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ABSTRACT

RESOURCE ALLOCATION FOR CDMA DOWNLINK TO ACHIEVE
MAXIMUM THROUGHPUT

by
Anil Bircan

Growing interest in cellular phones, wireless modems, instant messaging, pagers

with the increasing use of the Internet in daily life indicate that wireless high

speed Internet access and wireless multimedia applications are in great demand.

The barrier to satisfy this demand is the provision of sufficiently high bit rates in

severe wireless mobile channel conditions, for a multitude of services, each requiring

different and perhaps even time-varying quality of services (QoS) that can be more

demanding than the QoS required by today's voice service. New generation systems

will enable provision of a multitude of services each with different QoS and data

rate requirements. To resolve problems lying in the integration of new generation

systems with today's wireless voice services, several contributions are made as listed

below. Signal processing techniques that help analyze the spectral properties and

models representing the mobile wireless channel are increasingly important in new

generation wireless systems for applications such as multipath mitigation, geolo-

cation, line of sight detection. Models representing the mobile wireless channel and

methods to trace the energy concentration in its spectrum are tested and effects of the

channel environment are examined. After irregular subbands, equal bin subbands

in frequency spectrum which corresponds to Discrete Multitone or Orthogonal

Frequency Division Multiplexing methods are analyzed for multicarrier option of

next generation wireless services. Noise levels in the multicarriers, environmental

effects and availability of the channel are related to achievable bit rates using generic

adaptive loading. Advantages/disadvantages of using multicarrier systems versus



single carrier systems are analyzed with decision feedback equalization. In CDMA

systems, for a fixed bandwidth allocation, the transmission rate can be altered by

varying one or more of the coding, interleaving, modulation and spreading block

parameters. In the downlink of DS-CDMA systems, once the parameters of the

above mentioned blocks are set, the base station will transmit at the lowest power

level that can provide the QoS requirements of the service provided. Different

QoS and data rate requirements of communication channels can be satisfied by

varying one or more of the coding, digital modulation and spreading blocks. By

varying interblock data rates, bit error rate performance simulations are done with

the constraint of keeping transmission bandwidth fixed for all configurations as in

IS-95. Various coding, digital modulation and spreading rate combinations yield

different performance characteristics in AWGN, flat fading and multipath fading

environments allowing trade-off decisions on choices of rate, QoS, and implemen-

tation. In addition, performance characteristics of multicode CDMA downlink with

systematic convolutional (Turbo) coding are obtained under shadowed multipath

fading mobile channel. Two different iterative decoding methods are compared in two

different synchronous downlink schemes operating under given channel conditions

with the same transmission bandwidth as in IS-95. Multicode CDMA with LogMAP

decoding is observed to provide better QoS with lower bit and frame error rates,

reasonable complexity and shorter decoding delay compared to DS-CDMA downlink

with single code pair assigned to each user. With this scheme, higher rate services

can be overlayed on existing voice services without any modifications to existing

active system architecture.
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CHAPTER 1

INTRODUCTION

Growing interest in cellular phones, wireless modems, instant messaging, pagers

with the increasing use of the Internet in daily life indicate that wireless high

speed Internet access and wireless multimedia applications are in great demand.

The barrier to satisfy this demand is the provision of sufficiently high bit rates in

severe wireless mobile channel conditions, for a multitude of services, each requiring

different and perhaps even time-varying quality of services (QoS) that can be more

demanding than the QoS required by today's voice service. In response to this

demand, much research and standardization activities are being conducted globally

towards third generation (3G) wireless systems under the common label "IMT-

2000" . IMT-2000 is aimed to provide significant improvements over their second

generation (2G) counterparts [24]. Physical layer research activities within IMT-2000

include the provision of seamless, high data rate multiuser communication system

design that is capable of providing the QoS's that envisioned services require on

a multitude of wireless traffic channels. This is currently done with time-division

multiple access (TDMA) or code-division multiple access (CDMA) in digital second

generation systems and with frequency-division multiple access in analog second

generation systems. In IMT-2000, CDMA is widely thought as the multiple access

scheme of choice due to its flexibility (In Europe, one path of the GSM evolution is

the Wideband CDMA (W-CDMA) system, in the US, IS-95 evolution is cdma2000.

Also, in Korea and Japan derivatives of these schemes are being considered). The

current efforts in combining the standardization efforts taking place in different parts

of the world into a single global standard have resulted in the formation of a number

of Task Groups (TG-PP and TG-PP2). Consequently, it has been decided that

1



2

the global 3G standard based on the CDMA protocol will have two options (when

frequency division duplexed): DS-CDMA and MC-CDMA. The DS-CDMA system

will be based on W-CDMA and the MC-CDMA will be based on cdma2000.

In DS-CDMA, all users spread their information symbols over the entire system

bandwidth. In Multicarrier CDMA, on the other hand, the available bandwidth

is divided into a group of subcarriers. The users' information symbols are de-

multiplexed across these subcarriers. In [26], BER comparison of DS-CDMA and

MC-CDMA systems for frequency selective fading channels is done and it is shown

that under certain conditions, both systems have equivalent performance character-

istics. The choice of one over the other then, will depend on non-performance related

issues such as complexity, need for overlay, QoS provision flexibility.

As stated before, third generation systems will enable provision of a multitude

of services each with potentially different QoS and data rate requirements. To resolve

problems in the integration of new generation systems with today's wireless voice

services, several contributions are made as listed below. Signal processing techniques

that help analyze the spectral properties and models representing the mobile wireless

channel are increasingly important in new generation wireless systems for appli-

cations such as multipath mitigation, geolocation, line of sight detection. Models

representing the mobile wireless channel and methods to trace the energy concen-

tration in frequency spectrum are tested and effects of the channel environment

are examined. After irregular subbands, equal bin subbands in frequency spectrum

which corresponds to Discrete Multitone or Orthogonal Frequency Division Multi-

plexing methods are analyzed for multicarrier option of next generation wireless

services. Noise levels in the multicarriers, environmental effects and availability

of the channel are related to achievable bit rates using generic adaptive loading.

Advantages/disadvantages of using multicarrier systems versus single carrier systems

are analyzed with decision feedback equalization. In CDMA systems, for a fixed
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bandwidth allocation, the transmission rate can be altered by varying one or more

of the coding, interleaving, modulation and spreading blocks. In the downlink of

DS-CDMA systems, once the parameters of the above mentioned blocks are set,

the base station will transmit at the lowest power level that can provide the QoS

requirements of the service provided. Different QoS and data rate requirements of

communication channels can be satisfied by varying one or more of the coding, digital

modulation and spreading blocks. By varying interblock data rates, in order to see

how these configurations would perform, a performance analysis is done with the

constraint of keeping transmission bandwidth fixed as in IS-95 for all configurations.

Various coding, digital modulation and spreading rate combinations yield different

performance characteristics in AWGN, fiat fading and multipath fading environments

allowing trade-off decisions on choices of rate, QoS, and implementation. In addition,

performance characteristics of multicode CDMA downlink with systematic convolu-

tional (Turbo) coding are obtained under shadowed multipath fading mobile channel.

Two different iterative decoding methods are compared in two different synchronous

downlink schemes operating under given channel conditions with the same trans-

mission bandwidth as in IS-95. Multicode CDMA with LogMAP decoding is observed

to provide better QoS with lower bit and frame error rates, reasonable complexity

and shorter decoding delay compared to DS-CDMA downlink with single code pair

assigned to each user. With this scheme, higher rate services can be overlayed on

existing voice services without any modifications.

The outline of the dissertation is as follows. The models and parameters that

define the time-varying, fading wireless channel are covered in Chapter 2. The

mobile environment simulation techniques and examples are provided. Spectral

properties and energy distribution of the wireless channel are analyzed in Chapter

3 with multiresolution decomposition techniques. Irregular tree structure algorithm

tracing the energy localization in the time-varying mobile channel is demonstrated
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with examples for various wireless environments. Chapter 4 presents analysis of

the channel with equal frequency bands which corresponds to DMT/OFDM systems

with generic adaptive loading algorithms. Environmental effects of the channel,

noise levels in the multicarriers and achievable bit rates are analyzed in this chapter.

Chapter 5 starts with a survey on spread spectrum techniques and diversity methods

for CDMA. The second part describes DS-CDMA downlink system utilizing various

interblock rates and addresses provision of a multitude of services for 3G CDMA with

performance analysis under several channel conditions. In Chapter 6, performance

of the multicode structure is investigated under shadowed multipath fading channel.

Last chapter summarizes the contributions made, provides discussions on choices of

interblock rates, QoS, implementation, trade-off between downlink structure designs,

decoding algorithms, complexity, capability of overlaying a higher rate service over

an existing standard voice service.



CHAPTER 2

COMPOSITE TIME-VARYING MOBILE WIRELESS CHANNEL
MODELING TECHNIQUES

One of the main challenges faced in wireless mobile communications is the physical

radio propagation channel due to the interference limitations introduced by its

delays and fades. The time-varying setting of the scatterers in the radio propa-

gation environment causes reflection, refraction and scattering of transmitted waves

(multipath fading). A distorted version of the transmitted signal is received as

a combination of corrupted waves arriving via indirect paths (non-line-of-sight)

possibly with an additional direct path (line-of-sight). The time-varying mobile

channel is characterized by [1] and widely accepted as the wide sense stationary

uncorrelated scattering model. Statistical models have been developed to simulate

realistic urban radio propagation channels [2, 3] and more recently indoor channels

like factories and buildings [4]. These works provide ways to model the path number

distributions, path arrival times and magnitude distributions that best fit the data

collected by channel sounding and different kinds of measurements.

Modeling wireless communication channels is crucial for the solutions of many

fundamental problems in wireless system design. There have been intensive research

efforts on channel modeling. Conventional models have the disadvantages of 1) the

necessity for tedious data collection such as channel sounding and measurements,

2) limited reliability in predictive tools with built-in propagation models which put

a heavy burden on field engineering. It is also difficult to generalize these channel

models which are specific for different environments such as indoor, urban, rural, etc.

The traditional and widely accepted wireless communication channel models

are considered in this section. The received signal and the response of a time-varying

wireless channel is expressed as [1, 2]

5
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respectively, where 'T is the delay parameter. The Fourier transform of h(t, T) on

time variable t is defined as

where 8 is the Doppler frequency. Therefore, we can rewrite the channel output y(t)

Similarly, y(t) can be expressed in terms of T(t, v) as

where T (t, v) is the Fourier transform of h(t, T) on variable T and defined as

The frequency variable for time delay T is chosen to be v. Finally, y(t) can be

rewritten in terms of H(0, v) as

where

Rayleigh distribution is used to describe the received envelope of the fading

signal through one path. Envelope of an individual multipath component is the sum

of two quadrature Gaussian noise signals and this obeys Rayleigh distribution

where a2 is the time-average power of the received signal before envelope detection.

