of the present time.

Since the dimensions in transverse and flow directions are much greater than the

thickness, the heat conduction in the thickness is much more important than in the other

two directions. Therefore, for the energy equation, only the heat conduction in thickness

direction is considered. The energy equation was simplified as:
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where p, Cp , Kh and Cc are density, heat capacity, thermal conductivity, and

heat of crystallization, respectively, B the rate of relative crystallization during the

flow. r is the shear rate tensor and shear stress tensor, V V the velocity gradient of the

flow field. ( T : V V) represents the viscous dissipation rate during the flow with τ=ηγ .

iris the shear rate tensor of the flow field:

and

The viscous dissipation term in Eq. (6.3) can be further simplified by assuming

that the velocity gradient and shear rate along the thickness direction is a dominant factor

for viscous dissipation compared with other components, that is:

Therefore,

with
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On the basis that some crystallinity is generated during the injection process, the

heat released by the crystallization process should be included in the formulation - as

expressed by the last term in the energy equation.

6.3 Initial and Boundary Conditions

At the mold inlet, it is assumed that the melt enters the mold with a constant temperature,

To , and a fully developed velocity profile for a power law fluid:

is the power law index. w and h are the width and thickness of the

mold cavity.

If the melt comes in contact with the wall of the mold, non-slip condition applies:
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It is generally assumed that once the melt contacts the mold wall, it will maintain

the mold temperature. However, the contact can never be perfect and heat resistance

inevitably exists between the mold wall and polymers melt. According to the recent study

by Sridhar (1998), the thermal contact resistance (TCR) between PET and the mold metal

is in the range of 10 -5 —10 -3 m 2 • K /W . Therefore, the boundary condition for the energy

equation at the mold wall should have the form:

where R h is the heat resistance between the melt and mold wall, Tw the wall temperature,

Kh the thermal conductivity of the polymer melt.

At the central line of the mold cavity, symmetric conditions are used:

As stated in Chapter 5, the unfilled region in the mold cavity is represented by

pseudo-fluid. The boundary conditions on the pseudo-fluid should be chosen in such a
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way that they have little effect on the progress of the filled region. On the wall, there is

no restriction for the pseudo-fluid to move. On the other end of the mold, the pseudo-

fluid is free to leave for the melt to fill the mold cavity. The boundary conditions are

illustrated in figure 6.3.

Figure 6.3 Boundary conditions for the mold flow analysis using
pseudo-concentration technique

6.4 The Rheological Model

Polymer viscosity is the most important property used in flow simulations. Most

polymers exhibit two regimes of flow behavior, Newtonian and shear-thinning.

Newtonian behavior occurs at low shear rates. With increasing the shear rate, the

viscosity tends to decrease in what is termed a shear-thinning behavior.

To incorporate the dependence of melt viscosity on shear rate, temperature and

pressure, the following five constant (n, τ ,B,Tb, β), Cross-exponential model is

adequate for simulating the filling stage in injection molding:
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where 77 0 is the zero shear rate viscosity at a reference temperature To , n the power law

index, Tb the material constants, which represent the effect of temperature on viscosity,

and y the shear rate; r * is the shear stress at which shear thinning begins; p is the factor

that accounts for the effect of pressure on the melt viscosity. All the parameters involved

in the model can be obtained by either experiment or from the literature.

The Cross-exponential model treats polymer viscosity as a function of

temperature and shear rate. It handles both the Newtonian and the shear-thinning flow

regimes found in polymer rheology. Unlike many other models in present use, the

constants of the Cross-exponential model do have a physical significance. The transition

between the two regimes is characterized by r * , while the slope of the shear-thinning

curve is characterized by (1—

Crystallization during the filling stage may lead to an increase in viscosity of the

polymer melt and influence the mold filling process. To consider the effect of

crystallinity on the rheological properties of the polymer melt, the model proposed by

Titomanlio et al (1997) is adopted to describe the effect of crystallinity upon viscosity:
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is the viscosity with no

crystallinity as expressed by Eq. (6.10a), f h, m are material constants that can be

estimated from experimental data.

6.5 Transport Equations of Induction Time Index and Crystallinity

If some crystals are formed during the filling stage, then it is inevitably that the crystals

formed would be transported with the flow field. Similarly, the accumulated induction

time index would be transported with the flow field. Therefore, two extra equations

governing the transportation of the induction time index and crystallinity should be

included.

From Eq. (4.6), the term inside the integral can be thought of as the accumulation

rate of induction time index. Therefore, the transportation model of the induction time

index in a flow field takes the form:

where ti (T, r) is the non-isothermal induction time at stressed state as expressed in Eq.

(4.19).

The transportation equation of the crystallinity in a flow field takes the form:
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The right hand of Eq. (6.13) is the relative crystallization rate as expressed in Eq. (4.7)

6.6 Governing Equations for Post Filling Stage

In the post filling stage, the mold cavity is completely filled and the melt flow

ceases. The problem is reduced to a pure heat transfer problem and the governing energy

equation is reduced to the following energy equation:

The initial conditions for the energy equation of the post filling stage are the

temperature distribution at the end of filling stage.

6.7 Stress Relaxation Model

During the cooling stage, both stress and molecular orientation undergo a relaxation

process. The stresses developed during the filling stage decrease with time and eventually

vanish. Therefore, the effect of stress on the crystallization process in the mold cavity

does not last for the whole cycle time. In the regions that the polymeric material is still in

the molten state after filling, the stresses may vanish as long as the flow stops, since the

stress relaxation time for molten polymer is in the order of 10 -2 —10 -3 seconds. However,

in the skin layer, the stress may be frozen-in by the fast cooling of the cold mold wall. To
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consider the effect of stress on the crystallization kinetics in injection molding, the stress

relaxation process should be included.

The stress relaxation behavior of polymers can be expressed by a simple Maxwell

model:

where τo is the initial stress, X is the relaxation time. In the case of injection molding, the

stresses at the end of filling can be taken as the initial shear stresses for Eq. (6.14).

