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ABSTRACT

NUMERICAL MODELING AND OPTIMIZATION OF WATERJET-BASED
SURFACE DECONTAMINATION
by
Konstantin Babets
The mission of this study is to investigate the high-pressure waterjet based surface
decontamination. Our specific objective is to develop a practical procedure for selection
of process conditions at given constraints and available knowledge. This investigation is
expected to improve information processing in the course of material decontamination
and assist in the implementation of the waterjet decontamination technology into practice.
The development of a realistic procedure for processing of a chaotic and non-accurate
information constitutes the main accomplishment of this study.

The research involved acquisition of representative information about removal of
brittle, elastic and viscous deposits. As a result an extended database representing jet
based decoating has been compiled and feasibility of the damage free decontamination of
various surfaces including highly sensitive ones is demonstrated. Artificial Intelligence
techniques (Fuzzy Logic, Artificial Neural Networks, Genetic Computing) have been
applied for processing of the acquired information and a realistic procedure of such an
application has been developed and demonstrated. This procedure enables us to integrate
available information about surface in question and existing numerical models. The
developed procedure allows a user to incorporate both qualitative (linguistic) and

quantitative (crisp) information into a process model and to predict operational conditions



for treatment of an unknown surface using a readily detectable single experimental
parameter that characterizes a deposit/substrata combination. The suggested technique is
shown to perform reliably in the case of incomplete and chaotic information, where the
traditional regression based methods fail.

Numerical simulations of the two-phase flow inside a waterjet nozzle are
conducted. Numerical solutions of the partial differential equations of the two-phase
turbulent jet flow are obtained using FLUENT package. The numerical prediction of jet
velocity profiles and the interface between the two phases (water - air) inside a nozzle are
in good agreement with experimental data available in the literature. Thus the current
problem setup and the results of simulations can be applied to improvement in the nozzle
design.

A realistic procedure for the design of the jet based surfaces decontamination
developed, as a result of this study, is applied for optimization of the removal of the

paint, rust, tar and rubber from the steel surface.
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CHAPTER 1

INTRODUCTION

Today's rapidly developing and changing technologies and industrial products and
practices frequently carry with them the increased generation of materials that, if
improperly dealt with, can threaten both public health and the environment. Therefore the
increasing attention is now being paid to the process, defined as material cleaning. In this
work the term “cleaning” determines various surface decontamination technologies, e.g.
sterilization, derusting, decoating, degreasing etc. Cleaning involves removal of
undesirable substances from substrate surface without alteration of the surface geometry
and properties. There is an enormous variety of cleaning operations ranging from street
cleaning to decontamination of the space craft parts prior to assembly. Current cleaning
technologies are extremely low energy efficient and environmentally non-friendly.
Conventionally, removal of a soil attached to a surface involves flooding the surface with
a solvent, most often water, with or without a detergent, and subsequent dumping of the
solvent, with or without recycling. In most cases a solvent is delivered to the surface as a
fluid stream. The soil is entrained by the fluid mechanically or chemically and carried out
by the off-stream. An object can be submerged into solvent or if the surface is an
enclosure (tank, vessel), the solvent fills the space surrounded by the surface in question.
Solvents can be delivered by a cleaning tissue, jet, etc.

Cleaner technologies based on physical decoating are commercially available or
are being developed to replace solvent strippers. These technologies take advantage of

the differences in physical properties between the coating and the substrate to destroy the



bonding and/or abrade the coating from the underlying substrate. Among available
coating removing techniques the most promising ones appear to be the blasting
technologies. These include but not limited to: plastic media blasting, wheat starch
blasting, sodium bicarbonate wet blasting, high pressure water blasting and cryogenic
blasting. It is clear that the water blasting constitutes the most effective technology.
Water is readily available, comparatively inexpensive, and induces no damage to
environment. The complete separation of water and debris facilitates material recovery.
Therefore complete pollution prevention is feasible.

The deposit removal by an impinging waterjet is the most realistic replacement to
chemical strippers. The principal advantages of the waterjet are the feasibility of the
decontamination of a wide variety of surfaces and potential for complete recycling of
cleaning water and off-products. In most cases the waste stream generated in the course
of waterjet cleaning constitutes a mechanical mixture of water and debris. The debris
generated during water cleaning are not contaminated by solvents or other foreign
substances and can be at least partially reused. Waterjets have been customarily used for
various cleaning applications such as street and car washing, scale, paint and rust
removal, etc. Commercial waterjet cleaning equipment including the equipment for
cleaning of tanks is manufactured by a number of companies. Moreover, there are a
number of contractors routinely providing waterjet cleaning services. The existing
commercial technologies however, do not assure completeness of the deposit removal
and the water consumption is extremely high. Because of these and some other
shortcomings of waterjet cleaning, the use of solvents remains to be the principal

precision cleaning technique.



The current research is therefore concerned with experimental and numerical
investigation of the waterjet based surface decontamination. This study will outline the
effective ranges of the application of this technology and identify the key process
variables responsible for the effective and competitive application of the waterjet

technology for decontamination of various types of materials.



CHAPTER 2

ALTERNATIVE DECONTAMINATION TECHNIQUES

2.1 Overview of Existing Cleaning Technologies
Cleaner technologies based on physical coating removal are commercially available or
are being developed to replace solvent strippers. Physical coating removal technologies
take advantage of differences in physical properties between the coating and the substrate
to destroy the bonding and/or abrade the coating from the underlying substrate.
Protecting the underlying substrate from damage while achieving good coating removal
is a major concern.

Cleaner coating removal technologies are developing rapidly to fill a variety of
process needs. Cleaner coating removal technologies use one or more of four general
types of physical mechanisms (USPA, 1994):

e Abrasive technologies wear the coating off with scouring action.

e Impact technologies rely on particle impact to crack the coating to remove it.

e Cryogenic technologies use extreme cold to make the coating more friable and induce
differential contraction to debond the coating.

e Thermal technologies use heat input to oxidize, pyrolyze, and/or vaporize the coating.

