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ABSTRACT

KNOWLEDGE DISCOVERY IN BIOLOGICAL DATABASES:
A NEURAL NETWORK APPROACH

by
Qicheng Ma

Knowledge discovery in databases, also known as data mining, is aimed to find

significant information from a set of data. The knowledge to be mined from the

dataset may refer to patterns, association rules, classification and clustering rules,

and so forth. In this dissertation, we present a neural network approach to finding

knowledge in biological databases. Specifically, we propose new methods to process

biological sequences in two case studies: the classification of protein sequences and

the prediction of E. Coli promoters in DNA sequences. Our proposed methods, based

on neural network architectures, combine techniques ranging from Bayesian inference,

coding theory, feature selection, dimensionality reduction, to dynamic programming

and machine learning algorithms. Empirical studies show that the proposed methods

outperform previously published methods and have excellent performance on the

latest dataset. We have implemented the proposed algorithms into an infrastructure,

called Genome Mining, developed for biosequence classification and recognition.
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CHAPTER 1

INTRODUCTION

As the result of the Human Genome Project [26 . and related efforts, DNA. RNA

and protein data are accumulated at a speed growing at an exponential rate. Mining

these biological data to extract significant information becomes extremely important

in accelerating genome processing. The significant information may refer to genes,

protein sequence patterns and 3D protein structural motifs _67]. Classification is one

of the major data mining processes. This process is to classify a set of data into two or

more categories. When there are only two categories, it is called binary classification.

Here we focus on binary classification of biosequences. In binary classification, we

are given some training data including both positive and negative examples. The

positive data belong to a target class, whereas the negative data belong to the non-

target class. The goal is to assign unlabeled test data to either the target class or

the non-target class.

Currently, techniques used for biological sequence classification roughly fall into

two categories:

(1) Similarity search This approach is to classify unlabeled test sequences by

searching for either the global similarity or the local similarity in the sequences.

Global similarity search involves either pairwise sequence comparison _2, 51] or

multiple sequence alignment [3_. Local similarity search is to find patterns in

the sequences; see [12] for an excellent survey.

(2) Machine learning — This approach was surveyed in [33_. Various machine

learning techniques have been applied to biological sequence classification. For

example, hidden Markov models have been used in gene identification [40 as

well as protein family modeling _39]. Neural networks have been applied to the
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analysis of biomolecular sequences; see _70] for a. survey. In [57, a decision tree

was employed to find genes in DNA.

In this dissertation we present new methods for biosequence classification.

Specially, we present two case studies: the classification of protein sequences

and the prediction of promoters in DNA sequences. Our proposed methods

combine techniques ranging from neural networks, Bayesian inference, coding theory,

feature selection, dimensionality reduction, to dynamic programming and machine

learning algorithms. Empirical studies show that our proposed methods outperform

previously published methods and have excellent performance on the latest dataset.

The rest of the dissertation is organized as follows. Chapter 2 discusses

some background knowledge. Chapter 3 discusses our proposed method on protein

sequence classification. Chapter 4 demonstrates our new techniques on promoter

sequence recognition. Chapter 5 describes a Web based genome mining tool. Chapter

6 discusses future work and concludes the dissertation.



CHAPTER 2

BACKGROUND

In this chapter, we will discuss some background knowledge on molecular biology.

2.1 DNA

In every nucleus of a person's cell, human genome consists of tightly coiled threads of

deoxyribonucleic acid (DNA), and the associated protein molecules, organized into

structures called chromosomes. A DNA molecule consists of two strands that wrap

around each other. Two strands of a DNA form a highly regular double-stranded

helix. Each strand of a DNA consists of repeating nucleotide units composed of a

phosphate group, a sugar (deoxyribose), and a. base (A , C, G, or T). Two strands

of a DNA are linked by hydrogen bonds between G and C and between A and T. From

computer science point of view, a DNA strand is viewed as a string over alphabet D=

{A, C, G, or T} . The human genome contains roughly 3 billion base pairs (bp).

The Human Genome Project [26] is to sequence all of the 3 billion by and interpret

sequenced data.

Certain subsequences of a DNA strand, called genes, serve as blueprints for

proteins. The transcription process synthesizes the RNA molecule using genies as a

template.

2.2 Protein

An RNA is a one strand molecule. An RNA can leave the nucleus and enter the

cytoplasm, where the translation process synthesizes a protein molecule using the

RNA as a template. Each string of three consecutive nucleotides in an RNA encodes

a single amino acid. There are 20 amino acids.

3
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Let A= {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,

Y}. The primary structure (sequence) of a protein is a string of amino acids over

the alphabet A. A protein folds into a unique 3D structure, which determines its

function. Figure 2.1 shows a protein structure.



Figure 2.1 A protein structure.

5



CHAPTER 3

PROTEIN SEQUENCE CLASSIFICATION

3.1 Introduction

In this chapter, we discuss the classification of unlabeled protein sequences into

existing, known superfamilies. The problem studied here can be stated formally as

follows. Given are an unlabeled protein sequence S and a known superfamily .F, we

want to determine whether or not S belongs to .T. (We refer to .F as the target class

and the set of sequences not in .F as the non-target class.) In general, a superfamily

is a group of proteins that share similarity in structure and function. If the unlabeled

sequence S is detected to belong to then one can infer the structure and function

of S. This process is important in many aspects of bioinformatics and computational

biology. For example, in drug discovery, if sequence S is obtained from some disease

X and it is determined that S belongs to the superfamily then one may try a

combination of the existing drugs for .F to treat the disease X.

There are several approaches available for protein sequence classification. One

approach is based on hidden Markov models (HMMs) [37_. HMMs are a machine

learning algorithm, which uses probabilistic graphical models to model time series

and sequence data. It was originally applied to speech recognition [55_, and now also

is applied to modeling and analyzing protein superfamilies. When applying HMMs to

protein sequence classification, one uses the log-odds scores produced by the models

to discriminate between sequences in the target class .F and the sequences in the

non-target class.

Another approach for protein sequence classification is to compare the

unlabeled sequence S with the sequences in the target class .F and the sequences in

the non-target class using an alignment tool such as BLAST _2_. One then assigns S

to the class containing the sequence best matching S. This linear search approach

is unsatisfactory, however, when the dataset is large. For example, consider the

6
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globin superfamily in the International Protein Sequence Database 	 maintained

at the Protein Information Resource (PIR) of the National Biomedical Research

Foundation at the Georgetown University Medical Center. This superfamily has

831 sequences. There are roughly 1.7 x 10 5 non-globin sequences in the database.

Using BLAST, it would take about. 40 seconds to classify an unlabeled sequence S by

aligning S with all the sequences. On the other hand, using a classifier built based on

machine learning algorithms may require less time in performing the classification.

This is important if many classifications must be performed.

More important is that different classification approaches often complement

each other; combining them yields higher precision than using them individually, as

our experimental results will show later.

3.1.1 Feature Extraction from Protein Data

From a one-dimensional point of view, a protein sequence contains characters from

the 20-letter amino acid alphabet A = {A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W, Y}. An important issue in applying neural networks

to protein sequence classification is how to encode protein sequences, i.e., how

to represent the protein sequences as the input of the neural networks. Indeed,

sequences ma not be the best representation at all. Good input representations

make it easier for the neural networks to recognize underlying regularities. Thus,

good input representations are crucial to the success of neural network learning [36].

We propose here new encoding techniques that entail the extraction of high-

level features from protein sequences. The best high level features should be

"relevant". By "relevant," we mean that there should be high mutual information

between the features and the output of the neural networks, where the mutual

information measures the average reduction in uncertainty about the output of the

neural networks given the values of the features.
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Another way to look at these features is that they capture both the global

similarity and the local similarity of protein sequences. The global similarity refers

to the overall similarity among multiple sequences whereas the local similarity refers

to motifs (or frequently occurring substrings) in the sequences. Sections 3.2 and 3.3

elaborate on how to find the global and local similarity of the protein sequences.

Section 3.4 presents our classification algorithm, which employs the Bayesian neural

network originated from Mackay [43]. Section 3.5 evaluates the performance of the

proposed classifier. Section 3.6 compares our approach with other protein classifiers.

Section 3.7 concludes the chapter.

3.2 Global Similarity of Protein Sequences

To calculate the global similarity of protein sequences, we adopt the 2-gram encoding

method originally proposed in _70, 72, 731. The 2-gram encoding method extracts

and counts the occurrences of patterns of two consecutive amino acids (residues) in a

protein sequence. For instance, given a protein sequence PVKTNVK, the 2-gram amino

acid encoding method gives the following result: 1 for PV (indicating PV occurs once),

2 for VK (indicating VK occurs twice), 1 for KT, 1 for TN, 1 for NV.

We also adopt the 6-letter exchange group {e l , e2 , 6 3 , 6 4 , 6 5 , 6 6 } to represent

a protein sequence [71], where 6 1 c {H, R , K}, e2 E {D, E, N, Q}, 6 3 E {C}, 64 E

{S, T, P, A, c5 E {M, I, L, V}, 6 6 E {F, Y, W}. Exchange groups represent conser-

vative replacements through evolution. These exchange groups are effectively equiv-

alence classes of amino acids and are derived from PAM For example, the

above protein sequence PVKTNVK can be represented as e4e5e1e 4e 2e 5e 1 . The 2-gram

exchange group encoding for this sequence is: 1 for 6 1 2 5 , 2 for e5e1, 1 for e1e4 , 1 for

1 for e2e5.

Both PAM and BLOSUM [35 are amino acid substitution matrices; the latter is derived
from the BLOCKS database [34].
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For each protein sequence, we apply both the 2-gram amino acid encoding and

the 2-gram exchange group encoding to the sequence. Thus, there are 20 x 20+6 x 6

= 436 possible 2-gram patterns in total. If all the 436 2-gram patterns are chosen

as the neural network input features, it would require many weight parameters and

training data. This makes it difficult to train the neural network a phenomenon

called "curse of dimensionality." Different methods have been proposed to solve

the problem by careful feature selection and by scaling of the input dimensionality

[17, 71. Below we propose to select relevant features (i.e. 2-grams) by employing a

distance measure to calculate the relevance of each feature. 2

Let X be a feature and let x be its value. Let P(x Class = 1) and

P(x Cass = 0) denote the class conditional density functions for feature X,

where Class_l represents the target class and Class_0 is the non-target class. Let

D(X) denote the distance function between P(x Class = 1) and P(x Class = 0),

defined as [9

The distance measure prefers feature X to feature Y if D(X) > D(Y).

this means it is easier to distinguish between Class_1 and Class_0 by observing

feature X than feature Y. That is. X appears often in Class_1 and seldom in

Class_0 or vice versa. In our work, each feature X is a 2-gram pattern. Let c denote

the occurrence number of the feature X in a sequence S. Let I denote the total

number of 2-gram patterns in S and let Ien(S) represent the length of S. We have l

len(S) — I. Define the feature value x for the 2-gram pattern X with respect to

the sequence S as

For example. suppose S	 PVKTNVK. Then the value of the feature VK with respect

to S is 2/(7-1) = 0.33.

-'The term -distance - is from [20 which addresses feature selection for classification.
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Because a protein sequence may be short, random pairings can have a large

effect on the result. D(X) can be approximated by the Mahalonobis distance [61_ as

where m1  and d m (m o and do , respectively) are the mean value and the standard

deviation of the feature X in the positive (negative, respectively) training dataset.

The mean value m  and the standard deviation d of the feature X in a set S of

sequences are defined as

where x i is the value of the feature X with respect to sequence S i E S, and AT is the

total number of sequences in S.

Let X i X9 , XN9 Ng < 436, be the top Ng features (2-gram patterns) with

the largest D(X) values.` ] Intuitively, these Ng features occur more frequently in the

positive training dataset and less frequently in the negative training dataset. For

each protein sequence S (whether it is a training or a test sequence), we examine

the N9 features in S, calculate their values as defined in Equation (3.1), and use

the Ng feature values as input feature values to the Bayesian neural network for the

sequence S.

To compensate for the possible loss of information due to ignoring the other

2-gram patterns, a linear correlation coefficient (LCC) between the values of the

436 2-gram patterns with respect to the protein sequence S and the mean value of

the 436 2-gram patterns in the positive training dataset is calculated and used as

another input feature value for S. Specifically, the LCC of S is defined as:

`Our experimental results show that choosing Ng > 30 can yield a reasonably good
performance provided one has sufficient (e.g. > 200) training sequences,
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where x j is the mean value of the j th 2-gram pattern, 1 < j < 436, in the positive

training dataset and x j is the feature value of the jth 2-gram pattern with respect

to S as defined in Equation (3.1).

3.3 Local Similarity of Protein Sequences

In contrast to the 2-gram patterns that occur from the beginning to the end of a

sequence (thus referred to as global similarities), the local similarity of protein

sequences refers to frequently occurring motifs where a motif is composed of

substrings occurring in local regions of a sequence. Let T, = , Sk } be

the positive training dataset. We use a. previously developed sequence mining

tool Sdiscover [65, 66_ to find the regular expression motifs of the forms *X* and

*X * Y* where each motif has length > Len and approximately matches, within

Mut mutations, at least Occur sequences in Tr . Here, a mutation could be a

mismatch, an insertion, or a deletion of a letter (residue); Len, _Vint, and Occur

are user-specified parameters. X and Y are segments of a sequence, i.e., substrings

made up of consecutive letters, and * is a variable length don't care (VLDC) symbol.