The stress relaxation time k is a material constant that is strongly temperature

dependent. The well-known William-Landel-Ferry (WLF) (Ferry, 1980) shift model was

used to model the relationship between the relaxation time and temperature:

where B 1 and B2 are material constants; Ts the reference temperature, and .1, 0 the

relaxation time at the reference temperature.

The WFL model is valid only in the temperature range Tg < T < Tg + 100 ° C . The

polymer temperature in injection molding process is outside this range. The relaxation

information of most materials is generally not available near the processing temperatures.

To demonstrate the effect of stress relaxation on the crystallization kinetics, a set of trial

value of the constants in the WFL model is used, based on the fact that most amorphous

thermoplastics have similar relaxation behavior (Osswald, 1995).



CHAPTER 7

FINITE ELEMENT EQUATION FORMULATION

7.1 Introduction

The finite element method solution of Stokes equations and continuity equation requires

the solution of a large number of linear equations. There are several methods to reduce

the number of equations involved in the computation. The most used method is penalty

function method. In the penalty function method, a small perturbation related to pressure

is introduced into the continuity equation. By substituting the pressure in the Navier-

Stokes equations with the pressure from the perturbed continuity equation, the pressure in

the Navier-Stokes equation is eliminated. The penalty function method may reduce

equations of the system by the number of pressure nodes. For a large system, this

reduction can save considerable computation time.

Penalty function method is usually combined with discontinuous pressure

elements (Crouzeix-Raviart elements) (Cuvelier,1986). Figure 7.1 shows two kind of

Crouzeix-Raviart elements used in the simulation. The 7-node triangular element is called

extended quadratic element. There is only one pressure node in the element, which is

located in the centroid of the element. The pressure in the element is linear and the

interpolation function of the pressure includes two derivatives:

where, the pressure interpolation functions are:
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Although it seems that the Crouzeix-Raviart elements have more velocity nodes

than the ordinary quadratic elements, however, by appropriate manipulation of the

resultant finite element equation, the velocities and pressure derivatives in the centroid

can be eliminated. By further employing the penalty formulation, the pressure is also

eliminated. The resultant finite element equations are reduced by four.

The finite element mode for the temperature, pseudo concentration, induction

time index, and crystallinity is linear element, as illustrated in figure 7.1 (triangular

element with three nodes and rectangular element with four nodes).



Figure 7.1 Finite element model

The variables in the element can be expressed by the interpolation function for

each node:
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where the subscript i denotes the variable value in node i, and symbol 4  represents the

interpolation functions for each variable.

7.2 Finite Element Equations

7.2.1 Finite Element Equations for Velocities and Pressure

The Galerkin method is used to discretize the Navier-Stokes equations, in which a test

function, usually the interpolation function, is used to multiply the whole equation and

integrate across the whole element.

where Ω represents the element.

Integrating the above equations by parts and substituting u, v, P with equation

(7.3), the following finite element equations are obtained:



The components of the matrix involved in the element equations are as follows:
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Where ü is the area of the element, F represents the boundary of the elements, nx and ny

represent the outward normal direction cosines of the boundary. Eq. (7.10) is the second

type boundary condition.

A large number of equations are involved in Eq. (7.9). It takes a lot of computing

time and computer memory to get the numerical solutions. To reduce the number of

equations and reduce the computation time, penalty method is used in this work. In the

penalty method, the continuity equation is perturbed with a small parameter times the

pressure. Then the pressure is eliminated from the momentum equations, thus uncoupling

the momentum equations and the continuity equation. Introducing a small perturbation of
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pressure into the continuity equation (6.3) and following the same integration procedure

above, we have:

where

8 is a very small number usually in the range of 10 -8 -10 -13 . Large values of 8 may cause

significant errors in the solution, and too small values may cause the singularity of the

coefficient matrix of the equations.

Substituting into Eqs. (7.9a-b), the pressure term in the momentum equation is

thus eliminated:
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The penalty method involves the calculation of matrix D and its inverse. To take

the advantages of penalty method, matrix D should have the simplest form.

7.2.2 Finite Element Equation Formulation for Pseudo-Fluid, Temperature,
Crystallinity and Induction Time Index

The transport equations for these parameters are dominated by the advection of the flow.

If the conventional Galerkin method is used for this problem, severe oscillations are

generated. This can be improved by applying the Taylor-Galerkin method to the transport

equations. The procedure for the formulation is well documented in the literature (Usmani,

et al. 1992). The following is the resultant finite element equations:

(a) Energy Equation

(b) Pseudo-fluid transport equation:

(c) Transport of Crystallinity
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(d)	 Transport of induction time index

Since the transport equations for the pseudo-fluid, crystallinity and induction time

index are almost purely advective, only initial conditions were applied to these equations.

For the pseudo-fluid, a pre-assumed distributed F value is used as the initial value with

the cut-off value F, indicating the initial front position. For the crystallinity, since the

differential form of crystallization kinetics equation is used, a sufficiently small value

such as 10' 5 is used as the initial value. For the induction time index, the initial value is

zero.

7.3 Computation Procedure

The computation procedure includes the computation of the velocity distribution,

advancement of the melt front by solving the pseudo-fluid transport equation,

temperature calculation, induction time index computation, as well as the crystallinity

generation if the induction time index exceeds unity. Figure 7.2 shows a flow chart of the

computation procedure.
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input material and geometrical data

Determine initial front position

Determine time interval for velocity
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velocity field calculation

Temperature, Pseudo-concentration
Crystallinity and Induction time
calculation

melt front advancement

No

end

Figure 7.2 Flow chart of computation procedure

7.4 Computation Time Saving Consideration

The pseudo concentration technique treats the whole mold cavity as a complete flow

field, which is filled with polymer melt in the filled region and pseudo fluid in the empty

region. The main disadvantage is the unnecessary computation of the unfilled region
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during the early stage of mold filling, at which most of the mold cavity is empty. Since a

very small flow and thermal properties are assigned to the pseudo fluid, it has little

influence on the solution of the real flow field. The empty region that is far from the melt

front has no effect on the result of the computation. Therefore, it is reasonable to narrow

the computation region from the whole mold cavity to the filled region and a small region

near the melt front in the empty region, as illustrated in Figure 7.3. This treatment will

save a lot of computation time and not lose the accuracy of the computation.

