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ABSTRACT

RAPID TOOLING BY INTEGRATION OF SOLID FREEFORM
FABRICATION AND ELECTRODEPOSITION

by
Bo Yang

Rapid tooling (RT) techniques based on solid freeform fabrication (SFF) are being

studied worldwide to speed up the design-production cycle and thus keep manufacturers

at a competitive edge. This dissertation presents a novel rapid tooling process that

integrates SFF with electrodeposition to produce molds, dies, and electrical discharge

machining (EDM) electrodes rapidly, accurately and cost effectively. Experimental

investigation, thermomechanical modeling and analysis, as well as case studies reveal

that integration of electroforming with solid freeform fabrication is a viable way for metal

tool making.

The major research tasks and results of this dissertation study are as follows:

• Rapid electroforming tooling (RET) process development and understanding. 3D

CAD model design, metalization, electroforming, separation and backing are studied

through experimental and analytical work. Methods of implementation based on the

factors of tooling time, cost, and tooling accuracy are developed.

• Identification of inaccuracy factors in RET process and methods for improving

tooling accuracy. The accuracy of the formed mold cavity or EDM electrode depends

upon the material and geometry of the RP part, the properties of the electroformed

metal, and process parameters. The thermal stress induced by the burnout process that



removes the SFF part from the electroform is one of the major inaccuracy sources.

Another one is the deformation generated by solidification of the molten metal that is

used to back the electroform to form a solid mold cavity or an EDM electrode.

• FEM based thermomechanical modeling and analysis of the thermal stress during the

SFF part burnout process has been performed. The model is implemented in ANSYS

software. It is found that a stepped thermal load for the pattern burnout generates

much smaller thermal stress than a ramped thermal load.

• The thermal stress is largely reduced when an SFF part is designed as a hollow or

shelled structure, or when the electroform thickness is increased. The wall thickness

of SFF part is determined by two criteria. The wall thickness must be thin enough to

guarantee that the thermal stresses are smaller than the yield strength of the

electroformed metal. On the other hand, the wall thickness must also be large enough

to resist the electroforming stress during the electroforming process. The electroform

thickness is related to tooling time, cost and tool strength.

• Strain gage based thermal stress measurements demonstrate that the results obtained

from the experiment accurately match the results obtained from the FEM-based

thermomechanical analysis model. Thus the model can be used to predict the thermal

stress induced during the burnout process.

• The established thermomechanical model and FEM based numerical simulation

provide an effective method that determines the geometry of the SFF part and the

electroform thickness for minimizing the manufacturing time and cost while

satisfying the tooling accuracy requirement.
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CHAPTER 1

INTRODUCTION

Tool manufacturing represents a significant area of production technology since it

influences the feasibility and economics of producing a large number of discrete

components. Tools referred to in this dissertation include molds, dies and EDM

electrodes which are used in manufacturing industries to make other products. Modern

tool manufacturing includes all aspects of manufacturing: part design, tool design,

process modeling, prototype production, and control of dimensional and surface quality

by use of mechanical, electrical, and electrochemical machining methods. In most

countries the tool industry consists mainly of small companies, typically with fewer than

100 employees[Destefani, 1993]. In the U.S., for example, approximately 15,000 die

shops represent an annual sale of about $20 billion. The user of dies and molds

increasingly expect that: a) Manufacturing costs and lead times are reduced, b)

dimensional accuracy and overall quality are increased, c) dies and molds allow the

production of short prototype series quickly for testing and evaluation purposes, and d)

design changes can be easily accommodated. As a result of these requirements, tool

makers are forced to increase communication with their customers, improve the training

level of their employees, and utilize modern manufacturing technologies such as process

modeling, high-speed and unmanned machining, automated polishing and CAD/CAM

[Kruth and Kesteloot, 1989].

Presently, there exist two general categories of methods for tool making. One is

machining, which includes, for example, milling, lathe cutting, drilling, grinding, flame

1
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cutting, and electrical discharge machining. The common feature of tool making in this

category is material removal. All machining methods begin with a workpiece in which

the shape of tool is achieved by either manually or automatically controlling the cutting

path relative to the workpiece to remove material until the desired shape of tool has been

reached. The second category for making tools utilizes rapid prototyping (RP), also

known as solid freeform fabrication (SFF), which emerged in the mid 1980's as a viable

way of making parts. The common feature of rapid prototyping is that material is added

in a layer-by-layer fashion by controlling the build paths for the layers. In rapid

prototyping, the CAD data of a three-dimensional object is sliced into multiple two-

dimensional layers. With the supporting technologies of laser, material, and numerical

control (NC), two-dimensional layers of small thickness can be made and bonded layer

by layer sequentially. Different materials and ways of building and binding these layers

constitute different RP processes. Laser Stereolithography (SL), Laminated Object

Manufacturing (LOM), Fused Deposition Modeling (FDM), Selective Laser Sintering

(SLS), Sanders Prototyping and Three-dimensional Printing (3DP) are some of the

commercially available processes [Leu and Zhang, 1998a; Beaman, et al., 1997; Kochan,

1993]. The implementation of RP technology has substantially cut the product

development time and improved the product quality for manufacturers in many

industries. Thanks to the further research and development in the supporting

technologies, such as new materials, novel processes, and higher performance laser

systems, RP has seen continuous improvement in part/tooling accuracy, productivity, part

size, functionality, and mechanical properties.
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Rapid tooling (RT) is defined here as the process of directly or indirectly

employing RP technologies to fabricate dies. molds, EDM electrodes, etc. [Leu, et al,

1998b; Yang and Leu, 1999]. The main advantage of rapid tooling is shortening the

design-production cycle. The direct RT method uses an RP process to directly build tools,

such as building mold inserts using stereolithography (SL), making cores or cavities by

printing a binder onto a metal powder (i.e. 3DP), or selectively sintering and binding

metal powders (i.e. SLS). Post processing such as sintering, infiltration, etc. may be

needed. The indirect RT method involves secondary steps usually with conventional

tooling methods. For example, investment casting [Dickens, 1998a], silicon RTV (room

temperature vulcanizing), etc. can be used with RP to produce testable prototypes or final

parts, and metal spraying, metal electroplating, etc. can be used with RP to form a metal

coated core or cavity or an EDM electrode [Dickens, 1998b]. Rapid tooling finds its

niche by overcoming the weaknesses of conventional tool making such as long lead

times, inability to incorporate design changes, early commitment to financial resources in

the product development cycle, and inability to provide early products for testing and

customer evaluation.

Electroforming, invented by M.H. Jacobi of the Academy of Science of St.

Peterburg, Russia in1838 [Spiro, 1968], enables the fabrication of simple and

complicated components by means of electroplating of metal onto a master that is

subsequently separated from the deposit (called the electroform). The fine difference of

electroforming with electroplating is that electrodeposited metal on an electroplated

product is an integral part of the product, but electroforming is the use of electroplating

technology to fabricate a separate, freestanding entity composed entirely of
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electrodeposited metal. So electroplating is more of a surface finishing technique but

electroforming is a manufacturing technology. Electroforming was mainly used to copy

antique masterpieces in the last century. Currently, it is widely used in the electronics,

aerospace, automotive, and instrumentation industries for a variety of processes.

Electroformed parts most commonly are made of copper, nickel, iron, silver, cobalt or

some kind of alloy. Electroforming can be used to make molds and dies which can not be

readily made by machining or other mechanical processes [Degarmo, 1984, Dibari, 1996,

Lu, 1991]. Making of masters for electroforming is conventionally done by machining or

molding. After the master is made, metal is electrodeposited upon the metalized master.

Upon reaching the desired thickness, the metal-covered master is removed from the

solution. The master is then removed to form a metal shell. The shell is then backed with

other materials to form a mold cavity or an EDM electrode. A nickel or nickel-cobalt

alloy electroformed master can be used for a prototyping tool or a production tool, and a

copper electroformed master can be used as an EDM electrode. Metals deposited by

electroforming have distinct properties [Safranek, 1986]. Dimensional deviation can be as

low as 0.01%, and surface finish of 0.05 m or better can be obtained quite readily if the

master is adequately smooth. Factors against wide application of electroforming include

difficulty in the making of electroforming master, uneven deposition of metal onto the

master, and difficulty in the master removal [Spiro, 1968; Yang and Leu, 1999; Yang and

Leu, 2000].

The emergence of the SFF technology has brought about new opportunities for

electroforming in rapid tooling. Electroforming masters can be built by RP machines and

then electroformed to accurately copy the shape of the master. The integration of RP and
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electroforming can produce complex metal cavities and inserts required in dies and

molds. Because the outside surfaces of electroformed shells are very rough and uneven,

only the inside surface (working surface), which contacts the master surface, of the

electroformed shell is used the cavity for molding. Unlike other metal powder sinter

processes, electroforming can produce cores, cavities and EDM electrodes with excellent

working surface finish, dimensional and geometric accuracy, as well as material

properties. Integration of SFF with electroforming meets the challenge of making

products and components that are difficult or impossible to make using any other

conventional machining techniques. Electroforming can make thin walled hollow bodies

of intricate shapes and accurate inner dimensions, such as waveguide tubes, wind tunnels

and venturi nozzles with varying sections, etc.

This doctoral dissertation study is aimed at developing a novel rapid tooling

process by integrating SFF with electroforming to produce metal dies, molds, and EDM

electrodes quickly, accurately and cost-effectively. The study includes process

development and understanding, process modeling and FEM-based analysis, as well as

experimental investigation and verification. Chapter 2 reviews state-of-the-art rapid

prototyping and rapid tooling processes in terms of their applications, advantages and

!imitations. Chapter 3 describes the tooling process, statements of the problems, research

objectives and research tasks. Chapter 4 introduces a feasibility study of electroplating

tooling for EDM electrode fabrication. The experimental investigation of electroforming

tooling process for making molds, dies, EDM electrodes and hollow bodies is presented

in Chapter 5. Chapter 6 presents the thermornechanical modeling and analysis for the

thermal stress induced in the burnout, process that removes the RP part from the
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electroform. Chapter 7 provides considerations and general rules for design RP parts for

electroforming tooling, and implementation of the tooling process. Final conclusions are

summarized in Chapter 8.



CHAPTER 2

LITERATURE SURVEY

This chapter reviews the recent progress in the research and development of Rapid

Prototyping and Tooling technologies. The processes of Rapid Prototyping (RP), also

called Solid Freeform Fabrication or Layered Manufacturing, are categorized according

to the form of material preparation prior to fabrication of parts. Although RP has brought

in a new revolution in manufacturing processes of materials by using layer-by-layer

material additive processing techniques, its crown has gradually shifted to rapid

tooling/manufacturing, i.e. not just prototypes but functional products. The currently

available rapid tooling technologies are briefly discussed in terms of their applications,

advantages and limitations. The purpose of this chapter is provide background

information for this dissertation.

2.1 Overview of Rapid Prototyping Processes

In the middle to late 1980s, several Rapid Prototyping (RP) technologies were invented.

They are capable of converting a three-dimensional CAD model directly into a solid

physical model. Taking advantage of computer hardware and software technologies, the

CAD data of a three-dimensional object is sliced into multiple two-dimensional layers.

With the supporting technologies of laser, material, and numerical control (NC), two-

dimensional layers can be made and bonded to the previous layers one by one

sequentially. Different materials and ways of building and binding these layers constitute

7
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different RP processes. Stereolithography (SL), Laminated Object Manufacturing (LOM),

Fused Deposition Modeling (FDM) [Jacobs, 1996], Selective Laser Sintering (SLS)

[Bourell, et al, 1994], and Three-dimensional Printing (3DP) [Sachs, 1997] are some of

the commercialized processes.

2.1.1 Working Principles of Rapid Prototyping Processes

The existing RP processes can be classified in many ways, such as the form of material

preparation, method of material fabrication, source of energy, etc. The classification

shown in Fig. 2.1 is done according to the form of material preparation used in the

building process [Beman, et al., 1997; Kruth, et al., 1998]. The current RP processes are

classified into four categories: liquid, powder, sheet, and gas based. The processes

categorized in Fig. 2.1 are illustrated in Fig. 2.2.

Figure 2.1 Some of the current Rapid Prototyping processes
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A. Liquid Phase Based Processes

In liquid phase processes, the material used for fabricating the parts is in the liquid phase, such as

the photo curable resin used in stereolithography (SL) and the fused polymer or metal used in

many depositing processes. All the materials used in the liquid phase processes are subject to

phase change during part building. In fact, the phase change is the way through which the part is

made. Phase change may be caused by photo exposure or by environmental cooling. In SL, the

liquid resin is cured by a focused UV laser beam; in other liquid-phase processes, such as FDM,

MJM, BPM, and SDM, the phase change is all caused by environmental cooling [Beaman, et al.,

1997]. However, they still differ from each other in the way liquid material is deposited as well as

other aspects. For example, in FDM, the fused wax or ABS is extruded out of a nozzle by feeding

of a filament. In MJM, the molten plastic is ejected from a 96-element print head in a drop-on-

demand manner. In SDM, the molten metal is also ejected from a nozzle. However, when

solidified, the new layer is machined by a 5-axis milling machine, making the layer more

accurate for both layer thickness and edge angle. The Laboratory for Solid Freeform Fabrication

of Advanced Ceramics at Rutgers University has developed Fused Deposition of Ceramics (FDC)

to make functional components of Ceramic materials [Dai, et al., 1997; Rangarajan, et al., 1997]

B. Powder Based Processes

Currently, there are three approaches using the building material in the powered form:

SLS, 3DP, and LENS. In SLS, a layer of powder is deposited in a bed, leveled, and then

selectively sintered by a tocused high power laser beam. In 3DP, the binding of powder

for each layer is achieved by printing some binder based on ink-jet printing technology.

In LENS, the powder is fed through a nozzle onto the substrate or a previous layer where

it is melted by a high-power laser beam and then deposited [Beaman, et al., 1997].



Figure 2. 2 Working principles of Rapid Prototyping processes
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C. Sheet Based Processes

LOM and Shape Maker are sheet material based processes. They differ from each other in

the ways of making each layer and binding the generated layers. In LOM, the sheet

material is cut by a focused high-power laser beam to create the contour of each layer.

Adjacent layers are automatically glued together by heating the backing adhesives. In the

Shape Maker process, the contour of each layer is cut by a heated wire and the angled

edge of the contour reflects the wire orientation. Layers are then registered and bonded

manually in a process that allows the construction of a prototype at a rate of

approximately one vertical foot per hour [Lee, et al., 1997].

D. Gas Phase Based Processes

Rather than using solid or liquid feedstock, an approach using gas-phase precursors is

SALD [Lee, et al., 1995]. This technique is a generalization of laser chemical vapor

deposition and has been developed at the University of Connecticut, the University of

Texas at Austin, and Rensselaer Polytechnic Institute [Maxwell, et al., 1993]. This

approach results in formation of solid parts from gas-phase materials such as carbon

bearing gases, CH 4 and C7142 .

2.1.2 Comparison of Performance Characteristics of Rapid Prototyping Processes

Each RP process has advantages and restrictions in terms of accuracy, material diversity,

part size, build speed, and cost. None of the current RP processes excels over others in all

aspects. For example, although SL is limited in material diversity, it makes parts with

very good accuracy and surface finish, and is widely used for conceptual visualization,
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form and fit analysis, and secondary tooling creation. The following is a comparison of

the various RP processes. Table 2.1 summarizes the comparison of some RP processes

[Leu and Zhang, 1998] .

A. Accuracy

The accuracy of a built part with RP technology is determined by many factors. Some of

the usual factors include: machine scanning/leveling/sweeping accuracy, material

shrinkage during phase change, post-processing, energy, and material addition control. It

is clear that the energy of laser beam in laser-based processes is much easier to control

than the temperature of flow material in some heat-based depositing processes [Kochan,

1993]. So generally, the accuracy of parts made by heat related processes (such as FDM)

is lower than by pure laser related processes (such as SL). However, some heat-related

processes may have techniques to eliminate the inaccuracy caused by heat. For example,

in the Model Maker II manufactured by Sanders Prototypes, the molten material is

printed onto the previous layer or substrate and the temperature change will cause

material shrinkage. However, since the material is printed in very small drops and that

each printed layer is further milled by a slab cutter, the part accuracy is greatly improved.

SDM is also a heat-related process. The deposited metal is subject to substantial

shrinkage and thermal stress, which are both negative factors for part accuracy. However,

the 5-axis milling and shot peening after the deposition help to assure the dimensional

accuracy and eliminate stress build-up [Sachs, et al., 1997]. Generally speaking,

processes based upon laser or drop-on-demand technology and those followed by an

additional subtractive method can provide better accuracy than those based upon heat or
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continuous deposition technology without an additional subtractive method. Furthermore,

in order to improve part accuracy, the machine scanning/leveling/sweeping accuracy

should also be further improved, and materials with smaller shrinkage during phase

change are needed.

The amount of energy and material in Rapid Prototyping must be precisely

controlled in order to make parts with desired dimensional accuracy and mechanical

property. In processes such as FDM, precise flow control of the viscous fused material

(wax, ABS, etc.) is essential to achieve good accuracy and surface finish. Ways to control

the material flow include using an extrusion tip with a smaller aperture, providing

accurate material temperature control, optimal depositing routes, etc. On the other hand,

the energy applied to the building material is also very critical. For example, in the SL

process, the curl distortion of the H-part built with SL-5170 resin is shown to be strongly

correlated with the surface exposure index (an index proportional to the applied laser

energy per unit area for each layer). In order to build a part with less curl distortion, the

building parameters must be very carefully designed to control the exposure to a certain

level. More exposure will result in larger distortion while too small exposure may result

in delamination.

B. Material Diversity

Among the current RP processes, the powder based technologies including SLS and 3D-P

are typical processes that can use a wide variety of materials, including plastic. wax,

ceramic, and even metal powders. Both of SLS and 3DP can directly build metal

functional parts. However, the green parts made by these two processes need to be further



Table 2.1 Comparison of some Rapid Prototyping processes
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sintered in order to remove the binder material. The sintered parts are porous which need

to be further processed to become fully dense. In 3DP, the printed parts are post-

processed using techniques borrowed from metal injection molding to produce metal

parts with greater than 92% of theoretical density. These parts may be infiltrated with low

melting point alloys to produce fully dense parts [Das, 1997]. In SLS/HIP process, the

component is produced by selectively consolidating metal powders with a laser beam

layer by layer. While producing each layer, a gas impermeable, very high-density skin

(>98% density) is formed at the boundary of the part by providing high laser energy at a

low scanning speed. The interior of the part is processed (with slightly less laser energy)

to a high density typically exceeding 80%. Thus the part is shaped and canned in-situ.

