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ABSTRACT

DEVELOPMENT AND APPLICATION OF DYNAMIC MODELS

FOR PREDICTING TRANSIT ARRIVAL TIMES

by
Yuqing Ding

Stochastic variations in traffic conditions and ridership often have a negative impact in

transit operations resulting in the deterioration of schedule/headway adherence and

lengthening of passenger wait times. Providing accurate information on transit vehicle

arrival times is critical to reduce the negative impacts on transit users. In this study,

models for dynamically predicting transit arrival times in urban settings are developed,

including a basic model, a Kalman filtering model, link-based and stop-based artificial

neural networks (ANNs) and Neural/Dynamic (ND) models. The reliability of these

models is assessed by enhancing the microscopic simulation program CORSIM which

can calculate bus dwell and passenger wait times based on time-dependent passenger

demands and vehicle inter-departure times (headways) at stops.

The proposed prediction models are integrated with the enhanced CORSIM

individually to predict bus arrival times while simulating the operations of a bus transit

route in New Jersey. The reliability analysis of prediction results demonstrates that ANNs

are superior to the basic and Kalman filtering models. The stop-based ANN generally

predicts more accurately than the link-based ANN. By integrating an ANN (either link-

based or stop-based) with the Kalman filtering algorithm, two ND models (NDL and

NDS) are developed to decrease prediction error. The results show that the performance



of the ND models is fairly close. The NDS model performs better than the NDL model

when stop-spacing is relatively long and the number of intersections between a pair of

stops is relatively large.

In the study, an application of the proposed prediction models to a real-time

headway control model is also explored and experimented through simulating a high

frequency light rail transit route. The results show that with the accurate prediction of

vehicle arrival information from the proposed models, the regularity of headways

between any pair of consecutive operating vehicles is improved, while the average

passenger wait times at stops are reduced significantly.
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CHAPTER 1

INTRODUCTION

Improvement of bus transit service quality in urban settings can benefit both transit users

and operators. From the users' perspective, better quality of service facilitates the trip-

making at less wait, transfer or travel time. From the operators' perspective, transit

demand may be stimulated because of providing reliable and accessible real-time

information. However, the characteristics of real-world transit operations (e.g., travel

times on links, dwell times at stops and delays at intersections) are stochastic. The

combined variations in ridership (e.g., passengers surge from connecting branches) and

traffic conditions (e.g., traffic congestion on roadways) further deteriorate

headway/schedule adherence, thus lengthen the average passenger wait time and degrade

the quality of service.

Providing timely updated transit information, such as vehicle arrival times,

departure times and delays, can reduce the negative impact of schedule/headway

irregularity on transit service. With the advent of Advanced Public Transportation

Systems (APTS), innovative and advanced models are required for predicting accurate

information to disseminate to customers. In addition, the predicted information can assist

transit agencies to timely restore service disturbances.

The APTS program, one of the major components in Intelligent Transportation

Systems (ITS), was initiated by the Federal Transit Administration (FTA) to encourage

the applications of emerging technologies in computers, communication, and navigation

for promoting the efficiency, effectiveness and safety of public transportation systems.

1
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The APTS technologies, such as Global Position Systems (GPS), Automatic Vehicle

Location Systems (AVLS) and Automatic Passenger Counters Systems (APCS), have

been implemented in various public transit systems to obtain precise real-time

information, including vehicle locations, speeds, and occupancies. Such information can

facilitate transit passenger information systems as well as transit planning and

management systems, and improve the overall service quality.

1.1 Problem Identification

Due to the stochastic nature of factors (e.g., traffic conditions and transit demand) which

affect transit operations, vehicle headways and travel times fluctuate over time and space.

Slight variations in headways may be amplified while propagating at downstream stops,

which may even cause pairs of vehicles to bunch up. Such a phenomenon significantly

influences schedule/headway adherence. Riders, relying on posted transit schedules to

arrange their departure times and transfers, will experience longer average wait times than

their expectation. This discourages them from using the transit system. In an urban area

like the city of Newark, New Jersey, where thousands of passengers rely on public transit

every day, schedule/headway deviations may increase average wait times and lengthen

travel times significantly. In addition, for certain routes offering intra- or inter- modal

connections (e.g., AIRLINK running between Newark Penn Station and Newark

International Airport), schedule/headway deviations may also increase passenger transfer

delays to other transportation modes.
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Accurately predicting vehicle arrival times while considering dynamic variations

affecting transit operations in urban networks is a challenging task. Transit operations are

influenced by various factors attributable to vehicles (e.g., buses and other traffic), the

infrastructure (e.g., roadways/tunnels, stops, terminals, vehicle control and power supply

systems), and human behavior (e.g., passengers and drivers). The highly inter-correlated

and time varied characteristics of these factors can hardly be well formulated by

conventional modeling approaches (e.g., regression and analytical models). Therefore, the

prediction models developed by those approaches may generate unreliable information

for the public. Moreover, inaccurate information may confuse and render ineffective

attempts by transit agencies to engage in real-time dispatching, scheduling and vehicle

routing.

1.2 Motivation

Transit operations are often disrupted inevitably by various stochastic factors mentioned

previously. Naturally, buses tend to bunch up on service routes. The resulting deviations

in headways increase average passenger wait as well as travel times. Advanced prediction

models are very critical and essential for providing accurate real-time information, such

as expected vehicle arrival/departure times and delays. These models should play an

important role in a variety of aspects (e.g., trip-planning, route guidance, service

management and operational control) for reducing the negative effects of service

disturbance. Thus, transit service quality can be improved.
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The proposed prediction models in this study should be one of the most important

elements in Traveler Information Systems (TIS), which are responsible for providing

accurately and timely updated vehicle arrival information. The predicted information can

be disseminated to travelers before trips or en-route through various media (e.g.,

telephones, pagers, kiosks, the Internet and cable TVs), allowing them either to arrange

departure times or coordinate transfers at a lowest cost in terms of travel time. Also, it

enables TIS to provide trip guidance, such as suggesting candidate routes with less travel

time or number of transfers according to a given of origin-destination pair.

In addition to TIS, the proposed prediction models should have the potential to

assist decision-making in transit fleet management and operational control (e.g.,

scheduling, dispatching, routing, control and signal priority treatment). For example, the

determination of appropriate vehicle operating speeds needs a variety of information,

such as the current and predicted traffic conditions (e.g., different levels of congestion),

passenger demand and occurrence of incidents (e.g., vehicle breakdowns). Currently, the

APTS can provide real-time information including vehicle locations and speeds. The

development of a sound prediction model is extremely essential for estimating

headway/schedule disruptions in advance, and timely initiating effective adjustments.

While advanced real-time prediction models may provide great opportunities for

improving transit service levels, an evaluation method is required to be developed to

assess the performance of the prediction models. Computer simulation is a cost-effective

approach for evaluating advanced prediction models while considering time varied transit

demand and traffic conditions. Various emulated real-time information and measures of

effectiveness (MOEs) generated by simulation, which may be difficult to be obtained
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from field studies, can provide the basis for identifying the most effective model among

many competing ones. Hence, the eventual field commitment will have a high probability

of success.

1.3 Objectives and Scope

This dissertation mainly focuses on developing dynamic models to accurately predict

transit (buses) arrival times. Five primary objectives frame this study.

1. Evaluate contemporary prediction methodologies and models.

Contemporary prediction models in transportation systems, developed by

implementing univariate forecasting models (e.g., probabilistic estimation, time

series), multivariate forecasting models (e.g., regression and state-space Kalman

filtering), and Artificial Neural Networks (ANNs) approaches are thoroughly

reviewed.

2. Develop dynamic models to predict transit (bus) arrival times.

The proposed advanced prediction models, including ANNs, Kalman filtering and

Neural/Dynamic (ND) models, focus on accurately predicting transit vehicle arrive

times at all downstream stops in urban settings. They are able to accommodate

random fluctuations (e.g., traffic conditions) in transit operations.

3. Develop a microscopic simulation program to simulate transit operations.

The simulation program is developed to simulate transit operations on integrated

transportation corridors (e.g., urban surface streets and freeways) while considering

time varied passenger demand and traffic conditions. The program is calibrated and
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validated through simulating an actual transit route and comparing simulation results

with field observations.

4. Evaluate the developed prediction models through the proposed simulation program.

The proposed prediction model is integrated with the simulation program

individually, while the accuracy of the prediction results is evaluated by conducting

reliability analysis.

5. Explore applications of the proposed prediction models.

Applications of the proposed prediction models on advanced vehicle control systems

are assessed through developing a real-time headway control model. The operational

impacts (e.g., headway variations and passenger wait times) are evaluated through

simulation.

1.4 Organization of the Dissertation

This dissertation is organized into seven chapters. In Chapter 1, the problem is identified

and the objectives and scope of the study are addressed. In Chapter 2, an overview of

current prediction methodologies and models is presented, while the review of micro-,

meso-, and macroscopic simulation models is also encompassed. In Chapters 3 and 4, the

development of the real-time prediction models and the applications are discussed,

respectively. The proposed microscopic simulation program developed through

enhancing CORSIM is described in Chapter 5, while the calibration and validation of the

simulation program are also addressed in this chapter. In Chapter 6, the results generated

by the proposed prediction and control models are demonstrated and finally, a conclusion
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of this dissertation is stated in Chapter 7. The overview of the dissertation is shown in

Figure 1.1.

Figure 1.1 Overview of the dissertation



CHAPTER 2

LITERATURE REVIEW

The literature review investigates contemporary prediction models (e.g., univariate,

multivariate and artificial neural network models) for transit operations that help to assess

the potential improvement of service quality through accurately and timely updated

arrival time information in the context of Advanced Public Transportation Systems

(APTS). In the review, simulation models (e.g., micro-, meso-, and macroscopic

simulation models) on transit operations as tools for providing various emulated real-time

information and MOEs are also discussed. Such simulation models can help to evaluate

the operational impacts of various traffic management and control strategies (e.g., real-

time vehicle prediction and control models).

2.1 Transit Arrival Time Prediction

Transit vehicle (e.g., bus) movements along routes are disturbed frequently due to

stochastic variations in vehicle travel times on links, random delays at intersections, and

dwell times at stops. If a transit vehicle falls slightly behind its schedule for any reason, it

will have more passengers than usual to pick up at the next stop, which increases arrival

delays and passengers wait times at further downstream stops. As a result, the vehicle

keeps falling further behind its schedule. The follower vehicle encounters fewer

passengers than usual and thus has less dwell time at stops. This situation may even cause

the follower vehicle to bunch up with its preceding vehicle (Lin, et. al., 1995; Chien and

Chowdhury, 1997). Such a phenomenon deteriorates the adherence to vehicle

8
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arrival/departure schedule and headway. The resulting large gaps between pairs of

vehicles discourage riders to use the transit system because of the increased wait times.

One way to reduce the wait time under this situation is to provide timely and accurate

information, such as vehicle arrival/departure times and expected delays. With that, users

can effectively reschedule their departure times (Federal Transit Administration,

Update' 98).

Currently, Automatic Vehicle Location Systems (AVLS) can provide real-time

information of operating vehicles, such as locations and speeds. However, that

information can not help much to alleviate user wait and transfer times without a decent

prediction system. For example, AVLS can not provide the travel time and delay

information twenty minutes later on a downstream link that users will be travelling on.

Therefore, it is essential to develop a reliable model for providing predicted vehicle

arrival and departure times. Such information can then be disseminated through Traveler

Information Systems (TIS) and accessed by travelers at their homes, work places,

terminal centers, wayside stops or on-board through a variety of media (e.g.,

TRAVELINK, Minneapolis, Minnesota; PA/CIS in New York City, NY; AZTech in

Phoenix, Arizona and SMARTBUS in Atlanta, Geogia). Thus, the travelers are able to

plan their trips and departure times for reducing their travel times (Abdelfattah and Khan,

1997; Federal Transit Administration, Update' 98).

The predicted information can help public transportation agencies in managing

and operating their systems (e.g., real-time dispatching, scheduling and control)

(Dougherty, et. al., 1993; Smith and Demetsky, 1995). Moreover, the headway/schedule

variations can be estimated accurately in advance. Therefore, a proper control action (e.g.,
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increase/decrease operating speed or dwell longer time at some stops) can be determined.

Such control can maintain a desirable level of service by dynamically restoring the

disruptions in schedules or headways.

Transit vehicle arrival times are affected by many factors, such as passenger

demands at stops, traffic control devices, right-of-way, roadway geometry, traffic

volumes, and other unexpected factors (e.g., weather conditions, incidents, and

construction activities). However, the time varied relationship between the predicted

arrival time and these factors is difficult to be formulated mathematically. The previously

developed models which can be potentially used for vehicle arrival prediction are

classified into three categories: (1) Univariate (e.g., probabilistic estimation and time

series), (2) Mutivariate (e.g., Regression and State-space), and (3) Artificial Neural

Networks. Each of these categories is discussed below.

2.1.1 Univariate Forecasting Models

The univariate forecasting models are designed to predict the value of a variable

(dependent variable) through describing the intrinsic relationship in historical data

mathematically, without considering external factors as explanatory variables. The

commonly used univariate forecasting models for the purpose of vehicle arrival

prediction include probabilistic estimation and time series models.

Probabilistic Estimation Models

Some previous studies (Turquist, 1978; Tally and Becker, 1987; Guenther and Hamat,

1988) estimated the vehicle arrival time at a stop by analyzing statistics and probability
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distributions. Based on field observations of vehicle arrivals at stops and the hypotheses

tests on arrival time distributions, probabilistic models were thus established. These

models are used to analyze the statistical characteristics of vehicle arrival times (e.g.,

means and variations among different stops) and the corresponding average passenger

wait times. However, the probabilistic models are not very helpful to predict arrival times

accurately in real-time, because they can not respond to dynamic changes in traffic

conditions and transit demands.

Turquist (1978) demonstrated that the predicted vehicle arrival times followed a

log normal distribution, which had a long tail to the right (late arrivals) while truncated to

the left (early arrivals). According to his observation, a vehicle was considered more

liably to be late than early. This is because a late vehicle usually encountered a larger

number of waiting passengers and longer dwell time, which caused further delays as the

vehicle traveled to downstream stops. Thus, the log-normal distribution, which was

consistent with the field observation, was used for estimating vehicle arrival times in that

study.

Tally and Becker (1987) suggested a symmetric exponential distribution (longer

tails at both sides) for estimating vehicle arrival times. His model assumed that vehicles

had equal probabilities of early and late arrivals. The data used in that study were

collected from 41 transit routes in TTDC (Tidewater Transportation District Commission

Virginia), which were divided into early and late arrivals. The exponential distribution of

vehicle arrivals was accepted after statistical testing.

Guenther and Hamat (1988) analyzed empirical data collected from four transit

routes at the Milwaukee County Transit Systems, Wisconsin. After conducting a
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hypothesis test, they found that the vehicle arrival times at a stop fitted a Gamma

distribution. This study indicated that the probability of early arrivals is relatively lower

than that of late arrivals because of heavy traffic and passenger demands.

Time Series Models

By describing stochastic patterns of observed data (e.g., trend, cyclical and seasonal),

time series models such as WMA (weighted moving average) and ARIMA

(autoregressive integrated moving average) models can relate future traffic conditions to

historical observations (Brockwell and Davis, 1991). Under an APTS environment, real-

time information can be obtained by traffic surveillance and communication systems

(e.g., AVLS) through various monitoring devices (e.g., detectors, ultrasonic beacons,

video image processors). The traffic data, recorded periodically (e.g., every 5-minute), are

used by time series models for short-term prediction of traffic volumes and vehicle travel

times (Okutani and Stephanedes, 1984; Stephanedes, Kwon and Michalopoulos, 1990;

Kwon and Stephanedes, 1994). These models with constant parameters (e.g., smoothing

and autocorrelation coefficients) have a short time lag for real-time implementation.

However, the accuracy of the prediction highly relies on the similarity between current

and historical traffic conditions.

Urban Traffic Control Systems (UTCS), developed by FHWA, are widely used by

transportation professionals for traffic demand prediction. The first generation of UTCS

(UTCS-1) used a WMA model to predict traffic volume at the next time interval (ranging

from 5 to 15 minutes) as the weighted average of recent measurements, while the

weights, called smoothing coefficients, were determined based on historical observations



13

charaterized by different types of days (e.g., weekdays, weekends and holidays), The

second generation of UTCS (UTCS-2) employed both recent measurements and historical

observations for volume prediction. The prediction model was formulated as a function of

historical average volume adjusted by a linear combination of residuals (deviations

between recent measurements and the corresponding historical average) (Okutani and

Stephanedes, 1984). UTCS-2 performed better than UTCS-1 because of its low mean

square errors. However, the reliability of both models highly depend on the collected

historical volume data. Since traffic demand may vary substantially from its historical

average in real-time, UTCS can not respond accurately to such variations.

ARIMA (autoregressive integrated moving average) models are one of the most

commonly used time series models for short term prediction, whose parameters (e.g.,

orders of autoregression and integration) were determined by Box-Jenkins, Akaike's

Information Criterion or Schwarz Bayesian methods (Delurgio, 1998). Previous research

on the application of the ARIMA models (e.g., seasonal ARIMA called SARIMA) for

traffic volume prediction did not show great superiority over other prediction approaches

(Kwon and Stephanedes, 1994; Smith and Demetsky, 1995). Sometimes these models

may even cause high inaccuracy under a dynamic traffic environment (Okutani and

Stephanedes, 1984). Recent studies on improving the prediction accuracy with ARIMA

models include the state-space ARIMA and the integrated ARIMA and Kalman filtering

models (Brockwell and Davis, 1991; Williams, et. al., 1998).
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2.1.2 Multivariate Forecasting Models

Different from univariate models, multivariate models can forecast and explain a

dependent variable with a mathematical function formed by a set of independent variables

(include external factors). The multivariate models may be a powerful analytical tool;

however, such models are still difficult to reveal the underlying cause-and-effect

relationship between the vehicle arrival time and those various affecting factors (e.g.,

passenger demands at stops, traffic control devices, roadway geometry, traffic conditions,

and other unexpected factors). The commonly used multivariate models, including

regression models and state-space Kalman filtering models, are discussed below.

Regression Models

As a conventional modeling approach for analyzing vehicle arrivals (Abkowitz, et. al.,

1984; Abdelfattah and Khan, 1997), regression models measured the simultaneous

influences of various factors affecting vehicle arrivals through correlation and significant

tests on field observations. Pre-specified functions (e.g., linear combination of

explanatory variables) are established while the parameters are determined by minimizing

the mean square error. However, due to the difficulty in capturing stochastic traffic

conditions, the regression models can not predict accurately. Additionally, to establish a

regression model, all selected explanatory variables have to be significant to the

dependent variable (usually measured by t-value), and independent between one and

another. Such a requirement may limit the accuracy of regression models to predict

vehicle arrival times for transit systems containing various inter-correlated

(multicollinear) and time varied factors.
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Abkowitz and Engelstein (1984) analyzed transit operations at Queen City,

Cincinnati. Factors, including traffic volumes, traffic control devices, parking restrictions,

travel directions, time of day, and passenger demand, were examined as explanatory

variables to the vehicle travel time. A linear regression model was developed in relation

to the transit travel time and distance, boarding/alighting passengers, and the number of

signalized intersections between stops. The model was tested by the data collected from

Route 44 in Los Angeles, while the results showed that the average of the predicted

arrival time could statistically represent the field average at a 95% confidence interval.