Figure 7.3 Computation region during the filling process



CHAPTER 8

SIMULATION RESULTS AND DISCUSSION

8.1 Simulation of Injection Molding of PET

PET is an engineering thermoplastic material that has been widely used in the production

of fibers, beverage bottles, transparent films for many years. Recently, more interest has

risen for the application of PET in engineering applications such as auto parts, gears and

cams. PET has higher strength and service temperature than commodity plastics like PE

and PP and it can compete with nylon and acetals in mechanical properties. PET may be

amorphous or semicrystalline, the latter can reach about 50% crystallinity in the bulk

material. Semicrystalline PET is a slow crystalline thermoplastic. The microstructure of

injection molded semicrystalline PET parts can be significantly affected by the injection

molding conditions. In this study, the injection molding of PET is simulated using the

proposed method and crystallization model.

8.1.1 Parameters Used in the Simulation

The input data for the numerical simulation of injection molding process includes the

rheological properties, thermal properties, and the constants involved in the kinetics of

crystallization equations. For most plastic materials, the material properties are

temperature dependent. To simplify the calculations, thermal conductivity Kh , material

density p, and heat capacity Cp were assumed to be of the same values in the crystalline

state and molten state. It is further assumed that Kh , p and Cp are constants that are

independent of temperature.
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The literature values of thermal conductivityK h vary from 0.14 to 0.23 J/(s-m-K).

In the work of Sridhar (1999), the experimental results showed an average of heat

conduction for PET is of about 0.17 J/(s-m-K), and this value is used in the present

simulations. The other important parameter is the thermal contact resistance (TCR)

between the plastic material and mold wall. During the filling stage, the molten polymer

melt enters the mold cavity with high speed and high pressure. The contact between the

two surfaces is almost perfect because of the deformation of the molten or soft polymer

material under high pressures. Hence the TCR at this stage is very small. However, in the

post filling stage, the polymer material cools down and the pressure in the mold decreases

rapidly. The TCR increases with the decrease of the cavity pressure. Furthermore, the

shrinkage of the plastic material during the cooling causes a small gap between the

material surface and mold wall. The gap increases with cooling time, and, therefore, the

TCR becomes greater as the molding cools down. According to the simulation result of

Sridhar (1999), the TCR during an injection molding cycle for the PET material is in the

range of 10 -5 -10^-3m-K/W, with the former value occurring in the early stage of cooling,

and the latter value at the end of cooling. In this study, an average value of TCR is used

for the calculation for cooling stage. A very small or zero TCR is used for the simulation

of filling stage. The effect of TCR on the crystallinity distribution was simulated to

address the importance of selection of the appropriate value for TCR.

The parameters and material constants used in the simulation are listed below:

(a) Constants in the Cross-exponential rheological model (Narh et al.1995a):



(b) Parameters in the quiescent state crystallization kinetics (from Chapter 4):

(c) Parameters for induction time in quiescent state (Chan and Isayev, 1992):

(d) Thermal properties:

Heat capacity: Cp =1.8 x 10 3 J/Kg • K

Thermal conductivity: IC, = 0.17 J/s • m • K

Heat of fusion of 100% crystals: C, =1.25 x 10 5 J/Kg

(e) Dimensions of mold cavity for simulation:

Length: L=20 cm, Thickness: H=3 mm, Width=1 cm

8.1.2 Crystallinity at the End of Filling Stage

During the filling stage, the polymer melt is injected into the mold cavity with high

speed. The polymer melt experiences high shear stresses and pressure. The effect of the
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shear stress on the crystallization kinetics can also be memorized by the melt and this

memory will follow the polymer melt where it flows.

Figure 8.1 shows the induction time index distribution at the end of filling with

different injection rates (Q) and mold temperatures ( Tw ). All other processing parameters

were kept constant. The induction time index is a parameter used to determine the onset

of the crystallization. When the accumulated induction time index reaches unit, it

indicates that the crystallization begins. It can be seen for Fig 8.1 that in some areas in the

mold cavity, especially near the wall area, the induction time index has reached unity.

This means that in these areas, the crystallization has already begun before or at the time

the mold cavity is filled. Near the entrance of the mold cavity, the crystallization area is

thicker than the crystallization area at the end of the mold cavity. This phenomenon may

be explained by the fountain flow during the injection stage: Near the entrance of the

mold cavity, the polymer melt absorbs on to the cavity wall first, and a thin skin layer is

formed at the early stage of the filling. In this area, the material has the longest residence

time and experiences the longest thermal and shearing history. Away from the entrance,

the polymer melt flows from the high temperature core area towards the wall area. Its

residence time is shorter than that of the materials in the skin layers near the entrance of

the mold cavity.

The effect of injection rate on the onset of crystallization in the filling stage is

clear: Although higher injection speed generates higher shear rate and shear stress, the



Figure 8.1 Induction time index distribution at the end of filling stage
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filling stage is shorter and the residence time at the crystallization temperature is also

decreased. The crystallizing area, thus, decreases with increasing injection rate and mold

temperature.

Figure 8.2 shows the crystallinity distribution with the same conditions used in

Figure 8.1. It can be seen that in some areas in the mold cavity, crystallization has already

begun during the filling stage. However, there is no significant amount of crystallinity

generated at the end of filling, either under high injection speed or low injection speed.

At very low injection rate, the maximum crystallinity is about 1%, and this is in the skin

layer near the entrance. The main reason for this is that PET is a very slow crystallizing

plastic. Its crystallization rate is very slow at the early stage of crystallization. Because

there is little amount of crystallinity generated in the filling stage, it is acceptable to

neglect the effect of crystallinity on the viscosity of the melt for slow crystallizing

plastics.