The encapsulated part is evacuated, sealed, and post-processed by containerless hot

isostatic pressing (HIP) to full density. A fine machining step may be applied if

necessary.
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On the other hand, though SL provides good accuracy and surface finish, its

materials of coverage are very limited. To obtain metal or functional parts, some

secondary process is needed, such as QuickCast® and RTV molding.

C. Build Size/Speed

Many of the existing commercial RP processes have the capability to increase part build size and

improve build speed without great technological differences. However, there exist some

restricting factors, such as the maximum achievable building speed, inaccuracy caused by

thermal stress, material cost, and part strength. It is clear that processes with higher building

speeds, less distortion caused by stress, cheaper materials, and stronger part strength are better

able to increase the build size. It will be very difficult for processes with drop-on-demand

deposition, such as the Model Maker process, to substantially increase their build size without

technical break-though. On the other hand, for the SL process, the build speed and build size may

be substantially improved, provided that the laser power is increased and that the distortion is

reduced. Another example of speed-improving/size-enlarging is the introduction of FDM

Quantum by Stratasys, utilizing the MagnaDrive scanning technology which is much faster than

the previous motion system.

D. Application

All current RP processes can build prototypes for visualization purpose. The materials of

these prototypes include cured photo-polymer resin, plastic, wax, wood, and metal. Most

RP processes can also directly build plastic functional parts, such as SL, FDM, etc.

However, only a few processes can directly build metal functional parts while the other

processes need a secondary process. As mentioned above, the SLS process can build
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metal parts with the post-processing technology of HIP or metal infiltration. For most of

the other RP processes, RTV molding and casting (sand casting and investment casting)

are the most used secondary processes to make metal parts from prototypes.

2.2 Stereolithography Apparatus

SLA was firstly commercialized in 1988. It is one of the most widely used processes

today. It is an optical fabrication process that translates CAD solid model data into a

physical model by successively laser-curing liquid photopolymeric resin to build the

cross sections of a part. The computer controlled SLA system consists of an open-topped

vat of photocurable polymer resin, computer controlled automatic elevating platform and

leveling device, ultraviolet (UV) or visible wavelength laser and optical mirror system. A

schematic illustration of the SLA machine is shown in Fig.2.3. The process of producing

an SLA prototype starts from a 3D CAD design. In the pre-processing, a three-

dimensional object is developed using a CAD system and its surface is approximated by

triangular facets in STL format. The object is then sliced into a number of two-

dimensional cross-sections. The part is built from bottom to top by a computer controlled

laser and elevator. The process of production of an SLA prototype is shown in Fig.2.4.

As noted above, SLA builds a part by controlling a laser beam to selectively cure

liquid photopolymer layer by layer. So, the principle of polymerization and exposure of

laser beam play very important roles in SLA technology. In the following sections, the

principles of photo polymerization and exposure of laser beam to SLA will be reviewed

in order to gain solid understanding of the process.



Figure 2.3 The Stereolithography Apparatus system
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Figure 2.4 Fabrication sequence of an SL prototype
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2.2.1 Photocurable Resin and Photo Polymerization

The materials used in SLA method are photocurable polymer resins. They are cross-

linked liquid thermoset polymers and photoinitiators, such as acrylate resin or epoxy

resin. Epoxies are attractive because of their higher mechanical strength and low

volumetric shrinkage compared to acrylate. The requirements for this resin systems are:

• high reactivity, in order to achieve high degrees of polymerization,

• an unchanged viscosity, in order to allow an equal layering,

• good in susceptibility to aging, because the material consumption compared to

the fill volume of the work container is proportional small,

• low sensibility against process parameter variability,

• low toxicity,

• low contraction, and

• high rigidity and impact toughness.

The forming of photocurable thermosets resin is more complicated.

Polymerization is the process of linking small liquid monomers into larger solid polymers

Figure 2.5 Photopolymerization process: initiation, propagation, and termination
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using the catalyst energy of absorbed photons. The radicals may be generated either

thermally or photochemically. In SLA, the forming of thermoset polymers is

photoinitiated radical polymerization. Actinic photon is the catalyst for transformation of

the liquid monomer to solid polymer. Three essential steps in polymerization for SLA are

initiation, propagation, and termination. A radical process of photopolymerization of

ethylene is shown in Fig.2.5.

2.2.2 Laser Exposure

SLA is able to rapidly direct focus radiation of appropriate power and wavelength onto

surface of a liquid photocurable resin to solidify resin for a two dimensional layer of a

part. The use of laser beam with a continuous wave emitting radiation of power P L at a

suitable wavelength X, is the source of radiation with very high radiance to provide a

tightly focused spot on the surface of the photopolymer located at a substantial distance.

The excellent features of a SLA part is highly relied on the features of laser. For

examples, the minimum feature size of a part is determined by the diameter of the

focused laser spot on the photopolymer surface. The resolution of a part depends on the

angular accuracy of the galvanometers, the ability to control the intensity distribution,

and the laser power.

The solidification of the liquid resin depends on the optical energy per unit area,

or known as the exposure, deposited during motion of the focused spot on the surface of

the photopolymer. When the exposure is less than a critical value, E c , the resin remains

liquid. When the exposure is greater than E c , the resin polymerizes. When the exposure is
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equal to E c , the polymer is at the gel point. corresponding to the transition from the liquid

phase to solid phase. The critical exposure energy at locus of points (y*, z*) is:

where PL is laser power, We is Gaussian half width, V, is scan speed, and D, is penetration

depth of resin where the irradiance is about 37% or 1/e of the surface irradiance. After

algebra operation eq. (2.1) becomes:

Note that W e , D 1 , P E, V, and E c are all constants, eq. (2.4) can be written in the

form

where a, b, and c are all positive constants. Equation (2.3) is a parabolic cylinder

equation. Figure 2.6 shows a schematic view of a cured line having the parabolic cross-

section.

In SLA. the relationship between the thickness of the exposed layer and the

applied energy is called the "working curve" of a given resin. The equation representing

the working curve is

where C d is the maximum cure depth or thickness of the solidified layer, D, is the

penetration depth, E is the exposure energy used to solidify the resin mixture and E c is the
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critical exposure at which solidification starts to occur. The equation (2.4) states five

fundamental points of the laser exposure of the SLA process:

• The cure depth is proportional to the natural logarithm of the exposure on the

centerline of the scanned laser beam.

• The semi-log plot of C d versus E is a straight line. This line is known as

working line of a given resin.

• The slope of the working curve is penetration depth, Dr of that resin at the

laser wavelength.

• The intercept of the working curve is E c , the critical exposure, of that resin.

• The D p and E c are resin parameters, and independent of laser power.

The maximum linewidth can derived from eq. (2.2). Let z * = 0, and linewidth,

= 2y* plus working curve. Eq. (2.2) becomes

where Wo is the Gaussian half-width of laser irradiance distribution, L„ is defined as the

full-width of a laser cured line. The laser spot diameter is B = 2W 0 . The cured linewidth

becomes

The cured linewidth is directly proportional to the laser spot diameter, B. The cured

linewidth is also proportional to the square root of the ratio of the cured depth to the resin

penetration depth (C d D p). Thus curing deeper will also result in increased linewidth.

The scan of a line and a layer, and working equation and cure are shown in Fig.2.6. and

Fig.2.7.



Figure 2.6 Laser exposure of a line

Figure 2.7 Laser exposure of a layer
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2.3 Rapid Tooling Research and Development

Rapid Tooling (RT) is the process of directly or indirectly employing RP technology in

tool, die and mold fabrication. These tools may serve the purpose of forming a prototype

part in the end use material for design evaluation, or producing a product that only a

small quantity is to be manufactured [Ashley, 1997]. Direct RT methods involve directly

producing tools with RP processes and some post processing, such as SLS with low

melting point alloy infiltration or hot isostatic pressing. Indirect RT methods involve

secondary processes by utilizing RP patterns in conventional casting, metal spraying, or

RTV molding [Aubin, 1997].

2.3.1 Direct Rapid Tooling

Processes capable of directly making tools include SLS, 3D-P, SDM, LENS [Karapatis,

et al., 1998], and direct ACES (Accurate Clear Epoxy Solid parts) Injection Molding

(AIM) [Decelles, 1998]. Low melting point metal infiltration is an important step in some

direct RT technologies. It is used to obtain fully dense metal parts from sintered or burnt

green patterns made by SLS or 3D-P. Infiltration results in much less shrinkage than HIP

technology. However, the disadvantage of infiltration is that it takes longer time. As

compared to SLS and 3D-P, the SDM and LENS processes can directly build metal parts

with almost no post-processing.

The AIM process is good for making 20-100 prototype parts. It is used to directly

inject thermoplastics at up to 300°C into an ACES core and cavity built with an SL

photo-polymer having the glass transition temperature of about 75°C [Jacobs, 1997]. The



Figure 2.8 UV based silicone molding process

key to success in this process is cooling. Currently, Georgia Institute of Technology is

working on injection molding with SL patterns, similar to the AIM process [Dawson,

1998].

2.3.2. Indirect Rapid Tooling

The indirect rapid hard tooling involves secondary steps by using an RP pattern combined

with conventional metal casting, such as investment casting and sand casting, etc., and

metal spraying, metal electrodeposition, etc. to produce a metal coating to form cores and

cavities in the production of complicated metal molds or EDM electrodes, which are

typically difficult to machine due to complex geometry or hard material property.

A. UV Silicone Molding

Silicone RTV molding is a widely used soft tooling process. The recently introduced UV

silicone molding is very similar to the traditional RTV molding except that the curing of

silicone mold or urethane part is achieved by UV light. The process is shown in Fig.2.8.

In the process, the UV cured system utilizes a stable photo-initiator that only reacts to UV

radiation. Since temperature is not a factor in this curing process, there are no thermal

expansion concerns, no oven temperature stability problems, and no exothermic reactions
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to breakdown in the silicone mold. The shrinkage for the UV silicone and UV urethane is

stable, consistent and predictable (0.3%). Also, with the photo-initiator acting as the

catalyst, the curing speed is a fraction of the time it takes for thermal or addition cure

systems. A silicone mold measuring 4"x5"x7" is cured by UV light within 15 minutes.

B. 3D Keltool Powder-Metal Sintering

The 3D Keltool powdered metal sintering process is a proprietary process of 3D systems

for rapid metal hard tooling. The procedure (see Fig.2.9) is as follow [Ashley, 1997;

Figure 2.9 The 3D Keltool processes (Jacobs, 1996b)
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Raetz, 1998]. An positive ACES SL pattern is used to make a precision RTV silicon

mold. This temporary mold is then filled with a patented mix of metal particles and a

proprietary binder material. After curing and demolding, the green part is fired in a

hydrogen reduction furnace that removes the binder and sinters the powders to form a

semi-porous metal part. Toxic gases generated in the fusing and sintering process need to

be carefully handled. The fused part, which has 30 percent void space, is infiltrated with

copper. The end result is roughly machined to form a mold cavity that is essentially 100

percent solid. The shrinkage of the 3D keltool is 0.8 percent. 3D keltool metal inserts are

typically manufactured in three weeks, so it saves time. The process saves money in the

range from 25 percent to as much as 40 percent compared with traditional CNC machined

steel tools. The tool life is excellent. For neat plastics, as many as 10 million injection

molded parts have been produced from a single keltool insert. For glass filled resins,

lifetime of 500.000 to 1,000.000 parts per tool have been achieved [Jacobs, 1997].

C. QuickCast Tooling

The use of SL pattern in sand casting has shown a good yielding rate. But this old

technology is less popular than the shell investment casting because of its relatively poor

production quality. The early attempts to use SL solid patterns to replace investment

casting wax patterns met with limited success. The build style and low viscosity epoxy

resin of QuickCast provide a solution for increase of the investment casting yield rate.

After the SL pattern is postcured, it is invested with ceramic slurry for desired thickness.

After the ceramic shell is dried, the investment ceramic shell with SL pattern is put into a

flash oven to burnout the pattern, creating the cavity. The shell is then ready for pouring
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molten metal. After the molten metal is solidified, the shell is broken to recover the metal

prototype.

Investment casting process with the SL models provides the designer with the

ability to produce truly functional prototypes quickly. This investment casting process

using SL patterns eliminates the initial tooling need associated with conventional

production and thus allows the designer to fabricate a functional part at a fraction of the

cost and time. Metal casting lead times are also reduced to as little as 2-3 weeks. This

process is particularly useful if only one or two parts are to be made for design testing

and qualification. Fig.2.10 compares the total time and cost versus number of parts

required of the rapid prototyping using SL patterns with those required of the

conventional process (Sarkis, 1994; Yao, et al., 1996).

Figure 2.10 Total production time and cost vs. number of parts
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D. Spray Metal Tooling

Spray metal tooling is an economic way to produce short-run evaluation prototypes made

of production materials. The use of RP master for spray metal tooling has resulted in a

shorter turnaround time. The spray metal tooling process is as follows. When a RP master

is ready to be molded, the RP master is secured on a parting surface and is sprayed with a

sealer and release agent. Then an electric arc spraying gun coats the master with zinc

alloy. The spraying process is complete when a shell of desired thickness is achieved. The

shell is then fit into a mold form, and the back is filled. The type of backing depends on

the type of molding process to be used. For example, aluminum-filled epoxy backing

would be used for light pressure applications such as vacuum forming, reaction injection

molding. A low-melt castable alloy backing can be used for high pressure injection

molding applications, or resin transfer molding. Fig.2.11 shows a mold generated by

spraying metal on an SLA generated part.

Figure 2.11 Spray metal tooling (ProtoTech Engineering, Inc., IL)
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2.4 Accuracy Comparison among Current Rapid Tooling Techniques

One of the main problems with rapid tooling techniques at the present is the inability to

hold tight tolerances, especially on larger tools. Jacobs [1998] has shown that when tools

are produced by a process which involves tool material phase change, such as from liquid

to solid or from solid to liquid, there usually exists an associated random shrinkage of the

material. The variation in accuracy is directly proportional to the amount of shrinkage. A

modified version of this prediction model initiated by Jacobs determines the tolerances

for a number of rapid tooling techniques.[Mueller, 1998].

Currently used rapid hard tooling processes such as 3D Keltool TM [Raetz, 1998],

3-dimensional printing (3DP) [Sachs, et al., 1997; Sachs, et al., 1990] and RapidTool Tm

[Bourell, et al., 1994], first bind metal powders by various techniques to generate a green

part. Afterwards the part is debinded, sintered, and infiltrated with copper or other metals

to produce functional metal parts. The powder metallurgy approaches involve random

noise shrinkage during the sintering process and thus the generated metal parts suffer

dimensional uncertainty and they usually have rough surface finish. Comparing with

those powder metallurgy tooling processes, the rapid electroforming tooling (RET)

process developed in this dissertation generates metal tools with better accuracy and finer

surface finish [Yang and Leu, 1999]. This is because the geometry and surface finish of

the pattern are accurately duplicated during the electroforming process [Spiro, 1968], and

other deformation sources can be accurately controlled through process modeling and

simulation as described in chapter 6 of this dissertation. An accuracy based comparison

among these rapid metal tooling processes is given in Table 2.2 [Karapatis, 1998; Zhou

and He, 1998; Yang and Leu, 1999].



Table 2.2 Accuracy based comparison among rapid metal tooling processes
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CHAPTER 3

RESEARCH OBJECTIVES, ISSUES AND APPROACHES

This chapter first introduces the developed rapid tooling processes, namely the rapid

electroplating tooling and rapid electroforming tooling. The main problems encountered

in electroforming tooling process are stated. The research objectives, issues, approaches

and tasks are then presented.

3.1 Tooling Approaches

3.1.1 Electroplating Tooling

Electroplating tooling is studied for use in rapid fabrication of electrical discharge

machining (EDM) electrodes using RP patterns. A positive SL model is electroplated

with copper to form EDM electrodes without further post-processing or finishing. The

basic steps, as shown in Fig.3.1, include fabrication of RP pattern, metalization to make it

electrical conductive, and electroplating. A feasibility study of EDM tooling using

electroplated stereolithography models has been performed and presented in Chapter 4.

Figure 3.1 Electroplating tooling using RP pattern.
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3.1.2 Electroforming Tooling

Electroforming is the use of electrodeposition of metal onto a master to replicate the

master in a reversed format to produce a thin metal shell. The master, which has the

required shape, dimension, accuracy and roughness, is sinked into an electrolyte bath as

the cathode and is deposited a desired layer of metal, normally copper or nickel. This

metal shell is called electroform. If the master is nonconductive, it needs to be metalized

before electroforming. The master is separated from the electroform to form the mold

cavity. Electroforming was mainly used to copy antique masterpieces in the last century.

Currently, it is widely used in the manufacturing, electronics, aerospace, automotive,

instrumentation industries and for copy of art articles. Electroforms most commonly are

made of copper, nickel, iron, or silver, and electroforms of thickness up to 16 mm (5/8

inch) have been deposited successfully [Dibari, 1996]. Metals deposited by

electroforming have their own distinct properties [Degarmo, 1984]. Dimensional

tolerances are very good, often up to 0.0025 mm (0.0001 inch), and surface finishes of

0.05 µm (2 microinch) can be obtained quite readily if the master is adequately smooth.

The main obstacle to the development of electroforming is the manufacturing of the

master. Electroforming has been used for dies and molds fabrication [Spiro, 1968]. With

the development of the electroforming technology, alloy such as Ni-Co can be deposited

onto the master to form an alloy shell so that the strength and hardness of the mold can be

largely improved [Li, et al., 1992; Stephenson. 1966].

The emergence of RP technologies has brought about new opportunities in the

utilization of electroforming for making of molds, dies, EDM electrodes and hollow

bodies as disclosed in the dissertation. Masters can be made using RP machines described
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in Chapter 2. After the RP master is metalized, an electroform is made from the master

with the interface layer conforms intimately to the master. However, separation of the

electroform from the master may not be easy and the difficulty increases as the form

complexity increases. Traditionally, the master is removed by extraction (pull-off), heat-

softening, melting or chemical dissolution. Separation of an RP master by mechanical

pull-off has been found impractical, however, since extreme care and skills are required

during the pulling off process in order not to damage the metal shell. The pulling force

may break the master thus leaving some master relic in the metal shell, especially when

the master is brittle and intricate in shape. Pull-off can not be used if the master is

enveloped in the metal shell such as a hollow-body electroform of complex shape.