The length of a. motif is the number of the non-VLDC letters in the motif. When

matching a motif with a sequence Si , a VLDC symbol in the motif is instantiated

into an arbitrary number of residues in Si at no cost. For example, when matching a

motif *VLHGKKVL* with a sequence MNVLAHGKKVLKWK, the first * is instantiated into

MN and the second * is instantiated into KWK. The number of mutations between the

motif and the sequence is 1, representing the cost of inserting an A in the motif.

Often, the number of motifs returned Lv Sdiscover is enormous. It's useful to

develop a measure to evaluate the significance of these motifs. We propose here to

use the minimum description length (MDL) principle 4_3, 56, 68 to calculate the

significance of a motif. The MDL principle states that the best model (a motif in

our case) is the one that minimizes the SUM of the length, in bits, of the description
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of the model and the length, in bits, of the description of the data (the positive

training sequences in Tp in our case) encoded by the model.

3.3.1 Evaluating the Significance of Motifs

We adopt information theory in its fundamental form _13, 60_ to measure the signif-

icance of different motifs. The theory takes into account the probability of an amino

acid in a motif (or sequence) when calculating the description length of the motif

(or sequence). Specifically, Shannon [60] showed that the length in bits to transmit

a symbol b via a channel in some optimal coding is —log2Px(b), where Px(b) is the

probability with which the symbol b occurs. Given the probability distribution / 1",

over an alphabet Σx = {14,b9,;57,},we can calculate the description length of any

string bk1bk2 ...bkl over the alphabet Y-7 ,

In our case, the alphabet >I:„, is the protein alphabet A containing 20 amino

acids. The probability distribution P can be calculated by examining the occurrence

frequencies of amino acids in the positive training dataset Tp. One straightforward

way to describe (or encode) the sequences in T, referred to as Scheme 1, is to encode

sequence by sequence, separated by a delimiter S. Let dlen(Si) denote the description

length of sequence Si e T. Then

where a1 E A. 1 < j < 20: naj is the number of occurrences of a1 in S. For example,

suppose S i MNVLAHGKKVLKWK is a sequence in T. Then
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Let dlen(Tp ) denote the description length of T 	{S 1 ,	 , SO. If we ignore

the description length of the delimiter $, then the description length of Tp is given

by

Another method to encode the sequences in Tp , referred to as Scheme 2, is

to encode a regular expression motif, say Al i , and then encode the sequences in

Tp based on M. Specifically, if a sequence S i e Tp can approximately match M1 ,

then we encode Si based on M. Otherwise we encode S i using Scheme 1. 4 Let us

use an example to illustrate Scheme 2. Consider, for example, Al i = *VLHGKKVL*.

We encode Ali as 1, *, V, L, H, G, K. K, V, L. *, $0 where 1 indicates one mutation

is allowed in matching If with S i and $0 is a delimiter to signal the end of the

motif. Let Σ1 denote the alphabet {a1 , a9, a20, *, 50}, where a 1 , a 2 , , a 20 are

the 20 amino acids. Let P1 denote the probability distribution over the alphabet

P1 ($0) can be approximated by the reciprocal of the average length of motifs.

Pi(*) = n(P1($0)), Pi (a i ) = (1 — (71+ 1)P1($0))P(ai), where 'n denotes the number

of VLDCs in the motif M. For a motif of the form *X*, n is 2; for a motif of the

form *X * Y*, n is 3.

Given we can calculate the description length of a motif by substituting

the probability distribution P 1 for the probability distribution P, in Equation (3.6).

Specifically, let Mj = *aj1,aj2, ,ajk*.Let dlen(Mj) denote the description length,

in bits, of the motif Alp Then

For instance, consider again 1/ 1 	*VLHGKKVL*. We have

'The actual number of sequences in T p that are encoded by Scheme 2 is dependent on
motif. For each motif used in the study presented here. more than 1/10 and less than 1/3
of the sequences are encoded based on the motif using Scheme 2.
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Sequences that are approximately matched by the motif M j  can be encoded

with the aid of the motif. For example, consider again Ali = *VLHGKKVL* and

Si = MNVLAHGKKVLKWK. Ali matches S i with one mutation, representing the cost of

inserting an A in the third position of M. The first VLDC symbol is instantiated

into MN and the second VLDC symbol is instantiated into KWK. We can thus rewrite

Si as MN • SSi • KWK where SSi is VLAHGKKVL and • denotes the concatenation of

strings. Therefore we can encode Si as M, N. $1; 1, (O s , 3, A); K, W, K, $1. Here $1 is a

delimiter, 1 indicates that one mutation occurs when matching Al i with S i and (O r ,

3, A) indicates that the mutation is an insertion that adds the letter A to the third

position of M3 . In general, the mutation operations involved and their positions

can be observed using approximate string matching algorithms [74_. The description

length of the encoded Si based on M 1 , denoted dlen(Si, Ali ), can be calculated easily

as in Equation (3.10).

Suppose there are h sequences Sp1 	Sp , 	 the positive training dataset Tp

that can approximately match the motif M1 . The weight (or significance) of Ali ,

denoted w(Mj ), is defined as

Intuitively, the more sequences in Tp approximately matching M j  and the less bits

we use to encode Mj and to encode those sequences based on Ali , the larger weight

A/1 has.

Using Sdiscover. one can find a set S of regular expression motifs of the forms

*X* and *X * Y* from the positive training dataset T /, where the motifs satisfy the

user-specified parameter values Len. 11 at and Occur. We choose the top motifs

with the largest weight. Let R. denote this set of motifs. Suppose a protein sequence

S (whether it is a training sequence or a test sequence) can approximately match,
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within Mut mutations, m motifs in 'R. Let these motifs be	 M. The local

similarity (LS) value of S, denoted LS(S), is defined as

This LS value is used as an input feature value of the Bayesian neural network for

the sequence S. Note that we use the max operator here to maximize discrimination.

In general, positive sequences will have large LS values with high probabilities and

have small LS values with low probabilities. On the other hand, negative sequences

will have small LS values with high probabilities and have large LS values with low

probabilities.

Remark. Essentially, the proposed scheme is to count amino acids in a sequence (or

motif). This scheme is not complete in the sense that different sequences may have

the same description length when they have the same number of the same amino

acids. Second, there may be multiple ways to align a motif Al with a sequence S

and hence the description length of the encoded sequence S based on M may not

be unique. As a consequence, the weight of a motif defined in Equation (3.12) may

not be unique (in which case the proposed heuristic randomly picks one). There are

several other approaches for finding motifs of different forms and for calculating their

significance values (see, e.g. _13, 15, 32, 68]). However, motifs have relatively little

effect on PIR sequence classification and a combination of the proposed techniques

already yields a very high precision, as our experimental results show later.

3.4 The Bayesian Neural Network Classifier

We adopt the Bayesian neural network (BNN) originated from Mackay 43] to classify

protein sequences.`' There are N 9 + 2 input features. including N9 2 - gram patterns.

''Software available at http://wol.ra.phy.cam.ac.uk/pub/mackay/README.html.



Figure 3.1 The Bayesian neural network architecture.

the LCC feature described in Section 2 and the LS feature described in Section 3.

Thus. a protein sequence is represented as a vector of + 2 real numbers. The

BNN has one hidden layer containing multiple hidden units. The output layer has

one output unit, which is based on the logistic activation function f(a) = 1+ ,1 _ .

The BNN is fully connected between the adjacent layers. Figure 3.1 illustrates an

example BNN model with 2 hidden units.

denote the training dataset including both

positive and negative training sequences. x ( rn ) is an input feature vector including

the Ng  +2 input feature values. and t„, is the binary (0/1) target value for the output

unit. That is, t„, equals 1 if' x ( m ) represents a protein sequence in the target class.

and 0 otherwise.

Let x denote the input feature vector for a protein sequence. which could be a

training sequence or a test sequence. Given the architecture A and the weights w

16



17

of the BNN, the output value y can be uniquely determined from the input vector

x. Because of the logistic activation function f (a) of the output unit, the output

value  y(x; w, A) can be interpreted as P(t w, A), i.e., the probability that x

represents a protein sequence in the target class given w, A. The likelihood function

of the data D given the model is calculated by

where G(D w, A) is the cross-entropy error function,

The G(D w, A) is the objective function in a non-Bayesian neural network

training process and is minimized, This process assumes all possible weights are

equally likely, The weight decay is often used to avoid overfitting on the training data

and poor generalization on the test data by adding a term α/2Σqi=1 wi2to the objective

function, where o is the weight decay parameter (hyperparameter), wi2 is the

sum of the square of all the weights of the neural network, and q is the number of

weights, This objective function is minimized to penalize the neural network with

weights of large magnitudes. Thus, it penalizes an over-complex model and favors a

simple model. However, there is no precise way to specify the appropriate value of

(I, which is often tuned offline.

In contrast, in the Bayesian neural network, the hyperparameter is inter-

preted as the parameter of a model, and is optimized online during the Bayesian

learning process, We adopt the Bayesian training of neural networks described in _43_

to calculate and maximize the evidence of o, namely P (D a, A) , The training process

employs an iterative procedure; each iteration involves three levels of inference.

Figure 3,2 illustrates the training process of the BNN.

In classifying an unlabeled test sequence S represented by its input feature

vector x, the output of the BNN, P(t = 1 x. w. A). is the probability that S belongs
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Figure 3.2 The training process of the Bayesian neural network.

to the target class, If the probability is greater than the decision boundary 0,5, S is

assigned to the target class; otherwise S is assigned to the non-target class.

3.5 Performance of the BNN Classifier
3.5.1 Data

We carried out a series of experiments to evaluate the performance of

the proposed BNN classifier on a Pentium II PC running the Linux operating

Dataset a T L„ L„
Globin 831 115 173
Kinase-re ate( transforming protein 350 151 502
Ras transforming protein 386 106 322
Ribitol dehydrogenase 319 129 335
Negative sequences 1,650 100 200

Table 3.1 Data used in the experiments. N is the number of sequences, L, is the
minimal length of the sequences, and L :, is the maximal length of the sequences.
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system. The data., used in the experiments were obtained from the International

Protein Sequence Database [8], release 62, in the Protein Information Resource

(PIR) maintained by the National Biomedical Research Foundation (NBRF-

PIR) at the Georgetown University Medical Center, This database, accessible

at http://pir.georgetown.edu , currently has 172,684 sequences. Table 3,1

summarizes the data used in the experiments.

Four positive datasets were considered; they were globin, kinase, ras, and

ribitol superfamilies, respectively, in the PIR, protein database. The negative dataset

contained 1,650 protein sequences, also taken from the PIR protein database, with

lengths ranging from 100 residues to 200 residues; these negative sequences did not

belong to any of the four positive superfamilies. Both the positive and negative

sequences were randomly divided into training sequences and test sequences, where

the size of the training dataset equaled the size of the test dataset multiplied by an

integer r. With the same training data, we tested several BNN models with different

numbers of hidden units. When there were 2 hidden units, the evidence obtained

was the largest (cf, Figure 3,2), so we fixed the number of hidden units at 2. Models

with more hidden units would require more training time while achieving roughly

the same performance,

Table 3.2 summarizes the parameters and base values used in the experiments.

The measure used to evaluate the performance of the BNN classifier is precision,

PR. which is defined as

where NumCorrect is the number of test sequences classified correctly and

NumTotal is the total number of test sequences. We present the results for the

globin superfamily only: the results for the other three superfamilies were similar.



Parameter Meaning Value

N9 Number of 2-gram patterns used by BNN 60
IV Number of motifs used by BNN 20
Len, Length of motifs for Sdiscover 6
Mut Mutation number for Sdiscover 2
Occur Occurrence frequency of motifs for Sdiscover 1/10
r size ratio 2

Table 3.2 Parameters and their base values for the proposed BNN classifier.

20

Figure 3.3 Impact of Ng in the BNN classifier



21

3.5.2 Results

In the first experiment, we considered only 2-gram patterns and evaluated their

effect on the performance of the proposed BNN classifier. Figure 3,3 graphs PR.

as a function of N9 . It can be seen that the performance improves initially as N9

increases. The reason is that the more 2-gram patterns we use, the more precisely

we represent the protein sequences, However, when N9 is too large (e,g. > 90), the

training data is insufficient and the performance degrades. In general, the larger

N9 , the more input features the BNN classifier has, and thus the larger training

dataset BNN requires. In our case, there are 561 positive training sequences and

1,089 negative training sequences. When N9 > 90, these data become too few to

yield reasonably good performance, Figuring out how big the parameter N9 should

be requires some tuning. We have not yet worked out a theory for it.

In the second experiment, we considered only motifs found by Sdiscover and

studied their effect on the performance of the classifier. 1,597 motifs were found, with

lengths ranging from 6 residues to 34 residues, Figure 3,4 graphs PR as a function

of N. It can be seen that the more motifs one uses, the better performance one

achieves. However, that would also require more time in matching a test sequence

with the motifs, We experimented with other parameter values for Len, 111 lit and

Occur used in Sdiscover. The results didn't change as these parameters changed.

Figure 3.5 compares the effects of the various types of features introduced in

the chapter, To isolate the effects of these features, we began by using only one

type of features and then using their combinations, It can be seen that features

generated from global similarities yield better results than those generated from

local similarities, This happens because PIR  superfamilies are categorized based on

the global similarities of sequences, Note also that the best performance is achieved

when all the features are used,



Figure 3.4 Effect of N in the BNN classifier,
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Figure 3.5 Comparison of the various types of features used by the BNN classifier.
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Tool Underlying techniques
BNN
BLAST
SAM

Bayesian neural networks
Similarity search and pairwise alignment
Hidden Markov models

Table 3.3 The bioinformatics tools studied in the chapter,

3.6 Comparison of Three Protein Classifiers

The purpose of this section is to compare the proposed BNN classifier with

the BLAST classifier 2 built based on sequence alignment and the SAM classifier

[37_ built based on hidden Markov models. Table 3.3 summarizes the studied tools.

