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ABSTRACT

NUMERICAL MODELING AND OPTIMIZATION OF WATERJET-BASED
SURFACE DECONTAMINATION

by

Konstantin Babets

The mission of this study is to investigate the high-pressure waterjet based surface

decontamination. Our specific objective is to develop a practical procedure for selection

of process conditions at given constraints and available knowledge. This investigation is

expected to improve information processing in the course of material decontamination

and assist in the implementation of the waterjet decontamination technology into practice.

The development of a realistic procedure for processing of a chaotic and non-accurate

information constitutes the main accomplishment of this study.

The research involved acquisition of representative information about removal of

brittle, elastic and viscous deposits. As a result an extended database representing jet

based decoating has been compiled and feasibility of the damage free decontamination of

various surfaces including highly sensitive ones is demonstrated. Artificial Intelligence

techniques (Fuzzy Logic, Artificial Neural Networks, Genetic Computing) have been

applied for processing of the acquired information and a realistic procedure of such an

application has been developed and demonstrated. This procedure enables us to integrate

available information about surface in question and existing numerical models. The

developed procedure allows a user to incorporate both qualitative (linguistic) and

quantitative (crisp) information into a process model and to predict operational conditions



for treatment of an unknown surface using a readily detectable single experimental

parameter that characterizes a deposit/substrata combination. The suggested technique is

shown to perform reliably in the case of incomplete and chaotic information, where the

traditional regression based methods fail.

Numerical simulations of the two-phase flow inside a waterjet nozzle are

conducted. Numerical solutions of the partial differential equations of the two-phase

turbulent jet flow are obtained using FLUENT package. The numerical prediction of jet

velocity profiles and the interface between the two phases (water - air) inside a nozzle are

in good agreement with experimental data available in the literature. Thus the current

problem setup and the results of simulations can be applied to improvement in the nozzle

design.

A realistic procedure for the design of the jet based surfaces decontamination

developed, as a result of this study, is applied for optimization of the removal of the

paint, rust, tar and rubber from the steel surface.
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CHAPTER 1

INTRODUCTION

Today's rapidly developing and changing technologies and industrial products and

practices frequently carry with them the increased generation of materials that, if

improperly dealt with, can threaten both public health and the environment. Therefore the

increasing attention is now being paid to the process, defined as material cleaning. In this

work the term "cleaning" determines various surface decontamination technologies, e.g.

sterilization, derusting, decoating, degreasing etc. Cleaning involves removal of

undesirable substances from substrate surface without alteration of the surface geometry

and properties. There is an enormous variety of cleaning operations ranging from street

cleaning to decontamination of the space craft parts prior to assembly. Current cleaning

technologies are extremely low energy efficient and environmentally non-friendly.

Conventionally, removal of a soil attached to a surface involves flooding the surface with

a solvent, most often water, with or without a detergent, and subsequent dumping of the

solvent, with or without recycling. In most cases a solvent is delivered to the surface as a

fluid stream. The soil is entrained by the fluid mechanically or chemically and carried out

by the off-stream. An object can be submerged into solvent or if the surface is an

enclosure (tank, vessel), the solvent fills the space surrounded by the surface in question.

Solvents can be delivered by a cleaning tissue, jet, etc.

Cleaner technologies based on physical decoating are commercially available or

are being developed to replace solvent strippers. These technologies take advantage of

the differences in physical properties between the coating and the substrate to destroy the

1
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bonding and/or abrade the coating from the underlying substrate. Among available

coating removing techniques the most promising ones appear to be the blasting

technologies. These include but not limited to: plastic media blasting, wheat starch

blasting, sodium bicarbonate wet blasting, high pressure water blasting and cryogenic

blasting. It is clear that the water blasting constitutes the most effective technology.

Water is readily available, comparatively inexpensive, and induces no damage to

environment. The complete separation of water and debris facilitates material recovery.

Therefore complete pollution prevention is feasible.

The deposit removal by an impinging waterjet is the most realistic replacement to

chemical strippers. The principal advantages of the waterjet are the feasibility of the

decontamination of a wide variety of surfaces and potential for complete recycling of

cleaning water and off-products. In most cases the waste stream generated in the course

of waterjet cleaning constitutes a mechanical mixture of water and debris. The debris

generated during water cleaning are not contaminated by solvents or other foreign

substances and can be at least partially reused. Waterjets have been customarily used for

various cleaning applications such as street and car washing, scale, paint and rust

removal, etc. Commercial waterjet cleaning equipment including the equipment for

cleaning of tanks is manufactured by a number of companies. Moreover, there are a

number of contractors routinely providing waterjet cleaning services. The existing

commercial technologies however, do not assure completeness of the deposit removal

and the water consumption is extremely high. Because of these and some other

shortcomings of waterjet cleaning, the use of solvents remains to be the principal

precision cleaning technique.
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The current research is therefore concerned with experimental and numerical

investigation of the waterjet based surface decontamination. This study will outline the

effective ranges of the application of this technology and identify the key process

variables responsible for the effective and competitive application of the waterjet

technology for decontamination of various types of materials.



CHAPTER 2

ALTERNATIVE DECONTAMINATION TECHNIQUES

2.1 Overview of Existing Cleaning Technologies

Cleaner technologies based on physical coating removal are commercially available or

are being developed to replace solvent strippers. Physical coating removal technologies

take advantage of differences in physical properties between the coating and the substrate

to destroy the bonding and/or abrade the coating from the underlying substrate.

Protecting the underlying substrate from damage while achieving good coating removal

is a major concern.

Cleaner coating removal technologies are developing rapidly to fill a variety of

process needs. Cleaner coating removal technologies use one or more of four general

types of physical mechanisms (USPA, 1994):

• Abrasive technologies wear the coating off with scouring action.

• Impact technologies rely on particle impact to crack the coating to remove it.

• Cryogenic technologies use extreme cold to make the coating more friable and induce

differential contraction to debond the coating.

• Thermal technologies use heat input to oxidize, pyrolyze, and/or vaporize the coating.

Many cleaner organic coating removal applications combine these methods. The

abrasion and impact mechanisms typically occur together in technologies emphasizing

one mechanism over the other. For example, sodium bicarbonate stripping relies mainly

on abrasion with some removal by impact. On the other hand, plastic media blasting

4
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(PMB) relies mainly on impact to crack and remove the coating but includes some

abrasive action. The cryogenic technologies use a coolant, such as liquid nitrogen, to

provide a cooling mechanism supplemented with PMB or other technology using an

impact removal mechanism. Thermal technologies burn the organic coating to form an

ash but often are followed by ash or soot removal with a technology providing an impact

mechanism.

2.2 Plastic Media Blasting

The plastic media blasting (PMB) coating removal process eliminates the use of solvent

strippers. The process uses nontoxic plastic media for coating removal and stripping

process, thus eliminating generation of wastewater.

The PMB process uses low-pressure air or centrifugal wheels to project plastic

media at a surface. The blast particles have sufficient impact energy, coupled with

hardness and geometry. To chip away or erode the coating. The sharp-faceted particles

fracture on impact, leaving new sharp edges to allow continued use for stripping.

Applications of PMB removal include but not limited to powder coatings,

urethanes, military chemical agent resistant coatings, epoxies, high solids, polyamid,

acrylic lacquers, polysulfide sealants, fluorocarbon films.

2.3 Wheat Starch Blasting

The process uses nontoxic, biodegradable media for coating removal and does not

generate volatile organic air emissions. The wheat starch blasting media are made from
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renewable agricultural products Wheat starch blasting is a completely dry stripping

process.

Wheat starch blasting sues low-pressure air to propel particles at the painted

surface. The coating is stripped away by a combination of impact and abrasion. Although

wheat starch blasting sues generally similar equipment and techniques to PMB, the

process has somewhat different operating characteristics and stripping action.

Wheat starch blasting is known mainly for its gentle stripping action. Therefore

most of the testing and application has been on sensitive substrates such as thin

aluminum, particularly sort alloys or anodized surfaces (e.g., commercial aircraft skins),

sensitive composites (e.g., automobile fiberglass or plastic or aircraft radomes).

2.4 Burnoff Coating Removal

Burnoff coating removal technologies use a combination of volatilization, pyrolysis, and

oxidation to remove organic coating materials. Thermal methods completely avoid the

use of solvents for coating removal but generate potentially contaminated offgas and

wastewater streams. Burnoff systems use temperatures of 370 deg C (700 deg F) or

higher to volatilize and/or burn the organic coating material. Burnoff coating removal is

commonly used for high-volume, noncritical parts such as the hooks, racks, overspray

collectors, or other similar parts. Burnoff methods can be used to remove both

conventional and power coatings.
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2.5 Carbon Dioxide Pellet Cryogenic Blasting

Carbon dioxide (CO2) stripping generates a smaller amount of waste than all of the

available technologies and some of the emerging thermal technologies. Upon impacting

the surface being cleaned or decoated, the CO2 pellets disintegrate and sublime, that is,

they pass directly from solid to gaseous state without appearing in the liquid state, thus

not generating a spent media residue.

CO2 pellet blasting applies a blast medium much the same way, as does PMB.

Compressed air or liquid nitrogen thrusts small CO2 pellets at a coated surface. The CO2

pellets remove the coating by a combination of impact, embrittlement, thermal

contraction, and gas expansion. The CO2 pellet technology is primarily useful in food

processing automotive manufacturing electronics, aerospace.

2.6 High-Pressure Water Blasting

High-pressure water blasting eliminates the use of chemical strippers containing HAPs.

However, wastewater is generated that contains paint debris. The stripping water can be

recycled to reduce waste volume. Unlike dry stripping processes, water stripping does not

generate dust.

High-pressure waterjet stripping removes coating with a stream of water

projected from specially designed nozzles at pressures of 15,000 psi to 50,000 psi or

more. High-pressure pumps supply water to a system of stationary or rotating nozzles that

spray the water stream onto the coated surface. The coating is removed by the kinetic

impact of the water stream.
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2.7 Liquid Nitrogen Cryogenic Blasting

The liquid nitrogen cryogenic coating stripping process eliminates solvent use and results

in no ash or residual to clean. Liquid nitrogen is used to cool the part and to help propel

plastic bead blasting media. The process does not use air to propel the media, so neither

dust nor wastewater is generated.

The cryogenic technology takes advantage of extreme cold to embrittle and

shrink the coating. The liquid nitrogen is sprayed on items to be stripped, thus chilling the

coating, causing greater thermal contraction of the coating than of the substrate. Tensile

stresses thus develop within the coating and make it brittle. High velocity, nonabrasive

plastic pellets (media) are then blasted by centrifugal throw wheels to make the coating

crack, debond, and break away from the substrate.

Liquid nitrogen cryogenic coating removal works well for removal of heavy

coating buildups such as those that accumulate on coating line fixtures.

2.8 Laser Cleaning

Laser cleaning requires using laser and an inert gas to clean and prepare surfaces. It is

relatively inexpensive for variety of applications, works at variable throughput within

those applications and uses no scarce resources such as water. It uses and emits no toxic

chemicals such as acids or basis. Laser cleaning relies simply on ultraviolet light and

inexpensive inert gases such as nitrogen or argon. It presents minimal risk with proper

handling. Laser cleaning removes the smallest contamination and also a lot of gross

materials, and is amenable to incorporation into flexible tooling of high reliability and

long life.



CHAPTER 3

LITERATURE SURVEY

A number of investigations of waterjet cleaning and decoating have been reported. Up to

date most of the information about the correlation between process parameters and

process output was based on various experimental studies. The process parameters in

question include water pressure, nozzle traverse rate, nozzle type and size, standoff

distance, type of abrasive, if any. The results of the studies are summarized as follows.

Water pressure determines jet velocity and turbulent properties, which influence

the jet cleaning. When water pressure increases, material removal rate, cleaning width

and depth also increase (Galecki and Vicker, 1982; Haferkamp, et al., 1992; Kang et al.

1993; Xu and Summers; 1994; Leu, et al., 1994; Geskin, et al., 1995, 1996, Meng, et al,

1995, 1996). Also it was found that there exists a threshold pressure, below which no

material removal occurs no matter how large a water flow rate is and how long a process

may take. (Erdmann-Jesnitzer, et al., 1980; Midden, et al., 1990; Wu and Kim, 1995).

Experimental studies on the effects of traverse rate on water jet cleaning show

that the width or depth of material removal decrease with an increase of travel speed

(Hashish and duPlessis, 1978; Saunders and Barton, 1986, Singh, et al., 1994; Leu, et al.,

1994; Xu and Summers, 1994; Wu and Kim, 1995; Hlavac, 1995; Geskin, et al., 1995;

Meng et al., 1995, 1996a, 1996b, 1996c). These experimental results show that width or

depth of material removal decrease with the increase of travel speed. An increase of

travel speed may result in a decrease of energy delivered per unit of coating area. Singh,

9
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et al., (1992) have discussed the complete coating removal envelope at various travel

speeds for a given standoff distance and pressure. In this study traverse speed during

decoating was divided into three regions: incomplete coating removal, complete coating

removal, and substrate damage.

There are two types of commonly used nozzles in waterjet material

decontamination. These are the round-jet nozzles and the flat-jet nozzles. Round shape

nozzles produce a jet with minimized divergence to reach a good efficiency at a greater

distance from the nozzle. Contrary to this, the flat-jet enlarges only in one direction, the

divergence orthogonal to this direction is minimal. Flat jets are being used at smaller

distances from a nozzle to load larger area (Louis and Schicor, 1982). Harbaugh and

Fincher (1993) designed a specific nozzle for complex surfaces with improved jet

coherency and as a result higher level of delivered energy. This effect was attained due to

the combination of flat and round nozzles with translation and rotation along the

centerline. A similar application was once mentioned by Saunders and Barton (1986). A

long cohesive jet is used to form a jet with minimal energy loss. Fan jets work better at

low cleaning rates and shorter distances for removal of larger areas (Wu and Kim, 1995;

Xu et al., 1994). Multiple orifices of smaller sizes, which may be preferable to single-

orifice of larger size work more effectively (Waston, 1993; Harbaugh, 1993; Gracey,

1989, Babets (current work, 2000).

At a given pressure larger nozzles are more efficient than smaller ones.

Experimental results have shown, that width and depth of decoating, and thus material

loss increases with the increase of nozzle diameter (Wu and Kim, 1995, Babets, (present
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work)). Similar results were also shown in the experimental studies of Watson, (1993);

Leu, et al., (1994); Geskin, et al., (1995, 1996) and Meng, et al., (1995, 1996a, 1996b).

A new concept of critical cleaning standoff distance was first reported by Leu et

al., (1994), then discussed by Geskin, et al., (1995, 1996) and Meng et al. (1995, 1996a).

This concept implies that there exist a standoff distance, above which the cleaning

becomes ineffective. A similar concept of effective standoff distance was also used in the

selection of the standoff distance in jet cleaning (Wu and Kim, 1995). Experimental

observations have shown that there exists an optimal standoff distance at which the

volume of material removal is the greatest at a given travel speed (Louis and Schikorr,

1982; Kang, et al., 1993). Also it was shown that the cleaning rate increases with an

increase of the standoff distance until it reaches the maximum at a certain standoff

distance. After that the cleaning rate declines with increased standoff distance (Hashish

and duPlessis, 1978; Galecki and Vickers, 1982; Haferkamp, et. Al., 1984; Leu, et al.,

1994; Xu and Summers, 1994; Geskin, et al., 1995, Wu and Kim, 1995, Babets et al.,

(1999). The optimal standoff distance is related to coating and substrate materials, jet

structure and properties, operational parameters such as nozzle size, water pressure, travel

speed, etc.. Meng, et al., (1996b, 1996c) firstly introduced mathematical models for the

evaluation of the optimal standoff distance for the cases of stationary and moving

waterjet cleaning.

Duration of the jet-surface interaction is in order of 0.00010.001 seconds. This

time is too short for completion of chemical reaction. The chemical should therefore be

applied to the surface prior to impact (Summers, 1993). Nut a surfactant added in the jet

can provide corrosion inhibition on the cleaned surface (Hall, 1986). The effect of the
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surfactant (1% FC-722) was tested and reported by Geskin, et al., (1995), which proved

that good cleaning performance could be achieved by this method.

The use of high temperature water as opposed to cold water is more effective in

removing the grease (Summers, 1982), and temperature influence on the jet cleaning or

material removal process was mentioned by Neusen and Schramm, 1978; Louis and

Shikorr, 1982). Improvement of nozzle geometry (1/d ratio and conical angle) may

influence jet cleaning or material removal rate (Minden, et al., 1990, Bury, et al., 1974).

Meng in (1996a, 1996b, 1996c) made an attempt to develop a mathematical

model for prediction of water jet depainting based on the Springier theory of material

erosion by a liquid impact. The rate of depainting was estimated by the balance of

available momentum of impinging droplets and the momentum required for the paint

separation. Springier's equation determining dimple formation was used to estimate a

required momentum while a semi empirical equation of the development of a turbulent

jet enabled us to estimate available momentum in the impingement zone. The suggested

mathematical model included an empirical variable, which needs to be determined by

special experiments.

It is expedient however to construct model of cleaning process using process

characteristics acquired in the course of routine operations. Statistical techniques,

conventionally used for construction of the empirical correlations are not effective in this

case. The form of the correlation needed for the construction of regression equations is

not known a priori. Also the available qualitative (linguistic) information accumulated in

the course of technology application cannot be sufficiently utilized by the statistical
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techniques. It is necessary to select a practical procedure to process all available

quantitative and qualitative information.

The goal of the current research is in the focus on the information processing

problems in the course of waterjet based material processing. The ultimate goal, however,

is to develop a simple and practical technique for prediction of the results of cleaning,

that will facilitate the implementation of waterjet based cleaning into the industrial

practice.



CHAPTER 4

OBJECTIVES AND MOTIVATION

4.1 Objectives

The mission of this study is the investigation of the jet based material decontamination.

Our specific objective is to develop a practical numerical procedure for selection of the

optimum process parameters at given process constraints and available knowledge about

process conditions. We will use Artificial Intelligence and Finite Element techniques to

achieve this goal.

The specific goals of current research can be summarized as following:

• Experimental feasibility study of jet surface cleaning. These case studies help us to

understand the possibilities of the application of jets for surface cleaning. Also they

help us understand the peculiarities of jet based cleaning technology, such as wide

variety of cleaning situations, availability of qualitative information, but not

quantitative, etc. These peculiarities dictate the need for a special approaches in

process modeling.

• Construction of the prediction model of a jet cleaning based on the principals of the

Fuzzy Logic.

• Construction of the prediction model of a jet cleaning based on the principals of the

Artificial Neural Networks.

• Construction of the prediction model of a jet cleaning based on the integration of a

conventional Clustering and the Neural Network Driven Fuzzy Reasoning techniques.

14
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• Selection of the optimal process characteristics by Genetic Algorithms.

• Numerical study of the flow formation in a nozzle. (Application of the Finite Element

Method).

• Numerical study of the two-phase flow in the cutting head. .(Application of the Finite

Element Method).

• Development of the Generic Procedure for selection of the cleaning technology.

4.2 Motivation

Water jet cleaning is characterized by a large number of variables, representing

mechanical and geometrical properties of the surface, properties of the deposit, deposit

distribution and adhesion to the substrate surface, geometry and dynamics of the waterjet,

conditions of the removal of the water and debris. The history of the substrate prior to

cleaning is usually very complicated and information about this history is rather limited.

It is necessary to maximize the use of the available information in order to develop an

effective cleaning technology. The various artificial intelligence (Al) techniques enable

us to achieve this most efficiently.



CHAPTER 5

COMPUTATIONAL TECHNIQUES

5.1 Introduction

In data /information processing the objective is to gain the understanding of a complex

phenomena through "modeling" of the system either experimentally or analytically. Then

after a model of a system has been obtained, various procedures (e.g. sensitivity analysis,

statistical regression, etc.) can be used to gain a better understanding of the system. There

are, however situations in which the phenomena involved are very complex and not well

understood and for which the first principle models are not effective. Even more often,

experimental measurements are difficult and/or expensive. These difficulties lead us to

explore the application of Soft Computing (A.I.) techniques as a way of obtaining models

based on experimental measurements. The field of Soft Computing is comparatively new,

and it includes fuzzy logic, neural networks, expert system, cellular automata, chaotic

systems, wavelets, complexity theory, anticipatory systems among others. But only fuzzy

logic, neural networks and genetic algorithms have reached the stage of development,

where they are used for real world problems (Michalewicz, 1996).

Fuzzy logic systems address the imprecision of the input and output variables

directly by defining them with fuzzy sets (fuzzy numbers), that generally expressed in

linguistic terms. Moreover they allow for very complex and nonlinear systems to be

described in vary simple terms, thus making them easier to understand. Another

16
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important feature of fuzzy systems is their ability to accommodate the existing expert

knowledge of a process into a model by expressing it in terms of fuzzy rules.

Neural Networks on the other hand model a system by using sets of input-output

data to train some generic model of a system. Neural Networks are very good at modeling

very complex nonlinear relationships with large number of input and output variables,

and in classification problems. Models based on neural networks also easy to optimize,

since although the model itself is not given in terms of explicitly defined function, the

gradient of this function can be found numerically. Artificial neural networks are most

likely to be superior to other modeling methods under the following conditions (Masters,

1993):

• The data on which conclusions are based is "fuzzy", and subject to possibly large

error.

• The data exhibits significant unpredictable nonlinearity.

• The data is chaotic.

• The relationship between different groups of data is hidden.

The combination of the above two techniques often results in greater flexibility

and/or more clear representation of a model then when they are used separately. This

combination is often referred to as neuro-fuzzy model of a system. Neuro-fuzzy approach

also allows overcoming some traditional problems in using fuzzy logic or neural

networks, such as the problem of defining a membership function, extracting fuzzy rules,

etc.

Optimization of a system is an essential part of any analysis, but conventional

optimization techniques (i.e. gradient based) are not quite effective in case of A.I. based
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models. The reason is that in most cases the model is not given in terms of mathematical

function, therefore a gradient is quite problematic to find. Genetic Algorithms represent a

computational method from the area of Evolutionary Computing, and they are very

effective in finding a near optimum solution for any kind of model.

Figure 5.1 summarizes the above overview and suggests a choice of a modeling

technique based on the type of the information available about the process.

Usually, the information available for waterjet coating removal involves some numerical

data acquired in the course of simple routine experiments and supplemented by an expert

knowledge. The expert knowledge is expressed in simple linguistic expressions such as

"FAST traverse rate AND MODERATE impact pressure result in HIGH stripping rate

and INSIGNIFICANT substrate damage", or "LOW nozzle traverse rate AND VERY

HIGH impact pressure AND SMALL standoff distance result in LOW stripping rate and

HIGH substrate damage". If the process in question does not involve many input and

output variables, the most effective modeling technique is fuzzy logic. This approach is

represented by the path 1-2-4-6-9-12 on the flow chart on Figure 5.1.

If available experimental information about the waterjet decoating involves a limited

number of numerical data, a statistical technique combined with ANOVA table should be

used (path 1-3-5-13, Figure 5.1). But as the number of input and output variables

increases or if the empirical information is acquired from different sources, the

conventional regression analysis is less effective. The major disadvantage of the multiple

regression, however, is the necessity to have a preliminary information about the form of

the regression equation. If the use of a standard statistical technique is too complicated or
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ineffective, the artificial neural networks can be used for process modeling (Figure 5.1,

path 1-2-4-8-11-13).