Wide sense stationary uncorrelated scattering (WSSUS) model for a fading wireless



7

channel at the 2GHz. range is used for graphical illustration of the channel models.

WSSUS is the most common model due to its characterization of randomly time-

varying linear channels [1]. It is assumed that received signals passing through

wide-sense stationary (WSS) channel with different Doppler shifts are uncorrelated.

Similarly, received signals passing through uncorrelated scattering (US) channel

with different scatterer delays are assumed to be uncorrelated. Each simulated

received path fading is Rayleigh distributed as they are composed of two orthogonal

quadrature components. And the seperate paths are independently generated

according to uncorrelated scattering (US) rule. Since the simulated environment is

time-varying or mobile, the phase change in the received signal due to the difference

in path lengths has to be taken into account. If the velocity of the mobile or

the maximum velocity of an obstacle in the environment is v, the difference in

path length (electrical length) is vΔt cos 0. So, the phase change can be written

Thus, the maximum Doppler shift can be determined as

where 0 is the angle between direction of the mobile motion

and the direction of arrival of the incoming wave. Due to this Doppler shift, the

fading coefficients should be filtered so that, the spectrum is centered at carrier

frequency and zero outside of fc fd . Power spectral density of a received signal for

a quarter wave vertical antenna with uniform distribution is found as [16, 4],

This resulting RF envelope expression is used as the time domain fading waveform

to shape the temporal correlation of the Rayleigh fading coefficients generated.

The test environment for the model is vehicular (i.e., maximum Doppler

frequency 0=240Hz and maximum velocity v = 0 • A = 36m/s) or indoor. Here,

please note that 9 is used as the Doppler frequency variable instead of fd. By

changing the maximum Doppler frequency and the number of paths, the channel

conditions can be modified. The maximum Doppler frequency determines the cutoff
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frequency of the Doppler filter used in the channel simulation [16]. 5000 tap FIR

filter is used for Doppler spectral shaping. Maximum of 6 scatterers are included in

this model to suit the European ETSI or North American COST models.

Figure 2.1 illustrates how the energy is distributed in t-time, τ -delay (upper

and lower left), 0-Doppler frequency, v-frequency (upper and lower right), t-time,

v-frequency (middle left) and 0-Doppler frequency, τ -delay (middle right) planes as

given by Eqs. (1-3) and (5). Note in the Doppler frequency dependent curves, the

Doppler shaping is just as described in the given power spectral density of received

signal envelope formula. On delay axis, we can observe the fading level variation on

the different receiving paths in time. On Figure 2.2, we see three different wireless

mobile channel conditions with three different Doppler frequencies. Topmost figure

has the lowest Doppler frequency, thus the slowest variation in its fading levels with

respect to time. The profile at the bottom has the highest mobile velocity, thus the

highest maximum Doppler frequency. This results in higher frequency cutoff in the

Doppler shaping filter and more correlation between the successive fading coefficients.

So, the temporal variation is highest. In pedestrian model we have a 20Hz maximum

Doppler frequency. This model represents the transition from indoor to vehicular

model. Characterization of the channel can be done with the help of Figure 2.3

[30]. In the figure Tx is the transmitted symbol duration and Bx is the bandwidth

of transmitted signal. These values are to be compared with the coherence time and

bandwidth. Coherence bandwidth 13, represents the frequency seperation between

two frequency components which still demonstrates an amplitude correlation. If the

frequency correlation function is taken above 0.5, B~1/5στ, where a, is rms delay

spread. This is accepted as a rule of thumb [29] but note that there is not an exact

relationship between coherence bandwidth and rms delay spread. Similarly, if the

time correlation in the received signal envelope is taken above 0.5, then coherence

time can be taken as T ti 169 '9 where fd is the maximum Doppler frequency. If
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Table 2.1 Indoor channel parameters. θ0=8Hz, flat Doppler shaping filter.

path 1 path 2 path 3 path 4 path 5 path 6
Magnitude 1.0000 0.5012 0.1259 0.0398 0.0100 0.0020
Delay ("is) 0 0.0700 0.1700 0.3100 0.4100 0.5300

Table 2.2 Pedestrian channel parameters. 0=20Hz, classical Doppler shaping filter.

path 1 path 2 path 3 path 4 path 5 path 6
Magnitude 1.0000 0.1660 0.1202 0.0457 0.0178 0.0501
Delay (,us) 0 0.1100 0.2900 0.4100 1.0900 1.3100

more than one multipath are considered in the channel, the category of the simulated

wireless channel generally falls into slow frequency selective fading channel. Fast

frequency selective fading channels generally arise in satellite communications where

the maximum Doppler frequencies far exceed the ones in mobile environments. The

rms delay spreads are found as a function of the transmitter-receiver distance and

other empirical propagation parameters which are going to be explained in the future

chapters where lognormal shadowing is simulated. In the meanwhile, the channel

realizations include constant ETSI specified [31] instantaneous excess delay values

unless otherwise noted. These values used in the simulations are provided in Tables

2.1-3. In indoor scenario, the Doppler shaping filter is flat rather than the classical

shape given by Eq. 2.6.

Table 2.3 Vehicular channel parameters. θ=240Hz, classical Doppler shaping filter.

path 1 path 2 path 3 path 4 path 5
Magnitude 0.1259 1.0000 0.1000 0.0398 0.0251
Delay (μs) 0 0.3100 1.4900 2.5100 3.3100



Figure 2.1 Channel model / Energy distribution in time and frequency
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Figure 2.2 From top to bottom: a. Indoor channel model, b. Pedestrian channel
model, c. Vehicular channel model, h(t, '01 mesh and contour plots



Figure 2.3 Wireless mobile channel characterization
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CHAPTER 3

MULTIRESOLUTION DECOMPOSITION OF WIRELESS
CHANNELS

Signal processing techniques that help analyze the spectral properties and models

representing the mobile wireless channel are increasingly important in new generation

wireless systems for applications such as multipath mitigation, geolocation, line of

sight detection. Models representing the mobile wireless channel and methods to

trace the energy concentration in frequency spectrum are tested and effects of the

channel environment are examined in this chapter.

Multiresolution decomposition techniques [6, 7] can be utilized towards possible

solutions to the problems of multipath mitigation and line of sight detection in

wireless geolocation systems. Spectral properties and energy distribution can be

traced and the energy concentration in the frequency domain can be analyzed with

the aid of perfect reconstruction (PR) subband filter banks. Analysis and synthesis

stages of the PR filter banks allow the reconstuction of the input signal at the end

of the synthesis part. The channel impulse response can be thought as a response

to unit impulse input. So the tree structure takes the channel impulse response

as its input. Using multiband PR analysis/synthesis multirate filter banks [6, 7],

resolutions of energy localization in different wireless environments are compared.

Figure 3.1 Downsampling or decimation.
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In a multirate system, after the band-limited signal is sampled at the Nyquist

rate, by interpolation or decimation, higher or lower clock rates can be used.

Decimation is the process of reducing the sampling rate of a signal by an integer

factor of M as shown in Figure 3.1. This is also known as down-sampling. The

subsampled signal y(n) is obtained from x(n) as

In frequency domain, the subsampled signal can be expressed as

Time compression corresponds to stretching in frequency domain and the interval

[0 — 7/M] in the original signal X (ejw) is converted to [0 — 71-] in the downsampled

signal Y(ejw). So if the original signal is not bandlimited to +7/M, we have aliasing.

This is avoided by an antialiasing filter h(n) operating before downsampling by factor

M. Similarly, interpolation or upsampling is increasing the sampling rate of the

Figure 3.2 Upsampling or interpolation.

input signal by an integer factor M as shown in Figure 3.2. This can be written as

The rate is increased by a factor of M. This is done by padding M —1 zeros between

sample values which corresponds to time stretching. In the frequency domain, time
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stretch effect appears as compression,

Forcing zeros between the samples or interpolating results in high frequency terms

which do not exist in the input signal. The low-pass filter g (n) eliminates these

periodic high frequency terms and original signal is retrieved.

Figure 3.3 Two band PR-QMF subband filterbank.

Downsampling and upsampling are used in the analysis/synthesis sections of

the subband decomposition, respectively. A two channel subband analysis/synthesis

filter structure is shown in Figure 3.3. The spectrum is analyzed in two parts where

the aliasing filters on opposite subbands obey the mirror image property. This

property explains the relation between the filters in low and high pass filters. If

ho (n) is the FIR low-pass filter with real coefficients the mirror filter is given as

The magnitude is an even function given by
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which shows the symmetry about w = 7r/2, hence the name quadrature mirror filters

(QMF). The filter pair Ho (z) and Hi (z) are power complementary if they satisfy

For the M-band filter banks, its extension

is used.

Refering to Figure 3.3, the input spectrum X (ejw) is divided into two equal

bands. The analysis filters, Ho (z) and Hi (z) satisfy the quadrature mirror and

power complementary properties and constitute the analysis filters. With Nyquist

sampling, the downsampling is accomplished and the analysis is complete. The

synthesis operations follow in the opposite order and we have,

And we have the reconstructed signal as

Thus, for perfect reconstruction S(z) = 0 and T(z) = cz-n0 conditions must be

satisfied. The condition S(z) = 0 requires
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and the other condition

has to be forced to cz-n0 where c is a constant. Assuming N-tap FIR structures for

where N is even and using power complementary property

the conditions for PR-QMF filter design for a two-band subband decomposition can

be stated as follows [6]:

Multirate techniques provide the basic tool for multiresolution spectral analysis and

with PR-QMF banks the input spectrum is divided into equal subbands. In two-

band PR-QMF split we have low (L) and high (H) bands. These (L) and (H) half

bands can further be split into quarter bands (LL), (LH), (HL), (HH) as in Figure

3.4. Levels of decompositions can be implemented in a simpler and practical way as

shown in Figure 3.5. With the equivalent representation of the analysis filters

and by a 4 downsampler at the end, the filterbank structure in Figure 3.5 can be

justified. The subband filterbank structures shown so far represent regular, binary,
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Figure 3.4 Four band PR-QMF subband analysis filterbank.

full splits in the spectrum. However real signal sources are concentrated unevenly in

the spectrum. That is, some parts of the spectrum are more significant than others

because they contain more energy. Unequal bandwidths can be assigned according to

more significant parts of the analyzed signal by terminating the subband structure at

different levels of the tree. Thus, the frequency bands of the irregular tree structure

have unequal allocated bandwidths. A property which is used to simplify the subband

filterbanks is provided in Figure 3.6. This property is particularly useful for

implementing practical irregular tree structures.