Figure 8.2 Crystallinity distribution at the end of filling stage
with different injection rates
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8.1.3 The Effect of Stress Relaxation on the Development of Crystallinity

During the cooling stage, the shear stress developed during the injection stage will

decrease due to the molecular relaxation of the polymers. Since the relaxation behavior of

polymer is not available in the wide temperature range, stress relaxation parameters in the

stress relaxation model are selected by trial-and-error to show the effect of stress on

crystallinity distribution in injection molded plastics. Figure 8.3 shows the results of four

different stress relaxation models. In plot A, the stress relaxation was not considered. The

result shows a wide range of stress induced crystallization. In plot B, it was assumed that

the stress is completely relaxed once the mold is completely filled. The stress effect in the

cooling stage was not considered. The result shows that no stress-induced crystallization

occurs. In plot C, the stress was supposed to be completely relaxed if the material is still

in the molten state once the mold cavity is filled. However, in the skin layer, no stress

relaxation is considered. The result shows that in the skin layer away from the wall

surface, there is a stress-induced crystallization layer. In plot D, a stress relaxation model

was introduced in which following parameters are used in Eq. 6.15:

The above parameters were chosen in such a way that the stress in the molten

material relaxes rapidly. B 1 and B2 are the values for most amorphous polymers

(Osswald, 1995). The results showed a stress-induced crystallization layer that is smaller

than in plot C.

Figure 8.4 shows the effect of selection of stress relaxation parameters on the

calculated crystallinity result. If too small value of .1, 0 is used, as for example A, =10 4

seconds, the result shows no difference from quiescent state crystallization. However, if
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too large value is used, the stress-induced crystallization area will extend from skin to the

core area. For the present simulation of the injection molding process of semicrystalline

plastics, the stress relaxation parameters are chosen in such a way that the stress effect is

kept inside the skin layer. For PET, A ° =10 5 — 5 x 10 5 .

Figure 8.3 Comparison of different stress relaxation models:
A: No stress relaxation is considered; B: Stress effect is not considered in cooling stage;

C: Stress remains constant in the skin layer, but relaxed completely outside skin layer;
D: Stress relaxation follows the WFL model

Injection rate: Q=5 cm' Is ; Mold temperature: 90°C



Figure 8.4 Comparison of different parameter selections for stress relaxation

Injection rate Q=5 cm' /s ; Mold temperature 90°C
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8.1.4 Effect of Injection Speed

Injection speed is a very important processing parameter. High injection speed favors

higher production rate and lower cost of the part. However, the properties of the injection

molded plastic parts are strongly affected by the injection speed. Figure 8.5 shows the

final crystallinity distribution across the thickness at the geometrical center of the

moldings. At low injection speed, the prolonged shear time produces higher crystallinity

near the surface region. Although high injection speed generates high shear stresses, the

effect on the crystallinity is offset by the short injection time. Since the polymer melt has

high temperature at the end of filling compared with the low injection speed, the shear

stress relaxes faster under high injection speed than in low injection speed. The stress

effect at high injection speed is not so pronounced compared with that at low injection

speed.

Figure 8.6 shows the skin layer build-up at the end of filling stage with different

injection speeds. The high heat convection in the flow direction at high injection speed

prevents the formation of thick skin layer. Comparing Fig. 8.6 and Fig. 8.1, one can find

that the crystallization areas in the mold cavity during the injection process are located

inside the skin layer. Outside the skin layer, the polymer is in the molten stage and at a

temperature higher than the crystallization temperature, and no crystal forms.

Figure 8.7 shows the pressure profile along the flow direction in the mold cavity

at the end of filling for different injection speeds. High mold pressure corresponds to high

injection speed. However, at extremely low injection speed, such as 0.5 cm' Is , the

pressure at the entrance of the mold is very high, exceeding the pressure for high

injection speed. This is because a very thick skin layer forms due to the very low heat
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convection at low injection rate. And the prolonged filling time causes the polymer melt

to cool down and further increase the melt viscosity. The flow channel becomes so

narrow that very high injection pressure is needed to fill the remaining region of the mold

cavity. Once the pressure exceeds the maximum injection pressure of the injection

molding machine, the mold cavity cannot be completely filled and short shot occurs.

Since little amount of crystallinity is formed during the filling stage for very slow

crystallizing plastics, such as PET, the injection pressure is not affected by the crystalline

behavior of the plastics. Simulations to incorporate the effect of crystallinity on the flow

behavior were carried out using the model proposed by Titomanlio et al. (1997).

However, no difference was observed in the final result.



Figure 8.5 Effect of injection speed on the final crystallinity distribution
across the part thickness

Material PET; Melt temperature 270°C; Mold temperature 90°C
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Figure 8.6 Skin layer thickness at the end of filling for different injection speed
PET: Melt temperature 270 °C; Mold temperature 90 °C
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Figure 8.7 Cavity pressure at the end of filling for different injection speeds
Material: PET; Melt temperature 270 °C; Mold temperature 90 °C
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8.1.5 Effect of Mold Temperature

The mold temperature is another very important processing parameter that determines the

quality of the moldings, production rate and the morphology of the final part. In the slow

crystallizing polymers, because their crystallization half times are of the same order of

magnitude as the normal cooling times encountered in a typical injection molding

process, they can exhibit unique structural gradients across the thickness direction and

along the flow direction. Figure 8.8 shows the calculated crystallinity distribution results

for different injection speeds after one minute holding time. Four different mold

temperatures ranging from below glass transition temperature Tg , near Tg , and above Tg

to crystallization temperature were used. Other parameters were kept constant.

At very low mold temperatures below the glass transition temperature Tg , the

polymer melt in the mold cavity is subjected to a fast cooling and its temperature

decreases so rapidly that no significant crystallinity forms in the final parts. In this case, a

transparent amorphous or nearly amorphous part is obtained.