The parameter values for the BNN classifier were as shown in Table 3.2. The BNN

classifier used both 2-gram patterns and regular expression motifs. The BLAST

version number was 2.0,10, We used default values for the parameters in BLAST.

The SAM version number was 3,0; we used internal weighting method 2 as suggested

in 37. We chose SAM because it was shown [37_ that this tool outperforms other

related tools, such as HMMer [25_ and Meta-MEME [29] built based on machine

learning algorithms in protein sequence classification,

For BLAST, we aligned an unlabeled test sequence S with the positive training

sequences (i.e. those in the target class, e.g,, the globin superfamily) and the negative

training sequences in the non-target class shown in Table 3.1 using the tool, If

S's score was below the threshold of the expectation (e) value of BLAST, S was

undetermined or unclassified. Otherwise, we assigned S to the class containing the

sequence best matching S,

For SAM, we employed the program buildmodel to build the HMM model by

using only the positive training sequences. We then calculated the log-odds scores

for all the training sequences using the program hmmscore. The log-odds scores were

all negative real numbers; the scores (e,g. -100.3) for the positive training sequences

were generally smaller than the scores (e.g. -4,5) for the negative training sequences,
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The largest score Sp for the positive training sequences and the smallest score S, for

the negative training sequences were recorded, Let B / 99h = max {Sp , SR I and 1310,

= min {Sp , SO, We then calculated the log-odds scores for all the unlabeled test

sequences using the program hmmscore, If the score of an unlabeled test sequence S

was smaller than B10,„ , S was classified as a member of the target class, e.g., a globin

sequence, If the score of S was larger than Bhigh , S was classified as a member of the

non-target class. If the score of S was between B10., and Bhigh, S was unclassified or

undetermined,

In comparing the relative performance of these tools, we use four more

measures in addition to the precision PR defined in the previous section: speci f icity, ,

sensitivity , unclassi f iedp and unclassi f iedn where

Nfp is the number of false positives, Nfn is the number of false negatives, Nup is the

number of undetermined positive test sequences. N„, is the number of undetermined

negative test sequences, N7,9 is the total number of negative test sequences, and N po

is the total number of positive test sequences, A false positive is a non-target member

sequence that was misclassified as a target member sequence, A false negative refers

to a sequence in the target class (e,g, the globin superfamily) that was misclassified

as a non-target member,

In the first experiment. we studied the effect of the threshold of the e value in

BLAST. Figure 3,6 shows the impact of e values on the performance of BLAST. It,

can be seen that with e = 10, BLAST performs well, With smaller e values (e,g,
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Figure 3.6 Impact of e values for BLAST.

0.1), the specificity of BLAST can approach 100% with very few false positives while

the number of unclassified sequences is enormous, Thus, we fixed the threshold of

the e value at 10 in subsequent experiments,

Tables 3,4. 3,5, 3.6, and 3,7 summarize the results and classification times,

in seconds, of the three studied tools, referred to as basic classifiers, on the four

superfamilies in Table 3.1. In addition to the basic classifiers, we developed an

ensemble of classifiers, called COMBINER. that employs an unweighted voter and

works as follows. If the BNN, BLAST. and SAM agree on the classification results,

the result of COMBINER is the same as the results of the three classifiers; if two

classifiers agree on the classification results, the result of COMBINER is the same as

the results of these two classifiers; if none of the classifiers agrees on the classification

results. the result of COMBINER is unclassified or undetermined. It can be seen

that in comparison with BLAST and SAM. the BNN classifier is faster. yielding

fewer unclassified sequences. COMBINER achieves the highest precision among all

the classifiers,
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BNN BLAST SAM COMBINER
Precision 98.0% 92.1% 95.3% 99.1%
Specificity 98,0% 95,7% 99.8% 98.8%
Sensitivity 98.0% 100.0% 99,6% 99.6%
Unclassifiedp 0.0% 0,0% 1.1% 0.4%
Unclassified, 0.0% 6.7% 6,2% 1.2%
CPU time 36 1,515 80

Table 3.4 Comparison of the studied classifiers on the globin superfamily,

BNN BLAST SAM COMBINER
Precision 99.0% 86,2% 99.4% 99.6%
Specificity 98,8% 87.8% 99.5% 99,5%
Sensitivity 100.0% 100.0% 100.0% 100.0%
Unclassifiedp 0.0% 0.0% 0.0% 0.0%
Unclassified ?? 0.0% 4.4% 0.2% 0.0%
CPU time 30 1,214 63

Table 3.5 Comparison of the studied classifiers on the kinase superfamily,

Table 3.6 shows the complementarity of the three studied tools BNN, SAM and

BLAST. We see that when all the three classifiers agree, the result is correct with

probability 85,69%/(85.69%+0.07%) = 99.92%,

3.7 Conclusion

In this chapter, we have presented a Bayesian neural network approach to classifying

protein sequences. The main contributions of our work include

• the development of new algorithms for extracting the global similarity and

the local similarity from the sequences that are used as input features of the

Bayesian neural network:



BNN BLAST SAM COMBINER
Precision 98.7% 91.0% 95.5% 99.6%
Specificity 99,3% 95.0% 99,8% 99.6%
Sensitivity 96.1% 100.0% 100.0% 99.2%
Unclassifiedp 0.0% 0.0% 3.1% 0.8%
Unclassified n 0.0% 6.0% 4.6% 0.4%
CPU time 29 1,232 64

Table 3.6 Comparison of the studied classifiers on the ras superfamily.

BNN BLAST SAM COMBINER
Precision 96.6% 88.0% 99.4% 99.9%
Specificity 97.0% 92.6% 100.0% 99.9%
Sensitivity 94.3% 100.0% 100.0% 100,0%
Unclassifiedp 0.0% 0.0% 2.0% 0.0%
Unclassified, 0.0% 6.2% 0,3% 0.0%
CPU time 27 1.212 62

Table 3.7 Comparison of the studied classifiers on the ribitol superfamily,

Classification results Percentage of the test

I 	 sequences
All classifiers agreed and
all were correct 85,69%
All classifiers agreed 	 id
all were wrong 0.07%
The classifiers disagreed and
one of them was correct 14.24%
The classifiers disagreed and
all were wrong 0,00%
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Table 3.8 Complementarity between the three studied tools BNN, 	 and
BLAST. The percentages in the table add up to 100`%.
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• the development of new measures for evaluating the significance of 2-gram

patterns and frequently occurring motifs used in classifying the sequences;

• experimental studies in which we compare the performance of the proposed

BNN classifier with two other classifiers, namely BLAST and SAM, on four

different superfamilies of sequences in the PIR protein database.

The main findings of our work include the following.

• The three studied classifiers, BNN, SAM and BLAST, complement each other;

combining them yields better results than using the classifiers individually,

• The training phase, which is done only once, of the two learning-based classifiers

BNN and SAM may take some time. After the classifiers are trained, they run

significantly faster than the alignment tool BLAST in sequence classification.



CHAPTER 4

PROMOTER RECOGNITION IN DNA SEQUENCES

4.1 Introduction

In this chapter we focus on the recognition of promoter sequences. Promoters are

transcription signals which regulate gene expression. Characterization and recog-

nition of Eukaryotic promoters were studied recently _19, 38, 54]. In this chapter, we

propose a new method to recognize whether a DNA sequence is an E, Coli promoter

sequence or not. The recognition of E, Coli promoters has been studied by Towell

et al. _64], Mahadevan et al. _4*, and Opitz et al. [47_, In KBANN j64], the

topology and weights of the neural network were initialized according to the domain

knowledge of E. Coli promoters. Subsequently in REGENT[47], the genetic algorithm

Was employed to search through the topology space of neural networks. The initial

population of neural networks was created by KBANN. The fitness of each neural

network was measured on a separate validation dataset. The prediction was made

from an ensemble of neural networks. In KBANN and REGENT, a promoter sequence

Was regarded as a 57 attribute tuple, where 57 is the length of a promoter sequence in

their dataset, Promoter sequences were not aligned with respect to the two binding

sites. The orthogonal encoding method was employed to directly encode the promoter

sequences. In Mahadevan et al. [44]. promoter sequences were classified in a three

phase process, First, the two binding sites for each promoter were located by a neural

network, Then, Promoter sequences were aligned with respect to their binding sites,

Finally, promoter sequences were classified by another neural network. In contrast

to the previous work, we employ the expectation-maximization (EM) algorithm [22]

to locate the binding sites, Then, the promoters are aligned with respect to the two

binding sites, Significant features within the promoters are chosen according to their

information contents. These features are then represented by the orthogonal encoding

method and fed to a neural network, We also compare the proposed! method with

29
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the previous work, Experimental results show that the proposed method achieves

better results.

The rest of the chapter is organized as follows. Section 4.2 describes the charac-

teristics of E, Coli promoters. Section 4.3 presents the EM algorithm for locating the

binding sites. Section 4,4 shows methods of choosing significant features according to

the information contents and the neural network for classifying promoter sequences.

We present experimental results and conclude the chapter in Section 4.5.

4.2 Characteristics of E. Coli Promoters

An E. Coli promoter is located immediately before the E. Coli gene, Thus,

successfully locating the E, Coll promoter conduces to identifying the E, Coli

gene. The uncertain characteristics of the E, Coli promoters contribute to the

difficulty in the promoter recognition. The E. Coli promoters contain two binding

sites to which the E. Coli RNA polymerase, a kind of protein, binds _42_. The

two binding sites are the -35 hexamer box and the -10 hexamer box, respectively,

Each binding site consists of 6 bases (nucleotides), The central nucleotides of the

two binding sites are roughly 35 bases and 10 bases, respectively, upstream of the

transcriptional start site, The transcriptional start site is the first nucleotide of

a codon where the transcription begins; it serves as a reference point (position

+1). The consensus sequences, i,e, the prototype sequences composed of the most

frequently occurring nucleotide at each position, for the -35 binding site and the

-10 binding site are TTGACA and TATAAT, respectively, But none of the promoters

can exactly match the two consensus sequences. The average conservation is about

8 nucleotides, meaning that a promoter sequence can match, on average, 8 out of

the 12 nucleotides in the two consensus sequences. Figure 4,1 shows an example

promoter sequence with the -35 binding site being TAGCGA and the - 10 binding site

being AAAGAT. The conservation here includes only 6 nucleotides.
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Figure 4.1 An example promoter sequence. The regions are highlighted by upper
case letters. The -35 region, -10 region, and +1 region are TAGCGA , AAAGAT and CA,
respectively.

The two binding sites are separated by a spacer. The length of the spacer has an

effect on the relative orientation between the -35 region and the -10 region. A spacer

of 17 nucleotides is most probable. The promoter sequence in Figure 4.1 has a spacer

of 17 nucleotides. Another spacer between the -10 region and the transcriptional

start site also has a variable length. The most probable length of this spacer is 7

nucleotides. The promoter sequence in Figure 4.1 has a spacer of 6 nucleotides.'

Because of the variable spacing, it is not appropriate to use the orthogonal encoding

directly to encode or view a promoter sequence as an n attribute tuple, where n is

the length of the promoter sequence. Many promoter sequences have the pyrimidine

(C or T) at the position -1 (one nucleotide upstream of the transcriptional start site),

and the purine (A or G) at the transcriptional start site (position +1). The +1

region includes the nucleotides at the position -1 and the transcriptional start site.

The promoter sequence in Figure 4.1 has a nucleotide C at the position -1 and a

nucleotide A at the transcriptional start site.

In addition to these salient characteristics in the two binding sites and the

transcriptional start site, there are sonic non-salient characteristics in other regions.

In Galas et al. [27] and Mengeritsky et al. 46], a pattern matching method was

applied to the characterization of E. Coli promoters. Some weak motifs were found

around the -44 and the -22 regions. A weak motif is a subsequence, which occurs

6 In general, the distance between the -10 binding site and the transcriptional start site
varies from 3 to 11 bases. The distance between the -35 binding site and the -10 binding site
varies from 15 to 21 bases. These varying distances render promoter recognition difficult,
as both the contents and positions of the binding sites are uncertain.
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frequently in a region. We use the term "weak", since the frequency of a base of

the motif is not as significant as the frequency of a base of the consensus sequences

occurring in the binding sites, In Cardon et al. i16_, as many as 8 nucleotides

(weak motifs) within the spacer region between the two binding sites were found to

have contributions to the specificity of the promoter sequences. Recently, Pedersen

and Engelbrecht _53] adopted a neural network to characterize E. Coli promoters.

The significance of a weak motif was measured by the decrease in the maximum

correlation coefficient when all motifs except that weak motif were fed into the neural

network, By using this method, the authors found some weak motifs in the +1, -

22, and -44 regions. It is interesting to observe that these weak motifs are spaced

regularly with a period of 10-11 nucleotides corresponding to one helical turn. This

phenomenon suggests that the RNA polymerase makes contact with the promoter

on one face of the DNA, Subsequently, the characterization of E, Coli promoter

sequences was carried out by the hidden Markov model [52], It was observed that

the position of the -35 binding site relative to the transcriptional start site is very

flexible, More recently, the periodic occurrence was confirmed [48, 49],

These weak motifs can also be revealed by the sequence logos described in

Schneider and Stephens _59], Figure 4.2 displays the sequence logos of 438 E.