When the available knowledge is represented by a limited numerical data and

limited linguistic information, the fuzzy rules cannot be accurately defined. Application

of neural networks also becomes ineffective, since it requires fairly large amount of

experimental data. Neuro-fuzzy modeling is proved to be sufficiently reliable and

accurate for such systems. The use of various modeling techniques is illustrated in the

following chapters of this work.

Of course, there are many more other "well-behaved" and reliable standard fitting

methods, which will do a good job in modeling a process. And the use of those methods

is in no way disparaged. The basic idea is to introduce the new and generally reliable

techniques for modeling and optimization of waterjet coating removal process.

5.2 Architecture of Fuzzy Logic Modeling

In general a fuzzy logic modeling consists of the Fuzzy Preprocessing and Fuzzy

Processing modules (Figure 5.2).

Fuzzy preprocessing involves representation of all available information in a form

suitable for application of fuzzy logic technique. In fuzzy preprocessing module the

knowledge pertaining to the process is obtained from various sources, such as

experimental and empirical data, expert knowledge, linguistic formulation, etc. is utilized

for process representation.

This module consists of three independent modules:

- Knowledge acquisition module



- Fuzzy vocabulary

- Fuzzy associative memory (FAM).
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Figure 5.1 Choice of Modeling Technique
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Figure 5.2 Architecture of Fuzzy Logic Modeling

The knowledge acquisition module constitutes a bank of all available pertinent

information, crisp or linguistic, which can be stored in a computer memory. There is

always a wealth of knowledge that cannot be formalized but nevertheless provides a

significant insight about a process. In fact one of the major advantages of the fuzzy logic

technique is its ability to utilize this knowledge. The fuzzy vocabulary module enables us

to represent all available crisp information in a form acceptable by the fuzzy logic

technique. In short, a crisp value of a process variable is replaced by a fuzzy set. The

acquired knowledge is translated into a fuzzy language using the following few steps.

The first step is identification of the ranges of the change of input and output variables.

Then the interval of the change of each variable is divided into a set of subintervals and
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each of the subintervals is assigned a membership function, and is given an appropriate

linguistic name. This combination of a subinterval, its membership function, and its

linguistic name constitutes a fuzzy set. Fuzzy sets of one particular variable usually

overlap. The degree of overlap reflects fuzziness in the definition of fuzzy sets. The

aggregation of all subintervals of one process variable on a single coordinate axis is

called the Universe of Discourse of that variable. Figure 5.3 shows a typical example of

Fuzzy Universe of Discourse for process parameter Water Pressure.

Figure 5.3 Example of Fuzzy Universe of Discourse

It is clear that construction of the fuzzy vocabulary involve in addition to the

information acquired in the memory also a knowledge which cannot be stored, for

example, an expert opinion.

Finally, the fuzzy logical equations or fuzzy rules relating variables defined by the

fuzzy vocabulary are constructed in the FAM module. The fuzzy vocabulary provides a

just representation of the process variables. The relationships themselves are constructed

on the base of all available information, stored in the computer memory or provided by
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an expert. In the field of fuzzy logic the most common way to express human knowledge

is to form it into natural language expressions of the type:

IF premise (antecedent), THEN conclusion (consequent)

This form is commonly referred to as IF-THEN rule- based form. It represents the

inference such that if we know the antecedent then the consequent can be inferred or

derived. The constructed IF-THEN equations relate process variables stored in the fuzzy

vocabulary. At the same time these equations express empirical or heuristic knowledge,

derived from sources such as experiments or human experience, linguistically in this rule-

based format. FAM contains a set of the fuzzy logical equations, which in the final

analysis summarize all available knowledge about the process in question and present it

in the form available for fuzzy modeling.

Modeling itself is carried out by the Fuzzy Processing Module, which converts

the input information about a selected process manifestation into the information about

output variables. The prior knowledge accumulated in FAM constitutes the base of these

conversions. The Fuzzy Processing Module consists of the following independent

modules:

- Process input module

- Fuzzification module

- Inference module

- Defuzzification module

Process input module enables us to store the pertinent input information. The

fuzzification module converts the stored crisp data into fuzzy logic type information. For

each crisp input data this module identifies a corresponding fuzzy set and the degree of
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the belonging to this set. Due to the overlapping of the fuzzy sets, each input can be

assigned to several fuzzy sets. The example of this operation is given in Figure 5.4.

Figure 5.4 Fuzzification Module

Here a hypothetical process has a set of three control variables: {Pressure, Distance,

Speed} and a set of output parameters, consisting of a single variable {Output}.

Application of a set of crisp input values of {172, 229, 5} to Fuzzy Universes of

Discourse of these control variables converts this crisp input set into four fuzzy input sets

(since crisp input values can belong to more then one fuzzy value, but with different

degree of membership): {Medium, Very High, Moderate}, {Medium, Very High, Fast},

{High, Very High, Moderate}, {High, Very High, Fast}.

The fuzzy input information developed in the fuzzification module is fed into the

inference module. Here fuzzy rules pertinent to the information in hand are selected
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(fired) and used to infer fuzzy values of output variables. It is clear that an each equation

(fuzzy rule) generates a single fuzzy value of the output variable. Therefore we are

interested in evaluating the following linguistic correlation:

{Pressure, Distance, Speed}---> {Output),

expressed in terms of multiple fuzzy relations. In this hypothetical example we would

deal with four such relations.

Fuzzy rules give us only linguistic correlation between sets of the input

parameters and the output variable, instead we would like to estimate to what degree a

rule's consequent (part to the right from the then statement) is true. In order to do so we

apply the fuzzy inference technique. There are several methods of inference in fuzzy

systems: We selected the min-max method, which involves comparatively simple

numerical manipulations. In fuzzy min-max implication each rule is evaluated separately.

Therefor continuing with this hypothetical example we evaluate each input fuzzy set, or

conversely each rule, according to Figure 5.5 (a).

The result of this evaluation is a fuzzy region of the output variable and its degree

of belonging to this region. In order to evaluate the degree of the truth (belonging) of the

consequent of a rule we examine the degrees of truth of each antecedent and assign to the

consequent the minimal one. Then these individual solution regions are aggregated into a

final solution region (Figure 5.5 (b)), which determines the fuzzy value of the output

variable. Analytically the above steps can be expressed with the help of the following

equations.

which indicates that the consequent fuzzy (cfs) set is modified by taking the minimum of

predicate propositions.
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And 	 μsfs [xi]	 max (μsfs [xi], μcfs [xn]) 	 (5.2)

Which shows that the solution fuzzy set (sfs) is updated by taking the maximum of either

the truth value of a solution fuzzy set or that the fuzzy set modified in equation.

Figure 5.5 (a) Fuzzy Min-Max Implication



Figure 5.5 (b) Fuzzy Min-Max Implication

Finally, the defuzzification module converts the fuzzy output of the inference

module in a conventional crisp result (Figure 5.6). The most commonly used

defuzzification technique is the centroid method given by the following equation (Cox,

1994):



28

Here d is the value of the width of strip at some point, and μ(d) is the truth membership

value for that point.

Figure 5.6 Centroid Defuzzification

5.3 Artificial Neural Networks

5.3.1 Introduction to Artificial Neural Networks

An artificial neural network consists of many interconnected identical elementary

processing units or neurons, in architecture inspired by the structure of the cerebral cortex

of the brain. A neuron is a simple processing unit (Figure 5.7), which consists of two

parts. The first part simply sums up all the weighted inputs from other neurons, while the

second part modifies this aggregated signal by applying an activation function to it. The

input signals X1, X2, X3..., Xn are being sent to processing units through the network's

connections.



Figure 5.7 Schematic of Artificial Neuron

The connections between neurons in a network are assigned the so- called weights (wn),

which modify input signal, making it either positive or negative, which corresponds to

acceleration or inhibition of the signal in a biological neuron.

The working of a neuron is summarized with following equations.

T = T(I)	 Activation function

Equation 5.4 shows that an input of a neuron is the sum of weighted outputs from the

neurons in the proceeding layer. Equation 5.4 shows that a neuron generates an output by

applying activation function to its aggregated input.

The most widely used activation function is the logistic sigmoid, given by:

The activation function limits the values of the output of an artificial neuron to values

between two asymptotes (0-1 in this case). This limitation is very useful in keeping the

output within a reasonable dynamic range.
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The neurons in a network are usually arranged in layers (Figure 5.8). The number

of layers in the network depends on a problem complexity. Within the network the

information from a neuron in the preceding layer goes through the network connections

to all neurons in the next layer. Each connection has its weight associated with the

importance of this particular connection. Training or learning is the process of adjusting

the internal parameters of a network (weights) to reach its optimum performance. During

training (learning) process these weights are adjusted according to some particular

algorithm, thus memorizing a functional relationship between input and output variables.

The architecture of the backpropagation-training algorithm is shown in Figure 5.9. In this

study the experimental database representing the process was divided into training data

set and checking data set.

Figure 5.8 Artificial Neural Network
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The data in each set were represented in form of input — output pairs. In a

supervised learning an input pattern (combination of the input parameters), presented to

the network, generates a random output. This generated output is compared to the desired

target value to define an error. This error is then backpropagated to adjust the weights in

order to minimize this error function. These new weights are then assigned to a network

and the procedure is repeated for a new input — output pair. This procedure is repeated

until all training data pairs are used. After each iteration the error is stored, to accumulate

the total error. After all training data pairs are used (one epoch) the total error (the error

accumulated through one epoch) is compared to some specified error tolerance. If the

tolerance is not met the procedure is repeated. If the tolerance is satisfied the procedure is

stopped and the weights adjusted after the last iteration constitute the output of the

training. These weights are assigned to the network and the network is considered to be

trained. To check the network performance the checking data set is used. After the

network is checked to perform satisfactory it is used as the model of the process, i.e. for

process prediction, sensitivity analysis, optimization, etc.

5.3.2 Neural Network Model of a Process

The network architecture used to represent an example process is shown in Figure 5.8.

For this problem the three-layer network was chosen. The input layer consisted of three

neurons X1, X2, X3. The output layer consisted of one neuron which corresponded to the

process output variable T. Two hidden layers were used in the current network's

architecture. A classical feed forward algorithm with backpropagation of error is used in

the network training.
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Figure 5.9 Backpropagation Training Algorithm

For a multilayer neural network with two hidden layers, three input neurons, one output

neuron and a notation given in Figure 5.8, the following set of algebraic equations apply:



First hidden layer :

33

where Tk is the network's output and Yk is the experimental value of the output variable.

The Equations 5.7-5.9 are the standard representation of signal propagation in a feed

forward neural network. After the error is defined it is propagated backwards to define

new weights. A weight updating is then performed according to the formulae (5.10),

where the expressions in the brackets are the partial derivatives of the error function

(Equation 5.9) with respect to weights on different connections, and Ti is a some small

constant, termed the learning constant.



Since error is a function of weights then these partial derivatives are evaluated as follows:

where E is given by Equation 5.9, Tk and Ik are given by (5.8). In the similar manner the

rest of the desired derivatives are presented:

The new weights are then substituted into the network and this procedure is repeated

iteratively until the network is trained. After the network is trained its performance is

verified using a testing data set. At this point only the feed forward part of the algorithm

is applied. When the network is verified to perform satisfactory it can be used as the
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model of the process, for sensitivity analysis, optimization, or for prediction of an output,

once an input is specified.

5.3.3 Sensitivity Analysis

In performing sensitivity analysis we are interested in evaluation of the degree of

influence of different input variables on the process output. In other words, if we slightly

perturb input, how would output react? And what input variable influences output(s) the

most. For the network with two hidden layers, using the notation of Fig. 5.8 the desired

gradients are found in the following manner (2):

5.3.4 Modifications of Conventional Training Algorithm

The backpropagation -training algorithm discussed above has been proven itself as a

reliable technique for training a traditional three or four layer network with nonlinear

activation functions (logistic sigmoid (Equation 5.5), for instance). The convergence

speed of the algorithm depends greatly on the choice of network parameters, such as

number of layers, number of neurons in a layer, choice of activation function. The

optimum combination of these parameters would, in most cases, result in excellent

network training in less time. But, even with poor choice of network parameters, it is still
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possible to train a network to perform satisfactory using the traditional backpropagation

of error algorithm, though the training could be extremely slow.

In the past few years a fair number of modifications of the basic algorithm was

suggested. The most important once, include the alternative weight update procedure, and

the incorporation of linear regression into a network training process.

5.3.4.1 Momentum. In backpropagation with momentum, the weight change is in

direction that follows the direction of the current gradient and the previous gradient. This

is a modification of the gradient descent whose advantage arises when some training data

is significantly different from the majority of data, or even incorrect. Thus the gradient

descent in the wrong direction is averted. In order to implement the backpropagation with

momentum algorithm the weights from the previous iteration(s) should be saved. And the

weight update formulae (5.10) now become:

where, t- current training step, p.- momentum coefficient. The momentum coefficient IA

is constrained to be in the range from 0 tol, exclusive of endpoints. Momentum allows

the net to make reasonably large weight adjustments as long as the corrections are in the

same general direction.
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5.3.4.2 Batch Weight Updating. Yet another modification of conventional

backpropagation algorithm makes use of what is called the batch weight updating. In this

techniques the weight correction terms of the net are accumulated for several iterations,

and weights are updated after the specified number of iterations. This procedure has a

smoothing affect on the correction term, though sometimes it may increase chances of

convergence to local minima.

5.3.4.3 Training with Regression. One reason that conventional backpropagation is slow

to converge is that the error propagates back through non-optimum last hidden layer

weights, thus resulting in far-from optimum changes in the other layer weights. This

could be avoided if the last layer's weights are not generated randomly, but rather

approximated with regression. This approach was shown to speed the training of a

network greatly (40 fold), in some cases. The training algorithm is initiated by randomly

generating all the weights on network connections, with the exception of the weights

connecting the last hidden layer and the output layer. A training sample from the training

data set is chosen and passed forward through the network's connections, until it reaches

the last hidden layer. At this point the inverse activation of the desired output for each

output neuron is calculated, based on the activation method for the output layer neurons.

In the case of the linear activation method for the output neurons (i.e. Equation 5.9 is

given by 1(I)= I), the inverse activation of the desired output equals to the output itself.

If we now treat the last hidden layer's outputs as independent variables, and have a

known desired input to an output neuron as the dependent variable, we have a regression
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problem. And the weight vector connecting the last hidden layer and the output layer

represents the unknown regression coefficients.

Thus, for a network with n hidden layer neurons (including the bias), and m data

samples in the training data set we obtain:

where:

A (n x m)- is the matrix of network's last hidden layer activations for each training data

sample in the training data set.

a column vector of the measured dependent variable inverse activations.

- a column vector of coefficients to be estimated (weights connecting the

second hidden layer and the output layer).

Equation 5.16 can be solved for the weight vector using the general least square

procedure.

At this point the state of the training of the neural network is far more advanced then after

the first iteration of the conventional backpropagation, because the optimal weights for

the last hidden layer were computed with linear regression. And, thus, the mean squared

error is minimized with extremely high precision. We now proceed with conventional

backpropagation algorithm as described earlier. This combination of the conventional

backpropagation with optimum calculation of the last hidden layer's weights by linear

regression was proven to speed up the training process greatly and results in a network

with better generalization capabilities. After this initial pass through the network the next

training input-output pair is chosen, and the above steps repeated. As the training
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proceeds, the features of model of the system under study are embedded in the weights

that connect the input layer to the hidden layer (and interconnect hidden layers if more

then one is used).

In the above-discussed algorithm the weight values produced by regression can

contain very large values (5- 6 orders of magnitude), that could result in poor network

generalization abilities. Moreover the algorithm can fail if the matrix A in Equation 5.17

is numerically close to singular. A zero pivot element may be encountered during the

solution of linear equations (5.17), which results in very large magnitudes of the fitted

parameters (weights in this case). The solution to this problem lies in application of the

technique known as matrix SVD (Singular Value Decomposition). The matrix A in(5.16)

is broken down into its singular value decomposition given by:

where, U (m x n) - matrix of principal components (orthonormal basis for the subspace

spanned by the columns of A

W (n x n) - diagonal matrix of singular values.

V (n x n) — orthonormal matrix of right singular values.

In this method, only the most relevant information is retained to compute the weights.

The least important information is discarded, because it is most likely resulted from

noise. This is achieved by altering the diagonal matrix of singular values W. If a singular

value in this matrix is less then a cutoff value, the value is changed to zero in the inverse

matrix. The weights are then calculated as:



This method, though takes longer to implement, can not (at least theoretically) fail. Thus

it constitutes a reliable technique to use in conjunction with linear regression in training

of a neural network.

5.4 Integrated Neuro- Fuzzy Reasoning

5.4.1. T-H Method

Fuzzy reasoning realizes the flexibility of the reasoning corresponding to human logical

reasoning. Therefore it has been proven effective when the conventional modeling

techniques fail. However two problems of conventional fuzzy reasoning has not been

solved yet: the method of determining membership functions and the adaptation of the

reasoning to the environment. The problem of determining the membership function is

even more appealing in case of multidimensional fuzzy space, where membership

function design by experience or intuition is merely impossible. The second problem of

conventional fuzzy reasoning is the lack of the adaptation of the existing rules to

changing environment. In other words a low cost learning function is desired. The

following method proposed by Hideyuki Takagi and Isao Hayashi (Takagi and Hayashi,

1991) solves the above stated problems by using learning functionality and nonlinearity

of Neural Networks.

The T-H method consists mainly from three parts. These are outlined below and

explained on the basis of the hypothetical example (Figure 5.10).

Part 1. The existing database is divided into two data sets- training (TDS) and checking

data set (CDS). The number n of fuzzy rules (R) for the database is decided, and it is
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divided into n classes using a conventional clustering technique. Thus the number of

classes equals to the number of inference rules (R) (Figure 5.10(a)).

Part 2. After the number of inference rules has been established, and the data in both

TDS and CDS are classified as either belonging to a class or not in a conventional

Boolean way, a NN is used to learn the functional relationship between coordinates of a

data point in TDS and its corresponding crisp (Boolean) membership in R(i), i=1,..n. The

CDS is then used to verify the network performance. After the classification network is

verified to perform satisfactory it can be used for estimation of fuzzy membership in all

R(i), i=1,..n, for any data point (Figure 5.10(a). More rigorously we obtained the NN for

membership estimation and fuzzy classification, which is used to determine the IF parts

(conditional parts of the rules).

Part 3. The RHS parts of the rules are determined by using separate neural network with

supervised learning, for each rule from part 1. Rules are usually of Sugeno-type. Sugeno

type rules are where the output is a function of the inputs.

For instance the induced rule would be:

where NNs (x1, x2) is a neural network that determines the output of the sth rule. Thus

for each rule (class) R a neural network is created. Each class is represented in terms of

the input-output pairs { Y} of the TDS. The network for each class Ri is trained until it

is able to reproduce the functional relationship between input-output pairs in the TDS for

that particular class. The CDS is then used to check the performance of the Net. Thus the
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antecedent part ( part after then statement) of the rule RI can now be inferred by the

corresponding Neural Network (NN; .).

The steps above determine the IF /Then parts of each inference rule. The system

identification process for the fuzzy model is then completed. The final control value y i

can now be determined according to the following:

Figure 5.10 Design of Membership Function with NN.

(a) Input data space; (b) NN to determine membership values; (c) Data Space, partitioned
into fuzzy rules. (From Takagi and Hayashi, 1991)



Figure 5.11 NN Driven Fuzzy Reasoning System.

NNmem is the NN that decides the membership values for each rule. NN1-NNm- NNs
that determine the outputs yi for each rule. W1- Wm — membership values. (From Takagi
and Hayashi, 1991)

5.5 Genetic Algorithms

5.5.1 Introduction to Genetic Algorithms

Genetic Algorithms were initiated and developed in early 70s by John Holland.

He used the concept of Darwin's theory of evolution, which stressed the fact that the

existence of all living things is based on the rule of "survival of the fittest" (Ross, 1995).

Darwin also postulated that new breeds of living things come into existence through the

process of reproduction, crossover, and mutation of the existing organisms. Evolution

takes place in chromosomes, the genetic units that encode the features of living creatures.

Natural selection is a process by which nature causes those chromosomes that encode
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better characteristics (by some criteria) to reproduce more often, compared to the

chromosomes that encode poorer characteristics (Michalewicz, 1992). Thus the next

generation of chromosomes comes with better characteristics then the previous one.

These evolutionary principals constitute the base for the computational technique-

Genetic Algorithms.

5.5.2 Basic Concepts of Genetic Algorithms

Genetic algorithms found numerous applications nowadays. One of the most often

applications of Genetic Algorithms is in optimization problems. Genetic algorithms have

many advantages compared to standard optimization techniques (gradient based, etc).

Genetic Algorithms do not rely on the analytical properties of the function being

optimized (existence of a derivative). We start by generating the initial population of the

chromosomes (bit strings), which encode information pertinent to the problem at hand.

The information is to be encoded in a binary form (usually). Next step is to define an

evaluation function (fitness) for the problem. Evaluation function is nothing else but a

criterion according to which we evaluate how fit is a chromosome in the population.

After all of the chromosomes are evaluated for their fitness we select the best ones

according to our criteria. In order to maintain an equal size of the population, some

chromosomes are selected more then ones. Then the selected chromosomes undergo

genetic operations of crossover and mutation. Thus a new generation of the chromosomes

appears. We repeat the steps above for the new generation. After some number of

iterations the total fitness of the population is within some prescribed range and the best



45

chromosome (highest fitness value) in the generation hopefully represents the optimum

solution. These steps are outlined in Figure 5.12.

Figure 5.12 GA Based Optimization. Sequence of Operations

1. Initial random population of k chromosomes is generated. 2. The conversion of input
from binary to decimal format and scaling. 3. The process model. 4. Determination of the
fitness values. 5. The decision is made on whether the fitness values are acceptable. 6.
The genetic reproduction. 7. Conversion from decimal to binary format. 8. Genetic
crossover. 9. Genetic mutation. 10. New population of chromosomes. 11 The solution
population.



CHAPTER 6

INVESTIGATION OF THE FLOW INSIDE WATERJET CLEANING HEAD

6.1 Previous Research on Waterjet Formation

The efficient application of waterjets to industrial surface decontamination requires a

thorough understanding of the influence of different parameters involved in the process.

The independent parameters involved in abrasive waterjet surface decontamination can

be devided in two several groups (Hashish, 1991). The first group of parameters is

process related and it includes nozzle traverse rate, standoff distance, number of passes,

degree of overlap and the desired degree of surface cleanliness. The second group of

parameters is jet-related and can be subdevided into hydraulic, abrasive and mixing

(internal) parameters. The hydraulic parameters include water pressure, water flow rate,

abrasive parameters include abrasive type, abrasive particle size and flow rate. A special

attention needs to be paid to the internal parameters of the waterjet nozzle. These

parameters consist of the internal diameters of a waterjet nozzle such as mixing tube

diameter, mixing tube length and air flow rate through the abrasive inlet port. The reason

a special attention should be paid to this group of parameters is because it is the least

studied group and is the most difficult to control and optimize.