In the mold temperature range well above the glass transition temperature (for

PET, Tg =73°C), there is generally a stress-induced crystallization layer, which has the

highest degree of crystallinity across the thickness. In the core area, since the stress

relaxes rapidly due to the high melt temperature at the end of filling stage, the

crystallinity formed in this region is thermal dominated crystallization.

The degree of crystallinity in the moldings is very sensitive to the mold

temperatures. Higher degree of crystallinity can be obtained with higher mold

temperature. However, for a mold temperature as high as in the crystallization
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temperature range, the thermal crystallization process is dominant and a uniformly

crystallized part is obtained.

Figure 8.9 shows the skin layer build-up at the end of filling. Figure 8.10 shows

the pressure distribution along the flow direction at the end of filling. As expected, low

mold temperature causes thick skin layer and high injection pressure.



Figure 8.8 Effect of mold temperature on the final distribution of crystallinity

Material: PET; Injection rate: Q=5 cm' /s
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Figure 8.9 Effect of mold temperature on the build-up of skin layer at
the end of filling stage

Material: PET; Injection rate: Q=5 cm' /s
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Figure 8.10 Pressure in the mold cavity under various mold temperature

Material: PET; Injection rate: Q=5 cm' Is
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8.1.6 Effect of Holding Time

The holding time in the injection molding process is defined as the period between the

end of filling and the ejection of the part from the mold. In general, longer holding time

ensures dimensional stability, and low warpage of the final part. However, long holding

time increases the production cycle time, and, therefore, reduces the production rate. The

holding time is usually chosen in such a way that the molding's temperature is low

enough to ensure that no further deformation happens after demolding. The demolding

temperature is usually below the crystallization temperature. For this reason, if the other

processing parameters are not changed, the prolonged holding time will not lead to

further crystallization in the part.

The post filling is divided into two stages: the packing stage and cooling stage. In

the packing stage, high pressure is maintained to pack in some melt to compensate for the

contraction of the polymer when it cools down. The thermal contact resistance in the

packing stage is very small due to the high pressure. However, in the cooling stage, the

pressure is released and the contact between the skin of the molding and the mold wall

becomes loose, and the thermal contact resistance (TCR) rises. The change of TCR from

low to high can influence the temperature evolution in the cavity. Longer packing time

ensures sufficient heat transfer from the melt to the cold mold, and short residence time at

the crystallization temperatures. In this case, a lower degree of crystallinity part is

obtained. Figure 8.11 shows the calculated results for different packing times with

sufficient post filling times. A very small thermal contact resistance (10 -5 m 2 — K / W) or

a perfect contact between the polymer and the mold wall was used in the calculation. A
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relatively large heat resistance value (10 -3 m 2 — K / W) was used for the cooling stage.

Figure 8. 11 Effect of packing time on the crystallinity distribution across the part
thickness at geometrical center of the molding

Injection rate: 5 cm 3 Is , Melt temperature: 270°C, Mold temperature: 90°C

TCR in packing stage: 1 x10 -5 m 2 — K I W ; TCR in cooling stage: 1 x 10 -3 m 2 — K I W



112

8.1.7 Effect of Melt Temperature

The injection temperature is the temperature at which the polymer melt is injected into

the mold cavity. The melt temperature is usually in the range 30-40°C above the melting

point of the polymer. The higher the melt temperature, the larger the shrinkage and

warpage of the injection molded part. However, high melt temperature lowers the melt

viscosity, and therefore increases the moldability of the polymer. Large and complex

shaped moldings can be easily injection molded at high melt temperatures. The melt

temperature also has some effect on the crystallinity in the final parts. Figure 8.12 shows

the crystallinity distribution across the thickness for various melt temperatures. At high

melt temperatures, since the polymer melt has high temperature at the end of filling, the

shear stress relaxes rapidly and the stress induced crystallization is not so pronounced as

in the case of low melt temperature. However, the simulation also showed that the melt

temperature has no significant effect on the crystallinity in the core area.

Figure 8.13 shows the skin layer build-up at the end of filling for different melt

temperature. As expected, the higher the melt temperature, the thinner the skin layer and

the lower the injection pressure (Figure 8. 14)



Figure 8.12 Effect of melt temperature on the final crystallinity
distribution in the final part

Injection rate: 5 cm 3 /s ; Mold temperature: 90°C
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Figure 8. 13 Effect of melt temperature on the skin layer build-up at the end of filling



Figure 8. 14 Pressure in the mold cavity at different melt temperatures
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8.1.8 The Effect of TCR

Thermal contact resistance (TCR) is the heat resistance between two contact surfaces. In

the micro vision, the material surface can never be perfect and some gap or vacant areas

exists between the contacted surfaces. This is the source of thermal resistance. In the

injection molding process, the TCR between the polymer melt and the mold wall is not

constant during the whole process. During the filling and the packing stage, high pressure

forces the melt closely contact with the wall, TCR in this stage is very small. However, in

the cooling stage, the interface gap between the molding and the mold wall increases as

the material shrinks with its temperature cools down. The TCR is a few orders larger than

the packing stage (Sridhar, 1999). The thermal resistance has significant effect on the

temperature evolution inside the mold cavity and, therefore, has influence on the final

crystallinity distribution. However, the thermal resistance is very difficult to measure, and

TCR's evolution during the injection molding process is almost impossible to monitor. In

this study, some different values are used in the simulation to show the sensitivity of the

semicrystalline plastics to TCR. The selected values are in the range suggested by Sridhar

(1999).

Figure 8.15 illustrates the effect of TCR on the final crystallinity distribution of

the injection molded part in the thickness direction. Large TCR reduces the heat transfer

rate from the material to the mold, and therefore, increases the material residence time in

the crystallization range.

The result shows that TCR is a very important factor in the simulation of

microstructure development in the injection molding parts. To accurately simulate the

injection molding process, sufficient and reliable TCR information should be used.