However, very large deviations between the predicted and observed arrival times were

found in that study, which deteriorated the reliability of the model.

Abdelfattah and Khan (1997) conducted a regression analysis based on the data

generated by simulating a transit route in Ottawa-Carleton, Ontario. Three scenarios,

including (1) general operation conditions, (2) high percentage of heavy vehicles and (3)

one-lane blocked, were simulated with TRAF-NETSIM. In that study, traffic density, link

length, the number of stops per link, and efficiency ratio (moving time/total travel time)

were identified as factors affecting vehicle link travel time. Both linear and non-linear

regression models were developed to estimate vehicle travel times at downstream stops

under the three scenarios. The developed regression models were tested by using the data

collected from a segment of the analyzed transit route, which only contains two

intersections. The results showed that the travel times predicted by non-linear models

(deviated from 0 to 60 seconds compared with field observations) had higher reliability

than those predicted by linear ones.
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Kalman Filtering Models

Kalman filtering is a statistical time series approach, which was originated from state-

space representations in linear control theory. Unlike regression models, the Kalman

filtering model can describe dynamic systems with its time dependent parameters (e.g.,

Kalman Gain), which can be dynamically optimized (Gelb, et. al., 1977; Stephanedes, et.

al., 1990). Kalman filtering models have been used for prediction in various areas such as

signal processing, numerical weather prediction, and aircraft tracking (Brockwell and

Davis, 1991).

In recent years, Kalman filtering models have been applied in various

transportation areas, such as predicting street traffic volumes (Okutani and Stephanedes,

1984) and ramp entering/exiting volumes (Stephanedes, Kwon and Michalopoulos, 1990;

Kwon and Stephanedes, 1994; Wall, et. al., 1998). These models accommodated the

dynamic variations in traffic conditions by dynamically updating the model parameters

through minimizing the prediction error. The Kalman filtering models have elegant

mathematical representations (e.g., linear state-space equations); however, establishing

Kalman filtering models that can deal with the multicollinear relationship among multiple

factors is still hard to achieve. In addition, the linearized approximation in Kalman

filtering models (Gelb. et. al., 1977) may neglect some important characteristics, such as

the non-linear reactions among these factors, which may cause prediction inaccuracy.

Okutani and Stephanedes (1984) developed a model for predicting short-term

traffic volumes in Nagoya City, Japan. In that study, the traffic volume was predicted as a

linear combination of measurements obtained from previous three time intervals. The
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parameters in the prediction model can be on-line adjusted (every 5-minute interval) with

a Kalman filtering model. The results were compared with those generated by UTCS-2,

and showed that the accuracy of the Kalman filtering model substantially outperformed

that of UTCS-2 (up to 80%).

In 1990, Stephanedes, Kwon and Michalopoulos developed a model to predict

ramp entering volumes during 6:00AM to 9:00AM for the Westbound of 1-35 corridor in

Minneapolis, Minnesota. In that study, the ramp entering volume of the next 5-minute

interval was predicted in real-time, and the parameters of the prediction model were

updated every 5 minutes with a Kalman filtering algorithm. The study showed that the

average of prediction errors ranged from 8.5% to 18.8%. Later, in 1994, they evaluated

three prediction models: UTCS-2, a Kalman filtering model, and an artificial neural

network (ANN), by comparing the predicted exit ramp volumes with the actual volume

for the same site. The prediction results showed that both the Kalman filtering model and

the ANN outperformed UTCS-2. Furthermore, the ANN demonstrated better performance

in terms of accuracy than the Kalman filtering model.

Wall, et. al. (1998) developed a model for predicting transit arrival times in real-

time by integrating two sequential components. These components were: (1) a Kalman

filtering model to track the location of a target vehicle by processing the data obtained

from AVL systems, and (2) a probabilistic model to predict vehicle arrival times based on

an assumed normal vehicle arrival distribution and current vehicle location on the route.

The prediction model was tested by data collected from two vehicle trips on a 30-minute

transit route (no data source was specified), and the results showed the deviations

between predicted and actual arrival times at a stop were less than 5 minutes. However,
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the state-space equation of the Kalman filtering model was found erroneous (Tavantzis

and Ding, 1999), which makes the prediction results presented by Wall's study spurious.

2.1.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) have been gaining popularity in transportation

recently (Hua, et. al., 1994; Chin, et. al., 1994; Dougherty, 1995). ANNs, a powerful

modeling approach, were motivated by attempting to simulate human brains, which can

quickly identify, understand, and deduce inferences by the experience learned from the

past. With versatile parallel distributed structures and adaptive learning processes, ANNs

seem a promising approach to describe complex systems such as transit operations

affected by various inter-correlated and time-varied factors.

Unlike the prediction models mentioned previously, ANNs do not have to specify

the forms of functions (e.g., state-space equations in Kalman filtering models), which

need sophisticated modeling techniques and parameter estimating processes for time-

varied and non-linear systems. A well-trained ANN can capture a complex relationship

between the dependent variable (output such as arrival times) and a set of explanatory

variables (input such as traffic conditions and passenger demands). Thus, the ANN is

extremely useful when the functional relationship between the input and output is hard to

formulate mathematically.

An ANN may consist of multiple layers of processing units (named neurons),

within which activated functions (either linear or non-linear) are contained. The data

process in an ANN can be feedforward (with data only processed from one layer to the
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next layer) or recurrent (with data processed from one layer to the next, previous, or even

the same layer). The ANN with only linear activated functions is equivalent to a

multivariable linear regression model (Warner and Misra, 1996). In addition, the ANN

may act as a time series model if it has a recurrent data processing structure with time

series input (Kalaputatu and Demetsky, 1995). It has been proved that a three-layer

feedforward network with sigmoid activated functions in its hidden and output layers can

represent any continuous function with a high degree of accuracy (Hagan, et. al., 1996;

Warner and Misra, 1996).

The learning process of an ANN can be viewed as an optimization problem. For

example, the synaptic weights of the ANN can be optimized through minimizing the

performance function (e.g., prediction error function in this study) for all training

examples. The learning procedure can be either off-line (trained by a complete set of

examples obtained before learning starts) or on-line (trained with examples obtained from

the analyzed system during operation). The selection of a proper ANN structure and

learning rule, though, depends on the characteristics of the analyzed system. In general,

heuristic and experimental procedures dominate the selection of these parameters. The

most often used learning rules are discussed below.

Supervised Learning Rules

The supervised learning rules are usually used when the desired output is available. Early

studies on supervised learning rules include Perceptron, ADALINE and MADALINE.

Perceptron was used for mapping linear relationships between input and output, while
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ADALINE and MADALINE can only deal with two-layer .ANNs (Maren, et. al. 1989).

Later, the back-propagation (BP) algorithm (Rumelhart, et. al., 1986) was demonstrated

to properly describe a complex relationship with multiple-layered ANNs. The BP

algorithm assumes that all neurons and synaptic weights are responsible for the difference

between the actual and predicted results. With the BP algorithm, the error (e.g., the sum

of squared errors (SSE), the mean squared error (MSE), the root mean squared error

(RMSE), or the mean absolute error (MAE)) is propagated backwards from the output

layer to its previous layers, and is adjusted through updating the synaptic weights. It is

worth noting that the BP algorithm is probably the most widely applied learning rule for

training ANNs today, mainly because of its excellent capability to generate correct

relationships between input and output (Hua, et. al., 1994; Dougherty, 1995).

The BP algorithm can be implemented in either an off-line or an on-line training

process. However, the training period is usually long because all training examples have

to be entered repeatedly until the synaptic weights are optimized (Warner and Misra,

1996).

Self-organized Learning Rules

Unlike the supervised learning rules, the self-organized learning rules work only on input

data (or input patterns). Self-organizing is usually applicable for classification or pattern

recognition when there is no desired output known before learning begins. For example,

in classification, the training data need to be categorized into different classes that are

unknown beforehand. During the learning process, the performance of ANNs is computed

(e.g., Euclidian distance). The winning neuron is identified (e.g., with the minimum
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distance) and updated by the "winner takes all" rule (e.g., only the synaptic weights for

the winning neuron are strengthened). Examples of self-organizing include Learning

Vector Quantization (LVQ) and Topology-Preserving Map (TPM) (Kohonen, et. al.,

1988). Both techniques are capable for pattern recognition, while TPM is specifically

more applicable to deal with topological input patterns. However, LVQ and TPM can

only be used for off-line training.

Unlike the aforementioned uni- and multivariable models, ANNs can be

established without specifying the form of the function. Thus, the restrictions on the

multicollinearity of explanatory variables can be neglected. However, ANNs never

reveal the function explicitly. Instead, it is buried deeply within the networks, which may

hinder the mathematical analysis (e.g., Hessian) and hypothesis tests. ANNs are often

referred to as black boxes, lack straightforward theoretical guidelines on choosing the

input variables, number of hidden layers, number of neurons on each layer, network

topology (e.g., fully and partially connected) and learning parameters (e.g., learning and

momentum rates). Therefore, the learning process has to be conducted on a space with

great complexity in order to search for the optimal solution.

Kalaputapu and Demetsky (1995) developed ANNs with time series features for

predicting vehicle schedule derivations (can be transformed to vehicle arrival times based

on posted schedules). Both feedforward and recurrent ANNs (e.g., Elman and Jordan

nets) were developed and evaluated based on data collected from AVL systems in

Tidewater Regional Transit, Virginia. Although only historical vehicle arrival data were

considered as model inputs, this pioneer work is encouraging for establishing ANNs for
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vehicle arrival prediction in real-time while considering various traffic conditions (e.g.,

traffic volumes, speeds and delays) and passenger demands.

As a prominent tool to solve complex problems, ANNs have been applied in a

variety of transportation prediction areas, which are shown in Table 2.1. It is notable that

the BP algorithm was applied predominantly. In those studies, ANNs have demonstrated

the potential to accurately predict traffic conditions (e.g., traffic volume, travel time and

speed, 0/D flow and queue length) on freeways (Hua and Faghri, 1994; Smith and

Demetsky, 1994; Zhang, Ritchie and Lo, 1997) and urban streets (Chin, Hwang and Pei,

1994; Chang and Su, 1995). The results showed that the ANN is a promising approach

for prediction compared with conventional approaches (e.g., regression and time series

models), since ANNs can handle complex and dynamic traffic characteristics adequately

under various situations (e.g., traffic congestion, lane blockage).

After recognizing the need for predicting vehicle arrival times and reflecting

various dynamic factors in real-time, various models are developed and evaluated in this

research, including ANNs, Kalman filtering models and other advanced prediction

models.
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Table 2.1 Previous prediction studies on application of ANNs in transportation

Author/Year Predicted	

Subject

Learning

Rule

Network

Structure

Decision

Variables

Objective

Function

Chang and Su

(1995)

queue

length

BP three-layer flow, occupancy, speed and

historical queue length

SSE

Chin, Hwang and

Pei (1994)

O/D flow BP three-layer Entering/existing

traffic volumes

MAE

Dougherty, Kirby

and Boule (1993)

traffic

congestion

BP three-layer flow, queue length, volume

ratio

RMSE

Hua and Faghri

(1994)

travel time BP two-layer traffic volume/blockage

index

SSE

Kalaputapu and

Demetsky (1995)

schedule

variance

BP three-layer scheduled bus arrive time/

schedule variance

MSE,

SSE
Smith and

Demetsky (1994)

traffic

volume

BP three-layer historical volume/speed RMSE

Wei and Yang

(1998)

Freight

load

BP three-layer Ecnomic growth rate,

industrial production index

and wholesale price index

RMSE

Zhang, Ritchie and

Lo (1997)

travel

speed

BP three-layer historical speed, density,

ramp entry rate

SSE

two-layer: one input and one output layers 	 three-layer: one input, one hidden and one output layers
SSE: 	 sum of squared errors 	 MAE: 	 mean absolute error
RMSE: root mean square error 	 MSE: 	 mean square error
BP: 	 Back-propagation learning rule

2.2 Transit Simulation Model

As a practical approach to evaluate complex systems, computer simulation is applied in

transportation widely (FHWA, 1996; Prevedouros and Wang, 1998; Ho, Chien and Ting,

1999). A bus transit system operating in a large-scale network while considering time

varied transit demand and traffic conditions has been simulated by Chien and Chowdhery

in 1997 and Chien and Ding in 1998. In this study, the simulation approach is used for
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evaluating the accuracy of developed prediction models for the following reasons. It is

relatively inexpensive to obtain various real-time data to estimate MOEs needed in the

study through simulation. In addition, simulation helps to experiment with different

prediction models under various traffic conditions and identify the most reliable one,

which facilitates the eventual field commitment.

According to the level of detail with which an analyzed transportation system can

be described, simulation models can be classified into three categories: (1) microscopic,

(2) mesoscopic and (3) macroscopic, which are discussed below.

Microscopic models (e.g., DRACULA, FLEXSYT II, MITSIM, CORSIM) can

describe vehicle/driver behavior in different traffic environments with a high level of

detail. For example, each vehicle can be identified by type (e.g., auto, carpool, truck and

bus/train), and driver characteristics (e.g., cautious and aggressive), while the stochastic

properties of driving behavior can be simulated individually (e.g., lane-change maneuver

invoking car-following logic and driver decision process). Microscopic models can

accurately describe the dynamic interactions among vehicles operating in mixed traffic.

Such models, however, usually require fairly detailed geometric and traffic data and a

large number of parameters (e.g., nodes, links, distributions of acceptable left-turn gaps

and driver types) for calibrating real-world networks as well as generating MOEs.

Mesoscopic models (e.g., INTEGRATION, DYNASMART, TRAF-NETFLO

Level 1) describe vehicles at a relatively lower level of detail than the microscopic ones,

while handling driving behavior at an aggregate manner in some situations. For example,

the lane-change decision of an individual vehicle is determined by an aggregate

characteristic on the target lane such as lane density rather than the detailed interactions
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(e.g., car-following logic) between vehicles. On the other hand, macroscopic models (e.g.,

TRAF-FREEFLO, TRAF-NETFLO Level 2) simulate both vehicles and driving behavior

in a low level of detail, such that the real driving behavior of each vehicle (e.g., lane-

change acceleration/deceleration, response lag time) can not be simulated at all. Thus, the

simulated traffic stream is represented by an aggregate traffic flow rate, speed and

density. Compared with microscopic models, mesoscopic and macroscopic models are of

less detail in their descriptions but their simulation speeds are faster than the microscopic

ones. The selection of proper simulation models is highly dependent on the purpose of the

application and the underlying features of the analyzed network (Ho, Chien and Ting,

1998).

DYNASMART (University of Texas at Austin, 1992) was designed to evaluate

dynamic route assignment strategies with the advent of Advanced Traveler Information

Systems (ATIS). DYNASMART is a mesoscopic model which simulates vehicles

individually according to aggregate speed-density relations, thus, more detailed vehicle

maneuvers can not be simulated.

INTEGRATION (Queen's University and M. Van Aerde and Associates, Lts.,

Canada, 1997), a mesoscopic model, can simulate large-scaled transportation networks

containing freeways and surface streets, while assessing effects of traffic management

strategies including adaptive traffic control, route guidance and traffic assignment.

INTEGRATION describes movements of each individual vehicle based on speed-flow

relationships of each link. A distinct feature of INTEGRATION is that it considers the

impact of ITS route guidance information in its vehicle routing logic. However,

INTEGRATION can not simulate special signal timing, such as a protected left-turn.
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DRACULA (University of Leeds, UK, 1993), a microscopic model, can simulate

traffic variations over time, while public transit operations on reserved lanes can be

enhanced. FLEXSYT II (Ministry of Transport, German, 1994), a microscopic model,

was developed to analyze the effects of dynamic control strategies, such as traffic signals,

HOV lanes and ramp metering. FLEXSYT II can simulate transit operations on both

exclusive and shared lanes. However, users are required to specify origin-destination

demand for every intersection since FLEXSYT II has no traffic assignment model.

MITSIM (Massachusetts Institute of Technology, USA, 1996), a microscopic

model, was designed for evaluating innovative ITS traffic control and incident

management strategies including signal pre-emptive control for transit vehicles. MITSIM

has a dynamic route guidance model, allowing users to choose routes according to current

traffic conditions.

TRAF (FHWA, 1992) contains a group of simulation models with different levels

of detail (micro- meso- or macroscopic), which can be used to evaluate various

transportation system management (TSM) strategies (e.g., ramp metering and traffic

signal control). In TRAF, NETSIM and NETFLO simulate surface streets, while

FRESIM and FREFLO simulate freeways. In addition, ROADSIM simulates two-lane

rural roads. TRAF provides users with the flexibility to select simulation models for their

specific needs.

The windows version 4.2 of TSIS/CORSIM (CORridor SIMulator), released by

McTrans (June, 1997), was developed by integrating two microscopic simulation models

in TRAF: NETSIM and FRESIM. CORSIM has a user-friendly graphical interface and

environment distributed with the Traffic Software Integrated System (TSIS), which can



27

simulate traffic operations and control systems on integrated networks containing

freeways and surface streets.

In CORSIM, the stochastic lane-change and operational behavior of vehicles

operating in a complex and large scale roadway networks can be described. Transit

vehicles will change to a proper lane and gradually slow down when they are approaching

stops. CORSIM has been validated through various studies (FHWA, 1996; Prevedouros

and Wang, 1998; Ding and Chien, 1999e) and widely used for developing and evaluating

various advanced traffic management strategies (ATMS) (e.g., traffic assignment, signal

optimization and ramp metering control) (FHWA, 1996). However, CORSIM can not

properly simulate transit vehicles dwelling at stops (Chien and Chowdhery, 1997; Chien

and Ding, 1998).

The vehicle dwell time is considered as one of major factors influencing the

regularity of vehicle headways, especially for a long line with heavy ridership (Lin and

Wilson, 1992). Most of the previous studies estimated dwell times according to the

numbers of boarding and alighting passengers and average boarding/alighting time

(Koffman, 1978; Vuchic, 1981; Lin and Wilson, 1992; Eberlein, et. al. 1998; Chien and

Ding, 1998). Some studies (e.g., Adamski and Turnau, 1998; Chien and Schonfeld, 1997)

estimated vehicle dwell time based on the mean headway.

Koffman (1978) suggested that a vehicle delayed at a stop by 4.3 seconds for each

boarding passenger and 2 seconds for each alighting passenger, based on the data

collected from a transit route in Cambridge, Massachusetts. Vuchic (1981) estimated

dwell times for vehicles with different number of doors, while the numbers of
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boarding/alighting passengers and average boarding/alighting time were considered as

decision variables.

Lin and Wilson (1992) developed regression models to estimate vehicle dwell

times for a high frequent LRT system based on empirical data (Boston Green Line). The

effects of passenger crowdiness were analyzed while considering the numbers of

boarding/alighting passengers and standees.

In CORSIM, however, the vehicle dwell time is determined by a user specified

mean dwell time and a random number generated from an embedded distribution, rather

than the actual number of boarding/alighting passengers arriving during vehicle inter-

departure time. Thus, CORSIM can not properly model transit operations from this point

of view, especially when handling vehicles dwelling at stops (Chien and Ding, 1998).