Dissolving the RP master in a chemical solution to separate the metal shell by causing

delamination of the interface layer may be possible but the time taken may be excessive.

Melting, incineration or heat softening may be applied to wax or polymer RP master for

separating the electroform from the master. A major problem is that these materials have

much higher coefficients of thermal expansion than the electroformed metal. During the

process of heating up the electroformed object, the expansion of the RP master can

significantly deform the metal shell. Bocking [1997] described the use of thermal cycling

(without detailed information) to separate a polyurethane master from a metal shell, but

stated that removal of an SL master is more difficult than removal of a polyurethane part

because an SL part is more brittle and tends to fracture during the removal process and

thus an SL part is used as a master to create a vacuum cast mold used to produce a

polyurethane master for electroforming.



35

Figure 3.2 The tooling process being investigated

Figure 3.2 illustrates the electroforming tooling process being investigated for

fabrication of dies, molds and EDM electrodes. The basic process is as follows:

• A CAD model is generated and transformed into STL/SLI file format. This file is

input into an RP machine to build the electroforming master.

• The master is metalized and then placed in an appropriate electroplating solution and

metal is deposited upon the master by electrolysis.

• When the required electroform thickness has been deposited, the master is then

removed from the metal shell by burnout.
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• The metal shell is backed with low melting alloy to form a mold cavity or an EDM

electrode.

• If a thin walled hollow body is required, the master is removed from the metal shell

and the shell is post-processed to form the hollow object.

In this doctoral dissertation study, the EDM electrodes are electroformed with

copper and the molds are electroformed with nickel. The RP pattern is made by SL. The

RP pattern is removed by burnout. The coefficient of SL resin is about one magnitude

larger than that of the electroformed nickel or copper. The thermal expansion of the SL

pattern results in thermal stress that could deform or even crack the electroform. The

electroformed copper shell is backed with tin-lead (Metspec 217) alloy whose melting

temperature is 103 °C and the electroformed nickel shell is backed with tin-lead-bismuth

(Metspec 281) alloy which melts at 138.5 °C. The coefficient of thermal expansion of

Metspec 281 is 15 x10 -6 7°C, which is very close to that of the nickel valued at 14x 10 -6

7° C.

3.2 Research Objectives, Issues and Approaches

The currently popular rapid hard tooling processes utilize the metal powder sintering and

infiltration method to produce metal parts. These powder metallurgy processes involve

phase changes and consequently random shrinkage during the phase change [Paul, 1998;

Zhou, 1998]. The random shrinkage implies that the approaches based on one form or

another of powdered metallurgy are doomed to suffer dimensional uncertainty. Moreover,

the produced parts always have rough surface finish. Comparing with the other rapid

tooling processes, the described method of integrating stereolithography with
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electroforming has much smaller random shrinkage and it generates metal tools with

better accuracy and finer surface finish (Yang and Leu, 1999).

The objective of this research is aimed to understand and optimize the described

rapid electroforming tooling process for the purpose of producing metal molds, EDM

electrodes, and thin walled hollow bodies with intricate shapes and accurate dimensions

rapidly, accurately and cost-effectively. The new process has the potential of being

widely used in manufacturing, aerospace, automotive, instruments, electronics and

consumer products.

In order to achieve this objective a number of research issues are addressed in this

dissertation study. They are:

• Identification of inaccuracy factors in the tooling process and methods for accuracy

improvement. The accuracy of the formed mold cavity or EDM electrode is

influenced by RP masters, materials, geometry, and process parameters.

• Modeling of thermal stress induced by the burnout processes. Based on the

observation of our previous experiments (refer to Chapter 5), the largest inaccuracy

source is the deformation caused by burnout of the SL master. The thermally induced

stress could even crack the thin nickel or copper shell. The thermal model and

structure model will be established to analyze the distortion. The analysis result is

used to determine a optimal electroform thickness and to guide the structure design

and optimization for the SL parts.

• Process development and implementation. The design methods of 3D CAD masters

for electroforming tooling will be studied through experimentation and analysis. The



38

implementation and optimization methods take into consideration of tooling time,

cost and tooling accuracy.

To deal with the above research issues, the research approaches taken are:

• Experimental investigation: Determine the main inaccuracy factors through process

development and understanding. The experimental work demonstrates that the main

inaccuracy factor is the thermal expansion of SL master during the separation

process.

• Analytical modeling: Thermomechanical modeling of the process of incineration of

SL master. The governing equation and the initial and boundary conditions will be

established to provide a theoretical model of the burnout process.

• Numerical simulation: Finite element method (FEM) will be used to numerically

simulate the thermally induced deformation and distortion of the metal shell in the

burnout process using the established thermomechanical model.

• Experimental verification: The simulated results will be experimentally verified to

check the predictions of the established theoretical model.

3.3 Research and Development Tasks

Based on the research objective and related issues, the following research tasks are

performed:

• Process Development and Understanding

The tooling process needs to be established and understood for this rapid tooling

approach. The problems and related research issues are identified during the process
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development period. The main considerations include SFF part design, separation,

backing and inaccuracy identification.

• Property Specifications of the Materials

The accuracy of tools generated by the proposed tooling process is mainly determined by

the properties of the materials used. The deformation and distortion generated at the

burnout process depend greatly upon the thermal and mechanical properties of the cured

SL resin and the electroformed metal. The used SL resin in this study is SL 5170. The

electroformed metal may be nickel or copper. The properties of these materials are

essential for the analysis of thermal stress induced during the incineration process.

• Analytical Modeling of Thermal Stress in the Burning out Process

Thermomechanical modeling of the burnout process is established to solve the thermal

stresses induced during the burnout process. The governing equation and the initial and

boundary conditions are established to provide a theoretical model of the burnout

process.

• Numerical Simulation

Analytical calculation of the thermal stress is extremely difficult. To solve this problem,

finite element analysis (FEA) is used to simulate the thermal stress resulted from the

burnout process. The finite element model is implemented in ANSYS, a commercial

software package for multi-physics modeling and analysis.
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• Experimental Verification

In order to verify the thermomechancial model results obtained through numerical

analysis, strain gages are used to measure thermal stresses resulted from burnout of

electroformed objects. The measured thermal stresses are compared with the analysis

results to verify the finite element based thermomechanical model.

• Design and Optimization Approaches

Finally this dissertation provides design and optimization studies for RP master and

electroform thickness to minimize the manufacturing time and cost while satisfying the

tooling accuracy requirement.



CHAPTER 4

ELECTROPLATING TOOLING FOR EDM ELECTRODES

This chapter presents an experimental study on using electroplated stereolithography (SL)

models as electrodes for electrical discharge machining (EDM). The experimental results

reveal that under roughing, semi-roughing and finishing EDM machining, a copper-

plated SL-generated model works as well as a regular copper electrode until the thickness

of the copper layer becomes the depth of the largest crater burned on the copper layer by

the electrical discharge. The performance charts of copper-plated SL electrodes vs. those

of regular solid copper electrodes have been generated. The EDM process parameters

whose values sharply change when the epoxy surface gets burned are recorded and

analyzed to provide information for further design of control systems for auto-retracting

of SL electrodes. The plating thickness required to prevent burning of the SL electrode is

discussed. The process can potentially provide a cost-effective route for rapid tooling of

EDM electrodes.

4.1 EDM Principles and Its Tooling Background

Electrical discharge machining (EDM) has been widely used for tool making. A basic

setup of an electrical discharge machine is shown in Fig.4.1. The pulse power generator

circuit provides a pulsed direct-current output to the electrode/workpiece system. The

main sequence of events in a pulse cycle includes the ignition phase, the main discharge

phase, and the melting and expulsion phase (Rajurkar and Pandit, 1986). These three

stages signify a large number of physical processes and their interactions which take
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Figure 4.1 A Basic EDM Machine

place within the restricted spark gap, usually 10-250 lam. The application of a voltage

between the workpiece and tool electrode results in ionization and formation of a

conductive channel when a breakdown voltage has been reached. When this occurs, a

plasma column is generated between the two closest points of the two electrodes. The

generation of the plasma is followed by fast moving electrons which strike the anode.

The kinetic energy of the electrons is converted into thermal energy upon the impact. The

anode surface heats rapidly to melting and even evaporation temperatures. The heating

of the cathode due to the impact of ions is less rapid. At the same time, the electrical

discharge causes shock waves in the fluid which are responsible for expulsion of metal

from the workpiece. The dielectric fluid in the region of the discharge undergoes

pyrolysis which generats hydrogen and acetylene black. The tool wear is caused mainly

at the beginning of the sparking phase, i.e., the ignition phase (Weck and Dehmer, 1992).
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After this phase, the electrode has little wear due to the buildup of acetylene black on its

surface (Poco, 1994).

EDM has been widely used to form cavities in the production of complicated dies

and molds which are typically difficult to machine using traditional chip removal

techniques due to complex geometry or hard material. There are several advantages of

using EDM, such as zero contact force between the tool and workpiece. Because EDM

causes virtually no mechanical stress on the workpiece, it is possible for this technique to

machine parts that are extremely fine and brittle. The more complicated the geometry of

the die or mold, the more difficult it is to fabricate the corresponding electrode by

conventional machining. With the increase of die and mold complexity, EDM electrode

manufacture is becoming even more time consuming and expensive. If new rapid and

economical EDM tooling methods can be achieved, EDM could be more widely used in

the die and mold industry.

Various routes for generating EDM electrodes have being investigated worldwide.

The application of SFF to the production of EDM electrodes seems to be a promising

route. There could be considerable savings in cost and time by integrating SFF with EDM

die and mold manufacture. Currently, there are several rapid routes being studied for

fabrication of EDM electrodes, such as net shape casting, SL patterns coupled with

electroplating, abraded-graphite electrodes, and metal sprayed electrodes (Ryall, 1995).

Among them, the metal-plated EDM electrode from an SL part is relatively new and

unproven. Arthur, Cobb and Dickens (1995) reported an experimental study using an SL

model based electrode and electroplating process. Their experimental results showed that

the copper-plated SL electrode may suffer premature damage and catastrophic failure.
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Arthur, Carol, Dickens and Cobb (1997) stated that copper-plated SL electrodes could

only be used as 'finishing' electrodes due to electrode damage when used in the

`roughing' process.

An experimental study using copper-plated electrodes from SL models to replace

regular copper electrodes for the EDM process has been conducted as described in this

chapter. The experimental results indicate that the copper-plated electrode normally

works like a regular copper electrode under roughing, semi-roughing, and finishing

conditions. The SL electrode could be damaged, however, when the plating thickness of

the copper layer is equal to or smaller than the depth of the largest crater burned by the

electrical discharge on the copper layer. If the EDM process still continues after the

epoxy surface gets burned, the workpiece surface will be damaged. We term the crater

depth burned by the EDM sparking as the critical thickness of plating. The EDM

performance charts including the material removal rate (MRR), tool end wear (TEW),

tool wear ratio (TWR) and surface finish (R a) of copper-plated electrodes are compared

with those of regular copper electrodes. The comparison reveals that the performance of

the copper-plated electrode is almost the same as that of the regular copper electrode

before the copper layer of the SL electrode reaches its critical thickness. When the critical

thickness is reached, the values of EDM process parameters change sharply. These

changes can be detected and used to design a control system for automatic retraction of

the SL electrode when the epoxy surface gets burned.
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4.2 The Experiment

4.2.1. EDM Machining Parameters

The EDM machining process progressively generates the inverted shape of a tool

electrode by pulsed electrical spark discharges across the machining gap between the

workpiece and the tool electrode. The parameters of a pulse cycle consist of an on-time

A and an off-time B, which are usually expressed in microseconds. When EDM

machining is processed for a certain time (the machining duration, U), the discharge is

turned off and the ram is retracted for a short while (the withdraw duration, R) to allow

more dielectric fluid moving into the cavity to improve flushing and to avoid arc damage

to the workpiece (Wang, Rajurkar and Akamatsu, 1995). Each machining duration U may

have thousands of discharge pulses. The gap voltage and current waveform of the

discharge pulse and the definition for the parameters A, B, R and U are illustrated in

Fig.4.2.

Table 4.1 lists EDM machining parameters associated with the Charmilles

Technologies EDM machine Roboform 100 used in our experimental study, where M, V,

P and A are the main parameters set by the EDM control system when an E setting is

assigned. The E setting is associated with a certain grade of surface finish. B, R and U are

the secondary parameters which affect material removal rate. Most commercial EDM

machines have an adaptive controller which is usually turned on in order that the burning

process adapts to the machining condition. The values of B, R and U continuously change

as the machining proceeds and can be instantaneously displayed on the EDM machining

control page.



Figure 4.2 Gap voltage and current waveforms of EDM pulses
and definition of A, B, R and U
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Table 4.1 The EDM machining parameters
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In order to investigate the feasibility of using the copper-plated SL electrode under

various machining conditions, a series of E settings for roughing, semi-roughing and

finishing are chosen, including E 403 whose nominal roughness is 400 microinches, E

342 whose nominal roughness is 200 microinches, and E 293 whose nominal roughness

is 112 microinches. These E settings have default parameter values provided by the

manufacturer as listed in Table 4.2 (Charmilles technologies, 1990). The result of the

TWR which stands for tool wear ratio is also listed in this table.

Table 4.2 Default process parameters for the selected E settings

The volume of material removal is directly proportional to the amount of energy

applied. This energy is controlled by the spark amperage and the on-time duration. Under

the E settings for EDM finishing, the power generator provides much smaller discharge

energy, shorter pulses, and smaller machining duration (Wang, Rajurkar and Ahmed,

1990). This results in very small and shallow craters, thus leading to fine surface finish.

The surface finish is the result of overlapping tiny craters being formed by the random

impacts of thousands of sparks. The E settings for EDM roughing indicate that the power

generator provides greater energy, longer pulses, and larger machining duration. The

longer the pulses, the more the workpiece material is melted away. Correspondingly,
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deeper and broader craters are created on the workpiece resulting in a rougher surface

finish. The E settings for semi-roughing have parameters and resulting surface finish

between roughing and finishing.

4.2.2 Preparation of Stereolithography Electrodes

Several techniques for deposition of metal material onto an epoxy substrate are available.

Among them, metallizing SL substrates by electroless plating, metal spraying of copper

or nickel onto an SL model, or using vapor deposition and subsequently electroplating

techniques have demonstrated good potential and appear to offer viable production

routes. To easily facilitate surface and volume measurements, the SL models used in this

experiment have a simple rectangluar prism geometry of 0.75" x 0.75" x 4" and are made

from SL5170 epoxy resin. The models are metallized using electroless nickel plating and

subsequently copper-electroplated with a thickness of 0.02 inch (0.5 mm) which can be

made fairly uniform, without the need for any further treatment. Future experiments will

use complex profiles which are representative of a range of commercial EDM tools.

4.2.3 Performance Attributes

This experiment is intended to obtain a series of performance comparison charts of

copper-plated SL electrodes versus those of regular copper electrodes. The performance

attributes of EDM electrodes, which are listed in Table 4.3, include the material removal

rate (MRR), tool end wear (TEW), tool wear ratio (TWR), and surface finish (Ra) of the

machined cavity. MRR is the volume of metal removal from a workpiece per unit time.

The depth of each cut measured with a dial gauge multiplying the cut area is equal to the
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volume removed. TWR is the wear volume of the electrode over the removed volume of

the workpiece. Prior to each cut, the overall length of an electrode is measured with a

height gauge and the reading recorded. After each cut, the electrode is measured to

determine its overall length. This length is then subtracted from the measurement made

prior to the cut, and the remainder indicates the amount of TEW.

Table 4.3 EDM process performance attributes

4.2.4 The Experimental Steps

The comparison of the performance attributes of copper-plated SL electrodes versus

those of regular copper electrodes is determined by burning each electrode 10 minutes

under the same machining condition and then measuring the process performance using

the attributes described above. After an SL electrode has been burned 10 minutes, the

process is stopped and the electrode and workpiece are taken out to measure the TEW,

TWR, MRR and R a . After that, a regular copper electrode is used to do the same

experiment. In order to check repeatability of the experiment, eight tests are performed

for each E setting, with the use of one SL electrode and one regular copper electrode in

each test.
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During each burning process, we also examine the EDM machining control page

which displays in real time the machining process parameters and machining conditions.

This real-time monitoring of the machining control page can provide us useful

information for detecting the possible burn of the copper layer of the SL electrode. This

will be discussed in section 4.4.

4.3 Experimental Results

4.3.1 Roughing

There are several E settings in the EDM machine for roughing, and the tool wear ratios of

some of these E settings are essentially zero. The E 403 setting is selected to demonstrate

the performance of the SL electrode versus that of a regular electrode under rough

machining. The default machining parameters of the E 403 setting are listed in Table 4.2.

The experimental results reveal that there exist almost no TEWs for both the copper-

plated SL electrode and the regular copper electrode. So the TWRs for both the copper-

coated SL electrode and the regular copper electrode are also zero. The results are

consistent with the technology data provided by the EDM manufacturer who states that

the tool wear is zero under the E 403 setting (see Table 4.2). This indicates that copper

plated SL electrodes are excellent for EDM roughing.

The other performance attributes MRR and R a are measured and presented in Fig.4.3

and Fig.4.4, respectively. These results lead to the conclusion that the performance of the

copper-plated SL electrode is approximately the same as that of the regular copper

electrode under rough machining, if the SL electrode does not get burned.
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Figure 4.4 Surface finish of copper-coated SL electrode vs.
regular copper electrode using E 403 setting

4.3.2 Semi-Roughing

The E 342 setting is then used to investigate the performance of the SL electrode versus

that of the regular electrode under the semi-roughing condition. The default process

parameters of the E 342 setting are listed in Table 4.2. The performance attributes TEW,

TWR, MRR and R a are measured and shown in Fig.4.5, Fig.4.6, Fig.4.7 and Fig.4.8.

respectively. Like in roughing, these figures indicate that the copper-plated SL electrode

works as well as the regular copper electrode under semi-rough machining. Because the

tool wear is relatively high under the E 342 setting, the copper layer on the surface of the
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SL electrode gets burned after 30-40 minutes of the EDM process. This problem is

discussed in section 4.4.