The importance of studying the flow charachteristics inside a waterjet flow have

resulted in quite a few experimental and numerical studies of this phenomena. But the

difficulties in numerical simulations of this complex flow and a lack of non-intrusive

experimental techniques have resulted in sometimes controversial data.

46



47

A fair number of experimental studies was concerned with velocity measurements

of the waterjet. The techniques most often used for non invasive measurements were

limited to high-speed digital photography (Sawamura et al, 1999), Laser Transit

Anemometry (LTA) (Chen and Geskin, 1990), Laser Doppler Velocimetry (LDV)

(Neusen et al, 1992), etc. Neusen et al (1992) have shown that with the cutting head in

place but with abrasive flow rate 0.0 kg/min, the exit mean velocity reduces substantially

compared to pure waterjet velocities after primary nozzle.(Figure 6.1). Then they have

suggested that the reason for the velocity drop is the momentum exhange between the

liquid and gas phases in the mixing process. Next they show that after abrasive particles

were mixed in the stream the mean exit velocity remained relatively constant, at

approximately 260 m/sec, even though the abrasive mass flow rate was varied by 150% ,

and pressure was varied by 67%. (Figure 6.2).

Figure 6.1 Velocity Ratio for AWJ with no Abrasive (Neusen et al, 1992)
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Figure 6.2 Abrasive Waterjet Velocities (Neusen et al, 1992)

Sawamura et al (1999) has shown that, on the contrary, approximately 9% velocity loss is

found when the media flow rate is 0.0 kg/min. The velocity loss increases with the

increase in the abrasive flow rate and it could reach up to 60% of theoretical value when

the flow rate reaches 0.2 kg/min (Figure 6.3).

Figure 6.3 The Relation Between the Velocity Loss and the Abrasive Flow Rate
(Sawamura et al, 1999)
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Our own experimental studies of the velocities of the abrasive waterjets have shown, that

the pure waterjet velocity closely follows the velocity predicted by the Bernoulli

equation, as was corroborated by Neusen et al, (1992), (Figure 6. 4).

Figure 6.4 Calculated and Measures Nozzle Velocities as Function of Hydraulic Pressure
(Li, 1996).

The carbide waterjet velocity is found to be approximately 82% - 99% of the pure

waterjet velocity (Chen, 1990), (Figure 6.5).

Figure 6.5 Velocity Ratios of Carbide and Sapphire Waterjets Versus the Diameter Ratio
of Carbide and Sapphire Nozzles. Vcw — Velocity of Carbide Waterjet
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It was also found that the velocity difference between abrasive particles and the carbide

waterjet is somewhere in the range of 80 to 500 m/s (Figure 6.6).

Figure 6.6 Effects of Abrasive Mass Flow Rates on Difference between Velocity of
Carbide Water Jets and Velocity of Abrasive Particles.

Contrary to the results of (Neusen et al, 1992) and in support of the results of

(Sawamura et al, 1999) Chen (1990) has shown that the is a significant difference in exit

velocities of AWJ at 0.0 kg/min flow rate of abrasives and an increased flow rate. Which

shows that not only the momentum transfer between the air and water is responsible for

the velocity drop, but also and to a greate extent the presence of the third phase- abrasive

particles and their mass flow rates. In his work, Chen (Chen, 1990) has developed the

regression equation to determine the valocity of a particle entrained in waterj et from

given values of diameters of supphire and carbide nozzles and abrasive mass flow rate.

These experimental studies of the pure and abrasive water jets give a lot of insight

on the jet structure and the effect of internal nozzle parameters on the mixing inside the

nozzle. But it was shown that although some consensus was reached among the
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experimental results of some researches, still there are some controversial results. The

numerical simulation of the flow inside a nozzle is an economical and efficient way to

predict such flow charachteristics as velocity and pressure fields, turbulent

charachteristics and to suggest an optimized nozzle design.

There have been limited stidies in jet analysis, and very few works on the jet

behaviour inside a waterjet nozzle. Flow characteristics of waterjet in air was investigated

by Yanaida and Ohasi (1978). The authors have characterized the waterjet into three

regions: continuous flow region, droplet region and diffused region based on axial

velocity and breake up leangth. Eddingfield et al (1981) proposed a two-dimensional

axisymmetric multicomponent mathematical model which coupled the three flow fields

such as continuous water, entrained air, and droplets. Amano et al (1982) carried out

theoretical and experimental investigation of the turbulent axisimmetric jets impinging on

a flat plate. He has employed the two equation (k-E) turbulence model in his

computations. He has solved the standard Navier-Stokes equations together with two-

equation turbulence by the hybrid scheme of central and backward finite difference

scheme. Vijay et al. (1993) investigated the application and dynamics of cavitating jets.

The authors have investigated different nozzle configurations in their numerical

investigations and found that the performance of of artificially submerged cavitating jets

operating at identical conditions surpassed that of fully sybmerged or noncavitating jets.

Several numerical studies were undertaken to investigate flow characteristics inside a

waterjet nozzle. A numerical approach was suggested by Lai et al. (1991) to predict the

flow characteristics inside three nozzles.The authors have shown numerically that a

center body insert into a conical nozzle results in superior performance due to the
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increased cavitation. Khan (1994) have investigated the flow characteristics inside

waterjet nozzle. He has used the finite element method to solve the turbulent flow fields.

His numerical results were validated through the experimental study of the waterjet

charachteristics by using velocity measurements with Laser Transit Anemometer, and

force measurements with piezoelectric force transducer. He has used the high speed

filming to reveal the dynamics and behaviour of the jets. Thus it was shown that at the

micro level the high speed jet is a sequence of disintegrated slugs, but at the macro level

the jet is the normal turbulent flow.

Most of the numerical studies of the turbulent flow patterns inside a waterjet

nozzle carried out up-to-date neglect the presence of the air phase inside the nozzle,

although the later takes up to 90-95% of the three-phase mixture volume (air + water +

abrasive) according to (Neusen et al, 1990, Osman et al, 1996). Moreover the effect of air

flow rate is shown to both affect the jet coherence ultimately causing the jet break up, and

reduce the exit velocity of particles by up to 40% (Tazib et al, 1994). The velocity loss is

also connected with the flow rate of abrasive media.

Raissi et al (1996) has investigated in detail the influence of internal nozzle

parameters on three-phase waterjet flow in a nozzle. In his work he takes into account the

presence of air in the cutting head (90% of volume occupation), flow turbulence (eddy

viscosity model) and abrasive particle interactions. As the outcome of the study, authors

suggest that the numerical tools extremely helpful in nozzle design optimization.
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6.2 Numerical Study of the Turbulent Flow Inside a Pure Waterjet Nozzle

6.2.1 Modeling of the Turbulent Flow

The numerical simulation of a turbulent flow involves modification of governing

equations for case of laminar flow. For the flow involved in this study being steady,

incompressible, isothermal, chemically homogeneous and without body forces the

following equations apply:

Continuity:

Navier-Stokes:

where Ui is velocity, p is pressure, p is the dynamic viscosity and p is density.

These equations are valid for the case of a turbulent flow, although there is no practical

means of solving these equations for a high Reynolds number flows. Therefore a

following approach is usually applied. Following the original idea of Reynolds, we

assume that the fluid is in a randomly unsteady turbulent state and work with the time

averaged or mean equations of motion.

Any variable can be resolved into a mean value Q and a fluctuating value Q':
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Where t is a reference point in time and T is the averaging time which is large compared

to the relevant period of fluctuations. Thus applying the time averaging to the equations

of conservation of mass and momentum we obtain:

Conservation of mass:

Conservation of mean momentum:

Thus the mean momentum equation is complicated by a new term involving the turbulent

inertia tensor U'iU'j. These equations can be solved for the mean values of velocity and

pressure only when the turbulence inertia term can be correlated in some way. Therefore

turbulent modeling is the task of providing additional equations to describe the temporal

and spatial evolution of the turbulent inertia flux.

The most popular turbulence model in practical use is the so-called two equation

model, or k-ε model. In the k-ε turbulent model the turbulence field is characterized in

terms of two variables, the turbulent kinetic energy k, and the viscous dissipation rate of

turbulent kinetic energy c given by:
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Two transport equations for k and s can be obtained from the Navier- Stokes equations

by a sequence of algebraic manipulations. By simplifying these two equations with

application of a number of modeling assumption the well known equations of turbulent

kinetic energy and dissipation of the k-ε model can be obtained ( Launder and Spalding,

1972).

Thus the governing equations for the problem at hand, which is steady, two-

dimensional, incompressible, isothermal, turbulent, can be written as follows:

where i,j = 1,2, 1.1=4,10 + pt, and it = p Cμ k2 / s, as proposed by Kolmogorov- Prandtl.

The above equations contain empirical constants C 1, C2, σk, as and Cμ. Over the years

the k-ε model has been tested and optimized against the wide range of flow problems. For

the turbulent flow inside the nozzle the following values of these empirical constants was

selected: C1=1.44, C2=1.92, k=1.00, 66 =1.30 and Cμ=0.09.
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6.2.2 Near-Wall Modeling

The standard k-ε turbulence model is valid mostly for the flows with high Reynolds

number. In a problem involving a solid boundary, there is always a special viscocity-

affected near wall region, which contains the viscous sub-layers. Therefore a problem

arises when we try to apply the standard k-ε turbulence model to a near-wall regions.

Thus a special modeling approach is needed to simulate a turbulent flow in a near-wall

region. Another reason a special considerationshould be given to the near-wall region is

that in order to resolve the sharp variations of flow variables in near-wall regions, a

prohibitively large number of grid points must be used, which leads to expensive

computation. There are two approaches to modeling of the near wall region. In the so-

called wall function approach the special semi-empirical formulas are used to bridge the

viscosity-affected region between the wall and the fully turbulent region. Another

approach, the "near wall modeling"technique uses the modified turbulence models in the

viscocity-affected region to be resolved with a meash all the way to the wall. In this study

the Wall Function approach was used to overcome the viscosity affected regions of the

flow.

6.2.3 Solution Procedures

The application of Galerkin finite-element procedure to the stationary Navier-Stokes

equations results in a set of nonlinear algebraic equations that may be represented in

matrix form as:
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Where K is the global system matrix, u is the global vector of unknowns (velocities,

pressures, etc.) and F is a vector that includes the effects of body forces and boundary

conditions.

Presently there are mainly two solution methodologies for solving the systems of

equations described above. These two approaches are known as fully coupled approach

and the segregated approach. The first approach solves all the equations in a simultaneous

coupled manner, while the other approach solves each equation separately in a sequential,

segregated manner. In this work the second approach has been chosen to solve the

turbulent flow equations resulted after application the Galerkin finite-element scheme to

the governing flow equations. In this approach the global matrix system is never directly

constructed. Instead, it is decomposed directly into the set of the decoupled sub-matrix

systems for the primary flow variables.The segregated solver was used in conjunction

with simple pressure-velocity coupling.

The density of computantional domain was varied to make the solution grid

independent.

6.2.4 Problem Description

The computational domain for this problem was limited to the pure waterjet nozzle

geometry. There are many variations of the sapphire nozzle geometry, but for this study

we have limited ourselves to the standard convergant nozzle. The nozzle geometry is

presented in Figure 6.7. Two variations of the conventional nozzle geometry was used for

numerical simulations. The geometrical parameters of nozzles used in this study is

presented in Table 6.1.



Figure 6.7 Computational Geometry

Table 6.1 Geometrical Parameters of Pure Waterjet Nozzles

Nozzle # Angle x RI (cm) R2 (cm) L1 (cm) L2 (cm) L3 (cm)

1 60° 0.1598 0.0178 1.598 1.68 1.935

2 90° 0.1598 0.0178 1.68 0 1.935

6.2.5 Mesh Development and Boundary Conditions

The computational domain was descritized into 12300 elements using the GAMBIT

software. The four node, quadratic elements have been employed. The numerical grid is

shown on Fig. 6.8.

Figure 6.8 Computational Domain

The domain (Figure 6.8) over which the problem is to be solved is comprised of the inlet

section, outlet, the axis of symmetry and the wall.
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It is required to provide appropriate boundary conditions for k, and E on the

boundaries of the computational domain. The inlet plane is positioned upstream of the

regions of interest. At the inlet section the water is prescribed a uniform velocity which

was calculated from the constant volume flow rate. The turbulence quantities at the inlet

section are determined using the following empirical relations:

where r is the radius of the sapphire nozzle.

At the outlet boundary, the Neumann i.e., the zero gradient boundary condition in

the axial direction is applied for U, k, E. At the wall, the near-wall modeling approach is

applied for those regions of the computational domain, which coincide with the solid

boundary. On the solid wall u, k, E are set to zero.

The finite element package FLUENT was used for the numerical solution of

discretized equations.

6.2.6 Initial Condition

Non-zero initial guess for primary flow variable such as U, k, E, improves the

convergence of the problem. Therefore the constant values for the turbulence quantities

were obtained from the above equations and used for further computations. For profiles,

the intermediate values are used as the initial guess.
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6.2.7 Results and Discussion

The numerical solutions of the turbulent flow representing the jet flow in the pure

waterjet nozzle were obtained in terms of velocity fields, pressure, the turbulent

kinematic energy k and dissipation c. The velocity field on the outlet section of the nozzle

is of the most interest here, because it directly translates into the exiting energy of the jet,

it's primary characteristics. Also the validity of the computational scheme and the

obtained results could be checked, by comparing the outlet velocity profile and its

magnitude with the available experimental results of other researches. Table 6.2

summarizes the results of velocity computations for nozzle #1 and different pressures.

Table 6.2 Predicted Velocity and Bernoulli Velocity

Mass	 Flow

Rate (g/s)

Water Pressure

(MP a)

Outlet

Velocity

(m/s)

Velocity from

Bernoulli (m/s)

LTA Measured

Velocity

(m/s)

36.45 138 441 504 460

44.6 207 500 617 550

51.6 276 585 712 N/A

57.6 345 674 796 730

The velocity in column four was calculated using the Bernoulli equation:

where k was taken to be equal 0.96. The experimental values of velocity at different

intensifier pressures were measured by Li (1996) with the help of Laser Transit
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Anemometer. Here we can see that the predicted values of velocities indeed follow the

ones predicted by Bernoulli equation pretty closely. The maximum relative error for the

tested ranges does not exceed 20%. The relative error of prediction is even less in case

we compare our prediction results with LTA measurements done by Li, (1996). Thus we

could agree, based on this numerical results that the jet in the primary nozzle could be

closely approximated by the conventional two-equation turbulence model and the exit

velocity can be approximated with pretty good accuracy by the Bernoulli equation.

Figures 6.10 through 6.15 show the results of the numerical simulations for the waterjet

nozzle 0.354 mm and intensifier pressure 276 MPa. Contours of velocity magnitude

(Figure 6.10) and turbulent kinetic energy (Figure 6.11) give us an accurate idea

regarding the velocity flow field in the nozzle. Thus it could be inferred that the highest

velocity occurs exactly after the primary nozzle entrance. And exactly this velocity is best

approximated by Bernoulli equation. Immediately after the entrance a not significant

velocity loss occurs. The highest pressure (Figures 6.18, 6.19) is achieved at the orifice

entry. The spatial velocity distribution (Figures 6.20, 6.21) is similar for both nozzles

used in the study and it is uniform and there is no flow separation in the nozzle. Again it

suggests that the flow can be represented as the conventional turbulent jet. Thus the

results show that the convergent nozzle produces concentrated high-energy jet.

6.3 Modeling of Two Phase Flow in the Waterjet Cutting Head

As it was pointed out earlier, the flow in a waterjet-cutting head is not a simple one-phase

turbulent flow. Instead this flow can at best be approximated as a three-phase flow, where

the primary phase is the jet, the second phase is the entrained air, and the third phase is
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the abrasive particles mixed in the flow. In order to approach this problem, the volume of

the fluid (VOF) model was used. The VOF model is a technique designed for two or

more immiscible fluids, where the position of the interface between the fluids is of

interest. In the VOF model, a single set of momentum equations is shared by the fluids,

and the volume fraction of each of the fluids is tracked throughout the domain. The

tracking of the interface(s) between the phases is accomplished by the solution of a

continuity equation for the volume fraction of the phases. For the CPI phase, this equation

takes the following form:

The volume fraction equation will not be solved for the primary phase, instead the

primary phase volume fraction will be computed based on the following constraint:

The properties appearing in the transport equations are determined by the presence of the

component phases in each control volume. In general, for an N-phase system, the volume

fraction averaged property would take a form:

where p is some volume fraction averaged property (e.g. density, viscosity, etc).

A single momentum equation is solved throughout the domain, and the resulting velocity

field is shared among the phases. The momentum equation depends on the volume

fractions of all the phases through the properties p and μ. In the case of turbulence
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quantities, a single set of transport equations is solved, and the variables lc and c are

shared by the phases throughout the field.

6.3.1 Dispersed Phase Modeling

In this study the Lagrangian approach for two-phase flow modeling is used to model the

ice particles mixing process. The underlying concept here is what is usually called

dispersed two-phase flow. The idea is to consider one of the phases to be dispersed

(abrasive particles) in the other phase (waterjet). At the same time strong coupling occurs

between phases. The Lagrangian model represents the dispersed phase as a continuous

stream of particles moving through the carrier phase. The governing equations for the

carrier phase are given in the standard in fluid dynamics Eulerian frame of reference,

while the motion of the particles is described in a Lagrangian coordinate system. The

information transfer between phases is accounted for by the momentum along particle

paths.

The motion of each particle of the dispersed phase is governed by an equation that

balances the mass- acceleration of the particles with the forces acting on it. For a particle

of density pp and diameter Dp the governing equation is:

where Up is the particle velocity, U is the velocity of the carrier phase, fp is the

combination of forces acting on the particle, and t is the particle's relaxation time,

defined by Equation 6.20.
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where 11 is the viscosity of the fluid, Re is the particle Reynolds number defined by:

and Cd is the drag coefficient. There exist many models, mostly empirically based for the

drag coefficient. Among the most commonly used ones is the polynomial model given

by:

where a, b, c, and d are constants.

The first term on the right hand side of (6.19) is the generalization of the classical Stokes

Drag on a particle. The second term is the buoyancy force, important in simulating the

sedimentation of solid particles in liquid, and the third term represents different forces

that appear in particulate motion in fluid.

A particle trajectory is obtained by the solution of the particle momentum

equation (6.19) coupled with kinematic equation:

where xpi is the position coordinate of the particle at time t.

If there is a transfer of momentum from the particulate phase to the continuum phase,

then the following computational approach is followed. The computed particle

trajectories are combined into source term of momentum, which is then inserted into the

right-hand side of the conservation of momentum equation :
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where ΦIM (E) is the source term. For each element E it is defined as:

where YE is the volume of the element, V p is the volume of the particle, ηj is the number

of particles per unit time traversing the jth trajectory and of is the time that a particle on

the jth trajectory takes to pass through element E.

The solution procedure used in the Lagrangian two- phase flow model is an

iterative one. First a solution to governing equation (6.24) without source term is

obtained. The solution Ui of the equation is then substituted into (6.19), which is then

solved together with kinematic equation (6.23). From these solutions the source term is

constructed according to (6.25) and the obtained values are then substituted back to

(6.24). This procedure is repeated until the convergence criteria are met.

6.3.2 Problem Description

The computational domain in this study is limited to the cutting head of a

conventional waterjet nozzle. In the cutting head three phases are mixing up to constitute

the abrasive-air-water jet flow. The air enters the cutting head through the abrasive port.

The cutting head itself consists of mixing chamber and focusing tube. In mixing chamber

the mixing of the water stream, air and solid additives occurs, and the three-phase stream

is then accelerated in the focusing tube. The computational domain along with process

boundary conditions is given in the following chart. To reduce the computer time, the

length of the focusing tube was taken smaller then it is in reality, with the assumption that
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after this length the flow is fully developed and no significant change of properties

occurs.

Figure 6.9 Nozzle Geometry

Table 6.3 Nozzle Dimensions

Waterjet Cutting Head Dimensions

X1 X2 X3 R1 R2 Inlet

0.244

(sm)

0.3556

(sm)

1.5

(sm)

0.203

(sm)

0.116

(sm)

0.017

(mm)

6.3.3 Boundary Conditions

It is required to provide appropriate boundary conditions for k, u, c on the boundaries of

the computational domain. The inlet plane is positioned upstream of the regions of

interest. The boundary condition for U is prescribed uniform at the inlet and set to be
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equal to 600 m/sec. The volume fraction of air is taken to be equal to zero at inlet, and

unity at abrasive port inlet. The turbulence quantities at the inlet section are determined

using the empirical relations (6.13 — 6.14).

At the outlet boundary, the Neumann i.e., the zero gradient boundary condition in

the axial direction is applied for U, k, 6. At the wall, the near-wall modeling approach is

applied for those regions of the computational domain, which coincide with the solid

boundary. On the solid wall u, k, s are set to zero.

The finite element package FLUENT was used for the numerical solution of

discretized equations.

6.3.4 Discussion and Presentation of Results

The result of the analysis is presented in Figures 6.20 through 6.30. The contours of

velocity magnitude show that after the primary nozzle, centerline velocity dominates the

flow. There is a velocity loss along the centerline, not exceeding 10% of the velocity

magnitude after the primary nozzle. The average centerline velocity at secondary nozzle

exit, for the given operating conditions is 250 m/s. These results are in a good agreement

with results available in the literature (Raissi et al 1996, Neusen et al, 1996). The

turbulent quantities increase closer to mixing tube and grow even stronger on the jet

periphery, further from the jet centerline. This could be explained by the increasing

intensity of the jet break up in the secondary nozzle. The volumetric fraction of air in the

nozzle can be estimated to be greater then or equal to 85%. This again is in a total

agreement with previously reported experimental and numerical results. (Raissi et al,

1996, Osman et al, 1996).
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Figure 6.10 Contours of Velocity Magnitude (cm/s) for Nozzle #1 and Mass Flow Rate
52 g/s

Figure 6.11 Contours of Turbulent Kinetic Enery, Nozzle #1, Mass Flow Rate 52 g/s.



Figure 6.12 Outlet Velocity Magnitude, Nozzle #1, Mass Flow Rate 52 g/s
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Figure 6.13 Outlet Turbulent Kinetic Energy, Nozzle #1, Mass Flow Rate 52 g/s



Figure 6.14 Stream Line Contours For Nozzle #1 and Mass Flow Rate 52 g/s
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Figure 6.15 Outlet Velocity Magnitude, Nozzle #2, Mass Flow 52 g/m



Figure 6.16 Turbulent Kinetic Energy Profile at Exit, Nozzle #2, Mass Flow Rate 52 g/m

Figure 6.17 Contours of Velocity Magnitude (cm/s)



Figure 6.18 Static Pressure Contours, Nozzle # 1
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Figure 6.19 Static Pressure Contours, Nozzle #1
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Figure 6.20 Contours of Velocity Magnitude

Figure 6.21 Contours of Turbulent Kinetic Energy (k)



Figure 6.22 Contours of Turbulent Intensity
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Figure 6.23 Velocity Magnitude at Nozzle Exit
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Figure 6.24 Turbulent Kinetic Energy (k)

Figure 6.25 Contours of Volume Fraction of Air
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Figure 6. 26. Density Contours (g/sm 3)

Figure 6. 27 Volumetric Fraction of Air at the Nozzle Exit



Figure 6. 28 Particle Traces Colored by Particle Velocity Magnitude (sm/s)
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Figure 6. 29 Particle Traces Colored by Particle Velocity Magnitude (sm/s)



Figure 6. 30 Particle Traces Colored by Particle Velocity Magnitude (sm/s)
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CHAPTER 7

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PURE

WATERJET COATING REMOVAL

7.1 Experimental and Numerical Study of Pure Waterjet Paint Removal

7.1.1 Introduction

Paint and other coatings are applied to surfaces to enhance corrosion resistance, improve

appearance, or both. Often the coatings need to be removed either as a part of the

manufacturing operations or later in the equipment life as the paint becomes soiled, worn,

or damaged with use. In many cases, particularly in the aircraft industry, paint must be

removed to allow inspection of the underlying parts. In the case of an aircraft and a

number of other industries this requirement is paramount.