Coli promoters aligned according to the transcriptional start site. 7 Given a set of

aligned sequences, the sequence logos measure the non-randomness of each position

I independently by the Shannon entropy for that position:

The sequence logos were produced by using the software available at
http://www-ecb.nciferf.gov/~toms/delila,html.
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Figure 4.2 The sequence logos of 438 E. Coli promoter sequences. Position 0 in the
figure is the transcriptional start site, which is equivalent to position +1 described
in the text. The negative positions in the figure are consistent with those described
in the text.

is the Shannon entropy of position 1, and f (b, l) is the frequency of base b at position

/.

The height at each position represents the information content of that position.

The higher the information content, the less random that position is. The size of

each base at each position of the logos is proportional to the frequency of the base.

Recall that a weak motif is a frequently occurring subsequence in a region. In the

sequence logos, a weak motif consists of positions (bases) with non-zero information

content. From Figure 4.2, it can be seen that some weak motifs exist in the +1,

-22, -29, and -44 regions. In the following section, we present an EM algorithm for

locating the binding sites of promoter sequences.
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4.3 Locating Binding Sites by the EM Algorithm

To align subsequences in the -44 region, the -35 region, the -29 region, the -22 region

and the -10 region, we need to locate the two binding sites in the E. Coli promoters.

Locating the -35 region and the -10 region may be done by the EM algorithm. In

general. the EM algorithm can be applied for the maximum likelihood estimation

problem when data are incomplete. Locating the binding sites by the EM algorithm

was proposed by Lawrence et al. _41] and Bailey [6]. It was then generalized by

Cardon et al. _16] to allow for different spacers between the two binding sites. By

contrast, our method uses the Bayesian Maximum A Posteriori (MAP) EM algorithm

and considers the binding sites separately from the spacer. Secondly, our method

does not assume the spacer length to be uniformly distributed.

Let T represent the set of promoter sequences in the training set. i.e., T contains

all positive training sequences. Let K denote the cardinality of T. For a promoter

sequence Si e T, the length of the spacer between the -10 region and the transcrip-

tional start site, denoted sp io , and the length of the spacer between the -35 region

and the -10 region, denoted sp 35 , are unobserved, though Si is observed. Specifically,

we refer to the positive training sequences as "observed" data since they are given.

These observed data are incomplete, because the lengths of the two spacers are not

given (the lengths are referred to as "unobserved" or "missing" data). In general,

sp1o varies from 3 to 11 and sp 35 varies from 15 to 21. For each Si , the missing data,

sp10 and sp35 are represented by a vector z i =   zi,63), where

where f	 n)	 (in — 3) *7 ii — 15. Each binding site consists of 6 bases. Assume

that the nucleotides at the two binding sites are independent. Then one can use the

Position Weight Matrix (PWM) described in Staden ;621 to model nucleotides at each

position of the two binding sit es. Let P10,j 	= I. .... G. denote the probability of
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Figure 4.3 The proposed EM algorithm.

x. x E D, occurring at position j in the -10 region. Let P 10 denote (P 1047 •	 ,Pi0,6)•

Let P35,j (x), j = 1,	 , 6, denote the probability of .r occurring at position j in the

-35 region. Let P35 denote (P35 , 1 , .... P35 ,6). Thus, P10,j and P35 ,j , 1 < j < 6 (from

upstream nucleotides to downstream nucleotides) are in the multinomial distribution.

Let 0 denote the P\WM model parameter (P 10 . P 35 ). For each promoter sequence,

had we known the lengths of the two spacers, it would be easy to calculate the model

parameter 0. The proposed EM algorithm can estimate the model parameter 0 from

the incomplete data. Based on the estimates of the model parameter, it is possible

to determine the locations of the two putative binding sites for an DNA sequence.

Figure 4.3 shows the algorithm.

The EM algorithm proceeds iteratively to converge. Each iteration consists

of two steps: the Expectation step (E step) and the Maximization step (M step).

Unfortunately, the LM algorithm can not guarantee to reach the global maxima. It
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may be trapped in the local maxima. Thus, we use a MAP EM algorithm to make the

objective function more concave [45]. The prior probabilities of P i0 ,j and P35 ,1, j =

6, are in the Dirichlet distributions, conjugate to the multinomial distributions,

which means the posterior probabilities are also in the Dirichlet distributions [10, 58:.

The Dirichlet distribution on the probability vector P = (p(A), p(C) , p(G) , p(T)) (P

could be P101 or P35 j, j =1,..., 6) has the form:

The mean values of the Dirichlet distribution on the probability vector P10 ,j and

P35 ,j, 1 < j < 6 are taken from [31]. Thus, (Ix , x E D, of the Dirichlet distribution

can be calculated from (4.4) given α0 of the Dirichlet, distribution, which is regarded

as a parameter.'

The E step calculates the sum of log of the prior probability of 0, Pr o , and the

expected complete-data log likelihood, where the expectation is over the distribution

of the missing data given the observed data., and current estimates of 0. Thus, the E

step calculates

Assume all S i , 1 < i < K are independent. and P(Z 0) = P(Z). i.e.. the probability

distribution of unobserved data. is independent of 0.

8 Our experiments show the performance is not very sensitive to the value of α0. Conse-
quently we choose (t0 = 20.
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Suppose that all promoter sequences in the training set T are 65 nucleotides long (the

position 1 is now at the upstream end and the position 65 now is at the downstream

end) and are aligned with respect to the transcriptional start site, which is at position

56. Let Si , ; denote the nucleotide at position j of the promoter sequence S i . Define

From the Bayes' law. we have

Leaving out the terms not involving O. we have log of the prior of 0, Pr o
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Let 0 0 denote the value of 0 at the beginning of the first iteration. 0 ° was

initialized with random values so that the E step can proceed. In each iteration, we

use the current estimate O to calculate the sum of log of the prior probability of 0

and the expected complete data log likelihood.

The M step maximizes (4.12) with respect to 0. According to the information

theory (Lemma 1.4.1 of [41,

equals fl0g (x), where f10,i(x) is a constant. For instance, when 10,1 (A) , fl0,i (C) ,

f10,1(G), and f10,1(T) are 0.4, 0.3, 0.2, and 0.1 respectively, ΣTx=A  f 10 ; 1(1)109 P10,1 (37)

can be maximized when P10,1(A). P10 , 1 (C). 1)10 , 1 (G), and P10 , 1 (T) are 0.4, 0.3, 0.2,

and 0.1 respectively. Thus the maximum likelihood estimate of 0 is just sample

frequencies f1 0 , j, f35 , 1 , and I's , j = 1,  6 That is,

The new value of 0 can be used in the next iteration. The process iterates

to convergence. Given the model parameters calculated from the positive training

sequences (i.e.. the promoter sequences in the training data set T), we can determine

the locations of the two putative binding sites of any DNA sequence S, which

could be a training sequence or a test sequence. a positive sequence or a negative

sequence. by choosing the two spacer lengths and ,s'p35 which are calculated by
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Figure 4.4 The sequence logos around the -35 binding site.

4.4 Feature Extraction and Classification

After locating the two binding sites, we can align all training promoter sequences

with respect to the two binding sites as well as the transcriptional start site. Figure

4.4, 4.5, and 4.6 show the sequence logos of regions around the -35 binding site, the

-10 binding site, and the transcriptional start site respectively for all the promoter

sequences. Compared to Figure 4.2, it is easy to see the consensus sequences,

indicating that the EM algorithm can precisely locate the binding sites for each

promoter without the prior knowledge of the contents of two consensus sequences.

For the training promoter sequences, positions with high information contents are

chosen as features for classification. Thus, 17 positions around the -35 binding site,

11 positions around the -10 binding site, and 7 positions around the transcriptional

start site respectively are chosen as features. The 35 nucleotides for each training

sequence and test sequence are encoded by the orthogonal encoding.
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Figure 4.5 The sequence logos around the -10 binding site.

In orthogonal encoding, nucleotides in a DNA sequence are viewed as unordered

categorical values, and are represented by 4 dimensional orthogonal binary vectors,

where 4 is the cardinality of the 4-letter DNA alphabet D. That is, we use 4 binary

(0/1) variables, among which only one binary variable is set to 1 to represent one

of the 4 possible categorical values and the rest are all set to 0. For instance, we

represent the nucleotide A by "1000". Figure 4.7 shows an example of the orthogonal

encoding. When there is an uncertain nucleotide denoted by 'X', we use "1111" to

represent it. Besides these 35 positions, the two spacer lengths are also chosen as

features. Thus, there are 142 input units in the input layer of the neural network of

a DNA sequence.

The neural network we use has one hidden layer with sigmoid activation

functions. The output layer of the neural network has one output unit. The output

value is bounded between 0 and 1. The neural network is fully connected. The

network is trained with scaled conjugate gradient algorithm [11]. We tested the
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Figure 4.6 The sequence logos around the transcriptional start site.

neural networks with different numbers of hidden units; the system has the best

performance with 20 hidden units.

4.5 Results

We conducted three experiments. Table 4.1 shows the datasets used in the

experiments. We use precision to measure the performance of the proposed method.

The precision is defined as

where C is the number of test sequences classified correctly and N is the total

number of test sequences. A false positive is a non-promoter test sequence that was

misclassified as a promoter sequence. A true positive is a promoter test sequence

that was also classified as a promoter sequence. The specificity is defined as



Figure 4.7 An example of the orthogonal encoding of a DNA sequence.

where NJ' p is the number of false positives and N„ g is the total number of negative

test sequences. The sensitivity is defined as

where Nip is the number of' true positives and N po is the total number of positive

test sequences.

In the first two experiments. we compare our system with three recently

published approaches: REGENT [47]. KBANN _64]. and Mahadevan et al. 44. Table

4.2 compares our system with REGENT and KBANN using a ten-fold cross validation

test on the same dataset as used in _47. 64] which contains 234 promoter sequences

and 702 negative sequences. In ten-fold cross validation. the dataset containing both

42
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Test number 1 2 3
Pt r . I 1- of 234 362 4, of 438

r to of 4500 1 of 5000
Pts1/10  of 234 1 126

 
— 	 438

it s 1 1
0 

of 702 5000 -I-- of 5000I o
Totp 234 488 438
Tot„ 702 9500 5000

Table 4.1 The datasets used in the three experiments. P in Ntr , Pis , and Nts

represent the numbers of positive training, negative training, positive test, and
negative test sequences respectively. 'Tote and Tot, represent the total number of
positive and negative sequences respectively.

Our System I REGENT
I

KBANN
Precision 97.22% 1 95.83% 93.70%
Errors 26 39 59

Table 4.2 Comparison of our system with REGENT and KBANN,

the positive data (promoters) and the negative data (non-promoters) was randomly

split into ten mutually exclusive folds D i, , D 10 of approximately equal size.

The neural network was trained and tested ten times. During the ith time, it was

trained on D — D i , and tested on D. We allocated the data in such a way that

the training dataset D — D i (the test dataset D i respectively) has approximately .1)

(1/10, respectively) positive data and ( -(-1 , respectively) negative data. Theaverage10

over the ten tests was taken. Table 4.3 compares our system with Mahadevan et al.

_44_. The training set we used includes 362 promoter sequences, and 4500 random

sequences with 609 AT composition, which means the sum of probabilities of A and T

is 0.6. The system is tested on a test dataset containing 126 promoter sequences and

5000 random sequences with the same AT composition as those used in Mahadevan

et a l. _441
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 Our System Mahadevan et al.
Precision 91.94% 90.40%
Specificity 9L76% 90.20%
Sensitivity 99.20% 98.00%

Table 4.3 Comparison of our system with Mahadevan et al.

Precision Rate 96.29%
Specificity 96.68%
Sensitivity 9 .78%

Table 4.4 Performance of the neural network on the latest dataset.

In the third experiment, we adopted E. Coli promoter sequences taken from the

latest E. Coll promoter compilation _49,. There were 441 E. Coli promoters aligned

with respect to the transcriptional start site. We trimmed each promoter sequence to

a sequence of 65 nucleotides including nucleotides from -55 (55 nucleotides upstream

of the transcriptional start site) to +10 (10 nucleotides downstream of the transcrip-

tional start site). This gave us 438 promoter sequences. The negative data (i.e.,

non-promoter sequences) was randomly generated with 60% AT composition. Each

negative sequence is also 65 nucleotides long. There were 5000 negative sequences.

Table 4.4 gives the ten-fold cross validation results. As shown in these tables, our

system achieves better performance, which is due to precisely locating the binding

sites by the EM algorithm.

4.6 Conclusion

In this chapter. we have proposed a new technique to recognize E. Coli promoter

sequences. Wei- first use a Bayesian MAP EM algorithm to locate the binding sites

of the promoter sequences. We then align promoters with respect to the two binding
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sites as well as the transcriptional start site. Significant features within promoters

are extracted according to their information contents. These features are then repre-

sented by the orthogonal encoding method and fed to neural networks. Empirical

study shows that the proposed approach achieves better results when comparing with

existing methods on the same dataset. This happens because our EM algorithm is

able to precisely locate the binding sites of the promoter sequences.



CHAPTER 5

GENOME MINING

5.1 Introduction

We developed a web-based genome mining tool which allows a user to run our genome

mining software from the web. The genome mining tool includes two components.

The protein classification component takes as the input a protein sequence in the

FASTA format, extracts the global similarity information (2-gram encoding) and the

local similarity information (motifs), and feeds these values to the trained neural

networks. The neural networks can classify the input protein sequence into globin,

kinase, ras, and ribitol superfamilies in the Protein Information Resources (PIR) at

the National Biomedical Research Foundation.