Assuming a unit impulse input to the wireless mobile fading channel described

in Chapter 2, the signal is observed to have unequal energy distribution in its

frequency spectrum. In the following, the method to analyze and monitor the energy

localization in the multipath delay frequency is described. Since it is time-varying,

during the analysis/synthesis process, the channel keeps changing and the multirate
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Figure 3.5 Four band PR-QMF equivalent subband analysis filterbank.

adaptive filter banks keep track of this time-varying change in the spectral energy

distribution. That is the tree structure is updated according to the new spectral

energy distribution. Unevenness of the channel spectrum |T (t o , v)| at every time

instant is quantified based on the energy compaction measure,

where al is the power in the i th band of the spectrum. This measure is calculated

for two and three spectral splits [7]. The splits are decided by the help of ideal

brickwall subband filters. Once the tree structure is complete, the practical filters

are designed instantly with the equivalent analysis/synthesis filterbank structure

provided in Figure 3.6. The split that provides greater compaction is used to decide

which spectral split results in better energy localization in frequency domain. A



Figure 3.6 Equivalent structures

preset compaction threshold is used to decide if spectral split is needed. This preset

compaction measure can be tuned according to the depth of resolution required by

the particular wireless channel conditions. The minimum energy which a node should

carry is taken as the stopping criteria or tree termination. The result of this procedure

is always an irregular subband tree structure for frequency selective mobile channels.

Flat fading channels demostrate a totally uniform energy distribution. The tree

structure is formed by using ideal brickwall filters. But for practical implementation

of this tree structure, practical perfect reconstruction quadrature mirror filters (

PR-QMF) are used.

To see the energy localization in different types of wireless environments, an

indoor (maximum Doppler frequency 0 = 8Hz) and a vehicular scenario (0 = 240Hz)

are chosen. In-phase parts of these channel models are analyzed with the procedure

described. The spectra and corresponding tree structures are displayed in Figures

3.7 and 3.8. It is observed from these figures that the channel properties change

from indoors to vehicular. Finer resolution tree structures have to be obtained due

to increased maximum velocity (or Doppler frequency) and increased complexity.
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Figure 3.7 a. |T (to , v)| and ideal tree structure output, b.Tree structure for a
wireless indoor channel model signal

As new channel data is available, the tree structure will be formed again taking

the new channel data as input. So, it adapts itself to the variations of the time-

varying wireless channel [12]. Figure 3.9 shows the implementation of the irregular

tree structure obtained for the instantaneous indoor channel shown in Figure 3.7.

The alternative implementation property in Figure 3.6 helps an easier by-product

architecture rather than the hierarchical one. Here, Hl(z), Hb (z) and Hh (z) are

the 3 band PR filters. Implementation of tree structure for the vehicular case or

any other case can be performed in a similar manner. Please note that only the

analysis stage of the whole system is shown. The 3-band filter design is done in a

similar way using the same filter properties as explained earlier. With the forced

perfect reconstruction conditions [6, 8] in the synthesis filter design, the input signal

is retrieved with a negligable PR error after the synthesis stage. Results of the

implemented analysis/synthesis subband decomposition are provided in Figures 3.10



Figure 3.8 a. |T(to , v)| and ideal tree structure output, b. Tree structure for a
wireless vehicular channel model signal

and 3.11. These figures show the same channel environment sampled at different

instants. In Figure 3.11 (c), we see the input and PR-QMF filterbank synthesis

output superimposed. Everytime the tree structure is built and implemented with

practical filters, the original signal is retrieved with negligible PR error.

Finally, in this chapter, we highlight the drawbacks of the conventional channel

models and justify the approach of "extended processing" for better resolution. The

resolution of a signal is known to be represented by the reciprocal of the time-

bandwidth product of the signal [5]. Excitation of the mobile time-varying channel

with a fine resolution signal (large time-bandwidth product) would result in the

so-called "wideband condition"; i.e., the maximum distance the mobile can move

during the signal (maximum velocity x signal duration) exceeds the signal resolution

[5]. When the wideband condition is valid, extended processing can be used as

described next. Conventional models assume the channel to be stationary over the
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processing interval whereas nonnegligible channel variations occur within a symbol

period. Hence, the performance and gain of the mobile system is limited. For

wideband condition, the system response is written as [5]

where W(a, b, t) is the wavelet transform coefficients of h(t, 7- ) on delay variable T [6]

The values of W(a, b, t) in time, unlike the usual h(t, T), are valid for longer

processing durations where the channel is changing linearly with time. In conven-

tional approaches, the processing duration is limited by the bandwidth of the signal

and possible mobile velocities in the environment. In contrast, in the extended

modeling [5], this duration is limited only by the bandwidth and the accelerations

as opposed to the velocities.



Figure 3.9 Implementation of tree structure shown in Figure 3.7.
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Figure 3.10 a. Ideal brickwall tree structure formation for a pedestrian channel, b.
Practical PR-QMF filter output of the pedestrian channel in (a).
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Figure 3.11 a. Ideal brickwall tree structure formation for a pedestrian channel at
a different instant, b. Practical PR-QMF filter output of the pedestrian channel in
(a), c. Original signal and PR analysis/synthesis filterbank output superimposed.



CHAPTER 4

DISCRETE MULTITONE (DMT) AND ORTHOGONAL
FREQUENCY DIVISION MULTIPLE (OFDM) ACCESS SYSTEMS

After irregular subbands investigated in the previous chapter, now, equal bin

subbands in frequency spectrum which corresponds to Discrete Multitone or

Orthogonal Frequency Division Multiplexing methods are analyzed in this chapter,

for multicarrier option of next generation wireless services. Noise levels in the

multicarriers, environmental effects and availability of the channel are related to

achievable bit rates using generic adaptive loading. Advantages/disadvantages of

using multicarrier systems versus single carrier systems are analyzed with decision

feedback equalization.

We are now focusing on optimal ways of power distribution among QAM

modulated multicarrier systems with no spreading sequence for a single user. This

involves several multicarriers which carry the digitally modulated transmission data

through the wireless channel. In addition to QAM digital modulation, basic PSK

schemes will also be considered. Advantages and disadvantages of using multicarriers

and the power distribution among the multicarriers will be addressed in this chapter.

A multicarrier modem can be implemented in several ways. One commonly

used technique is called discrete multitone modulation (DMT) [9, 10, 19, 27] and is

shown in Fig. 4.1. Encoded data bits are transmitted in parallel non-overlapping

subchannels. An alternative technique is called orthogonal division multiplexing

(OFDM) [27, 28]. This technique allows subchannels to overlap.

For calculating achievable bit rates for a given wireless channel impulse

response, a discrete multitone transceiver system is considered [9, 10, 11]. As

outlined in Fig. 4.1, input bits are encoded and converted from serial to parallel.

QAM modulation is applied in each subchannel according to the channel condition.

Channel state information is assumed to be provided to transmitter. Each subcarrier

27
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carries bits which is assigned according to this channel information as will be

explained later in this chapter. The channel is partitioned into its orthogonal

subchannels. Orthogonality and frequency separation is obtained using the multi-

carrier modulation - inverse Fourier transform (IFFT). The input to the IFFT block is

composed of complex QAM symbols and can be assumed to be in frequency domain.

Inverse Fourier operation transforms the signal into time domain. Symmetry [20]

is assured so that the IFFT output is real in time domain. After parallel to serial

conversion, signal is converted from digital to analog and RF filter operates before

the antenna.

Figure 4.1 Discrete multitone transmitter used for capacity measurements.
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In each subchannel, same probability of error is assumed. This is enforced by

where dmin is the minimum distance between the signal points in the QAM constel-

lation at the receiver and No is the noise variance.

Number of bits assigned to subchannel i is n i . The constellation size is M = 2ni

As in [9], the total transmitted power of each QAM signal is Pi and total transmitted

power is equal to P, i.e. P = E Pi . Solution of the QAM constellation gives

where Wi is the bandwidth of the subchannel. Half of the channel sampling frequency

corresponds to E Wi if Nyquist sampling rate is used. The power distribution is done

with the factor ki . To find ki we solve the information theoretic bit rate maximization

problem with low probability of error restriction. One additional constraint is the

minimum QAM constellation size. Clearly, ∑ ki = 1. Solving the Lagrange multiplier

bit rate maximization problem [9], one gets

With the assumption that the transmitter has enough power this power distri-

bution yields equal water pouring into the subchannels. Conditions of low trans-

mitted SNRs and deep spectral attenuation in the channel make the water pouring

loading more practical. This power loading scheme is adaptive because as the channel

conditions change, this information is fedback to transmitter and bits are distributed

accordingly into the subchannels.



30

Granularity and impracticality issues are investigated in water pouring

algorithms, due to intense searching and peak number values reached in the

algorithm [9]. It is also possible to approach the adaptive loading problem by

keeping the transmission bit rate constant and minimizing the probability of error

[14, 15].

Total achievable bit rate can be obtained as

Inphase and quadrature parts of complex channel are used in capacity calculations.

For infinite number of subchannels the summation turns to an integral and this is

capacity of the system. Bandwidth efficiency is given as C/W.

In this section, information theoretic capacity simulations and results will be

discussed. For these simulations, the multicarrier system described in Figure 4.1 and

the channel model described in Chapter 2 are used.

4.1 Model Based Capacity Measurements For Wireless DMT Channels

In this section, wireless channel capacity is shown to be sensitive to the effects of

various wireless channel parameters by use of computer simulations [17].

It was previously shown that [12], as the channel scatterer numbers, magnitudes

and delays are kept constant in the model, the capacity stays the same for different

mobile velocities (or the maximum Doppler frequency) involved in the channel.

The capacity is normalized by the efficient bandwidth as RDMT/W yielding

bandwidth efficiency in bits/sec/Hz units. In all of the following simulations

SS (t, v) = 1 is chosen. In Figure 4.2, the effect of the number of scatterers

on the bandwidth efficiency is illustrated for indoor, pedestrian and vehicular

scenarios. Realistic maximum excess delays are chosen as 3.31μs, 1.31μs and 0.53/μs

for vehicular, pedestrian and indoor scenarios, respectively. For each number of
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scatterers the same sampling frequency is used in each propagation scenario. The

same fading coefficients are assumed for the different paths in the simulations. At

each point in the plot, 10000 capacity values are calculated at succesive time samples

and averaged. For a fair comparison, all the channel responses are taken to be unit

power discrete signals (Figure 4.2b). 10 unit magnitude scatterers are chosen to

be uniformly distributed in [0, maximum excess delay] range on time delay axis for

simplicity. In order to realistically assess the case, a vehicular example is chosen.

This is illustrated in Figure 4.3. Realistic values for magnitudes and arrival times

for the scatterers are considered.