The most common method of depainting incorporates the use of solvents. Solvent

strippers, employed for industrial coating removal for many years, consist mainly of

methylene chloride that typically constitutes 60% to 65% of the formulation. Other

ingredients such as activators, corrosion inhibitors, thickeners, and evaporation retarders

are used to supplement the methylene chloride to improve coating removal performance.

However the use of solvent strippers generates organic vapors, and sludge containing

solvents and metals. Thus increasing environmental and health concerns call for the

reduced use of solvent strippers.

The most effective way to prevent the pollution caused by paint removal is not to

paint the part and thus avoid the need to strip it. Some airlines have tried polished

79
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aluminum skins and report that the appearance is acceptable and the life-cycle cost is

lower than painting with periodic removal to allow inspections. However, for most

applications, the painting improves appearance or performance or both and must still be

used.

Cleaner technologies based on physical decoating are commercially available or

are being developed to replace solvent strippers. These technologies take advantage of

the differences in physical properties between the coating and the substrate to destroy the

bonding and/or abrade the coating from the underlying substrate. Among available paint

removing techniques the most promising ones appear to be the blasting technologies.

These include but not limited to: plastic media blasting, wheat starch blasting, sodium

bicarbonate wet blasting, high pressure water blasting and cryogenic blasting. It is clear

that the water blasting constitutes the most effective technology. Water is readily

available, comparatively inexpensive, and induces no damage to environment. The

complete separation of water and debris facilitates material recovery. Therefore complete

pollution prevention is feasible.

Water jet depainting includes a sequence of rather complicated phenomena. Jet

development and disintegration into an array of droplets, jet impact on the surface,

development and superposition of stress waves in the impact zone, material deformation

and separation etc. altogether constitute the process in question. A practical model is a

necessary for understanding and optimization of this technology.

The experimental study has been carried out to acquire a database representing

paint removal by water jet at various operational conditions. The fuzzy logic technique

was used to process the obtained data and to construct a correlation between process
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variables (water pressure, nozzle traverse rate, and standoff distance) and process results

(productivity, water consumption). Additional experiments were carried out to validate

the computational results.

7.1.2 Experimental Study of Pure Waterjet Depainting

The experimental study of depainting of steel samples was carried out in order to estimate

the effect of the waterjet pressure, the standoff distance and the traverse rate on the rate

of paint removal and the specific water consumption. A high-pressure water supply

system included a water softener, a booster pump, and an Ingersoll-Rand intensifier. A

water softener was used to remove the iron and calcium, and dissolve solids that might

cause damage to the sapphire nozzle. Then softened water was fed to the booster pump

which would produce the pressure up to 10.4 MPa (1,500 psi), then it was further

pressurized by an intensifier using a hydraulically driven plunger pump and carried

through a stainless steel pipe to a nozzle head. A sapphire water nozzle with diameter

0.254 mm was installed on the nozzle head, which was kept constant during the

experiments. The nozzle head was mounted on a 3-axis Ingersoll-Rand gantry robot

whose movements were controlled by GE Fanuc series 18-M CNC controller. Low

carbon steel AISI1018, machined to a block with 4x2x1 in3. An oil based paint was

sprayed on the steel surface cleaned by a sandpaper, and allowed to dry for 72 hours.

The steel samples are shown on Figure 7.2. The rust seen on the metal surface

appeared later, after completion of the study. The samples were depainted by a moving

waterjet normal to the specimen surface. Several strips were generated at each steel block

at various operational conditions. The ranges of the experimental parameters are shown
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in the Table7.1 The maximum values of the operational conditions were determined by

the equipment capabilities.

Table 7. 1 Ranges of Experimental Parameters

Process Parameter Min value Max Value

Nozzle Traverse Rate 0.635 m/min 8.89 m/min

Standoff distance 100 mm 330 mm

Water Pressure 69 MPa 276 MPa

As a result of the jet impact the paint free strips were generated on the substrate surface.

The strips were examined with an optical microscope. Depainting was considered

successful if and only if no paint except for several microscopic spots was identified on

the metal surface. The existence of these spots was attributed to paint redeposition on the

cleaned surface. In two to tree weeks these spots were spontaneously separated from the

substrate surface. This demonstrates that the generation of the spots is due to the

accidental redeposition of the paint particles. Only successfully depainted strips were

further examined. In the course of the following discussion we will term "a strip" the

region on the substrate surface, where the paint is considered to be successfully removed.

The width of these strips was measured using a Mitutoyo Toolmakers Microscope. Since

the width of the clean area was not uniform along the strip, five consecutive

measurements of the strip width were taken and the average results were used to

determine the rate of the paint removal (RMR m2/min) as well as the specific water

consumption (WC m3/m2).
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7.1.3 Experimental results

In the present study knowledge pertaining to waterjet depainting was obtained from two

hundred experimental data points. The experimental results are depicted in Figures 7.3,

7.4, 7.5. The external character of the relationship between the standoff distance and the

strip width (Figure 7.3) is due to the increase of the jet diameter and decrease of the water

momentum as the standoff distance increases.

As indicated earlier, width of strip is an output variable measured in the course of the

experimental study. However, the real process output variables are rate of material

removal and specific water consumption. The rate of material removal (Figure 7.4) and

water consumption (Figure 7.5) per unit of the cleaned area were determined according to

Equations 1 and 2, respectively. These two quantities are the principal indicators of the

efficiency and competitiveness of waterjet cleaning. In our further study the combination

of these two derived process parameters is used in design of an objective function in

optimization problem.

where pH, is the water density, CD is the discharge coefficient of the

waterjet orifice, whose diameter is Dn  . In present work C D is taken to be equal 0.7.

(Hashish, 1993)

7.1.4 Fuzzy Logic Model of Waterjet Depainting

The data acquired in the course of the performed experiments provides limited

information about correlation between process conditions and process results. The
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acquired knowledge is sufficient for identification with some accuracy the width of strips

generated at a tested set of process conditions. For example, from the experimental data it

follows that at P= 207 MPa, SOD=0.177 m, TR=0.635 m/min the value of the strip width

is 3.556 mm. Another form of the knowledge inferred from the obtained experimental

data base is the generic trends in the change of the strip width. For example, from the

acquired data (and from previous experience) it follows that the increase of the water

pressure brings about the increase of the strip width.

The information above has a limited scope. However the available data processing

techniques enable us to enhance dramatically the knowledge inferred from the acquired

experimental database. For example, these techniques enable us to construct the

prediction model suitable for process optimization. One of the effective data processing

procedures is provided by the fuzzy logic. The fuzzy logic approach integrates the crisp

(numerical) information provided by each individual test, and linguistic (generic)

information, provided by the whole acquired database. The first step in constructing

fuzzy logic model of a process is identification of input and output variables. As an

example, in our case, the strip width was chosen as output variable. Although we just as

well could have chosen any of the derived quantities (RMR, Water Consumption) as an

independent model output. The application of the fuzzy logic involves decomposition of

the intervals of the change of input and output variables into several overlapping

subintervals. Then, the acquired database is used to infer logical (if... if... if..., then...)

relations between these subintervals. As the result, a linguistic (qualitative) process

model is constructed. In order to quantify this model we introduce for each subinterval of

the change of the process variables a function (membership function) determining the
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strength of the belonging (membership) of a variable in question to the different

subintervals. The form of the membership functions does not depend on the results of the

experiments and is, to a some degree, arbitrary. Finally, the fuzzy logic provides a

routine, which enables us to determine the values of the output variable, corresponding to

a given set of the input variables, using the constructed fuzzy sets. The construction and

the use of the fuzzy sets for prediction of the results of depainting, is presented below.

This procedure illustrates the details of the application of the fuzzy logic technique for

analysis of waterjet decoating.

7.1.5 The Procedure of Application of Fuzzy Logic

The first stage in the application of fuzzy logic for construction of the process model is an

identification of the ranges of input and output variables (determination of universes of

discourse). Then the range of the change of each variable is divided into the set of

subintervals and each of the subintervals is assigned a membership function, and is given

an appropriate linguistic name This combination of a subinterval, its membership

function, and its linguistic name constitute a fuzzy set. Fuzzy sets of one particular

variable usually overlap. The degree of overlap reflects fuzziness in the definition of

fuzzy sets. The number of fuzzy sets for each particular variable is determined by the

available database. For example, our experiments were conducted at four different water

pressures, and the whole range of the variation of the water pressure was arbitrarily

divided into four subintervals (Table 7.2).

The aggregation of all subintervals of one process variable on a single coordinate

axis is called the Universe of Discourse of that variable (Figure 7.1). As it follows from
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Figure 7.1, the water pressure of 150 MPa has a degree of membership equal to 1 in the

fuzzy set Medium (complete representative of this set) and degree of 0 in the fuzzy sets

Low and High (not a member of a set). The water pressure of 125 MPa has a degree of

membership equal to 0.27 in the fuzzy set Low, and simultaneously a degree of

membership 0.58 in the fuzzy set Medium.

Table 7.2 Subdivisions of the Process Variable Water Pressure

Linguistic name Min Value Max value

Low 0 MPa 150 MPa

Medium 90 MPa 210 MPa

High 150 MPa 270 MPa

Very High 210 MPa 280 MPa

Figure 7.1 Universe of Discourse of the Process Variable "Water Pressure"
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Similar charts are constructed for the traverse rate (Figure 7.6), standoff distance (Figure

7.7) and the strip width (Figure 7.8)

Similar equations were constructed for other input variables (standoff distance

and traverse rate) and output variable (strip width). In the current model the problem

parameter space was discretized into 4 fuzzy sets for water pressure, 8 sets for standoff

distance and 5 sets for traverse rate. In general this number of fuzzy sets is excessive and

is used for simplicity of developing of Fuzzy Associative Memory.

7.1.6 Representation of the Knowledge of the Depainting Process

In addition to the crisp (numerical) information, the acquired data generated qualitative

(linguistic) knowledge about the process of depainting. This knowledge is then

formulated in the form of logical (fuzzy) rules. An example of such a rule follows.

IF Waterj et Pressure is Low and Traverse Rate is Slow and Stand-Off Distance is

High Then Strip Width is Around Medium

The number of rules in a fuzzy logic model depends on a number of experimental data

points. A collection of all fuzzy rules for one particular system (database) is termed - rule
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base. For a small number of model variables there is a compact form of representing

fuzzy rules. This compact form is commonly referred to as Fuzzy Associative Memory

(FAM). The tables representing FAM for the acquired database are given below. In the

Tables (7.3)-(7.6) the upper horizontal row represents fuzzy sets of the process variable

`Standoff Distance', while the left vertical column, represents fuzzy sets of the process

variable 'Traverse Rate', and the cells of the tables represent fuzzy sets of the output

variable,' Strip Width'. Figure 7.8 contains full linguistic names of the above fuzzy sets

of 'Strip Width'.

Table 7.3 Fuzzy Associative Memory, Water pressure "Low"

Standoff distance

EL VL L M H VII VVH EVVH

VS VVVL VL M M AM AM L VL

S **** VVVL VL L VVL VVL VVL EVVL

M **** VVVL VVVL VVL EVVL EVVL EVVL EVVL

F **** **** **** **** **** **** **** ****

VF **** **** **** **** **** **** **** ****

Traverse Rate

Table 7.4 Fuzzy Associative Memory, Water pressure "Medium"

Standoff distance

EL VL L M H VII VVH EVVH

VS **** **** L L M M AM VVL

S **** **** L AM L L VL VVL

M **** **** VL L AM L VL VVL

F **** **** **** L AM VL VVVL EVVL

VF **** **** **** **** **** **** **** ****

ravers e Rate
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Table 7.5 Fuzzy Associative Memory, Water pressure "High"

Standoff distance

EL VL L M H VH VVH EVVH

VS **** H VVH VVVH EVVVH VVVH VVH AM

S **** AM M All H AH L VL

M **** vi, L AM AM M VL VVL

F **** vi, L L AM AM L VL

VF **** vi, AM AM L L VL VVL

Traverse Rate

Table 7.6 Fuzzy Associative Memory, Water pressure "Very High"

Standoff Distance

EL VL L M H VH VVH EVVH

VS **** **** **** **** **** **** **** ****

S **** L M H VH VVH VH L

M **** L AM M All H M VL

F **** L AM AM M All M VVL

VF **** L AM H VH M AM L

Traverse Rate

The way of the knowledge presentation by the above tables is illustrated by the following

examples.

Example 1.If we apply Low Water Pressure (Table 3) and Medium Standoff Distance

(upper horizontal row, fifth cell) and Slow Traverse Rate (the leftmost column second

cell) then the resulting strip width is Low.

Example 2. The combination of High Water Pressure (Table 5), Very Fast Traverse

Rate (VF), and Medium SOD (M) will result in Strip Width being Around Medium

(AM).
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Tables 7.3-7.6 represent linguistic correlation between input and output variables.

Fuzzy logic provides a simple technique, which enables us to quantify these correlations.

A simple example demonstrates the use this technique:

Let us consider the following set of input parameters: Water Pressure 172 MPa,

Traverse Rate 5m/min and Standoff Distance 229 mm. From Figure 5, showing the fuzzy

input universe of the Water Pressure, follows that the pressure of 172 MPa falls into two

fuzzy sets Medium and High with corresponding degrees of membership of 0.63 and

0.36. Similarly from Figure 6 (fuzzy input universe of Traverse Rate) follows that the

traverse rate of 5m/min falls into two fuzzy sets: Moderate and Fast with corresponding

degrees of membership of 0.66 and 0.33. Finally, from the Figure 7 follows that SOD of

229 mm falls into only one fuzzy set, Very High, with degree of membership equal to

0.96.

For a given set of the input variables, and from the Tables 3-6, the following rules were

inferred:

1. If Water Pressure is Medium (0.63) AND Traverse rate is Moderate (0.66) AND

Standoff Distance is Very High (0.96) Then Strip Width is Low.

2. If Water Pressure is High (0.36) AND Traverse rate is Moderate (0.66) AND

Standoff Distance is Very High (0.96) Then Strip Width is Medium.

3. If Water Pressure is Medium (0.63) AND Traverse rate is Fast (0.3) AND Standoff

Distance is Very High (0.96) Then Strip Width is Very Low.

4. If Water Pressure is High (0.36) AND Traverse rate is Fast (0.3) AND Standoff

Distance is Very High(0.96) Then Strip Width is Around Medium.

Here there are two fuzzy sets of Water Pressure, two fuzzy sets of Traverse Rate, and one

fuzzy set of Standoff Distance. Therefore the total number of rules is equal to 2x2x1=4.
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7.1.7 Inference From Fuzzy Rules.

Fuzzy rules give us only linguistic correlation between sets of the input parameters and

the output variable. Instead we would like to estimate to what degree a rule's consequent

(part to the right from the then statement) is true. In doing so we apply logical min

operator. For the rule 1 the degree of membership of the fuzzy set medium of Water

Pressure is found to be (0.63), the degree of membership of the fuzzy set moderate of

Traverse Rate is found to be (0.66), and the degree of membership of the fuzzy set Very

High of Standoff Distance is found to be 0.96. We select the minimal out of these three

values, which is 0.63. The selected minimal value is assigned to be the degree of the

membership of the fuzzy set Low of the output variable 'Strip Width'. We repeat these

steps for other rules.

Rule 1: min (0.63, 0.66, 0.96) --> 0.63 (II of fuzzy set LOW of Strip Width).

Rule 2: min (0.36, 0.66, 0.96) -> 0.36 GI of fuzzy set MEDIUM of Strip Width).

Rule 3: min (0.63, 0.3, 0.96) —> 0.3 (1 of fuzzy set VERY LOW of Strip Width) .

Rule 4: 	 min (0.36, 0.3, 0.96) —> 0.3 (µ of fuzzy set AROUND MEDIUM of Strip

Width).
The information above states that if the traverse rate is 5m/min, water pressure

172 MPa, and SOD is 229 mm then the resulting strip width can be either Very Low with

degree of truth 0.3, or Low with degree of truth 0.63, or Medium with degree of

membership 0.36, or Around Medium with degree of truth 0.3. These found degrees of

truth of fuzzy sets of the output variable Strip Width are used now to truncate the

corresponding triangles of the universe 'Strip Width' (Figure 7.8). The resulting

truncating region is called a solution region (Figure 7.9).
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7.1.8 Defuzzification

The resultant solution region on Figure 7.9 provides fuzzy information about the resultant

strip width. We can infer from this figure that at the water pressure of 172 MPa, traverse

rate 5 m/min and standoff distance 229 mm the resulting strip width is somewhere

between 1 mm to 2.6 mm. But since the truth function of fuzzy set LOW is the biggest

one (0.63) it is more likely to expect that the strip width would range from 1.4 to 1.8 mm.

Fuzzy logic suggests several routines (defuzzification techniques) which enable us to

evaluate the numerical (crisp) value of the output variable using distribution shown on

Figure 7.9. The most commonly used defuzzification technique is the centroid method

given by the following equation:

Here d is the value of the width of strip at some point, and μ(d) is the truth membership

value for that point. Applying this defuzzification technique to the solution region under

consideration we obtain:

Z=1.78 mm

Comparing this result with the experimental result (1.74 mm) we find that the error is less

than 3%, which is regarded acceptable in the current work.

The prediction technique can be improved by the use of the weak ,-cut method. This is

defined by the equation:
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In general the λ-cut establishes the minimum truth threshold for a rule. If the truth of a

premise (the part of the rule before the then statement) evaluation falls below the λ-cut,

the rule is not executed. As it is shown by the Table 7.7 the introduction of the λ-cut in

some cases improves the model performance, since it eliminates the residual fuzzy spaces

(ones that have very small but finite degree of truth) (Cox, 1994).

An additional set of experimental data points, different from those used for the model

construction has been acquired. This data set enabled us to test the model performance.

The results of the testing are tabulated in the Table 7.7:

Table 7.7 Comparison of Experimental and Predicted Values of Strip Width

Water

Pressure

(MPa)

Traverse

Rate

(m/min)

Standoff

distance

(mm)

Strip width

(experiment)

(mm)

Strip width

(predicted)

(mm)

Strip 	 width

(mm)

(predicted

,-cut= 0.2)

Relative

Error (%)

103 3.8 178 1.40 1.64 1.37 2.1

138 3.3 178 1.87 1.75 1.83 2.1

172 5 229 1.74 1.78 1.78 2.3

207 7.6 203 1.83 1.80 1.80 1.6

241 5.8 216 2.54 2.37 2.37 6.7

Here the last column contains the results of calculation of the strip width at the λ-cut =

0.2.

7.1.9 Discussion of Results

Presented results show the feasibility to construct a numerical model of water jet

depainting process using fuzzy logic principals. The procedure involved acquisition of

the experimental database, fuzzification of the input and output variables, construction of
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the fuzzy associated memory representing the acquired database, evaluation of the fuzzy

distribution of the output variable for the selected sets of the input variables and

evaluation of the crisp value of the output variable. The routines involved in the

transformation above are comparatively simple. The results of the prediction for

experimental data different from that used for the construction of the model range

between 1-7%. At this point it is important to mention that the parametric combination

used for verification of the fuzzy model was within the middle of our parametric space

where model correlation is the highest. The greater error is expected near the outskirts of

the parametric space. This accuracy is acceptable at the first stage of the process

investigation and will be improved, as an additional database is generated. The main

advantage of the suggested approach is that it can be easily expanded as new process

information is acquired, or new process variables are introduced.

In the presented study the process result is characterized by the strip width, which

constitutes the only directly measured output variable. Actual process characteristics

(productivity and water consumption) can be readily determined using Equations 7.1 and

7.2. The result of the presented analysis provides guidance to the optimization of the

waterjet depainting. Particularly, it is shown that the process effectiveness increases if the

water pressure is maximum (276 MPa in this study), along with maximal traverse rate

(8.89 m/min). The standoff distance should range between 0.15 and 0.25 m. Analysis was

carried out at a constant nozzle diameter of 0.254 mm. The procedure of the model

construction can be readily modified to account for this and other process variables.

The above presented procedure is designed to predict a process output (strip

width) once a set of input parameters (water pressure, nozzle traverse rate and standoff
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distance) has been specified. On the contrary most models are used to enhance control of

a process. Therefore it may be practical to develop a procedure where we are given a

desired width of strip, say 1.5 mm, and need to find the best set of input parameters. One

way to address this issue is to use the probabilistic algorithm called Genetic Algorithm.

This rather new technology is based on the principles of evolution and hereditary. Such a

system maintains a population of potential solutions, it has some selection process, based

on the fitness of the individual solution, and some "genetic" operators. For the detailed

description of working of the Evolutionary Programs the authors refer you to

(Michalewicz, 1996). Thus we could use fuzzy logic model and Genetic Algorithms to

obtain any desired strip width along with sets of corresponding input parameters. Then

according to some predefined criteria we choose the optimal set of input parameters (for

example, those resulting in maximum productivity or minimal water consumption) for the

given strip width. The above outlined procedure is the topic of the current work of the

authors (Babets et al, 1999).

In the above-presented fuzzy logic model no process parameters resulting in a

possible material damage were included. Therefore the model is only concerned with the

productivity issues. But it very well may be happening that in an effort to apply this

model to a different cleaning environment (different paint thickness for example) the safe

combination of process parameters might no longer be safe. And since the rate of

material removal (RMR) is meaningful only when there is no substrate damage we need

to find the means to account for the possible material damage. One possible solution

could be an addition of fuzzy output Universe, say, "Safety" with corresponding fuzzy

sets "Not Safe", "Approximately Safe" and " Completely Safe". Then after being
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properly correlated, the fuzzy logic model will not only be able to predict the strip width

(RMR), but also point to the location on the "Safety" Universe. But this approach was not

investigated in our study and is left for the future research.

7.1.10 Concluding Remarks

The approach used in our study is not unique. There are several efficient techniques that

enable us to reduce database to a compressed process description. This description, for

example, can be obtained using regression analysis. Fuzzy logic technique, however, has

a number of advantages. First of all, there is no limitation on the form of the model.

Fuzzy logic can account for any form of process nonlinearity. The inaccuracy (fuzziness)

of input information effects the final result much less then that in the case of regression

analysis. Model improvement using new acquired information is rather simple. Thus, the

use of fuzzy logic will improve the planning and control of the waterjet depainting.

Although this study is concerned with prediction of the results of paint stripping, with

some modifications it can be applied to other surface processing technologies. In our

following work we will show how to expend a model constructed for an available data

base to a similar system at a limited initial information.