The promoter recognition component takes as the input a 65 nucleotide long

DNA sequence in the FASTA format, locates the two putative binding sites within

the DNA sequence, extracts the DNA segments using high information contents,

represents the DNA segments using the orthogonal encoding method, and feeds these

values to the trained neural network. The neural network can recognize whether the

input DNA sequence is a E. Coli promoter or not.

5.2 Architecture of the Genome Mining tool

Figure 5.1 illustrates the system architecture of the genome mining tool. A web user

can access the main page of the genome mining tool from http://www.cis.njit.edu/

~eservice (see Figure 5.2). The web user can run either the protein classification

component or the promoter recognition component. The web user can submit a

query sequence or use the sample sequence provided by the web server (see Figure

5.3 and 5.4). The web server validates the query sequence and passes the query

sequence to either the protein classification component or the promoter recognition

component depending on the web user's choice. Given the query sequence, the

46



Figure 5.1 The architecture of the genome mining tool.

appropriate software module is called. The result is returned to the web server. The

web server eventually sends the query result back to the web user (see Figure 5.5

and 5.6).
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CHAPTER 6

CONCLUSIONS

In this dissertation, we have presented new techniques for two biological sequence

classification problems. In the protein sequence classification problem, we have

presented a Bayesian neural network approach to classifying protein sequences. The

main contributions of our protein sequence classification method include (1) the

development of new algorithms for extracting the global similarity and the local

similarity from the sequences that are used as input features of the Bayesian neural

network; (2) the development of new measures for evaluating the significance of

2-gram patterns and frequently occurring motifs used in classifying the sequences;

(3) experimental studies in which we compare the performance of the proposed BNN

classifier with two other classifiers, namely BLAST and. SAM, on four different super-

families of sequences in the PIR protein database.

In the promoter recognition problem, we have proposed a new technique to

recognize E. Coli promoter sequences. We first use a Bayesian MAP EM algorithm

to locate the binding sites of the promoter sequences. We then align promoters with

respect to the two binding sites as well as the transcriptional start site. Significant

features within promoters are extracted according to their information contents.

These features are then represented by the orthogonal encoding method and fed to

neural networks. Empirical study shows that the proposed approach achieves better

results when comparing with existing methods on the same dataset. This happens

because our EM algorithm is able to precisely locate the binding sites of the promoter

sequences.

In the future, we will combine neural networks and our recently developed graph

matching software to compare 3D protein structures. As the size of the Protein Data

Bank becomes larger and larger (over 700()) it is important to develop new protein

structure classification algorithms [631.
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As protein structure comparison is a computationally intensive task, we propose

a two phase classification process. The first phase is the protein primary structure

(sequence) classification process. This phase is a classification process at a coarse

granularity, as described in Chapter 3. The first phase can significantly reduce

the computational time by eliminating unnecessary comparisons. The result of the

first phase is a set, of possible candidates. The second phase of the classification

process is the protein 3D structure comparison process, where we compare the query

protein structure with a few possible candidates. Thus, the second phase focuses on

a refined granularity. We plan to study this research problem, conducting structural

classification and prediction in the future.



APPENDIX A

Program Listing

This appendix includes the source code for the genome mining tool.



(c) Copyright 2000
All rights reserved
Programs written by Qicheng Ma (NJIT)
RA in the group of Jason T. L. Wang (New Jersey Institute
of Technology) and Dennis Shasha (New York University)

Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without
fee is hereby granted, provided that this copyright
notice appears in all copies. Programmer(s) makes no
representations about the suitability of this
software for any purpose. It is provided "as is" without
express or implied warranty.

//the format of the input file is assumed to be FASTA

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <string.h>
#include <stdio.h>	 /1 for sprintf()
#include <math.h>
#include <ctype.h>
#include <stdlib.h>
#include <sys/time.h>
#define imin(a,b)	 (((a)<(b))?(a):(b))
#define imax(a,b)	 (((a)<(b))?(b):(a))

#define Max len 3000
#define MAXLGH Max_len
#define MAX MOTIF LEN 200
#define MIN SIMILARITY -1
#define INVALID -1
#define TOTAL 751
#define EQUAL SEQUENCES FASTA SCORE 918
#define ROUND 10
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struct sample
char *string;
int actual_length;
double two_gram[22][20]; /* include 20*20 2-gram of aa and 6*6 2-gram ee */
int flag; //flag=1 means that it is in the sample set
int training_set_flag;//flag=1 means in training set, =0 means in the test set
double *selected two	 _features values;
double nearest distance_from cluster centers;
double correlation_coefficient;// correlation_coefficient with average frequency , pos_frequencies.
double motif score;

};

struct two_gram nod {
double md;
int aa i;
int aa j;

};

struct component { //for each component of a cluster
int index; // index to sequence array
component *next;

};

struct score element {
int value;
int cluster ID;
int row_sequence_number;
int column sequence_number;//the row sequence and column sequence that

// contribue to this score
score element *next;

struct cluster { //for each cluster
int cluster ID;
component *elements;
score element *resemblance vector;
int max similarity_column;
int max_similarity,
int max row_sequence_;
int max_column sequence;
int center_sequence_number; // a center sequence is the sequence that

// has the highest counts value in a cluster
cluster *next;
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struct motif{
float compression;
int distance;
int occurrence;
char *motif;

};

sample *read file(char *, int ,int &,double);
sample *read_file2(char *, int ,int &,double);
sample *read_file3(char *, int ,int &,int);
int filter(sample *,int,char *);
int filter2(sample *,int,char *,float);
int filter3(sample *,int,char *,float);
int filter4(sample *,int,char *);
int count 2 gram(sample *,int, double [][20],double);
int mapping(char);
int mapping2(char);
void calculate_dispersion(sample *,int,double [][20],double [][20]);
void mahalonobis distance(double [][20],double [][20],double [][20],double [][201 ,double [][20]);
void calculate correlation_coefficient(sample *,int ,double [][20]);
void sort(double [][20],two_gram_md *);
void get discriminating frequencies(sample *,int ,two gram_md *,int);
void relief(sample *,int , sample *, int ,double [][20]);
int find near hit(sample *,int , int );
int find near miss(sample *,int , sample *, int );
double distance(sample *,int ,sample *,int );
void generate_pca_data(sample *,int ,sample *int);
int read_pca data(sample *,int,sample *,int,double [][20],double [][20]);
void get_motif score(sample *,int,motif *,int);
short match(char *,char *);
void classify by motif(sample *,int,sample *,int);
motif *read in motif(char *,int &);
void scale feature values(sample *,int,sample *,int ,int );
void write feature_values(sample *,int ,sample *,int, int );
double randomNumber(void);
long randomSeedQ;
char *OUTPUT;
long unsigned int nextrandom; /* seed for random number generator */

main(int argc,char *argv[])

sample *pos_samples,*neg samples;
int pos num,neg num,actualpos,actual neg,i,j;



int number of two_grams, number clusters,number_of motifs;
double ratio,pos_frequencies[22][20],neg_frequencies[22][20]; /* mean */
double md[22][20],pos_dispersion[22][20],neg	 iodispersn[22][20];/*deviation*/
double training_test_ratio;
two_gram md one dimension[440];
cluster *a]l_clusters;
motif *motifs;
int *counts;/* record the connection times of each sequence */
int md or_relief or_FK;
int min_len,max_len;
int show feature;
ofstream output;
if(argc !=15)
cout<<"Usage: "<<argv[0]<<" positive data_file positive data_num negative data_file

negative data num sample ratio training_test_ratio number of two grams number_of clusters
motifs file number of motifs OUTPUT md or relief or_FK seed show_feature "<<endl;

return -1;

pos_num=atoi(argv[2]);
neg num=atoi(argv[4]);
ratio=atof(argv[5]);
training test ratio=atof(argv[6]);
number_of two grams=atoi(argv[7]);
number_ of clusters=atoi(argv[8]);
number_of motifs=atoi(argv[10]);

Dl];
md or relief or FK=atoi(argv[12]);
nextrandom=atoi(argv[13]);
show_feature=atoi(argv[14]);
pos_samples=read_file3(argv[1],pos num,actual_pos,1);
neg samples—read file3(argv[3],neg_num,actual neg,0);

if(!pos samples !neg samples)

cout<<"EiTor in reading the input file"<<endl;
return -1;

filter2(pos_samples,actua)_pos,argv[11,training test ratio);
filter2(neg samples,actual_neg,argv -_3],training_test ratio);
filter3(pos samples,actual_pos,argv[1,training test ratio);
filter3(neg samples,actual_neg,argv13],training test ratio);
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count 2 tzram(pos_samples,actual pos,pos frequencies,ratio);
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count_2_gram(neg samples,actual_neg,neg_frequencies,ratio);
if (md_or_relief or_FK==0) {
calculate di spersion(possamples,actua!pos,posfrequencies,posdispersion);
calculate_dispersion(neg samples,actual neg,neg_frequencies,neg_dispersion);
mahalonobis_distance(pos_frequencies,neg_frequencies,pos_dispersion,neg_dispersion,md);
sort(md,one_dimension);

if(show_feature==1) {
output.open("feature file",ios: :out);
if(!output) 

{

cerr<<"Error! Can not open feature file"<<endl;
return 0;

for(i=0;i<number of two_grams;i++)
output<<one_dimension[i].aa i<<" "<<one_dimension[i].aa_j<<endl;

for(i=0;i<22;i++)
if(i!=21)

for(j=0;j<20;j++)
output<<pos frequencies[i][j]<<" ";

else
for(j=0;j<16;j++) {
output<<pos_frequencies[i][j]<<" ";

output<<endl;
output.close();
return 0;

get discriminating frequencies(pos samples,actual_pos,one_dimension,number_of two grams);

get discriminating_frequencies(neg_samples,actual_neg,one dimension,number of two grams);

1

else if (md_or_relief or_FK==1) {
relief(pos samples,actual pos,ne(2, - samples,actual_pos,md);
sort(md,one dimension);

get discriminating frequencies(pos samples,actual_pos,one dimension,number_of two grams);

get discriminating frequencies(neg samples,actual neg,one dimension,number_of two grams);
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else {
generate_pca_data(pos_samples,actual_pos,neg_samples,actual neg);
if

(read_pca_data(pos_samples,actual_pos,neg_samples,actual neg,pos_frequencies,neg_frequencies)
<0)

return 0;
calculate_dispersion(pos_samples,actual pos,pos frequencies,pos dispersion);
calculate_dispersion(neg samples,actual neg,neg_frequencies,neg_dispersion);
mahalonobis_distance(pos_frequencies,neg_frequencies,pos_dispersion,neg_dispersion,md);
sort(md,one dimension);

get_discriminating_frequencies(pos_samples,actual_pos,one_dimension,number_of two_grams);

get_discriminating_frequencies(neg samples,actual_neg,one dimension,number_of two_grams);

calculate_ correlation_ coefficient(pos_samples,actual_pos,pos_frequencies);
calculate correlation_coefficient(neg_samples,actual neg,pos_frequencies);
motifs=read_in_motif(argv[9],number of motifs);
get_motif score(pos_samples,actual_pos,motifs,number of motifs);
get_motif score(neg_samples,actual neg,motifs,number_of motifs);
write_feature_values(pos_samples,actual_pos,neg samples,actual neg,number_of two grams);
return 0;

sample *read_file(char *file name,int total,int &actual total,double ratio)

// the fuction is to read total samples
//the format of the file is assumed to be FASTA
// return NULL if there is an error
//if the current sequence contain illegal amino acid, the sequence is ignored

ifstream infile(file_name);
char buffer[Max_len],ch;
int i,count,error_flag; // count the length of the current sample
sample *samples;
samples= new sample [total];
if(!infile) {
cout<<"Can not open sample file"<<endl;
return NULL;



if (!samples)

cout<<"Can not allocate enough memory"<<endl;
return NULL;

ch=infile.get();

while (ch!=E0F)
if(ch!='>') // assume that the first character is '>'

cout<<"The format of the sample file is not FASTA format"<<endl;
return NULL;

while((ch=infile.get())!='\n') // skip the first line of a sample

count=-1;
error flag=0;
while((ch=infile.get())!='>'&&ch!=E0F)

if (oh==' ch=='\n' ch=='\e) //skip new line character
continue;

if(mapping(ch)==-1)
error_flag=1;

else {
count++;
if(count>Max_len-1) {
cout<<"Sample is longer than Max len"<<endl;
return NULL;

buffer[counti=ch;

if(error flag)
continue;

samples[ilstring=new char [count+2];
if (!samples[i].string)

cout<<"Can not allocate enough memory"<<endl;
return NULL;

stmcpy(samples[i].string,buffer,count+1);
samples[i . string[count+ 1 =' \ 0';
samplesnactual length=count+1;
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/*
if(randomNumber()<=ratio)

samples[i].training_set_flag=1;
else

samples[i].training_set_flag=0;
*/

samples[i].training_setflag=((int) randomNumber()*10*ROUND ) /10;
i++;

actual_total=i;
infile.close();
return samples;

sample *read_0e2(char *file_name,int total,int &actual_total,double ratio)

// the fuction is to read total samples, BUT illegal AA are ignored.
//the format of the file is assumed to be FASTA
// return NULL if there is an error
//if the current sequence contain illegal amino acid, the sequence is ignored

ifstream infile(file name);
char buffer[Max lenbch;
int i,count,enor_flag; // count the length of the current sample
int training_count=0;
sample *samples;
samples= new sample [total];
if(!infile)
cout<<"Can not open sample file"<<endl;
return NULL;

if (!samples)

cout<<"Can not allocate enough memory"<<endl;
return NULL;

ch=infile.get();

while (ch!=E(lF)
if(ch!='>') // assume that the first character is '>'

cout<<"The format of the sample file is not FASTA format"<<endl;
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return NULL;

while((ch=infile.get())!=t\n') // skip the first line of a sample

count=-1;
error_flag=0;
while((ch=infile.get())!='>'&&ch!=E0F) {

if (ch==" ch=='\n' ch=='\e) //skip new line character
continue;

if(mapping(ch)==-1)
error_flag=1;

else {
count++;
if(count>Max len-1) {

cout<<"Sample is longer than Max_len"<<endl;
return NULL;

buffer[count]=ch;