Figure 4.5 Tool end wear of copper-plated SL electrode vs.
regular copper electrode using E 342 setting

Figure 4.6 Tool wear ratio of copper-coated SL electrode vs.
regular copper electrode using E 342 setting

Figure 4.7 Material removal rate of copper-coated SL electrode vs.
regular copper electrode using E 342 setting



Figure 4.8 Surface finish of copper-coated SL electrode vs.
regular copper electrode using E 342 setting
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Figure 4.9 Tool end wear of copper-coated SL electrode vs.
regular electrode using E 293 setting

4.3.3 Finishing

The E 293 setting is used to see the performance of SL electrode versus that of regular

electrode in finishing. The default process parameters of the E 293 setting are listed in

Table 4.2. Eight pairs of data for each performance attribute are measured and presented

in Fig.4.9, Fig.4.10. Fig.4.11 and Fig.4.12. respectively. From these figures, we again

observe that the performance of the copper-plated SL electrode is close to that of the

regular copper electrode under finishing. Because the TEW of 10 minutes of EDM

burning is very small in the finishing operation, no burn of the copper layer is observed in
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the experiment. Of course, if the machining lasts until the moment that the thickness of

the copper layer left on the epoxy surface is smaller than the depth of the largest crater

created by the EDM spark, the epoxy surface is expected to get burned.

Figure 4.10 Tool wear ratio of copper-coated SL electrode vs.
regular copper electrode using E 293 setting

Figure 4.11 Material removal rate of copper-coated SL electrode vs.
regular copper electrode using E 293 setting
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Figure 4.12 Surface finish of copper-coated SL electrode vs.
regular copper electrode using E 293 setting

4.4 Discussion of Workpiece Damage and Plating Thickness

4.4.1 Workpiece Damage

A copper-plated SL electrode can be used for EDM provided that the thickness of the

copper layer on the SL model is larger than the depth of the largest crater created by an

electrical discharge. In Fig.4.13, areas 1 and 3 illustrate the semi-roughing and roughing

surfaces of the workpiece, respectively, generated by successful EDM. If the thickness of

the copper layer left on the epoxy surface is equal to or smaller than the depth of the

largest crater produced on the copper layer, the epoxy surface gets burned. If the SL

electrode is not retracted promptly under this condition, the workpiece will be damaged.

Spots 2, 4 and 5 in Fig.4.13 show damaged spots on the workpiece due to the burns of the

copper layer of the SL electrode at spots 7, 6 and 8, respectively.

Arthur, Carol, Dickens and Cobb (1997) stated that bulk removal of the workpiece

material is not possible using SL electrodes due to excessive heat build-up in the copper

layer which may result electrode damage. We note that the thickness of the plated SL
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electrode used in their study is 0.175mm. Our experiment shows that the copper layer

may be burned under the E 403 setting if its thickness is about 0.28mm, the critical

thickness of this setting, or less. To prevent the burn of the copper layer, the plating

thickness must be larger than 0.28mm for the E 403 setting. Thus, the SL electrode can

be an excellent candidate for EDM roughing if the plating thickness of the SL electrode

can be larger than the critical thickness under an E setting which does not cause tool

wear.

Figure 4.13 The tested workpieces and the SL electrode

4.4.2 Damage Monitoring

When an SL electrode is used, a monitoring system should be available to detect the

damage of the workpiece. During our experiment, we observe that when the epoxy

surface gets burned, the values of some of the EDM process parameters, which can be
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displayed on the machining control page (refer to Fig.4.14) in real time, change sharply.

On-line monitoring of the machining parameters under the E 342 setting is performed,

and the data of Bi, Ri, Ui, IS, MO and GL are recorded as shown in Fig. 4.15 and Fig.

4.16. Clearly, the physical signals of some of these parameters can be used to effectively

monitor the EDM process.

Figure 4.14 Machining parameters displayed on-line in the machining control page
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Figure 4.15 Ri, Ui and Bi versus time under E 342 setting when the SL electrode is used

Figure 4.16 IS, MO and GL vs. time under E 342 setting when the SL electrode is used

4.4.3 Plating Thickness

The relationship between electrodeposition thickness and the machining length of the

workpiece cavity can be expressed as
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where T c is the electroplating thickness needed for a copper layer on an electrode, Wd is

the length of the workpiece cavity to be generated. TWR is the tool wear ratio for a

specific EDM machining setting, and S t- is safety factor (S t- >I). C t is the critical

thickness, which must be larger than the depth of the deepest crater burned on the surface

of the SL electrode. For the E 342 setting in our experiment, C t is 0.0006-0.0008 inch.

An important factor for the success of copper-plated SL electrodes for EDM is the

plating method. Important are plating thickness and its uniform distribution, plating

surface finish, and uniform grain size of the plating material. They depend on the

electrodepostion technology which is not considered in this chapter.

4.5 Closure

The feasibility study of using copper-plated SL electrodes for roughing, semi-roughing,

and finishing is conducted. The experimental results reveal that a copper-plated SL

electrode can be potentially used for EDM like a regular copper electrode. The EDM

process does not "know" of the plating, until the moment that the thickness of the copper

layer left on the epoxy surface of an SL electrode is equal to or smaller than the depth of

the largest crater created by the electrical discharge. To avoid damage to the workpiece, a

monitoring and control system needs to be developed in order to auto-retract the ram of

an EDM machine when the copper layer reaches its critical thickness. In practice, proper

selection of the EDM setting, such as selecting E 403 for roughing, plus ability to

perform plating larger than the critical thickness, will be essential to enable the plated SL

electrode working well.
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This tooling process has the advantages of fast, simple and cost-effective.

However, due to the property of electroplating, the metal layer plated on the master can

not be uniformly distributed on the entire surface if the surface consists of some slots,

cavities and sharp corners. This makes the approach feasible only when the surface of the

EDM electrode is smooth without slots, cavities, or sharp corners. The SL electrode could

be damaged when the plating thickness of the copper layer is equal to or smaller than the

depth of the largest crater burned by an electrical discharge on the copper layer. If the

EDM process still continues after the copper layer gets burned, the workpiece will be

damaged. The plating with thick copper layer can prevent the burning of the RP master,

but the thicker the copper layer plated on the surface of the master, the less uniform the

copper distributed on the entire surface of the electrode, especially if the electrode

consists of cavities, sharp corners and complex surfaces. This results in the loss of

accuracy of the EDM electrode. Non-uniformity of the plating thickness is due to the

non-uniformity of current density distributed between the surface of the anode and the

surface of the cathode (workpiece) when the anode does not have the same (but reversed)

geometry of the workpiece.



CHAPTER 5

RAPID ELECTROFORMING TOOLING

This chapter describes a rapid tooling process that integrates solid freeform fabrication

(SFF) with electroforming to produce metal tools including molds, dies, and electrical

discharge machining (EDM) electrodes. An SFF part is metalized by electroless plating

and then placed in an electroplating solution, where metal is deposited upon the part by

electrolysis. When the desired thickness of metal has been reached, the SFF part is

removed from the metal shell by heating. The shell is then backed with other materials

such as alloy or aluminum to form a mold cavity, an EDM electrode, or other desired

parts for tooling. The case studies for mold tooling and EDM electrode fabrication are

performed and experimental data are recorded. Based on those experimental data

analysis, the geometry and material properties of the SFF part, the properties of the

electroformed metal, and the process parameters are significant factors that cause

inaccuracy in the manufactured tools. Thermal stresses induced during the burnout

process that removes the SFF part from the electroform is one of the major sources for

inaccuracy of this tooling process.

5.1 Introduction of Electroforming Tooling

5.1.1 Electroforming and Rapid Electroforming Tooling

Electroforming was invented by M. H. Jacobi of the Academy of Science of St.

Petersburg, Russia in 1838. It was initially used to copy antique masterpieces in the last
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century. Currently, electroforming is widely used in manufacturing, electronics,

aerospace, automotive, and art reproduction. Electroformed parts most commonly are

made of nickel, iron, copper, or silver, and thickness up to 16 mm (5/8 inch) has been

deposited successfully. However, a variety of other types of materials have been used.

Metals deposited by electroforming have their own distinct properties. Dimensional

tolerances are very good, often up to 0.0025 mm (0.0001 inch), and surface finishes of

0.05 mm (2 microinches) can be obtained quite readily if the pattern is adequately

smooth. The main obstacle to the development of the electroforming is the

manufacturing of the pattern. In some less technology advanced countries, electroforming

is widely used to copy the shape of an imported complex part. The copied shell is used

as the mold cavity.

Electroforming has been used to make dies, molds and EDM electrodes by

electrodeposition of metal onto a pattern to replicate the pattern in a reversed format to

produce a metal shell. The pattern, which has the required shape, dimension, accuracy

and roughness, is sinked into an electrolyte bath as the cathode and is deposited a

required layer of metal, normally copper or nickel. If the pattern is nonconductive, it

needs to be metalized before electroforming. The metal shell is then separated from the

pattern to form the mold cavity. Electroforming can be used to reproduce the reversed

shell of a wide variety of parts and shapes, the principal limitation being that it must be

possible to separate the pattern from the metal shell, similar to the situation that it must

be possible to remove the molding part from the mold cavity. Electroforming has been

used for dies and molds fabrication. With the development of the electroforming
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technology, an alloy, such as Ni-Co, can be deposited onto the pattern to form a shell so

that the strength and hardness of the mold can be largely improved.

The integration of SFF technologies with electroforming has explored a new way

for rapidly making of molds, dies, EDM electrodes and hollow bodies as discussed in this

chapter. Masters can be made using the RP processes discussed in Section 2.1, such as

SLA, SLS, Model Maker, FDM, etc. The process for electroforming tooling has been

described in 3.1.2. The main problem is that during the separation stage, the thermal

expansion of the SFF part could deform or even crack the electroform due to the fact that

the coefficient of thermal expansion of the SFF part is one about magnitude larger than

the electroformed metal. This will be demonstrated in an experimental investigations

described in this chapter.

5.1.2 Advantages and Disadvantages of Rapid Electroforming Tooling

The advantages of electroforming tooling are as follows [Spiro, 19681:

• The metallurgical properties of an electroformed metal can be controlled over a wide

range by choice of suitable metals, adjustment of the plating bath compositions, and

variation of conditions of deposition.

• Electroforming can accurately copy the shape of the pattern, so the dimensional and

geometric accuracy can be very good, being limited only by the accuracy of the

pattern produced by RP machines.

• Reproduction of fine details is so good that it can not be matched by other mass

production methods. Shapes can be made that are not possible using any other

fabrication methods.
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• Sandwiches of various metals can readily be built as required, thus varying properties

in a controlled fashion.

• There is no direct relationship with electroforming time and part volume or area, but

the only constraint is the size of the electrolyte bath.

• Multiple mold cavities can be electroformed in the same electrolyte bath at the same

time.

• The electroform and the electrolyte solution can be easily reused in the next

electroforming run so there is little environmental impact.

The disadvantages of electroforming are as follows:

• Many metals deposited are in a state of internal stress [Stein, 1996], which may give

rise to difficulty in separating of the deposited metals (when an SFF pattern is

removed using mechanical means) and in maintaining the dimensional accuracy of

the finished part.

• Because of the exactness of reproducibility, scratches and imperfections in the pattern

will also appear in the pieces processed from it.

• Material is deposited onto the protruding parts of a cathode than into its recesses. It is

difficult to form a homogeneous, i.e. non-fissured deposit into the apex of a sharp re-

entrant angle (corner weakness).

• Electroforming cost is often relatively high. However, it becomes competitive when a

large number of products are produced using the electroformed tools, in comparison

with machining part-by-part.
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5.1.3 Introduction of Electroless Plating

The SL patterns used for rapid electroforming tooling are not electrically conductive.

Before the electroforming process, the patterns need to be made electrically conductive.

Electroless plating can produce uniform pinhole-free metal film on the entire surface

regardless of the complexity of part geometry, so the SL patterns are metalized using

electroless plating in this dissertation study.

Electroless plating refers to autocatalytic or chemical reduction of aqueous metal

ions plated to a base substrate [Duffy, 1980]. Components of the electroless bath consists

of metal ions, reducing agents, complexing agents, and bath stabilizers operating in a

specific metal ion concentration, temperature and pH range. Unlike conventional

electroplating, no electrical current is required for deposition. The electroless bath

provides a deposit that follows all contours of the substrate exactly, without building up

at the edges and corners. A sharp edge receives the same thickness of deposit as does a

narrow slot. In electroless plating, metal ions are reduced to metal by the action of

chemical reducing agents, which are simply electron donors. The metal ions are electron

acceptors, which react with electron donors.

The electroless plating used in this study is electroless nickel. Electroless nickel

offers unique deposit properties including uniformity of deposit in deep recesses, bores,

and blind holes. It also provides unique physical characteristics, including excellent

corrosion, wear and abrasion resistance, ductility, lubricity, solderability, electrical

properties, and high hardness.



66

5.2 Rapid Electroforming Tooling of EDM Electrodes

5.2.1 Tooling Process

The selection of electroforming metals is determined by tool requirements. Three most

widely used electroforming metals are copper, nickel and iron. The electrical and thermal

conductivity of the electroformed metal are most important attributes for EDM electrode,

so copper electroforming is used for EDM tooling. Cyanide, fluoborate and sulfate

plating baths are three widely used baths, but sulfate is the most typical one. The typical

formulation of copper sulfate solution is:

Figure 5.1 EDM tooling process using SL master and electroforming
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The process of making EDM electrodes using SL masters and electroforming is

illustrated in Fig.5.1. The negative (complementary) geometry of the EDM electrode is

prototyped by stereolithography as the master. The master must be rigid enough to

withstand the electroforming stress induced during the building up of the copper layer.

The electroforming stress is largely determined by the electroforming process parameters

and it varies from compressive to tensile stress in a widely range[Safranek, 1986]. Using

stress reducer additives and optimal electroforming parameters, the stress can be

controlled under 1 MPa. Before electroforming of the SL master, metalization of the SL

surface is needed to make it electrically conductive. Several techniques for metalization

of nonconductive materials are available [Duffy, 1980]. Electroless plating, an

autocatalytic or chemical reduction of aqueous metal ions to a base substrate, can produce

uniform pinhole-free metal film on the entire surface regardless of the complexity of part

geometry, so the SL parts are metalized using electroless nickel plating in our

experiment. The metalized SL parts are then copper electroplated to the required

thickness. At the separation process, prevention of the electroform deformation is

extremely important. The RP master built with ceramic and other difficult-to-melt

materials are preferred to be separated using extraction mechanically. Melting, burning

out, or heat softening can be applied to wax and thermoplastic RP masters. SL resin is a

thermosetting material, so burning out of the SL master is the preferred separation

method. The SL master is completely incinerated at the temperature of 560 °C. During

the burning out process, the heat results in expansion of the master. This may crack or

deform the electroformed metal shell. The thickness of the electroformed copper shell

needs to be optimized to minimize the cost while the stress exerted on the metal shell due
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to the expansion of the master does not crack the copper shell or cause unacceptable

deformation. Because the EDM electrode does not contact the workpiece during the

electrical discharge machining process, the strength of the electrode is not important. A

low melting alloy with good electrical and thermal conductivity can be used to backfill

the shell to form an EDM electrode.

5.2.2 Performance Testing

SL models with a simple rectangular cavity of 1 in x 1 in x 1 in, made from SL 5170

epoxy resin, are electroformed and the finished EDM electrodes are used to test the

electrical discharging machining performance versus the conventional, machined solid

EDM electrode. The experimental method used in Chapter 4 are adopted here to test the

performance of the electroformed EDM electrodes. The comparison of the performance

attributes of the copper-electroformed electrode versus those of the machined copper

electrode is determined by burning each electrode 10 minutes under the same EDM

condition and then measuring the process performance attributes of tool wear ratio

(TWR), material removal rate (MRR, unit: in3 /min), and surface finish (Ra, unit: !Ain). In

order to check the repeatability of the experiment, eight tests are performed for each

machining setting, with the use of one electroformed electrode and one regular copper

electrode in each test. The performance investigation reveals that an electroformed EDM

electrode can be used for EDM like a regular copper electrode for roughing, semi-

roughing, and finishing until the moment that the thickness of the copper layer is equal to

or smaller than the depth of the largest crater created by an electrical discharge. The

performance of copper electroformed electrode versus regular copper electrode under
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roughing, semi-roughing and finishing are listed in Table 5.1, 5.2 and 5.3, respectively. In

order to facilitate the comparison, the performance data for electroplated EDM electrodes

are also listed in those tables. E l , E L , E3 in those tables represent electroformed,

electroplated and regular EDM electrodes, respectively.

5.2.3 Case Study

Two EDM electrodes of the same geometry, as illustrated in Fig.5.2, are made by this

tooling process with the smallest copper layer thickness of 0.08 in (2 mm) and 0.16 in (4

mm), which are presented as electrode 1 and electrode 2, respectively. The cavity of the

master is 0.45 in (11.4 mm) deep. Both SL cavities are polished to the surface finish of

48 min. After polishing, each dimension, as marked in Fig.5.2(a), is measured three times

and the average is recorded as listed in Table 5.4. Copper sulfate bath is used for

electrodepostion of copper onto the SL patterns. The electroformed electrodes show that

the corners with zero radius are well electroformed, although the thinnest copper layer

(required smallest thickness) always in these positions. Both masters are electroformed at

room temperature to avoid the thermal expansion of the master. Incineration is used to

remove the SL master from the electroformed copper shell. After the electroformed

masters are heated about 560 °C and then kept for one hour, the SL resin is completely

burned away. After the burning of the SL resin, the dimensions of the finished EDM

electrodes are measured using the same method as measuring the SL master and the

values are recorded in Table 5.4 to compare with the corresponding data measured on the

SL master. The dimensional deviation of the electrode with 4 mm thick copper shell is

always smaller than that of the electrode with 2 mm thick copper shell. It means that the
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thinner the copper layer, the lower the dimensional accuracy resulted from the burning

deformation. The % deviation is defined as the percent ratio of the deviation over the

corresponding dimension of the SL master. The copper shell is backed with a tin-lead

alloy whose melting point is 103 °C. The surface finish of the two finished EDM

electrodes are measured using Mitutoyo surface scale and both the average surface finish

are about 50 µin. The finished electrode are used to machine a hard steel workpiece using

the settings of machining parameters typically used for EDM roughing. The burned

cavity with a depth of 0.4 in (10 mm), as shown in Fig.5.2(d) is machined in 3 hours 24

minutes.