Many cleaner organic coating removal applications combine these methods. The
abrasion and impact mechanisms typically occur together in technologies emphasizing
one mechanism over the other. For example, sodium bicarbonate stripping relies mainly

on abrasion with some removal by impact. On the other hand, plastic media blasting



(PMB) relies mainly on impact to crack and remove the coating but includes some
abrasive action. The cryogenic technologies use a coolant, such as liquid nitrogen, to
provide a cooling mechanism supplemented with PMB or other technology using an
impact removal mechanism. Thermal technologies burn the organic coating to form an
ash but often are followed by ash or soot removal with a technology providing an impact

mechanism.

2.2 Plastic Media Blasting
The plastic media blasting (PMB) coating removal process eliminates the use of solvent
strippers. The process uses nontoxic plastic media for coating removal and stripping
process, thus eliminating generation of wastewater.

The PMB process uses low-pressure air or centrifugal wheels to project plastic
media at a surface. The blast particles have sufficient impact energy, coupled with
hardness and geometry. To chip away or erode the coating. The sharp-faceted particles
fracture on impact, leaving new sharp edges to allow continued use for stripping.

Applications of PMB removal include but not limited to powder coatings,
urethanes, military chemical agent resistant coatings, epoxies, high solids, polyamid,

acrylic lacquers, polysulfide sealants, fluorocarbon films.

2.3 Wheat Starch Blasting
The process uses nontoxic, biodegradable media for coating removal and does not

generate volatile organic air emissions. The wheat starch blasting media are made from



renewable agricultural products Wheat starch blasting is a completely dry stripping
process.

Wheat starch blasting sues low-pressure air to propel particles at the painted
surface. The coating is stripped away by a combination of impact and abrasion. Although
wheat starch blasting sues generally similar equipment and techniques to PMB, the
process has somewhat different operating characteristics and stripping action.

Wheat starch blasting is known mainly for its gentle stripping action. Therefore
most of the testing and application has been on sensitive substrates such as thin
aluminum, particularly sort alloys or anodized surfaces (e.g., commercial aircraft skins),

sensitive composites (e.g., automobile fiberglass or plastic or aircraft radomes).

2.4 Burnoff Coating Removal
Burnoff coating removal technologies use a combination of volatilization, pyrolysis, and
oxidation to remove organic coating materials. Thermal methods completely avoid the
use of solvents for coating removal but generate potentially contaminated offgas and
wastewater streams. Burnoff systems use temperatures of 370 deg C (700 deg F) or
higher to volatilize and/or burn the organic coating material. Burnoff coating removal is
commonly used for high-volume, noncritical parts such as the hooks, racks, overspray
collectors, or other similar parts. Burnoff methods can be used to remove both

conventional and power coatings.



2.5 Carbon Dioxide Pellet Cryogenic Blasting
Carbon dioxide (CO2) stripping generates a smaller amount of waste than all of the
available technologies and some of the emerging thermal technologies. Upon impacting
the surface being cleaned or decoated, the CO2 pellets disintegrate and sublime, that is,
they pass directly from solid to gaseous state without appearing in the liquid state, thus
not generating a spent media residue.

CO2 pellet blasting applies a blast medium much the same way, as does PMB.
Compressed air or liquid nitrogen thrusts small CO2 pellets at a coated surface. The CO2
pellets remove the coating by a combination of impact, embrittlement, thermal
contraction, and gas expansion. The CO2 pellet technology is primarily useful in food

processing automotive manufacturing electronics, aerospace.

2.6 High-Pressure Water Blasting
High-pressure water blasting eliminates the use of chemical strippers containing HAPs.
However, wastewater is generated that contains paint debris. The stripping water can be
recycled to reduce waste volume. Unlike dry stripping processes, water stripping does not
generate dust.

High-pressure waterjet stripping removes coating with a stream of water
projected from specially designed nozzles at pressures of 15,000 psi to 50,000 psi or
more. High-pressure pumps supply water to a system of stationary or rotating nozzles that
spray the water stream onto the coated surface. The coating is removed by the kinetic

impact of the water stream.



2.7 Liquid Nitrogen Cryogenic Blasting
The liquid nitrogen cryogenic coating stripping process eliminates solvent use and results
in no ash or residual to clean. Liquid nitrogen is used to cool the part and to help propel
plastic bead blasting media. The process does not use air to propel the media, so neither
dust nor wastewater is generated.

The cryogenic technology takes advantage of extreme cold to embrittle and
shrink the coating. The liquid nitrogen is sprayed on items to be stripped, thus chilling the
coating, causing greater thermal contraction of the coating than of the substrate. Tensile
stresses thus develop within the coating and make it brittle. High velocity, nonabrasive
plastic pellets (media) are then blasted by centrifugal throw wheels to make the coating
crack, debond, and break away from the substrate.

Liquid nitrogen cryogenic coating removal works well for removal of heavy

coating buildups such as those that accumulate on coating line fixtures.

2.8 Laser Cleaning
Laser cleaning requires using laser and an inert gas to clean and prepare surfaces. It is
relatively inexpensive for variety of applications, works at variable throughput within
those applications and uses no scarce resources such as water. It uses and emits no toxic
chemicals such as acids or basis. Laser cleaning relies simply on ultraviolet light and
inexpensive inert gases such as nitrogen or argon. It presents minimal risk with proper
handling. Laser cleaning removes the smallest contamination and also a lot of gross
materials, and is amenable to incorporation into flexible tooling of high reliability and

long life.