Figure 8.15 Effect of TCR on the crystallinity distribution
Injection rate: 5 cm' / s ; Melt temperature: 270°C; Mold temperature: 90°C
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8.2 Simulation of Stress Induced Crystallization in Injection
Molded Polypropylene

Polypropylene (PP) is a light-weight, moderately high melting temperature plastic that

finds use in the manufacture of pipe, sheet, blown-molded containers and molded parts. It

is stiffer, harder and of higher strength than many grades of polyethylene. It has excellent

fatigue resistance, and it is often used for molded parts that contain an integral hinge. PP

is a semicrystalline plastic that can reach about maximum of 50% crystallinity. PP is a

fast crystallization plastic. Figure 8.16 shows a comparison of crystallization rate

constants of PP (Titomanlio et al. 1997) and PET (Narh et al. 1995a) under quiescent

state. The crystallization rate of PP is about ten times faster than that of the PET. The

crystallinity of the injection molded PP parts is almost independent of processing

conditions. For this reason, some previous simulation works on injection molding of PP

did not consider the stress effect on the crystallization process of PP. As a result of its fast

crystallization behavior, some crystals may form during the filling stage. The formed

crystals may have significance effect on the viscosity of the melt, and hence influence the

injection molding process. Titomanlio et al. (1997) considered the effect of crystallinity

on the rheological behavior of PP for their simulations. In the packing stage, since

considerable amount of crystallinity may form at this stage, the solidification of the melts

may be significantly accelerated.

In this simulation, the focus was on the crystallization kinetics of PP in injection

molding process.



Figure 8.16 Comparison of crystallization rate of PP and PET
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8.2.1 The Material Properties of PP

The material properties used in the simulation include the rheological and thermal

properties required by the momentum and energy equations. The material constants for

the rheological properties and quiescent state crystallization kinetics are chosen from

literature (Isayev et al. 1995, Chan and Isayev 1992) and are listed as follows:

(a) Constants in the Cross-exponential rheology model:

(b) Parameters in the quiescent state crystallization kinetics:

(c) Parameters for induction time in quiescent state

(d) Thermal properties

Thermal conductivity: Kh = 0.193 W/m • K

Specific heat capacity: Cp = 2140 J/Kg • K
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Heat of fusion of 100% crystals: C, = 2.09 x 1 0 5 J/Kg

Density: p = 920 kg/m 3

(c) Parameters in the stress-induced crystallization kinetics

The constants in the stress-induced crystallization model are derived from the

experimental results of Titomanlio et al. (1997) in Figure 1.9. The approximate induction

times under different shear rates/shear stresses are listed in table 8.1

Table 8.1 Induction times and equilibrium melting point shifts of PP

Shear rate

(1/s)

Viscosity

(Pa. ․)

Shear stress

(Pa)

Induction time

(s)

Tshift

(°C)

0.6 16666 10000 320 5.38

0.3 18750 5625 500 3.536

0.1 25000 2500 800 1.675

The equilibrium melting point shifts are calculated from equation (4.22). The results are

also listed in table 8.1. The relation of equilibrium temperature shift and the shear stress

can be obtained by fitting the data in Table 8.1 to Eq. (4.20), and the resulting constants

are: C1 =10 °C, C2 =5500 Pa. Figure 8.17 shows the equilibrium melting point shift with

shear stress of PP. Figure 8.18 shows the effect of stress on the crystallization kinetics of

PP.
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Figure 8.17 Equilibrium melting temperature shift for PP as a function of shear stress



Figure 8.18 The effect of stress on the crystallization rate of iPP
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8.2.2 Filling Stage

Figure 8.19 shows the induction time index distribution at the end of filling for iPP under

various processing conditions. As we can see, the result is similar to that of PET

described in previous sections. The crystallizing layer is thicker in low injection rate and

low mold temperature, and thinner in high injection rate and high mold temperature.

Since iPP is a high crystallization rate plastic, there is considerable amount of

crystallinity generated at the end of the filling stage for low injection rate and low mold

temperatures (Fig. 8.20). As much as 5% crystallinity is formed near the entrance area. In

this case, the crystallinity may have a significant effect on the filling stage. In the present

simulation, these values are chosen from the work of Titomanlio et al. (1997), in which

f=10000, h=1.5, m=0.4. These values give rise to an increase of viscosity by a factor of 2

when crystallinity is only about 1%. Calculations were carried out to account for the

effect of crystallinity on the viscosity for the injection molding process. However, no

significant influence was found in the final result. The reason is that the crystallizing

areas are in the skin layer where the melt flow stops to form a solid layer. The rheological

properties of the polymers in these areas have no influence on the main flow field in the

mold cavity. However, they may affect the solidification process of the material, which is

not considered in the present simulations.



Figure 8.19 Induction time index at the end of filling stage
x--flow direction, y--distance to the center, z--induction time index
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Figure 8.20 Crystallinity of iPP at the end of filling stage
x	 flow direction, y	 distance from the center, z 	 crystallinity (%)
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8.2.3 Crystallinity in the Final iPP Part

Figure 8. 21 shows the final crystallinity distribution under various processing conditions.

The following conclusions can be drawn from the simulation results:

(1) At low injection speed and low mold temperatures, there is a layer between

the skin and core layers, where the crystallinity is the highest across the

thickness. This layer can be attributed to the stress induced crystallization.

(2) At high injection speed, there is no clear difference between the crystallinity

layers across the thickness. The high shear stress during the injection period

relaxes rapidly because of the high melt temperature at the end of filling.

(3) At high mold temperatures, a uniformly crystallized part is obtained. Thermal

crystallization plays a dominant role, and stress-induced crystallization only

serves as the accelerating factor of the crystallization processes.

(4) For a fast crystallizing material, it is almost impossible to obtain an

amorphous product. Even at very low mold temperatures, iPP can reach as

high as 20% crystallinity in the final part.

(5) In the core region, crystallinity is thermally generated. The injection rate has

no effect on the crystallinity in the core region.