7.1.11 Some Definitions

Fuzzy set —The available range of process variable can be decomposed into several

overlapping subintervals (domains). All variables contained in this domain are its

members. Each domain is labeled by linguistic term, which clearly represent its main

features. The strength of participation (degree of membership) of a member in a given
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domain is estimated numerically by a function (membership function), which range from

0 to 1. The domain of members and their membership function constitute a fuzzy set.

Thus fuzzy sets relate a value to a linguistic characteristic and shows strength of this

relationship. Rigorous definition of a fuzzy set is given below.

Fuzzy sets are actually functions that map (relate) a value that might be a member of a set

to a number between zero and one indicating its actual degree of membership. A degree

of zero means that a value does not belong to the particular set, while degree of one

means that a value is completely representative of the set. And numbers in between [0,1]

represent partial degree of membership to a set. This idea of partial membership is the

main distinction of fuzzy set theory from the traditional binary set theory, where a value

is either a member of a set or not, with no partial degree of membership allowed.

Membership function — is a numerical characteristic which defines the strength of

belonging (degree of truth) of given value to selected fuzzy set.

Fuzzification- Fuzzy logic operates with linguistic terms rather then fixed crisp numbers.

In order to use fuzzy logic we need to represent the available information in form of

fuzzy sets. This representation of the information in form of fuzzy sets is called

fuzzification. This includes the decomposition of the universe of discourse into domains,

and assigning the membership function and appropriate linguistic name. It should be

pointed out that in many practical cases the use of fuzzy sets for description of process

information represent existing practice of representation of such information.

Defuzzification- at the same time the output of the model should constitute the numerical

(crisp) value, rather then a fuzzy one. On of the available technique for obtaining a crisp

number out of a fuzzy one is given by Equation 7.
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Fuzzy Propositions- A fuzzy logic proposition, P, is some linguistic statement, which

defines a state of a variable, i.e., 'Pressure is High'. The information embedded in a fuzzy

proposition could be interpreted slightly differently by various individuals, i.e. water

pressure 279 MPa can be considered both HIGH and MODERATE by different

individuals.

Fuzzy Logic - Unlike the conventional logic, which deals with precise propositions,

fuzzy logic deals with imprecise propositions thus establishing a theoretical foundation

for approximate reasoning.

Fuzzy Rule Base- Fuzzy information of system behavior is usually represented in a form

of fuzzy rule base. Fuzzy rules are expressed in a conventional antecedent- consequent

format:

If x is A and y is B then z is C

where x, y and z are model variables and antecedents A,B,C are fuzzy regions

(propositions). This form is commonly referred to as IF-THEN rule- based form. It

represents the inference such that if we know the antecedent then the consequent can be

inferred or derived.

Fuzzy Associative Memory- Compact form of fuzzy rule base representation. See tables

3-6.

Fuzzy min-max composition- the method for inference from fuzzy rules where the

consequent fuzzy region is restricted to the minimum of the predicate truth. The output

fuzzy region is updated by taking the maximum of these minimized fuzzy sets. These

steps are outlined in the following equations:
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which indicates that the consequent fuzzy (cfs) set is modified by taking the minimum of

predicate propositions.

Which shows that the solution fuzzy set (sfs) is updated by taking the maximum of either

the truth value of a solution fuzzy set or that the fuzzy set modified in equation (1).

,-cut- the ,-cut establishes the minimum truth threshold for a rule. If the truth of a

premise evaluation falls below the ,-cut, the rule is not executed.

7.2 Experimental and Numerical Investigation of Waterjet Derusting Technology

7.2.1 Introduction

The corrosion of the metal structures a serious technological and economical problem. It

shortens the life span of the steel parts, deteriorates dramatically their performance.

Corrosion is a chemical or electrochemical process in which surface atoms of a solid

metal either react with or dissolve in a substance that contacts an exposed surface.

Corroding mediums are generally classified as aqueous or non-aqueous. The rate of steel

corrosion in atmosphere depending on geographical location, and can reach 1070 µm/yr.

When rust corrosion depth reaches 1% of the thickness of the still, the strength of the

steel reduces by 5-10%. Throughout the world steel corrosion annually equals to 20-40%

of its annual production (Liu et al, 1993). The corrosion of all carbon steels is most

devastating when the metal is subjected to alternately wet and dry atmosphere combined

with the presence of chloride salts. Typically this environment can be encountered on the

underbodies of automobiles and trucks. The most conventional way of rust prevention is
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coating of the metal surface. But prior to the coating the complete cleanliness of surface

must be assured to ensure that a surface is clear of any rust.

The conventional methods of rust removal involve acid or cleaning and

sandblasting. These technologies though proven to be effective, could be environmentally

hazardous. Some new derusting technologies, such as Rust Neutralizers convert rust to

chemically neutral surface, leaving the surface ready for coating application. However

the use of this chemical is limited to oil-based types only, and the chemicals contained in

the product can be detrimental to worker's health.

Waterjet surface derusting constitutes rather efficient way to clean steel surfaces.

The following experimental study is concerned with optimization or at least improvement

of jet based derusting technology.

7.2.2 Experimental Setup

The derusting experiments were carried out at the Ingersoll-Rand waterjet system (Figure

7.10). The nozzle head was mounted on a 3-axes gantry robot whose movements were

guided by an Allen Bradley 8200 series CNC controller.

The major obstacle in the experimental study of a derusting technology is the

extreme diversity of the rusted surfaces. It is difficult to find several samples with similar

degree of rusting. As a result a rather low reproducibility of the experiment follows. In

order to at least partially overcome this problem we used the ISO developed standard for

classification of the rusted steel surfaces. This standard specifies four rust grades,

designated A, B, C and D (ISO, 1999) The rust grades are defined by written descriptions

together with representative photographic examples. The selected steel samples were
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sorted according to visual similarity and compared to the given photos. Those identified

as the class C were used as experimental samples. In the above mentioned ISO

publication grade C of the rusted surface is defined as the "steel surface on which the mill

scale has rusted away or from which it can be scraped, but with slight pitting visible

under normal vision". Still it should be stressed that the existent rust grades classification

based on visual comparison does not provide a reliable procedure for rust identification

and thus makes it quite difficult to collect uniform experimental data samples.

In our experiments the effects of water pressure, traverse rate and nozzle diameter

on cleaning productivity and surface quality were investigated. The tests were run at

water pressures of 310, 241, 172, 69 MPa (i.e. 45,000, 35,000, 25,000 and 10,000 psi).

The water nozzles with diameters 0.127, 0.1778, 0.254, 0.3556 mm were used. In these

experiments the effect of the standoff distance (the distance between a nozzle exit and a

sample) as an independent process parameter was not investigated. Instead, the ratio of

nozzle diameter to the nozzle standoff distance was kept constant. Thus a number of

standoff distances were tested to find a near optimum value for a selected nozzle

diameter. Then the obtained ratio was kept constant for the other nozzle diameters. The

study was carried out at the traverse rates 635, 2540, 7620 and 12700 mm/min. The upper

bound of the nozzle traverse rate (12700 mm/min) was imposed by the equipment

limitations.

In order to study the effect of the waterjet parameters on generated surface the full

factorial experimental design was applied. In such a design one process variable is tested

at its different levels, while the other variables are being held fixed at some level. The

experimental procedure involved the following steps. For each cleaning situation (i.e. the
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combination of water pressure, nozzle traverse rate and nozzle diameter / standoff) the

single nozzle pass width of strip was measured with Mitutoyo Toolmakers Microscope

and recorded. This value of strip width (STW) is then used to calculate process

productivity (Rate of Material Removal) and specific water consumption according to

Equations 7.1 and 7.2.Then several nozzle passes with 25% overlapping were made at the

same operational conditions. The resulting derusted area was evaluated visually and

photographed with Olympus photo microscope with 12X magnification in order to

determine the quality of the cleaning.

7.2.3 Surface Examination

In current study, the X-Ray diffraction was used to evaluate the presence of oxides (rust)

on the material surface after rust removal with waterjet. The Siemens D5000

diffractometer with 0-20 diffractometer geometry at Stevense Institute of Technology

was used for this investigation. The experimental samples consisted of rusted — cleaned

pairs. The following procedure was used for sample preparation. First the metal samples

were machined to a block 0.4 X 0.4 X 0.25 inches. Then the samples with similar rust

were grouped in pairs. From each pair one sample was left as it was, and the another one

was cleaned of rust using waterjet. The following waterjet parameters were applied:

Water Pressure 200 MPa, Nozzle Diameter 0.254 mm. Two cleaning runs were made. At

first the rust was removed from the metal surface at a low nozzle traverse rate, and at the

second run the flash rusting was removed at the high traverse rate of 3175 mm/min. Then

the sample was dried in hot air. Each pair was evaluated for the presence of oxides on the
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diffractometer. The resulted diffraction patterns enabled us to compare the oxides content

on the samples before and after the waterjet treatment.

7.2.4 Experimental Results

7.2.4.1 Surface Classification. The quality of derusting by waterjet was evaluated in

accordance with ISO standards (ISO 8501-1:1988). This standard defines four grades of

cleanliness of the surfaces generated by jet derusting. These surfaces are termed Sa 1, Sa

2, Sa 2 1/2 and Sa3. The qualitative description of each grade along with the representative

photographs of the surface is presented. During this experimental study it was found

difficult to follow the ISO classification. Instead, the following "fuzzy" classification was

suggested. According to the developed procedure we divided the derusted surfaces into

two classes: "well cleaned', and "poorly cleaned". A surface is allowed to have a partial

degree of membership in both classes. The class "well cleaned" would roughly

correspond to ISO grades Sa3 and Sa 2.5, while the class "poorly cleaned" would

correspond to surface grades Sa 2.5, Sa 2 and Sal. Figure 7.11 depicts a typical well-

cleaned surface. Here two shades of green can be distinguished. Light green corresponds

to the derusted surface, while dark green corresponds to flush rust, which appears

immediately after waterjet pass. It was found that flash rust can be removed easily by an

additional application of the waterjet at a high traverse rate, or prevented by immediate

drying of the surface in hot air.

Figure 7.12 shows a typical "poorly cleaned" surface. Such a surface is free from

lightly adherent mill scale, rust and other contamination, but some firmly adherent rust is

remaining on the surface. Thus the most representative surface samples were classified as
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either belonging to one of these classes, or, not. The "fuzzy" memberships in the two

fuzzy classes for the remaining surfaces were determined using the artificial neural

network assisted fuzzy classification method described in the following section.

7.2.4.2 Surface Cleanliness. In order to evaluate qualitatively and quantitatively the

waterjet-based derusting technology, several studies were carried out. These

examinations included SEM photographing of the surface, SEM chemical analysis, and

the x-ray diffraction analysis. Figure 7.13 shows a rusted surface at 500 X magnification

level. The main features of the surface are the oxidized metal grains of different sizes.

Figure 7.14 represents a surface derusted with waterjet. No oxidized metal grains are

observed, the surface is smoothed over and visually clean of rust.

In order to estimate qualitatively the effectiveness of the derusting the chemical

analysis of the surface prior and after treatment were determined. The SEM was used for

this study. The typical results of the analysis are presented in Figures 7.15-7.16. These

Figures show that the oxygen content of the surface was significantly reduced after the

water jet treatment. In order to evaluate the degree of the derusting more accurately

chemical analysis was supplemented by the x-ray diffraction. The corresponding

diffraction patterns of the metal surfaces before and after waterjet cleaning are presented

in Figures 7.17 and 7.18 respectively. Roughly speaking each peak on these figures

corresponds to a chemical compound. The intensity of a peak represents a relative

amount of this chemical compound. The atomic spacing values shown just above each

peak allow us to determine the type of a chemical compound present on the surface. From

Figure 7.17 and Table 7.8 it is clear that a rusted surface in addition to Fe contains
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significant amounts of Fe e 03, and Fe304. After waterjet cleaning (Figure 7.18) the three

still remaining peaks represent Fe, with significantly increased intensity levels. Most of

the oxides are no longer present on the diagram, and intensity level of those still present

is much lower than that of Fe content. Moreover due to low intensity levels these peaks

most probably should be attributed to the noise. The wide base peak at angles 10 —25

degrees on Figures 7.17 and 7.18 is due to the presence of the holder clay used to attach a

sample in the holder. Thus, Fig. 7.18 constitutes a compelling proof of the efficiency of

the waterjet rust removal.

7.2.5 Model of the Process

7.2.5.1 Choice of a Modeling Technique. In data /information processing the objective

is to gain the understanding of a complex phenomena through "modeling" of the system

either experimentally or analytically. Then after a model of a system has been obtained,

various procedures (e.g. sensitivity analysis, statistical regression, etc.) can be used to

gain a better understanding of the system.

There are, however situations in which the phenomena involved are very complex

and not well understood and for which the first principle models are not effective. Even

more often, experimental measurements are difficult and/or expensive. These difficulties

lead us to explore the application of Soft Computing (A.I.) techniques as a way of

obtaining models based on experimental measurements. Our problem at hand is a good

example of a system with highly nonlinear relationship between process inputs and

outputs. The problem of defining the cleaning quality is one of the classification type.

Therefore it was found reasonable to apply an advance artificial intelligence modeling
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technique based on the combination of fuzzy logic and artificial neural networks. The

method used is known as NN-Driven Fuzzy Reasoning (Takagi and Hayashi, 1991), and

was used with only slight modifications.

7.2.5.2 Model of the Process. The fuzzy classification of derusted surfaces contained

two classes, "well cleaned', and "poorly cleaned". Some of the cleaned samples were

prescribed to class "well cleaned" with degree of membership 1, correspondingly they

had degree of membership 0 in the class "poorly cleaned". Some samples were identified

as "poorly cleaned" and correspondingly were given the degree of membership 1 in this

class and zero degree of membership in the class "well cleaned". The rest of the samples

had a non-zero degree of membership in both classes. We use a special neural network to

determine these degrees. The procedure involved training of the neural network

(NNmem), using only well defined samples, that is samples having the degree of

membership 1 in either class. Then, after being properly trained, such a network will not

only be able to predict the binary degree of membership (either 0 or 1) for some input

data, but also the dual degree of membership (fuzzy membership) for the input data

points in that neighborhood. As the result of training we obtain neural network, which is

able to determine the degree of membership in each of the two classes using input

conditions, such as water pressure, rate of traverse, etc. This procedure is described in

details in Takagi, et al, (1991) and by Ross (1995). Our actual goal, however, was to

determine the process productivity and the resultant degree of cleanliness. In order to

reach this goal we divide the available database into two data sets. The first data set

contained only the data earlier identified to crisply (i.e. with degree of membership 1)

belong to the class "well cleaned", and, similarly the second data set contained the data
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belonging only to the class "poorly cleaned". We then train two separate networks, on

these two data sets, and as the result each network was able to determine productivity for

the class it was responsible for.

Table 7.8 Determination of chemical compound. To accompany Figures 7.17, 7.18

Experimental

atomic planes

spacing values

d (A)

ICDD Tables

atomic planes

spacing values

d (A)

Chemical	 Compound

Fe Fee 03 Fe3 04

3.281 3.24 X

3.009 2.967 X

2.795 2.728 X

2.546 2.532 X

2.174 2.176 X

2.106 2.099 X

2.027 2.03 X

1.723 1.715 X

1.624 1.616 X

1.49 1.485 X

1.437 1.43 X

1.289 1.281 X

1.211 1.212 X

1.168 1.17 X

As the result, we obtained the model of the process in terms of the three trained

neural networks that were connected according to Figure 7.19. According to this figure,

given some input data set, the network NNmem identifies the degree of membership of a
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sample in each of the two classes. Network NN 1 predicts productivity for class "well

cleaned", and NN2 for class "poorly cleaned". Input information is fed to all three

networks. The outputs of all three networks are then fed into the special elements which

process the networks outputs to determine the weighted sum and as the result predicts

final process productivity and the degree of cleanliness.

As the result, we were able to obtain an accurate prediction of the process

productivity (the average error of prediction was within 8 %). Also we were able to

estimate the quality of derusted surface, based on the fuzzy degrees of membership in

"well cleaned' and "poorly cleaned" classes inferred by the NNmem neural network. The

results of the prediction are presented in Figures 7.10-7.13. These figures show the

process productivity as a function of different process parameters, without regard to the

quality of resultant surface. The quality (degree of belonging to the two classes) for any

data point in these figures is obtained with the help of the neural network NNmem•

7.2.6 Concluding Remarks

We demonstrate the feasibility and, in fact, effectiveness of waterjet steel derusting. The

effect of the operational conditions on the process economy was evaluated and a set of

the operational conditions was suggested. This set can be used an initial state in the

search of the operational conditions by a practitioners. Because of wide variations of the

states of the rusted surfaces and insufficiency of the available identification technique, an

advance soft computing procedure (neural network driven fuzzy identification) has been

suggested for surface identification.
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Analysis of the results of derusting conditions demonstrates the effectiveness of

the use of several nozzles rather a single nozzle of the same surface area.

7.3 Experimental Investigation of Waterjet Based Cleaning of Sensitive Surfaces

One of the main advantages of application of waterjet technology for surface

decontamination lies in the specifics of the tool itself. Waterjet can be described as a

universal tool for material processing. High-speed stream of water (with some

modification, such as solid particulate addition, etc.) can be powerful enough to cut

through very hard to machine materials, such as titanium, or remove very hard rust. At

the same time by changing the process parameters the waterjet can be used as a tool of

precision machining of extremely sensitive surface. The following case studies were

aimed at investigation of the feasibility of application of high pressure waterj et for

cleaning highly sensitive surfaces.

The specific goal of the experiments was to estimate the feasibility of cleaning of

the sensitive surfaces with water jets. The following samples were used for these

experiments:

A foam coffee cup.

A soda can.

A boiled egg.

7.3.1 Paint removal from a Foam Coffee Cup.

This example of a high pressure waterjet cleaning of sensitive surface represents a

challenging cleaning task. The reason is that the substratum in this case is softer then the
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deposit itself In this experiments the working water pressure was 69 MPa (10,000 Psi),

nozzle diameter 0.254 mm (10 mils). A specially designed hand-held nozzle body was

used with no solid particle addition.

The results of the experiments was the definite conclusion that the paint can be removed

with no soft substratum damage observed. This result is represented in Fig. 7.24

7.3.2 Paint removal from an Aluminum Can.

Although the pure waterjet is capable of removal of paint from a substratum, the addition

of solid particles to a water stream allowed us to decrease the working pressure and to

increase dramatically the process productivity and precision. As a solid additive the

backing soda was used in the case of paint removal from the aluminum soda can. As a

result of the cleaning operation a surface was successfully cleaned with no induced

damage.

7.3.3 Paint removal from a Boiled Egg

As a last sample of sensitive surface an extremely brittle surface of a boiled egg was

chosen. For this experiments an oil-based paint was applied on the egg's surface. The

working pressure was 130 MPa, nozzle diameter 0.254 mm. A specially designed nozzle

holder with two inlet ports for abrasive and air to soften the jet was used for this

experiment. As a result we have proved that an extremely brittle surface can be cleaned

with high speed waterjets with no surface damage induced (Fig. 7.3.3)
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7.3.4 Conclusion

The main conclusion of these series of experiments is that the success of the experiments

described above demonstrates the feasibility of the damage free decontamination of the

extremely sensitive surfaces using waterjets. And thus demonstrates the universality of

the application of waterjetting technology.
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Figure 7.6 Universe of Discourse of the Process Variable 'Traverse Rate'
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Figure 7.7 Universe of Discourse of the Process Variable "Standoff Distance"



Figure 7.8 Universe of Discourse of the Process Variable "Strip Width"
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Figure 7.9 Fuzzy Solution Region.
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Figure 7.12 Poorly Cleaned" Surface.(12 X Magnification 

Figure 7.13 SEM Photograph of Rust Covered Metal Surface 
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Figure 7.14 SEM Photograph of Water jet- Derusted Metal Surface 

Figure 7.15 SEM Chemical Surface Analysis. Metal Surface Prior to Waterjet Rust 
Remova1. Oxygen Content is at 900 Count. 
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Figure 7.16 SEM Chemical Surface Analysis. Metal Surface After Waterjet Rust
Removal. Oxygen Content is at 320 Count

Figure 7.17 X-Ray Diffraction Analysis. Diffraction Pattern of Rusted Metal Surface
Prior to Waterjet Treatment



Figure 7.18 X-Ray Diffraction Analysis. Diffraction Pattern of the Surface After
Waterjet Rust Removal

Figure 7.19 Computational Approach.

(I i , 12 , and 13 are the input parameters (water pressure, traverse rate, and nozzle diameter).
NNmem  is the neural network that decides the membership values (w1, w2) in each class,
of the above input parameters. NN 1 and NN2 determine the outputs (productivity) yi for

each class.)
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Figure 7.20 Model Prediction Results for Water Pressure 310 MPa. E- Experimental,

P-Prediction

Figure 7.21 Model Prediction Results for Water Pressure 241 MPa. E- Experimental,

P-Prediction
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Figure 7.22 Model Prediction Results. E- Experimental, P- Predicted

Figure 7.23 Model Prediction Results. E- Experimental, P- Predicted
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Figure 7.24 Waterjet Paint Removal From a Foam Cup. 

Figure 7.25. Waterjet Paint Removal From a Soda Can. 
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Figure 7.26 Water Jet Paint Removal From a Sensitive Surface. 



CHAPTER 8

EXPERIMENTAL STUDY OF WATERJET CLEANING WITH BLASTING

SODA ADDITION

8.1 Introduction

Today's rapidly developing and changing technologies and industrial products and

practices frequently carry with them the increased generation of materials that, if

improperly dealt with, can threaten both public health and the environment. Solvent

strippers have been widely used for industrial coating removal for many years. Solvent

strippers consist mainly of methylene chloride which typically constitutes 60% to 65% of

the formulation. Other ingredients such as activators, corrosion inhibitors, thickeners, and

evaporation retarders are used to supplement the methylene chloride to improve coating

removal performance. However the use of solvent strippers generates organic vapors, and

sludge containing solvents and metals. Thus increasing environmental and health

concerns call for the reduced use of solvent strippers.

ARMEX® Blast Media is an abrasive blast media designed for the removal of

paints, oils, grease, and process residues from a variety of substrates including steel,

aluminum, composite plastics and architectural stone. It represents a significant

technological breakthrough from the use of more traditional paint stripping materials

(such as methylene chloride which has substantial environmental and human health and

safety issues) or blasting materials (such as those that are silica-derived).

Abrasive blasting is the pressurized air containing a suspended particulate that is

projected at a surface for the purpose of removing a coating or contaminant. An abrasive

125
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blasting system would usually be composed of the following four components: Pressure

Vessel Source of Compressed Air, Abrasive, Nozzle. Some common applications of the

sodium bicarbonate blasting include but not limited to the following.

1. Architectural

• Fire Restoration (removing smoke damage, restoring what is salvageable to pre-fire

condition)

• Brick Cleaning (depainting and pollution soil removal)

• Stone Cleaning (includes limestone, granite, marble, sandstone, not as porous as

brick)

• Metal Cleaning (two types - structural & decorative. Structural is usually steel, iron or

aluminum, and it includes depainting and cleaning. Decorative can be copper, bronze,

brass, aluminum, and it usually involves removing pollution and corrosion).

• Wood

• Graffiti

• Glass

2. Remanufacturing/Rebuild

• Aerospace (aluminum, titanium, steel, magnesium, composite materials, precision

parts that require preservation, removing paint, oil, grease, dirt, and carbon.)