After evaluating the advantages and disadvantages of various simulation models,

a simulation program is developed here by enhancing CORSIM. In this simulation

program, the vehicle dwell times are determined based on the numbers of boarding and

alighting passengers as well as the time-dependent vehicle inter-departure times

(headways). The simulation program can provide a reliable testing environment to

emulate transit operations and the surveillance and communication systems in a real-

world traffic network. In addition, the models developed in this study for the prediction

of vehicle arrivals are evaluated through the enhanced program.



CHAPTER 3

METHODOLOGY

Several models developed for predicting vehicle arrival times are discussed in this

chapter, including a basic model, a Kalman filtering model, two Artificial Neural

Networks (ANNs) (link-based and stop-based) and two Neural/Dynamic (ND) models.

The ND models are developed by incorporating an ANN (either link-based or stop-based)

with a Kalman filtering model. As a major component of the proposed ND models,

ANNs are established to predict vehicle arrival times, which can capture the time varied

relationship between the vehicle arrival time and its affecting factors. The Kalman

filtering model, another component of ND models, can adjust on-line the prediction error

caused by different degrees of traffic congestion. The reliability of the proposed

prediction models is evaluated through the simulation program, which is discussed in

Chapter 5.

In this chapter, the basic prediction model is described in Section 3.1, while the

ANNs and the Kalman filtering model are discussed in Sections 3.2 and 3.3, respectively.

The ND models and a brief summary are presented in Section 3.4.

3.1 Basic Prediction Model

The basic model proposed here can predict vehicle arrival times at all downstream stops

by simply projecting the current average link speeds to the near future. In the basic

model, the vehicle arrival time at any downstream stop is estimated by adding up the link

travel times to downstream stops according to real-time information (e.g., average link

29
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speeds). Note that a link on a transit route can be defined by a pair of upstream and

downstream nodes, which can represent either a signalized or unsignalized intersection.

Assume that two consecutive stops i-1 and i have n links in between and there is a vehicle

k traveling towards stop i at time t, as shown in Figure 3.1. At time t, the estimated

Figure 3.1 A transit route with the basic model

arrival time E;; ), for vehicle k at stop i is its departure time pk,i-1 at stop i-1 plus the

travel time A(t)k,i from stop i-1 to i.

In Eq. 3.1,	 is either known at time t (i.e., pk,i-1 ≤ t , Vk,i) or otherwise can be

estimated ( pk,i-1 > t , Vk, i ) (refer to Eq. 3.12), while AT ; (i = 1, 2,...,S) can be obtained

based on current average link travel times as pk,i-1 > t ,

where PI represents the average speed of link j at time t, represents the length of link j

(j=1, 2, ...,n), and	 is the distance between stop i and its immediate downstream
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intersection. Note that /j (j = 1,	 n) represents the links between stops i-1 and i. If

pk,i-1 	(vehicle k has already departed from stop i-1 at time t), the distance from the

current vehicle location to stop i should be considered instead. By substituting Eq. 3.2

into Eq. 3.1, the vehicle arrival time can be estimated by Eq. 3.3

A reliability analysis for Eq. 3.3 is required for evaluating the accuracy of

estimated arrival times. The root mean square error (RMSE) obtained from Eq. 3.4 is

selected for assessing the reliability of the prediction results,

where N represents the sample size. Eq. 3.4 shows that the closer E(t)k,i to the actual

vehicle arrival time Act , the lower the prediction error RMSE, indicating higher accuracy

of the predicted arrival times.

3.2 Artificial Neural Networks (ANNs)

As a powerful modeling approach, Artificial Neural Networks (ANNs) have

demonstrated the potential to capture complex relationships between inputs and outputs

of dynamic systems (e.g., a transit system). Therefore, the ANN approach is used here to

predict vehicle arrival times at downstream stops, while time varied transit demand and

traffic conditions are considered. The interconnected structure and Back-propagation

(BP) learning rules used to establish the proposed ANNs are discussed below.
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3.2.1 Introduction to ANNs

Of the many structures (e.g., feedforward, recurrent) available for ANNs, the multilayer

feedforward network (e.g., one input layer, a number of hidden layers, and one output

layer) with sigmoidal activation functions is chosen, due to its capacity to adapt to

complex systems. As shown in Figure 3.2, each neuron on a layer connects to all neurons

on the next layer with weighted and unidirectional links. The neurons on the input layer

simply transmit the input data (factors affecting vehicle arrivals) onto the first hidden

layer, while the neurons on the hidden layers contain non-linear transfer functions (e.g.,

sigmoid functions) to process the weighted sum of all inputs. Thus, the output of a layer

will be the input of the next layer. Such a fully inter-connected and parallel distributed

structure enables ANNs to describe complex systems such as transit operations within

which various factors are inter-correlated and time varying.

Given the observed input/output data examples, an ANN can be trained by a

properly designed learning procedure (e.g., Back-propagation) to estimate the relationship

between inputs and outputs. During the training process, the synaptic weights can be

optimized through minimizing the performance functions (e.g., total error functions) of

all training examples. Therefore, the well-trained ANN is able to predict information such

as vehicle arrivals adequately (Chien and Ding, 1999a; Ding and Chien, 1999f). The

Back-propagation (BP) leaning algorithm, which has been widely applied for prediction

because of its desirable reliability (Kalaputapu and Demetsky, 1995; Chang and Su,

1995; Hagan, 1996), is selected to train the proposed ANN in this study.



Figure 3.2 Configuration of ANNs for transit arrival time prediction

The BP algorithm coded for this research uses a steepest-decent gradient method

to minimize the prediction error over all N training examples (input/output data). The

error function er is defined by the sum of squared errors and formulated as

where	 and .5)19 represent the observed and predicted values (e.g., vehicle arrival times)

for the pth training example, respectively.

By applying a BP algorithm for training the ANN, there are k o inputs for the pth

training example (k0 is the number of factors affecting vehicle arrivals such as volumes,
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speeds, and delays on links) transmitted from the input layer to the output layer, and the

predicted value can be generated. As shown in Figure 3.3, the j th neuron (j = 1, 2,...,

kl) on the hidden layer receives the weighted sum of all inputs from the neurons on

Figure 3.3 The j th neuron on the /th hidden layer

the (l-1)th layer and processes them with the transfer function (e.g., sigmoid function).

The output 4 1 from the j th neuron on the lth hidden layer can thus be obtained as

(Warner, et. al., 1996)

Eq. 3.6 represents a sigmoid function, where ω[l-1 ] j,i is the synaptic weight between the ith

neuron (i = 1, 2,..., kl-1) on the (/-1) th layer and the j th neuron (j = 1, 2,..., kb on the lth

hidden layer.
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Therefore, the neuron on the output layer will process the inputs el (i = 1, 2,...,

lc„) from the nth hidden layer, and the predicted .1)p can be obtained from Eq. 3.7.

where ω[n] 1,i is the synaptic weight between the neuron (i = 1, 2,..., kn) on the nth hidden

layer and the neuron on the output layer.

By substituting Sip (p is the index of training examples) into Eq. 3.5, the

prediction error e r can be obtained. In order to minimize e„ the synaptic weights linking

two consecutive layers are optimized by implementing the BP algorithm. The suggested

adjustment of Δω[l] j,i is (Rumelhart, et. al., 1986)

where 77 represents the learning rate in the BP algorithm ( 77>0) and scales the changes in

col") during the optimization process. .A large value of 77 can speed up the process;

however, the learning process may be unstable (e.g., wild oscillations) because of the

large changes in adjusted synaptic weights. On the other hand, a small value of 77 may

lengthen the learning period (Hagan, et. al., 1996).

The purpose of introducing the momentum rate y (usually ranging between 0 and

1) and the previously adjusted weights 	 into Eq. 3.8 is to increase the convergence

speed and bound the changes in synaptic weights, thus prevent the oscillations. In order

to efficiently select optimal 77 and y , a heuristic procedure (Darken and Moody, 1992;
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Wei and Yang, 1998) is used in this study. With Eq. 3.8, the synaptic weights ω[n] l,i

linking the nth (last) hidden layer and the output layer are the first set of synaptic weights

to be adjusted using Eq. 3.9:

where δ1 = ŷp(yp - ŷp)(1 - ŷp) is called the local delta responsible for the synaptic

weights for the output layer. Therefore, the synaptic weight ω[l-1] j,l linking two layers l-1

and 1 (l = n, n-1,...,1) are adjusted by Eq. 3.10

where (5 . 1/ 1 =	 5,V+ 11 	x VI (1— x[l]j ) is the local delta for lt h layer, which is
i=i

determined by the local delta 8/ 1 +11 (i = 1, 2,...,	 propagated from the (l+1)th layer.

Note that if / is equal to n, 8/ 411 denotes the local delta for the output layer 81 . Based on

Eqs. 3.9 and 3.10, all synaptic weights can be adjusted backwards from the output layer

to the input layer, as illustrated in Table 3.1.

The process of adjusting synaptic weights can be regarded as performing the non-

linear fitting over all training examples. The training examples are entered cyclically until

the synaptic weights converge, while the prediction error for all N training examples is

minimized. The proposed ANN with such a highly inter-connected structure and optimal

synaptic weights can thus capture the time varied relationship between input and output

of the analyzed system.



Table 3.1 Summary of the BP algorithm for the pt h training example

37

The training examples could be obtained from the data collected on site or from

simulation outputs. The collected data are pre-processed (e.g., sorting data into different

categories such as training and testing data sets and removing redundant/erroneous data)

before starting the training process. This pre-process can increase convergence speed

during the learning period, and increase the reliability (accuracy) of the predicted results.
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3.2.2 Prediction of Transit Arrival Times with ANNs

For predicting vehicle arrival times, a variety of real-time data are collected and

processed in this study, including those affecting traffic conditions (e.g., link volumes,

occupancies, speeds and delays) and transit operations (e.g., vehicle arrival and departure

times, dwell times, numbers of boarding/alighting passengers). These data can be

collected by traffic or transit monitoring systems (e.g., detectors, autoscopes, AVLS,

APCS) or extracted from simulation results. Considering that vehicle arrival times can be

captured by either accumulating the travel time at each link or estimating stop-to-stop

travel times directly, both link-based and stop-based ANNs are developed. The two

ANNs are designed with different structure handling different real-time data, as discussed

next.

Link-based ANN

The link-based ANN is designed to predict vehicle arrival times by accumulating vehicle

travel times on all traversed links between a pair of stops. Assuming that between two

consecutive stops i-1 and i (Figure 3.4), there are m links numbered from 1 to m from

upstream to downstream. At time t, the predicted arrival time E;;,1 for vehicle k at stop i

can be determined by adding the total vehicle travel time 	 over the m links to the
J=1

departure time	 from stop i-1, such that



Figure 3.4 A transit route with link-based travel times

where p, , ;_1 (i.e.„ Vk , i) is estimated based on the predicted vehicle arrival time E„ (;)

and dwell time 	 of vehicle k at stop i-1,

The duration of dk,i-1 is determined by the number of boarding/alighting passengers

incurred during the departure time of vehicle k-1 and arrival time of vehicle k at stop i-1

(Chien and Ding, 1998; Ding and Chien, 1999f).

In Eq. 3.11, E 1-'1 1 can be predicted by ΦL (•) , a function of Xj (t)
J= 1

[x 1 j (t), x2 j (t) ,	 n j (t)]T 	= 1, 2, ..., m) representing those factors that may affect

vehicle link travel times (e.g., link volumes, speeds and delays). Xi (t) can be obtained

from real or simulated traffic surveillance systems, while ΦL (•) can be captured by a

well-trained ANN.
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The configuration of the link-based ANN is shown in Figure 3.5. The number of

boarding/alighting passengers are generated assuming that a passenger origin-destination

Figure 3.5 Configuration of the link-based ANN

(OD) demand matrix is given, and passenger arrivals at stops follow Poisson

distributions. Since the dwell time	 of vehicle k at stop i-1 can be estimated, the

departure time pk,i-1 from stop i-1 can be obtained. Meanwhile, the vehicle travel time

from stop i-1 to i is predicted by (ΦL (•) . Thus, the vehicle arrival time	 at stop i can

thus be determined.
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Stop-based ANN

Unlike the link-based ANN, the stop-based ANN estimates the vehicle stop-to-stop travel

time directly, which is determined by aggregate traffic conditions (e.g., means and

variances of link volumes, speeds and delays) of all traversed links between a pair of

stops. Thus, the interaction of traffic conditions among links can be considered as a factor

influencing vehicle travel times. As shown in Figure 3.6, at time t, the predicted

Figure 3.6 A transit route with stop-based travel times

arrival time E;/,) for vehicle k at stop i can be obtained by the sum of the vehicle

departure time pk,i-1 at stop i-1 and the stop-to-stop travel time predicted by O s (Z(t)) ,

where	 is the departure time for vehicle k at stop i-1. In Eq. 3.13, O s (•) is a

function of an n by 1 vector Z(t), which contains factors (e.g., the average and standard

deviation (SD) of traffic volumes, speeds and delays among the m links) affecting stop-
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to-stop travel times. O s • represents the stop-based ANN, which predicts vehicle stop-

to-stop travel times.

The configuration of the stop-based ANN is shown in Figure 3.7. The dwell time

Figure 3.7 Configuration of the stop-based ANN

dk,i-1 of vehicle k at stop i-1 is estimated based on number of boarding/alighting

passengers during the time-dependent headway between vehicles k-1 and k. Thus, vehicle

departure time pk,i-1 from stop i-1 can be obtained. Since the vehicle travel time O s 0

from stop i-1 to i can be predicted by a well-trained stop-based ANN, the vehicle arrival

time E;(, 11 at stop i can be determined.
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3.3 Kalman Filtering Model

Kalman filtering, a statistical time series modeling approach originated from state-space

representations in linear control theory, has been applied in the transportation area for

prediction in recent years (Stephanedes, Kwon and Michalopoulos, 1990; Kwon and

Stephanedes, 1994). Such a modeling approach has the potential to accommodate traffic

fluctuations adequately with its time-dependent parameters (Kalman Gain), which can be

adjusted dynamically by applying the Kalman filtering algorithm.

Assume that a segment of a transit route has two stops i-1 and i, as shown in

Figure 3.8, while vehicle k departs from stop i-1 at time t. The leading vehicle k-1 has

departed from stop i, while the follower vehicle k+1 is still heading to stop i-1.

Figure 3.8 A transit route with the Kalman filtering model

The estimated arrival time E (;) of vehicle k at stop i at time t can be obtained by

the sum of the vehicle departure time p k , i- 1 at stop i-1 and the stop-to-stop travel time,

which can be formulated as a non-linear function T(• of the factors affecting vehicle

operations, such as link volumes, speeds and delays.



where Ψ(•) is a function of vector Y(t) = [y1(t), y2(t),• • • , yn (t)]T representing various

factors affecting vehicle travel times. By assuming that Ψ(•) is a linear combination of

Y(t) (Brockwell and Davis, 1991), the prior' predicted arrival time for vehicle k at stop

i, called Ek,i(-), can be formulated as

where Θk,i(—), an n by 1 Jacobian vector, can be obtained when the leading vehicle k-1

arrived at stop i (refer to Eq. 3.21). The residuals of the approximation of TO in Eq.

3.14 with the linear combination Ok i, (—)Y(t) in Eq. 3.15 are represented with v(t)

which can be described as uncorrelated random noise (zero mean, covariance R(t))

(Delurgio, 1998). Because such linearization may cause a prediction inaccuracy, the

Kalman filtering algorithm is thus introduced to update Ek j (—) on-line by optimizing the

Jacobian vector Θk,i(—) , as discussed below (Gelb, et. al., 1977).

Suppose that the updated Jacobian vector 0 0 (+) can be represented by the prior

Jacobian vector O ki (—), which is disrupted by an uncorrelated noise vector (Okutani and

Stephanedes, 1984)

where w(t) is a n by 1 random noise vector (zero mean, covariance matrix Q(t)). In Eq.

In the dissertation, - and + denote prior and after updating with Kalman filtering algorithm, respectively.
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3.16, since the updated Jabobian vector Θk,i (+) contains noise, the Kalman filtering

algorithm is applied to obtain the optimal estimation Θk,i(+) .

where ρk-1,i is the difference between the actual and estimated stop-to-stop travel times

of vehicle k-1 at stop i. In Eq. 3.17, a n by 1 Kalman Gain, K (t)k,i , can be obtained in real-

time based on the prior error covariance matrix Mk,i (-) for vehicle k (Gelb, et. al., 1977)

In Eq. 3.18, R(t) is the covariance of noise v(t) , such that R(t) = E [v(t)2], while the

prior n by n error covariance matrix M k j (—) of vehicle k can be determined, after the

arrival of the leading vehicle k-1 at stop i.

By substituting Eq. 3.18 into Eq. 3.17, the optimal estimation Θk,i (+) can be

obtained, and then the predicted vehicle arrival time E k i (+) of vehicle k at stop i can be

updated as

The extrapolation of the algorithm for predicting the arrival time of follower

vehicle k+l at stop i includes calculating the prior error covariance matrix Mk+1,i (-) and

the prior Jacobian vector Θ k+1,i (—) (Gelb, et. al., 1977). The n by n matrix Mk+1,i (-) for

vehicle k+1 can be obtained from Eq. 3.20.
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where I is an n by n identity matrix, and Q(t) is the covariance of noise vector w(t) such

that Q(t) = E[w(t)w (t)T]. The Jacobian vector Θk+1,i  (-) , used to predict the arrival time

of the follower vehicle k+1, can be formulated in Eq. 3.21 (Gelb, et. al., 1977),

Thus, the arrival times of all the follower vehicles at stop i can be predicted based on an

iterative process of Eqs. 3.15 through 3.19. Thus far, the Kalman filtering algorithm for

predicting vehicle arrival times is established and summarized in Table 3.2.

The equations for the Kalman filtering algorithm listed in Table 3.2 can be

regarded as optimal linear estimators (in the sense of minimizing prediction error). The

mathematical abstraction of the analyzed transit system can be described by the

prediction model and the Jacobian vector model in Table 3.2, whose parameters can be

on-line adjusted. Thus, the vehicle arrival times can be predicted. Clearly, the accuracy of

the prediction highly depends on how well the established Kalman filtering model fits

into the underlying relationship of dependent and independent variables in a real world

transit system.



Table 3.2 Summary of the Kalman filtering algorithm*
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3.4 Neural/Dynamic (ND) Models

Before we proceed with the formulation of Neural/Dynamic (ND) model, the

characteristics of ANNs and the Kalman filtering model should be further emphasized.

The ANNs have the ability to adapt to dynamic changes in a traffic environment because

of the knowledge experienced from historical data. Moreover, the ANNs can be trained to

recognize and ignore the spurious disturbance (noises) under adverse operating

conditions, thus preventing serious degradation or even catastrophic failure in

performance. However, the implementation of the BP training procedure needs extensive

experiments with all training examples. Moreover, the model performance is highly
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sensitive to the quality of training data and the choice of ANN structure (e.g., number of

neurons on each layer) and learning/momentum rates. Because of such a lengthy and

delicate training process, the parameters of ANNs (e.g., synaptic weights) are very

difficult to be adjusted on-line in a changing environment, which may mitigate the

performance of ANNs in real-time.