CHAPTER 3

LITERATURE SURVEY

A number of investigations of waterjet cleaning and decoating have been reported. Up to
date most of the information about the correlation between process parameters and
process output was based on various experimental studies. The process parameters in
question include water pressure, nozzle traverse rate, nozzle type and size, standoff
distance, type of abrasive, if any. The results of the studies are summarized as follows.
Water pressure determines jet velocity and turbulent properties, which influence
the jet cleaning. When water pressure increases, material removal rate, cleaning width
and depth also increase (Galecki and Vicker, 1982; Haferkamp, et al., 1992; Kang et al.
1993; Xu and Summers; 1994; Leu, et al., 1994; Geskin, et al., 1995, 1996, Meng, et al,
1995, 1996). Also it was found that there exists a threshold pressure, below which no
material removal occurs no matter how large a water flow rate is and how long a process
may take. (Erdmann-Jesnitzer, et al., 1980, Midden, et al., 1990, Wu and Kim, 1995).
Experimental studies on the effects of traverse rate on water jet cleaning show
that the width or depth of material removal decrease with an increase of travel speed
(Hashish and duPlessis, 1978; Saunders and Barton, 1986, Singh, et al., 1994; Leu, et al,
1994; Xu and Summers, 1994; Wu and Kim, 1995; Hlavac, 1995; Geskin, et al., 1995;
Meng et al., 1995, 1996a, 1996b, 1996¢). These experimental results show that width or
depth of material removal decrease with the increase of travel speed. An increase of

travel speed may result in a decrease of energy delivered per unit of coating area. Singh,



10

et al., (1992) have discussed the complete coating removal envelope at various travel
speeds for a given standoff distance and pressure. In this study traverse speed during
decoating was divided into three regions: incomplete coating removal, complete coating
removal, and substrate damage.

There are two types of commonly used nozzles in waterjet material
decontamination. These are the round-jet nozzles and the flat-jet nozzles. Round shape
nozzles produce a jet with minimized divergence to reach a good efficiency at a greater
distance from the nozzle. Contrary to this, the flat-jet enlarges only in one direction, the
divergence orthogonal to this direction is minimal. Flat jets are being used at smaller
distances from a nozzle to load larger area (Louis and Schicor, 1982). Harbaugh and
Fincher (1993) designed a specific nozzle for complex surfaces with improved jet
coherency and as a result higher level of delivered energy. This effect was attained due to
the combination of flat and round nozzles with translation and rotation along the
centerline. A similar application was once mentioned by Saunders and Barton (1986). A
long cohesive jet is used to form a jet with minimal energy loss. Fan jets work better at
low cleaning rates and shorter distances for removal of larger areas (Wu and Kim, 1995;
Xu et al., 1994). Multiple orifices of smaller sizes, which may be preferable to single-
orifice of larger size work more effectively (Waston, 1993; Harbaugh, 1993; Gracey,
1989, Babets (current work, 2000).

At a given pressure larger nozzles are more efficient than smaller ones.
Experimental results have shown, that width and depth of decoating, and thus material

loss increases with the increase of nozzle diameter (Wu and Kim, 1995, Babets, (present
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work)). Similar results were also shown in the experimental studies of Watson, (1993);
Leu, et al., (1994); Geskin, et al., (1995, 1996) and Meng, et al., (1995, 1996a, 1996b).

A new concept of critical cleaning standoff distance was first reported by Leu et
al., (1994), then discussed by Geskin, et al., (1995, 1996) and Meng et al. (1995, 1996a).
This concept implies that there exist a standoff distance, above which the cleaning
becomes ineffective. A similar concept of effective standoff distance was also used in the
selection of the standoff distance in jet cleaning (Wu and Kim, 1995). Experimental
observations have shown that there exists an optimal standoff distance at which the
volume of material removal is the greatest at a given travel speed (Louis and Schikorr,
1982; Kang, et al.,, 1993). Also it was shown that the cleaning rate increases with an
increase of the standoff distance until it reaches the maximum at a certain standoff
distance. After that the cleaning rate declines with increased standoff distance (Hashish
and duPlessis, 1978; Galecki and Vickers, 1982; Haferkamp, et. Al, 1984; Leu, et al.,
1994; Xu and Summers, 1994; Geskin, et al., 1995, Wu and Kim, 1995, Babets et al.,
(1999). The optimal standoff distance is related to coating and substrate materials, jet
structure and properties, operational parameters such as nozzle size, water pressure, travel
speed, etc.. Meng, et al., (1996b, 1996¢) firstly introduced mathematical models for the
evaluation of the optimal standoff distance for the cases of stationary and moving
waterjet cleaning.

Duration of the jet-surface interaction is in order of 0.0001~0.001 seconds. This
time is too short for completion of chemical reaction. The chemical should therefore be
applied to the surface prior to impact (Summers, 1993). Nut a surfactant added in the jet

can provide corrosion inhibition on the cleaned surface (Hall, 1986). The effect of the
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surfactant (1% FC-722) was tested and reported by Geskin, et al., (1995), which proved
that good cleaning performance could be achieved by this method.

The use of high temperature water as opposed to cold water is more effective in
removing the grease (Summers, 1982), and temperature influence on the jet cleaning or
material removal process was mentioned by Neusen and Schramm, 1978; Louis and
Shikorr, 1982). Improvement of nozzle geometry (I/d ratio and conical angle) may
influence jet cleaning or material removal rate (Minden, et al., 1990, Bury, et al., 1974).

Meng in (1996a, 1996b, 1996c) made an attempt to develop a mathematical
model for prediction of water jet depainting based on the Springier theory of material
erosion by a liquid impact. The rate of depainting was estimated by the balance of
available momentum of impinging droplets and the momentum required for the paint
separation. Springier’s equation determining dimple formation was used to estimate a
required momentum while a semi empirical equation of the development of a turbulent
jet enabled us to estimate available momentum in the impingement zone. The suggested
mathematical model included an empirical variable, which needs to be determined by
special experiments.

It is expedient however to construct model of cleaning process using process
characteristics acquired in the course of routine operations. Statistical techniques,
conventionally used for construction of the empirical correlations are not effective in this
case. The form of the correlation needed for the construction of regression equations is
not known a priori. Also the available qualitative (linguistic) information accumulated in

the course of technology applicaﬁon cannot be sufficiently utilized by the statistical
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techniques. It is necessary to select a practical procedure to process all available
quantitative and qualitative information.