/*
if(enor_flag)

continue;
*/

samples[i].string=new char [count+2];
if (!samples[i].string)
1

cout<<"Can not allocate enough memory"<<endl;
return NULL;

stmcpy(samples[i.string,buffer,count+1);
samp)esi.string[count+11_='\0';
samples[i].actua] length=count+1;
if(randomNumber()<=ratio)

samples [I_ .training_set flag= 1 ;
training_count++;

else
samples[i].training set flag=0;

i++;

actual total=i;
infile.close();
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return samples;

sample *read file3(char *file name,int total,int &actual_total, int pos_neg flag)

// Read Cathy's data
// the fuction is to read total samples, BUT illegal AA are ignored.
//the format of the file is assumed to be FASTA
// return NULL if there is an error
//if the current sequence contain illegal amino acid, the sequence is ignored

1
ifstream infile(file name);
char buffer[Maxlen],ch;
int i,count,error flag; // count the length of the current sample
int training_count=0;
sample *samples;
samples= new sample [total];
if(!infile)

cout<<"Can not open sample file"<<endl;
return NULL;

if (!samples)
1
cout<<"Can not allocate enough memory"<<endl;
return NULL;

ch=infile.get();
i=0;
while (ch!=E0F) 1

if(ch!='>') // assume that the first character is '>'

cout<<"The format of the sample file is not FASTA format"<<endl;
return NULL;

while((ch=infile.get())!='\n') // skip the first line of a sample

count=-1;
error_flag=0;
while((ch=infile.get())!='>'&&ch!=E0F)

if (ch==" ch=='\n''ch=='\t') //skip new line character
continue;

i f(mapping(ch)==- 1 )
error flag=1;
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else {
count++;
if(count>Max_len-1) {
cout<<"Sample is longer than Max len"<<endl;
return NULL;

}

buffer[count]=ch;

/*
if(error flag)
continue;

*/

samples[i].string=new char [count+2];
if (!samples[i].string)
{

cout<<"Can not allocate enough memory"<<endl;
return NULL;

stmcpy(samples[i].string,buffer,count+1);
samples[i].string[count+1]='\0';
samples[i].actual_length=count+1;
if(pos_neg_flag==1) /* positive */

if(i<554)
samples[i].training set_flag=1;

else
samples[i].training_set flag=0;

else /* negative */
if(i<1108)
samples[i].training set_flag=1;

else
samples[i].training_set flag=0;

/*

if(randomNumber()<=ratio) {
samples[i].training_set flag=1;
training_count++;

else
samples[i].training set flag=0;

*/

66



67

actual_total=i;
infile.closeO;
return samples;

//write to a file the filtered training data
int filter2(sample *samples, int total, char *original_file name,float training_test_ratio)
1
int i,j;
char real file name[ 100];
ofstream output;
sprintf(real_filename,"%s.training %.2f',original_file name,training_test_ratio);
outputopen(real_file_name,ios::out);
if(!output) {
cerr<<"Error! Can not open file "<<real file name<<" to write."<<endl;
return -1;

for(i=0;i<total;i++) {
if(samples[i].training set_flag--1) {
output<<">pir S"<<original_file_name<<" training "<<i<<endl;
for(j=0;j<samples[i].actual length;j++) {
if((j+1)%30==0&&j !=0)

output<<endl;
output<<samples[i].string[j];

output<<endl;

output.closeO;
return 0;

//write to a file the filtered data
int filter(sample *samples, int total, char *original filename)

int i,j;
char real filename[1001;
ofstream output;
strcpy(real file_name,original file_name);
strcat(real file name,".filtered");//append suffix .filtered
output.open(real file name,ios::out);
if(!output)
cerr<<"Error! Can not open file "<<real file name<<" to write."<<endl;
return -1;



for(i=0;i<total;i++) {
output<<">"<<endl;
for(j=0;j<samples[i].actual_length;j++) {
if((j+1)°/030-0&&j!=0)

output<<endl;
output<<samples[i:.string[j];

output<<endl;

output.close();
return 0;

//write to a file the filtered test data
int filter3(sample *samples, int total, char *original file_name,float training_test_ratio)

int i,j;
char real file name:100];
ofstream output;
sprintf(real file name,"%s.test %.2r,original file name,training test ratio);
output.open(real_file_name,ios::out);
if(!output) {
cerr<<"Error! Can not open file "<<real file_name<<" to write."<<endl;
return -1;

for(i=0;i<total;i++) {

if(samplesntraining_set flag==0) {
output<<">pir S "<<original_file_name<<" test "<<i<<endl;
for(j=0;j<samples[i].actual length;j++) {
if((j+1)%30==0&&j !=0)

output<<endl;
output<<samples[i].string[j];

output<<endl;

output.close();
return 0;

//write to a file the filtered ROUND cross validation data
int filter4(sample *samples, int total, char *original file_riame)

int i,j,k;
char real file name t[30:,real file name_s:301,buffer[5:;
ofstream output t,output s;

68



for(k=0;k<ROUND;k++)
strcpy(real_file name_t,original_file_name);
sprintf(buffer,"%d",k);
strcat(real_file_name_t, buffer);
strcat(real file name t, "training");
strcpy(real_file_name_s,original_file name);
strcat(real_file_name_s, buffer);
strcat(real_file_name_s, "test");
output_topen(real_file_name_t,ios::out);
output s.open(real file name s,ios::out);
if(!output_t !outputs)
cerr<<"Error! Can not open file to write."<<endl;
return -1;

for(i=0;i<total;i++)
if(samples[i].trainingset_flag!=k)

output_t<<">"<<endl;
for(j=0;j<samples[i].actua]_length,j++)
if((j+1)%30==0&&j!=0)
output t<<endl;

output_t<<samples[i].string[jj;

output_t<<endl;

else 1
output_s<<">"<<endl;
for(j=0;j<samples[ilactua]length;j++)

if((j+1)°/0:30==0&&j!=0)
output s<<endl;

output s<<samples[i_.string[j];

output_s<<endl;

output t.close();
output s.close();

return 0;

// calculate 2-gram for each sequence in the samples and
// calculate frenquencies of each 2 gram in the set
// return -I if an error is encountered
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int count 2 gram(sample *samples,int total,double frequencies[][20],double ratio)

int i,j,k,n,flag,training_flag,total length=0;
int ei,ej;
char chi;
for(i=0;i<22;i++)

for(j=0;j<20;j++)
frequencies[i] [j ]=0;

flag=0;
for(k=0;k<total;k++) {

for(i=0;i<22;i++) 1
for(j=0;j<20;j++)

samples[k].two_gram[i][j]=0;

/*
if(samples[k].training_set_flag==1)

if(randomNumber()<ratio)
*/

flag=1;
samples[k].flag=flag;
chl=samples[k].string[0];
i=mapping(chl);
ei=mapping2(chl);
for(n=0;n<samples[k].actual_length-1,n++)
chl=samples[k].string[n+1 ];
j=mapping(chl);
ej=mapping2(chl);
if(j==-1) {
cen-<<"Can not count 2 gram successfully in the "<<k+l<<"th sequence. "<<endl;
return -1;

samples[k].two gram[i][j]++;
samples[k].two_gram[(ei*6+ej)/20+20:[(ei*6+ej)%20]++;
if(flag) 1

frequencies[i][j]++;
frequencies[(ei*6+ej)/20+20][(ei*6+ej)%20]++;

ei=ej;

for(i=0;i<22;i++)1
for(j=0;j<20;j++)

samples:k].two gram[i] I /1 ----sampleslkj.actual length-1;
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if(flag)
total_length+=samp les[k] . actual length-1;

flag=0;

for(i=0;i<22;i++)
for(j=0;j<20;j++)

frequencies[i][j]/—total_length,
return 1;

//calculate the the square of the dispersion for each 2_grams
void calculate_dispersion(sample *samples, int total, double frequencies[][20],double
dispersion[][20])
1
int i,j,k,count;
for(i=0;i<22;i++)

for(j=0;j<20;j++)
dispersion[i]U]=0;

for(i=0;i<22,i++)
for(j=0;j<20;j++)
count=0;
for(k=0;k<total;k++)

if(samples[k].flag) 1
count++;
dispersion[i][j]+—(samples[k].two gram[i][j]-

frequencies[i][j])*(samples[k].two_gram[i][j]-frequencies[i][j]);

dispersion[i][j]/=count;

return;

//calculate mahalonobis distance MD
void mahalonobis distance(double pos_frequencies[][20],double neg frequencies[][20],double
pos dispersion[120],double neg dispersion[][20],double md[][20])

int i,j;
for(i=0;i<22;i++)

if(i !=21)
for(=0;j<20;j++)
md[i][j]=(pos frequencies[ijW-negfrequencies[i][j])*(pos frequencies[i][Th

neg_frequencies[i][j])/(pos dispersion[i][jj+neg dispersion[i]]l);
else

for(j=0;j<16;j++)
mdli] j]—(pos frequenciesj][j]-neg frequenciesjijj])*(pos frequencies[i][k
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neg frequencies[i][j])/(pos_dispersion[i] jj+negdispersion[i][j]);

return;

void calculate_correlation_coefficient(sample *samples,int total,double posfrequencies[][20])
1
int i,j,k;
double x, y;
double sigma xy,sigma_x,sigma y,sigma x square,sigma y square;
for(k=0;k<total;k++){
sigma xy=sigma_x=sigma y=sigma_x_square=sigma y_square=0;
samples[k].correlation coefficient=0;
for(i=0;i<22;i++)

if(i!=21)
for(j=0;j<20;j++) 1
x=samples[k].twogram[i][j:,
y=pos_frequencies[i][j];
sigma_xy+=x*y;
sigma_x+=x;
sigma_y+=y;
sigm ara_x_sque+=x* x;

sigma y square+=y*y;

else
(or(j=0;j<16,j++) 1
x=samples[k]]wo_gram[i][j];
y=pos frequencies[i]j];
sigma xy+=x*y;
sigma x+=x;
sigma y+=y;
sigma x_square+=x*x;

sigma y_square+=y*y;

samples[k].correlation coefficient—(436*sigma xy-
sigma_x*sigma y)/(sqrt(436*sigma_x_square-sigma x*sigma x)*sqrt(436*sigma y square-
sigma y*sigma_y));
// cout<<samples[k].correlation coefficient<<endl;

return;

// map a amino acid to a integer in [0,19]
// return -1 in case of illegal amino acid



int mapping(char aa)

if(aa=='A')
return 0;

else if (aa=='R')
return 1;

else if (aa=='N')
return 2;

else if (aa=='D')
return 3;

else if (aa=='C')
return 4;

else if (aa=='E')
return 5;

else if (aa=='Q')
return 6;

else if (aa=='G')
return 7;

else if (aa=='H')
return 8;

else if (aa==T)
return 9;

else if (aa=='L')
return 10;

else if (aa=='K')
return 11;

else if (aa=='M')
return 12;

else if (aa=='F')
return 13;

else if (aa=='P')
return 14;

else if (aa=='S')
return 15;

else if (aa=='T')
return 16;

else if (aa=='W')
return 17;

else if (aa=='Y')
return 18;

else if (aa=='V')
return 19;
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else { //error
return -1;

// map a amino acid to a integer in [0,5] for 6 exchange groups
// return -1 in case of illegal amino acid
int mapping2(char aa)

if(aa=='H'1 aa==-R1 aa=='K')
return 0;

else if (aa=='D' aa=='E' jaa=='N' aa=='Q')
return 1;

else if (aa=='C')
return 2;

else if (aa=='S'Iaa=='T' aa=='P' aa=='A" aa=='G')
return 3;

else if (aa=='M' aa==r aa=='L' aa=='V')
return 4;

else if (aa=='F" aa=='Y' aa=='W')
return 5;

else { //error
return -1;

void sort(double md[][20],twogram md one_dimension[])

int i,j,maxindex;
two_gram_md temp;
for(i=0;i<22;i++)

for(j=0;j<20;j++)
one dimension[20*i+j].md=md[i][jj;
one_dimension[20*i+j].aa i=i;
one dimension[20*i+jtaa_]=j;

for(i=0;i<439;i++)
max_index=i;
for(j=i+1;j<440,j++)
if(one_dimension[max index].md<one dimension[j].md)

maxindex=j;
if(i!=max index) {
temp=one_dimension[i];
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one dimension[i]=one_dimension[max index];
one dimension[max_index]=temp;

}

/*
for(i=0;i<440,i++)
cout<<one dimension[i].md<<" "<<one_dimension[i].aa_i<<"