To see the effect of the sampling frequency chosen, three simulations with

different sampling frequencies are performed for the same conditions. This is

displayed in Figure 4.4. The chosen sampling frequencies reflect the receiver sensi-

tivity and path resolving ability of the receiver. Naturally, as the sampling frequency

is increased better performance results are obtained (fs i < fs2 < fs3 ).

In order to observe the effect of the path arrival times involved in the wireless

channel on the system performance, 10 unit magnitude paths in a vehicular

environment are considered. The delay difference between two successive paths

is constant (7 sampling periods for this simulation) when no time shift is applied

to the path delays. To introduce randomness to the delays of the arriving paths,

independent Gaussian random variables with zero mean and nonzero variance are

added to the path time delays. Figure 4.5 displays the bandwidth efficiency of the

vehicular channel for different variances of delay shift random variables. For each

variance value, 200 shift random variable vectors are generated and averaged. In

each case, 1000 time samples are used to average the capacity. The simulation is

carried out for 2, 10 and 20 paths. The capacity increases as the path arrival times

are shifted from their uniform places on time delay axis with higher variances. All

channel responses generated are unit norm discrete signals.
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Table 4.1 Matched filter inputs (decision equations) and corresponding probability
of errors for different intersymbol interferences (ISI) introduced by the channel.

In order to introduce randomness in the magnitudes of the paths involved in

the channel, independent Gaussian random variables with unit mean and nonzero

variance are assigned as magnitudes to the paths which are distributed uniformly

on the time delay axis. Figure 4.6 shows the bandwidth efficiency of the vehicular

channel for different variances of the magnitude random variables. For each variance

value, 500 magnitude random variable vectors are generated to average. In each case,

2000 time samples of vehicular channel are used to average capacity. The simulation

is performed for 2, 8 and 20 paths for illustration. With nonzero variances of the

magnitudes, the average power of the channel impulse responses is not constant.

This is corrected for a fair comparison by power normalization of the channel impulse

responses before the capacity calculation in each simulation. Bandwidth efficiency is

observed to be higher for larger values of magnitude variances.
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4.2 Performance Comparison of
Single Carrier and Multicarrier Systems

Multicarrier modulation systems provide greater immunity to impulse noise and fast

fades with their longer symbol time. They also have ability to combat frequency

selectivity of wireless channels. However, it was shown that their performance isn't

quite different than single carrier systems' under certain conditions [18, 19]. Rather

than QAM modulation which was the case in the earlier simulations, with BPSK

modulation, performances of a single carrier and a multicarrier system are analyzed

and compared for simple AWGN channels with and without ISI in this section.

In a single carrier system. the transmitted BPSK signal can be written as

where E is the energy, bj E {-1, 1}, co, is the carrier frequency. Pulse shape is shown

in Figure 4.7 as pT(t). The matched filter or correlator receiver structure is defined

as in Figure 4.7. AWGN is taken as u(t) : N[0, N0 /2]. Decision variable zi is found

to be

for h(t) 	 6(t), i.e. AWGN only channel where 77 : N[0, N0 /2]. Probability of error

can be found as

Excess delay in the channel causes combined partial reception or consequent

symbols at the receiver in [iT, (i+1)T]. In coherent detection this results in increased

probability of error and is called intersymbol interference [20]. Severeness of it

depends on the symbol duration of the transmitted signal and delay of the channel.

For several delays, the decision expressions and the corresponding probability of

errors are shown in Table 4.1. These results are plotted in Fig. 4.8. As the delay
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increases from 0 to multiples of T, higher probability of errors result. In the figure,

T/3, T/2, 2T/3, 0.93T and T (m = 1) curves show how the receiver faces an error

floor as it tries to demodulate the signal. As the delay becomes longer than the

symbol period T, the performance curve starts oscillating between two error floors

as shown between the mT and mT+T/2 curves (m is a positive integer).

Compensation of the intersymbol interference, or in other words, improving the

degraded system performance due to channel distortion can be solved by equalization

[20]. Decision feedback equalization is the generally prefered equalization scheme.

The current decision 62 is fed back to the input of the symbol-by-symbol detector to

remove the intersymbol interference from the present decision zi . In Figure 4.8, for

AWGN+ISI channel single carrier analytical and simulation results are shown. DFE

is applied to the receiver for the channel h(τ) + h(τ-T) (ISI, 1+T) to remove the

intersymbol interference. The decision feedback in practice could be inaccurate due

to incorrect estimation of channel parameters. For imperfect (0.5T and 0.75T) delays

fedback to the detector input, the simulations show that the receiver overcomes the

error floor and reaches AWGN performance for high SNR values. Perfect delay DFE

simulation performance is the best achievable curve for a practical single carrier

DFE system. Ideally, the correct bits would be fed back with perfect delay and the

performance would give the same results as the AWGN performance.

For comparison, a multicarrier system with 3 subcarriers is chosen. The trans-

mitter and receiver structure is shown in Fig. 4.10. For N subcarriers, the trans-

mitted signal can be written as

where one multicarrier symbol duration is T = NAt and rate R = 1/At is slowed

down to R/N in each subchannel after serial to parallel conversion. For AWGN

channel, the decision random variable in each subchannel in the receiver can be
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found as

For an AWGN channel with intersymbol interference

received signal is r (t) = s(t) + s(t — 'r) + n(t) and decision variables can be written

A S

Equations 4.17 and 4.18 are the same analytical expressions found for single carrier

system decision variables. The performance curves for this multicarrier system

appears as in Figure 4.9. In each branch of the receiver, DFE can be applied,

this would give similar results as in Figure 4.9. These results are in agreement with

the comparisons in [10, 11, 19]. In practice, imperfect filtering in the multicarrier

receiver results in intercarrier interference (band spill-over). This is another factor

that degrades the performance of the multicarrier system.
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Figure 4.2 a. Bandwidth efficiency (bits/sec/Hz) vs. number of scatterers, vehicular
scenario, b. Average power of the channel impulse responses generated.



37

Figure 4.3 Bandwidth efficiency (bits/sec/Hz) vs. number of scatterers, magnitudes
and arrival times of 5 scatterers from ETSI model in a vehicular scenario are
considered.

Figure 4.4 Bandwidth efficiency (bits/sec/Hz) vs. number of scatterers, vehicular
scenario, 3 different sampling frequencies.
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Figure 4.5 Bandwidth efficiency (bits/sec/Hz) vs. standard deviation of the path
delay shifts, 10 unit magnitude scatterers are shifted from their uniformly distributed
delays with increasing deviation on time delay axis with constant maximum excess
delay = 3.31μs.

Figure 4.6 Bandwidth efficiency (bits/sec/Hz) vs. standard deviation of the
scatterer magnitudes. 10 scatterers have random magnitudes distributed uniformly
on path delay axis with maximum excess delay = 3.31μs. x-axis shows the standard
deviation of the magnitude random variables N(1, x).
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Figure 4.7 Single carrier BPSK receiver structure (matched filter, correlator
receiver).

Figure 4.8 Performance analysis of single carrier receiver.



Figure 4.9 Performance simulations of single carrier receiver with and without DFE.

Figure 4.10 Multicarrier system transmitter and receiver structures.



CHAPTER 5

DOWNLINKS WITH DIFFERENT INTERBLOCK DATA RATES

So far we considered energy as the major resource in the propagation channel and

we analyzed ways of using it with irregular subbands and equal bin multicarrier

systems. In this chapter, starting with spreading and diversity methods, we consider

CDMA downlink structures and we perform simulations with several configurations

to achieve trade-off strategies among transmission parameters.

5.1 DS-CDMA and MC-CDMA Systems with Diversity Combining

This section includes descriptions of the spread spectrum and multicarrier CDMA as

they are the chosen application for multicarrier and adaptive loading. Using separate

carriers also allows overlaying additional user data on existing IS-95 downlink system.

5.1.1 Spread Spectrum Notion and CDMA

Figure 5.1 Direct sequence code division multiple access BPSK communication
scheme

Protection against externally generated interfering signals (or in case of CDMA

other users appear as interference) is provided by spreading the information bearing

signal into a wideband [21, 20]. The spreading is done by multiplication in time

41
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domain. As a simple illustration a direct-sequence spread BPSK system is considered

as in Figure 5.1. The binary data sequence b(t) is first turned into non-return-to-

zero polarity and modulated with a carrier frequency giving s(t). After spreading

this signal we have

The spreading code consists of N chips and we can express x(t) as

in the inphase basis function. On quadrature axis we have

as basis function which is orthogonal to øk (t).

Information bearing signal stays on inphase axis in BPSK but interference is on

quadrature axis too,

equally in inphase and quadrature domains.

Receiver removes the code from received signal and this operation spreads the

interference while the data signal is being despreaded. The coherent detector output

can be expressed as

Processing gain relates the input SNR to output SNR and given as

At high processing gains Vcj can be taken
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as a Gaussian ry (central limit theorem) and probability of error can be found as

for the given direct-sequence spread BPSK system.

5.1.2 Multicarrier CDMA

Multicarrier code division multiple access (MC-CDMA) is introduced as an inten-

tional dispersive signaling over different subcarriers. This scheme uses direct-

sequence CDMA for multiplexing but modulation on carriers is done by OFDM

principle [22, 23]. In this section, generation of BPSK MC-CDMA signaling will

be covered. Corresponding analytical expressions will be overviewed to provide a

standpoint on ideas of MC-CDMA related future work proposed in the last section.

Figure 5.2 Multicarrier CDMA BPSK transmitter
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As in Figure 5.2, a single data symbol is copied into N parallel branches. At

each branch, data bits are multiplied by one chip of a spreading code of length N and

then BPSK modulated to a subcarrier spaced by F/Tb(F = 1corresponds to OFDM).

Transmitted signal can be written as

in [0, Tb] and elsewhere. Input data am [k] is assumed to be in polar form {±1}.

Bandwidth of the transmitted signal is F/Tb as seen from Equation (24).

Coherence bandwidth, BWc, is in the order of 1 /Td, Td is the excess delay of

channel is frequency selective causing ISI.

Figure 5.3 Multicarrier CDMA BPSK receiver

In uplink, base station receives signals from different users and frequencies, so
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to be estimated and used for prefered combining or equalizing purposes as will be

clear in upcoming receiver description.

In downlink, a mobile terminal receives different interfering user signals m =

1, . . . , M -1 over the same channel with the wanted signal m = 0, p mi = poi , θmi = 00i .

Receiver collects signals from M transmitters with any preferred combining method.