The goal of the current research is in the focus on the information processing
problems in the course of waterjet based material processing. The ultimate goal, however,
is to develop a simple and practical technique for prediction of the results of cleaning,
that will facilitate the implementation of waterjet based cleaning into the industrial

practice.



CHAPTER 4

OBJECTIVES AND MOTIVATION

4.1 Objectives

The mission of this study is the investigation of the jet based material decontamination.

Our specific objective is to develop a practical numerical procedure for selection of the

optimum process parameters at given process constraints and available knowledge about

process conditions. We will use Artificial Intelligence and Finite Element techniques to
achieve this goal.
The specific goals of current research can be summarized as following:

e Experimental feasibility study of jet surface cleaning. These case studies help us to
understand the possibilities of the application of jets for surface cleaning. Also they
help us understand the peculiarities of jet based cleaning technology, such as wide
variety of cleaning situations, availability of qualitative information, but not
quantitative, etc. These peculiarities dictate the need for a special approaches in
process modeling.

e Construction of the prediction model of a jet cleaning based on the principals of the
Fuzzy Logic.

e Construction of the prediction model of a jet cleaning based on the principals of the
Artificial Neural Networks.

e Construction of the prediction model of a jet cleaning based on the integration of a

conventional Clustering and the Neural Network Driven Fuzzy Reasoning techniques.

14
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Selection of the optimal process characteristics by Genetic Algorithms.

e Numerical study of the flow formation in a nozzle. (Application of the Finite Element
Method).

e Numerical study of the two-phase flow in the cutting head. .(Application of the Finite

Element Method).

e Development of the Generic Procedure for selection of the cleaning technology.

4.2 Motivation
Water jet cleaning is characterized by a large number of variables, representing
mechanical and geometrical properties of the surface, properties of the deposit, deposit
distribution and adhesion to the substrate surface, geometry and dynamics of the waterjet,
conditions of the removal of the water and debris. The history of the substrate prior to
cleaning is usually very complicated and information about this history is rather limited.
It is necessary to maximize the use of the available information in order to develop an
effective cleaning technology. The various artificial intelligence (Al) techniques enable

us to achieve this most efficiently.



CHAPTER 5

COMPUTATIONAL TECHNIQUES

5.1 Introduction

In data /information processing the objective is to gain the understanding of a complex
phenomena through “modeling” of the system either experimentally or analytically. Then
after a model of a system has been obtained, various procedures (e.g. sensitivity analysis,
statistical regression, etc.) can be used to gain a better understanding of the system. There
are, however situations in which the phenomena involved are very complex and not well
understood and for which the first principle models are not effective. Even more often,
experimental measurements are difficult and/or expensive. These difficulties lead us to
explore the application of Soft Computing (A.I.) techniques as a way of obtaining models
based on experimental measurements. The field of Soft Computing is comparatively new,
and it includes fuzzy logic, neural networks, expert system, cellular automata, chaotic
systems, wavelets, complexity theory, anticipatory systems among others. But only fuzzy
logic, neural networks and genetic algorithms have reached the stage of development,
where they are used for real world problems (Michalewicz, 1996).

Fuzzy logic systems address the imprecision of the input and output variables
directly by defining them with fuzzy sets (fuzzy numbers), that generally expressed in
linguistic terms. Moreover they allow for very complex and nonlinear systems to be

described in vary simple terms, thus making them easier to understand. Another

16
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important feature of fuzzy systems is their ability to accommodate the existing expert
knowledge of a process into a model by expressing it in terms of fuzzy rules.

Neural Networks on the other hand model a system by using sets of input-output
data to train some generic model of a system. Neural Networks are very good at modeling
very complex nonlinear relationships with large number of input and output variables,
and in classification problems. Models based on neural networks also easy to optimize,
since although the model itself is not given in terms of explicitly defined function, the
gradient of this function can be found numerically. Artificial neural networks are most
likely to be superior to other modeling methods under the following conditions (Masters,
1993):

e The data on which conclusions are based is “fuzzy”, and subject to possibly large
error.

e The data exhibits significant unpredictable nonlinearity.

o The data is chaotic.

e The relationship between different groups of data is hidden.

The combination of the above two techniques often results in greater flexibility
and/or more clear representation of a model then when they are used separately. This
combination is often referred to as neuro-fuzzy model of a system. Neuro-fuzzy approach
also allows overcoming some traditional problems in using fuzzy logic or neural
networks, such as the problem of defining a membership function, extracting fuzzy rules,
etc.

Optimization of a system is an essential part of any analysis, but conventional

optimization techniques (i.e. gradient based) are not quite effective in case of A.I. based
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models. The reason is that in most cases the model is not given in terms of mathematical
function, therefore a gradient is quite problematic to find. Genetic Algorithms represent a
computational method from the area of Evolutionary Computing, and they are very
effective in finding a near optimum solution for any kind of model.

Figure 5.1 summarizes the above overview and suggests a choice of a modeling
technique based on the type of the information available about the process.
Usually, the information available for waterjet coating removal involves some numerical
data acquired in the course of simple routine experiments and supplemented by an expert
knowledge. The expert knowledge is expressed in simple linguistic expressions such as
“FAST traverse rate AND MODERATE impact pressure result in HIGH stripping rate
and INSIGNIFICANT substrate damage”, or “LOW nozzle traverse rate AND VERY
HIGH impact pressure AND SMALL standoff distance result in LOW stripping rate and
HIGH substrate damage”. If the process in question does not involve many input and
output variables, the most effective modeling technique is fuzzy logic. This approach is
represented by the path 1-2-4-6-9-12 on the flow chart on Figure 5.1.
If available experimental information about the waterjet decoating involves a limited
number of numerical data, a statistical technique combined with ANOVA table should be
used (path 1-3-5-13, Figure 5.1). But as the number of input and output variables
increases or if the empirical information is acquired from different sources, the
conventional regression analysis is less effective. The major disadvantage of the multiple
regression, however, is the necessity to have a preliminary information about the form of

the regression equation. If the use of a standard statistical technique is too complicated or
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ineffective, the artificial neural networks can be used for process modeling (Figure 5.1,
path 1-2-4-8-11-13).