• Automotive (steel, iron, aluminum, copper, brass, composites, best where substrate

preservation is required, removing paint, grease, oil, dirt, and carbon).

• Marine (composites, engine components ( steel, aluminum and brass), removing

from composites; barnacles, sea residues, failed gelcoat, engines (grease, oil, paint,

carbon)
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• Turbines (removing residues from blades).

3. General Facility Maintenance

• Petrochemical (removing paint, grease, oil, dirt, pollution residues from structural

steel, concrete, aluminum, painted surfaces)

• Pulp & Paper (paint and dirt, wood pulp residues and creosol build up)

• Food & Beverage (animal fats, greases; vegetable oils)

4. Mold Cleaning

• Removing mold release build up and casting residues

5. Military Applications (same types of applications)

• General Maintenance

• Auto and Aerospace Remanufacture

• Architectural Cleaning

8.1.1 Description of Experiments

Series of experiments have been conducted to investigate the abrasive waterjet cleaning

with Arm & Hammer blasting soda used as abrasive. Experimental study was mainly

concerned with examination of the effect of different waterjet parameters on cleaning

efficiency for different types of deposits and substrates. The parameters investigated

included types of coatings and substrate materials, water pressure, nozzle traverse rate,

nozzle diameter, standoff distance, and modification of jet structure through improvement

of nozzle body design. The waterjet parameters in question and their corresponding

ranges are presented in Table 8.1
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Table 8.1 Description of Experiments

Parameter Unit Description

Type of Coating Epoxy-based paint ( thickness — 3-4 mils)
Epoxy-based paint ( thickness — 12 mils)

Roofing Tar ( 4-5 mm)
Viton Rubber (2-3 mm)

Type of Substrata Aluminum
Low Carbon Steel ( AISI 1018)

Type of Nozzle
Body

Conventional Abrasive,
Water Nozzle

Nozzle Diameter
mm/inch

0.254 / 0.01
0.305 / 0.012
0.356 / 0.014

Pressure
MPa
psi

69 — 276
10,000 — 40,000

Traverse Rate
m/min
in/min

0.635 — 17.78
25 — 700

Stand-off Distance Sm
Inch

1.3 — 26
0.5 — 10.4

Abrasive Size Mesh

Abrasive Flow Rate gr/min
lb/min

0 — 44
0 — 1

8.1.2 Evaluation of Abrasive Waterjet Cleaning Performance

Three criteria cleaning width, cleaning rate and coefficient of relative performance have

been used for the evaluation of waterjet cleaning performance. Cleaning width and

maximum cleaning width are closely related to operational parameters as well as

properties of coatings and substrates. Cleaning rate is the direct measure of the process

productivity and is a linear function of the cleaning width. This work introduces the term

"coefficient of relative performance" as a criterion for the evaluation of cleaning

performance.
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Cleaning Width

The direct experimental output, which can be easily measured and used in further

calculations, is the cleaning width. This is the output parameter, which is obtained as a

result of a single nozzle pass. In all cleaning experiments cleaning width was used as the

basis for all further efficiency calculations.

Cleaning Rate

The rate of cleaning, or productivity of a process, is the major criterion for evaluation of

the effectiveness of waterjet decoating. Cleaning rate for a single nozzle (single jet) is

defined as following:

Cleaning Rate(m2/hour) = STW (mm) * TR ( mm/min)*(60/1000000) (8.1)

where STW is the cleaning width (strip width), and TR is the traverse rate.

8.1.3 Experimental Setup and Procedures

The cleaning experiments with abrasive addition were carried out with an Ingersoll-Rand

waterjet system. Two waterjet Ingersoll-Rand -manufactured robots were used in

experiments. The robots are 3 and 5-axis Ingersoll-Rand gantry robots, which movements

were controlled by GE Fanuc series 18-M CNC and Allen Bradley 8200 series CNC

controllers respectively.

A high-pressure water supply system included a water softener, a booster pump,

and an Ingersoll-Rand intensifier (Figure 8.1). A water softener was used to remove the

iron and calcium, and dissolve solids that might cause damage to the sapphire nozzle.

Then softened water was fed to the booster pump which would produce the pressure up to

10.4 MPa (1,500 psi), then it was further pressurized by an intensifier using a
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hydraulically driven plunger pump and carried through a stainless steel pipe to a nozzle

head. Sapphire nozzles with the range of diameters can be installed on the nozzle head.

Figure 8.1 Schematic of Waterjet Setup.

8.1.4 Abrasive media

In all cleaning experiments of this section the only type of abrasive media used

ARMEX® Blast. The media is based on sodium bicarbonate (baking soda) which is a

natural, water soluble, inorganic compound with a soft crystalline structure that makes it

an ideal, mild abrasive. The media can be used to clean and remove virtually any coating

from any substrate. It also is USDA-approved as an A-1 cleaner and suitable for use in

FDA-regulated facilities.

Key Features and Benefits

• Free flowing qualities reduce flow problems associated with other baking soda-based

blast medias.
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• Water Soluble - eliminates media residue concerns; simplifies clean-up & disposal;

less solid waste generated

• Safe to use on virtually any substrate, including delicate surfaces, rotating equipment

& moving parts

• Ideal for NDT/NDI preparation - does not remove metal

• Nontoxic & nonhazardous as defined by EPA & OSHA

• Contains no free silica, is nonflammable and is nonsparking resulting in significant

worker safety advantages

• Contains no solvents or caustic chemicals - reduced air pollution

• USDA-approved as an A-1 cleaner and suitable for use in FDA-regulated facilities

Particle Size

• The media has an optimized particle size distribution as follows:

• Retained on 60 mesh sieve (250 microns): 8% max.

• Retained on 100 mesh sieve (150 microns): 55% min.

• Retained on 170 mesh sieve ( 90 microns): 93% min.

General Properties

Appearance 	 White crystalline powder

Bulk Density 	  60 lbs/ft2 ( 1 g/cc)



Aluminum and carbon steel coupons were immersion tested in saturated solutions at 120

F for 14 days. Corrosion rates of the media were found to be significantly lower than

those of distilled water.

Table 8.2 Corrosion Properties

Immersion Corrosion
Rate (mils/yr.)

Product AL-7075 AL-5050 CS-1020

Distilled Water 1.15 1.11 9.0

ARMEX® Blast Media 0.25 0.20 0.17

Therefor this media was found to be an ideal candidate for waterjet-based surface

decoating, where slight rusting could appear after surface is cleaned.

8.1.5 Media Supply Setup

The following setup was used to supply the media into the waterjet stream (Figure 8.2).
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Figure 8.3 Media Supply Setup 

1) Calibrated controller of the media supply. 2) Media supply screw. 3) Media storage 
bunker. 4) Intermediate media storage bunker. 5) Media supply line. 6) Abrasive waterjet 

nozzle. 

Cleaning media is stored in the media storage bunker (3) with media supply screw (2) on 

the bottom. The media supply screw is controlled by controller with calibrated dial (1), so 

that the rate of media supply could be varied. With the help of the supply screw, media is 

delivered to the waterjet nozzle (6) via the intermediate supply bunker (4) through the 

media supply line (5). 

8.1.6 Sample Preparation 

Coatings and Substrates 

The choice of experimental coatings was dictated by the diversity of the possible 

coatings, which might be encountered by practitioners. Therefore, for a systematic 

investigation of the abrasive waterjet cleaning, we need to cover all types of material to 
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be encountered. All the possible coatings can be roughly categorized into two groups (1, 

2). 

1. hard, brittle layers (inorganic layers, scale, ceramics, enamel) 

2. ductile layers ( most plastic materials, kinds of rubber and metals, viscoelastic to 

viscous layers will also be placed in this group) 

The following coatings were used in this study. 

1. Paint 

2. Viton Rubber 

3. Roofing Tar 

The epoxy-based paint represents very cohesive, thick and hard to remove 

coating. It is believed that exactly this type of coating will accentuate the differences 

between abrasive waterjet and pure water coating removal, if any. 

Figure 8.4 Experimental Steel Panel with Two Layers of Epoxy Paint 

Two layers of epoxy paint with thickness 0.1524mm (0.006 inch) each were 

applied on a low carbon steel plate with dimensions 61 x 61 x 0.3 sm (24 x 24 x 0.12) 

inches. Both layers of coatings were industrially (robotically) applied, which assures an 
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even layer of coating. A typical experimental sample is shown in Figure 8.4. This type of 

coating could be placed into the first class according to classification above. The 

properties of these coatings are listed in Table 8.3. 

As an example of a coating from the second group (ductile layers) a fuser roll 

used in copy machines (Xerox type) was tested. A fuser roll is 40.6 sm- long (16 inch), 

20.3 sm ( 8) inch in diameter aluminum cylinder covered with a layer of Viton rubber, 

approximately 0.2 mm thick (Figure 8.5). The fuser rolls with worn layer of coating are 

usually stripped of rubber, which is reapplied later. This process is repeated until the 

roll's roughness after stripping exceeds admissible levels. Unfortunately not all the 

samples tested had the same wear level and surface roughness. Therefore experimental 

results are not general in all aspects, but somewhat specific to the given rolls. 

Figure 8.5 Worn Fuser Roll 

Another coating used in experimental study was represented by a layer of roofing 

tar (Gardner fibered roof coating) on aluminum plate (Figure 8.6). This type of coating 

could also be related to the second group in coating classification, but this coating is more 

viscous. The coating was applied with accordance to the instructions on packaging. 
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Figure 8.6 Roofing Tar Removal Experimental Samples 

Table 8.3 Properties of Coatings and Substrata 

Coating Substrate Application Thickness of Number of 
Method Coating layers 

( one layer) 
Epoxy Paint Low carbon 0.1524mm 

steel Industrially (0.006 inch) 2 
applied 

Epoxy Paint Low carbon 0.08mm 
steel Industrially (0.003-0.004 I 

applied inch) 

Viton rubber Aluminum Industrially 0.2mm I 
Applied ( 0.007 inch) 

Hand brushing 
Roofing Tar Aluminum Time to dry: 1 3-4mm 

year 0.11 inch 1 

8.2 Experimental Study of Abrasive Waterjet Paint Removal 

8.2.1 Experimental Procedure 

In this experiment the effect of the several waterjet parameters on cleaning efficiency was 

investigated. The parameters of interest were water pressure, water flow rate (nozzle 

diameter), abrasive flow rate, and nozzle traverse speed. In order to get a thorough 
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understanding of the influence of the above parameters on media assisted waterjet

cleaning, the full factorial experimental design was applied. In such a design each

variable (called a factor), although continuous in nature, was discretized into several

levels, according to criteria specific to this variable. In order to reveal all the

nonlinearities of the process we need at least three levels for each factor. One particular

combination of levels of all factors is referred to as a treatment combination. Number of

experimental replications at a fixed treatment combination is an observation (replication).

Since the number of factors is fairly large, only one observation for each treatment

combination was made. Experimental design of the tests on media assisted waterjet paint

removal is shown in Table 8.4.

Table 8.4 Experimental Design

Factor Number
of levels

Levels*

Water 69,103, 152, 221 MPa
Pressure 4 10,000 , 15,000, 22,000, 32,000 Psi

Traverse 635, 3175, 5175, 8255, 13335, 15875, 18415 nun/min
Rate 7 25, 125, 225, 325, 525, 625, 725 inch/min

Nozzle 0.254, 0.305 ,0.3556 mm
Diameter 3 0.01, 0.012, 0.014 inch

Media 100, 268, 415	 gr /min
Flow Rate 3 0.23, 0.6, 0.92 	 lb/min

•Not all levels are actually used for every treatment combination.

A special attention was paid to the experimental parameter —standoff distance. Standoff

distance is not actually a cleaning parameter of interest, but it plays an important role in

every jet-cleaning experimental setup. As was shown in earlier studies (Meng, 1996)

there are two critical standoff distances- "critical cleaning standoff distance (CCSD)"
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and "critical damage standoff distance (CDSD)". Cleaning in excess of CCSD will result

in ineffective cleaning, while working at CDSD will bring about substrate damage. Both

CCSD and CDSD were shown to be related to the properties of coating and substrate and

also to be the function of waterjet parameters (Meng et al, 1996 a). It was also shown in

(Meng, 1996 b, Babets et al, 1999), that in the effective working space bounded by

CDSD and CCSD there exists an optimum standoff distance (OSD). Cleaning at OSD

brings about maximum width of cleaning and consequently the maximum cleaning rate,

for a given treatment combination. Therefore, it should be clear that all experimental runs

for every treatment combination must be done at some optimum (or near optimum) value

of the standoff distance, to assure the fair comparison between different treatment

combinations.

The addition of a new factor into an experimental design will increase the number

of experimental runs dramatically, and a fair number of levels for this new factor is

required, since optimal standoff distance occurs at different distances for each treatment

combination. To avoid tedious experimentation the technique of dynamic test was

applied. For each treatment combination, the standoff distance was dynamically varied

over the whole range, which was limited by the equipment capabilities only. As a result

the trace of the waterjet was left on the surface (Figure 8.4). After the horizontal distance

on a panel was related to the elevation of the nozzle it became possible to measure the

resulting strip width at any standoff distance. Also this approach allowed easily

estimating an OSD for every treatment combination.

For each level of the following experimental factors (Water pressure, Nozzle

diameter, Media flow rate), the Traverse rate factor was varied through all levels, with
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dynamically changing Standoff distance for each level. In all of the tests on paint

removal, waterjet stream was perpendicular to the surface of coating material.

8.2.2 Experimental Results

Intuitively and from our experience we know that productivity increases with the increase

in traverse rate. But after it reaches some critical point, the further increase in traverse

rate leads to decrease of productivity. This point, or rather a range, where the derivative

of the function changes its sign is called an optimal point. This point or a range is unique

for any given set of process conditions. For example the increase in working water

pressure results not only in different optimal ranges but also in different optimal range

values. It could be noted that as the water pressure increases the optimal range becomes

wider and the optimal values of productivity increase.

The process productivity increases with the increase in standoff distance until

some point is reached, after which the further increase in standoff distance results in

lower process productivity. It is very important to locate and work within the vicinity of

this optimal point, or rather optimal range, because it directly translates into efficiency

gain with no additional input into the process. This optimal range is unique for different

sets of operational conditions. Higher media flow rates (Figures 8.7, 8.8, 8.9) result in

wider ranges of optimal standoff distance and in higher values of productivity. The

increase in media flow rates makes the process more stable, but this increase has limits,

and after these limits have been reached the further increase in media flow rate would

actually deteriorate the performance. Although the absolute magnitude of the productivity
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may stay the same, the optimal working range will drastically decrease (Figures 8.10,

8.11).

The increase in the working nozzle diameter with all the other variables kept fixed

will bring about the increase in process productivity (Figure 8.13). By analogy with the

discussed properties of other process variables it could be suggested that the further

increase in nozzle diameter nozzle diameter should locate an optimal range of nozzle

diameters for a given set of operating conditions. But in our study this optimal range was

not located, most probably because our experimental ranges of nozzle diameters were too

narrow.

The benefits of the addition of media into the waterjet can be evaluated best if we

compare the performance of abrasive jet with the performance of pure waterjet at the

same process parameters. Figures 8.14, 8.16) show that at low values of water pressures

the media assisted flow outperforms pure water jet in terms of productivity at least 12

times. As the working water pressure increases, the difference in productivity is less

significant but still quite noticeable, at 2.6 times. At the same tome the specific water

consumption is drastically lower for the case of media assisted jet (Figures 8. 15, 8.17).

8.2.3 Conclusions

The basic conclusions that can be drawn from this experimental study can be summarized

as following:

1. Addition of media significantly enhances the rate of deposit removal and reduces

specific water consumption.

2. Absolute effect of media addition increases with increasing water pressure.
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3. Productivity grows with increasing media supply.

4. Effects of media supply are stronger for stronger deposits.

5. The maximum process stability is attained at the rate of media supply of 0.5 Lb/min.

6. The optimal flow rate increases for higher nozzle diameters.

7. Optimal process results are attained at the narrow range of process conditions.

8. Specific water consumption is reduced by at least 8 times for strong deposits and 3

times for less stronger deposits.

9. Media addition increases productivity 2.5 — 3 times at high pressure and 10- 12 times

at low pressure.

10. Addition of media enables the removal of strong deposits at lower water pressure

11. Monotonous increase in productivity and decrease in specific water consumption

demonstrates the feasibility of improvement of obtained results.

8.2.4 Model of the Process

The modeling of the experimental database was done with the help of Artificial Neural

Networks (Chapter 5). In our problem several feed forward artificial neural networks

have been constructed and trained, one for media assisted waterjet depainting, one for

pure waterjet depainting. The network architecture used in modeling of media assisted

waterjet removal of paint had the 7 x 15 x 15 x 1 structure. The input layer contained

seven neurons (one for each process variable i.e. paint layer thickness, water pressure,

nozzle diameter, media flow rate, traverse rate of nozzle, standoff distance, plus one

special neuron called a bias), two hidden layers contained 15 neurons each, including
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bias, and the output layer contained one neuron, which corresponded to the process

output — the width of strip.

To train the network (find optimal weights that minimize the error) the standard

backpropagation of error algorithm was employed. The only modification of the standard

training algorithm involved the inclusion of the so-called momentum term. In

backpropagation with momentum, the weight change is in direction that follows the

direction of the current gradient and the previous gradient. This is a modification of the

gradient descent whose advantage arises when some training data is significantly

different from the majority of data, or even incorrect.

The experimental data contained 577 data points organized into input-output

pairs. This database was then scaled between 0.15 to 0.85 to override large fluctuations in

magnitudes within experimental data. Then the experimental data was divided into the

two subsets, the training data set (TDS, contained 446 input-output pairs), and the testing

data set (TDS, 131 input-output pairs). The training data was used to train the network,

while the testing data set was used to check the model performance. During the training

the root mean square error was monitored for each training. Every 100's iteration the

network's performance was checked on the testing data. The training was stopped when

the training data error decreased less then 1 % in 1000 iterations but the testing data set

error had started to grow more then 1% in 1000 iterations. The network was trained for

21289 Epochs, while at this point the TDS error reached 1.46%, and the CDS error

reached 3.47%. At this point network is considered trained and can be used for process

prediction or for the process optimization. The average relative error of prediction in this
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study was 12%, tested on 577 data points. The error was considered acceptable for this

study. The results of the prediction are presented on Figures 8.20 8.23.

8.3 Experimental Study of Removal of Elastic Deposit with Abrasive Waterjet

8.3.1 Experimental Procedure on Fuser Roll Rubber Removal

The objective of the experiment on removal of rubber from a fuser roll was twofold.

Firstly, the feasibility of the process was to be investigated and the ranges of the optimal

process parameters were to be found. Secondly, the level of the damage to aluminum

substrata (if any ) after abrasive waterjet was to be evaluated and the magnitude of the

damage was to be estimated in terms of the change of a roll's roughness in one cycle.

The optimal parameters in question should account for the acceptable process

productivity (roll should be completely clean in under 4 min) and subject to the

following constraints: blasting soda flow rate should be less then 2 lb/min, driving

pressure should be within 10 to 40 thousand psi (69 — 276 MPa), quality of the generated

surface must 1-2 (see the discussion section for classification of the surface).

Fuser roll was fixed on two cone-like protrusions, connected to a variable speed

motor. The experimental sample was rotated, while waterjet stream was impinging

normally and moving along horisontal axis. A controller was used to vary the rotational

speed of a motor.

8.3.2 Experimental Results

This study was concerned mainly with finding a working range for the rubber layer

removal from a fuser roll with only limited number of experimental samples available.
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Therefore there was no real possibility for the planned experiment and systematic study

of the effect of different process variables on the deposit removal. Further contribution to

the complexity of this study was the necessity of dealing with a comparatively large

number of independent variables. These were water pressure, diameter of the nozzle,

nozzle traverse rate, rotation of the motor and the media flow rate. The output variable is

the degree of cleanliness of the surface defined in terms of visual cleanliness and

measured surface roughness. The experiment was run by intuitively varying the input

variables and recording the generated surface in terms of visual cleanliness. The

cleanliness of the generated surface was defined in terms of the two classes "first degree

and "second degree". These two classes is further let to be "fuzzy" in nature, thus a

surface can belong to both classes with different degree of belonging to each. At first

some of the samples were classified "crisply" as belonging to either class. The

representative photographs of the generated surfaces for the both classes are given in

Figures (8.24 — 8.25). The rest of the surfaces could not be identified "crisply" and were

left for father determination. The randomly selected surfaces, visually classified to

belong to only one class were used to measure the surface roughness. The Hommel

Tester T 1000 was used to make totally sixteen surface roughness measurements, eight

for each class. The data is presented in Table 8.5. Observing the results of the tests one

could infer that classes I and II must overlap, since the roughness measurements produces

results identical ( in some points) to both classes.

The general result of these series of tests is possibility of producing a surface

acceptably clean, with acceptable productivity ( under four minitues ) with low media

consumtion (around 200 g/min). These results constitute a significant progress as
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compared to the productivity of the currently used setup by the roll's manufacturer which

involved water pressures in excess of 300 MPa but with a per roll cleaning time in the

vicinity of sixteen minutes.

8.3.3 Determination of the Surface Damage Level

One of the most important factors in waterjet based surface cleaning is assessing

the level of the damaged on the surface produced by the jet. Therefore the following

experimental test was designed.

Table 8.5 Surface Roughness Results

Degree of
Cleanliness

Surface Roughness
Measurements

(μinch)

Average Surface Roughness
(μinch)

120.1, 129.1,
135.4, 136.6

First Degree 145.2, 160.2 141
165.7, 139.7

195.2, 161.0
188.5, 143.3

Second Degree 190.9, 209.8 185
193.3, 191.3

Aluminum fuser roll with rubber coating layer was subjected to abrasive waterjet

treatment. After the rubber layer was removed the aluminum surface's roughness was

measured. Then the same surface was subjected to abrasive waterjet at the same working

conditions. After the treatment, the surface roughness tests was repeated. The

experimental conditions used in these tests involved the following set of parameters.

Experimental Conditions:

Water Pressure: 138 MPa

Stand Off Distance: 10 mm
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Traverse Rate: 102 mm/min

Rotational Speed: 160 Rpm.

Nozzle Diameter: 0.356 mm.

Media: ArmaKleen Blasting Media (Sodium Bicarbonate)

Media Flow Rate: 360 g/min.

The results of the damage tests is presented in Table 8.6. Five different runs have

been made and the corresponding surface roughness prior to and after the second impact

have been recorded. From the data in Table 8.6 it follows that the damage produced by

the impacting jet at the above experimental conditions is insignificant and the surface

finish is completely complient with the manufacturer's specifications.

At this point it is important to note that the roughness measurements varies widely

from roll to roll. This leads to inconsistency in the surface degree of cleanliness

defenitions, if based solely on the surface roughness. The incosistency in surface'

roughness measurements is attributed to the different re-manufacturing life cicles of the

rolls, where the initial finish of the aluminum surface is different from the beginning.