Table 5.1 Performance Data of Electroformed (E1) and Electroplated (E2)
Electrodes vs. Regular Solid Copper Electrode (E 3)Using E 403 Setting

Table 5.2 Performance Data of Electroformed (E1) and Electroplated (E2)
Electrodes vs. Regular Solid Copper Electrode (E 3)Using E 342 Setting



Table 5.3 Performance Data of Electroformed (E1) and Electroplated (E2)
Electrodes vs. Regular Solid Copper Electrode (E3)Using E 293 Setting
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Figure 5.2 Electroformed Electrode and EDM Generated Workpiece



Table 5.4 Dimensional data of SL parts vs. those of electroformed copper shell
(unit:mm)
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5.2.4 Electroforming Thickness

The copper-electroformed electrode can be used for EDM provided that the thickness of

the copper shell is larger than the depth of the largest crater created by an electrical

discharge. This depth is termed critical thickness. The critical thickness is a function of

the discharge energy, which in turn is a product of the pulse current, gap voltage during

the current pulse, and current pulse time. In Fig. 5.3(a), areas A, B and C illustrate the

semi-roughing, roughing and finishing surfaces of a workpiece, respectively, generated

by the EDM process. If the copper layer gets burned, the workpiece will be damaged.

Spots 1,2, 3, and 4 in Fig.5.3(a) show damaged areas on the workpiece due to the burns

of the copper layer of the electrode of Fig. 5.3(b) at spots 1', 2', and the electrode of

Fig.5.3(c) at spots 3' and 4', respectively. These electrodes with thin copper layers are

used to detect the critical thickness.
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Figure 5.3 Critical thickness investigation

The thickness of electroforming for successful EDM is a function of tool wear

ratio (TWR) and the critical thickness corresponding to its machining condition. TWR is

the ratio of the volume of tool wear over the eroded volume of workpice. From the

definition of TWR, the electroforming thickness of copper layer is directly proportional

to the depth of the workpiece cavity to be machined. The relationship between

electroforming thickness and the machining depth of the workpiece cavity is expressed

as: T, = S f (TWR • Wd Ct , where Tc  is the electroforming thickness needed in order

for a copper-electroformed electrode not to get damaged, Wd is the depth of the

workpiece cavity to be machined. TWR is the tool wear ratio for a specific EDM

machining setting, C t is the critical thickness, S t- is safety factor (St. >1). The critical
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thickness must be larger than the depth of the largest crater which can be generated on the

surface of the electrode. It is a function of the discharge energy, which in turn is a

product of the pulse current, gap voltage during the current pulse, and current pulse time

(Rajurkar and Pandit, 1986).

5.3 Rapid Electroforming Tooling of Molds

5.3.1 Tooling Process

The reasonable hardness, tensile strength, ductility and good corrosion of electroformed

nickel make electroforming most suitable for production of molds and dies of complex

shapes. Generally speaking, the mechanical. chemical and thermal properties of

electroformed nickel are similar to those of stainless steel, especially the highly wear and

corrosion resistant properties. So nickel is very suitable for electroforming mold tooling.

There are six basic types of nickel baths being used currently for electroforming:

Watts bath with or without addition agents, hard nickel, chloride, cobalt-nickel,

Figure 5.4 Typical setup of nickel electroforming
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fluoborate and sulfamate [Spiro, 1968]. Because sulfamate bath can produce

electroformed nickel with nice mechanical and thermal properties, it is widely used. Fig.

5.4 illustrates a typical setup for sulfamate nickel electroforming. The sulfamate bath is

used for this dissertation project.

As illustrated in Fig. 5.5, the mold tooling process is very similar to the tooling

process for making EDM electrodes. A CAD model is created and sliced layer by layer to

produce a STL/SLI file which is transferred to the SLA machine to build the SL master.

The master is post-cured, sanded and finished to be used as an electroforming master.

The master is then metallized using nickel electroless plating, with a thickness of about

0.0002 in. The metalized master is then put into the electroforming bath as a cathode to

deposit a layer of metal which is thick enough to resist the deformation caused by the

separation and backfilling. Separation is done by burning out the SL master. The

deformation in the separation is largely determined by the electroforming thickness and

the geometry of the SL master. Backfilling of the mold is more critical in manufacturing

an electroformed mold cavity compared with manufacturing an electroformed electrode

Figure 5.5 Mold tooling process using RP master and electroforming
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due to the high strength required in the subsequent injection molding process. The harder

the backfilled metal, the higher the strength of the mold cavity. However, a harder metal

usually has a higher melting temperature, and casting with a high melting temperature

metal tends to generate larger thermal stresses which cause larger deformation in the

electroformed metal shell. To reduce the injection molding cycle time, conformal cooling

lines may be put around the nickel shell before the backfilling process.

5.3.2 Case Studies

Using the mold tooling process, the SL master shown in Fig. 5.6(a) is used to produce a

nickel electroform shown in Fig.5.6(b). The electroform is then backed with tin-lead

Figure 5.6 Nickel electroformed molds with fine features
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alloy or copper to fabricate the mold cavities shown in Fig.5.6(c) and Fig.5.6(d),

respectively. The geometry of the master is difficult to machine due to the sharp corners

and very small features. The masters are polished to have a surface finish of 48 Each

dimension (see Fig. 5.7) of the polished masters 1 and 2 is measured three times using a

three axis coordinate measuring machine (CMM) and the average is recorded as listed in

Table 5.5. Metallizing the masters with nickel to a thickness about 0.0002 in by nickel

electroless plating, the masters are nickel-electroformed with the sulfamate electrolyte to

form the nickel shell with a thickness of 0.08 in (2 mm). The mechanical properties of the

electroformed nickel is about the same as that of stainless steel. The nickel electroformed

shell (0.08 in thick) from SL master 2 is then backed with 0.08 in thick of copper to a

total metal thickness of 0.18 in (4mm) also by electrodeposition. The electroformed

masters are then put into an incinerator to burn out the SL resin at 560 °C. After burning,

each dimension is measured three times using CMM and the average is recorded as listed

in Table 5.5. Table 5.5 shows that the dimensional deviation of the mold 1 is larger than

that of the mold 2. This is because that metal shell 2 is copper backed so that it is more

rigid than nickel shell 1 to withstand thermal expansion of the SL master. The surface

finishes of both of the cavities are measured at the values about 49 pin, which are about

the same as that of the SL masters. The nickel shell 1 is put into a metal box and

backfilled with molten bismuth-tin-lead alloy whose melting temperature is 138.5 °C.

The dimensional deviation generated by this metal casting process is very small due to

the low melting temperature of the backfilled metal.



Figure 5.7 Dimensions measured

Table 5.5 Dimensional data of SL parts versus electroformed mold cavities (unit: mm)
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5.4 Tooling Accuracy

The evaluation criteria for a tooling process include accuracy, surface finish and strength.

Widespread applications can be achieved when the following levels of properties can be
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attained repeatedly: accuracy0.01mm. roughness ≤1µm, and strength ≥300Mpa [Rees,

1995].

As stated before, surface finish of 0.05 µm can be obtained quite readily if the

master is adequately smooth. Our experiment also showed that the surface finishes of the

electroforms are almost the same as the surface finishes of the masters. So the surface

finish of tools produced by the proposed tooling process can satisfy the surface

requirements.

Physical , thermal and mechanical properties of electroformed copper and nickel

have been widely studied [Spiro, 1968; Safranek, 1968; Sample and Knapp, 1968;

Safranek, 1986]. The properties of these electroformed materials are varying in a large

range depending on electrolyte solutions and operating conditions. Typically, the

properties of the electroformed nickel is similar to that of the stainless steel, and the

properties of the electroformed copper can match the properties of the rolled copper

sheet. The strength of the electroformed copper for EDM electrode is less important than

that of the electroformed nickel for mold because EDM electrode will not stands high

mechanical loads but mold sometimes does. The electroformed nickel has typical yield

strength ranging from 400 to580 MPa.

As the experimental investigations demonstrate, identifying deformation sources

and exploring methods to calculate and minimize the deformation to improve the tooling

accuracy is the main tasks in this Ph.D dissertation study. The factors which affect the

accuracy of a tool include the accuracy of the RP master, the deformation caused by

electroforming stress, thermal expansion of master during electroforming, thermal

expansion caused deformation and distortion of the metal shell when the electroformed
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part is separated using burning, thermal stress caused deformation when backing metal

shell with molten metals. The accuracy of a master is largely determined by the SL

machine and can be improved through optimizing the building parameters. Stress reducer

additives and optimal electroforming process parameters can dramatically reduce or even

eliminate the internal stress of the electroformed metals [Stein, 1996]. Electroforming of

SL parts is operated in room temperature to eliminate the thermal expansion of the master

in our experimental work. With the various techniques which have been developed,

electroforming can make part with dimensional tolerance as small as 0.0001 inch (0.0025

mm) [Degarmo, 1984].

The experimental case studies reveal that after the burnout of the SL masters, the

largest dimensional deviations corresponding to dimension J (see Fig.5.2a and Table 5.4)

of the two copper electroforms with the thickness of 2 mm and 4 mm are 0.093 mm

(0.26% relative deviation) and 0.052 mm (0.13% relative deviation), respectively. The

largest dimensional deviation corresponding to dimension D1 (see Fig.10 and Table 3) of

the nickel electroformed shell with the thickness of 2 mm is 0.076 mm(0.25% relative

deviation) and the largest dimensional deviation of the 2 mm nickel shell backed with 2

mm copper is 0.043 mm(12% relative deviation). These figures demonstrate that the

thicker, the smaller the dimensional deviation. All the SL masters are electroformed at

room temperature so the deformation due to electroforming is very small compared with

the thermal expansion caused by the master burnout process. If there exists large

dimensional deviation, the electroform at this portion may experience permanent

deformation during the burnout process. The coefficient of thermal expansion of nickel is

14x10 -6 /K and that of copper is 17x10 -6 /K. The coefficient of thermal expansion of SL
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5170 is temperature dependent. From the ambient temperature to about 75 °C, it is about

90x10 -6 /K and when the temperature is higher than 75 °C, it is about 181x10 -6 /K. When

it is heated above 100 °C, the strength of the SL material reduces rapidly as the

temperature rise but it still has its strength until it reaches its burning point. This is the

properties of thermosetting polymers. Because the thermal coefficient of the epoxy resin

is much larger than the thermal coefficient of nickel and copper, thermal stresses are

generated during the pattern burnout which deforms or even cracks the metal shell. If the

thermal stress is larger than or equal to the yield strength of the electroformed metal, the

electroform generates permanent deformation. We predict that the above deviations are

due primarily to the thermal expansion of the SL pattern which deforms the electroform

during the burnout process.

Backfilling the electroformed shell with molten metals is another main source of

tooling inaccuracy. The strength of the EDM electrode is not important because the EDM

electrode does not contact the workpiece during electrical discharge machining. Low

melting alloys with good electrical and thermal conductivity can be used to backfill the

shell to form an EDM electrode with little thermal deformation. A fully backed

electroformed mold cavity with high strength metals will significantly improve the

durability of the electroformed mold and increase the ability of the mold to resist

deformation during the injection molding process. However, high strength metals always

have high melting points. Our investigation shows that when aluminum with melting

temperature of 667 °C is backfilled to the cavity of a copper shell, the copper shell

deforms severely. One way to reduce the thermal deformation caused by backing with

molten metal is by preheating the electroformed metal shell to about the same
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temperature of the molten metal before pouring the molten metal. The preheating can also

improve the flowability of the molten metal. In our current study, we use low melting

alloys Metspec 281 whose melting temperature is 138.5 °C to back the nickel shell to

form mold cavities. and Metspec 217 whose melting temperature is 103 °C to back

copper shell to form EDM electrodes. Metspec series products are bismuth-tin-lead alloy

manufactured by MCP Systems, Inc. The thermal deformation generated by back filling

with these molten metals are very small. Therefore the thermal deformation at the

backfilling process is not conducted in this study. The investigation of inaccuracies

caused by burning out of SL masters is the challenge research issue and must be

thoroughly studied to achieve successful tooling approach.

5.5 Environmental Performance of the Rapid Electroforming Tooling

SFF processes have some good environmental characteristics. The waste streams are less

in SFF processes than in conventional manufacturing processes such as machining. Worn

tools and scraps seldom occur in SFF processes and equipment. Cutting fluids, which are

the major source of hazard in machining [Sheng, et al., 1998], are not used in SFF

processes. Comparing with conventional manufacturing processes, SFF processes have

distinguishing features in process mechanisms, materials, energy use, etc. From the

lifecycle point of view, a part produced with a SFF process generally goes through the

following stages: (a) inputting the building material into the system, (b) building the part

layer by layer, (c) shape replication and sintering or burning (for tooling processes) and

(d) post-processing. When the user finishes using the part fabricated by SFF, the part

goes to the disposal stage: to be landfilled, incinerated, or recycled. While the material,



83

part usage and part disposal are not exactly part of a process, their inclusion provides a

holistic view of the environmental performance of an SFF process. Thus, factors taken

into account in process environmental performance should include the material extraction

stage, energy consumption and process wastes in the fabrication and replication stages,

and the disposal stage. In terms of these environmental factors, a general comparison

between conventional machining process and SL process is given in Table 5.6.

Table 5.6 Comparison of Machining with SFF Processes [Luo, et al., 1999a]

A method for assessing the environmental performance of rapid prototyping and

rapid tooling processes has been established [Luo, et al., 1999b]. In this method, each

process is divided into a number of life stages. The environmental effect of each process

stage is analyzed and evaluated based on an environmental index utilizing the Eco-

indicators that were compiled by PreConsultants of the Netherlands. The effects of

various life stages are then combined to obtain the environmental performance of a

process. In the assessment of SFF processes, the material use in the fabrication of a part,
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energy consumption, process wastes, and disposal of a part after its normal life are

considered.

3D Keltool and the rapid electroforming tooling (RET) process are two indirect

rapid tooling processes that require a master pattern built by SL process. 3D Keltool

process [Raetz, 1998] can be used to rapidly create injection molds or die casting inserts.

It begins with an SL pattern. The pattern is used to produce an RTV silicone rubber mold.

Once the RTV mold is produced, it is then filled with a mix of tooling steel powder,

tungsten carbide powder and epoxy binder. After this material has cured in the mold, this

green part" is sintered in a hydrogen-reduction furnace and the binder material is

burning off. The final step is to infiltrate the sintered part with copper.

Figure 5.8 illustrates the concepts of these two indirect tooling processes. When a

cylindrical metal mold cavity is required to be manufactured, both 3D Keltool and RET

processes have this function, although they differ from each other in the type and amount

of materials use and specific intermediate steps. The model introduced by Luo, et al.

Figure 5.8 Indirect tooling processes
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Figure 5.9 Lifecycle environmental performance model of indirect
RT process [Luo, et al., 1999b]

[1999b] is used to assess the environmental performance of the 3D Keltool and RET

processes from the lifecycle viewpoint.

In order to evaluate indirect RT processes, the volume of final tool should be

accounted in order to estimate the amount of intermediate material consumed. The

cylindrical mold cavity with dimensions of diameter 50mm and height 60mm in Fig. 5.8

is used as an example for the following assessment.

SLA 250 is used to fabricate the master patterns for the two RT processes. The

environmental impact for unit volume (cm 3 ) SL material consumed is 0.0104. Since 3D

Keltool uses the negative pattern and SFF-Electroforming uses positive pattern, different

volumes of materials used yield different impact values for this stage. Here we assume

the dimensions of the mold is 100mm diameter and 90mm height. The volume of

material used by the 3D Keltool process to build the pattern is 589.4cm 3 and that used by

the RET process is 117.2cm 3 .

In the mold creation stage, material consumption, and energy consumption during

the sintering or burning step should be considered. In this stage, 3D Keltool typically

consumes silicone rubber to build an RTV mold, uses mixed steel powder and epoxy
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binder to create the green part, and uses copper infiltration to create the final solid mold.

The environmental indices for unit volume (cm3 ) of silicone rubber, mixed steel, epoxy

hinder and copper are 0.0101. 0.133, 0.0104 and 0.757 respectively. The volumes of RTV

mold can be calculated. The volumes of steel and epoxy binder are 70% of 30% of the

mold volume respectively. Since the void volume of mold after sintering is 30% [Raetz,

1998], the volume of infiltrated copper should be 30% of the mold volume. Therefore the

material consumption impact in this stage can be estimated based on Eco-indicators and

the volume of materials used in this stage. Supposedly, the RET process uses nickel to

electroplate a certain thickness of nickel shell, and then backfilles the shell with

aluminum. For unit volume (cm3 ) of nickel and aluminum, the environmental indices are

0.757 and 0.0486, respectively. The nickel shell thickness is typically 2mm. So the

volume of nickel and aluminum used also can be calculated. Hence we can get the

material consumption impact in this stage for RET process. The results can be seen in

Table 5.7. Sintering & infiltration in the 3D Keltool process and burning off in the RET

process require energy. The energy consumption is estimated based on the melting point

or burning point, the specific heat and the assumed furnace efficiency.

In the disposal stage, the 3D Keltool process produces wastes such as SL material

and silicone. The RET process only has residue of SLA material. If the process residue

are all disposed to landfill, the environmental impact can be assessed by considering the

impact indices and the volume disposed. The results are shown in Table 5.7. In addition,

we expect that the disposed tools can be recycled by material recovering. The mixed

metal of the tool made by 3D Keltool is less preferable than laminated nickel and

aluminum used in the electroforming tooling process. The impact indices for recycling
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unit volume (cm 3 ) of mixed steel, nickel, and aluminum are -0.0226, -0.312, and -0.035

respectively. The assessment results for the above two indirect RT processes are listed in

Table 5.7.

Table 5.7 Environmental Performance of RT Process [Luo,et al.. 1999b1
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From the above assessment, we can see that the environmental performance of a

rapid tooling process depends on several factors. First, the selection of the base SFF

process is an important factor. It is desirable to select an SFF process that has good

environmental performance. Secondly, the tooling materials, and process residues can

further impact on the environmental performance due to the use of natural resources and

possible generation of process residues. Finally, the method of disposal or recovery of

tool material will also influence the total environmental performance of a process.