When the available knowledge is represented by a limited numerical data and
limited linguistic information, the fuzzy rules cannot be accurately defined. Application
of neural networks also becomes ineffective, since it requires fairly large amount of
experimental data. Neuro-fuzzy modeling is proved to be sufficiently reliable and
accurate for such systems. The use of various modeling techniques is illustrated in the
following chapters of this work.

Of course, there are many more other “well-behaved” and reliable standard fitting
methods, which will do a good job in modeling a process. And the use of those methods
is in no way disparaged. The basic idea is to introduce the new and generally reliable

techniques for modeling and optimization of waterjet coating removal process.

5.2 Architecture of Fuzzy Logic Modeling
In general a fuzzy logic modeling consists of the Fuzzy Preprocessing and Fuzzy
Processing modules (Figure 5.2).

Fuzzy preprocessing involves representation of all available information in a form
suitable for application of fuzzy logic technique. In fuzzy preprocessing module the
knowledge pertaining to the process is obtained from various sources, such as
experimental and empirical data, expert knowledge, linguistic formulation, etc. is utilized
for process representation.

This module consists of three independent modules:

- Knowledge acquisition module
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an expert. In the field of fuzzy logic the most common way to express human knowledge
is to form it into natural language expressions of the type:
IF premise (antecedent), THEN conclusion (consequent)

This form is commonly referred to as IF-THEN rule- based form. It represents the
inference such that if we know the antecedent then the consequent can be inferred or
derived. The constructed IF-THEN equations relate process variables stored in the fuzzy
vocabulary. At the same time these equations express empirical or heuristic knowledge,
derived from sources such as experiments or human experience, linguistically in this rule-
based format. FAM contains a set of the fuzzy logical equations, which in the final
analysis summarize all available knowledge about the process in question and present it
in the form available for fuzzy modeling.

Modeling itself is carried out by the Fuzzy Processing Module, which converts
the input information about a selected process manifestation into the information about
output variables. The prior knowledge accumulated in FAM constitutes the base of these
conversions. The Fuzzy Processing Module consists of the following independent

modules:

Process input module

Fuzzification module

Inference module

Defuzzification module

Process input module enables us to store the pertinent input information. The
fuzzification module converts the stored crisp data into fuzzy logic type information. For

each crisp input data this module identifies a corresponding fuzzy set and the degree of
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(fired) and used to infer fuzzy values of output variables. It is clear that an each equation
(fuzzy rule) generates a single fuzzy value of the output variable. Therefore we are
interested in evaluating the following linguistic correlation:

{Pressure, Distance, Speed}-—> {Output},
expressed in terms of multiple fuzzy relations. In this hypothetical example we would
deal with four such relations.

Fuzzy rules give us only linguistic correlation between sets of the input
parameters and the output variable, instead we would like to estimate to what degree a
rule’s consequent (part to the right from the then statement) is true. In order to do so we
apply the fuzzy inference technique. There are several methods of inference in fuzzy
systems. We selected the min-max method, which involves comparatively simple
numerical manipulations. In fuzzy min-max implication each rule is evaluated separately.
Therefor continuing with this hypothetical example we evaluate each input fuzzy set, or
conversely each rule, according to Figure 5.5 (a).

The result of this evaluation is a fuzzy region of the output variable and its degree
of belonging to this region. In order to evaluate the degree of the truth (belonging) of the
consequent of a rule we examine the degrees of truth of each antecedent and assign to the
consequent the minimal one. Then these individual solution regions are aggregated into a
final solution region (Figure 5.5 (b)), which determines the fuzzy value of the output
variable. Analytically the above steps can be expressed with the help of the following
equations.

pefs[xi] < min (upt(1), upt(2), upt (n)]) (CHY)
which indicates that the consequent fuzzy (cfs) set is modified by taking the minimum of

predicate propositions.
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The data in each set were represented in form of input — output pairs. In a
supervised learning an input pattern (combination of the input parameters), presented to
the network, generates a random output. This generated output is compared to the desired
target value to define an error. This error is then backpropagated to adjust the weights in
order to minimize this error function. These new weights are then assigned to a network
and the procedure is repeated for a new input — output pair. This procedure is repeated
until all training data pairs are used. After each iteration the error is stored, to accumulate
the total error. After all training data pairs are used (one epoch) the total error (the error
accumulated through one epoch) is compared to some specified error tolerance. If the
tolerance is not met the procedure is repeated. If the tolerance is satisfied the procedure is
stopped and the weights adjusted after the last iteration constitute the output of the
training. These weights are assigned to the network and the network is considered to be
trained. To check the network performance the checking data set is used. After the
network is checked to perform satisfactory it is used as the model of the process, i.e. for

process prediction, sensitivity analysis, optimization, etc.