"<<one_dimension[i].aa j<<endl;
*/

return ;
}

// print the first n most discriminating frequencies
void get discriminating frequencies(sample *samples,int total,two gram_md one dimension[],int
n)

int i,k;
for(k=0;k<total;k++)
samples[k].selected two gram_features_values=new double [n];
for(i=0;i<n;i++)

samples[k].selected two_gram features values[i]=samples[k].two gram[one_dimensionnaa i][o
ne_dimension[i].aaj];
// free(samples[k].two gram);

return;

int read_pca data(sample *pos_samples,int pos_num,sample *neg samples,int neg num,double
pos_frequencies[][20],double neg frequencies[][20j)

int i,k,j;
char lookahead[80];
double previous_value;
ifstream ptd,psd,ntd,nsd;
ptd.open("ptd 1 .dat17",ios: :in);
psd.open("psdl.datl 7",ios: :in);
ntd.open("ntdl.dat17",ios: :in);
nsd.open("nsdl.dat17",ios::in);
if(!ptd !psd l!ntd !nsd) {
cout<<"Can not open file"<<endl;
return -1;

for(i=0;i<22;i++)
for(j=0;j<20;j++)



pos_frequencies[i]U]=0;
neg_frequencies[i][j]=0;

for(k=0;k<pos num,k++)
if(pos_samples[k].training set flag==1) {
ptd.getline(lookahead,80); // get rid of "{"
if(strstr(lookahead,"1")==NULL)

cout<<"begining of Input data format error"<<" pos "<<k<<endl;
return -1;

for(j=0;j<436;j++) {
ptd.getline(}ookahead,80);
if(strstr(lookahead," 10")!—NULL&&j>0)
J--;
pos samples[k].two gram[j/20][j%20]=0;
pos_frequencies[j/20][j%20]-=previous_value;

else {
previous_value=atof(lookahead);
pos_samples[k].two gram[j/20][j%20]=previous value;
posfrequencies[j/20][j°/020]+=previous value;

ptd.getline(lookahead,80); // get rid of "{"
if(strstr(lookahead,"{")==NULL) {

cout<<"End of Input data format error"<<" pos "<<k<<endl;
return -1;

else {
psd.getline(lookahead,80); // get rid of " {
if(strstr(lookahead,"{")==NULL)

cout<<"begining of Input data format error"<<" pos "<<k<<endl;
return -1;

for(j=0;j<436;j++) {
psd.getline(lookahead,80);
if(strstr(lookahead," 10")!—NULL&&j>0)

J—;
pos samples[k].two gram[j/20][j°/020 -_ =0;
pos frequencies[j/20:U%20]-=previous value;

else{
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previous value=atof(lookahead);
pos_samples[k].twogram[j/20][j%20]=previous value;
pos frequencies[j/20][j%20]+=previous_value;

psd.getline(lookahead,80); // get rid of " {"
if(strstr(lookahead,"}")—NULL)

cout<<"End of Input data format error"<<" pos "<<k<<endl;
return -1;

// free(pos_samples[k].two gram);

for(k=0;k<neg num;k++)
if(neg samples[k].training_set flag==1) {
ntd.getline(lookahead,80); // get rid of "{"
if(strstr(lookahead" ",{)—NULL)
cout<<"begining of Input data format error"<<" neg "<<k<<endl;
return -1;

for(j=0;j<436;j++)
ntd.getline(lookahead,80);
if(strstr(lookahead," 10")!=NULL&&j>0)
j--;
neg_samples[k].two gram[j/20][j%20]=0;
negfrequencies[j/20][j%20]--previous_value;

else {
previous_value=atof(lookahead);
neg_samples[k].two gram[j/20Ij%20]=previous_value;
neg frequencies[j/20] j%20]+=previous value;

ntd.getline(lookahead,80); // get rid of {"
if(strstr(lookahead,"}")==NULL)
cout<<"End of Input data format error"<<" neg "<<k<<endl;
return -1;

else }
nsd.getline(lookahead,80); // get rid of "
if(strstr(lookahead," ;")-= NULL) }
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cout<<"begining of Input data format error"<<" neg "<<k<<endl;
return -1;

for(j=0;j<436;j+±)
nsd.getline(lookahead,80);
if(strstr(lookahead," 10")!–NULL&&j>0)
J–;
neg samplesjk].two gram1/2011j%20]=0;
neg frequenciesU/20][j%20]--Fevious value;

else {
previous_value–atof(lookahead);
neg_samples[k].two_gram[j/20] %20] ----previous value;
neg frequenciesU/20][j°/020]+=previous value;

nsd.getline(lookahead,80);
if(strstr(lookahead,"}")—NULL)
cout<<"End of Input data format error"<<" neg "<<k<<endl;
return -1;

//free(neg samples[k].twogram);

for(i=0;i<22;i++)
for(j=0;j<20;j++) {
pos frequencies[i][j]/–pos_num;
neg frequencies[i][j]/=neg_num;

cout<<ptd.eof();
cout<<psd.eof();
cout<<ntd.eof();
cout<<nsd.eof();

return 0;

void relief(sample *pos samples,int pos_num, sample *neg samples, int neg num,double
weightll [201)

int i,j,k,near hit,near miss;
double temp;//weight for each featureji][ir
for(i=0;i<22;i++)

for(j=0;j<20;j++)
weight[if j]=0;
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for(k=0;k<pos_num;k++)
if(pos_samples[k].flag) {
near hit=find near_hit(pos_samples,pos_num,k);
near miss=find near miss(pos_samples,k,neg_samples,neg_num);
for(i=0;i<22;i++)

for(j=0;j<20;j++) {
temp=pos_samples[k].twogram[i][j]-neg samples[near miss].two gram[i][j];
weight[i][j]+=temp*temp;
temp=pos_samples[k].two gram[i][j]-pos samples[near hit].two gram[i]j];
weight[i][j]-=temp*temp;

for(k=0;k<neg num;k++)
if(neg_samples[k].flag) {
near hit=find_near hit(neg_samples,neg_num,k);
near_miss=find_near miss(negsamples,k,pos samples,pos num);
for(i=0;i<22;i++)

for(j=0;j<20;j++)
temp=neg_samples[k].two gram[i][j]-pos_samples[near_miss].two_gram[i]U];
weight[i][j]+=temp*temp;
temp=neg samples[k].two_gram[i: U] -neg samples [near hit] .two_gram[i] [j] ;
weight[i][j]-=temp*temp;

return;

// return the index value of the near_hit
int find_near hit(sample *samples,int total, int n)

intk,minindex;
double min distance=100000,dist;
for(k=0;k<total;k++) {

if(k==n)
continue;

if((dist=distance(samples,k,samples,n))<min distance) {
min_index=k;
min_distance=dist;

return min index;

// return the index of the near miss in s2
int find_near miss(sample *s ,int n, sample *s2, int total)
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int k,min_index;
double min distance=100000,dist;
for(k=0;k<total;k++)

if((dist=distance(s 1 ,n,s2,k))<min distance) 1
min_index=k;
min_distance=dist;

return min_index,

//return the distance between sl[n I] and s2[n2]
double distance(sample *sl,int nl,sample *s2,int n2)

double result=O;
int i,j;
for(i=0;i<22;i++)

for(j=0;j<20;j++)
result+=(s 1 [nl ] .two gram[i][j]-s2[n2].two gram[i][j])*(s 1 [n I ] .twogram[i] U]-

s2 [n2] .two_gram[i][j]);
result=sqrt(result);
return result;

void generate_pca_data(sample *pos samples,int pos num,sample *neg_samples,int neg num
1
ofstream output;
int n,i,j;
outputopenepostraining",ios::out);
if(!output) 1

cout<<"Error in open a file"<<endl;
return;

for(n=0;n<pos_num;n++)
if(pos_samples[n].training set fla==1) 1

for(i=0;i<22;i++)
for(j=0;j<20,j++)
output<<pos samples[n].two gram [i]lj j<<" ";

output<<endl;

output.close();

output.open("negtraining",ios::out);
if(!output)
cout<<"Error in open a file"<<endl;
return;
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for(n=0;n<neg_num;n++)
igneg samples[n].training_set_flag==1)

for(i=0;i<22;i++)
for(j=0;j<20;j++)
output<<neg samples[n].two gram[i][j]<<" ";

output<<endl;

output.close();

output.open("pos_test",ios::out);
if(!output)
cout<<"Error in open a file"<<endl;
return;

for(n=0;n<pos num,n++)
if(pos samples[n].training set flag!=1 )

for(i=0;i<22;i++)
for(j=0;j<20;j++)
output<<pos samples[n].two gramii:1]<<" ";

output<<endl;

output.close();

output.open("negtest",ios::out);
if(!output)

cout<<"Error in open a file"<<endl;
return;

for(n=0;n<neg num;n++)
if(neg samples[n].training setflag!=1)

for(i=0;i<22;i++)
for(j=0;j<20;j++)
output<<neg_samples[n].two gram[i] j]<<" ";

output<<endl,
1

output.close();

void get motif score(sample *samples,int sample total,motif*motifs,int motif total)

int i,j;
double score;
for(i=0;i<sample total;i++)

samplesji].motif score—INVALID;
for(j=0;j<motif total;j++)
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if(match(motifs[j].motif,samples[i: .string)<=motifs j] distance) {
score=motifs[j].compression;

if(score>samples[i].motif score)
samples[i].motif score=score;

return;

short match(char *P,char *D)

register short m,n,i,j,k,r,t,m1,m2,m3,m12,di_l ,TE;
short E[MAXLGH];
m=strlen(P);
n=strlen(D);
E[0]=0;
for(i=1 ,i<=m;i++)if(P [i- 1]=='*')E[i]=E[i- 1] ;
else E[i]=E[i-1]+1;
for(i=1;i<=n;i++) {

E[0j=i;
TE=i-1;
di 1=D[TE];
for(j=0;j<m;j++){

if(P[j]=='*')r=t=0;
else if(P[j1==di_1){

r--0;
t=1;

} else r=t=1;
m1=TE+r,
TE=E[j+1];
m2=TE+t;
m3=E j]+t;
m 1 2=imin(m 1 ,m2);
E[j+11=imin(m12,m3);

/* Core++;*/

retum(E[m]);

void classify by_motif(sample *pos samples,int actual pos,sample *neg samples,int actual neg)
$

int i;
int false pos,false neg,pos test,neg test;
pos test=neg, test=false pos=false neg=0;
for(i=0;i<actual pos;i++)



if(pos_samples[i] .training set_flag==0)
pos_test++;
if(pos_samples[i].motif score==INVALID)

false_pos++;

for(i=0;i<actual_neg;i++)
if(neg_samples[i].training_set_flag==0) 

{

neg_test++;
igneg_samples[i].motif score!=INVALID)
false neg++;

cout<<"pos test is"<<pos test<<" neg test is"<<neg test<<endl;
cout<<"Precision is "<<1-float(falsepos+false neg)/(pos_test+neg_test);
return;

// return the fasta score between two sequences
// retrun -1 if there is an error.
int get fasta_score(sample *samplesl,int nl, sample *samples2,int n2)

int i;
ifstream inl;
ofstream out 1 ,out2 ;
char filename 1 [ 1 0]="seq 1" ;
char filename2[ 1 0]="seq2";
out 1 . open(filename 1 ,ios: : out);
out2.open(filename2,ios::out);
if(!outl !out2)
cerr<<"Can not open file "<<filenamel<<" or "<<filename2<<endl;
return -1;

out 1 <<">"<<endl;
for(i=0;i<samples1[nl].actual_length;i++)

out 1 <<samples1 [n1].string[i];
outl.close();
out2<<">"<<endl;
for(i=0;i<samples2[n2].actual length;i++)
out2<<samples2[n2].string[ij;

out2.closeO;
system( fasta seql seq2 >templ");
system("perl get score.pl templ>result");
inl.open("result",ios::in);
if(!inl)
cen<<"Can not open file: result"<<endl;
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return -1;

inl>>i;
in 1 .close();
system("/bin/rm -rf seql seq2 templ result");

// cout<<"("<<n 1 <<","<<n2<<")="<<i<<endl;
return i;

int get fasta_score2(sample *samplesl,int tl, sample *samples2,int t2)

static int *scores;
int nl,n2;
long i,j,index,total,
ifstream in;
static calling_times=0;
nl—t1;
n2=t2;
if(calling times--0) {
callingtimes++;
total=TOTAL*(TOTAL- 1 )/2;
scores—new int [total];
if(!scores)
cerr<<"Can not allocate memory"<<endl;
return -1;

in.open("scores",ios::in);
if(!in) {
cerr<<"Can not open file scores"<<endl;
return -1;

for(i=0;i<total,i++) {
in>>scores[i];//skip a number
in>>scores[i];//skip a number
in>>scores[i];

//calculate index value
//assume n2>nl;
if(n2<nl)

i=n2;
n2=n1;
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else if (n1==n2)
return MIN SIMILARITY;

j=0;
for(i=0;i<n1 ,i++)
j+=(750-i);

j+=n2-n1-1;
// cout<<"("<<t1<<","<<t2<<")="<<scores[j]<<endl;

return scores[j];

// read motifs and their weights from a file into variable motifs
motif *read in motif(char *motif file,int &total)

int i,len;
motif *motifs;
ifstream infile;
char buffer[MAX MOTIF LEN];
motifs=new motif [total];
if(!motifs) {
cerr<<"Can not allocate memory!"<<endl;
return NULL;

infile.open(motif file,ios::in);
if(!infile) 

{

cerr<<"Can not open "<<motif file<<endl;
return NULL;

i=0;
while(i<total&&!infile.eofO)

infile>>motifs[i].compression;
infile>>motifs[i].distance;
infile>>motifs[i].occurrence;
infile>>buffer;
len=strlen(buffer);
motifs[i].motif=new char [len+lj;
stmcpy(motifs[i].motif,buffer,len);
motifs[ij.motif[len]='\0';

// cout<<motifs[i].compression<<" "<<motifs[i].distance<<" "<<motifs[ij.occurrence<<"
"<<motifsi.motif<<end1;;

i++;

total=i;
infile.closeO;
return motifs;
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/* scale all values to [-1,1] with mean =0 */
void sca]e_feature_values(sample *pos samples, int pos_total,sample *neg samples,int
neg total,int number_of two grams)

int i,j;
double max,min,mid_range,range;