Unlike the BP training procedure for ANNs, the Kalman filtering algorithm only

needs the previous observation for parameter optimization. Therefore, the model

parameters (e.g., Kalman Gain and Jocobian vector) can be updated in real-time quickly,

adjusting to dynamic changes in the traffic environment. Nevertheless, such rapid

changes in parameters do not always lead to model performance improvement, and

sometimes may even result in the very opposite. The reason is that the Kalman filtering

model tends to respond to spurious disturbances with its ever-changing parameters, which

may cause distinct degradation in model performance in real-time operations.

The difference between the performance of ANNs and the Kalman filtering model

is often referred to as the stability-adaptivity dilemma (Hagan, 1996): parameters of a

prediction model should be stable enough to ignore the spurious disturbances while

adaptive enough to respond to the dynamic changes in a traffic environment. To achieve

adaptivity and maintain relatively stable performance in predicting vehicle arrival times

in real-time, Neural/Dynamic (ND) prediction models are proposed by integrating the

capabilities of ANNs and Kalman filtering to

(1) adequately capture the relationship between the vehicle arrival times and various

affecting factors with ANNs (either link-based or stop-based), and

(2) dynamically and gently adjust the prediction results from the ANN with the Kalman
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filtering procedure thus appropriately adapting to variations in the traffic

environment.

In the ND models, the estimated arrival time	 of vehicle k at stop i time t can

be described as

where	 Pk,i-1, as mentioned previously, is the departure time of vehicle k at stop i-1, while

AT, is the travel time from stop i-1 to i estimated by the ANN, such that

where Θ .L (•) and Θs (•) represent the predicted stop-to-stop travel times by the link-

based and stop-based ANNs developed in Section 3.2 (refer to Eqs. 3.11 and 3.13),

respectively. A Jacobian factor ekj is introduced into Eq. 3.22 to dynamically adjust AT I

with the Kalman filtering procedure. When Θk,i is equal to 1, Eq. 3.22 is equivalent to

one of the aforementioned ANNs.

The Jacobian factor Θk,i can be estimated iteratively with the Kalman Gain IC .,`

(refer to Eq. 3.18), as shown in Eq. 3.24:

where pk-l,i represents the prediction error (refer to Eq. 3.17) observed when vehicle k-1

arrived at stop i. In Eq. 3.24, the updated factor Θk,i (+) should only slightly fluctuate

around 1, which can avoid large adjustments in ANN outputs thus guaranteeing the

stability of the ND model. The procedure of the proposed ND model for predicting

vehicle arrival times are summarized in detail below.



Table 3.3 Summary of the ND model
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*Note: Prediction Model I: Prediction of stop-to-stop travel time with ANNs
Prediction Model II: Prediction of vehicle arrival time with the ND model

Convergence of the ND Model

The performance (convergence speed) of the ND models provides the foundation for

choosing model parameters, such as the noise covariance R in Prediction Model II as

listed in Table 3.3. In the table, the Kalman Gain K(t)k,i and the covariance of prediction

error Mk+l,i H for the ND model are obtained by
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The two equations can be solved iteratively, starting with M 0 , 1 (+) = M 0,1 . Therefore, for

vehicle 1, Kalman Gain K11 and the error covariance M2,1 (-) can be obtained as

For vehicle 2, K2,1 and M3,1 H can be similarly derived as

Hence, for vehicle k, Kk,i and Mk+l,i (-) can be derived as

Eq. 3.32 shows that, for a sufficiently large value of k, the covariance of the prediction

error M +l ( — ) converges to zero (Tavantzis and Ding, 1999).

As mentioned above, the prediction output from ANNs should only be updated

slightly in order to ensure the stability of the ND model. Thus, the Jacobian factor

Θk,i (+) in the ND model should not fluctuate dramatically. Since the Kalman Gain K(i)k,i

scales the amount of adjustment in Θk,l (+) (refer to Eq. 3.24), a small value of K j? that
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can avoid large changes in (+) is required. Since Eq. 3.31 denotes that a larger noise

covariance R results in smaller K ( t)k,i,large values ofRare preferred by the ND model.

However, R may influence the convergence speed of the ND model, as shown in Eq.

3.32, different values of R are evaluated by trial and error before choosing the proper

ones (Tavantzis and Ding, 1999).

The configuration of the ND model is shown in Figure 3.9, which implements the

following steps for on-line estimating/updating model parameters while predicting

vehicle arrival times.

Step 1. Initialize Jacobian vector 60 , H and the error covariance M0 i (—) for any stop i.

Step 2. At time t when vehicle k is ready to depart from stop i-1, predict travel time Ask ) ;

from stop i-1 to i with either link-based or stop-based ANN.

Step 3. Calculate Kalman Gain K(t) k,i based on predicted travel time Λ(l)k,i and the error

covariance Mk,i 	 (-).

Step 4. Estimate the Jacobian factor Θk,l (+) using the Kalman Gain	 K(t)k,i.

Step 5. Predict vehicle arrival time Ek,i(+) by on-line adjusting the stop-to-stop travel

time Λ(l)k,i predicted by the ANN with Jacobian vector 9 k ,, (+).

Step 6. Calculate error covariane M k+1,/ (-) and Jacobian vector Θk+1,i(—) for next vehicle

k+1.

Step 7. If stop i is not the last stop on the route, loop over to Step 2 for predicting arrival

times at other downstream stops.
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Step 8. Update the prediction error pk,i when vehicle k arrives stop i.

Summary

In this study, both link-based and stop-based ANNs are integrated with the Kalman

filtering model. The link-based and stop-based ND models (e.g., NDL and NDS,

respectively) will be evaluated through simulating a real transit route in Chapter 6.

The developed ND models are designed for predicting bus arrival times. They can

be applied to other transit modes, such as rail transit systems (e.g., light and rapid rail

transit). With exclusive or nearly exclusive (but not necessarily grade-separated) right-

of-way (ROW), particularly in congested areas (e.g., in central city or on urban arterials),

the operation disturbance of rail transit lines from automobile traffic is relatively small.

The ND models can be trained in a similar way as discussed above for a bus system.

Thus, the arrival times for rail transit vehicles can be predicted.
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Figure 3.9 Configuration of the ND model



CHAPTER 4

APPLICATIONS OF THE PREDICTION MODELS

In the advent of Advanced Public Transportation Systems (APTS), the developed

Neural/Dynamic(ND) models can be implemented in Traveler Information Systems (TIS)

for disseminating the accurately predicted vehicle arrival times to passengers. The

proposed link-based and stop-based ND models (NDL and NDS, respectively) are also

helpful for advanced transit control systems. With reliable predicted information, various

control strategies (e.g., dynamic dispatching, signal priority treatment and operational

control) may be initiated timely for alleviating the severity of the headway/schedule

disruptions on both transit users and operators.

This chapter addresses an application of the developed ND models to a dynamic

transit operation system. The potential impacts on passenger wait times and headway

variations are evaluated through the simulation program discussed in Chapter 5.

4.1 Introduction

Transit operations are frequently disturbed by many factors (e.g., random delays at

signalized intersections, passenger demand fluctuations, traffic congestion, and

unexpected events such as incidents and construction maintenance activities on the

roadways). The joint impact of these factors on vehicle operations increases the difficulty

of maitaining transit headway adherence. Riders, having longer average wait times than

their expectation, will be discouraged for using the transit system. Advanced transit

control strategies can modify transit operations in real-time to maintain headway

55
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adherence, and may reduce the average wait time. The measures of effectiveness (MOEs)

used for evaluating transit control strategies include stochastic variations of system

performance (e.g., headway/schedule variances) and average passenger wait times

(Koffman, 1981; Lin, et. al., 1995).

The operation control strategies for rail transit systems can be classified into two

categories: (1) manual vehicle control and (2) automatic vehicle control (Vuchic, 1981).

In the first category, drivers usually operate vehicles with the assistance of signal systems

(e.g., track-based train protection systems) to keep safe spacings between pairs of

successive vehicles. In the second category, operating vehicles are instructed by a

centralized computer system, while drivers are only functionalized for starting automatic

driving process or dealing with breakdowns.

In manual control, if a pair of consecutive vehicles running too close is detected,

the follower vehicle will slow down or stop manually depending on the color of the signal

observed by the driver. Therefore, a safe separation between vehicles can be guaranteed.

The manual control is considered effective for light demand routes, especially when the

operating speeds are lower than 45 mph (Vuchic, 1981). For high frequency routes with

heavy demand, the manual control system may reduce the average vehicle speed as well

as energy consumption due to frequent stoppings.

Unlike a manual control system, an automatic control system requires a

centralized computer system to guide operating vehicles after processing real-time

information (e.g., vehicle locations, speeds and delays) obtained from transit monitoring

and communication systems (e.g., AVLS). Such a control system can determine the

optimal speeds and accelerate/decelerate rates for each departure vehicle, based on the
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physical and operational (e.g., length, weight and braking ability and roadway conditions

such as curvature, grade percentage and superelevation) characteristics of the vehicle. The

control instructions will be transmitted to each vehicle for guiding its movements, which

can assist transit operators to considerably increase service frequencies without degrading

safety (Vuchic, 1981; Railway Technical Research Institute, Tokyo, 1998).

Previous studies discussed various advanced control models for holding or

speeding vehicles in different situations to keep uniform headways or pre-planned

schedules. Several holding control models (Osuna and Newell, 1972; Turnquist and

Blume, 1980; Abkowitz, et. al., 1984 and 1986) were developed to deliberately delay a

vehicle ahead of the schedule when it was on the route (e.g., reduce its operating speed)

or at selected stops (e.g., defer its departure time). The results showed that the

implementation of holding control may cause additional delays for on-board passengers

and increase vehicle travel times. Speeding control models (Koffman, 1978; Lin, et. al.,

1995; Eberlein, 1998) were developed to reduce vehicle travel times by increasing

operating speeds on the route or skipping stops. These models were applicable when a

vehicle fell behind schedule or had a long headway from its preceding vehicle. Among

various speeding control models, stop-skipping was often used to improve vehicle travel

speed and saved passenger wait times at downstream stops (Turnquist, et. al., 1980 and

1981). However, it sacrificed the wait time for passengers at the skipped stops as well as

frustrated the in-vehicle passengers who were destined for the skipped stops (Turnquist,

1981; Lin, et. al., 1995; Eberlein, et. al., 1998).

In the advent of APTS, great progress has been made toward developing or

implementing advanced control for transit systems (Federal Transit Administration,
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Update'98). The undergoing projects include Communications-based Train Control

(CBTC) for the New York City subway system and Advanced Automatic Train Control

(AATC) for the San Francisco Bay Area Rapid Transit (BART) District. CBTC is

designed to control vehicles through a wireless communication system, which can send

the instructions from the control center to the local computers installed in vehicles. CBTC

aims at replacing the signaling equipment (e.g., track circuits) currently used by the

system with more reliable computer-based signal systems. AATC, developed with

moving block signal control technologies, is expected to provide BART with the ability

to operate twice as many vehicles on their existing tracks. With AATC, higher capacity

can be achieved with desirable operating speed and safety.

In this chapter, a real-time headway control model is developed to maintain

desired headways between any pair of consecutive vehicles for high frequency light rail

transit (LRT) systems. Note that the headway discussed in this section refers to the inter-

departure time (time difference between the departure times of consecutive vehicles from

a stop). The model focuses on adjusting vehicle departure times in real-time based on its

optimal arrival time at the next stop, while considering the constraint of the maximum

attainable operating speed and the headways to its leading and following vehicles.

4.2 Assumptions

To develop a real-time control model for minimizing the total headway variance at all

stops, the following assumptions are made:
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1. Passenger arrivals at stops follow Poisson distributions. This assumption has been

used in various studies (Osuna and Newell, 1972; Turquist and Blume, 1980; Lin, et.

al., 1995; Chien and Schonfeld, 1997; Eberlein, et. al., 1998) and is reasonable when

vehicle operating frequency on the transit route is high.

2. The variation of passenger arrival rates and O/D demand distribution over stops and

time are given or predictable. Therefore, the number of boarding and alighting

passengers for a vehicle operating on the route can be calculated once the headway

between the vehicle and its preceding vehicle is known (Chien and Ding, 1998).

3. Vehicle overtaking is not allowed, which exists in most rail transit systems.

4. The control model handles all operating vehicles, while the control instructions to

vehicles are given only before departing from stops. Therefore, every vehicle is

assumed to operate with its full speed.

5. Only one vehicle receives control instructions at a time. For the situation that more

than one vehicle are departing from stops simultaneously (although it rarely occurs),

the leading vehicle will get the control instruction first, and then the following ones

will be instructed in sequence.

6. The vehicle arrival times at downstream stops can be actually predicted by prediction

models developed in Sections 3.2, 3.3 and 3.4 in this research. The accuracy of the

predicted arrival times is very important to estimate headway variances at stops.

Given the assumptions above, the real-time vehicle control model is formulated in

the following sections.
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4.3 Model Formulation

In 1957, Welding developed a model to estimate the average passenger wait time for a

transit route while considering stochastic (random) vehicle/passenger arrivals at stops.

The average wait time, E(W) , can be estimated if the mean headway E(h) and the

headway variance Q .2 (h) are known. In Eq. 4.1, E(h) can be treated as the scheduled

headway H (Adebisi, 1986). The average passenger wait time can thus be reduced by

minimizing the headway variance a-2 (h). The formulation of the total headway variance

for a transit route is discussed below.

Headway Variance Function

Assume that a transit route (Figure 4.1) has S stops where passenger arrivals follow

Poisson distributions. If there are N vehicles, numbered from 1 to N (from downstream to

upstream), having been dispatched onto the route, vehicle k is ready to depart from stop i-

1, whose next stop is named i.

At time t, the headway h(t)k,i between vehicles k-1 and k at stop i (i=1, 2, ...,S) can

be determined by

where pk-1,i and pk,i represent the departure times of vehicles k-1 and k at stop i,

respectively. Note that at time t, pro is either known if stop i has been served by vehicle

k (e.g., pk,i-1 ≤t,Vk,i) or otherwise(pk,i-1>t, Vk,i ) can be estimated by Eq. 4.3.



Figure 4.1 A transit route with the control model

where ak,i represents the arrival time of vehicle k to stop i (either known or predictable),

and do is the dwell time of the vehicle at stop i. Note that dk,i is equal to the number of

boarding passengers multiplied by the average boarding time tb ,

where	 is the hourly passenger arrivals at stop i, while the term (ak,i— pk-1,i ) denotes

the headway between the previous vehicle departure and the present vehicle arrival times.

Based on the headways between N-1 pairs of operating vehicles at time t, the

headway variance .711 1) observed at stop i can be formulated as

To formulate the objective total headway variance function, the impact of

passenger demand at a stop on the headway variance should be considered. For example,

at a stop with high passenger demand, the headway variance will result in longer average
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passenger wait and vehicle dwell times than that at low demand stops (refer to Eq. 4.1).

Such impact can be reflected in the objective function by imposing a higher weight factor

for the stop, which can be determined by Eq. 4.6.

If the demand at a stop increases, its weight factor w. in Eq. 4.6, is proportionally

increased. Thus, the objective function Tr ) can be formulated as a weighted sum of

headway variances for all stops, as shown in Eq. 4.7.

By substituting Eq. 4.5 into Eq. 4.7, the objective total headway variance function can be

derived as

By minimizing the objective total headway variance function Π( I) whenever a vehicle

departs from a stop, the headways can be regulated and average passenger wait time can

thus be reduced.

All equations developed to estimate vehicle arrival and departure times at stop i

are summarized in Table 4.1, in which vehicle k is assumed to depart from stop i-1. Note

that the arrival time ak,i and the departure time pk,i (k=1, 2, ..., N) in every equation

listed in Table 4.1 are either known or predictable. At time t, the optimal arrival time for

vehicle k at stop i, denoted by 413, is a decision variable to be determined by the
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proposed vehicle headway control model. By substituting departure times pc, (k=1,...,

N) formulated in Table 4.1 into Eqs. 4.2 and 4.5, the headway variance at stop i can be

obtained. Hence, the total headway variances for all stops can be determined by Eq. 4.8.

Table 4.1 Vehicle arrival and departure times at stop i

Constraints

Since the vehicle operating speed is always bounded (Vuchic, 1981) and less than the

maximum operating speed of 60 mph for most LRT systems, the optimal vehicle arrival

time e(t)k,i is anticipated to be greater than or equal to its earliest arrival time. Thus, the

arrival time constraints can be formulated as

where L(1:?,. represents the earliest arrival time at stop i that vehicle k can make, which is

the vehicle departure time at stop i-1 plus the minimum travel time from stop i-1 to stop i.



64

Real-time Headway Control Model

With the developed objective total headway variance function subject to the constraints,

the proposed real-time headway control model can be formulated as follows:

From the previous discussion, we found that headway k3 in Eq. 4.10 is

correlated to headway hind and dependent on the arrival time e(t)k,i . Thus, the headway

control problem formulated here is a constrained non-linear optimization problem. By

minimizing the total headway variance whenever a vehicle departs from stop i-1, the

optimal arrival time	 to the downstream stop i can be obtained, which is discussed

next.

4.4 Optimization

The first and the second derivatives of the total headway variance function are derived in

order to check the convexity of the objective function re ) and obtain the optimal

solution. The first derivative of n(') with respect to the arrival time e(t)k,ican be derived

from Eq. 4.6 as
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Given a constant passenger arrival rate /1 at stop j, ∂Πj(t)/∂ek,j(t) can be derived below:

Situation 1

At time t, if vehicle k is ready to depart from stop i-1, its departure times from stops 1

through i-1 are known. Therefore, the first derivatives of headway variance at these stops

are independent of the optimal arrival time el, ), , such that

Situation 2

The first derivative of headway variance at the next stop i with respect to e(t)k,i can be

derived by using the departure times of the N vehicles at the stop (refer to Table 4.1),

such that

In Eq. 4.13, pj is a constant factor depending on passenger arrival rate 2 .1 , such that

The deviation between actual headways h( t) k,j and the scheduled headway H is represented

by Δk,j  ,
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Situation 3

The headway variances at stops from i+1 to S are dependent on the optimal arrival times

(e.g., e(t)k,i+1,....,	 e(t)k,s, , respectively) which can be predicted based on e(t)k,i at stop i (refer to

Eqs. 3.11 and 3.12). Therefore, the first derivative of headway variance at these stops

with respect to e(t)k,i can be derived as

where (of and Δk,j can be obtained from Eqs. 14 and 15, respectively. Eq. 4.16 denotes

that the passenger demands at upstream stops i+1, i+2, ..., and j-1 contribute to the

headway variance g .(1 ) at stop j. This implies that the impact of passenger demand at a

stop on headway variance will be propagated at further downstream stops. It is one of the

primary reasons that transit vehicles bunch up as they move along the transit route.

The first derivative of the objective function with respect to e(t)k,ican be obtained

by the summation of Eqs. 4.12, 4.13, and 4.16. In addition, the second derivative of the

total headway variance can be formulated and found to be positive (Appendix A). Thus,

the objective function II ( ' ) is convex, and the minimum e (;' ) can be found by simply

using a line search algorithm (e.g., golden section or bi-section).