Table 8.6 Surface Damage Test

Aluminum Surface Roughness (pinch)

First Impact Second Impact

247.2
224.8
248.4
266.5

222.4
279.1
254.3
262.5

Average Roughness

246.73 254.575
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8.3.4 Model of the Process

The control over any process is enhanced when a model corresponding to the process is

constructed. Such a model can be based on any of the available statistical techniques

(such as regression analysis, analysis of variance together with the planned experimental

design etc.), or can be constructed based on the phisical properties of the system in

question. The model is then can be used to further study the process (prediction analysis)

and/or for the process optimization. In the case of the current study any of the available

statistical modeling technique would, most likely, fail, due to the limited experimental

data ( too few data points) and noizy and 'fuzzy' results, because of the different

re-manufactiring life cycle of the rolls. Furthermore the limited experimental data results in

inability to construct the charts of the influence of process parameters on process results.

Therefore the techiques of "soft" computing have been used to construct the correlation

between process dependent and independent parameters.

The computational technique used for the current purpose consisted of the

combination of artificial neural network (NN) and classical fuzzy logic (FL) techiques.

The approach is to obtain an artificial neural network, capable of predicting the "fuzzy"

or dual membership degree of any combination of the input parameters in the two classes.

Thus the I / 0 relationship of the data is represented in the form :

After such a network is obtained, the fuzzy sets for the classes class I and class II

representing the degree of surface cleanliness must emperically be constructed. Then the

modeling procedure follows the conventional fuzzy inference and defuzzification

process. Thus in this approach the fuzzy model is expressed by the following two rules:
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for n = number of independent variables = 6, d' and d 2 are the outputs for rules 1 and 2

expressed in terms of the degree of belonging of the given set of input parameters to the

classes I and II respectively. For example, for any given input x, if the IF part of the rule

1 evaluates to a membership degree off.", ( with the help of the NN), then the output d l

(roughness) is said to belong to class I with degree of truth (membership) μ. The same

scenario is applied for the rule 2. Then the process output z is found using the

defuzzification technique given by Equation 3.

where d is the value of the roughness at some point, and [1(d) is the truth membership

value for that point.

8.3.5 Development of the Model

8.3.5.1 Development of the Neural Network. In order to obtain the Neural Network

(NN) responsible for determination of the degree of belonging of any input set x the

experimental data in Table 8.7 was devided in two parts, where the first part was used

for training the NN and second part was used for testing of the NN. This database was

then scaled to fit between 0.15 to 0.85 based on the largest and the smallest magnitude of
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a parameter, to override large fluctuations in magnitudes within experimental data. The

data which could be classified to either belong to a class I or not was used for training of

the NN. To develop the desired NN we have used the following network architecture: 6 x

5 x 3 x 2. Where the first layer contained six neurons ( corresponding to each

independent process parameter) the second and the third (hidden) layers contained five

and three neurons respectively and the output layer contained two neurons, one for every

output class (class I and class II). For example if a data set from Table 8.7 (a row)

contains output evaluated to belong to the "first" class, then the training example will be

represented as 1 and 0, for the output neurons one and two respectively. The network

design contained the momentum coefficient m = 0.31 with the learning rate of 0.09. The

logistic binary sigmoid function was used as activation function to pass information

within the network.

The network with above described architecture was trained for 20,000 iterations

(epoches) after which the network root mean square error reached 27%. The network was

then tested by substituting some random numbers, but other then those used for training.

It was found that the network failed to train at all. Different trials with different network

parameters were attempted, but the network has repeatedly failed to converge. This

means that either the data is incosistent and noisy or insefficient number of training

samples is available, or both. Therefore in order to proceed the technique known as

backward elimination was used to identify and eliminate the input variables contributing

mostly to the noize. In such a technique a network is first trained with the full number of

independent parameters fed as inputs. In this case the network with six inputs was used

and trained for 20,000 iterations to obtain the final error of — 27. Then one variable from
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the input set was eliminated and the network was trained again for 20,000 iterations and

the final error was recorded. After all the variables were eliminated (one at a time) the

final errors were compared. It was then found that after eliminating variables two and

three (one at a time) the final error was well below 27, approximately at 15. While in all

other cases the training resulted in much bigger magnitudes of the error, —35-40. Thus it

was decided to eliminate variables two and three (nozzle diameter and standoff distance)

from the model. It appears that in this case the ranges of change for these variables were

two insignificant to produce an effect on the output. Thus the network with four inputs

and the architecture 4 x 5 x 3 x 2 was used for training. The results of the training are

given in Table 8.8.

8.3.5.2 Development of Fuzzy Sets. The fuzzy sets representing the degree of

cleanliness in terms of the Class I and Class II were constructed empirically, using the

data from the Table 1. Close examination of the data may give an insight into the degree

of the overlap between the two sets. The fuzzy sets were constructed by using the so-

called S-curve, commonly used to represent fuzzy numbers. An S-curve is defined using

three parameters: its zero membership value (a), its complete membership value (y), and

the inflection point 03). At the inflection point the domin's value is 50% true. These

values were identified from the data in Table 8.5 and plotted in Fig 8.26. The expression

for the S-curve is given by Eq. 8.5 (Cox, 1996).
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8.3.6 Prediction Results

The results of the developed model's prediction are presented in Figures 8.27-8.29. These

results demonstrate that given a set of waterjet parameters the model is capable of

predicing the membership values of the resulting surface in the two fuzzy classes and the

corresponding surface roughness can be inferred from this information.

Unfortunately, Figures 8.27-8.29 represent only theoretical values of the process output,

since due to the unavailability of the experimental samples these results could not be

tested experimentally.

8.4 Experimental Study of Viscous Deposit Removal

8.4.1 Experimental Procedure on Tar Removal

Rating tar represents viscoelastic-to viscous types of deposits. Therefore the study of

waterjet cleaning of this deposit will enhance the understanding of cleaning of broad

category of ductile and elastic materials. A roofing tar, available in retail stores was

applied on to aluminum surface according the instructions on packaging. Since the

deposit is very viscous it was found difficult to obtain an even coating of the same

thickness on all aluminum samples. The samples were let to dry for one year. The

experimental removal procedure involved two steps. First, the thisk and viscous layer of

deposit was removed at high speed (approximately 18 m/sec) and with angle of impact

approximately 150 degrees. The remaining thin and hard layer of deposit was then

removed at varying process parameters. The parameters in question were water pressure,

nozzle traverse rate, standoff distance, media flow rate (sodium bicarabanate), and impact

angle. The output of the process was the single strip width, which was measure and then
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converted to process productivity. Due to the relatively large number of process

parameters and a few experimental samples no experimental planning procedure was

employed.

8.4.2 Experimental results

The experimental results are presented in Table 8.7, columns 1 through 7. It is really

difficult to speculate on the trends involved given the change of any one process

parameter due to the limited experimental database. Only general conclusion regarding

the change in water pressure and traverse rate can be made. Thus we can conclude, based

on the data in Table 8.7 that the increase in water pressure generally results in higher

productivity and that the increase in traverse rate results in narrower width of the strip. As

for the other process conditions no concludion can be drawn based on the existing data.

Therefor a model of the process must be build and analyzed in order to investigate the

change patterns in the experimental process conditions.

8.4.3 Model of the Process

Due to the limited and unorganized experimental database it was found difficult to apply

a standard statistical techniques, routinely used for establishing the correlation between

the process inputs and outputs. Therefore the modeling techique based on the principles

of the artificial neural networks was applied. The experimental database was divided into

the training data set (TDS) and checking data set (CDS). TDS was used to train the

network and CDS was used to check the network's performance. The TDS contained data

sets numbers (Table 8.7) (1, 2, 3, 6, 7, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 24, 25, 26,
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27, 29, 31, 33, 34, 35, 36}. And CDS involved the following data sets from Table 8.7 {4,

5, 8, 9, 12, 15, 18, 23, 28, 30, 32}. The artificial neural network design to model this

problem contained five input neurons (one corresponding to each process input variable),

one layer of five hidden neurons and an output layer of one neuron, corresponding to

process output — the strip width. The network learning rate was set to 0.2, and the

momentum coefficient was set at 0.4. The network was trained for 40,000 — 60,000

iterations, every 100 iteration the checking data set was substituted into network and the

checking error was recorded. The iterations were stopped when the training data set have

reached an acceptable error tolerance (~ 2%), but the CDS error have started to grow

above —5%. At this point the network was considered trained and was used for studying

the influence of process parameters.

8.4.4 Results and Discussion

Model prediction results along with some experimental data points are presented on

Figures 8.30-8.34. Thus, analyzing Figures 8.30 8.32 we can conclude that the width of

strip, and consequently the productivity, decreases when the angle of attack changes from

90 degrees to 145 degrees. Moreover it follows that for higher traverse rates the single

width of strip also decreases, although it does not necessarily mean the increase in

productivity. In fact, Figures 8.31 and 8.32 demonstrate that the process productivity

increases with increased traverse rates. Figure 8.31 also supports the experimental

conclusion that the increase in water pressure brings about the increase in productivity.

As was speculated before the increase in traverse rate generally results in higher process

productivity.
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The neural network based prediction technique performance is shown to accurate

and stable when modeling a process under conditions of limited and unorgainized

experimental data. Figures 8.30 through 8.32 and Table 8.7, columns 8- 11 demonstrate

this conclusion.



Table 8.1 Training Data and Prediction Results

Number WP
Descale
(MPa)

TR

mm/min

Angle

Degrees

SFR

(g/min)

SOD

(sm)

Strip Wildth

Experim

(mm)

Predict

Relative

Error

Productivity

Experim

(m2/hour)

Predict
1 138 2540 90 612 0.7 3.7 3.5 0.06 0.56 0.53
2 138 7620 90 612 0.7 2.9 2.9 0.01 1.33 1.31
3 138 10160 90 612 0.7 2.5 2.7 0.09 1.52 1.66
4 138 12700 90 612 0.7 2.2 2.6 0.19 1.68 1.99
5 138 2540 90 612 4.0 3.8 3.7 0.01 0.58 0.57
6 138 7620 90 612 4.0 2.5 2.5 0.01 1.14 1.13
7 138 12700 90 612 4.0 2.8 2.4 0.15 2.13 1.82
8 207 2540 90 612 2.0 5.3 5.2 0.02 0.80 0.79
9 207 7620 90 612 2.0 4.5 4.3 0.05 2.06 1.95

10 207 12700 90 612 2.0 3.5 3.4 0.02 2.67 2.63
11 207 17780 90 612 2.0 3.0 3.0 0.00 3.20 3.20
12 207 5080 90 612 5.0 5.2 4.9 0.07 1.58 1.48
13 207 12700 90 612 5.0 3.0 2.9 0.02 2.29 2.24
14 207 20320 90 612 5.0 2.5 2.4 0.02 3.05 2.98
15 172 2540 90 612 1.0 5.0 4.6 0.07 0.76 0.71
16 172 10160 90 612 1.0 3.3 3.3 0.01 2.01 1.99
17 172 15240 90 612 1.0 2.9 2.8 0.03 2.65 2.59
18 172 2540 125 612 1.0 3.8 3.0 0.20 0.58 0.46
19 172 7620 125 612 1.0 2.8 2.5 0.11 1.28 1.14
20 172 15240 125 612 1.0 1.3 1.3 0.04 1.19 1.15
21 207 5080 90 612 1.0 5.0 4.9 0.01 1.52 1.51
22 207 12700 90 612 1.0 4.0 3.9 0.03 3.05 2.96
23 207 17780 90 612 1.0 3.2 3.6 0.12 3.41 3.81
24 172 2540 145 612 1.0 3.0 2.8 0.06 0.46 0.43
25 172 10160 145 612 1.0 1.8 1.8 0.01 1.07 1.07
26 172 2540 110 612 1.0 3.8 3.8 0.00 0.58 0.58
27 138 2540 90 612 1.0 2.5 3.0 0.21 0.38 0.46
28 138 2540 125 612 1.0 1.7 2.1 0.24 0.26 0.32
29 138 12700 125 612 1.0 1.0 1.0 0.02 0.76 0.74
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Figure 8.9 Media Assisted Waterjet Paint Removal. Experimental Results
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Figure 8.10 Media Assisted Waterjet Paint Removal. Experimental Results
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Figure 8.11 Media Assisted Waterjet Paint Removal. Experimental Results

Figure 8.12. Media Assisted Waterjet Paint Removal. Experimental Results. Effects of
Traverse Rate and Water Pressure



Figure 8.13 Media Assisted Waterjet Paint Removal. Experimental Results
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Figure 8.14 Media Assisted Waterjet Paint Removal. Experimental Results
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Figure 8.15 Media Assisted Waterjet Paint Removal. Experimental Results

Figure 8.16 Media Assisted Waterjet Paint Removal. Experimental Results



Figure 8.17 Media Assisted Waterjet Paint Removal. Experimental Results
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Figure 8.18. Media Assisted Waterjet Paint Removal. Experimental Results



Figure 8.19 Media Assisted Waterjet Paint Removal. Experimental Results
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Figure 8.20. Media Assisted Waterjet Paint Removal. E-Experimental, P-Prediction



Figure 8.21 Media Assisted Waterjet Paint Removal. E-Experimental, P-Prediction. The
data is plotted for Water Pressure 221 MPa, Traverse Rate mm/min, ND 0.3554mm,

Layer 0.305 mm.

Figure 8.22 Media Assisted Waterjet Paint Removal. E-Experimental, P-Prediction. The
data is plotted for Water Pressure 124 MPa, Traverse Rate 635 mm/min, Media Flow 415

g/min, and Paint Layer 0.305 mm.
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Figure 8.23 Media Assisted Waterjet Paint Removal. E-Experimental, P-Prediction. 

The data is plotted for Water Pressure 207 MPa, Traverse Rate 3175 
mm/min, Media Flow 415 g/min, and Nozzle Diameter 0.3554 mm. 

Figure 8.24 Roll cleaned to the" first degree" of cleanliness. 



Figure 8.25.Roll cleaned to the" second degree" of cleanliness. 
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Figure 8.27 Prediction results of the NN- Fuzzy Logic based prediction technique. Class
I and Class II series represent the membership values of the corresponding set of waterjet

parameters in these classes.

Figure 8.28 Prediction results of the NN- Fuzzy Logic based prediction technique. Class
I and Class II series represent the membership values of the corresponding set of waterjet

parameters in these classes.
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Figure 8.29 Prediction results of the NN- Fuzzy Logic based prediction technique. Class
I and Class II series represent the membership values of the corresponding set of waterjet

parameters in these classes.

Figure 8.30 Model Prediction (P) and Experimental Data (E), normalized



Figure 8.31 Model Prediction (P) and Experimental Data (E).
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Figure 8.32 Model Prediction (P) and Experimental Data (E)



CHAPTER 9

OPTIMIZATION OF ENERGY UTILIZATION IN THE COURSE OF

MATERIAL PROCESSING

9.1 Introduction

Evaluation of the energy consumption for different stages of material processing is one of

the major elements of the integration of manufacturing technology. Minimization or at

least limitation of the energy consumption for material modification, deformation,

addition, removal, etc. to a great extend determines the selection of a route of conversion

of raw materials into a product. The process model determines the correlation between

the rate of the energy delivery to the tool-workpeace interface and the desired material

change. Unfortunately, in the most practical cases this model is unknown. Moreover, a

shear number of the various technologies make the construction of a representative model

for each individual case impractical. At the same time, at least for traditional

technologies, sufficient empirical database representing process is available. Thus, a

realistic approach to energy optimization in manufacturing is utilization of the available

information about a process in question. However, usually, this information is chaotic,

partially crisp (numerical) and partially linguistic (qualitative). Nevertheless, existing

techniques of soft computing enable us extract a significant knowledge out of poorly

organized information. The objective of this work is to illustrate the application of soft

computing for integration of manufacturing technology. We will use water] et surface

decoating in order to demonstrate the application of the proposed technique.

169
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Improvement of the energy constitutes one of the major subjects of the applied

physics and engineering. The state of the art in this area is exhaustively discussed in

several fundamental works, most by Bejan et al (1996). The specific feature of energy

conservation in material processing is the way of energy consumption. In the final

analysis material processing results in the destruction of the almost all exergy delivered

to the work zone via work and heat fluxes. Thus the most effective way of the

optimization of the energy use is the reduction of the entropy production. This approach

to energy economy was pioneered by Bejan (1982). In most general way energy is

determined by a scalar product

where a is the specific rate of entropy production, X and J are generalized forces and

fluxes , T is the absolute temperature. It is necessary now to express the J and X via

identifiable process variables and it is expedient to replace entropy production by more

conventional process characteristic, exergy destruction, which in the case of material

processing is practically equal to the exergy consumption. However, the exergy

consumption, that the energy cost of the process should be related to the technological

process results.

Let us determined the energy efficiency of a manufacturing process ηe as the ratio

EX=exergy consumption, B=technolological result of the process. Available information

should be used to determine EX and B. It is clear that the equation above is applicable

only if the technological result can be evaluated by a single number, such as, for example,
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reduction of the surface roughness, the length of the welding seam, amount of the

deposited material, amount of the material, underwent the phase transition, etc.

Let us limit our analysis to the processes where the result can be determined by a

single number, such as, the reduction of the surface roughness, the length of the welding

seam, the amount of the deposited material, the amount of the material removed, degree

of deformation, etc. The energy efficiency of such processes can be described by the

specific exergy consumption that is by the ratio EX/B, where EX is the exergy

consumption; B is the technological result of the process. The available information

should be used to determine EX and B.

The energy efficiency of the waterjet decoating is determined by the product VP,

where V=water consumption for decoating of 1 m2 of the metal surface, m3/m2 and P =

water pressure after the pump, MPa. A database representing coating removal was

accumulated in order to determine operational conditions (sweeping rate, nozzle

diameter, water flow rate, stand off distance) minimizing exergy consumption. Artificial

Neural Networks were used for process simulation while the Genetic Algorithm was

applied for selection of the optimal strategy. Additional experimental database was

acquired in order to validate the results of optimization. Finally, the effectiveness of the

use of proposed technique for improvement of the energy utilization, particularly for

prediction of the correlation between exergy consumption and process results is

discussed. A generic procedure for integration of a manufacturing technology is

suggested.
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9.2 Optimization of Energy Consumption of Waterjet Rust Removal Process

For the current study the artificial neural network was used to model the waterjet rust

removal process (Experimental setup and results are in Chapter 7) The network

architecture used in modeling of waterjet derusting process is shown in Figure 8.1. For

this problem the four-layer network is chosen. The input layer consists of three neurons,

which corresponds to the number of experimental parameters. That is X1 represents the

water pressure, X2 represents the traverse rate, and X3 represents the nozzle diameter.

The output layer consists of one neuron (T), which corresponds to the process output

variable, the strip width. Two hidden layers, 8 neurons each, are used in the current

network's architecture.

An experimental database representing waterjet rust removal was acquired and

divided into two data sets- training and checking. The training data set was used to train

the network to respond correctly to an input pattern. A simple feed forward algorithm

with backpropagation of error was used in the training of the network (Chapter 5). The

network was trained for 20,000 epochs, at which point the total error reached 0.8%. This

error was considered acceptable for the current study. The testing data set was used to

verify the network performance. At this point a network is considered trained and can be

used as process model, or for optimization.

We are interested in optimizing the specific efficiency of the process, given by

Equation 9.3.

Specific Energy (KJ/m2) = Pressure (KPa)*Specific Water Consumption (m3/m2)

(9.3)
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The information needed for the application of the GA-based optimization procedure is

limited to the knowledge of the possible ranges of process variables, correctly defined

objective function (fitness function in this problem), and the process model (not

necessarily analytically expressed). In our problem a single bit string incorporated all

three input parameters. First we apportioned the number of bits for each variable in a

string. This number depends on the maximum value of the variable used. In this study the

working pressure did not exceed 310 MPa, the maximal nozzle traverse rate was 12700

mm/min, and the maximal nozzle diameter was 355 microns. Thus for binary

representation we needed to apportion 9 bits for water pressure variable, 14 bits for

traverse rate variable and 9 bits for strip width. Thus a chromosome for this problem

consisted of 32 bits (9+14+9).

This size of the chromosomes (9+14+9) was kept constant in this problem regardless of

the actual values of process variables.

100010100 00001001111011 100011000

276 MPa 635mm/min	 279mm

We start with first population of chromosomes by generating k random 32-bit

chromosomes (bit strings). The number of chromosomes in a population (k) is problem

dependent, too few strings will result in a premature convergence, and too many will

slow the convergence. Usually the number of bit strings in a population is taken to be

equal to 1-1.5 number of bits in a string. Each bit string in a population is then separated

into its three components representing encoded process variables, decoded into decimal

format, and then scaled within acceptable range according to equation below.
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where Xmin and Xmax represent the operating range of a variable, and n is a number of

bits in a string apportioned for the variable. Next these decoded and scaled values are fed

as an input to a trained artificial neural network to obtain the output (width of strip). The

fitness function in this problem is given by (9.3). To estimate whether a chromosome is

fit enough for its selection for further genetic operations (process parameters encoded in a

chromosome result in adequate energy consumption) we define the Probability of

Selection as a ratio of individual chromosome's fitness and the average fitness of the

whole population:

Thus for maximization problem the probabiliy of selection is defined as:

Probability of Selection = Fitness / F avg. (9.5)

However for minimization problem we are interested with inverse probability of

selection:

Inverse Probability of Selection = (Fitness / F avg. )-1... (9.6)

If the calculated Probability of Selection of an individual chromosome satisfies earlier set

criteria (the value of the Probability of Selection exceeds a cut-off value set by user), the

chromosome is selected for further genetic operations. Otherwise the chromosome is

discarded.

Table 9.1 shows the manipulations described above for initial randomly generated

population consisted of 4 chromosomes. The randomly generated 4 chromosomes are

shown in the column 2 of Table 9.1. Here, to save space each chromosome was broken

down in three parts, each representing a process variable.
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Table 9. 1 GA, Basic Operations

String

#

String Decoded

& Scaled Value

Fitness

(KJ/m2)

Probability

Of

Selection

Actual

Count

1 010000101 131.7 MPa

00010000001000 1395 mm/min 114,666 0.385 0

111001011 331 micron

2 000110011 93 MPa

10010101100011 7683.4 mm/min 13,312 3.32 1+1

010111000 209 micron

3 000010011 77 MPa

01101010001110 5641.3 mm/min 10,010 4.42 1+1

001010111 165 micron

4 011001100 165 MPa

00101010110101 2653.6 mm/min 38,829 1.138 0

0001000110 143.9 micron

Favg 44,204

Cut-Off =0.5

Let's consider the string #3 in Table 9.1. The randomly generated string is given by:

String #3= 00001001101101010001110001010111

Here the first 9 digits represent the Water Pressure, next 14 digits represent the Traverse

Rate and the last 9 digits represent the Nozzle Diameter, i.e.

Water Pressure = 000010011 MPa

Traverse Rate = 01101010001110 mm/min

Nozzle Diameter = 001010111 micron

Then these binary numbers are converted to the decimal format:
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Water Pressure decimal = 19 MPa

Traverse Rate decimal = 6798, mm/min

Nozzle Diameter decimal = 87 micron,

and scaled according to (19) to obtain:

Water Pressure scaled = 77 MPa

Traverse Rate scaled = 5641.279 mm/min

Stand-Off Distance scaled = 165.818 micron

These values are shown in column 3 of Table 9.1. The obtained process

parameters were then substituted into the trained Artificial Neural Network to obtain the

corresponding output — the Strip Width. This output was used to calculate specific water

consumption according to X, or the fitness value. These values are shown in column 4 of

Table 9.1. After all chromosomes (column 2) are evaluated and theirs fitness values are

calculated the average fitness of the population is found. The ratio of the average fitness

of the population to the individual chromosome's fitness yields the Probability of

Selection (column 5). This value serves as a criterion according to which we select our

chromosomes for the further genetic manipulations or discard unfit chromosomes.

