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ABSTRACT

ACTIVE FEEDBACK CONTROL OF A WAKE FLOW VIA FORCED
OSCILLATIONS BASED ON A REDUCED MODEL

by
Fu Li

As it is well known, the flow past a cylinder consists of a symmetric recirculation

bubble of vortices at small Reynolds numbers. As Reynolds number increases,

the bubble becomes unstable and develops into a Karman vortex street of alter-

nating vortices. This instability is responsible for the occurrence of large amplitude

oscillations in the lift and an increase in the mean drag. It was previously shown

by numerical simulation that the mechanism driving the bubble instability is well

mimicked by Foppl's four dimensional potential flow model where the bubble is

represented by a saddle point. In this work, we design two active feedback control

algorithms for the model based on small perturbations applied to the cylinder in order

to control the flow slightly perturbed away from the fixed point. We use the domain

perturbation method and asymptotic expansions to derive control algorithms analyt-

ically. In the first algorithm, we displace the cylinder by a small vertical distance such

that the lift remains zero at all times. We also show by direct numerical simulation of

the flow (based on the full N-S equations) that our feedback control system is capable

of preventing vortex shedding from occurring in the impulsively started viscous flow

at Reynolds number Re = 100. In the second algorithm, we deform the cylinder

uniformly so that the drag remains the drag of the steady recirculation bubble.
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CHAPTER 1

INTRODUCTION

1.1 Background

The control of fluid flow has attracted much attention in both the fluid mechanics

and control communities in the past decade. Controlling fluid flows aims at drag

reduction, lift enhancement as well as noise and vibration reduction in practical

applications.

The goal of this study is to design a feedback loop control algorithm to

manipulate the flow past a cylinder. As it is well-known, the flow consists of a

symmetric recirculation bubble of vortices at low Reynolds numbers. As Reynolds

number increases, the bubble becomes unstable and develops into a Karman vortex

street of alternating vortices. There are two major consequences of this insta-

bility: (0 the lift becomes non-zero and oscillates in time, (ii) the drag increases

significantly. These two features are often undesired in practical applications.

Two different types of control can be identified. The first, and most common,

method — referred to as passive control — consists of a suitable modification of

boundary conditions. Typical examples of this type of control are the insertion of

a splitter plate behind a cylinder (Unal & Rockwell 1988, Kwon & Choi 1996),

the introduction of a small secondary cylinder in the near wake (Strykowski &

Sreenivasan 1990), base bleed and suction (Oertel H. Jr. 1990), and near wake

heating (Schumm et al. 1994). The second type — or active control — requires

the introduction of energy to the flow. Active control can be achieved either via closed

(feedback) loop or open loop. Open loop control requires one or more actuators, but

no information on the flow (Gad-el-Hak 1996), while closed loop (feedback) control

1
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requires both actuators and sensors, using a control law to sense the flow in real time

(Monkewitz 1992).

In this thesis, we concentrate on the active feedback (closed loop) control of

the flow past a circular cylinder. The goal of our study is to cancel the unsteady

oscillating lift on the cylinder which occurs as vortex shedding develops.

An interesting observation on wake dynamics is that a very small alteration in

the near wake may have a global effect on the flow. So far the mechanism behind this

phenomenon is still unclear. Some researchers have studied the relation between the

formation of vortex shedding and absolute/convective instabilities of the mean flow

(Provansal et al. 1987, Jackson 1987, Hannemann et al. 1989, Dusek et al. 1994,

Schumm et al. 1994). In certain cases, the Ginzburg-Landau equation has been

used to describe the temporal and spatial development of the instability, as well as

to control vortex shedding by measuring the temporal growth of the instability near

the critical Reynolds number. The realized control is, however, restricted to a small

range of Reynolds numbers above the critical Reynolds number.

Although much attention has been given to active flow control over the past

decade (Moin et al. 1994, Gad-el-Hak 1996, Lumley 1999), the active control of

vortex shedding behind a circular cylinder still remains an interesting challenge and

has not been implemented in practice.