5.3.2 Neural Network Model of a Process

The network architecture used to represent an example process is shown in Figure 5.8.
For this problem the three-layer network was chosen. The input layer consisted of three
neurons X1, X2, X3. The output layer consisted of one neuron which corresponded to the
process output variable T. Two hidden layers were used in the current network’s
architecture. A classical feed forward algorithm with backpropagation of error is used in

the network training.
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First hidden layer :

I, =Uy,+ XU, X, (5.6)

Second hidden layer :

1, .=V, .+ 8 v, .-Z S
00" E i)

l ;] —
ZZ(]) _—:_I—i:j_ fOI'_]—l,S

1+e

Output layer

5
Ly =Wou+ 2 W, 225,
= (5.8)

1
T, = or k=1
o l4e™ 4

The error is then computed as :
E-05-5[Y, -T P fork=1 (59
k

where Tk is the network’s output and Yk is the experimental value of the output variable.
The Equations 5.7-5.9 are the standard representation of signal propagation in a feed
forward neural network. After the error is defined it is propagated backwards to define
new weights. A weight updating is then performed according to the formulae (5.10),
where the expressions in the brackets are the partial derivatives of the error function

(Equation 5.9) with respect to weights on different connections, and 1 is a some small

constant, termed the learning constant.
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Since error is a function of weights then these partial derivatives are evaluated as follows:
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where E is given by Equation 5.9, Ty and I are given by (5.8). In the similar manner the

rest of the desired derivatives are presented:
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The new weights are then substituted into the network and this procedure is repeated
iteratively until the network is trained. After the network is trained its performance is
verified using a testing data set. At this point only the feed forward part of the algorithm

is applied. When the network is verified to perform satisfactory it can be used as the
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model of the process, for sensitivity analysis, optimization, or for prediction of an output,

once an input is specified.

5.3.3 Sensitivity Analysis

In performing sensitivity analysis we are interested in evaluation of the degree of
influence of different input variables on the process output. In other words, if we slightly
perturb input, how would output react? And what input variable influences output(s) the
most. For the network with two hidden layers, using the notation of Fig. 5.8 the desired

gradients are found in the following manner (2):
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5.3.4 Modifications of Conventional Training Algorithm

The backpropagation -training algorithm discussed above has been proven itself as a
reliable technique for training a traditional three or four layer network with nonlinear
activation functions (logistic sigmoid (Equation 5.5), for instance). The convergence
speed of the algorithm depends greatly on the choice of network parameters, such as
number of layers, number of neurons in a layer, choice of activation function. The
optimum combination of these parameters would, in most cases, result in excellent

network training in less time. But, even with poor choice of network parameters, it is still
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possible to train a network to perform satisfactory using the traditional backpropagation
of error algorithm, though the training could be extremely slow.

In the past few years a fair number of modifications of the basic algorithm was
suggested. The most important once, include the alternative weight update procedure, and

the incorporation of linear regression into a network training process.

5.3.4.1 Momentum. In backpropagation with momentum, the weight change is in
direction that follows the direction of the current gradient and the previous gradient. This
is a modification of the gradient descent whose advantage arises when some training data
is significantly different from the majority of data, or even incorrect. Thus the gradient
descent in the wrong direction is averted. In order to implement the backpropagation with
momentum algorithm the weights from the previous iteration(s) should be saved. And the

weight update formulae (5.10) now become:

t
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where, t- current training step, u- momentum coefficient. The momentum coefficient p
is constrained to be in the range from 0 tol, exclusive of endpoints. Momentum allows
the net to make reasonably large weight adjustments as long as the corrections are in the

same general direction.
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5.3.4.2 Batch Weight Updating. Yet another modification of conventional
backpropagation algorithm makes use of what is called the batch weight updating. In this
techniques the weight correction terms of the net are accumulated for several iterations,
and weights are updated after the specified number of iterations. This procedure has a
smoothing affect on the correction term, though sometimes it may increase chances of

convergence to local minima.

5.3.4.3 Training with Regression. One reason that conventional backpropagation is slow
to converge is that the error propagates back through non-optimum last hidden layer
weights, thus resulting in far-from optimum changes in the other layer weights. This
could be avoided if the last layer’s weights are not generated randomly, but rather
approximated with regression. This approach was shown to speed the training of a
network greatly (40 fold), in some cases. The training algorithm is initiated by randomly
generating all the weights on network connections, with the exception of the weights
connecting the last hidden layer and the output layer. A training sample from the training
data set is chosen and passed forward through the network's connections, until it reaches
the last hidden layer. At this point the inverse activation of the desired output for each
output neuron is calculated, based on the activation method for the output layer neurons.
In the case of the linear activation method for the output neurons (i.e. Equation 5.9 is
given by @(I)= I), the inverse activation of the desired output equals to the output itself.
If we now treat the last hidden layer's outputs as independent variables, and have a

known desired input to an output neuron as the dependent variable, we have a regression
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problem. And the weight vector connecting the last hidden layer and the output layer
represents the unknown regression coefficients.

Thus, for a network with » hidden layer neurons (including the bias), and m data
samples in the training data set we obtain:

AB=Y, (5.16)
where:
A (n x m)- is the matrix of network’s last hidden layer activations for each training data
sample in the training data set.
Y (m x 1) — a column vector of the measured dependent variable inverse activations.
B (» x 1) — a column vector of coefficients to be estimated (weights connecting the
second hidden layer and the output layer).
Equation 5.16 can be solved for the weight vector using the general least square
procedure.
B=(A'A)'A'Y (5.17)

At this point the state of the training of the neural network is far more advanced then after
the first iteration of the conventional backpropagation, because the optimal weights for
the last hidden layer were computed with linear regression. And, thus, the mean squared
error is minimized with extremely high precision. We now proceed with conventional
backpropagation algorithm as described earlier. This combination of the conventional
backpropagation with optimum calculation of the last hidden layer’s weights by linear
regression was proven to speed up the training process greatly and results in a network
with better generalization capabilities. After this initial pass through the network the next

training input-output pair is chosen, and the above steps repeated. As the training
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proceeds, the features of model of the system under study are embedded in the weights
that connect the input layer to the hidden layer (and interconnect hidden layers if more
then one is used).

In the above-discussed algorithm the weight values produced by regression can
contain very large values (5- 6 orders of magnitude), that could result in poor network
generalization abilities. Moreover the algorithm can fail if the matrix A in Equation 5.17
is numerically close to singular. A zero pivot element may be encountered during the
solution of linear equations (5.17), which results in very large magnitudes of the fitted
parameters (weights in this case). The solution to this problem lies in application of the
technique known as matrix SVD (Singular Value Decomposition). The matrix A in(5.16)
is broken down into its singular value decomposition given by:

A=UWVT (5.18)

where, U (m x n) - matrix of principal components (orthonormal basis for the subspace
spanned by the columns of A

W (n x n) - diagonal matrix of singular values.