Considering the linear constraints formulated in Eq. 4.9, the following situations

are specified to search for the optimal solution e( t)k,i of the real-time headway control

model, as shown in Figure 4.2.



Figure 4.2 The optimal solution of the headway control model

Situation 1

At time t, if the minimum 41) is greater than the earliest arrival time it that vehicle k

can make. This makes 41) feasible and the optimal solution e(t)k,i is	 e(t)o, such that

Situation 2

when 41) is less than PP , then 41) is not feasible and the optimal solution eV should be

PI: )„ denoting that vehicle k will be controlled to depart from stop i immediately at the

maximum operating speed,
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4.5 Model Configuration

The configuration of the headway control model is shown in Figure 4.3. Whenever a

vehicle finishes serving a stop, the developed real-time headway control model

determines whether the vehicle's departure time should be postponed based on the

optimal arrival time to the next downstream stop. According to the vehicle operational

characteristics (e.g., accelerate/decelerate rates and the maximum attainable speed), the

vehicle can be instructed to arrive at its next stop at the optimal time. Such control is

more suitable for transit routes with substantiate exclusive right-of-way (ROW). For

transit vehicles operating with mixed automobile traffic such as street bus transit, the

difficulty of headway control increases because of ROW competition between transit

vehicles and other traffic.
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Figure 4.3 Configuration of real-time vehicle control model



CHAPTER 5

MICROSCOPIC TRANSIT SIMULATION PRPGRAM

A program is developed through enhancing CORSIM (CORridor SIMulator) for

simulating transit operations. New features are built into CORSIM to appropriately

determine the vehicle dwell time at a stop according to the number of boarding/alighting

passengers. The number of boarding/alighting passengers is dependent on the transit 0/D

demand between stops and the vehicle inter-departure time at the stop. In addition,

various emulated real-time data (e.g., vehicle arrival/departure times, vehicle dwell times

and number of boarding/alighting passengers at stops) and transit related MOEs (e.g.,

average passenger wait times at stops and vehicle journey time) can be generated,

collected and analyzed by the proposed simulation program. Thus, the program is also

applicable for simulating a transit monitoring and communications environment (e.g.,

Automatic Vehicle Location Systems (AVLS) and Automatic Passenger Counting

Systems (APCS)) as well as evaluating innovative strategies, such as the developed

Neural/Dynamic (ND) prediction models and the application of ND models to a real-time

vehicle control.

5.1 Introduction

CORSIM, a time-driven, microscopic and stochastic traffic simulation model, can

simulate traffic operations on urban corridor networks containing freeways and surface

streets. It has been applied extensively to a wide variety of areas by both practitioners and

researchers and is perhaps the most widely used traffic simulation model. The original

70
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CORSIM has the feature to simulate transit vehicle operations. However, it deals with

vehicle dwell times purely relying on the user-specified mean dwell time at each stop and

embedded distributions. Because of neglecting the impact of boarding and alighting

passengers when determining the duration of vehicle dwell times, simulation results can

not reflect realistic vehicle operations at stops. In this chapter, the proposed simulation

program, enhanced from CORSIM, is able to determine time dependent vehicle dwell

times and passenger wait times based on real-time information, such as passenger arrivals

at stops and headways between vehicles.

5.2 Assumptions

The simulation program is developed in this chapter to analyze transit (i.e., buses)

operations. Several assumptions are made while developing the program:

1. Passenger arrivals at stops follow Poisson distributions. Other passenger arrival

distributions can be generated if a user specified arrival distribution is embedded into

the program.

2. The average passenger boarding/alighting time is currently assumed to be 2 seconds.

This assumption can be relaxed by allowing users to specify average

boarding/alighting time for different types of stops and configurations of vehicles

(e.g., the number, location and size of doors).
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5.3 Features of the Simulation Program

A CORSIM based microscopic simulation program is developed to mimic conventional

bus transit operations in urban corridors. The simulation program is a time-driven

simulation program, in which individual vehicle movements can be simulated every

second during different time periods. Therefore, users can evaluate traffic operations

under a time-varied traffic environment. The program can simulate vehicle overtaking

and merging maneuvers, passenger arrival distributions and the interactions of transit

vehicles on other vehicles competing for the right-of-way. In addition, the program has

the capabilities to simulate number of lanes and turn pockets, and a wide range of

geometric and traffic flow conditions. Special information may be added into the

analyzed networks including incidents and temporal events (e.g., parking activities).

In the proposed simulation program, new features are developed for capturing the

fact that both the number of boarding/alighting passengers and the duration of the vehicle

dwell time are dependent on the vehicle inter-departure time. Seven modules are

developed and embedded with the program:

Module I. To determine boarding/alighting rates at stops

Module 2. To dispatch buses based upon user specified transit schedule

Module 3. To calculate number of boarding/alighting passengers at stops

Module 4. To estimate bus dwell times at stops

Module 5. To calculate passenger wait times

Module 6. To predict bus arrival times by a proposed prediction model

Module 7. To generate bus operational output for the estimation of MOEs
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The system configuration of the simulation program is shown in Figure 5.1.

Transit and other vehicles (e.g., trucks, and automobiles) operating in networks

constituted by freeways and surface streets can be simulated. Transit vehicles are

dispatched onto a network according to user-specified time table (the posted schedule).

They move along designated routes and serve passengers at stops, while the real-time

data (e.g., vehicle arrival/departure times, vehicle dwell times, and passenger wait times)

that affect transit operation performance are generated.

Equations are formulated next for determining the number of boarding/alighting

passengers, the durations of vehicle dwell and passenger wait times.

Numbers of Boarding/Alighting Passengers

The numbers of boarding and alighting passengers at each stop are determined by the

origin-destination (OLD) matrix of the analyzed transit route. Two matrices are

established for calculating boarding and alighting passengers, including a stop O/D and a

vehicle 0/D matrix. The stop O/D matrix is exactly the same as the user specified O/D

demand in the input file, while the vehicle O/D matrix represents the number of in-

vehicle passengers destined at each downstream stop.

The stop O/D matrix of the transit route serving S stops, denoted by 0 , is shown

below:
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Figure 5.1 Configuration of the transit simulation program
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where qi,j represents hourly demand originating from stop i (i=1, 2, ...,S) and destined at

stop j (j = i , i+1, ...,S). If i is equal to j, 4-, j is zero (no passenger originating from and

destined for the same stop).

The boarding rate qib denotes the hourly number of passengers boarding at stop i

and destined for all downstream stops, while the alighting rate 	 denoting the hourly

number of passengers alighting at stop j and originating from all upstream stops. b and

-4",„ are formulated in Eqs 5.2 and 5.3, respectively.

Once a vehicle is dispatched onto the analyzed transit route, an ID number is

assigned to the vehicle to identify every vehicle in the output file. After the vehicle picks

up all boarding passengers at a stop, the number of in-vehicle passengers traveling to the

downstream stops may be changed. Thus, the vehicle 0/D matrix should be updated once

the vehicle departs from the stop. The vehicle 0/D matrix B o , representing demand on

vehicle k traveling from stop i to i+1, contains in-vehicle passengers destined for different

downstream stops:



where Qi,j (i = 1, 2, ..., S-1; j = i+1,..., S) is the number of in-vehicle passengers

destined for downstream stop j. When vehicle k arrives at stop 1+1, the number of

passengers ΔQi+1,j boarding at stop i+1 and destined for stop j is

where "C I J is the passenger boarding rate from stop i+l to j. In Eq. 5.5, the vehicle

headway at stop i+1 is represented by (pk,i+l— Pk-1,i+1), in which vk-l,41 and Pk ,i+1

represent the previous and present vehicle departure times at stop i+l, respectively.

After serving all passengers at stop i+1, the vehicle O/D matrix is updated as

where Qi+l,j (i = 1, 2,..., S-2; j=i+2,..., S) is the number of in-vehicle passengers destined

for stop j and can be obtained from Eq. 5.7.

The total number of alighting passengers 	 at stop i+1, can be obtained from the

vehicle O/D matrix B k

In addition, the number of boarding passengers Qi+1,b from stop i+1 can be obtained from

Eq. 5.9.
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Note that the number of alighting passengers Q01 at the first stop and the number of

boarding passengers Qs b at the last stop are equal to zero.

Vehicle Dwell Time

The dwell time do for vehicle k at stop i has been formulated by Chien and Chowdlhury

(1997) as

where N is the last dwell interval within which the last passenger has boarded the vehicle.

In Eq. 5.10, if n=1, Adk j represents the dwell interval incurred by the boarding/alighting

passengers who arrived prior to the arrival of vehicle k at stop i

s
where tb is the average passenger boarding time, while 	 ∑qi,j(t)dt and Q„,

Pk-1,i j=1+1

represent the total numbers of boarding and alighting passengers at stop i, respectively. If

n is greater than 1, the general form of Δdk,i,n is the j th dwell interval equal to the

boarding time of wait passengers who arrive from t 1 to t2 .
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n-2
where t 1 is equal to ak + Ad, andd t2 is equal to ak +	 j , respectively. By

J :=1	 '	 '	

n-1

J=1 

summation of Eqs. 5.11 and 5.12, the dwell time for vehicle k at stop i can be formulated.

If the passenger arrivals follow a Poisson distribution, dk,i can be simplified as

where q,6 represents the average passenger boarding rate at stop i.

Passenger Wait Time

If passenger O/D demand distribution q ; (t) over time t between any pair of stops i and j

is known, the total wait time Wk,i for bus k at stop i incurred by the number of boarding

passengers Qi,b (refer to Eq. 5.9) is formulated in Eq. 5.14

Therefore, the average passenger wait time wk  for vehicle k at stop i is

If passenger arrivals are Poisson distributed, the passenger wait time Wk  for vehicle k at

stop i can be simplified as the average passenger wait time W ► multiplied by the number

of passenger arrivals:

where the average passenger wait time Wk/ can be approximated by Eq. 5.17:



where z is the ratio of the wait time to the headway between vehicles k-1 and k (e.g. z

0.5 for random passenger arrivals). Therefore, the total wait time Frio for bus k at stop i

can be obtained by substituting Eq. 5.17 into Eq. 5.16

5.4 Required Data for Simulating Transit Operations

A series of inputs and parameters are required for describing the traffic environment and

transit vehicle movement. They can be categorized as (1) supply characteristics, (2)

demand characteristics, and (3) simulation control commands.

5.4.1 Supply Characteristics

The required inputs from the supply side include the descriptions of the network

geometry, transit routes, transit vehicle types used in the service, prevailing traffic

conditions and control devices along the analyzed routes that affect the operation of

transit service.

(1) Network Geometry

The network geometry, containing one or multiple transit routes can be represented

by a series of stationary nodes (e.g., entries/exits and intersections) and directional

links (e.g., freeway segments, ramps, urban streets). All the stationary nodes should

be identified with coordinates that facilitate the program in locating them. Links are

defined by pairs of upstream and downstream nodes. The link geometry, including
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number of lanes and their lengths, grade, average speed and regulation (e.g., HOV

and reversible lanes of the link) should also be specified.

(2) Transit Route

A description of stationary nodes and link lengths provides the basic route

characteristics required by the simulation program. The stationary nodes along the

route consist of intersection nodes and entry/exit nodes. The inputs related to route

characteristics can be obtained from maps provided by the public transport operator;

roadway geometric, traffic and signal timing information available to local

transportation/traffic authorities; and field observation. Other than the location of

each stop, information related to the type of stops (e.g. protected or unprotected)

should also be distinguished. A stop is "protected" when a vehicle in dwell does not

block vehicles in a moving traffic stream. On the other hand, if a vehicle, while

serving passengers, blocks the moving lane, the stop is identified as "unprotected".

Stops can be classified according to their functional differences. A terminal can be

specified with a timetable where all vehicles must stop and wait till the scheduled

departure time, and vehicles must stop upon requests from wait and in-vehicle

passengers along the route.

(3) Vehicle Type

The program can handle up to seven different types of vehicles in a given simulation

session. Vehicles are described in terms of their lengths, capacities, passenger

servicing rates and vehicle velocity-acceleration profile. Passenger service rates

include mean passenger boarding and alighting rates at each stop, which are highly

dependent on the number of doors of vehicles and the way to collect fare. The
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construction of a vehicle velocity-acceleration profile requires the average desired

cruise speed, maximum attainable speed at zero grade, desired speeds and maximum

attainable acceleration/deceleration by the vehicle at zero grade. The velocity-

acceleration profile is mainly responsible for generating link travel times for all

vehicles.

(4) Traffic Condition

Traffic conditions in the analyzed transit network are represented by specifying

different traffic volumes and vehicle compositions entering into the network and

turning percentages at intersections during different time periods. The acceptable gaps

for turning and lane-changing maneuvers, car-following sensitivity factor, start-up

lost time and queue discharge headways can be calibrated to reflect actual driving

behavior. Performance characteristics for different types of vehicles such as length,

acceleration and deceleration rates can also be adjusted to simulate vehicle operations

under different geometric conditions (e.g., different radius of curves and percentages

of grade sections).

(5) Traffic Control Devices

Traffic control devices that affect transit operations and can be simulated by the

proposed program, include signals at intersections, signs (e.g., yield and stop), and

meters on ramps. Control devices can be specified by their locations, types (e.g.,

pretimed or actuated) and phase timings with different priority (e.g., protected or

prohibited).
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5.4.2 Demand Characteristics

The simulation program allows for demand variations over space and time. The program

requires passenger stop based origin-destination (0/D) demand matrices for specified

time periods. Again, provision is allowed to incorporate variations with the space and

time of the day.

5.4.3 Simulation Control Command

Input simulation control commands are responsible for the management of the simulation

process. They determine the lengths of each and total time periods of simulation, seed

values for random number generation, and required input/output options from the

simulation. A seed value should be provided to initiate the random number generations.

The use of an external seed value ensures the repeatability of a simulation session if

required. The single input seed value generates an array of secondary seed values (from a

uniform distribution), which are then assigned to individual stochastic generators in the

program.

The input options contain a series of cards with specific formats and identification

numbers. The data describing road geometry, traffic movements, signal timings, and

route features (e.g., locations of routes and stops) are required to be entered by category

in a proper sequence. Some transit related information including vehicle schedules and

passenger 0/D demands are entered through external files linked with CORSIM (Chien

and Ding, 1998). On the other hand, the output options are selected through input control
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commands. A number of output options can be activated simultaneously. The output

options available from the program are described in the following section.

5.5 Program Output

The program can generate results for deriving different output information as discussed

below.

(1) A detailed output that provides a summary of input specifications and pre-generated

vehicle departure times. The passenger 0/D information created by the pregeneration

session and later updated for each vehicle in simulation and the data collected for

coding the network are also in this category of output. This forms the base-level

output option of the simulation program. The output at this stage is amenable to

further analysis.

(2) An animation option that displays the operation of the service by means of the

computer animation interface TRAFVU (FHWA, 1996). In addition, this display is

useful in validating the simulated behavior by visual observation.

(3) The output provided by the program can be used to generate time-velocity and time-

distance trajectory diagrams of individual vehicles. This output intercepts the program

at the end of each one-second interval and retrieves vehicle acceleration, speed and

distance data.

As the program monitors each vehicle in the simulation, it is possible to collect

much more data during simulation than through field surveys. In addition, the collection

of simulation data excludes the problem of human error associated with field data

collection. Although the proposed simulation makes available a large amount of clean
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data, converting them into level-of-service measurements is hampered by the lack of

consistent definitions for the measurements. In this study, three basic measurements,

including travel time, reliability and wait time (Turquist, 1978) are calculated in the

analysis section of the program.

(1) Travel Time

The vehicle travel time is an important level-of-service measure for transit operators.

The mean and standard deviation of the stop-to-stop travel time are measured by

processing the data of travel speeds and locations of transit vehicles, which can be

obtained from an emulated AVLS environment provided by the simulation program.

The mean travel time per vehicle trip can be computed by averaging all individual trip

travel times over different time periods of a day.

(2) Reliability

Passengers are very concerned about the regularity of the public transport service

(Turnquist, 1978). The literature suggests that reliability measures could be based on

deviations from the schedule (Bly and Jackson, 1974), standard deviation of the

operating headways, and measures incorporating variability of transfer delays (Polus,

1979; Skinner, 1980; Turnquist and Bowman, 1980). Vandebona and Richardson

(1981) reported the application of root mean square of headway deviations from

scheduled headway as a measure of reliability. The standard deviation of vehicle

travel time, described under the travel time measurements, also reflects the reliability

of the service because it indicates the deviations in headways/schedules.
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(3) Wait Time

The wait time of the passengers also reflects the reliability of the service. Passenger

wait time begins to increase when vehicles deviate from their schedule and more

passengers experience long waiting periods. Vehicles with short headways can pick

up a relatively smaller number of passengers than those with long headways, thus

cannot compensate for the long wait time experienced by the larger number of

passengers. In the program, the passenger wait time is the time interval from when a

passenger joins the queue to the stop to the time at which the passenger boards the

vehicle. The total passenger wait time is not meaningful for comparison purposes as

the total number of passengers using the service may differ. Generally, wait time per

passenger is selected as the measure of wait time.

5.6 Model Calibration and Validation

To conduct credible simulation analysis, one must be confident that the results from the

proposed simulation program should represent real world transit operations reasonably

well. Although the program was enhanced from CORSIM, which has been extensively

validated during its development stage, procedures are taken in this study to further

ensure that the program output is adequately substantiated by the data collected from field

observation. Operation related data for bus Route #39 of New Jersey Transit Corporation

are collected, while the procedures to assess the reliability of the simulation program

include (1) the calibration of the program embedded parameters, (2) the validation of the

simulation program, and (3) the analysis of the simulation results.
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5.6.1 Data Collection and Model Calibration

The proposed simulation program was tested using data collected from Route #39 of New

Jersey Transit and local transportation agencies to ensure that the program can reliably

describe transit operations and produce outputs. The simulation experiment began by

collecting various data required for the program input. Detailed data including time

dependent traffic counts and signal timing at intersections along the route, were collected

from the site and local governments (Cities of Newark, Kearny and Harrison). Bus

operation data (e.g., arrival/departure times, stop-to-stop travel times, bus journey times,

and boarding/alighting demands) during morning peak periods (7:30AM-9:30AM) in

weekdays were collected on site and provided by New Jersey Transit Corporation. These

data were divided into two separate sets for calibrating and validating the simulation

program.

A 4.4-mile computer network containing a segment of Route #39 of New Jersey

Transit Corporation was established. The network contains a total of 142 nodes and 223

links, in which the route traverses 30 intersections (of which 26 are signalized) and serves

14 stops per direction, as shown in Figure 5.2. Bus operations in a peak hour were

observed with the simulation program. The default values of parameters (e.g., lane-

changing time, reaction time, driver type factor, percentage of cooperative drivers,

average passenger boarding time, capacity for bus stops, discharged headway and startup

delay) which may affect traffic operations on streets embedded in the simulation program

are identified, calibrated, and shown in Table 5.1. Other parameters, including default
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start-up delay and queue discharge headway distribution for a link, were adjusted and

shown in Table 5.2 (Chien and Ding, 1999d; Ding and Chien, 1999e).