The receiver structure is shown in Figure 5.3. The input at the receiver can be

expressed as a sum of M user signals from M active transmitters

for kth data bit. AWGN is shown as n(t). Local mean power of i th subcarrier of mth

Since the N branches carry iid variables, local

mean power of m th user is pm = Npmi. The decision variable of the k th bit is

for m = 0 desired user.

Different diversity combining methods [16, 22, 23] are possible to choose from.

In equal gain combining (EGC), the gain is doi = co [i] and the decision variable is vo =

In maximum ratio combining (MRC), the gain is

and decision variable can be found as

probability of error expressions can be found using the decision variables. MRC

combats the AWGN component better than EGC does when there is no multiuser

interference. Combating interference and noise appear as goals opposing each other.

EGC maintains orthogonality between the users when the number of users is high and

performs better than EGC in this region. Using threshold power levels orthogonality

can be maintained in a controlled equalization (CE). CE outperforms both EGC and

MRC for most number of user cases. This discussion is valid for downlink where

the mobile terminals receive. In uplink, since base station collects signals from all
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orthogonality of the codes are

invalidated. The receiver can only combat AWGN and MRC outperforms EGC.

5.2 Downlinks with Different Interblock Data Rates

Significant improvements are expected for third generation (3G) cellular systems over

their second generation ancestors. A wide variety of quality of service requirements

await the 3G standardization in North America for IS-95 wideband CDMA system

[24].

Figure 5.4 3G wireless communication system or physical layer radio interface
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ITU forces 3G systems to accomplish reliable communication (both circuit and

packet switched) between multiple networks in high speed. Highly asymmetric but

secure channels have to be provided placing new requirements on radio interface

system. As shown in Figure 5.4, various elements of the wireless communication

system such as modulator, encoder, interleaver/repeater/puncturer, spreading

provide variable parameters of bandwidth, transmission quality, and delay with

negotiated, mixed, matched requirements of the mobile service on a time-varying

wireless channel.

It is possible to reach high transmission rates with various trade-offs: Raw

input data can be modulated adaptively (Figure 5.4, modulator). With realizable

feedback to transmitter, using either optimal power rate adaptation or constant

power with rate adaptation, capacity of adaptive modulation in conjunction with

diversity combining can be derived [25] for certain conditions. Encoding can be

done with variable rates as in the 3G European GSM evolution path, EDGE. Inter-

leaver/repeater/puncturer is followed by the chosen spreading. The main variables

to design the satisfactory radio interface are

• Allocated power per subcarrier per user

• Spreading gain per subcarrier per user

• Transmission rate per subcarrier (with the corresponding modulation, convo-

lutional coding /interleaving rate and spreading gain).

All these variables can be set jointly for each active user to maximize the total

throughput of the system. As a new user is added to the radio network, its

modulation, coding and spreading parameters will have to be set according to the

current channel fading conditions and the adaptive loading and noise levels of the

multicarriers all the while making sure the required probability of error is maintained

with the lowest possible transmission power allocated to the user. The optimization
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algorithm may have to arrange the powers allocated for each subcarrier for each user

jointly rather than just the new user alone to reach the goal of maximum system

throughput. That is, adaptation of the above mentioned parameters for each of the

active users may be necessary everytime a new user becomes active or an active user

becomes dormant.

5.2.1 Comparison of Different Interblock Data Rate Downlinks

Different QoS and data rate requirements of communication channels can be

satisfied by varying one or more of the coding, digital modulation and spreading

blocks. Keeping transmission bandwidth fixed as in IS-95, four different interblock

data rate configurations are compared. User powers are kept constant in the

performance simulations. Various coding, modulation and spreading rate combi-

nations yield different performance characteristics in AWGN, flat fading and

multipath environments permitting trade-off decisions on choices of rate, QoS,

and implementation.

5.2.2 Provision of a Multitude of Services for 3G

Third generation wireless systems will enable provision of a multitude of services

each with potentially different QoS and data rate requirements. Given a fixed trans-

mission bandwidth, operating on one multicarrier frequency, one basic method to

implement a variable rate service in the downlink physical layer DS-CDMA system

is to have variable spreading factors [24]. This could be accomodated with variable

coding and modulation rates which are shown [36] to provide different performance

characteristics in additive white Gaussian noise, flat and frequency selective fading

mobile environments.

A brief overview of the simulated downlink physical layer system is given in

the next section. The following section describes the simulation details. Perfor-
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Figure 5.5 Block diagram of downlink physical layer radio interface with variable
data rates.

mantes of the different rate configurations are compared and trade-off on trans-

mission parameters is discussed.

5.2.3 DS-CDMA Downlink System Description

Users' transmitted signals travel through the same channel. Receiver of each user

receives the superposition of all intended user data sequences from the base station.

Therefore, the downlink physical layer is synchronous. Transmission powers of the

active users are kept equal. This corresponds to perfect power control as the solution

to near-far problem. Coding, interleaving, digital modulation and spreading are the

blocks of the downlink system as shown in Figure 5.5.

A convolutional encoder generates n encoded bits for each k information bits

and k/n is called the coding rate [35]. The shift register consists of n linear algebraic

function generators and K stages. Number of stages, K is the constraint length of the
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Figure 5.6 Shift register for convolutional coding with rate 1/2, K=3.

convolutional code. Figure 5.6 shows the shift register, structure of a convolutional

coder with rate 1/2 and K = 3. The generator polynomials [1 1 1] and [1 0 1] show

the stages of the bits to be modulo-2 added in order to obtain the redundant bits.

Generating polynomials are in general shown in octal form, this corresponds to [7,5]

in the example of Figure 5.6.

Two sets of realizations are considered for the encoding block. In the first

set, for 1/2, 1/4, and 1/3 rate coders, different generating polynomials are chosen.

This requires different coder/decoder structures in the transmitter and receiver. The

generator polynomials are [7,5], [4,5,7], [23,35,27,33] for 1/2, 1/3, and 1/4, respec-

tively. The 2/3 code is generated from 1/2 rate code by puncturing every other bit

in the second output stream of 1/2 coder as in [32, 33, 34]. This corresponds to

three code-word bits for every two information bits. The receiver inserts erasures at

the points where bits have been punctured. This allows the same Viterbi decoder

usage with additional erasure insertion only which greatly simplifies the decoder

block in the receiver. The second realization or implementation set considered in

the simulations include the rate-compatible convolutional codes which is based on a
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family of punctured convolutional codes. The code-word bits from the higher-rate

codes are embedded in the lower-rate codes. Rate-compatible punctured convolu-

tional (RCPC) codes allow implementing a variable-rate error control system using

a single code in the transmitter and a single decoder in the receiver.

The random data bits of users are first convolutionally encoded. Following

the encoding block, interleaving is performed. Interleaving is used to obtain time

diversity against the deep fades of the wireless channel. This method of scrambling

the information bits before transmission prevents to use of overhead [29]. In case of

a noise burst or deep fade in the channel, block of source data is not corrupted at the

same time because it is distributed in time. In other words, the design of the inter-

leaver is done such that the duration of the deep fade is shorter than the interleaving

seperation. In our simulations, approximately 20ms interleaving seperation between

subsequent bits are used as in IS-95. However, this causes a delay in the receiver that

the deinterleaver has to wait until scramble period is filled with received bits. Only

then the deinterleaver can descramble and reform the intended sequence of the data

bits. As the result of the fading channel and the interleaver, the erronous bits are

distributed evenly in the stream and this enhances the performance of the decoder.

Digital modulation is carried out by fixed 4-PSK and 8-PSK. Gray encoding

is present among the subsequent nodes in the constellations. Complex symbols of

the digital modulation are seperated into the inphase and quadrature components

displayed as in Figure 5.7. On the inphase and quadrature branches, user specific

orthogonal Walsh codes are used to spread the real user data symbols with the

gains as shown in Figure 5.7. These spreading gains maintain the fixed transmission

bandwidth of 1.2288 Mcps (IS-95). Figure 5.8 shows the channel and transmission

symbol durations at the same chip rate for all multirate configurations as used in the

simulations. This corresponds to fixed transmission bandwidth. So that these config-

urations can be used simultaneously in the downlink. Depending on the performance



Figure 5.7 Synchronous downlink transmitter and receiver diagram used for single
user AWGN and flat fading performance simulations.

of each configuration, one can prefer assigning one of the configurations to an active

user.

RF modulation is done at 2 Ghz in which the wireless channel is simulated.

For the time being, additive white gaussian noise and flat fading channels with a

single RAKE finger at the receiver are considered. Fading channel is assumed to

stay unchanged for one data bit period as shown in Figure 5.8. Simulations with

multipath channel will be explained after AWGN and flat fading performances.

The receiver demodulates the received signal at RF frequency. Orthogonal

despreading is done on real symbols at both inphase and quadrature components.

M-PSK demodulation converts the complex information symbols into bits. Viterbi

decoder decodes the deinterleaved bit stream.



Figure 5.8 Same chip period and fixed transmission bandwidth in all multirate
configurations.

5.2.4 System Performance Simulations and Discussions

To observe the bit error rates or quality of services one can achieve, two sets of

simulations are performed. In the first set of simulations, for 1/2, 1/4, and 1/3

rate coders, different generating polynomials are chosen. This requires different

coder/decoder structures in the transmitter and receiver. The generator polynomials

are [7, 5], [4, 5, 7], [23, 35, 27, 33] for 1/2, 1/3, and 1/4, respectively. The 2/3 rate

code is generated from 1/2 rate code by puncturing every other bit in the second

output stream of 1/2 coder.

The same rates can be achieved by using the rate-compatible punctured

convolutional (RCPC) codes. This is the way the codes are achieved in the second
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Figure 5.9 Code performances for BPSK in additive white gaussian noise.

simulation set. Mother 1/4 rate code [23, 35, 27, 33] is punctured to obtain the

remaining three codes with the puncturing matrices in [34]. These puncturing

matrices are shown in Table 5.1. This allows the usage of the same coder/decoder

structure with an addition of a puncturing/depuncturing operation. The ones in

the matrices show the code-word bits that are transmitted and the zeros show the

deleted or punctured code-word bits of the convolutional shift register output. All

Table 5.1 Puncturing matrices used for 1/2, 1/3, 2/3 from the 1/4 mother code.

Rate 2/3 1/2 1/3 1/4
1111 1111 1111 1111 1111 1111 1111 1111

Puncturing 1010 1010 1111 1111 1111 1111 1111 1111
Matrices 0000 0000 0000 0000 1111 1111 1111 1111

0000 0000 0000 0000 0000 0000 1111 1111



Figure 5.10 Performance characteristics in additive white gaussian noise when
different generator polynomials and different coder/decoder structures are used.

the code-word bits of the 1/4 rate are transmitted. In the receiver, in the place of

the punctured code-word bits, erasures are inserted. Note that only the 1/4 rate

mother-code decoder are used. Erasures are ignored in the calculation of the trellis

metrics in Viterbi decoder [20, 34, 32, 33] since there are no code-word bits trans-

mitted at their erased slots. The performances of all the codes mentioned operating

on BPSK modulated bits in additive white Gaussian noise are plotted in Figure 5.9.