/*
for(i=0;i<number_of two grams,i++) 1//scale selected_two gram_feature_values
min=imin(pos_samples[0].selected two_gram features_values[i],\

pos samples[1].selected_two gram_features values[i]);
max=imax(pos_samples[0].selected two_gram features_values[i],\

pos_samples[1].selected two_gram_features_values[ill;
for(j=2;j<pos_total;j++)
if(pos samples[j].selectedtwo 	 features values[i]<min)
min=pos_samples[j].selected_two_gram features_values[i];

else if(pos_samples[j].selected_two_gram_features_values[iPmax)
max=pos_samples[j].selected two gram features_values[i];

for(j=0;j<negtotal;j++)
if(neg samplesLaselected_two gram_features_values[i]<min)
min=neg_samples[j].selected two gram_features_values[i];

else if(neg samplesLaselectedtwo gram_features_values[i]>max)
max=neg samples j].selected_two pramfeatures_values[i];

mid_range—(max+min)/2;
range=max-min;
range/=-2;
for(j=0;j<pos total,j++)
pos_samples[j].selected two gram_features values[i]= \

(pos_samples[j].selected_two gram_features values[i]-mid range)/range;
for(j=0;j<neg total;j++)
neg_samples[j].selected two_gram features_values[i]= \

(neg_samplesW.selected twogram_features_values[il-mid_range)/range;

*/
/* scale nearest_distance from cluster_centers
min=imin(pos_samples[0].nearest distance_from cluster_centers,\

pos_samples:11.nearest distance_from cluster centers);
max=imax(pos samples[0].nearest_distance from_cluster centers,\

pos samples[1].nearest_distance from cluster centers);
for(j=2;j<pos total;j++)

if(pos samples[j].nearest_distance from_cluster cen(ers<min)
min=pos samples[i.nearest distance from cluster centers;

else if(pos samples[j].nearest distance_from cluster_centers>max)
max=pos_samplesAnearest_distance from_cluster centers;
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for(j=0;j<neg_total;j++)
if(neg_samples[j].nearest distance_from_cluster centers<min)

—
min=neg samplesütnearest distance from cluster_centers;

else if(neg_samp)esi.nearest_distance from cluster_centers>max)
max=neg samples lj].nearest distance from_cluster centers;

mid range=(max+min)/2;
range=max-min;
range/=2;
for(j=0;j<pos_total;j++)
pos_samples[j].nearest distance_from_cluster centers=\

(possamples[j] .nearest distance from cluster centers-mid range)/range;
for(j=0;j<neg_total;j++)
neg samples[j].nearest distance_from_cluster centers=\

(neg_samples[j].nearest_distance_from_cluster centers-mid_range)/range;
*/

/*
// scale correlation_coefficient
min=imin(pos_samples[0].correlation coefficient,\

pos_samples[1].correlation coefficient);
max=imax(pos_samples[0].correlation coefficient,\

pos samples[1].correlation_coefficient);

for(j=2;j<pos total;j++)
if(pos_samples[j].correlation_coefficient<min)
min=pos_samples[j].correlation coefficient;

else if(pos_samples[j].correlation coefficient>max)
max=pos_samples[j].correlation coefficient;

for(j=0;j<negtotal;j++)
if(neg_samples[j].correlation coefficient<min)
min=neg_samplesjj].correlation_coefficient;

else if(neg samples[jj.correlation_coefficient>max)
max=neg samples[j].correlation_coefficient;

mid range=(max+min)/2;
range=max-min;
range/=2;
for(j=0;j<pos_total;j++)
pos samples

j
] .correlation coefficient=\

(pos samplesi.correlation coefficient-mid range)/range;
for(j=0;j<ne total;j++)
neg samples[jj.correlation coefficient---\

(no samples[j].correlation coefficient-mid range)/range;
*/

// scale motif score
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min—imin(pos_samples[0].motif score,\
pos_samples[11.motif score);

max=imax(pos samples[0].motif score,\
pos_samples[1].motif score);

for(j=2;j<pos total,j++)
if(pos samples[j].motif score<min)
min—pos samples[j].motif score;

else if(pos_samples[amotif score>max)
max=pos_samples[j].motif score;

for(j=0;j<neg total;j++)
if(neg samples[j].motif score<min)
min=neg_samples[j].motif score;

else if(neg_samples[j].motif score>max)
max=neg_samples[jj.motif score;

mid range--(max+min)/2;
range—max-min;
range/=2;
for(j=0;j<pos_total,j++)
pos samples[j].motif score=\

(pos _samples lj . motif score-mid range)/range;
for(j=0;j<negtotal;j++)
neg samplesLamotif score=\

(neg samples[amotif score-mid_range)/range;
return;

/*
void write feature_values(samp)e *pos_samples,int actual_pos,sample *neg_samples,int
actual neg, int number_of two_grams)

int i,j,n;
char features_file[30],target_file130];
ofstream outl,out2;
strcpy(features file,OUTPUT);
strcat(features file,".i");
strcpy(target file,OUTPUT);
strcat(target file,".t");
out 1 .open(features_fi le,ios: :out);
out2.open(target_file,ios::out);
if(!outl !out2)
cerr<<"Error in openning files"<<endl;
return;

out 1 <<setpreci sion( 6)<<setiosflags(ios: :fixed);
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i=j=0;
while(i<actual_pos&&j<actual_neg) {

if(randomNumber()<0.5){//switch to positive set
if(pos samples[i].training set flag==1) {//write training data

for(n=0;n<number of two_grams;n++)
outl<<pos_samples[i].selected two gram_features values[n]<<" ";

//	 outl<<pos_samplesnnearest distance_from_cluster centers<<" ";
outl<<neg_samplesi.correlation coefficient<<" ";

outl<<pos_samplesnmotif score;
out 1 <<endl;
out2<<1<<endl;

i++;

else {//switch to negative set
if(neg samples[j].training set flag==1) 1//write training data

for(n=0;n<number of two grams;n++)
outl<<neg_samples[j].selected_two gram features values[n]<<" ";

//	 outl<<neg_samples[j].nearest distance from cluster_centers<<" ";
outl<<neg samplesLacorrelation coefficient<<" ";

outl<<neg_samples[j].motif score;
out 1 «endl ;
out2<<0<<endl;

j ++;

while(i<actual_pos)
if(pos samplesntraining_set flag 1) {//write training data
for(n=0;n<number of two grams;n++)

outl<<pos_samples[i] selected two_gram features values[n]<<" ";
//	 outl<<pos samplesnnearest_distance_from cluster centers<<" ";

outl<<pos samples[i].correlation_coefficient<<" ";
outl<<pos samples[ij.motif score;
outl<<endl;
out2<< 1 <<endl;

i++;

while(j<actual_neg)
if(neg samples[j] training set flag	 1) //write training data

for(n=0;n<number of two grams;n++)
out 1 <<neg samples selected two gram  features values[nj<<" ";
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//	 out 1 <<neg_samples nearest_distance_from_cluster_centers<<" ";
outl<<neg_samples[j].correlation coefficient<<" ";

out 1 <<neg_samples [j . motif score;
outl<<endl;
out2<<0<<endl;

j++;

outl<<"Test data begin"<<endl;
out2<<"Test data begin"<<endl;
ij=0;
while(i<actual_pos&&j<actualneg)

if(randomNumber()<0.5){//switch to positive set
if(pos_samples[ij.training_set_flag==0) {//write test data

for(n=0;n<number of two grams;n++)
out 1 <<pos samples [i] selected_two_gram_features_val ues [n]<<" ";

//	 out]<<pos samples[i].nearest_distance_from_cluster_centers<<" ";
outl<<pos samples[itcorrelation_coefficient<<" ";
outl<<pos samples[itmotif score;
out 1 <<endl;
out2<<1<<endl;

i++;

else 1//switch to negative set
if(neg samplesLatraining_set_flag==0) 1//write test data

for(n=0;n<number of two grams;n++)
out 1 <<neg_samplesj] .selected_two_gram features values [n]<<" ";

//	 outl<<neg_samples[j].nearest_distance from_cluster centers<<" ";
outl<<neg samples[j].correlation_coefficient<<" ";
outl<<neg_samples[j].motif score;
out 1 <<endl ;
out2<<0<<endl;

++;

while(i<actual pos)
if(pos_samp)es[ij.training set flag==0) {//write test data
for(n=0;n<number_of two grams;n++)

outl<<pos samplesnselectedtwo gramfeatures values[n]<<" ";
//	 outl<<pos samples[ij.nearest distance_from_cluster_centers<<" ";

outl<<pos_samples[ij.correlation coefficient<<" ";
outl<<pos samples[Gmotif score;



outl<<endl;
out21<<endl;

i++;

while(j<actual neg) 
{

if(neg_samples[j].training_set_flag==0) {//write test data
for(n=0;n<number of two_grams;n++)

outl<<neg_samples[j].selected two gram features_values[n]<<" ";
//	 outl<<neg_samples[j].nearest distance from cluster_centers<<" ";

outl<<neg samples[j].correlation_coefficient<<" ";
outl<<neg_samples[j].motif score;

outl<<endl;
out2<<0<<endl;

out 1 .close();
out2.close();
return;

*/

void write feature values(sample *pos samples,int actualpos,sample *neg samples,int
actual_neg, int number of two grams)

{

int i,j,n;
char features file[30],target_file[30];
ofstream out 1 ,out2;
strcpy(features file,OUTPUT);
strcat(features_file,".i");
strcpy(target file,OUTPUT);
strcat(target file,".t");
outl.open(features_file,ios::out);
out2.open(target file,ios::out);
if(!outl !out2)

cerr<<"Error in openning files"<<endl;
return;

outl<<setprecision(6)<<setiosflags(ios::fixed);
i=j=0;
while(i<actual_pos)

if(pos samples[i].training set flag	 I) ; //write training data
for(n=0;n<number of two_grams;n++)
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outl<<pos_samples[i].selected two gram features values[n]<< " ";
//	 outl<<pos_samples[i] .nearest_distance from_cluster centers<<" ";

outl<<pos_samples[Lcorrelation coefficient<<" ";
outl<<pos samples[i].motif score;

outl<<endl;
out2«1«endl;

while(j<actual_neg) {
if(neg samples[j].training set flag==1) 1//write training data

for(n=0;n<number of two_grams;n++)
outl<<neg samplesLaselected two gram_features_values[n]<<" ";

//	 outl<<neg_samples[j].nearest_distance from cluster centers<<" ";
outl<<neg samples[j].correlation_coefficient<<" ";

outl<<neg_samples[j].motif score;
outl<<endl;
out2<<0<<endl;

j ++;

// outl<<"Test data begin"<<endl;
// out2<<"Test data begin"<<endl;

i=j=0;
while(i<actual_pos) {

if(pos samplesntraining_set flag==0) 1//write test data
for(n=0;n<number_of two_grams;n++)

outl<<pos_samples[i].selected_two_gram features values[n]<<" ";
//	 outl<<pos_samples[i] .nearest_distance_from_cluster centers<<" ";

outl<<pos_samples[i].correlation coefficient<<" ";
outl<<pos_samples[i].motif score;
outl<<endl;
out2<<1 <<endl;

i++;

while(j<actual neg)
if(neg samples[j].training set_flag==0) 1//write test data

for(n=0;n<number of two_grams;n++)
outl <<neg samples[k.selected two_gram_features values[n]<<u ";

out I <<neg samples[j].nearest distance from cluster centers<<" ";
outl<<neg samplesUlcorrelation coefficient<<" ";
out 1 <<neg_sampl es [j]. motif score;



outl<<endl;
out2<<0<<endl;

j++;

outl.close();
out2.close();
return;

}

/*

The random number generator, it generates a pseudo-random number between
0 and 1, starting with the seed given above.

*/

double randomNumber()

unsigned int x;
double dx,r;

r=0;
while (r<1E-24)

nextrandom=nextrandom*1103515245 + 12345;
x—(nextrandom/65536) % 32768;
dx=x;
r=dx/32768;

return r;

/* return a seed for random number generation */
long randomSeed()

struct timeval tp;

gettimeofday(&tp,NULL);
return tp.tv sec;

int find number of clusters(cluster *all clusters)

int count=0;
cluster *p;
p=all clusters;
while(p!=NULL)

count++;
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p=p->next;

return count;

}

// samples can be pos samples or neg_samples
void get nearest distance_from_cluster centers(sample *pos samples,int pos_total,sample
*samples,int total,cluster *all_clusters,int total cluster)
{

int i,j,center,score;
cluster *p;
if(pos_samples==samples)/* for positive set, call get fasta_score2 */

for(i=0;i<total;i++)
samples[i] nearest distance from cluster centers=INVALID,
p=all_clusters;
while(p!=NULL)

center=p->center sequence number;
if(center!=i)

score=get_fasta_score2(pos_samples,center,samples,i);
else
score=EQUAL SEQUENCES FASTA SCORE;

—
if(score>samples[i].nearestdistance from cluster centers)
samples[i].nearest distance_from_cluster_centers=score;
p=p->next;

else // for negative set,call get_fasta_score instead
for(i=0;i<total;i++)
samples[i].nearest_distance_from_cluster_centers—INVALID;
pall clusters;
while(p!=NULL) 

{

center=p->center sequence number;
score=get fasta_score(pos_samples,center,samples,i);
if(score>samples[i].nearest_distance from cluster centers)

samples[i].nearest distance_from cluster_centers=score;
p=p->next;

return;
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