Figure 5.2 Link-node diagram of Route # 39, NJ Transit Corporation
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Initial calibration of the program consists of using field-observed mean bus dwell

times at stops and travel times between stops. Also repeated adjustments of link "free

flow" speed and parameters identified in Tables 5.1 and 5.2 are made to fit bus arrival

patterns at downstream stops observed in the field. Improvements caused by changes to

the program are monitored by comparing the program output with the calibration field

data set. The primary parameters causing major discrepancies appear to be the passenger

boarding time, queue discharge headway, and start-up delay. The impact of these factors

on the average stop-to-stop travel time between stops #4 and #5 is summarized and

shown in Figure 5,3.

Table 5.1 Calibrated parameters
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Table 5.2 Start-up delay and discharge headway distributions

Start-up Delay

Mean

Driver Characteristic

1 2 3 4 5 6 7 8 9 10

Type*1 (Default) 2.0 sec 218 140 125 118 102 86 78 63 47 23

Type 2 (Default) 2.0 sec 258 190 143 114 95 76 57 38 29 0

Type 3 2.5 sec 156 135 116 108 98 92 85 78 70 62

Type 4 2.5 sec 147 131 124 112 103 89 82 76 71 65

Discharge Headway

Driver Characteristic

Mean 1 2 3 4 5 6 7 8 9 10

Type 1 (Default) 1.8 sec 170 120 120 110 100 100 90 70 70 50

Type 2 (Default) 1.8 sec 180 140 120 110 100 90 80 70 60 50

Type 3 2.2 sec 147 131 124 112 103 89 82 76 71 65

Type 4 2.2 sec 216 136 105 98 92 81 78 72 65 63

* Each type contains an array of percentage values applied to determine the start-up delay or discharge
headway for a vehicle on the specified link.

Figure 5.3 Impact of calibrated parameters on bus stop-to-stop travel time
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5.6.2 Model Validation

The proposed program is validated through comparing simulation outputs generated from

the calibrated program with field counterparts, such as the mean and the variance of bus

stop-to-stop travel times and journey times. The simulation validation process adopted in

this study is composed by the following comparisons: Graphical Comparison, Aggregate

Comparison, and Statistical Comparison, which are discussed below.

(1) Graphical Comparison: The graphical comparison is a subjective validation approach.

The graphical displays emphasize or reveal the aspects of data that are not easily captured

by numerical summaries or tabular representations. Diagnosing the displays is especially

useful for testing the results generated by the simulation program preliminarily.

(2) Aggregate Comparison: Aggregate means and standard deviations give general

indication of system performances in real world and in simulation. However, they do not

present an accurate trend or indication of how variables perform over time, what patterns

are created, or how much individual measurements deviate. Aggregate comparison, along

with the graphical comparisons of scatter plots, reveals the similarities and discrepancies

of the magnitude and changing pattern for variables.

(3) Statistical Comparison: A statistical analysis is crucial for validating the proposed

program based on sample data collected from the real world and simulated transit

systems. It is used for assessing the accuracy of the program, testing various hypotheses

and determining degree of correlation between both systems. The following indicators are

used for conducting statistical analyses of the simulation outputs,
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Mean Absolute Percent Error (MAPE)

MAPE measures the percentage error between simulation results and field data, which

can be obtained from Eq. 5.19

where n is the sample size, SIMU, is the simulation output, and FIELD ; is the field

measurement.

Root Mean Square Error (RMSE)

RMSE denotes the error between simulation results and field data measured in time (e.g.,

second), which can be determined by:

where n is the sample size, SIMU, is the simulation output, and FIELD, is the field

measurement.

Correlation Coefficient

Correlation coefficient CORRE measures numerically the degree of closeness between

simulation outputs and field data, which can be obtained as

where ids and ,u f represent the means of SIMU ; and FIELD ; (i = 1, 2,..., n), while

o and a f are the standard deviations of SIMU ; and FIELD ; (i	 1, 2,..., n),
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respectively. A coefficient of zero indicates no correlation, while a coefficient of 1

denotes significant correlation.

In this study, the validity of the program is assessed by analyzing mean and

standard deviation of bus stop-to-stop travel times and journey times. The preliminary

test of bus stop-to-stop travel times is conducted by comparing the scattered plots of field

observations and simulation results. A total of 130 samples were collected from 10 bus-

trips (at 14 stops) in the field, while 312 samples were collected from 24 bus-trips from

enhanced program and 312 samples were collected from 24 bus-trips from the original

CORSIM, respectively. The scattered plots of field observations and the corresponding

simulation results from enhanced and original CORSIM are shown in Figures 5.4(a) and

5.4(b), respectively. Both figures show that the stop-to-stop travel times tend to fluctuate

because of traffic congestion, signal delays and passenger demand. Comparing the two

figures, we found that the outputs generated by the enhanced CORSIM match the field

observations more closely.



Figure 5.4(a) Field and simulated stop-to-stop travel times (enhanced CORSIM)
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Figure 5.4(b) Field and simulated stop-to-stop travel times (original CORSIM)
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The standard deviations of stop-to-stop travel times are calculated based on field

observations and simulation results and shown in Figure 5.5, within which the difference

between the standard deviations of the two sets of samples is large. Observing day-to-day

service on the analyzed route, we found that the segments with higher standard deviation

of stop-to-stop travel times are associated with more numbers of signalized intersections

between a pair of stops or a short stop spacing (e.g., Stops #12-13). In order to capture the

variations of stop-to-stop travel times on those segments, more field data should be

collected.

Figure 5.5 Comparison of standard deviations of stop-to-stop travel times
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The mean and standard deviation of bus journey times per trip collected from the

study site and simulation are analyzed. For the 130 field data and the 312 simulation

outputs, the mean values of 21.03 and 20.25 minutes and the standard deviations of 2.25

and 2.52 minutes of bus journey times are derived, respectively. This indicates that the

enhanced CORSIM can capture the deviation of bus journey times more accurately than

that of the individual stop-to-stop travel times.

The statistical analysis of bus stop-to-stop travel times and journey times is

conducted by calculating mean absolute percentage errors (MAPE) and root mean square

errors (RMSE). The results of MAPE and RMSE of bus stop-to-stop travel times are

shown in Figure 5.6, where the RMSE ranges from 7 to 19 seconds. The larger value of

Figure 5.6 The MAPE and RMSE of predicted stop-to-stop travel times
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RMSE (e.g., 19 seconds) is incurred by buses operating on a segment between stops #1

and #2. Table 5.3 gives the MAPE and RMSE of stop-to-stop travel times and the

corresponding distances and the number of signalized intersections between pairs of

stops. After investigating the table, we found that the segments with higher MAPE and

RMSE of stop-to-stop travel times are caused by the short segment length and more

number of intersections (e.g., Stops #10-11, #11-12, and #13-14). If more intersections

are traversed within a short distance, buses will experience more random delays, which

accounts for the deviations between the field observations and simulation results.

Table 5.3 MAPE and RMSE of predicted stop-to-stop travel times

Stop-to-Stop

Index

Stop-to-Stop

Distance (ft)

# of

Intersections

MAPE

(%)

RMSE (sec)

1-2 4466 8 7.91 19.29

2-3 1003 1 16.41 10.73

3-4 1003 1 17.00 11.63

4-5 1056 1 10.77 7.33

5-6 422 1 17.61 9.84

6-7 1478 1 18.28 16.64

7-8 1312 1 12.16 12.3

8-9 980 1 17.26 16.56

9-10 581 1 18.10 16.80

10-11 552 2 23.21 18.99

11-12 1806 5 17.95 16.63

12-13 598 2 16.40 16.91

13-14 422 1 23.43 12.66

The MAPE and RMSE of predicted bus journey times for 312 samples obtained

from simulation outputs are 9.25% and 0.98 minutes, respectively. We found that the



97

enhanced CORSIM can capture bus journey times more accurately than the stop-to-stop

travel times. The correlation analysis demonstrates strong relationship between the data

collected from the field and simulation, with the correlation coefficients of 0.94 for stop-

to-stop travel times and 0.98 for journey times.

The statistics (e.g., mean and variance) of stop-to-stop travel times and journey

times are summarized in Table 5.4. After conducting the hypothesis tests (e.g., t-test and

F-test), we concluded that the simulation results could statistically represent the field data

at a 95% confidence interval.

Table 5.4 Statistical summary of stop-to-stop and total travel time

Stop-to-Stop Index NA μA a A Ng μB a, t-value F-value

1-2 10 316.50 26.90 24 313.92 32.41 0.02 0.69
2-3 10 56.67 11.57 24 54.54 12.96 0.03 0.80
3-4 10 55.83 18.39 24 57.46 13.90 -0.03 1.75
4-5 10 54.67 11.79 24 54.08 6.81 0.01 3.00
5-6 10 51.40 16.32 24 53.67 14.14 -0.02 1.33
6-7 10 91.20 28.61 24 101.42 18.68 -0.07 2.35
7-8 10 85.40 22.29 24 79.58 15.16 0.03 2.16
8-9 10 76.20 16.87 24 79.00 20.63 -0.02 0.67

9-10 10 55.50 19.50 24 54.17 18.51 0.01 1.11
10-11 10 69,00 21.96 24 67.54 24.96 0.00 0.77
11-12 10 186.30 51.13 24 173.46 36.37 0.03 1.98
12-13 10 92,60 33.51 24 77.54 18.68 0.04 3.22
13-14 10 53.30 22.46 24 59.42 33.82 0.00 0.44

1-14 10 1244.57 123.05 24 1225.79 143.57 0.01 0.73
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5.6.3 Simulation Analysis

The program yields various quantitative measurements related to transit service (e.g. bus

arrival/departure times, bus dwell times, average passenger wait times, headways and

standard deviations of headways). The trends and variations over time and space of the

measurements are analyzed. For example, the tendency for vehicle bunching initiated by

abnormal ridership among stops can be readily observed in a time-distance trajectory

diagram (e.g., Figure 5.8).

The validated simulation program is used to simulate bus operations at stop#7,

where the boarding and alighting demand increases from 100% to 250% of the original

demand. In the simulation, a 5-minute dispatching headway is assumed, while the

standard deviation of the vehicle operating headways checked at every stop is determined

by five consecutive buses and plotted in Figure 5.7. The figure demonstrates that, in

Bus Stop Number

Figure 5.7 Standard deviations of headways vs. bus stops for various demands at stop #7
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general, the standard deviation of headways tends to increase as the stop number

increases (service route length increases) and is consistent with the real-world

observation. We also found that the increasing passenger demand at stop #7 (e.g., 150%,

200%, 250%) causes larger headway variances at further downstream stops. The increase

in the headway variances at stops before stop#7 is incurred by the relatively large

demands at these stops in corresponding to the increase in the alighting demand at stop#7.

The time-distance trajectories of five consecutive buses are obtained based on the

increase of passenger demand at stop #7 from 100% to 250% of the original demand and

shown in Figure 5.8 (in simulation seconds). The situation of two buses bunching up at

stop #8 was found at the 1816' second (8:30:16AM). The unevenly distributed passenger

demand among stops ( with unusually large demand at stop #7) contributes to the

Bus Stop Number

Figure 5.8 Time-space trajectories of five consecutive buses



100

irregularity of operating headways. Because Bus #1 was delayed by serving a large

number of boarding/alighting passengers at Stop #7, the following vehicle, Bus #2 is able

to catch up and eventually bunches with Bus #1 at Stop #8. The similar bunching

situation between Buses #3 and #4 can also be observed at Stop #14.

The bus dwell time at every stop observed from simulation results is shown in

Figure 5.9. By observing Figures 5.8 and 5.9, we found that a smaller headway between a

leading bus and its follower bus may result in a relatively smaller number of waiting

passengers at a downstream stop, which causes shorter bus dwell time, and vise versa.

Because bus #2 operates with a gradually smaller headway to bus #1 due to continuously

less boarding passengers at downstream stops, bus #2 overtakes bus #1 and arrives at stop

#8 earlier than bus #1. Bus #1 keeps at a close distance following bus #2 at stops #9, #10

and #11, with a very small headway and less dwell time (mainly for unloading passengers

at these stops), until it overtakes bus #2 at stop #12. Figure 5.10 shows that, at stop #8,

the passenger wait time for bus #1 decreases dramatically because of a very small

headway between buses #1 and the previous bus #2, while the passenger wait time for bus

#2 decreases sharply because it is overtaken by bus #1 at stop#12. Such bunching

phenomena have been successfully simulated and observed from these figures.

In this chapter, the simulation program was validated through calibrating a real

world bus route, while simulation results were used to analyze transit related MOEs. The

analysis on mean average percentage error (MAPE) and the root mean square error

(RMSE) have demonstrated that simulation outputs are reliable. The study also shows

that the enhanced CORSIM can simulate the disruptions of transit headways, such as the

vehicle bunching phenomenon due to ridership fluctuations at stops.



Figure 5.9 Bus dwell times at different stops
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Figure 5.10 Average wait times at different stops



CHAPTER 6

MODEL EVALUATION

In this chapter, the developed transit arrival prediction models discussed in Chapter 3,

including the basic, Kalman filtering, two Artificial Neural Networks (ANNs) and two

Neural/Dynamic (ND) models are evaluated by simulating a real world transit route,

while the reliability analysis of predicted arrival times is conducted. The testing and

evaluation results are discussed and organized into the following sections: (1) Basic and

Kalman filtering prediction models (2) ANNs, (3) ND prediction models and (4) the real-

time vehicle control model.

6.1 Basic and Kalman Filtering Prediction Models

The basic model and a Kalman filtering-typed model developed in sections 3.1 and 3.3

are tested by simulating Route #39 of New Jersey Transit, which serves stops at the cities

in North Arlington, Kearny, Harrison, Newark, and Irvington, as shown in Figure 6.1.

The analyzed 4.4-mile long segment starts from North Arlington Loop and ends at the 2n d

Street of Harrison, encompassing 30 intersections (of which 26 are signalized) and

serving 14 stops. The basic model and the Kalman filtering model are integrated with the

simulation program individually. The arrival times of 24 buses at each of the 13 stops

(excluding the first stop at the dispatching terminal) of the segment are predicted during

simulation.

102



Figure 6.1 NJ Transit Route #39

The basic model predicts bus arrival times at downstream stops of the segment by

simply adding up the current average link travel times between a pair of stops. Note that a

link on a transit route represents either a signalized or unsignalized intersection. The

inputs of the basic model include travel distances on links, average link speeds and

passenger (boarding/alighting) demand, which can be obtained during simulation.

The Kalman filtering model predicts bus arrivals by adjusting its parameters (e.g.,

Kalman. Gain) in real-time to accommodate traffic conditions, whose inputs are stop

spacings and the means of link speeds between pairs of stops and passenger demands.

The initial values of the Jacobian factor Θo,i (-) (i=1, 2,..., 14) are chosen as 1 while the

error covariance M01 (—) (i = 1, 2, ..., 14) are chosen to be 100 sec t . These initial values

may speed convergence of the prediction error in the Kalman filtering algorithm for the

analyzed system (Tavantzis and Ding, 1999).
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The time-space diagram for the bus dispatched at the 1322 simulation second

(8:22:02 AM) is plotted and shown in Figure 6.2, along with the arrival times predicted

by the basic and the Kalman filtering models. In the figure, the Kalman filtering model

appears to perform better than the basic model. In Figure 6.2(a), we found that the

discrepancy between the simulated and predicted arrival times increases as the stop

number increases, indicating that the prediction error of the basic model accumulates

quickly along the route. Both variations of traffic conditions on downstream links and

demand at stops affect the inaccuracy of the predicted arrival times.

The accuracy analysis of the stop-to-stop travel times predicted by the basic

model and Kalman filtering model is conducted and shown in Figure 6.3. The Kalman

filtering model appears to have better accuracy than that of the basic model at nearly all

stops. This is because the Kalman filtering model can adjust its parameters on-line (e.g.,

Kalman Gain) to reduce the prediction error. In Figure 6.3, deviations between the

predicted and simulated travel times at those pairs of stops with longer stop-spacings

(e.g., stops#1-2 and #11-12) are relatively high for both models. The RMSE of the

predicted stop-to-stop travel times for both models is listed in Table 6.1. We found that

the Kalman filtering model outperforms the basic model at all pairs of stops. However,

the RMSEs at stops #1-2 and #11-12 are fairly high for both models, indicating that

neither model can predict accurately for a pair of stops because the number of

intersections between these stops are relatively large.



Figure 6.2(a) Predicted vs. simulated arrival times for a bus (the basic model)
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Figure 6.2(b) Predicted vs. simulated arrival times for a bus (the Kalman filtering
model)



Figure 6.3 Predicted stop-to-stop travel times by the basic and Kalman filtering models

Table 6.1 RMSE of bus stop-to-stop travel times by the basic
and Kalman filtering models

Stop-to-stop
Index

Stop-to-stop
Distance (ft)

# of
Intersections

RMSE (sec)

Basic Model Kalman Filtering
Model

1-2 4466 8 154.77 77.69

2-3 1003 1 33.80 29.30

3-4 1003 1 28.63 20.12

4-5 1056 1 33.89 21.23

5-6 422 1 27.85 17.56

6-7 1478 1 51.07 33.50

7-8 1312 1 59.18 31.83

8-9 980 1 35.51 29.79

9-10 581 1 47.58 32.95

10-11 552 2 47.20 37.85

11-12 1806 5 118.86 84.73

12-13 598 2 47.81 35.91

13-14 422 1 55.44 35.69
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6.2 Artificial Neural Networks

In this section, a link-based and a stop-based ANN for predicting bus arrival times are

evaluated. The simulation analysis of a segment of NJ Transit Route #39 is conducted.

Simulation outputs (e.g., link volumes and speeds, vehicle delays, bus locations, bus

arrival/departure times) are collected and analyzed, while factors affecting bus travel

times are identified and classified as explanatory variables for the developed ANNs. The

BP algorithm is applied for training the ANNs with sufficient training examples, which

are collected while simulating bus operations on the analyzed segment under various

traffic conditions. Both the link-based and stop-based ANNs are integrated with the

simulation program individually, while the reliability analysis of the two ANNs at

various downstream stops is conducted.

6.2.1 ANN Training

Bus operations in the morning peak (7:30AM-9:30AM) on the analyzed segment of NJ

Transit Route #39 are simulated. The results (e.g., link volumes and speeds, vehicle

delays, bus locations, bus arrival/departure times) obtained during simulation for 24 buses

are collected for further analysis. We found that many factors affect bus arrival times,

such as traffic control devices, link lengths, stop spacings, traffic volumes and densities,

vehicle speeds and delays, and passenger (boarding/alighting) demand.

After analyzing those factors identified above and the corresponding bus travel

times on links and between stops, MOEs with the potential to be the explanatory

variables for the link-based and stop-based ANNs are listed in Table 6.2. The MOEs
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affecting bus link travel times include those related to traffic conditions on each link,

such as bus travel distance on a link (LDIS), average link traffic volume (LVOL), average

link speed (LSPD), average link delay (LDLY), average queue time on a link (LQUE)

and number of boarding/alighting passengers at stops (PASS). On the other hand, the

MOEs affecting bus stop-to-stop travel times include those related to aggregate traffic

conditions over all the links between a pair of stops. These MOEs are stop-spacing

(SDIS), mean and standard deviation of volumes (SVOL and DVOL), mean and standard

deviation of speeds (SSPD and DSPD), mean and standard deviation of delays (SDLY

and DDLY), number of intersections traversed between a pair of stops (SINTE) and

number of boarding/alighting passengers at stops (PASS).