5.6 Discussion of Tooling Time and Cost-effectiveness

Die and mold manufacturing must be considered as a total system that includes: a) part

design for near net shape (NNS) manufacturing, b) production of prototypes for

visualization, testing and evaluation, c) process modeling for optimum mold design, d)

CNC machining, e)manufacturing of EDM electrodes, f) EDM machining, g) Surface

conditioning and polishing, and h) dimensional control of electrodes, dies, and the NNS

formed products [Altan, et al., 1993]. In a survey conducted of the U.S. injection molding

industry [Shanahan, 1993], the total mold manufacturing time varied between 1,200 to

3,800 hours, depending on mold size, geometry and complexity. The time spent for each

manufacturing step, as a percent of the total, was in the range of: 10-20% for design, 14-

17% for tool path generation, 8-16% for rough machining, 27-39% for finishing

machining, 13-23% for finishing, and 4-6% for try-out.

There exists part design and try-out for both conventional machining approach

and RET process for making tools. Taking the example of the mold shown in Fig. 5.6(c),

the geometry of the mold is so complex that the shape of the mold cavity can not be
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generated by CNC milling itself due to the sharp corners and narrow slots. In order to

generate the mold cavity by machining. CNC rough machining, semi-roughing, and EDM

machining are needed to generate the final shape as shown in the figure. The generation

of the EDM electrodes is also a difficult task due to its complex geometry. The minimum

time for manufacturing this mold by conventional machining would be more than 1,200

hours, i.e. about 50 days, three shifts per day.

However, the mold shown in Fig. 5.6(c) was manufactured by RET process in less

than one week. It takes 12 hours to generate the SL pattern, 24 hours to electroform the

pattern, 4 hours to burnout the pattern and 6 hours to back the metal shell. The total net

time is about 46 hours. If the overhead time of the RET process for generating this mold

is about 40%, the total time then becomes 64 hours, i.e. less than 3 days.

The rate for machines used for manufacturing the mold cavity is difficult to

estimate. So we only consider the labor rate for making the mold cavity. Suppose the

labor rate is $10 per hour. The labor cost for making the mold by conventional machining

would be 1200 (hour) x 10 ($/hour) =$12,000. However, the labor cost for making the

mold by RET process is about 64 x 10=$640.

The actual cost for making the mold in our case study is $ 702. The cost is

distributed as follows: $122 for SL pattern generation, $400 for electroforming, $60 for

burnout process and $120 for backing process.

5.7 Closure

Solid freeform fabrication combined with electroforming for generation of metal molds

and EDM electrodes is developed in this chapter. Case studies of EDM and mold tooling
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indicate that the described methods are viable for rapid tooling of molds and EDM

electrodes. Compared with the rapid tooling processes involving metal powder sintering,

the described process of integrating stereolithography with electroforming eliminates the

dimensional uncertainty associated with the occurrence of random shrinkage during

sintering and it generates metal tools with better accuracy and finer surface finish. The

electroforming thickness affects the mechanical properties and dimensional accuracy of

the mold. Thermal stress caused by burnout of the SL masters is identified as one of the

major sources of inaccuracy factors. The another major inaccuracy factor is the

deformation generated by solidification when backfilling the electroform with molten

metals. Burnout of the SL resin from the electroforms is an efficient and convenient

method, however, the thermal stress induced during the burnout process is critical for

generating accurate tools. The thermal stress problem is studied in the next chapter.



CHAPTER 6

THERMOMECHANCIAL MODELING AND ANALYSIS

Based on experimental data analysis, the geometry and material of the SFF part,

properties of the electroformed metal, and process parameters are significant factors that

cause inaccuracy in the manufactured tools. Thermal expansion of the SL part during

burnout process can significantly deforms or even cracks the thin electroformed metal

shell. In this chapter, the material properties of the SL resin and the electroformed metal,

namely copper and nickel, are first presented. A thermomechanical model is then derived.

Finite element analysis (FEA) based numerical simulation using ANSYS software is then

modeled to simulate the thermal stress induced by the burnout. In order to verify the

modeling and numerical simulation, thermal stress measurements using strain gages are

performed. Finally, discussions and conclusions are given. The objective of this chapter

is to provide a thermomechanical model and an FEA based numerical simulation method

that can be used to determine the geometry of the SFF part and the electroform thickness

for minimizing the manufacturing time and cost while satisfying the tooling accuracy

requirement.

6.1 Properties of Tooling Materials

Accuracy of tools generated by the proposed tooling process is mainly determined by the

properties of the materials used. Especially the deformation and distortion generated

during the burnout process are greatly determined by the thermal and mechanical

properties of the cured SL resin and the electroformed metals. The SL resins in this study
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include SL 5170 and SL 5210. The electroformed metals include nickel and copper that

are used for mold tooling and EDM electrode tooling, respectively. The properties of

these materials are essential for the analysis of thermal stress induced during the burnout

process.

6.1.1 Properties of Stereolithography Resin

Cibatool SL 5170 is an epoxy-based resin that offers the greatest degree of accuracy

available in any rapid prototyping process. Parts are strong, durable and multifunctional.

SL 5170 fits a wide range of applications from form, fit and function to optical stress

analysis, and as parts for secondary tooling applications. SL 5170 has several material

properties that exceed or are comparable to medium impact polystyrene. The typical

mechanical properties of SL 5170 at 20 °C are listed in Table 6.1. Thermal properties of

SL 5170 are listed in Table 6.2. Most of those properties are a function of the

temperature. Fig. 6.1 illustrates the Young's modulus and coefficient of thermal

expansion (CTE) of SL 5170 versus the variation of temperatures.

Table 6.1 Mechanical properties of SL 5170 at 20 °C (UV Post Cured 60 minutes)



Table 6.2 Thermal properties of SL 5170 (UV Post Cured 60 minutes)
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Figure 6.1 Young's modulus and coefficient of thermal expansion
of SL 5170 vs. temperatures
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Cibatool SL 5210 is an advanced vinyl ether/acrylate based resin which is a

perfect solution for functional prototypes which demand high temperature or water

immersion testing. Capable of withstanding temperatures in excess of 100°C (212°F), SL

5210 offers the highest heat resistance of any previously released material by Ciba

Company. SL 5210 is ideal for under-the-hood testing, underwater testing, wind-tunnel

models, housings for electrical assemblies, high temperature RTV molding , water

pumps, working prototypes and visual models. The typical mechanical properties of SL

5210 at 20 °C are listed in Table 6.3. Thermal properties of SL 5210 are listed in Table

6.4. Fig.6.2 illustrates the Young's modulus and coefficient of thermal expansion (CTE)

of SL 5210 versus temperatures.

Table 6.3 Typical mechanical properties of SL 5210 at 20 °C



Figure 6.2 Young's modulus and coefficient of thermal
expansion of SL 5210 vs. temperatures
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Table 6.4 Thermal properties of SL 5210



Table 6.5 Mechanical and thermal properties of electroformed copper at 20 °C
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6.1.2 Properties of Electroformed Copper

The properties of electroformed metals differ appreciably not only from the properties of

castings, forgings or rolled sheet, but also from the procedures and process parameters

used for electrodepositing the metals. Careful control of the electrodeposition condition

and environment are essential for obtaining required material properties [DiBari, 1996].

The metal deposition control aspects include adjusting the composition of the plating

solution, monitoring the impurity level, controlling the PH value, temperature and current

density, monitoring and controlling stress continuously by automatically tuning process

parameters and adding stress reducing agents, adjusting the concentration of organic

additives to control the electrochemical characteristics of individual metal layers. Current
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density, solution composition and pH value are key factors that determine the mechanical

and thermal properties of the electroform [Safranek, 1962; Safranek, 1986]. Higher

current density increases the deposition rate, but it decreases the strength and increases

the electroforming stress.

The sulfate plating bath is used for the dissertation work. The typical mechanical

and thermal properties of electroformed copper from sulfate plating bath and annealed

wrought copper at 20 °C are listed in table 6.5 [Safranek, 1962; Safranek, 1986].

Mechanical and thermal properties of electroformed copper versus temperature are listed

in Table 6.6.

Table 6.6 Mechanical and thermal properties of sulfate
electroformed copper vs. temperature

6.1.3 Properties of Electroformed Nickel

The mechanical and thermal properties of electroformed nickel are influenced by current

density, pH values, and solution composition [DiBari, 1991]. The typical mechanical and

thermal properties of electroformed nickel from sulfamate bath and annealed wrought
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nickel at 20°C are listed in table 6.7 [Sample and Knapp, 1962]. Mechanical and thermal

properties of electroformed nickel versus temperature are listed in Table 6.8.

Table 6.7 Mechanical and thermal properties of electroformed nickel at 20 °C

Table 6.8 Mechanical and thermal properties of sulfamate
electroformed nickel vs. temperature
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6.2 Failure Criteria

Failure refers here to the situation that stresses existing on the metal shell generate plastic

deformation. Nickel and copper used in this tooling study are ductile and capable of

undergoing an appreciable amount of yielding or permanent deformation, while the SL

resin that is brittle prior to fracture can suffer only a small amount of yielding.

For the three dimensional case, it has been demonstrated that three planes of zero

shear stress exist, that these planes are mutually perpendicular, and that on these planes

the normal stresses have maximum or minimum values. These normal stresses are

referred to as principal stresses, usually denoted as a l , 67, and 63 with the σi  represents

the largest and a3 the smallest normal stresses. The three principal stresses are the three

roots of the following equation:

In this study, the most widely used theory, the maximum shear stress theory,

proposed by C. A. Coulomb, also referred to as the Tresca yield criterion in recognition

of the contribution of H. E. Tresca, is adopted to predict the onset of inelastic behavior

for ductile materials, including nickel and copper. This theory predicts that yielding will
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start when the maximum shear stress in the material equals the maximum shear stress at

yielding in a simple tension test, i.e.

where gyp represents the yield strength or failure strength of the material under a simple

tension test. During the burnout process, if j6 , — o- 3 < o-„,„ there will be no permanent

deformation, i.e., the loss of accuracy of the tool during burnout can be ignored. In the

case of plane (two-dimensional) stress, 6 3 =0. The yielding condition is given by

where o is the second principal stress. o- , — o-, and a l — o-, are termed thermal

stresses in this dissertation for three-dimensional and two-dimensional cases,

respectively. If the thermal stress is smaller than yield strength G yp, the electroform can

withstand the burnout process with little or no permanent deformation. Otherwise, the

electroform will yield and generate permanent deformation that is not accepted for the

tooling process.

Maximum Principal Stress Theory, credited to W.J.M. Rankine, is adopted to

predict the failure of the SL material. According to the maximum principal stress theory,

a material fails by fracturing when the largest principal stress exceeds the ultimate

strength 6,, in a simple tension test. That is, at the onset of fracture,

Thus, a crack will start at the most highly stressed point in a brittle material when

the largest principal stress at that point reaches In finite element analysis, if the SL

part fractures, the stress exerted on the electroform will dramatically decrease. In our



Figure 6.3 Pressure generated at the interface of the SL master
and the nickel shell due to heating of the model

study we only query the stresses on the electroform because it is the object that we are

mostly concerned of.

6.3 Analytical Calculation of Thermal Stresses

The thermal expansion of the SL parts generates thermal stresses which deform or even

crack the metal shells during the burnout process. In order to understand the importance

of analyzing the thermal stress generated during the burnout process, we first analytically

compute the stress for a simple case. Suppose that a cylindrical SL part of circular cross-

section, with outer radius of R-50 mm and inner radius of a. is electroformed with nickel,

with variable electroforming thickness t, as illustrated in Fig.6.3 and is then burned. a=0

stands for the solid SL part. For the burnout process, let us assume that the SL part and

nickel shell have a uniform temperature rise from the room temperature 20 ºC to 80 °C ,

i.e., AT=60°C. At this temperature, both the SL resin and nickel shell will expand.

Further assuming that the two ends of the cylinders are open and unconstrained, i.e.,
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a,=0. Thus the electroformed cylinder is in a condition of plane stress. Now we can solve

the thermal pressure exerted at the interface of the SL resin and the nickel shell using the

following formula [Ugurall, 1995]:

where Young's modulus of SL resin at 80 °C is E r=390 Mpa; Young's modulus of nickel

is En= 1 78 Gpa; Poison ratio of SL resin is v r=0.4 and that of nickel is v n=0.28;

coefficients of thermal expansion of SL resin and nickel are a r=158x10 -6/°C, and

αn=14 x 10 -67°C, respectively.

The principal stresses, radial stress (g rad) and circumferential stress (6 0), of the

nickel shell are calculated as follows:

where r is the value between R and (R+t). The maximum 0 e takes place at r=R.

Let the electroforming thickness I vary from 1 mm to 8 mm and calculate the

radial stresses at the interface of the SL part and the electroformed nickel shell for a=0,

25 mm, 35 mm. The calculated results are illustrated in Fig. 6.4(a). It is seen that the

larger the nickel shell thickness, the greater the pressure. According to the maximum

principal stress theory, the SL master will crack when the principal stress is larger than its

ultimate strength, which is 24 Mpa at temperature of 80 °C. It is depicted that the

pressure exerted on the SL part will not crack the SL part.



Figure 6.4 Radial and thermal stresses vs. electroforming thickness

The maximum circumferential stresses at the inner surface of the nickel shell are

calculated and the thermal stress (σo-σrad) is shown in Fig.6.4(b). The yield strength (450

MPa), also termed the critical stress, of the nickel is also illustrated in this figure. A

continuing increase in internal pressure will result in failure of the nickel material at the
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interface of the nickel shell and the SL part. When the electroforming thickness of the

solid SL part is smaller than 2.8 mm and that of the hollowed SL part with inner radius of

25 mm is smaller than 2 mm, the maximum hoop stress will plastically deform the nickel

shell and cause permanent deformation when the part cools down. However, if the

electroforming thickness is larger than 1.4 mm for the SL part having an inner radius of

35 mm, the maximum thermal stress will be smaller than the yield strength. As the

pressure increases, the plastic zone will spread toward the outer surface of the nickel

shell, and an elastic-plastic state will prevail in the shell with a limiting radius b beyond

which the cross section remains elastic, as shown in Fig. 6.5. When the SL is burned out

and the pressure is released, the nickel shell unloads elastically. Thus, elastic and plastic

stresses are superimposed to produce a residual stress pattern. The plastic deformation

directly affects the dimensional accuracy of the mold. Our analysis is to calculate the

thermal stress so that the thermal stress exerted on the electroform is smaller than the

yield strength of the electroform through building of inner hollow structure for the SFF

part and adjusting the electroform thickness.

Figure 6.5 Partially yielded nickel shell under internal pressure
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As stated before, the SL part must be rigid enough to withstand the

electroforming stress when building the nickel shell. The typical value of internal

electroforming stress (σ e) can be in the range of —5 to 10 Mpa. The pressure p, due to

electroforming stress, exerted on the surface of the SL part can be calculated by

For R=50 mm, and let σ0=10MPa and t=1 mm, the pressure exerted on the SL

part is 0.198MPa. Under this pressure, the part deformation in radial direction can be

calculated by:

The deformations are 0.0024 mm, 0.0042 mm and 0.0096 mm for solid (a=0),

a=25 mm and a=35 mm SL parts, respectively.

6.4 Thermomechanical Modeling of the Burnout Process

The analytical calculation of the thermal stress implies that the structure of the SL part

and electroforming thickness can control the thermal stress so that it is smaller than the

yield strength of the electroformed metal to prevent permanent deformation. Practically,

the geometry of the tools is always complex and the distribution of temperatures in the

burnt object is not uniform so analytical solution can not handle the thermal stress

calculation. A finite element analysis based thermomechanical model needs to be

established to analyze the thermal stresses.

Thermal stress induced by burning out the SL part is a multi-materials, non-linear,

transient coupled thermal-mechanical problem. Boley and Weiner [1964] proved that the
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thermal solution is independent of any changes caused by thermally-induced stress under

the condition that the time history of the displacement closely follows the change of

temperature, and vise verse. Assume that the burnout process satisfies the condition due

to the thermal expansion of the object closely follows the temperature variation, so the

thermomechanical coupling problem can be simplified as an uncoupled, transient thermal

stress problem. Under this assumption, the modeling of the thermal stress can be divided

into two steps: thermal modeling and structural modeling.

6.4.1 Thermal Modeling of the Burnout Process

Thermal modeling is to compute the transient temperature field T(x,y,z,t) during the

burnout process. The governing heat conduction equation is

where = k , k, c, and p are the heat conductivity, the specific heat, and the material
cp

density, respectively. To solve this second-order partial differential equation, there should

be one initial condition and six boundary conditions for each volume. Because SL part

and electroformed metal are burned together, so there are two volumes and 14 conditions

are needed to calculate the temperature distribution T(x,y,z,t).

The two initial conditions are that metal shell and the RP part are at the ambient

temperature T, . That is:

When an electroformed RP part is put into an oven, the thermal load is the oven

temperature To. We assume the oven is preheated to the burnout temperature (560 	 for
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SL part) and it is constant during the burning process. This is termed stepped thermal

load, as shown in Fig.6.6(a). Another alternative is that we put the electroformed object

inside the oven first and then start to heat up the oven in a linear increase function of

oven temperature versus time. This is termed ramped thermal load, as shown in

Fig.6.6(b). The electroformed object is inside an oven chamber and the hot air is in a

perfect thermal contact with the exterior surface of the bi-material electroformed object.

Theoretically thermal convection should be taken into consideration, however, the

thermal convection effect is negligible for solving this thermal stress problem because the

thermal stresses generated by using convection thermal load are very close to the thermal

stresses generated by directly employing the oven temperatures as the boundary

condition. This is explained in Appendix A. Thus the first boundary condition is defined

as that the temperature of the hot air is the same as the temperature of exterior surface of

the object being burned, i.e.

where the point p is on the surface of the metal shell, and f(p, t) is the oven temperature

function. There are six faces for a hexagonal element, so this makes six boundary

conditions for the governing equation 6.4.

Assuming the metal shell is in perfect thermal contact with the RP part, the heat

transfer at the bounding surface of the part and the metal shell is conduction dominated.