Usually this value is compared to predefined Cut-Off value. From the Table 9.1 it follows

that chromosome #1 is discarded since its Probability of Selection is less then the Cut-Off

value. If the number of chromosomes selected for reproduction is less then the initial

population, then some of the chromosomes are selected more then once, ensuring that the

"survival of the fittest " rule holds. Thus we select chromosome #3 twice, since its value

of Probability of Selection is the highest (actual count in Table 9.1). This new population

is then subjected to genetic operations of crossover and mutation. The crossover operator



177

is basically an exchange of some portion of the chromosome between two randomly

selected chromosomes. The number of the chromosomes selected for the crossover

depends on the Probability of Crossover. In this example it is taken to be 0.5. Which

means that approximately 50% of the population will be selected for crossover. The next

genetic operation, mutation, takes place next. Mutation means that the selected

(randomly) bit changes its value from 0 to 1 or vice versa. The number of bits selected for

mutation depends on the Probability of Mutation. In this example it is taken to be 0.22.

Which in turn means that approximately 22% of all bits will mutate. In general the values

for Pmutation and Pcrossover are problem dependent and should be varied from run to

run to find the optimum ones. Thus we have obtained the final population of the first

generation, which represents the initial population for the second generation. The above

steps are repeated iteratively until some convergence criteria are met. In the present work

several runs with different genetic parameters were made, and the process specific energy

consumption was monitored. Then based on the results from several runs the set of the

best parameters was identified.

Table 9. 2 Optimization with Genetic Algorithms. Results.

Water

Pressure

(MPa)

Traverse

Rate

(mm/min)

Nozzle

Diameter

(mm)

Productivi

ty

m2/hour

Specific	 Water

Consumption

(m3/m2)

Specific

Energy

(KJ/m2)

104.372 11721.30 0.147 0.259 0.075 7841.2

69.0 12500.00 0.127 0.228 0.052 3641.37

76.603 11473.84 0.144 0.236 0.06848 5177.7

111.446 7692.98 0.171 0.227 0.121 13521.38
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9.3 Discussion of Results and Recommendations

Table 9.2 shows the results of computations of the optimal cleaning parameters for

minimization of the specific energy in the course of waterjet rust removal, with 4

chromosomes in the initial population. It is important to note that this number of

chromosomes in the population is extremely low, and was chosen only for the

demonstration purposes. Although for the current study the results of the computations

are reasonable. All four sets of waterjet parameters result in almost the same productivity

of the process, though the specific energy consumption differs significantly. Thus we just

choose the set of parameters resulting in lowest specific energy consumption. Here we

see that the optimal combination is attained at the minimal water pressure, the maximum

traverse rate and minimal diameter of waterjet nozzle. The table shows that the process of

the GA-based optimization is stable. As a result of this study we can recommend the

above optimal combination of waterjet parameters for any kind of cleaning situation,

where the objective function is the minimization of the energy consumption.

9.4 Conclusion

In this work we investigated the application of the AI techniques for description and

optimization of waterjet cleaning. The ANN was used to model the nonlinear relationship

between process inputs (waterjet pressure, nozzle traverse rate, nozzle diameter) and the

process result (the width of the region where the rust was completely removed). The

average error of the prediction was 1%. This accuracy is rather adequate. The application

of the Genetic Algorithms resulted in the development of a strategy of cleaning. The

performed research demonstrated the effectiveness of the use of Artificial Neural
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Network and Genetic Algorithms for planning of the Waterjet surface processing. This

conclusion constituted the principal result of the presented work.

Figure 9. 1 Architecture of Artificial Neural Network for Modeling Waterjet Rust
Removal Process



Figure 9. 2 Optimization Scheme with Genetic Algorithms
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CHAPTER 10

DEVELOPMENT OF GENERIC APPROACH FOR PREDICTION OF RESULTS

AND PARAMETER OPTIMIZATION OF WATERJET - BASED DECOATING

PROCESS

10.1 Introduction

As the results of the performed research a formal procedure for planning of the waterjet

cleaning was designed and demonstrated. The experimental study enabled us to identify

the range of the application of waterjet technology for surface cleaning as well as to

acquire a database for development of modeling and optimization techniques. The

theoretical study resulted in the development of corresponding algorithms and computer

codes. However, the ultimate goal of this research is to provide practitioners with an

effective and practical approach for processing all information available to practitioner,

regardless of the form and accuracy. This chapter deals with two important issues

necessary for implementation of the above posed problem. First, a generic and easily

obtainable coefficient characterizing any substrata - to be cleaned - deposit -to be

removed must be identified and explained. Second, a generic modeling procedure,

utilizing this surface coefficient must be identified and constructed. And, finally the

suggested procedure must be tested on several experimental samples with different types

of deposits.
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10.2 Determination of the Erosion Strength

In our work the following approach was used to obtain a generic coefficient that would

characterize any combination of substrata and deposit. Following the results available in

the literature (Conn A.F., 1990) we define the area cleaning efficiency E a as the ratio of

area cleaned per unit time and power delivered by the nozzle (10.1).

where area cleaning rate A is in m2/hour, and

where : Ap — pressure drop across nozzle,

Q — is the flow rate;

Thus Ea has the units of [m2/Kw-hr], that is a unit area cleaned per unit of energy

expended by the nozzle.

The idea of characterizing a material's ability to resist erosion is far from new.

Thiruvengadam (1967) in his studies of cavitation erosion has suggested a concept of

erosion strength that was based on a strain-energy absorption concept. Heymann (1970)

has suggested a concept of relative erosion strength. Thus utilizing ideas of both

Thiruvengadam and Heymann, Conn A.F., (1990) relates the area cleaning rate, A', an

erosion strength for cleaning Sc and an erosive intensity I, for a given waterjet nozzle and
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and fixed set of waterjet parameters (water pressure, traverse rate, angle of impingement,

standoff distance, etc.,) as:

Combining expressions 10.1 and 10.3 results in

The relation 10.5 is the basic relation, used to derive the curves, representing the

dependence of the area cleaning efficiency Ea and erosion strength for cleaning Sc (Fig.

10.1).

10.3 Determination of the Erosion Strength based on the Available Cleaning

Examples.

The available experimental database reflecting material decontamination with pure

waterjet was compiled, and the area cleaning efficiencies were calculated for deposit

types given in Table 10.1. The experimental procedures and results for the removal of

two types of epoxy paint, rust removal (rust #1 entry in Table 10.1) oil-based paint

removal from steel substrata were described in Chapters 7,8. The data in Table 10.1 was

used to derive the relationships between area cleaning efficiency Ea and erosion strength

for cleaning Sc (Figure 10.1). The point of departure for the line 276 - 310 MPa in Fig.

10.1 was the data for Item 1 from Table 10.1. The calculated cleaning efficiency for

removal of deposit Epoxy #1 was assigned an Erosion Strength Sc=10 3 , relative units.

This line, per relation (10.5 ) was plotted at a slope 1:1 on log-log chart. The rest of the
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data points on line 276-310 MPa were located based on calculated Area cleaning

efficiencies and working water pressure.

To derive line for 138 MPa (Fig 10.1) items 1 and 2 were compared. Since the

Erosion Resistance for the deposit type Epoxy #1 is known (Sc=1000 relative units) and

is constant, the first point for line 138 MPa thus could be located. Similarly to derive the

line for 70-100 MPa item #6 was located at the 138 MPa line and compared with item #7.

Table 10. 1 Cleaning Examples

Item
Area

Cleaning
Rate

Power
Delivered
by Nozzle

Area
Clean
Effect

Deposit WP ND Flow Rate

Type * (MPa) (mm) m3/sec (m2/hour) Kw m2/Kw-
hr

1 Hard
Epoxy

276 0.305 4.610E-05 0.52 12.71 0.0408

2 Hard
Epoxy

138 0.305 3.260E-05 0.04 4.50 0.0085

3 Hard
Epoxy

103 0.3556 3.837E-05 0.02 3.97 0.0048

4 Rust 310 0.254 3.391E-05 0.99 10.52 0.0938

5 Weak*
Rust

310 0.1778 1.662E-05 0.52 5.16 0.1040

6 Oil Based 138 0.254 2.262E-05 0.69 3.12 0.2201

7 Oil Based 69 0.254 1.599E-05 0.17 1.10 0.1541

8 Weak
Epoxy*

276 0.3554 6.259E-05 1.04 17.26 0.0603

9 Auto
Paint*

138 0.254 2.262E-05 0.14 3.12 0.0434

* Deposits were used for model testing only.
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Figure 10. 1 Graphical Relationship Between Ea and Sc

The main result that could be inferred from the Graphical Relationship between the Area

Cleaning Efficiency Ea and Erosion Strength Sc shows that there is a definite relationship

between Ea and Sc and that Erosion Strength for cleaning of similar materials is closely

spaced together, and consequently the Sc coefficient can used to characterize an unknown

deposit-substrata combination. On the other hand, it should be emphasized, that relations

in Fig. 10.1 as was presented by Conn (199) and verified by our experimental studies do
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not constitute an exact relation, at best they represent an order of magnitude comparison

only.

10.4 Development of Generic Prediction Technique

The problem, that most of the waterjet practitioners face when dealing with an unknown

surface is the lack of information about the process or in other words the unavailability of

a generic technique that could be used as a first approximation of a process. This section

is concerned with the development of such an approach. The idea behind such an

approach is to combine the previous knowledge about the process in question and based

on that, make an inform decision as to which waterjet parameters to apply, as a first

approximation. We are using the notion of Erosion Strength (Sc) developed in the

previous section to classify an unknown surface together with Neural Networks Fuzzy

Reasoning technique, described in Chapter 5, for information processing.

The prediction technique construction begins with the development of fuzzy

universe for Erosion Strength, Sc. The experimental database allows us to construct three

fuzzy sets, based on the number of experimental situations available. The items

1,2,3,4,6,7, representing the removal of three basic deposit types (Hard Epoxy, Rust and

Oil Based Paint) from Table 1 with corresponding Erosion Strengths 1000, 400 and 30

(from Chart 10.1) were assigned the degrees of membership of unity in either of three

sets. Then the working space of the universe for Sc on a semi log scale was equally

divided between the tree classes, as shown in Figure 10.2.
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Figure 10. 2 The Fuzzy Universe for Erosion Strength Sc.

Thus each of the classes in Fig. 10.2 is represented (with degree of membership 1) by a

specific deposit type available in our experimental database. In other words these three

fuzzy sets cover the ranges of all possible values for the materials with erosion strength

for cleaning from 1 to 10000 relative units. Similarly, if we identify a deposit substrata

combination with some value of erosion strength, Sc, and this value happens to be inside

the range [1,10000], then we can identify the degree of membership of such a deposit

substrata combination in the three fuzzy sets (Fig. 10.2). This procedure alone can be

very useful when trying to classify some unknown deposit-substrata combination.

It should be emphasized that for each of the three basic deposits an extensive

experimental study was undertaken, as described in the previous chapters. Since we

posses a required empirical knowledge for these processes, the appropriate numerical
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representation of each process can now be made with the help of artificial neural

networks. The procedure of the application of a neural network for process modeling and

optimization was described in details in chapters 5, 7. Thus, after each network has been

created, properly trained and tested we have obtained reliable numerical models for the

three base deposits, or equivalently three fuzzy base classes of the universe Erosion

Strength (Sc). Therefore, it can now be stated, that a process of material cleaning of

material with erosion resistance coefficient in the range [1,10000] can now be

approximated as some combination of the based models. The computational procedure

follows the following steps. For an unknown deposit, a practitioner makes a simple

experiment that allows him to calculate Area Cleaning Efficiency for a working water

pressure. Then using the computed Ea we can determine the corresponding Erosion

Resistance coefficient (Sc) for this surface from the Figure 10.1, for the given water

pressure. Once a corresponding Sc coefficient was found, the fuzzy membership in the

three classes on Fig. 10.2 can be determined. The above procedure can be described on

example of the item number 8, Table 10.1. Separate experiments were made for the auto

paint deposit removal with plain waterjet. The computed area cleaning efficiency was

calculated as Ea auto paint = 0.04 m2/Kw-Hr. From Figure 10.1 the corresponding

coefficient Sc was found to be Sc=180 relative units. And from Figure 10.2, the degree of

membership (μ) in the three basic classes can be calculated as (class 1) =0, ar- (class II) —0.4,

(class III) =0.59. These degrees of membership can be interpreted as follows. The Erosion

Resistance of the Auto Paint deposit is approximately midway between that of the Hard

Epoxy Paint and rust deposit. Now that the surface was identified we could use the base

models given by the neural networks to get a first approximation to the process. We
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supply a set of input parameters (Water Pressure, Nozzle Traverse Rate, Nozzle

Diameter, and Standoff Distance) as an input into the base models represented by the

neural nets. The corresponding output in terms of the single strip width is obtained by

each of the network. The final result is obtained by defuzzifing the output according to

Eq. 10.6.

In equation 10.6 μ - is the membership value of a deposit with Erosion Strength Sc in the

three base classes, Us - is the output of the 5th neural network, and y* is the final

defuzzified output.

The output of the model is the single clean width of the strip produced on the surface by

the supplied combination of the input parameters, which then can easily be converted to

process productivity. This procedure is sketched on Figure 10.3.

10.5 Experimental Verification of Performance

In order to experimentally verify the suggested modeling approach an additional

experimental database was acquired. The experimental samples consisted of the three

types of deposits - auto paint, weaker rust, and weak epoxy paint, (items 5,8,9 Table

10.1). Waterj et parameters varied in these additional experiments were limited to the

water pressure, nozzle traverse rate, standoff distance, and nozzle diameter. Experimental

setup and procedures were similar to those described in the previous chapters. Area
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cleaning efficiencies for removal of these deposits was used to identify the corresponding

erosion resistance coefficient from Fig. 10.1, and the degrees of belonging of these

deposits to the three base classes were identified with the help of Figure 10.2. Table 10.2

shows the results for the test deposits along with the deposits representing the base

classes.

Figure 10. 3 Generic Modeling Approach.

NN1, NN2, NN3 - Artificial Neural Network models for the three base classes.
X1, X2, ..., Xn - Process input variables.

The model performance was tested on each of the test deposits by providing the model

with a set of waterjet input parameters within the working space (delimited by equipment

capabilities), obtaining the corresponding output in terms of the single width of strip and

comparing the results with experiments.
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Table 10. 2 Cleaning Samples

Degree of Membership
N Deposit Area

Cleaning
Efficiency
(m2/Kw-hr)

Erosion
Strength
(Relative
Units)

Class I Class II Class Ill

1 Hard Epoxy Paint 0.04 1000 1 0 0

2 Weak Epoxy
Paint

0.06 665 0.41 0.58 0

3 Rust from Steel 0.0975 400 0 1 0
4 Weaker Rust

from Steel
0.105 360 0 0.89 0.1

5 Auto Paint 0.04 180 0 0.4 0.59
6 Oil Based Paint 0.21 30 0 0 1

10.6 Discussion of Results

The model for prediction of the results of waterjet cleaning described in the previous

sections was tested on several additional test deposits. Figures 10.4 - 10.9 present the

results of prediction. Analyzing the results, it is clear that the model prediction results are

acceptable at both relative error of prediction (-20 %), and at following the trend of the

process, which is also important for any cleaning study. Although a relative error of

prediction may at the first glance be considered high, it should be kept in mind that

standard deviation of experimental measurements was in the vicinity of 25 — 30 %, and it

really is difficult to expect the model performance to be more accurate then that.

Nevertheless, as a first estimation of a cleaning productivity for a given type of deposit,

these results constitute a reasonable approximation. Furthermore, since it is shown that

the model is also capable of predicting the trend of the process, meaning that the change

in one independent input results in, say, increase of the output, allows using this model

for the process optimization. We suggest using the Genetic Algorithms for this purpose.
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However it should be noted, that at the current stage the prediction technique was tested

only in the middle of the problem space. At the outskirts of the problem space the

veritable results could not be obtained. The reason for this lies in the limitations in the

development of the three base models. Since the ranges of experimental parameters used

for the construction of models were different in each case, and there was no coordinated

experimental setup, but rather the data was compiled at later stages, there are

inconsistencies in choosing the levels of process parameters in case of a test cleaning

space. These inconsistencies are due to the poor ability of neural networks to extrapolate.

For example, if for a base model development the rate of nozzle traverse was in the range

from 1000 mm/min to 2500mm/min, and a test cleaning case was run at 15004000

mm/min, the reliable model performance will be in the intersection of these ranges. The

way to cure the above problem is to cover all the parameter space (limited by equipment

capabilities) for each process variables in all the base models. Of course it results in quite

extensive experimentation, but on the good side it needs to be done only once, when

developing the base models. Also the current model does not cover the full range of all

possible erosion strength of different materials, but by extending the procedure with

additional base models for lower or higher degrees of erosion strength for cleaning (Sc),

this limitation can be reduced or eliminated.

10.7 Conclusion

The presented modeling approach of results of waterjet cleaning process, allows a user to

obtain a reliable process approximation given no or limited information about process

condition. For an unknown surface a practitioner needs to determine a single coefficient,
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the erosion strength for cleaning (Sc), based on a simple experiment(s). The proposed

approach utilizes this coefficient and approximates the cleaning results in terms of

process productivity. It is believed that the current work will assist in practical

implementation of waterjet cleaning technology, where the information deficiency on

process conditions is the main reason of ineffective and low quality results.



3.5 

E 3.0 

.s 2.5 
c. 
'~ 2.0 ..... en 
'+- 1.5 0 
.c 1.0 ..... 
"C 

~ 0.5 

0.0 

0 

S' 1.00 
Q) 

,~ 

'E 
~ 

0.80 

~ 0.60 

:5 0.40 
"C 

~ c. 0.20 
'~ 

en 0 .00 

Auto Paint Decoating for Standoff 13.9 sm 

5000 10000 

Traverse Rate (mm/min) 

Figure 10.4 Auto Paint Removal 

• WP276 MPa, NO 
0.356 rnm, Experim 

l1li Predict 

WP 138 MPa, NO 
0.254 mm, Experim 

X Predict 

15000 

Width of Strip, Experimental VS. Predicted 

Class II 

X Defuzz Output 

0.00 0.20 0.40 0.60 0.80 
Traverse Rate (Normalized) 

Figure 10. 5 Auto Paint Removal 

194 



Rust Removal. Experimental vs. Predicted Width of Strip for 
WP 241 MPa and NO 0.1778 mm 

0.80 
E 0.70 
E 0.60 
;- 0.50 
~ 0.40 
~ 0.30 
.g- 0.20 
en 0.10 

0.00 

o 5000 10000 

Traverse Rate (mm/min) 

Figure 10.6 Removal of Weak Rust 

15000 

• Experimnt 

II Predicted 

Rust Removal. Experimental vs. Predicted Width of Strip for 
WP 172 MPa and NO 0.1778 mm 

0.70 

E 0.60 

S 0.50 

= 0.40 
"C 

~ 0.30 
a. 0.20 
.~ 

en 0.10 
0.00 

o 5000 10000 15000 

Traverse Rate (mm/min) 

Figure 10.7 Removal of Weak Rust 

• Experimental 

iii Predicted 

195 



Weak Epoxy Paint (for NO 0.356 mm, WP 207 MPa) 

1.00 

-E 0.80 
.s 
~ 0.60 .... 
"C 

~ 0.40 
a. 
:E 0.20 en 

0.00 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 

Standoff Distance (sm) 

Figure 10.8 Removal of Weak Epoxy 

• Experimntl 

II Predicted 

Weak Epoxy Paint, NO 0.3556 mm, WP 276 MPa 

2.50 

-E 2.00 
.s 
~ 1.50 .... 
"C 

~ 1.00 
a. 
:E 0.50 en 

0.00 

0.00 5.00 10.00 15.00 20.00 

Standoff Distance (cm) 

Figure 10.9 Removal of Weak Epoxy 

• Experimntl 

III Predicted 

196 



CHAPTER 11

CONCLUSIONS AND RECOMMENDATIONS

11.1 Conclusions

The mission of this study was the investigation of the jet based material decontamination.

Our specific objective was to develop a practical numerical procedure for selection of the

optimum process parameters at given process constraints and available knowledge about

process conditions. This work has pioneered in directing attention on the problems of

information utilization in the course of waterjet based material decontamination. The

effective methodologies of information processing, with ability to effectively process

chaotic, qualitative and quantitative information, were suggested. A practical method for

prediction of cleaning results for an unknown surface-substrata combination was

suggested. More specifically, the following results and conclusions were obtained as the

outcome of this study:

1. The problem of information deficiency and chaotic nature of information about

process conditions in the course of material cleaning with high-pressure waterjets was

overcome with the help of techniques of Artificial Intelligence (AI). The detailed

procedure of application of Fuzzy Logic, Artificial Neural Networks and Genetic

Algorithms was presented. The application of these AI techniques was shown to

greatly enhance the information utilization in the course of waterjet material cleaning.

2. The generic procedure for modeling and optimization of waterjet cleaning using a

single non-dimensional coefficient characterizing an unknown surface was

197
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developed. It was shown that the prediction obtained with the developed approach

agrees well with experimental results for the tested deposits within defined parametric

space of process variables.

3. A feasibility of application of high-pressure waterjet for decontamination of highly

sensitive surfaces was demonstrated, and effective ranges of process parameters were

identified.

4. An extended database representing removal of various types of industrially important

deposits using a high-speed waterjet was compiled. The database included removal of

different types of paint (epoxy and oil based), removal of rust from steel surface,

removal of viscose deposits (simulated with a roofing tar), by using plain and media

assisted waterjets. This database will be used as a reference for wide variety of

cleaning cases by industrial practitioners.

5. According to industrial information, the existing practice, at least in the US, rejects

the feasibility of pure water for derusting operations. Existing practice of derusting is

entirely based on the use of sand blasting, or the use of chemicals. Our experiments

demonstrate the feasibility of environmentally friendly jet based derusting operations,

while the exploited analytical techniques provided the realistic ranges of operational

conditions.

6. Numerical solutions of turbulent flow inside a waterjet nozzle was obtained. Two

types of nozzles were considered in the study: primary nozzle and a waterjet nozzle in

assembly. The numerical prediction of jet velocity profiles and the interface between

the two phases (water - air) inside a nozzle were in a good agreement with
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experimental data available in the literature. Thus the current problem setup and the

results of simulations can be applied to improvement of the nozzle design.

11.2 Recommendations

For future work we recommend:

1. To extend the available cleaning database for wider ranges of non-dimensional

Erosion Resistance coefficient. Incorporating the extended database into the

developed modeling technique of waterjet cleaning will result in prediction technique

with more flexible practical usage.

2. To develop a software package on the base of the developed modeling technique for

facilitation of the practical implementation of waterjet based cleaning technology.

3. To obtain an optimized nozzle design based on the results of the numerical

simulations of the flow inside the nozzle presented in this study.

4. To design a practical waterjet based system for precision cleaning of sensitive

surfaces.

5. To consider a practical implementation of the environmentally benign cleaning

technology as an urgent and achievable task.
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