Different combinations of the MOEs are experimented as input variables for the

link-based and stop-based ANNs, respectively, as shown in Table 6.3. According to a

correlation analysis among these MOEs shown in Table 6.4, we found that for the link-

based ANN, LDLY is correlated with LQUE (0.96) and LSPD (-0.52), respectively; and

LSPD is correlated with LQUE (-0.67). The correlation constraints are taken into account

for choosing a combination (e.g., Models#3, #4 and #5). However, some MOEs in

conflict with these constraints are also grouped into one combination (e.g., Models #1

and #2), considering that the ANN performance may be enhanced when trained with

more information (Hagan, et. al., 1996). For the stop-based ANN, Table 6.4 shows that

SDLY is correlated with SSPD (-0.73) and DDLY is correlated with DSPD (0.83). These

constraints are reflected in Models #6 and #7. Meanwhile, SINTE is found to be

correlated with DVOL (0.65), DSPD (0.42) and DDLY (0.50), respectively, which is

considered in Models #8, #9 and #10.
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Table 6.2 MOEs related to link-based and stop-based ANNs

MOEs Related to Link-based ANN

MOEs Definition

LDIS (ft) Bus travel distance on a link.

LVOL(vph) Average link volume, accumulated by trafflc counts on a link.

L SPD (mph) Average link speed, calculated as the total vehicle-mile divided by the total travel

time for all vehicles accumulated on a link.

LDLY(sec/veh) Average link delay, calculated as the difference between the simulated and

desirable (measured by the free-flow speed) total travel times over the total

vehicle trips on a link.

LQUE(sec/veh) 9 Average queue time on a link, calculated as the average time for vehicles idling in

a queue due to traffic control or congestions.

PASS (-) Number of boarding/alighting passengers at stops.

MOEs Related to Stop-based ANN

MOEs Definition

SDIS(ft) Stop-spacing.

SVOL(vph) Mean of LVOLs on all the links between a pair of stops.

DVOL(vph) Standard deviation of LVOLs on all the links between a pair of stops.

SSPD(mph) Mean of LSPDs on all the links between a pair of stops.

DSPD(mph) Standard deviation of LSPDs on all the links between a pair of stops.

SDLY(sec/veh) Mean of LDLYs on all the links between a pair of stops.

DDLY(sec/veh) Standard deviation of LDLYs on all the links between a pair of stops.

SINTE (-) Number of intersections traversed between a pair of stops.

PASS (-) Number of boarding/alighting passengers at stops.
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Table 63 SSEs for different link-based and stop-based ANNs

Link-based ANN
Model

No.
Input Variables No. of Hidden

Neurons

No. of Training

Examples

SSE

(see)
1 LDIS, LVOL, LSPD, LDLY, PASS  6 380 0.0965
2 LDIS, LVOL, LSPD, LQUE, PASS 6 380 0.1108
3 LDIS, LVOL, LSPD, PASS 5 380 0.1108
4 LDIS, LVOL, LDLY, PASS 5 380 0.1104
5 LDIS, LVOL, LQUE, PASS 5 380 0.1108

Stop-based ANN

Model

No.
Input Variables No. of Hidden

Neurons

No. of Training

Examples

SSE

(see)

6 SDIS, SVOL, SSPD, DVOL, DSPD, PASS 7 344 0.0694
7 SDIS, SVOL, SDLY, DVOL, DDLY, PASS 7 344 0.0758
8 SDIS, SVOL, SSPD, SDLY, SINTE, PASS 7 344 0.0410

9 SDIS, SVOL, SSPD, SINTE, PASS 6 344 0.1103
10 SDIS, SVOL, SDLY, SINTE, PASS 6 344 0.0504

Table 6.4 Correlation of MOEs* related to link-based and stop-based ANNs

Correlation of MOEs Related to Link-based ANN
LVOL LSPD LDLY LQUE

LVOL 1 -0.27 0.25 0.22
LSPD 1 -0.52 -0.67
LDLY 1 0.96
LQUE 1

Correlation of MOEs Related to Stop-based ANN
SVOL SSPD SDLY DVOL DSPD DDLY SINTE

SVOL 1 -0.24 0.45 0.01 -0.24 0.07 0.05
SSPD 1 -0.73 -0.06 -0.03 -0.28 -0.28
SDLY 1 -0.18 -0.26 0.00 0.05
DVOL 1 0.36 0.42 0.65
DSPD 1 0.83 0.42
DDLY 1 0.50
SINTE 1

*Note: The LDIS and PASS, SDIS and PASS are not included in the correlation

analysis since they are chosen as input variables for each ANN in Table 6.3.

The BP algorithm is applied to train all ANNs illustrated in Table 6.3, while the

training data are collected from various buses during simulation. In ANN training,
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different values of parameters (the number of hidden neurons, the momentum rate y and

the learning rate 77) are tested and shown in Table 6.3. For the link-based ANN, the

inputs with the lowest SSE over 380 training examples are LDIS, LVOL, LSED, LDLY

and PASS (Model #1). On the other hand, for the stop-based ANN, the inputs with the

lowest SSE over 344 training examples are SDIS, SVOL, SSPD, SDLY, SINTE and

PASS (Model #8).

The convergence process of the SSE over 380 training examples while training

Model #8 with different momentum and learning rates are shown in Figure 6.4. Note that

one epoch is equal to the number of iterations for all training examples to be entered in

one cycle (e.g., 1 epoch = 344 iterations for a stop-based ANN). Figure 6.4(a) shows that

a small learning rate (e.g., 77 =0.05) associated with a large momentum rate (e.g.,

y =0.95) accelerates the convergent speed of SSE. Figure 6.4(b) demonstrates that for a

large learning rate (e.g., 77-1.5), a large momentum rate (e.g., =0.95) yields larger SSE

compared with that obtained by using smaller momentum rates (e.g., 7 =0.1 and 0.6).

The convergence process during the last few epochs with the adaptive learning

rate (Hagan, et. al, 1996) is shown in Figure 6.4(c), in which 77 proportionally decreases

from an initial value (initialized as 1.5) with the decrease of SSE. Compared with the

constant learning rate 77 =1.5, the adaptive learning rate may slow down the convergent

speed but yield a lower SSE, especially when the momentum rate is large (e.g., 7=0.95).

This indicates that the adaptive learning rate may help the BP algorithm to search

efficiently thus locate a smaller local minimum.
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Figure 6.4 Different learning /momentum rates for a stop-based ANN (Model #8)
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6.2.2 ANN Evaluation

For evaluating the performance of two ANNs (Model #1 and #8), both of them are

integrated with the simulation program individually. The arrival times of 24 buses

(different from those for training purpose) at each of the 13 stops on the analyzed

segment of NJ Transit Route #39 are predicted. Figure 6.5 shows the time-space diagram

for the bus dispatched at 1322 simulation seconds (8:22:02AM). Both models

demonstrate desirable accuracy with the predicted values. The accuracy analysis of the

stop-to-stop travel times predicted by the two ANNs is plotted in Figure 6.6. The figure

indicates that the stop-based ANN may capture the mean stop-to-stop travel times more

accurately than the link-based one, especially at pairs of stops with longer distance (e.g.,

stops #1-2 and #11-12).

To analyze the accuracy of predicted arrival times at stops, the resulting RMSE

for the 24 buses is shown in Figure 6.7. The prediction error for both ANNs increases

steadily as the stop number increases. Moreover, the RMSE of the link-based ANN

increases sharply at stop #12. The outperformance of stop-based ANN indicates that it

accommodates traffic conditions at these stops better than the link-based one because of

the aggregate characteristics of its inputs. In Figure 6.7, the RMSE for both ANNs

decreases a little starting at downstream stop #13, indicating that prediction errors at

stops may compensate one another thus decrease slightly at a certain downstream stop.



Figure 6.5(a) Predicted vs. simulated bus arrival times for a bus (link-based ANN)

Figure 6.5(b) Predicted vs. simulated bus arrival times for a bus (stop-based ANN)



Figure 6.6 Mean stop-to-stop travel times by link-based and stop-based ANNs
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Figure 6.7(a) The RMSE for predicted arrival times at different stops
(link-based ANN)

Figure 6.7(b) The RMSE for predicted arrival times at different stops
(stop-based ANN)
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Because the numbers of intersections between different pairs of stops may vary,

the impact of intersections on predicted bus travel times is explored. Table 6.5 shows the

resulting RMSE of predicted stop-to-stop travel times calculated from the simulation

results of 24 buses. For a pair of stops with only one intersection in between, the link-

based ANN performs better than the stop-based one (e.g., at stops#2-3, #3-4, #5-6, #9-10

and #13-14). However, as the number of intersections increases, the RMSE for the link-

based ANN substantially exceeds that for the stop-based ANN, especially at stops#1-2,

and #11-12. This indicates that the link-based ANN can not adapt to traffic variations at

stops with a large number of intersections between them.

Table 6.5 RMSE of stop-to-stop travel times by link-based and stop-based ANNs

Stop-to-stop

Index

Stop-to-stop

Distance (ft)

# of

Intersections

RMSE (sec)

Link-based

ANN

Stop-based

ANN

Kalman Filtering

Model

1-2 4466 8 82.50 33.91 77.69

2-3 1003 1 18.06 28.84 29.30

3-4 1003 1 13.43 27.76 20.12

4-5 1056 1 43.83 44.23 21.23

5-6 422 1 23.69 39.73 17.56

6-7 1478 1 28.96 31.44 33.50

7-8 1312 1 32.83 29.00 31.83

8-9 980 1 31.75 30.27 29.79

9-10 581 1 30.68 40.87 32.95

10-11 552 2 67.67 47.55 37.85

11-12 1806 5 121.34 44.17 84.73

12-13 598 2 43.04 28.32 35.91

13-14 422 1 34.94 42.83 35.67
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Table 6.5 also shows that at some stops with fewer intersections between them

(e.g., stops #2-3, #3-4, #6-7, #9-10 and #13-14), the link-based ANN generally has equal

or better performance than the Kalman. filtering model. However, at stops with a large

number of intersections (e.g., stops #1-2, #11-12), the Kalman filtering model performs

better than the link-based ANN but still worse than the stop-based ANN.

It is difficult to accurately predict travel times for a pair of stops with a number of

intersections because the bus travel time is affected by the traffic conditions not only on

individual links, but also at intersections. Both the Kalman filtering model and the link-

based ANN can not respond to such relation adequately. In the stop-based ANN, such

relation is adapted while the traffic conditions aggregated over all links between a pair of

stops rather than on individual links are applied for training ANNs. Thus, it can perform

well when the distance and the number of intersections between stops are large. However,

the stop-based ANN can not perform as well as the other two models for a pair of stops

with a small number of intersections, because it is not very sensitive to travel times on

individual links due to the aggregate characteristic of its inputs.

6.3 Test Neural/Dynamic (ND) Prediction Models

According to the discussion in Section 6.2, the link-based ANN only performs well for

some pairs of stops with a smaller number of intersections between them, while the stop-

based ANN performs better for pairs of stops with a large number of intersections in

between. To improve the performance of ANNs under various conditions, the

Neural/Dynamic (ND) models are thus designed by integrating the well-trained ANNs
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with the Kalman filtering model, such that the prediction error can be adjusted in real-

time. In the developed ND models, the ANN (either link-based or stop-based) captures

the relationship between travel times and various affecting factors adequately, while the

Kalman filtering model adjusts the results predicted by the ANNs in real-time. The two

ND models, NDL (link-based) and NDS (stop-based), are also evaluated by simulation.

In the ND models, the initial values of the Jacobian factor 00 (—) (i =1, 2,..., 14)

are chosen to be 1, while the covariance error M 01 (—) (i = 1, 2,..., 14) ranges between 75

sect and 125 see based on the analysis of the convergence speed of the prediction error

(Tavantzis and Ding, 1999). Bus operations on the analyzed segment of NJ Transit Route

#39 during a peak period (7:30-9:30AM) are simulated, while the prediction results for 24

buses at each stop during simulation are analyzed. The accuracy comparison of bus stop-

to-stop travel times predicted by the link-based ANN and the ,NDL are shown in Figure

6.8. It is demonstrated that by implementing the NDL, the discrepancy between the

simulated and predicted mean stop-to-stop travel times is significantly reduced, especially

at stops #1-2, #10-11 and #11-12. Similarly, Figure 6.9 shows that the NDS also

outperforms the stop-based ANN (e.g., at stops #3-4, #4-5, #5-6 and #9-10).

For prediction of arrival times by both ND models, the resulting RMSE are shown

in Figure 6.10. Comparing with Figure 6.7 presented in Section 6.2, we found that both

ND models perform better than their ANN counterparts by applying the Kalman filtering

algorithm. For example, at stop#14, the RMSE of bus arrival times predicted from stop#2

decreased from 208 and 166 seconds (by the two ANNs in Figure 6.7) to 108 and 100

seconds (by NDL and NDS, as shown in Figure 6.10), respectively.



Figure 6.8 Mean stop-to-stop travel times by link-based ANN and NDL

Figure 6.9 Mean stop-to-stop travel times by stop-based ANN and NDS



Figure 6.10(a) The RMSE for predicted arrival times at different stops (NDL)

Figure 6.10(b) The RMSE for predicted arrival times at different stops (NDS)
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The RMSEs of predicted travel times between different pairs of stops are

calculated and listed in Table 6.6, where the impact of the number of intersections

Table 6.6 RMSE of bus stop-to-stop travel times by the ND Models

Stop-to-stop

Index

Stop-to-stop

Distance (ft)

# of

Intersections

RMSE (sec )

NDL NDS

1-2 4466 8 73.82 37.75

2-3 1003 1 24.25 26.43

3-4 1003 1 14.81 20.14

4-5 1056 1 24.97 24.79

5-6 422 1 21.06 27.56

6-7 1478 1 28.18 28.37

7-8 1312 1 26.48 27.03

8-9 980 1 24.84 23.95

9-10 581 1 28.62 31.84

10-11 552 2 46.35 39.68

11-12 1806 5 62.86 55.85

12-13 598 2 37.74 33.48

13-14 422 1 35.98 40.08

between a pair of stops on the accuracy of predicted bus travel times emerges. At stops

with a large number of intersections in between (e.g., stops#1-2 and #11-12), the NDS

predicts more accurately than the NDL. However, the difference between the RMSEs of

the prediction arrival times by the NDL and NDS (e.g., only 7 seconds at stops#11-12) is

not as significant as that between the link-based and stop-based ANNs (e.g., 73 seconds

at stops#11-12) as shown in Table 6.5. This is because the RMSEs for the link-based

ANN at these stops has been decreased substantially (e.g., from 121 to 63 seconds at

stops #11-12 for the NDL). When the number of intersections decreases (e.g., at stops#2-

3, #4-5, #6-7, #7-8 and #8-9), the NDL performs only slightly better than the NDS,
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because the RMSEs for the NDS at these stops has been deceased effectively (e.g., from

44 to 25 seconds at stops #4-5).

The resulting RMSEs of the predicted bus arrival times from stop #1 to all

downstream stops are shown in Figure 6.11. We found that both ND models predict more

accurately than their ANN counterparts, with lower RMSE at nearly all stops. The figure

also demonstrates that the RMSEs for the two ND models is very close from stops #2 to

#8; however, at further downstream stops (e.g., stops #9 through #14), the RMSE of the

NDS is slightly lower than that of the NDL. This indicates that, compared with NDL,

NDS has equal or better capability to adapt to the variations in traffic conditions at

downstream stops.

Bus Stop Number

Figure 6.11 The RMSE for bus arrival times predicted from Stop# 1 to all stops



Model No.

b

d

f

Input Variables

LDIS, LSPD, PASS

SDIS, SSPD, PASS

LDIS, LVOL, LSPD, LDLY, PASS

SDIS, SVOL, SDLY, SINTE, PASS

LDIS, LVOL, LSPD, LDLY, PASS

SDIS, SVOL, SDLY, SINTE, PASS

Model Name

Basic

Kalman Filtering

Link-based ANN

Stop-based ANN

NDL

NDS
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Summary of the Developed Prediction Models

The performance of the six developed transit arrival prediction models, including the

basic, Kalman filtering, two ANNs (link-based and stop-based) and two ND models

(NDL and NDS) are summarized in Tables 6.7 through 6.8. Table 6.8 demonstrates that

by integrating the ANN with the Kalman filtering model, the prediction error for both ND

models can be decreased substantially, especially at stops #10 through #14. In Table 6.9,

the prediction error for the two ND models in different pairs of stops is either decreased

effectively or remained similar, indicating that adjusting prediction error in real-time with

the Kalman filtering model will not degrade but rather enhance the model performance.

Tables 6.8 and 6.9 also demonstrate that the NDS performs a little better than the NDL at

further downstream stops with large number of intersections in between.

Table 6.7 Summary of input variables used in developed prediction models
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Table 6.8 The RMSEfor bus arrival times predicted from Stop#1 at all stops

Stop

No

Model a

(sec)

Model b

(sec)

Model c

(sec)

Model d

(sec)

Model e

(sec)

Model f

(sec)

2 151.5081 76.05 56.49 32.33 38.30 36.12

3 156.7332 79.75 58.32 58.25 48.22 45.30

4 167.4026 82.21 57.21 57.13 55.34 52.38

5 187.0724 90.85 70.36 58.00 59.50 57.13

6 184.2975 90.49 75.61 69.17 63.29 61.53

7 208.229 102.62 80.80 76.82 68.10 66.40

8 239.7997 116.37 89.48 82.64 75.60 73.36

9 252.1499 127.33 96.46 88.59 82.91 78.97

10 281.2846 139.88 110.46 108.70 90.19 84.32

11 288.336 143.73 138.10 118.65 99.01 88.85

12 365.8051 193.35 216.48 129.27 106.55 93.93

13 350.0673 174.10 205.01 109.07 111.34 98.91

14 348.4922 175.68 199.53 114.62 112.05 95.95

Table 6.9 RMSE of bus stop-to-stop travel times

Stop-to-

stop Index

Distance

(ft)

# of

Intersections

Model a

(sec)

Model b

(sec)

Model c

(sec)

Model d

(sec)

Model e

(sec)

Model f

(sec)

1-2 4466 8 154.77 77.69 82.50 33.91 73.82 37.75

2-3 1003 1 33.80 29.30 18.06 28.84 24.25 26.43

3-4 1003 1 28.63 20.12 13.43 27.76 14.81 20.14

4-5 1056 1 33.89 21.23 43.83 44.23 24.97 24.79

5-6 422 1 27.85 17.56 23.69 39.73 21.06 27.56

6-7 1478 1 51.07 33.50 28.96 31.44 28.18 28.37

7-8 1312 1 59.18 31.83 32.83 29.00 26.48 27.03

8-9 980 1 35.51 29.79 31.75 30.27 24.84 23.95

9-10 581 1 47.58 32.95 30.68 40.87 28.62 31.84

10-11 552 2 47.20 37.85 67.67 47.55 46.35 39.68

11-12 1806 5 118.86 84.73 121.34 44.17 62.86 55.85

12-13 598 2 47.81 35.91 43.04 28.32 37.74 33.48

13-14 422 1 55.44 35.69 34.94 42.83 35.98 40.08
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6.4 Test the Real-time Vehicle Control Model

In Chapter 4, a real-time headway control model was developed to maintain desired

headways between any pair of vehicles for high frequency light rail transit (LRT)

systems. The model determines vehicle departure times in real-time based on its optimal

arrival time at the next stop, while considering the constraint of the maximum attainable

operating speed and the headways to its leading and following vehicles. The developed

headway control model is tested by simulating a light rail system - Newark City Subway',

which is 4.3 miles long with 11 stations, running from Newark Penn Station to Franklin

Avenue Station, as shown in Figure 6.12.