So the temperature at the bounding surface of the RP part is the same as that at the metal

shell surface. In addition, the heat flux leaving metal shell through the contact surface is

equal to that entering the RP part. Thus for a point P on the contact surface of the metal

and RP part, the boundary conditions are:



where subscripts m and r refer to the metal shell and RP material, respectively, and n is

the normal of the contact surface at point P. These make six other boundary conditions at

the bounding surface between the RP part and the metal shell. So we have the total of 12

boundary conditions and 2 initial conditions to solve the heat transfer governing equation.

6.4.2 Structure Modeling of the Burnout Process

Structure modeling is used to determine the thermally-induced stress exerted on the metal

shell. After the thermal analysis is performed, a structure analysis is made to compute the

thermal stress exerted on the metal shell due to the expansion of the SL part. The loads

Figure 6.6 Two scenarios of thermal loads
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are the computed temperature fields in the previous thermal analysis. The problem is to

determine the following fifteen parameters:

6 stress components: σx. σ y , σZ, σxy, σyz, σzx

6 strain components: E x , Ey , sz, Exy, Eyz, Ezx

3 displacement components: u, v, w

satisfying the following fifteen equations throughout the metal shell:

3 equilibrium equations:

6 stress-strain relations:

where e is the coefficient of thermal expansion, A T is the temperature rise. The shear

modulus G relates to Young's modulus E and Poisson's ratio u by the equation:



6 strain-displacement relations:

6.5 FEM Based Numerical Simulation

6.5.1 General

Analytical calculation of the previous thermal stress is extremely difficult. To solve this

problem, finite element analysis (FEA) is used to simulate the thermal stress resulted

from the burnout process. FEA solves each element through the body of the SL part and

metal shell by employing the formulas 6.4 to 6.12 on each element. The simulation

procedure can be structured as illustrated in Fig.6.7. The temperature field is first

calculated and then it is used as the loads for structure analysis. The maximum thermal

stress is compared with the yield strength of the metal shell to determine if the metal shell

is yielded. If the thermal stress is larger than the yield stress, either the solid SL part is

modified with a hollowed structure or electroform thickness is increased. Another

analysis using the new model is performed . This process is repeated until the thermal

stress is smaller than the yield strength of the metal. ANSYS 5.4 is the software for

thermal stress analysis.
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Figure 6.7 Thermal stress analysis model

From material mechanics, the stress is related to the strains by:

where {σ{ is stress vector, [D] is elasticity matrix, {E cl { equals {c} - {Eta'}, :c,; { is total

strain vector, and s ty' } is thermal strain vector. The {Eth}  is:

where α is coefficient of thermal expansion, AT is temperature rise which is obtained

from the thermal analysis. In turn, the strain is related to the nodal displacements by

where [B] is strain-displacement matrix, {u} is nodal displacement vector. Therefore,

ANSYS solves the equation 6.20 and the following equation:

The criteria for evaluating the failure of the metal electroform is the maximum

shearing stress theory, i.e. 6 , — a < (Tv . The criteria for fracture of the SL part is the

maximum principal stress theory, i.e. |σ1| < a, .
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Figure 6.8 ANSYS-based thermal stress simulation model
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6.5.2 FEM Based Simulation

For analyzing thermal stress induced during the burnout process the FEM-package

ANSYS 5.4 is used. The analysis of the thermal stress is carried out as shown in Fig.6.8.

FEM modeling and analysis consists of three phases: preprocessing, solution, and

postprocessing.

During the preprocessing phase, the analysis type, such as transient thermal and

mechanical analysis for our case, and the material properties such as Young's modulus,

density, coefficient of thermal expansion (CTE), thermal conductivity, etc, are first

specified. Most of the properties are a function of temperature, and their values versus

temperatures are established in a table. The geometry of the RP part is pre-designed

during the mold design stage. For initial analysis. a solid RP part, termed initial RP part,

is used to perform the analysis. The geometry of the solid part is directly imported from

the CAD package or generated from the geometry modeling module of the ANSYS

package. The metal electroform is then generated according to the initial electroforming

thickness, normally 2 mm or determined by the mold strength or EDM machining

requirements. The bimaterial volumes (or geometry) are herein generated. After the

geometry has been created, the geometry model is then meshed. Meshing means creation

of finite elements based on the bi-material model geometry. The element type is

determined according to the complexity of the geometry of the model so that meshing of

the model is possible. Certain correlation between thermal element type and structure

element type exists for ANSYS, so the element type has to be suitable for both thermal

and structure analysis. Element size is also an important factor for obtaining accurate

analysis results. The larger the element size, the less accurate the analysis result.
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However, fine element size will generates huge nodes and elements that could exhaust

the computer capability or take a extensively long time to solve the model. Generally

speaking, when the element size reaches a certain value, the analysis difference between

this element size and smaller size is ignorable. So convergence study is important to

ensure accurate analysis result. During the meshing, the model is divided into nodes and

elements to which material properties are assigned. Element type, element size and

associated material properties with the element are referred to as element attributes.

The next phase is solution. The initial and boundary conditions, as stated in the

thermal modeling section, are defined, and the finite element model for thermal analysis

is complete. As thermal problems are transient, time steps have to be defined in order to

enable computation of temperature distribution in the bi-material model at different time.

After solving the thermal model, the temperature distribution is examined and it has to be

reasonable. After the thermal analysis is finished and carefully examined, a structure

analysis is made to ascertain the thermal stresses due to the thermal influence. For

computing these thermal stresses the type of elements which comprise the finite element

model has to be changed into a type that is appropriate for structure analysis. Computed

temperatures in the thermal analysis are defined as load to the structure finite element

model. Apart from temperatures, moving of the bi-material model is constrained, too. At

each time step, the temperatures at that time step are loaded from the ANSYS database

and applied to the structure model. Reference temperature is also provided for the solver

to compute the thermal expansion (displacement) from which the thermal stresses are

derived.
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Figure 6.9 Comparison of meshes and thermal stresses for two
and three dimensional models

The postprocessing phase of the ANSYS follows the preprocessing and solution

phases. In this phase the calculated results are shown in graphics display and/or tabular

report form. The principal stresses are mainly concerned in this study, so the principal

stresses are displayed and recorded to evaluate if the thermal stress is smaller than the

yield strength of the electroform.
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6.5.3 Convergence Study

Element size is an important factor for determining if accurate analysis results can be

obtained. The larger the element size, the less nodes and elements are generated that lead

to less accurate results for the analysis. The finer the element size, the more nodes and

elements are generated that could exhausts the computer capacity or take a extensive time

to solve the model. When the element size reaches a certain value, the analysis result

converges to the actual value with minor variation. To achieve accurate results, poor

element size have to be avoided. For the convergence study of the finite element analysis,

a 4 mm thick of nickel electroplated solid cylinder SL part with dimensions of 050x60

mm with element size of 1 mm. 2 mm, 3 mm and 4 mm using two and three dimensional

models have been carefully examined and the results are listed in Table 6.9. The thermal

load is ramped thermal load, as shown in Fig.6.6(b). For two-dimensional case,

PLANE55 with four nodes and a single degree of freedom, temperature, at each node is

used for thermal element type and its corresponding structural element type is PLANE42

with two degree of freedom, displacements in x and y direction, at each node. For the

three-dimensional case, the element type SOLID70, an eight nodes with a single degree

of freedom, temperature, at each node, is used for thermal element and its corresponding

structure element type is SOLID45 with three degree of freedom, displacement at x, y

and z direction. When element size equals to 1 mm for a three dimensional model,

ANSYS generates 79320 elements that is beyond the constrain of the ANSYS 5.4

University High Version so no result is given. Meshes generated using 2 mm element

size for two and three dimensional models are illustrated in Fig.6.9(a) and Fig.6.9(b),

respectively. The corresponding thermal stress simulation results are shown in Fig.6.9(c)
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and Fig.6.9(d), respectively. The convergence study indicates that when element size

equals to or smaller than 2 mm, the maximum thermal stress convergences no matter

using two or three dimensional model. In the following analysis, we use 2 mm element

size, PLANE55-PLANE42 as element type for two dimensional thermal stress model,

and SOLID7O-SOLID45 as element type for three dimensional thermal stress model.

Table 6.9 Convergence of thermal stress with different element type, size and models

Figure 6.10 Two dimensional case: nickel electroformed SL cylinder
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6.6 Simulation Results and Discussion

6.6.1 Thermal Stress Simulation for a Two-Dimensional Case

A nickel electroformed SL cylinder with outer radius of 50 mm and length of 100 mm, as

shown in Fig 6.10 is used as a case to perform a two dimensional thermal stress analysis.

The dimension A of the inner hole of the cylinder and the electroform thickness t are

variables. The thermal stress is analyzed using the thermomechanical model. We assume

that the oven is preheated to the burnout temperature (560 °C for SL 5170) and it is

Figure 6.11 Temperature distribution for the two dimensional models
with different SL parts and electroform thickness
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constant during the burning process. Element type PLANE55 and element size 1mm is

used to simulate the thermal stress resulted from the burnout of the SL cylinder.

Figure 6.11 shows the temperature distributions for different SL parts and

electroforming thickness. For solid SL parts, heat can only be transferred from the outer

surface to the inside of the bimaterial model. However, heat is transferred not only from

the outer surface of the model but also from the surface of the inner hole for hollow SL

parts. As a result, it takes 420 seconds for the model with solid SL parts to reach the

temperature distribution under which the maximum first principal stress σ l is reached

inside the model and it takes 180 seconds for the model with hollowed SL parts to reach

the maximum first principal stress. Figure 6.12a, 6.12b, 6.12c and 6.12d illustrate the first

principal stress simulations with the temperature distributions as shown in Fig.6.11a,

6.11b, 6.11c and 6.11d, respectively. For solid SL parts, when electroform thickness

increases from 2 mm to 4 mm, the maximum σ l decreases from 144 MPa to 81.3 Mpa

(see Fig.6.12a and Fig.6.12b. If the SL part is built with a inner hole of 25 mm radius,

compared with solid SL part the maximum o with 2 mm electroform thickness reduces

from 144 MPa to 119 Mpa (see Fig.6.12a and Fig.6.12c), and that with 4 mm electroform

thickness reduces from 81.3 MPa to 66.5 Mpa (see Fig.6.12b and Fig.6.12d). Fig.6.13

illustrates that with the same structure of SL part, the maximum thermal stress (61)73)

decreases when the electroform thickness increases. The yield strength of the nickel

electroform is also illustrated in Fig.6.13. The thermal stress above the yield strength

results in permanent deformation for the nickel electroform. The thermal stress below the

yield strength will not generate permanent deformation for the electroform. Inner hole

can always decrease the thermal stress, and the larger the hole, the smaller the thermal
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stress. This observation gives certain guidance for building RP parts for electroforming:

The thermal stress induced by the burnout process can be reduced when a RP part is built

with a uniform wall thickness so that the RP part is an inner hollow structure. The

structure needs to be strong enough to resist the electroforming stress which is

determined by the electroforming process parameters. In this case if the electroforming

stress exerted on the electroformed nickel shell is 10 MPa, the deformation caused by the

electroforming stress can be calculated and is listed in Table 6.10. From the table , we

can see that for a specified electroforming thickness, solid SL part always has smaller

electroforming deformation (ED). As the wall thickness decreases, the ED increases.

Fig.6.14 shows that the maximum thermal stress is a function of burning time. At a

certain time point, a specific model will reach its maximum thermal stress and at that

point the model experiences maximum thermal deformation: when | σ1-σ3|>σyp, it is a

mixture of thermoplastic and thermoelastic deformation, and when |σ1-σ3| <σ yp , it is only

thermoelastic deformation. Table 6.11 lists the build time and material costs for different

SL parts. It can be seen that the inner hollow structure can save build time and materials.

Table 6.10 Electroforming deformation (ED) for different sets of parameters A and t



Table 6.11 Comparison of build time and material cost for different SL parts
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Figure 6.12 Two dimensional simulation of thermal stresses with different
SL parts and electroform thickness



Figure 6.13 Maximum thermal stress vs. electroform thickness for burnout process
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Figure 6.14 Maximum thermal stress vs. time during burnout process
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6.6.2 Thermal Stress Simulation for an EDM Electrode

The established thermomechanical model is applied to simulate the thermal stress

induced during the burnout process for EDM electrodes. The samples are from the case

study of Section 5.2.3 where practical EDM electrodes were made but the thermal

stresses are simulated here. In order to compare the thermal stresses between different

structures of the SFF parts, two kinds of SL parts are used in this analysis. One is the

solid SL parts, as shown in Fig.6.15a and the second kind is the shelled SL parts as

shown in Fig.6.15b. The dimensions for the working surfaces, i.e., the surfaces used for

forming the EDM electrode, are same with the dimensions as the CAD model for the

EDM electrode. The difference between the solid SL part and shelled SL part is that the

shelled SL part is made by cutting a brick from the solid SL part so that the thickness of

the shelled SL part is 8 mm.

Figure 6.15 Meshed models for EDM electrodes
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Figure 6.16 Heat transfer simulation for solid and shelled SL parts
with 2 mm thick of copper electroform

The model is meshed using element size 2 mm for both thermal and structure

elements. Element type SOLID70 is used for thermal element while element type

SOLID42 is used for structure element. The meshes generated for the model of solid SL

part with 2 mm thick of copper electroform and the model of shelled SL part with 4 mm

thick of copper electroform are shown in Fig.6.15a and Fig.6.15b, respectively. Two

scenarios of thermal loads (see Fig.6.6) are used for this sets of analysis. Solid and
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Figure 6.17 First Principal Thermal stress simulation for solid and shelled SL parts
With 2 mm thick of copper electrofrom

shelled SL parts are electroformed with 2 mm and 4 mm thick of copper, respectively, so

that four analysis for each scenario of thermal load are performed.

Figure 6.16 illustrates heat transfer simulation results for solid and shelled SL

aprts with 2 mm thick of copper electroform under stepped and ramped thermal load. The

figures show that the difference for stepped thermal load between maximum temperature

and minimum temperature is much larger than the difference for ramped thermal load.
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For solid SL parts, the maximum first principal stress within the model reaches its highest

point at 35 seconds and 420 seconds for stepped thermal load and ramped thermal load,

respectively. And, for shelled SL parts. the corresponding burning time for reaching the

highest first principal thermal stresses are 25 seconds and 360 seconds for stepped

thermal load and ramped thermal load, respectively. Thermal stresses induced by the

corresponding temperature distribution shown in Fig.6.16 are shown in Fig.6.17. Under

stepped thermal load and 2 mm thick of copper electroform, the maximum first principal

stress reduces from 131 MPa occurring at 35 seconds for solid SL part (see Fig6.17a) to

82 Mpa that happens at 25 seconds for shelled SL part (see Fig.6.17c). In the case study

performed in Section 5.2.3, the SL parts are burnout using stepped thermal load. It is

noticed that the maximum stresses generated at the portion where dimensions I and J are

measured and the largest deviation occurred (refer to Fig.5.2.a and Table 5.4). At these

portions, the thermal stresses (σl -σ3 ) for 2 mm thick of copper electroform are larger than

the yield strength of the electroformed copper that is 110 MPa at the temperature of

560°C, while the thermal stresses for 4 mm thick of copper electroform are about the

amount of the yield strength. This explains why dimensional deviation at these portions

for 2 mm thick of copper electroform is 0.26% while that for 4 mm thick of copper

electroform is 0.14%. However, the thermal stresses for other parts of the electroform are

smaller than the yield strength of the copper electroform so the dimensional deviation at

those parts are relatively smaller. Under ramped thermal load and 2 mm thick of copper

electroform, the maximum first principal stress that happens at 420 seconds for solid SL

part, reduces from 547 MPa (see Fig.6.17b) to 331 MPa that happens at 360 seconds for

shelled SL part (see Fig.6.17d). For the ramped thermal load, the temperatures of the
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furnace are 209 °C and 182 °C for burning time 420 seconds and 360 seconds,

respectively. However, the lowest temperatures inside the two models are 45 °C and 123

°C, respectively. These figures demonstrate that the distribution of temperatures

determinately affects the amount of thermal stresses. The thermal stresses generated due

to ramped thermal load are much larger than that generated due to stepped thermal load.

The maximum thermal stress generated during the burnout process is also a

function of time, i.e. it is actually a function of temperature distribution inside the model

because the temperature distribution is a function of burning time. Figure 6.18 and

Fig.6.19 show the maximum thermal stresses (σ1-σ3)) changes over time for stepped and

ramped thermal loads, respectively. The curve for maximum thermal stress over time is

first gradually increases to a summit point and then the thermal stress gradually

decreases. Different structures of SL parts generate different maximum thermal stresses,

and SL parts with shelled structure can always reduce the thermal stress. The thinner the

shell thickness, the smaller the thermal stress. This demonstrates that thermal stress

induced by the burnout process can be reduced when an SL part is built with appropriate

design of its structure. The shell structure needs to be strong enough to resist the

electroforming stress, which is determined by electroforming process parameters.

Assume that the electroforming stress exerted on the electroformed nickel shell is 1 MPa,

the deformation caused by the electroforming stress would be 0.0018 mm and 0.0024 mm

for solid and shelled SL masters, respectively. Table 6.12 lists the build time and material

costs for solid and shelled SL parts. It shows that SL parts built with shelled structure can

save build time and materials.



Figure 6.18 Maximum thermal stresses vs. burning time under
stepped thermal load for EDM electrodes
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Figure 6.19 Maximum thermal stresses vs. burning time under
ramped thermal load for EDM electrodes

Table 6.12 Comparison of build time and material cost for different SL parts



Figure 6.20 Meshed models for molds with 2 mm thick of nickel electroform

6.6.3 Thermal Stress Simulation for a Mold

The mold cavities generated using the mold tooling process are described in Section 5.3.

These mold cavities are adopted for performing the thermal stress analysis. The

dimensions for the working surface are same with the dimensions of the CAD model for

building the SL parts. Solid and hollowed SL parts and two scenarios of thermal load,

namely stepped and ramped thermal load , are used to perform the analysis. The wall

thickness for hollowed SL part is about 6 mm. Total of eight analysis, four analysis for

stepped thermal load and four for ramped thermal load, are performed.

Although element type SOLID7O-SOLID45, a regular brick element for thermal-

structural analysis, can produce very accurate results, but they are difficult to mesh solid

with irregular geometries. The geometry of the nickel electroformed SL part for mold is

too complex to be meshed by SOLID70 element, so element type SOLID87, a 3-D 10-

node tetrahedral thermal solid, is used to mesh the bimaterial model to generate thermal

element. Its corresponding structural element type, SOLID92, is used as the structural

129
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element. The element size is 2 mm. Meshes generated for solid SL part and hollowed SL

part with 2 mm thick of nickel electroform are shown in Fig.6.20a and Fig.6.20b,

respectively.