The performance simulations using the first set of codes are displayed in

Figures 5.10 and 5.11. For the four different rates, digital modulation and spreading

blocks change the data rates among the blocks as shown in Figure 5.5. Before

transmission, the fixed 1.2288 Mcps transmission chip rate is maintained. During

55
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Figure 5.11 Performance characteristics in flat fading when different generator
polynomials and different coder/decoder structures are used.

the channel simulation, the chip duration is kept constant and the fading channel is

assumed to stay unchanged during 64 chips as shown in Figure 5.8. This assumption

is valid in the other rate configurations as well for a fair comparison. Signal to noise

ratio is measured before all the receiver blocks. Thus, in the performance curves,

coding and spreading gains are seen all together.

In the second set, rate compatible punctured convolutional (RCPC) codes are

used. This changed the results slightly as can be seen in Figures 5.12 and 5.13. 1/4

rate coder helps the system outperform the other rate configured systems. For the

chosen spreading gains, modulation sizes and code rates, the coding block seems

to be the dominating factor in the overall performance of AWGN and flat fading
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Figure 5.12 Performance characteristics in AWGN when the same coder/decoder
structure (with RCPC codes) is used to generate higher rate codes by puncturing.

channels. Less than 0.25 dB difference in bit error rate at SNR = - 2 dB in the

performance of the first three configurations is observed under flat fading channel.

In AWGN channel this difference is more pronounced.

In AWGN and flat fading channel performances, we see the perfect user

seperation with orthogonal Walsh codes. Thus the results demonstrate only one

active user performance.

In multipath environment, a two path fading channel is simulated. In all

simulations, Rayleigh fading coefficients are Doppler shaped [16], assuming a 70
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Figure 5.13 Performance characteristics in flat fading when the same coder/decoder
structure (with RCPC codes) is used to generate higher rate codes by puncturing.

mph maximum velocity in the time-varying mobile wireless channel as explained in

detail in Chapter 2.

In the multipath fading (frequency selective) case, in addition to user specific

Walsh codes, receiver also makes use of a user specific long PN code which is 2 42 — 1

chip long [29]. Direct spreading is used in each downlink configuration. Each user is

assigned a unique long PN code. The long code is generated using the characteristic

polynomial
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Figure 5.14 Downlink receiver diagram of user1 with two RAKE fingers for
two-multipath fading performance simulations when there are more than one active user.

In addition to the long PN code uniquely assigned, each user also has orthogonal

seperation maintained by Walsh codes. The receiver structure with seperate RAKE

fingers is shown in Figure 5.14. Maximum ratio and equal gain combining methods

are used to combine the RAKE contributions coming from different multipaths.

Perfect channel parameter estimation is assumed.

Complex spreading shown in Figure 5.15 is also tested and observed to perform

the same as the direct spreading as expected.

Figure 5.16 shows the performance when there are two active users operating

in the system with an additional multipath at approximately 2 ms of excess delay in

the fading wireless channel. The curves show equal gain combining and maximum
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ratio combining diversity results operating on the two seperate RAKE receivers

locked on the uncorrelated multipaths at the mobile receiver. Figure 5.17 shows the

performance characteristics when soft decision is used in the decoder for the fourth

rate configuration.

Figure 5.18 shows the effect of the number of active users in the system on

the bit error rate. All users operate at the same transmission power at SNR = -

4dB. From these curves, we see the same performance behaviors among the given

rate configurations as in AWGN and flat fading performance simulations. Rather

than the fixed modulation sizes (no adaptive modulation considered) or the various

spreading gains, the coding rate proves to be the dominating parameter in the

system observing the performance curves obtained.

Figure 5.15 Complex spreading for inphase and quadrature channels.
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Figure 5.16 Performance characteristics (with RCPC codes) in multipath fading
environment when there are two active users.
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Figure 5.17 Soft vs hard decision decoding for the fourth rate configuration in
performance characteristics (with RCPC codes) in multipath fading environment
when there are two active users.



Figure 5.18 Bit error rates (with RCPC codes) in multipath fading environment at
a specific SNR for different numbers of active users.
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CHAPTER 6

MULTICODE CDMA DOWNLINK IN
SHADOWED MULTIPATH FADING

It is possible to provide a user with high data rates by assigning multiple codes.

Multiplexing the high rate bit stream to seperate branches allows us to share

the allocated bandwidth with the existing IS-95 services without any burden.

Providing extended bandwidth for the multicode user appears as additional active

user interference for already active existing users. This method is used with two

different iterative decoding methods and compared in two different synchronous

downlink schemes operating under given channel conditions with the same trans-

mission bandwidth as in IS-95. Performance characteristics of multicode CDMA

downlink with systematic convolutional (Turbo) coding are obtained under shadowed

multipath fading mobile channel. Multicode CDMA with LogMAP decoding [37]

is observed to provide better QoS with lower bit and frame error rates, reasonable

complexity and shorter decoding delay compared to DS-CDMA downlink with single

code pair assigned to each user.

6.1 Multicode CDMA with Higher Data Rates
and Overlaying Capability

To meet the needs for the third generation of wireless communication systems,

a wideband spread spectrum radio interface that uses Code Division Multiple

Access technology is being standardized. Providing a multitude of services, each

with different QoS and input data rate requirements on a given fixed transmission

bandwidth with overlay capability on existing IS-95 system is pointed [24] as

the challenge for the standardization process. Variable coding, modulation rates

and spreading factors with fixed transmission bandwidth in downlink DS-CDMA

64
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Figure 6.1 Systematic convolutional (Turbo) coded, multicode CDMA downlink
transmitter.

physical layer is shown to be one way to provide different performance character-

istics in additive white Gaussian noise, flat and frequency selective fading mobile

environments [36]. Performances of different interblock rate configurations were

compared and trade-off possibilities on transmission parameters were discussed in

Chapter 6.

In this part, multicode CDMA downlink performance is investigated and

tested with the already proven downlink system used earlier in Chapter 6. For the

coding block in the DS-CDMA downlink, systematic convolutional (Turbo) codes

are used which make use of time diversity through interleaving. On the receiver

side, two different iterative decoding techniques [37] are used and their performances

are compared. To achieve higher data rates, it is possible to allocate multiple

code channels [24]. Multiple orthogonal codes are assigned to users on multiplexed

branches with lower rates. This multicode scheme is implemented and performance

simulations are obtained in shadowed frequency selective mobile fading channel

based on maximum vehicular velocity, base-mobile distance and empirical modeling
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[16, 38, 39]. Multicode DS-CDMA downlink performance results are compared with

single code pair per user downlink where no multiple spreading codes are assigned

to users and no multiplexing is used. Performances of both systems are obtained

under the same channel conditions.

Figure 6.2 Systematic convolutional (Turbo) coder.

In the next section, the downlink DS-CDMA system with its building blocks

are described. The structures of the multicode system and the system that uses

no multiplexing with a pair of single orthogonal code (on inphase and quadrature

channels) allocated to each user are detailed. The shadowing, excess delay and fading

parameters of the wireless channel are explained in the simulation details. In the

last section, the simulation results, advantages and disadvantages of both downlink

schemes are compared and discussed.

6.2 Direct Spread and Multicode Downlink Systems Description

In the multicode CDMA downlink transmitter, there are coder, interleaver, multi-

plexer, digital modulator, Walsh-Hadamard orthogonal seperation on inphase and

quadrature channels, user specific long PN code spreading and RF modulator blocks

as shown in Figure 6.1. Turbo encoder consists of two systematic recursive convolu-



67

Figure 6.3 Systematic convolutional coded, single code pair per user DS-CDMA
downlink transmitter.

tional codes operating in parallel [37]. As shown in Figure 6.2, the first constituent

coder encodes the input information bits in their original order. The second encodes

the output of a Turbo interleaver which pseudorandomly scrambles the original infor-

mation bits. The original information bits are always transmitted. The output of

the constituent encoders are selected according to the desired coding rate. For our

purposes, one out of every two parity bits are punctured to obtain a coding rate of

1/2. The output of the Turbo coder is interframe interleaved. This provides approx-

imately 20ms interleaving seperation in subsequent bits as in IS-95. In the multicode

CDMA downlink, multiplexer reduces the rate of the sequence at each multiple

branch. Digital modulation is carried out by QPSK. Gray encoding is present among

the subsequent nodes in the constellation. Complex symbols of the digital modulation

are seperated into inphase and quadrature components as in Figure 6.1. Then, the

user bits seperated into these multiple branches are individually spread with different

orthogonal Walsh codes. Thus multiple orthogonal codes are assigned to a single user.
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Spread components at inphase and quadrature branches of both multiplexed streams

are combined and further spread with user specific long PN codes which are 2 42 — 1

chips long [29]. The same characteristic polynomial is used here as in Chapter 6.

RF modulation is done at 2 Ghz in which the wireless channel is simulated. The

shadowing will be explained in the following section.

Figure 6.4 Multicode CDMA downlink receiver. Only one rake finger is shown.

DS-CDMA downlink transmitter where a single pair of orthogonal codes are

assigned per user are shown in Figure 6.2. The same coding rate is used. There

is no multiplexer and the rate is thus higher than multicode. To achieve the same

transmission rate of 1.2288 Mcps, spreading is done with half of the processing gain

of the multicode scheme.
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The receivers of both schemes consist of RAKE fingers that operate on the

multipath components of the received signal. In Figure 6.4, only one of the RAKE

multicode receivers is shown where the combining blocks make use of the other

parallel RAKE finger matched filter outputs. Each RAKE operates on the corre-

sponding path response, despreading the long PN code from the RF demodulated

signal and despreading the orthogonal multicodes at each multiplexed branch.

Perfect channel estimation is assumed. Digital demodulator outputs are demulti-

plexed and deinterleaved. For the decoder, symbol-by-symbol maximum a posteriori

(LogMAP) and soft-in/soft-out Viterbi algorithm (SOVA) [37] are implemented.

The receiver for single code pair per user DS-CDMA downlink was shown in

Figure 5.14.

6.3 Shadowing Path Gain - Delay Spread Propagation Model

In addition to the mobile multipath fading channel model with Doppler spectral

shaping in Chapter 2, we also consider shadowing in this chapter. With shadowing,

the effects of base-to-mobile distance, correlation between delay spread and shadow

fading [38] are taken into account for a more realistic simulation of the mobile radio

channel including large-scale effects on the propagation environment. The compact

statistical model for the joint distribution of path gain and delay spread are combined

with empirical evidence, drawn from a wide range of published reports. The model

is suitable for use with the Monte Carlo simulations in this chapter.