V (nx n) — orthonormal matrix of right singular values.
In this method, only the most relevant information is retained to compute the weights.
The least important information is discarded, because it is most likely resulted from
noise. This is achieved by altering the diagonal matrix of singular values W. If a singular
value in this matrix is less then a cutoff value, the value is changed to zero in the inverse

matrix. The weights are then calculated as:



40

A=VS'U'T (5.19)
This method, though takes longer to implement, can not (at least theoretically) fail. Thus
it constitutes a reliable technique to use in conjunction with linear regression in training

of a neural network.

5.4 Integrated Neuro- Fuzzy Reasoning

5.4.1. T-H Method
Fuzzy reasoning realizes the flexibility of the reasoning corresponding to human logical
reasoning. Therefore it has been proven effective when the conventional modeling
techniques fail. However two problems of conventional fuzzy reasoning has not been
solved yet: the method of determining membership functions and the adaptation of the
reasoning to the environment. The problem of determining the membership function is
even more appealing in case of multidimensional fuzzy space, where membership
function design by experience or intuition is merely impossible. The second problem of
conventional fuzzy reasoning is the lack of the adaptation of the existing rules to
changing environment. In other words a low cost learning function is desired. The
following method proposed by Hideyuki Takagi and Isao Hayashi (Takagi and Hayashi,
1991) solves the above stated problems by using learning functionality and nonlinearity
of Neural Networks.

The T-H method consists mainly from three parts. These are outlined below and
explained on the basis of the hypothetical example (Figure 5.10).
Part 1. The existing database is divided into two data sets- training (TDS) and checking

data set (CDS). The number 7 of fuzzy rules (R) for the database is decided, and it is
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divided into n classes using a conventional clustering technique. Thus the number of
classes equals to the number of inference rules (R) (Figure 5.10(a)).

Part 2. After the number of inference rules has been established, and the data in both
TDS and CDS are classified as either belonging to a class or not in a conventional
Boolean way, a NN is used to learn the functional relationship between coordinates of a
data point in TDS and its corresponding crisp (Boolean) membership in R(3), i=1,..n. The
CDS is then used to verify the network performance. After the classification network is
verified to perform satisfactory it can be used for estimation of fuzzy membership in all
R(i), i=1,..n, for any data point (Figure 5.10(a). More rigorously we obtained the NN for
membership estimation and fuzzy classification, which is used to determine the IF parts
(conditional parts of the rules).

Part 3. The RHS parts of the rules are determined by using separate neural network with
supervised learning, for each rule from part 1. Rules are usually of Sugeno-type. Sugeno
type rules are where the output is a function of the inputs.

For instance the induced rule would be:

If (x1, x2) is A® then y* =NN; (X1, X2)

where NN (x1, X2) is a neural network that determines the output of the sth rule. Thus
for each rule (class) R a neural network is created. Each class is represented in terms of
the input-output pairs { X;, ¥} of the TDS. The network for each class Ri is trained until it
is able to reproduce the functional relationship between input-output pairs in the TDS for

that particular class. The CDS is then used to check the performance of the Net. Thus the
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better characteristics (by some criteria) to reproduce more often, compared to the
chromosomes that encode poorer characteristics (Michalewicz, 1992). Thus the next
generation of chromosomes comes with better characteristics then the previous one.
These evolutionary principals constitute the base for the computational technique-

Genetic Algorithms.

5.5.2 Basic Concepts of Genetic Algorithms

Genetic algorithms found numerous applications nowadays. One of the most often
applications of Genetic Algorithms is in optimization problems. Genetic algorithms have
many advantages compared to standard optimization techniques (gradient based, etc).
Genetic Algorithms do not rely on the analytical properties of the function being
optimized (existence of a derivative). We start by generating the initial population of the
chromosomes (bit strings), which encode information pertinent to the problem at hand.
The information is to be encoded in a binary form (usually). Next step is to define an
evaluation function (fitness) for the problem. Evaluation function is nothing else but a
criterion according to which we evaluate how fit is a chromosome in the population.
After all of the chromosomes are evaluated for their fitness we select the best ones
according to our criteria. In order to maintain an equal size of the population, some
chromosomes are selected more then ones. Then the selected chromosomes undergo
genetic operations of crossover and mutation. Thus a new generation of the chromosomes
appears. We repeat the steps above for the new generation. After some number of

iterations the total fitness of the population is within some prescribed range and the best






CHAPTER 6

INVESTIGATION OF THE FLOW INSIDE WATERJET CLEANING HEAD

6.1 Previous Research on Waterjet Formation

The efficient application of waterjets to industrial surface decontamination requires a
thorough understanding of the influence of different parameters involved in the process.
The independent parameters involved in abrasive waterjet surface decontamination can
be devided in two several groups (Hashish, 1991). The first group of parameters is
process related and it includes nozzle traverse rate, standoff distance, number of passes,
degree of overlap and the desired degree of surface cleanliness. The second group of
parameters is jet-related and can be subdevided into hydraulic, abrasive and mixing
(internal) parameters. The hydraulic parameters include water pressure, water flow rate,
abrasive parameters include abrasive type, abrasive particle size and flow rate. A special
attention needs to be paid to the internal parameters of the waterjet nozzle. These
parameters consist of the internal diameters of a waterjet nozzle such as mixing tube
diameter, mixing tube length and air flow rate through the abrasive inlet port. The reason
a special attention should be paid to this group of parameters is because it is the least
studied group and is the most difficult to control and optimize.

The importance of studying the flow charachteristics inside a waterjet flow have
resulted in quite a few experimental and numerical studies of this phenomena. But the
difficulties in numerical simulations of this complex flow and a lack of non-intrusive

experimental techniques have resulted in sometimes controversial data.
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experimental results of some researches, still there are some controversial results. The
numerical simulation of the flow inside a nozzle is an economical and efficient way to
predict such flow charachteristics as velocity and pressure fields, turbulent
charachteristics and to suggest an optimized nozzle design.