Figure 6.21 shows the heat transfer simulation for solid and hollowed SL parts

with 2 mm thick of nickel electroform when the bimaterial model is burnt. Under stepped

thermal load, it takes 20 seconds for the model with solid SL part to reach the

temperature distribution, with maximum temperature of 560 °C and minimum temperature

Figure 6.21 Heat transfer simulation for solid and hollowed SL part
with 2 mm thick of nickel electroform for mold tooling
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Figure 6.22 First principal stress simulation for solid and hollowed SL parts
with 2 mm thick of nickel electroform

of 20 °C, that generates maximum thermal stress and it takes 15 seconds for model with

hollowed SL part to reach the temperature distribution, with maximum temperature of

560 °C and minimum temperature of 34 °C, that generates maximum thermal stress

during the burnout process. Under ramped thermal load, it takes 240 seconds for the

model with solid SL part to reach the temperature distribution, with maximum

temperature of 128 °C and minimum temperature of 30 °C, that generates maximum
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thermal stress and it takes 180 seconds for model with hollowed SL part to reach the

temperature distribution, with maximum temperature of 84 °C and minimum temperature

of 44 °C, that generates maximum thermal stress during the burnout process. First

principal stresses induced by the corresponding temperature distributions shown in

Fig.6.21 are shown in Fig.6.22. Under stepped thermal load, the maximum first principal

stress reduces from 119 MPa that takes place at 20 seconds for solid SL part (see

Fig.622a) to 86.7 MPa that takes place at 15 seconds for hollowed SL part (see

Fig.6.22c). Under ramped thermal load, the maximum first principal stress reduces from

596 MPa that takes place at 240 seconds for solid SL part (see Fig.622b) to 445 MPa that

takes place at 180 seconds for hollowed SL part (see Fig.6.22d). These figures

demonstrate that built-in hollow structure inside the SL part can dramatically reduce the

maximum thermal stress when the electroformed part is burnt. Also the temperature

distribution is critical for determining the amount of the thermal stress. Ramped thermal

load always generates much larger thermal stress than stepped thermal load.

Figure 6.23 and Fig.6.24 show that the maximum thermal stresses generated for

the nickel electroform are a function of burning time for stepped thermal load and ramped

thermal load, respectively. The model with hollowed SL part always generates smaller

thermal stress compared with the model with solid SL part. This demonstrates that

thermal stress induced during the burnout process can be reduced by design an

appropriate hollow structure inside the SFF part. The hollowed SFF part needs to be

strong enough to resist the deformation resulted from the electroforming stress that is

normally generated during the deposition of nickel onto the SFF part. Assume that the

electroforming stress exerted on the SL part was 5MPa, the deformation caused by the
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stress would be 0.0008 mm and 0.0021 mm for solid and hollowed SL parts, respectively.

Inner hollow structure not only can reduce thermal stress, it can also save material and

build time.

Figure 6.23 Thermal stress generated on nickel electroform
vs. burning time for stepped thermal load for mold

Figure 6.24 Thermal stress generated on nickel electroform
vs. burning time for ramped thermal load for mold
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6.6.4 Discussion of Non-uniform Electroform Thickness

In the previous analysis, the electroform is uniformly distributed over the surface of the

RP pattern. However, it is very difficult to produce a uniform electroform over the RP

pattern due to the non-uniformity in the distribution of the current density between the

anode and the cathode (workpiece) [Spiro, 1968; Yang and Leu, 1999b]. The areas of the

RP pattern which are closer to the anode have higher current density so more metal is

plated onto these protruding areas of the master than onto the recesses. The faster

deposition in these areas consequently increases the current density and thus makes the

deposition rate in these areas higher and higher, and likewise the deposition rate in the

recess areas lower and lower. The uneven distribution of current density results in uneven

distribution of the electroform.

Practically, when we say that 2 mm thick of electroform means that the minimum

thickness of the electroform is 2 mm. This is also true for other electroforming thickness.

The minimum thickness is termed nominal thickness. The average thickness of the

electroform is always larger than the nominal thickness if no conformal anode is used for

electroforming process. The nominal thickness is used in our analysis and supposed to be

uniform throughout the model. If the metal shell was modeled in its real thickness

distribution, the metal shell would be non-uniform with the minimum thickness being

equal to the nominal thickness. Due to the fact that some areas of the electroform would

have larger thickness than that used in our analysis, the thermal stresses obtained in the

previous analysis should be larger than the stresses obtained using non-uniform

electroform for the real situation. This means that the thermal stresses obtained using

uniform nominal thickness are reliable and at the safe side for failure evaluation.
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Conforming the shape of the anode to the shape of the workpiece to be

electroformed can provide a uniform distribution of current density, thus the metal can be

deposited onto the workpiece more uniformly. However, making of a conformal anode by

machining is expensive and time consuming. Yang and Leu [1999b] proposed a method

for making conformal anode by electroless plating of an RP part that has the inverse

shape of the workpiece to be electroformed. The anode can be generated by the CAD

system using the geometrical data of the RP pattern. The conforming anode enables the

distribution of metal in the electroform more uniform (and thus resulting in smaller

variation in the electroform thickness).

6.7 Experimental Verification

6.7.1 Sample Preparation

In order to verify that the thermomechanical model and the ANSYS based finite element

analysis reflect the real situation for burnout process, an experiment has been performed

Figure 6.25 Strain gage on a nickel electroform with solid SL part
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Figure 6.26 Strain gage on a nickel electroform with hollow SL part

using strain gage based thermal stress measurement approach. The SL parts used for

thermal stress experiment are cylinders. The dimension, cost for SL parts and

electroforming are listed in Table 6.13.

The strain gage is mounted on the outer surface of the electroformed nickel shell.

The position for bounding strain gage is accurately matched with the position where the

analytical thermal stress is queried so that the measured stress can be comparable with the

stress obtained by the analysis. The strain gage is mounted at the center position along the

circumferential direction of the cylinder. Figure 6.25 and Fig.6.26 illustrate that the

strain gages are attached to the 4 mm thick nickel shell with solid and hollowed SL

patterns, respectively.



Table 6.13 Samples for experimental verification
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6.7.2 Experiment Environment

The thermal stress induced during the burnout of the SL master is measured using strain

gage instrument. The measuring environment (see Fig.6.27) consists of programmable

furnace with a small hole on top, strain indicator, switch and balance unit, strain gage and

wires. The hole at the top of the furnace is used to pass the wires through out of the

furnace. Fig.6.28 illustrates that two wire samples are put into the furnace with lead wires

pass through the top hole. The furnace is a programmable, fully automatic electrical

furnace with wide range of controllable temperatures. The strain gage can stand

temperature from room to 600 °C. Because it is very difficult to wire up the sample under

high temperature, namely 560 °C, only the ramped thermal load is tested.



Figure 6.27 Thermal Stress measuring Environment
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Figure 6.28 Wired samples in the furnace



Figure 6.29 Analytical first principal stress vs. measured first principal stress
for 1 mm nickel plated on solid SL part
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Figure 6.30 Analytical first principal stress vs. measured first principal stress
for 2 mm nickel plated on solid SL part

6.7.3 Experimental Results

The experimental results are illustrated in Fig.6.29 to Fig.6.34. The results show a closer

trend with the prediction of the finite element analysis, which demonstrate that the
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established thermomechanical model and finite element based numerical simulation can

be used to predict the thermal stress resulted from the burnout of the SL part.

Figure 6.31 Analytical thermal stress vs. measured thermal stress
for 4 mm nickel plated on solid SL master

Figure 6.32 Analytical thermal stress vs. measured thermal stress
for 1 mm nickel plated on hollowed SL master



Figure 6.33 Analytical thermal stress vs. measured thermal stress
for 2 mm nickel plated on hollowed SL master
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Figure 6.34 Analytical thermal stress vs. measured thermal stress
for 4 mm nickel plated on hollowed SL master

6.8 Process Implementation

The presented rapid electroforming tooling process involves two main stages. One is the

accuracy analysis stage that determines the structure of the SFF parts and the electroform
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thickness, and the second is the physical tooling process that uses the determined part

structure and electroform thickness to build the physical tool. The structure of SFF part is

determined by two criteria. The first criterion is that the SFF part needs to be strong

enough to resist the deformation induced by the electroforming stress during the

electroforming process. The second criterion is that the thermal stress induced during the

burnout process is smaller than the yield strength of the electroformed metal. This

criterion also determines the electroform thickness. So during the analysis stage of the

tooling process, the structure of the SFF and the electroform thickness need to be

determined for physical tooling.

The determination of the SFF part structure is performed as described in this

section. The geometry of a hollowed SFF part with a predetermined wall thickness is

constructed inside the ANSYS software. The wall thickness of the SFF part is a

parameter. The initial value of the wall thickness is estimated according to the geometry

of the SFF part, typically 5mm to 20 mm. The geometry is then used to perform finite

element analysis (FEA). The electroforming stress, material properties and boundary

conditions for the FEA model are defined for the analysis software to perform the

calculation of the deformation caused by the electroforming stress. If the deformation is

larger than the accuracy requirement of the tool to be fabricated, the wall thickness is

increased to perform the analysis again until the deformation is smaller than the accuracy

requirement. After the desired wall thickness of the RP master is determined, the next

step is to analyze the thermal stress induced during the burnout process.
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Figure 6.35 Implementation model for determining the SFF part structure
and electroforming thickness.

The surface of the determined SFF part are covered with a layer of electroformed

metal to provide geometry for thermal stress analysis. The electroform thickness is a

parameter in this analysis. The initial electroform thickness is determined by the tool

requirement. The strength of the mold is critical for resisting mold deformation during the

molding process, and the duration of the mold. The minimum electroform thickness is

given by experience, normally 1 to 2 mm. After the geometry has been created, the

thermal stress is analyzed using the method described in this Chapter. If the thermal

stress is larger than the yield strength of the electroformed metal, the electroform

thickness needs to be increased and do the analysis again till the thermal stress is smaller

than the yield strength.
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Figure 6.35 summarizes the implementation steps for determining the wall

thickness of the RP master and the electroforming thickness by finite element methods.

6.9 Closure

Finite element based thermomechancial modeling and analysis are presented in this

chapter for predicting the thermal stress generated during the burnout process that

removes the SFF part from the electroform. The model is implemented in ANSYS, a

commercial FEA software package. Two and three dimensional thermal stress analysis

are performed and these analysis are related and matched with the case studies performed

in Chapter 5. Different structures of the SFF part and electroform thickness generate

different amount of thermal stresses. The thicker the electroform, the smaller the thermal

stress for a same SFF part structure. Built-in hollow structure can always reduce thermal

stress. It is also found that for an FEA model with same SFF part and same electroform

thickness, ramped thermal load generates much larger thermal stress than stepped thermal

load does. Experimental verifications demonstrate that the results obtained from FEA-

based thermomechanical and analysis model accurately match the results measured from

the experiment. Thus the model can be used to predict the thermal stress induced during

the burnout process. The established thermomechanical model and FEA based numerical

simulation provide a method to determine the geometry of the SFF part and the

electroform thickness for minimizing the manufacturing time and cost while satisfying

the tooling accuracy requirement.



CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter summaries the results of this research and major contributions. The future

research issues are also discussed.

7.1 Major Contributions

This dissertation presents two rapid tooling processes that combine solid freeform

fabrication with electrodeposition to make metal tools such as dies, molds and EDM

electrodes. The first is the electroplating tooling used for making of EDM electrodes,

while the second is the electroforming tooling for making dies, molds, and EDM

electrodes. Feasibility studies, process development and understanding, FEM based

process modeling and numerical simulation, as well as experimental verification were

performed in this study. This research has led to the following major contributions:

1. An experimental study using electroplated stereolithography models as electrodes for

electrical discharge machining (EDM) has been performed. The experimental results

indicate that under roughing, semi-roughing and finishing EDM machining, a copper-

plated SL-generated model works as well as a regular copper electrode until the

thickness of the copper layer becomes the depth of the largest crater burned on the

copper layer by the electrical discharge. The performance charts of these EDM

electrodes versus regular EDM electrodes are generated. The plating with thick

copper layer can prevent burning of the plating; however, the thicker the copper layer
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plated on the surface of the master, the less uniform the copper distributed on the

entire surface of the electrode, especially if the electrode consists of cavities, sharp

corners and complex surfaces. This results in the loss of accuracy of the EDM

electrode.

2. A novel rapid electroforming tooling (RET) process has been developed. RET

consists of the steps of SFF part generation, metalization, electroforming, separation

of SFF part from electroform, and backing the electroform. Although it involves more

steps than electroplating tooling, it does no have the uniform electroplating

requirement for electroplating tooling. RET can generate tools that conventional

machining can not or has difficulty to produce.

3. Case studies of mold and EDM tooling indicate that SFF combined with

electroforming technologies for generation of metal molds and EDM electrodes is

viable. The accuracy and surface finish are much better than other rapid metal tooling

processes, such as 3D Keltool, SLS, 3DP, etc.

4. It is found that material properties, geometry, and process parameters are important

factors that affect the tooling accuracy. Thermal stresses induced during the burnout

process that removes the SFF part from the electroform are one of major sources for

inaccuracy. Another major resource for inaccuracy is the deformation due to the

solidification of the molten metal during the backfilling process.

5. Thermomechanical modeling and FEM-based numerical simulation for the burnout

process have been performed. The simulation results are used to determine if the

electroform undergoes permanent deformation based on the maximum shearing stress

theory. The model is used to simulate the thermal stresses resulted from burning of
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the electroformed EDM electrodes and mold cavities, and it is found that the portions

where the largest dimensional deviation occurred during the burnout process for

tooling case studies are the portions where the simulated thermal stresses are lager

than or equal to the yield strength of the electroformed metal.

6. The thermal stress is largely reduced when an SFF part is designed as a shelled

structure, or when the electroform thickness is increased. The wall thickness of the

shelled SFF part is determined by two criteria. The wall thickness must be small

enough to guarantee that the thermal stresses are smaller than the yield strength of the

electrofomed metal at a specified electroform thickness. On the other hand, the wall

thickness must also be thick enough to resist the electroforming stress during the

electroforming process. The electroform thickness is strongly related to tooling time,

cost and tool strength. The implementation model for determining SFF part structure

and electroform thickness is presented.

7. It is also found that the thermal stresses are determined by the thermal load during the

burnout process. A stepped thermal load for the pattern burnout generates smaller

thermal stresses than a ramped thermal load.

8. Thermal stress measurements with strain gages demonstrate that the results obtained

from the experiment accurately match the results obtained from the FEA-based

thermomechanical analysis model. Thus the model can be used to predict the thermal

stresses induced during the burnout process.

9. The established thermomechanical model and FEA based numerical simulation

provide an effective method to determine the geometry of the SFF part and the
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electroform thickness for minimizing the manufacturing time and cost while

satisfying the tooling accuracy requirement.

7.2 Future Research Issues

The proposed future research issues and tasks are:

1. The thermomechanical modeling and analysis for the backing process needs to be

studied in the future. The melting temperatures of backing metals used in this

dissertation study are 103 °C and 138.5 °C for EDM electrodes and molds,

respectively. These temperatures are so low that little thermal deformation is

generated During the backing process. However, a harder metal with higher melting

temperature, such as aluminum, is better for a high-strength mold. When a high

melting metal is used for backing, larger thermal stresses will be generated. Modeling

and control of the thermal stresses induced from backing need to be studied.

2. The electrodeposition condition and environment are very complicated and careful

control of the electroforming process is extremely necessary. The metal deposition

control aspects include adjusting the composition of the plating solutions, monitoring

impurity levels, controlling PH value, temperature and current density, measuring

thickness in-situation, adjusting current distribution to obtain uniform thick deposit,

monitoring and controlling stress continuously by automatically tuning process

parameters and adding stress reducing agents, adjusting the concentration of organic

additives to control the electrochemical characteristics of individual metal layers.

These controlling issues require multi-parameter logic control by means of a
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computer. The improvement on the electroforming process is likely to lead to genuine

improvement in the quality of electrodeposited metal coatings.



APPENDIX A

DISCUSSION OF BOUNDARY CONDITIONS FOR THE
THERMOMECHANICAL MODEL

When an electroformed bi-material object is put inside an oven to be heated up, two

kinds of boundary conditions can be specified. The first one is that the temperature of

the hot air is the same as the temperature at the exterior surface of the object being

burned. i.e.

where the point p is on the surface of the metal shell, and f(p, t) is the oven temperature

function.

The second one takes the convection effect into account. In this case, the

boundary condition is expressed as:

where, k is the thermal conductivity of the air; h is the film convection coefficient,

which is determined by the geometry, material properties and the boundary

temperatures; Ts, is the temperature of exterior surface of the object; TO is the

temperature of the hot air; n is the normal of the convection surface.

The exact value of the film convection coefficient is extremely difficult to

evaluate [Kreith and Bohn, 1986]. It is obtained by analytical calculation and

experimental correlation for various shapes. In our case, the heat transfer between the

boundary of the hot air and the exterior surface of the object is natural convection. If the

ramped thermal load and the boundary condition of (B.1) are applied, the temperatures
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over the exterior surface of the object are almost the same with the temperature of the

hot air surrounding the object during the heating up process. However, if the stepped

thermal load and the boundary condition of (B.2) are applied, there exists small

difference between the temperature close to the exterior surface of the object and the

temperature of the hot air during the initial few minutes. After several minutes, the

difference between these temperatures becomes negligible. This can be seen from the

thermal stress analysis results as shown in Table B.1. This analysis uses the model

presented in Fig.6.10 in Section 6.6.1. All the material properties are from Section 6.1.

The film convection coefficient is evaluated at the temperature of (20+560)/2 °C. The

value for the cylinder geometry is 32 W/m 2.k. It can be concluded that the thermal

stresses generated using the two different kinds of boundary conditions are almost the

same. This is especially true for the largest thermal stress that is the most important

stress of concern.

Table B.1 Comparison of first principal stresses between B.1 and B.2 boundary
conditions for the model of Fig.6.10 in Section 6.6.1



Table B.1 (Continued)
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