Figure 6.12 Newark City Subway and connecting bus and rail routes

Transit units (TU) in use in the subway system are PCC (Presidential Conference

Committee) cars, and fares were collected on-board when passengers boarding or

alighting from cars. The LRT operational characteristics include 2-minute headway in

peak periods, 1.7-second average passenger boarding/alighting time, 50 mph maximum

operating speed, 3.5 mphps acceleration/deceleration rate and 4.75 mphps emergency

braking rate (NJ Transit, 1997). Passenger arrival rates and 0/D demand at different

2 The subway operational data in this study are collected from NJ Transit and on site during 1997-1998.
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subway stations during peak periods are obtained from a field survey conducted by NJ

Transit (1997). The high frequency LRT route with heavy and unevenly distributed

ridership is a challenge to implement the headway control model.

The LRT operations in Newark City Subway during peak hour 5:00-6:00PM are

simulated by the developed simulation program discussed in Chapter 5. The variations of

passenger boarding/alighting rates in different time intervals (10minutes/interval) are

assumed as shown in Figure 6.13, while the trajectories of consecutive trains with and

Figure 6.13 Passenger boarding/alighting rates at stations during 5:00-6:00PM

without headway control are shown in Figures 6.14(a) and 6.14(b). Figure 6.14(a)

demonstrates that without dynamic headway control, the headways between trains #1 and

#2, #6 and #7, #8 and #9 and #15 and #16 are irregular starting from stations #7 through

#11. However, if the developed headway control is implemented, the headway

irregularity at downstream stations can be alleviated by preventing the bunching of some

pairs of trains, as shown in Figure 6.14(b).



Figure 6.14(a) Trajectories of consecutive trains without headway control
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Figure 6.14 (b) Trajectories of consecutive trains with headway control
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Figure 6.15 shows the variations of total headway variances and average

passenger wait times during the simulation period. We found that with dynamic headway

control, the total headway variance decreases from 6114 to 2368 second 2 while the

average passenger wait time decreases from 83 to 66 second/passenger.

Figure 6.15 Total headway variance and average passenger wait time vs. simulation time

The effect of the dynamic headway control on headway variances and average

passenger wait times at different subway stations are shown in Figure 6.16. The figure

shows that without headway control, headway variances and average passenger wait

times at downstream stations increase steadily. This arises because slight headway

disturbance in: the upstream can be amplified at a downstream segment, causing longer

passenger wait times. However, after implementing headway control, the headway
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variance decreases considerably, especially at downstream stations starting from #7 to

#11. For example, the headway variance at station #11 decreases from 8463 to 944

second' (or the standard deviation of headways at the station decreases from 92 sec to 31

sec). Additionally, the average passenger wait times at further downstream stations are

reduced (e.g., the average passenger wait time at station #10 decreases from 91 to 63

seconds).

Station Number

Figure 6.16 Headway variances and average passenger wait times at stations

The impact of dynamic headway control on transit productivity of the analyzed

route was also studied. Transit productivity is often used to measure the passenger output

carried by transit units and the distance traveled, which is highly related to the average

vehicle operating speed and passenger demand (Vuchic, 1981). In this study, the product
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of the number of operating vehicles (e.g., 16 trains in Figure 6.14) and their average

speed is estimated (Vuchic, 1981), which is 349.44 veh-mile/hr without control and

349.48 veh-mile/hr with control. This indicates that the overall vehicle operating speed

will not be influenced negatively under the proposed headway control. By analyzing

Figure 6.14, we found that although some vehicles (e.g., Trains #5, #7 and #9) are slowed

down deliberately by the headway control model for regulating headways, other vehicles

(e.g., Trains #6, #8, #10 and #16) can be operated faster because the serious delays (e.g.,

signal delays and long dwell times at stations) experienced without the headway control

are reduced effectively. Additionally, the decrease in the average passenger wait time will

also decrease the average passenger travel time, thus, transit demand may be stimulated

(Chien and Spasovic, 1999). Therefore, the proposed headway control is anticipated to

increase the transit line productivity of the analyzed route.



CHAPTER 7

CONCLUSIONS

A major stochastic characteristic of transit operation is that vehicle arrivals tend to

deviate from posted schedules. Poor schedule/headway adherence is undesirable for both

users and operators since it increases passenger wait/transfer times and discourages

passengers for using the transit system. Several prediction models developed in this study

can provide vehicle arrival information. Such information can be disseminated to transit

users through a variety of media, thus greatly helping them to schedule their departures

and transfers at lower wait cost. Moreover, based on predicted information, real-time fleet

management (e.g., on-demand fleet scheduling and vehicle routing) and vehicle control

models (e.g., dispatching, headway control and signal priority control) can be developed

for reducing service. disturbance. Therefore, the quality of transit service can be enhanced.

Predicting bus arrival times in real-time is not an easy task, because it is affected

by many stochastic factors such as travel times on links, dwell times at stops and delays

at intersections. In this study, dynamic models for predicting arrival times of transit

vehicles (buses) operating in urban settings are developed, including the basic model,

Kalman filtering model, two artificial neural networks (ANNs) and two Neural/Dynamic

(ND) models. The developed prediction models are evaluated using a simulation program

which is an enhancement of. CORSIM (CORridor SIMulator). An application of the

prediction models on real-time vehicle control systems is also explored. Conclusions of

the study are discussed in the following sections: (1) Model Development, (2) Model

Evaluation, (3) Model Application, and (4) Suggestions for Further Research.
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(1) Model Development

The developed basic model predicts vehicle arrival times at all downstream stops simply

based on current average link speeds, while the Kalman filtering model can adjust model

parameters (e.g., Kalman Gain) in real-time to reduce prediction error. Both models can

not provide accurate prediction results because they lack the capability to adapt to

dynamic changes in traffic conditions at downstream stops. Artificial Neural Networks

(ANNs) are thus designed for accurately predicting transit arrivals. With a massive

distributed structure (e.g., multilayer feedforward) and adaptive learning processes (e.g.,

Back-propagation (BP)), the developed ANNs (e.g., link-based and stop-based) have been

well trained to capture time varied relationship between bus arrivals and various affecting

factors including traffic conditions (e.g., volumes, speeds and delays) and passenger

demands.

Of the two ANNs, the link-based ANN is designed to predict vehicle arrival times

by accumulating vehicle travel times on all traversed links based on traffic conditions on

individual links. However, the interaction of traffic conditions over different links on the

vehicle arrival ti ®e is neglected. The stop-based ANN is therefore developed, using the

aggregate traffic conditions (e.g., means and variances of link volumes, speeds and

delays) over all links between pairs of stops as explanatory variables.

The BP training process for ANNs requires extensive experiments to search for

the optimal values of model parameters (e.g., number of neurons on the hidden layer and

synaptic weights linking successive layers). Such a lengthy training process is difficult to

be conducted on-line. To enhance the performance of ANNs and their dynamic

capability, Neural/Dynamic (ND) models have been developed by integrating both ANNs
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with the Kalman filtering model individually. With the predicted information from ANNs

being adjusted in real-time to reduce prediction errors, two ND models have

demonstrated the capability to adapt to dynamic changes in the traffic environment over

time and provide more accurate prediction results.

(2) Model Evaluation

The computer simulation approach has been extensively applied in this study to assess the

performance of the developed prediction models while considering various transit

demand and traffic conditions. CORSIM has been enhanced to simulate transit

operations. New features have been built into the enhanced CORSIM to appropriately

determine the vehicle dwell time and average passenger wait time according to a time

dependent passenger boarding/alighting demand and the vehicle inter-departure time

(headway). In addition, various emulated real-time data (e.g., vehicle arrival/departure

times and number of boarding/alighting passengers at stops) and transit related MOEs

(e.g., average pa.ssenger wait times at stops and vehicle journey times) have been

generated, collected and analyzed during simulation.

To further ensure that the, simulation output adequately represents real world

traffic operations under existing conditions, the developed simulation program is

validated through calibrating a segment of Route #39 of New Jersey Transit Corporation.

Sufficient data related: to transit operations collected during the simulation are used to

develop link-based and stop-based ANNs. After conducting reliability analyses, we found

that for the link-based ANN, the optimal input combination is the bus travel distances on

individual links, average link volumes, speeds and delays, and the number of
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boarding/alighting passengers at stops. On the other hand, for the stop-based ANN, the

optimal input combination is stop-spacings, the number of intersections and means of

volumes, speeds and delays on all the links between a pair of stops, and the number of

boarding/alighting passengers at stops.

For evaluating the performance of the developed prediction models, the basic

model, the Kalman filtering model, two ANN models and two ND models are tested

individually by the enhanced CORSIM to compare the difference between simulated and

predicted vehicle arrival times. The results demonstrate that both ANNs outperform the

basic and Kalman filtering models. Moreover, the stop-based ANN performs better than

the link-based one between stops with a large number of intersections. This is because in

the stop-based ANN, the aggregate traffic conditions {e.g., means and variations of

volumes, speeds and delays) over all links between pairs of stops are used in ANN

training. Thus, the impact of intersections between a pair of stops on the vehicle travel

time can be considered. The results also show that at a pair of stops with few intersections

in between, the link-based ANN performs well, while the stop-based ANN does not show

promising prediction results due to the aggregate characteristics of the input.

The reliability analysis of the two ND models has indicated that by integrating the

ANN with the Kalman filtering model, the prediction errors (e.g., RMSE) at pairs of

stops can be decreased substantially (e.g., from 121 to 63 seconds at stops #11-12 for the

link-based ANN and from 44 to 25 seconds at stops #4-5 for the stop-based ANN). This

indicates that the ND models Will not degrade but rather enhance the ANN performance.

The reliability analysis also demonstrates that the NDS performs a little better than the
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NDL at a pair of stops with long stop-spacing and large number of intersections (e.g.,

RMSE of 56 seconds for NDS and 63 seconds for NDL at stops #11-12).

(3) Model Application

In this study, the application of the developed prediction models to a real-time headway

control model has been explored and experimented through simulating a high frequency

light rail transit (LRT) route. The headway control model is designed to maintain desired

headways for any pair of successive vehicles through minimizing the total headway

variance over all stops. The optimal departure time of a vehicle from a stop is determined

by its optimal arrival time at .the next stop, while the maximum attainable operating

speeds, the headways to its leading and following vehicles, and the predicted arrive and

departure times at downstream stops are considered.

The simulation results have demonstrated that the developed real-time headway

control model regulates headways effectively (e.g., the average headway variance at

station #11 decreases from 8463 to 944 second') and reduces average passenger wait

times (e.g., the average passenger wait time at station #10 decreases from 91 to 63

seconds). Moreover, the results indicate that the average operating speed will not

decrease (e.g., 349.44 veh-mile/hr without control and 349.48 veh-mile/hr with control).

The ridership may be increased due to the decrease in passenger wait times (Chien and

Spasovic, 1999). Therefore, the transit line productivity is anticipated to increase if the

headway control model is used.
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(4) Suggestions for Further Research

Further research for this study may focus on the following three aspects: (a) Prediction

Technologies, (b) Control Technologies and (c) Transit Simulation. The future extensions

in each aspect are itemized and discussed below.

Prediction Technologies

1. The developed ANNs and ND models are all well-trained with data collected from

simulation results. With various real-time data and MOEs collected from transit

surveillance and monitoring systems in the advent of APTS (e.g., GPS, APCS,

AVLS), these models can be trained the same way, thus adapting to real-world transit

operations in different networks.

2. In real transit systems, vehicles will experience unusual delays due to inclement

weather. conditions (especially during winter times), accidents or incidents (e.g.,

construction activities), which is undesirable to both transit operators and users. The

prediction models need to be trained with data collected under these occurrences in

order to incorporate the impacts of such short-term events on vehicle travel times.

3. In this study, passenger arrivals at stops are assumed to follow Poisson distributions.

However, passenger arrival behavior may be altered because of the implementation of

prediction models and dissemination of vehicle arrival information to the public.

Thus, further, analysis of the passenger arrival distribution is necessary, as discussed

by Jolliffe and Hutchinson (1975) and Turquist and Bowman (1980), in order to

depict more accurately the impact of passenger demands at stops on vehicle arrival

times.
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Control Technologies

1. A rather general headway control model has been described in this study to illustrate

positive benefits of the applications of the developed prediction models. However,

details of the implementation of such a model would vary from system to system.

2. The analysis of passenger demand elasticity as well as the transit line productivity

should be conducted by considering both the benefits (e.g., savings in passenger wait

times) and cost (e.g., on-board passenger delays) of such control.

3. In the developed vehicle control model, those stops with high passenger demand are

highlighted. In further studies, alternative control strategies can be used, such as

controlling vehicles before a stop with high demand, thus benefiting more passengers

from the reduction of the wait time.

4. The headway control model could be enhanced to deal with bus transit by considering

the impact of mixed automobile traffic on transit operations.

Transit Simulation

1. The simulation program could be extended to accept more passenger arrival

distributions defined by users to fit specific transit systems.

2. The network could be enlarged while more data can be collected for further

improving the accuracy of the prediction models considering various operating

conditions, such as harsh weather or lane closures due to accidents.

3. The vehicle capacity (spaces/bus) could be considered, thus incorporating additional

transit MOEs, such as passenger comfort level and in-vehicle times to differentiate

among bus routes operating in transit networks.



APPENDIX A

SECOND DERIVATIVE OF TOTAL HEADWAY VARIANCE

The second derivative of total headway variance IV ) is studied to determine the

convexity of the objective total headway variance IV ) with respect to the optimal vehicle

arrival time e(t)k,i. Thesecond derivative offlcan be obtained from Eq. A-1 as

where ∂2Π(t)/∂(e(t)k,i)2 is the second derivative of headway variance at stop i, which is derived

from the first derivative  ∂Π(t)j/∂e(t)k,i as indicated below.
 

Situation I

When vehicle k is ready to depart from stop i-1, the second derivatives of headway

variance at stops j = 1, 2, ...,i-1, can be derived directly from Eq. 4.12 as

Situation 2

The second derivative of headway variance at the next stop i with respect to ek,j can be

derived from the first derivative in Eq. 4.13 as
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Situation 3

The second derivatives of headway variance at downstream stops j = i+1,..., S, can be

derived from Eq. 4.16 as

can be obtained by the summation of Eqs. A-2, A-3 and A-4. Obviously,

is positive, which denotes that the total headway variance 11 ( ‘ ) is

convex with respect to e (t)k,i  .



APPENDIX B

NOTATIONS

The following notations are used in this dissertation.

Variable Description	 Unit

	a k,i 	arrival time of vehicle k at stop i 	 hour

	

Ak,i 	 actual arrival time for bus k at stop i 	 hour

	 dk ,i 	 dwell time of vehicle k at stop i time t 	 hour

Δdk,i,1 	 first dwell time interval of dk,i 	hour

Ado „ 	 nth dwell time internal of do 	hour

	e,.	 sum of square error in BP learning 	 hour2

	eV	 minimum of total headway variance no 	 hour

e (1)	e(t)k,i	 optimal arrival time for vehicle k at next stop i time t 	 hour

	E(t)k,i 	 predicted arrival time for bus k at stop i at time t 	 hour

h(t)k,i headway between two vehicles k-1 and k at stop i time t 	 hour

	4: ). 	 the earliest arrival time that vehicle k can make at stop i time t 	 hour

	 /j 	 length of link j between two consecutive stops 	 mile

	Pk,,	 departure time of vehicle k at stop i time t 	 hour

	qi,j 	 average boarding rate from stop i to j 	 pass./hour

	qaj	 average passenger alighting rate at stop j 	 pass./hour

	qib 	 average passenger boarding rate at stop i 	 pass./hour

	a,1	 number of in-vehicle passengers destining at downstream stop j 	 pass.

ΔQ i+1,j 	number of passengers boarding at stop i+1 destining at downstream stop j 	 pass.

	Qai	 total number of alighting passengers at stop i 	 pass.
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Variable Description	 Unit

	Qib	 total number of boarding passengers at stop i	 pass.

	t b 	average passenger boarding time	 hour

	v(t)	 random noise with v(t) ~ N (0 , R(0) 	
-

	17 1 	average speed on link j at time t
	.1	 mph

	

wi 	weight factor for stop i	 -

W	 k,i 	 total passenger wait time for vehicle k at stop i 	 hour

	147k 1	 average passenger wait time for vehicle k at stop i	 hour/pass.

	

x (11 	the output for j th neuron on the /th layer	

	Y p	 desired output for pth example in BP learning	 hour

	

.Pp	 ANN model output for Pth example in BP learning 	 hour

	

z	 ratio of the wait time to the vehicle inter-departure time 	 -

	

61/1	 local delta for the j th neuron on the lth layer	 -

	 Δk,i 	 the deviation between hk,i and H	 hour

	

r	 momentum rate in BP algorithm	

	 Γk,j(t) 	 travel time for bus k on link j at time t 	 hourj

	1 7	 learning rate in BP algorithm	 -

	

Pi	 a factor related to passenger arrival rate at stop i 	 -

	

(Di,	 0	 predicted bus stop-to-stop travel time by link-based ANN 	 hour

	

Os • 	 predicted bus stop-to-stop travel time by stop-based ANN 	 hour

	

Ai	 the passenger arrival rate at stop i	 pass./hour

	 Λ(t)k,i 	estimated travel time for vehicle k traveling from stop i-1 to i at time t 	 hour

	e ) 	headway variance at stop i time t	 hour2

	no 	 the total headway variance for all stops on the analyzed route at time t 	 hour2

difference between actual and predicted travel times for bus k from stops i-1 hourpk,i

to i



Variable Description	 Unit

U1	 the synaptic weight between the neuron on 1`h layer and the j th neuron on -NJ,/
the (l+1)th layer

distance between stop i and the downstream intersection	 mile

B	 vehicle O/D matrix for vehicle k traveling from stop i to 1+1	 -

kK(t)k,i 	Kalman Gain matrix for bus k at stop i	 -

M k,, 	 error covariance matrix for bus k at stop i in Kalman filtering model -

0	 stop O/D matrix for a route -

w(t) 	 random noise vector with w(t) — N(0, Q (t)) 	 -

X j (t) 	 vector containing factors that affect bus travel times on link j in the Link- -
.1

based ANN

Y(t)	 vector containing factors that affect bus travel times from stop i-1 to i in the

Kalman filtering model

Z(t)	 vector containing factors that affect bus travel times from stop i-1 to i in the -

Stop-based ANN

O k i 	Jacobin vector for bus k at stop i in Kalman filtering model 	 -

45k 	 Optimal estimation of Jacobian vector 0k1 	-Θk,i
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