Path gain is defined as the received power to transmitted power. The propa-

gation model consists of locally averaged path gain g and the effect to path gain,

scattering or multiple echoes (multipath). The fading is modeled as described in

Chapter 2. Path gain, g, characteristically falls as a power 7 of base-to-mobile

distance, typically 3 < < 4. It has a random variation caused by large-scale

shadowing. Its distribution is Gaussian with standard deviation between 6-12dB.
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Multipath delay was described in Chapter 2 and its multipath dispersion effect (inter-

symbol interference, ISI) and decision feedback equalization as multipath mitigation

solution was shown in Chapter 4. In the CDMA spread spectrum downlinks, RAKE

finger combining has been the focus for the last three chapters.

The relevant index of multipath dispersion is square root of the second central

moment of the power-delay profile, Trms • According to the conjectures with collected

empirical evidences in [38], Trms is lognormal at any distance, its median increases

with distance, Trms tends to increase with shadow fading.

Taking the normalized path gain at delay Ti as

power-delay profile is defined as the {S i , Ti } set. The rms delay spread can now be

computed as

The propagation in cellular channels have properties of a wide-sense stationary

uncorrelated-scattering (WSSUS) [1]-[4],[16, 40, 41] as described in detail in Chapter

2. According to the postulate derived from the curve fitting collection from several

published propagation measurement reports [38, 42, 43, 44, 45, 46, 47], τ rms  is

lognormally distributed, its median and standard deviation are taken as Ti d€ (0.5 <=

< 1.0) and ay ,respectively. Here, Ti is the median value of Trms at base-to-mobile

distance, d=1km. The probability distribution function of d selected randomly in

the cell area is

The conditional pdf of τrms is
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Integrating (7.4) using (7.3) and with the substitution of u = In x, the probability

distribution function of τrms can be found as

So, from (6.5) it is clear that the distribution of τ rms is

lognormal and at a distance d, 10 log τrms tends to be Gaussian distributed. The

variation of decibel shadow fading (path gain) about its median is also Gaussian

distributed. The mathematical model can be written as follows. The path gain or

shadow fading is

where d is in km and 3 < -y < 4. The median value of g at d=1km is calculated by

the empirical formula provided in [39],

where hb is the effective base station antenna height in meters (taken as 30m in

simulations), fc is the carrier frequency in MHz, a is a correction constant, h m is

the effective mobile height (a x hm  is taken to be 0dB in the simulations), and x

is a lognormal variable which makes X = 10 log(x) a Gaussian random variable at

distance d, having zero mean and standard deviation, ax , between 6-12dB. Delay

spread can be written as

where T1 is the median value of rms delay spread at 1km taken in microseconds, € is

an exponent 0.5 < E < 1, and y is a lognormal variable which enables Y = 10 log(y)
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to be a Gaussian random variables at distance d, having zero mean and a standard

deviation, ay , between 2-6dB. The correlation between g and τrms  is represented as

and

The correlation coefficient, p, should be negative because large Trms is associated

with small g. Figures 6.5 and 6.6 show 5000 realizations for distribution of rms delay

spread and shadowing path loss for 7 = 3.74 and correlation coefficient p =0, -0.5,

-0.65, and -0.85. For each of the Monte Carlo runs in the simulations explained

in the next section, a new delay spread shadowing path loss pair is generated for

p = —0.75 and 7=3.74 as used in [38]. This distribution with 5000 realizations is

shown in Figure 6.7.

6.4 Performance Simulation Results under Shadowed Multipath Fading

For both the multicode CDMA and DS-CDMA schemes, the transmission chip rate

is kept constant. Coding, digital modulation and spreading blocks change the rates

as shown in Figures 6.1 and 6.3. The fading channel is assumed to stay unchanged

during one transmission symbol as shown in Figure 5.8. This assumption is applied

for simulations of both schemes for a fair comparison. Multipath (frequency selective)

environment is simulated with two Rayleigh fading paths. In all realizations,

Rayleigh fading coefficients are Doppler shaped [16], assuming a 70mph maximum

vehicular velocity in the time-varying mobile radio channel as described in Chapter

2. Base-to-mobile distance is taken randomly with the probability distribution

function discussed in the previous section. Correlated rms delay spread and shadow

path-loss [38] are calculated as a function of base-to-mobile distance. In Figure

6.7, a realization of delay spread and shadow path-loss is shown for base-to-mobile
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distance of 1km as they are used in our simulations. In all the simulations, empirical

propagation parameters are taken as in [39] which were reviewed in the previous

section.

Performance characteristics of multicode CDMA downlink are shown in Figures

6.8-10. Since diminishing returns are obtained, iterations for both LogMAP and

SOVA decoding are terminated at 5. All iteration results with equal gain combining

and maximum ratio combining are averaged for a number of Monte Carlo runs. At

each run, a new shadow realization is generated. Approximately 20ms of frame

size corresponding to 400 information bits/frame/user is assumed and frame error

rates are obtained as in Figure 6.10. Performance of single code per pair

DS-CDMA scheme with LogMAP and SOVA decoding under the same channel conditions

are shown in Figures 6.11 and 6.12. All 5 iteration results are included for both

decoding methods. For multicode single code comparison, however, only 1 and

5 iteration results are included. These comparisons are plotted in Figures 6.13-

16. Symbol-by-symbol maximum a posteriori (LogMAP) decoding method performs

better than SOVA method which is comparable to Viterbi decoder in complexity.

Decoding delay of LogMAP method is also noted to be shorter compared to SOVA.

Multicode CDMA receiver with LogMAP decoder needs approximately 0.6dB less

input Eb /No to achieve 10'5 bit error rate in shadowed frequency selective fading

channel with maximum ratio combining compared to the receiver with SOVA decoder

for 5 decoding recursive iterations. Multicode CDMA scheme outperforms single code

scheme in both decoding methods. With maximum ratio combining and 5 LogMAP

iterations, multicode CDMA scheme needs approximately 1.5dB less input Eb/No

than single code DS-CDMA to achieve a bit error rate of 10 -2 . Multicode scheme

can also be observed to perform better under the given conditions from frame error

rate curves.



74

Multicode system, as shown in Figure 6.4, consists of multiplexed parallel

branches. In the multicode scheme, when the same processing gain is assigned as the

DS-CDMA, each branch appears as a new active standard service user to the system

which gives multicode scheme the overlay capability. Without any modifications on

the existing standard voice services, multicode scheme can offer twice or higher the

rate offered by the standard service. The offered rate can be adjusted by the number

of multiplexed branches. Each branch with its unique orthogonal code appears as a

new user interference on the other users.
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Figure 6.5 Realization of correlated shadow path-gain and delay spread at 1km
base-mobile distance, a) p = 0, b) p = —0.5.



Figure 6.6 Realization of correlated shadow path-gain and delay spread at 1km
base-mobile distance, a) p = —0.65, b) p = —0.85.
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Figure 6.7 Distribution of correlated shadow path-gain and delay spread at 1km
base-mobile distance as they are used in simulations, p = —0.75.

Figure 6.8 Multicode CDMA downlink bit error rates in shadowed frequency
selective fading mobile channel with equal gain combining.
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Figure 6.9 Multicode CDMA downlink bit error rates in shadowed frequency
selective fading mobile channel with maximum ratio combining.

Figure 6.10 Multicode CDMA downlink frame error rates in shadowed frequency
selective fading mobile channel, maximum ratio combining.
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Figure 6.11 Single code pair per user DS-CDMA downlink bit error rates in
shadowed frequency selective fading mobile channel, maximum ratio combining.

Figure 6.12 Single code pair per user DS-CDMA downlink frame error rates in
shadowed frequency selective fading mobile channel with maximum ratio combining.



Figure 6.13 Multicode versus single code CDMA downlink bit error rates in
shadowed frequency selective fading mobile channel with equal gain combining
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Figure 6.14 Multicode versus single code CDMA downlink bit error rates in
shadowed frequency selective fading mobile channel with maximum ratio combining.
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Figure 6.15 Multicode versus single code CDMA downlink frame error rates in
shadowed frequency selective fading mobile channel with equal gain combining

Figure 6.16 Multicode versus single code CDMA downlink frame error rates in
shadowed frequency selective fading mobile channel with maximum ratio combining.



CHAPTER 7

CONCLUSIONS

The main resource for radio link is channel availability. Wireless mobile channel

imposes limitations on the physical layer communication reliability, introducing

delays and fades, thus appears as the main challange in achieving reliable high data

rates and satisfying the quality of services. The following paragraphs summarize our

contributions to allocate the resources in downlink physical layer.

Channel energy is not distributed evenly in the spectrum. To localize the

unevenly distributed energy concentration in spectrum, multirate signal processing

techniques are used for filter design. Composite time-varying mobile wireless channel

modeling techniques are used to prepare received pilot signals as inputs to trace the

energy concentration for indoor, pedestrian and vehicular environments. Irregular

tree structure is formed according to channel data and practical perfect recon-

struction quadrature mirror filters are implemented for analysis/synthesis. With

the tree structure, we are able to modify the multiresolution one can achieve. It is

found that narrower filters need to be implemented for channels with higher rate of

change (higher Doppler frequencies or higher mobile speeds). The algorithm runs

each time new channel data is available. Thus, tree structure traces the energy

localization in the channel adaptively. With synthesis filters, the original signal is

retrieved with negligible reconstruction error.

After irregular filter structures, equal bin subbands in frequency spectrum

which corresponds to Discrete Multitone or Orthogonal Frequency Division Multi-

plexing methods are analyzed for multicarrier option of next generation wireless

services. Noise levels in the multicarriers, environmental effects and availability

of the channel are related to achievable bit rates using generic adaptive loading.

Optimum power loading technique is used in each QAM modulated multicarrier to

maximize total achievable bit rate. Channel delays and magnitudes are randomized
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by adding Gaussian random variables. The variance is used as a measure to represent

randomness in the channel parameters. Bandwidth efficiency or average achievable

bit rate is found as a function of delay and magnitude randomness, scatterer numbers

and maximum Doppler frequency. Advantages/disadvantages of using multicarrier

systems versus single carrier systems are analyzed with decision feedback equal-

ization.