There have been limited stidies in jet analysis, and very few works on the jet
behaviour inside a waterjet nozzle. Flow characteristics of waterjet in air was investigated
by Yanaida and Ohasi (1978). The authors have characterized the waterjet into three
regions: continuous flow region, droplet region and diffused region based on axial
velocity and breake up leangth. Eddingfield et al (1981) proposed a two-dimensional
axisymmetric multicomponent mathematical model which coupled the three flow fields
such as continuous water, entrained air, and droplets. Amano et al (1982) carried out
theoretical and experimental investigation of the turbulent axisimmetric jets impinging on
a flat plate. He has employed the two equation (k-E) turbulence model in his
computations. He has solved the standard Navier-Stokes equations together with two-
equation turbulence by the hybrid scheme of central and backward finite difference
scheme. Vijay et al. (1993) investigated the application and dynamics of cavitating jets.
The authors have investigated different nozzle configurations in their numerical
investigations and found that the performance of of artificially submerged cavitating jets
operating at identical conditions surpassed that of fully sybmerged or noncavitating jets.
Several numerical studies were undertaken to investigate flow characteristics inside a
waterjet nozzle. A numerical approach was suggested by Lai et al. (1991) to predict the
flow characteristics inside three nozzles.The authors have shown numerically that a

center body insert into a conical nozzle results in superior performance due to the
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increased cavitation. Khan (1994) have investigated the flow characteristics inside
waterjet nozzle. He has used the finite element method to solve the turbulent flow fields.
His numerical results were validated through the experimental study of the waterjet
charachteristics by using velocity measurements with Laser Transit Anemometer, and
force measurements with piezoelectric force transducer. He has used the high speed
filming to reveal the dynamics and behaviour of the jets. Thus it was shown that at the
micro level the high speed jet is a sequence of disintegrated slugs, but at the macro level
the jet is the normal turbulent flow.

Most of the numerical studies of the turbulent flow patterns inside a waterjet
nozzle carried out up-to-date neglect the presence of the air phase inside the nozzle,
although the later takes up to 90-95% of the three-phase mixture volume (air + water +
abrasive) according to (Neusen et al, 1990, Osman et al, 1996). Moreover the effect of air
flow rate is shown to both affect the jet coherence ultimately causing the jet break up, and
reduce the exit velocity of particles by up to 40% (Tazib et al, 1994). The velocity loss is
also connected with the flow rate of abrasive media.

Raissi et al (1996) has investigated in detail the influence of internal nozzle
parameters on three-phase waterjet flow in a nozzle. In his work he takes into account the
presence of air in the cutting head (90% of volume occupation), flow turbulence (eddy
viscosity model) and abrasive particle interactions. As the outcome of the study, authors

suggest that the numerical tools extremely helpful in nozzle design optimization.
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6.2 Numerical Study of the Turbulent Flow Inside a Pure Waterjet Nozzle
6.2.1 Modeling of the Turbulent Flow
The numerical simulation of a turbulent flow involves modification of governing
equations for case of laminar flow. For the flow involved in this study being steady,
incompressible, isothermal, chemically homogeneous and without body forces the

following equations apply:

Continuity:

i 6.1
= 6.1)
Navier-Stokes:
, - oU.
p£=—2+ 0 yaU,+ ; (6.2)
Ox; ox;, Ox, ox, ox

where Ui is velocity, p is pressure, [ is the dynamic viscosity and p is density.

These equations are valid for the case of a turbulent flow, although there is no practical
means of solving these equations for a high Reynolds number flows. Therefore a
following approach is usually applied. Following the original idea of Reynolds, we
assume that the fluid is in a randomly unsteady turbulent state and work with the time
averaged or mean equations of motion.

Any variable can be resolved into a mean value Q and a fluctuating value Q’:

0- % [ gar 63)
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Where t is a reference point in time and T is the averaging time which is large compared
to the relevant period of fluctuations. Thus applying the time averaging to the equations
of conservation of mass and momentum we obtain:

Conservation of mass:

dUi (6.4)

ox

J J J

_ U, O =\ P 0| [oU, U, (6.5)
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Thus the mean momentum equation is complicated by a new term involving the turbulent
inertia tensor U’iU’j. These equations can be solved for the mean values of velocity and
pressure only when the turbulence inertia term can be correlated in some way. Therefore
turbulent modeling is the task of providing additional equations to describe the temporal
and spatial evolution of the turbulent inertia flux.

The most popular turbulence model in practical use is the so-called two equation
model, or k- model. In the k-g turbulent model the turbulence field is characterized in
terms of two variables, the turbulent kinetic energy k, and the viscous dissipation rate of

turbulent kinetic energy € given by:

g (6.6)

dU, dU, 6.7)
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Two transport equations for k and € can be obtained from the Navier- Stokes equations
by a sequence of algebraic manipulations. By simplifying these two equations with
application of a number of modeling assumption the well known equations of turbulent
kinetic energy and dissipation of the k- model can be obtained ( Launder and Spalding,
1972).

Thus the governing equations for the problem at hand, which is steady, two-

dimensional, incompressible, isothermal, turbulent, can be written as follows:

au: _, (6.8)
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where 1,j = 1,2, p=p0 + pt, and pt = p Cu k2 / €, as proposed by Kolmogorov- Prandtl.

The above equations contain empirical constants C1, C2, ok, oe and Cp. Over the years
the k- model has been tested and optimized against the wide range of flow problems. For
the turbulent flow inside the nozzle the following values of these empirical constants was

selected: C1=1.44, C2=1.92, ck=1.00, o€ =1.30 and Cu=0.09.
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6.2.2 Near-Wall Modeling

The standard k-¢ turbulence model is valid mostly for the flo