(6) Mold temperature is the most important parameter on the degree of

crystallinity in the molded iPP part.
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Figure 8. 21 Final crystallinity of injection molded PP at different processing conditions
x-flow direction, y-distance from center; z-crystallinity
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8.2.4 Crystallization Evolution during the Injection Molding Process of iPP

Since iPP is a fast crystallization thermoplastic, once the crystallization process starts, it

takes a very short time for it to reach its ultimate crystallinity if the condition permits. It

is generally impossible to get totally amorphous parts from fast crystallization plastics

such as iPP. The crystallinity evolution in the injection molding process of PP has been

simulated in the present studies. Figure 8.22 shows the predicted crystallinity profile in

the thickness direction as a function of time at the geometrical center of the mold cavity.

The effect of stress on the crystallization was included in Fig. 8. 22. Figure 8.23 shows

the crystallinity evolution without considering the effect of stress. In both cases, the

crystallization process near the wall surface is much faster than that in the core region,

since the material near the wall area reaches crystallization temperature earlier than the

material in the core area. The presence of shear stress only accelerates the crystallization

process near the wall area, where the stress can not relax immediately. The core area is

the last to complete the crystallization process. Although the crystallization process

across the thickness is much different at different positions, the final crystallinity along

the thickness does not vary significantly for fast crystallization plastics at ordinary

processing conditions. It is seen that after sufficient time, the part becomes a uniform

crystalline part. It can be concluded that for fast crystallization plastics, the stress only

influences the initial crystallization process, and, it has no significant effect on the final

crystallization distribution.



Figure 8.22 Crystallinity evolution during the post filling stage with the
consideration of shear stress

Injection rate Q=5 cm 3 /s ; Mold temperature T=50°C

130



Figure 8.23 Crystallinity evolution in the post-filling stage without considering
the effect of shear stress

Injection rate Q=5 cm' /s ; Mold temperature 50°C
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

A stress-induced crystallization model was developed to predict the crystallization behavior

of semicrystalline thermoplastics. The model is based on the theory that shear stresses related

to shear flow cause chain or molecular orientation in the polymer melt. The entropy of the

polymer melt flow in shear is decreased in the oriented state, and as a result, the melting

point of the polymer shifts to high temperatures. The shifted melting point under stressed

state increases the supercooling which is the driving force for crystallization. The model

predicts that the crystallization rate increases with the increase of shear stress; the

temperature at which the polymer crystallizes at its highest rate shifts to higher temperatures

with the effect of shear stress; the crystallization temperatures are also broadened. Because it

was assumed that the effect of shear stress on the kinetics of crystallization is only by

increasing the supercooling, the basic equation of quiescent state crystallization does not

change, and can be directly applied to model stress-induced crystallization by simply shifting

the equilibrium melting point to higher temperatures. A previously developed relationship

between the temperature shift and the shear stress was used in the model. The equilibrium

melting point shift can be determined by simple experiment such as rotational plate

rheometric measurements. The sudden increase in the stress-time plot can be interpreted as

the induction time under stressed state.

The model developed and utilized does not consider the entropy reduction due to

extensional flow orientations, due to lack of experimental evidence. Thus the fountain effect

on the crystallization kinetics is neglected. The model can qualitatively, at least, describe the
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stress-induced crystallization process in polymers. The quantitative model that can predict

the stress induced crystallization behavior of the polymers may be obtained by assuming that

other parameters involved in the quiescent state model have functional relationship with

stress.

The model was used to predict the crystallinity distribution in the injection molded

semicrystalline plastics with the consideration of shear stress relaxation. The results

reproduced most of the features that were obtained by experiment in the literature (Hsiung,

1993). In general, a three-layer microstructure across the thickness can be obtained with low

injection rate and moderate mold temperatures: a thin amorphous skin layer, a stress-induced

crystallization layer which has the highest crystallinity, and a core layer, either amorphous or

with thermally induced crystallinity. For slow-crystallizing thermoplastics such as PET, a

completely amorphous part can be obtained at high injection rates and low mold

temperatures. However, for fast crystallization plastics such as iPP, it is very difficult to get a

completely amorphous part. The simulation results showed that at high mold temperatures, e.

g., in the range of crystallization temperature, the crystallization process in injection molding

was mainly thermal crystallization. In this case, other processing parameters, such as

injection rate, melt temperature, have little effect on the final crystallinity distribution.

The simulation results on the filling stage, showed that at the end of filling stage, in

some areas, mainly near the wall, the crystallization process has already started before the

mold is filled. At low injection rate and low mold temperatures, the amount of crystallinity

formed in slow crystallizing plastics such as PET can reach 1%. For fast crystallization

plastics such as PP, the crystallinity at the end of the filling stage can reach as high as 5%.

The effect of crystallinity on the viscosity of the plastic melt was considered using the model
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proposed by Titomanlio (1997). However, no significant effect was observed in the final

results. The main reason for this is that the crystallized area is located in skin layer, where the

melt becomes solidified.

The simulation results also showed that the crystallinity of injection molded

semicrystalline plastics is very sensitive to the thermal contact resistance (TCR) between the

plastics and mold wall. Higher TCR increases the residence time in the crystallization

temperature resulting in high crystallinity in the part. Consequently, it is very important that

the actual value of TCR is determined in order to obtain accurate simulation results for

injection molding of semicrystalline plastics.

The melt temperature showed little effect on the crystallinity distribution. However, a

high melt temperature lowers the viscosity of the melt and reduces the formation of skin

layer. This requires low injection pressure to fill the mold. Complex shaped and thin wall

parts can be easily injection molded with high melt temperatures.

The formation of skin layer was also simulated under different processing conditions.

The skin layer thickness decreases with the increase of injection rate and mold temperature.

The injection pressure increases with the increase of injection rate. However, at very low

injection rate and low mold temperature, the injection pressure may be higher than in the

high injection rate because of the increased thickness of skin layer. Eventually, the injection

pressure may exceed the available injection pressure from the hydraulic system leading to

short shot.