In CDMA systems, for a fixed bandwidth allocation, the transmission rate

can be altered by varying one or more of the coding, interleaving, modulation

and spreading block parameters. In the downlink of DS-CDMA systems, once the

parameters of the above mentioned blocks are set, the base station will transmit

at the lowest power level that can provide the QoS requirements of the service

provided. Spreading gains, coding rates, modulation sizes, ie. interblock data

rates can be set jointly for each active user to maximize the total throughput of

the system. In order to see how varying interblock data rate configurations would

perform, performance analysis is done with the constraint of keeping transmission

bandwidth fixed for all configurations as in IS-95. Various coding, modulation and

spreading rate combinations yield different performance characteristics in AWGN,

flat fading and multipath environments permitting trade-off decisions on choices

of rate, QoS, and implementation. Given fixed transmission bandwidth and equal

active user transmission powers, four different rate configurations among the coding,

digital modulation and spreading blocks are compared in AWGN, flat fading and

multipath fading mobile environments for a DS-CDMA downlink system. Regardless

of the chosen modulation indices and spreading gains, the coding rates dominate the

bit error rate performance characteristics for the rate configured systems. Higher

processing gains in the spreading block are not sufficient to compansate the loss due

to weaker coding for the given conditions in our performance simulations.
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Given fixed transmission bandwidth, bit and frame error rate performance

characteristics of multicode CDMA downlink with systematic convolutional (Turbo)

coding are obtained under shadowed frequency selective fading mobile wireless

channel. LogMAP and SOVA Turbo decoding methods are compared in two

different synchronous downlink scenarios operating on long and short term fading

channel conditions. Correlated shadow fading and delay spread distribution is

generated. In addition to shadowing fade, temporal Doppler correlated Rayleigh

fading is applied independently for each multipath. Correlated shadow fade - delay

spread pair is updated for each Monte Carlo run. Multicode CDMA performance is

observed to outperform the DS-CDMA downlink with single pair of orthogonal codes

assigned to each user. Multicode CDMA downlink with LogMAP decoding appears

to provide a better QoS with lower bit and frame error rate, shorter decoding delay

and reasonable decoding complexity. Multicode scheme also allows higher data rate

services with overlay capability on existing voice services without any modifications.



REFERENCES

1. P. A. Bello, "Characterization of randomly time-variant linear channels", IEEE
Transactions on Communication Systems, pp. 360-393, Dec. 1963.

2. H. Suzuki, "A Statistical Model for Urban Radio Propagation", IEEE Trans-
actions on Communications, Vol. Com .25, No. 7, July 1977.

3. H. Hashemi, "Simulation of the Urban Radio Propagation Channel", IEEE
Transactions on Vehicular Technology, Vol. VT-28, No. 3, Aug. 1979.

4. T. S. Rappaport, et. al., "Statistical Channel Impulse Response Models for
Factory and Open Plan Building Radio Communication System Design",
IEEE Transactions on Communications, Vol. 39, No. 5, May 1991.

5. R. K. Young, Wavelet theory and its applications. Kluwer Academic Publishers,
1995.

6. A. N. Akansu and R. A. Haddad, Multiresolution Signal Decomposition.
Academic Press, 1992.

7. M. V. Tazebay, "On optimal design and applications of linear transforms", Ph.D
dissertation, New Jersey Institute of Technology, Jan. 1996.

8. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, New
York, 1993.

9. Irving Kalet, "The multitone channel", IEEE transactions on communications,
Vol. 37, No. 2, Feb. 1989.

10. Xueming Lin, "Orthogonal transmultiplexers: extensions in digital subscriber
line (DSL) communications", Ph.D dissertation, New Jersey Institute of
Technology, Jan. 1998.

11. J. M. Cioffi, et. al., "MMSE Decision-feedback equalizers and coding - parts
I and II", IEEE transactions on communications, Vol. 43, No. 10, Oct.
1995.

12. A. Bircan, S. Tekinay, A. N. Akansu, "Time-Frequency and Time-Scale Repre-
sentation of Wireless Communication Channels", IEEE Time-Frequency
Time-Scale Conference, Pittsburgh PA, Oct. 1998.

13. P. S. Chow, J. M. Cioffi, J.A.C. Bingham, "A practical discrete multitone
transceiver loading algorithm for data transmission over spectrally shaped
channels", IEEE transactions on communications, Vol. 43, No. 2/3/4,
Feb., March, Apr. 1995.

14. Robert F. H. Fischer and Johannes B. Huber, "A new loading algorithm for
discrete multitone transmission", IEEE Globecom 1996.

85



86

15. Andreas Czylwik "Adaptive OFDM for wideband radio channels" , IEEE
Globecom 1996.

16. W. C. Jakes, Microwave Mobile Communications, IEEE Press, 1974.

17. Anil Bircan, Ali N. Akansu and Skin Tekinay, "Model Based Capacity
Measurements For Wireless DMT Channels" , 33rd Annual Conference on
Information Sciences and Systems (CISS), March 17-19, 1999, Baltimore,
MD.

18. N. A. Zervos and I. Kalet "Optimized Decision Feedback Equalization vs
Optimized OFDM for High-Speed Data Transmission Over the Local
Cable Network", IEEE ICC 1989.

19. John A. C. Bingham "Multicarrier Modulation for Data Transmission: An Idea
Whose Time Has Come" , IEEE Communications Magazine, May 1990.

20. John G. Proakis "Digital Communications", 3rd edition, McGraw Hill 1995.

21. Simon Haykin "Communication Systems" , 3rd edition, Wiley 1994.

22. N. Yee, J. P. Linnartz, G. Fettweis "MC-CDMA in Indoor Wireless Radio
Networks", IEICE Transaction on Corn., Japan Vol. E77-B, No7, July
1994, pp. 900-904.

23. N. Yee and J. P. Linnartz "MC-CDMA in an Indoor Wireless Radio Channel" ,
Memorandum UCB/ERL M94/6, UC Berkeley.

24. Oguz Sunay, "IS-95 Evolution Towards the IMT-2000 Era" , Biennial Symposium
on Communications Kingston, Ontario, Canada, June 1998.

25. Mohammed-Slim Alouini and Andrea Goldsmith, "Capacity of Rayleigh
Fading Channels Under Different Adaptive Transmission and Diversity-
Combining Techniques" , IEEE Transactions on Vehicular Technology,
Vol. 48, pp. 1165-1181, July 1999.

26. Shinsuke Hara, T.H. Lee, R. Prasad, "BER Comparison of DS-CDMA and MC-
CDMA for Frequency Selective Fading Channels", Proc. of 7th Tirrenian
International Workshop on Digital Communications, Viareggio, Italy,
Sep'95.

27. Leonard J. Cimini, "Analysis and Simulation of a Digital Mobile Channel
Using Orthogonal Frequency Division Multiplexing" , IEEE Transactions
on Communications, Vol.33, No.7, July 1985.

28. Leonard J. Cimini, "Performance Studies for High-Speed Indoor Wireless
Communications" , Wireless Personal Communications 2: pp.67-85, 1995.



87

29. T. S. Rappaport, Wireless Communications Principles and Practice, Prentice
Hall, 1996.

30. R.Steele, Mobile Radio Communication, IEEE Press, 1992.

31. Telia Research AB Technical Report on " Creating discrete impulse responses
for ITU and ETSI fading radio channels" , Nov. 26, 1997.

32. J. B. Cain et al., "Punctured Convolutional Codes of Rate (n-1)/n and Simplified
Maximum Likelihood Decoding" , IEEE Transactions on Information
Theory, Vol. IT-25, No. 1, Jan. 1979.

33. George C. Clark, J. Bibb Cain, Error-Correction Coding for Digital Communi-
cations, New York, Plenum Press, 1981.

34. Stephen B. Wicker, Error Control Systems for Digital Communication and
Storage, Prentice Hall, 1995.

35. Shu Lin, Daniel J. Costello, "Error Control Coding, Fundamentals and Appli-
cations" , Prentice Hall, 1983.

36. Anil Bircan, M. Oguz Sunay, and Ali N. Akansu, "Comparison of Different
Interblock Data Rate Downlinks" Proc. IEEE GlobeCom conference, Nov-
Dec. 2000, San Francisco, CA.

37. Joachim Hagenauer, Elke Offer, and Lutz Papke, "Iterative Decoding of Binary
and Convolutional Codes" , IEEE Trans. on Inform. Theory, Vol.42, No.2,
pp. 429-445, March 1996.

38. Larry J. Greenstein, Vinco Erceg, Yu Shuan Yeh, and Martin V. Clark, "A
New Path-Gain/Delay-Spread Propagation Model for Digital Cellular
Channels", IEEE Trans. on Vehicular Technology, Vol. 46, No. 2, May
1997.

39. Masaharu Hata, "Empirical Formula for Propagation Loss in Land Mobile Radio
Services", IEEE Trans. on Vehicular Technology, Vol. VT-29, No. 3,
August 1980.

40. A. Papoulis, Probability, Random Variables, and Stochastic Processes, Third
Edition, McGraw Hill, 1991.

41. Alberto Leon-Garcia, Probability and Random Processes for Electrical
Engineering, Second Edition, Addison Wesley, 1994.

42. D. C. Cox, "Distribution of multipath delay spread and average excess delay for
910-MHz urban mobile radio paths" , IEEE Trans. Antennas and Propa-
gation, Vol. AP-23, pp. 206-213, Mar. 1975.



88

43. T. S. Rappaport, S. Y. Seidel, and R. Singh, "900 MHz multipath propagation
measurements for US digital cellular radiotelephone", IEEE Trans. Veh.
Technology, Col. 39, pp. 132-139, May 1990.

44. D. M. J. Devasirvatham, "Radio propagation studies in a small city for universal
portable communications", in Proc. 38th IEEE Veh. Tech. Conf., 1988.

45. E. S. Sousa, V. M Jovanovich, and C. Daigneault, "Delay spread measurements
for the digital cellular channel in Toronto", IEEE Trans. Veh. Tech. Vol.
43, pp. 837-847, Nov. 1994.

46. J. van Rees, "Measurements of the wide-band radio channel characteristics for
rural, residential, and suburban areas", IEEE Trans. Veh. Tech. Vol. VT-
36, pp. 2-6, Feb. 1987.

47. T. Tanaka, S. Kozono, and A. Akeyama, "Urban multipath propagation loss
and delay spread characteristics in mobile communications", Elec. Comm.
Japan, Vol. 74, pp. 80-88, Aug. 1991.


	Resource allocation for CDMA downlink to achieve maximum throughput
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction 
	Chapter 2: Composite Time-Varying Mobile Wireless Channel Modeling Techniques
	Chapter 3: Multiresolution Decomposition of Wireless Channels
	Chapter 4: Discrete Multitone (DMT) and Orthogonal Frequency Division Multiple (OFDM) Access Systems
	Chapter 5: Downlinks with Different Interblock Data Rates
	Chapter 6: Multicode CDMA Downlink in Shadowed Multipath Fading
	Chapter 7: Conclusions
	References

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)