The crystallization process of iPP in the cooling stage was simulated with and without

consideration of the effect of stress. The results showed that the shear stress only influences

the progress of crystallization, but no significant effect was obtained on the final crystallinity.
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9.2 Recommended Future Work

The proposed stress-induced crystallization model was based on the equilibrium melting

point shift assumption. Although it can predict most of the behaviors of stress-induced

crystallization, experimental work needs to be carried out to validate the model. An accurate

model may be obtained by assuming that the parameters in the quiescent state model

(Hoffman, 1964) are also functions of shear stress. Therefore, more experimental work needs

to be conducted to get the relationship between the parameters and the shear stress. Future

work should also include the following:

1. Extensive experimental study on the crystallinity distribution in the injection

molded semicrystalline plastic parts.

2. Study on the relaxation behavior of plastics at elevated temperature near their

melting point. Stress relaxation in the cooling stage has major influence on the

crystallinity distribution. Accurate model of stress relaxation will result in

accurate simulation of injection molding of semicrystalline plastics.

3. Investigation of TCR evolution in the cooling stage. Since the crystallinity is

sensitive to TCR, accurate information on TCR in the injection molding process is

very important.

4. Investigation of boundary conditions in the triple point as well as in the melt wall

contact area. The simulation showed that the boundary conditions at the triple

point should be free to slip. However, the length of slippage has influence on the

shape of front curve. The non-slip boundary condition in the melt contact area is

also not realistic since it causes the skin layer in the gate area to be the thickest in

the flow direction.



APPENDIX A

TAYLOR-GALERKIN METHOD FOR THE HYPERBOLIC EQUATIONS

In this section the finite element equations were formulated for both the pure advection

(pseudo-concentration) and the advection-diffusion (energy equation, induction time and

crystallinity distribution equations), using the Talor-Galerkin method of Donea and the

Zienkiewicz and coworkers.

The pseudo-concentration equation is a hyperbolic or pure advection equation. If

the pseudo-concentration function is advected using conventional Galerkin finite element

method, severe oscillations are generated. This can be improved by applying the

Taylor-Galerkin method.

For the incompressible or divergence free ( V • v = 0), Eq. (5.1) can be rewritten:

Using a forward time Taylor series, we can write:

From equation (A.1) we have:

Differentiating (A.3) to the second order, we have:
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Substituting equations (A.3) and (A.4) into equation (A.2), we obtain the final temporally

discretized form as

Equation (A.5) can be simplified approximating v. as (vn+1-vn)/Δt , which

gives:

The conventional GFEM can now be used

to spatially discretize equation (A.5). Using interpolation function N i to approximate F

and the same function Nj  as weighting functions, we can write, for an element e, an

equation of the form:



which can be written in the more familiar form of:

where:

K F is the sum of an advection part K a and a balancing diffusion type part Kbd

which are defined as follows:

and

Here all the velocities are at time level n. The second order derivatives in the

equation (A.10) can be eliminated by using Green's theorem:
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APPENDIX B

TAYLOR-GALERKIN METHOD FOR ENERGY EQUATION,
INDUCTION TIME INDEX AND CRYSTALLINITY

DISTRIBUTION EQUATIONS

In this section, the Taylor-Galerkin method is applied to the energy equation, as well as

the induction time index and crystallinity distribution equation. Writing the energy

conservation equation (6.3) with the heat generation term Q :

where T' represents the first derivative with respect of time and Q represents the

last two terms in Eq. (6.3). Using forward time Taylor series as in Appendix A:

From equation (B.1), we obtain:

and
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Substituting equations (B.2) and (B.3) into equation (B.4), after approximating
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The Tn in the fourth term can be approximated by equation (B.3); however, the

remaining T'n in the fifth term is simply approximated by (T,7+1 — T, )/ At to avoid third

order derivatives. Thus, we can rewrite equation (B.5) as:

By discretizing (B.6) in space by conventional GFEM as usual, after using Green's

theorem on the second order terms, the fully discretized equations can be written as:

where M is the mass matrix:



Ka and Kbd are the same as defined in equations (A.) and (A.)

The heat generation vector is:

The above advection approximation includes an 'upwind' or 'balancing diffusion'

type term.
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APPENDIX C

COMPUTER PROGRAMS

The programs consist of two parts. The first program is used to simulate the filling stage.

The velocity, temperature, induction time index and crystallinity distribution were

calculated. The second program is used to calculate the temperature field and the final

crystallinity after the injection molding cycle. Some symbols used in the program are list

as follows:

Global: Global matrix for velocity field

Global_T: Global matrix for temperature field

Global_F: Global Matrix for pseudo-concentration

Global I: Global Matrix for induction time index

Global_C: Global matrix for crystallinity

GF: right side matrix for finite element equations of velocity

GF_T: right side matrix for finite element equations of temperature

GF_F: right side matrix for finite element equations of pseudo-concentration

GF_I: right side matrix for finite element equations of induction time index

GE_C: right side matrix for finite element equations of crystallinity

UX, VX: velocities in x and y direction

T: Temperature field

F: Pseudo-concentration field

STRESS: stress field

SHEAR: shear rate field
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INDUCT: Induction time index

CRYST: Crystallinity

X, Y: x and y coordinate of a node

XF: x coordinate of melt front

YF: y coordinate of melt front

Node: element node

Elemet_stiffness: sub-program to formulate the element stiffness of velocity

Element_stiffness_T: sub-program to formulate the element stiffness of

Temperature, induction time index and crystallinity

Element_stiffness_F: sub-program to formulate the element stiffness of pseudo-

concentration

Implement_boundary: sub-program to impose boundary condition to the finite

element equations

Boudary_node: sub-program to determine the boundary node

Solve_equation: Finite equation solver for velocity solution

Solve_equation_F: finite equation solver for temperature, pseudo-concentration,

induction time index and crystallinity



C PROGRAM TO SIMULATE THE FILLING STAGE
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DT=DISTANCE/U
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