The earliest experiments of feedback control of vortex shedding were probably

carried out by Berger (1967) who showed that vortex shedding can be suppressed

within a small range of Reynolds numbers. Williams & Zhao (1989) applied active

control to suppress vortex shedding behind a circular cylinder. In their experiment,

they used a hot-wire located in the near wake as sensor, and a loudspeaker in the

wind tunnel wall as actuator. They showed that in the range of Reynolds numbers

from Re = 400 to Re = 104 , vortex shedding can significantly be reduced throughout
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the wake. Roussopoulos (1993) also performed similar experiments using a single—

channel feedback mechanism. He pointed out that at high Reynolds number, the

flow can be stabilized only near the location of the sensor.

Computationally, most researchers use suction/blowing techniques on the

cylinder surface in order to prevent vortex shedding from occurring. Park et al.

(1994) used suction/blowing actuation and reported a successful feedback control of

vortex shedding at Re = 60. More recently, Gunzburger et al. (1996) designed the

same feedback control scheme. They sensed the pressure distribution on the cylinder

surface and used injection and suction of fluid through orifices on the surface as

actuators. They reported a remarkable lift reduction without suppressing vortex

shedding completely. Min & Choi (1999) designed a suboptimal feedback control

scheme by evaluating three cost functions which are all related to the pressure

distribution on the cylinder surface. They showed that the drag and lift can be

reduced significantly at the low Reynolds number values Re = 60 and Re = 80.

Except for a few contributions such as that of Min & Choi, most techniques

have been empirical. Another approach consists in looking for a model, particularly a

low dimensional dynamical system, capable of capturing the main physics of the real

flow. Cortelezzi (1996) developed a nonlinear feedback control loop to manipulate

the flow past a plate, based on a point vortex model simulating vortex shedding. He

used the circulation produced by the plate as sensor and a suction point behind the

plate as actuator. However, to our knowledge, his technique was not applied to any

viscous flow.

Since vortex shedding is born from the break-up of the recirculating bubble of

two symmetric, counter-rotating vortices, it seems appropriate to design a control

technique based on the instability the bubble undergoes. The bubble of twin vortices,

together with its instability, is itself a complex phenomenon which needs to be
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modeled in order to be useful in a feedback control loop. The model we use here is

that of Foppl (1913). It consists of the two-dimensional, incompressible potential flow

resulting from the superposition of a uniform incoming flow, a pair of point vortices

symmetrically located with respect to the centerline behind the cylinder, and inner

vortices placed within the cylinder in order to satisfy the boundary conditions on

the body. Foppl found the fixed point (steady solutions) of the system and partially

carried out the linear stability analysis of the model. He showed that the flow

is unstable to asymmetric perturbations and neutrally stable to symmetric pertur-

bations. His stability analysis was reviewed later by Smith (1973) and, more recently,

generalized by Tang and Aubry (1997) who showed that the fixed point is indeed

unstable to a certain type of asymmetric perturbations, but stable to another type

of asymmetric disturbances. They also demonstrated computationally the relevance

of Foppl's model to the viscous flow. Some researchers (Widnall 1985, Rusak et al.

1991) studied the three-dimensional stability of Foppl's model.

In the following sections, we first recall Foppl's model and then qualitatively

describe an active feedback control strategy to control the oscillating lift on the

cylinder.

1.2 Foppl's Model

We consider the two-dimensional, incompressible, potential flow resulting from the

superposition of an incoming flow, two point vortices of opposite circulation Γ  located

symmetricly behind the cylinder at z i (xi, Y1), z2(x2, Y2) (x1 = x2, Yi = - y2) and

two inner vortices placed within the body to guarantee zero normal velocity at the

boundary, see figure 1.1.
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Figure 1.1 Foppl's vortex model

Assuming that the incoming free stream is U∞  = 1 and the radius of the

cylinder is equal to r0 = 1, the complex potential of the system is:

The dynamics of the two point vortices located at z 1 = xl+y1i and z2 = x2+y2i,

where z 1 = z2 (x1 = x2, yl = — y2) is given by the ordinary differential equations

(ODE'S):

The fixed point solution is obtained by setting dz1/dt = 0, dz2/dt = 0, which leads to

the equations:

where r2 = x2 + y2 , (x = xi = x2, y = yl = —y2) is the distance between the point

vortex and the center of the cylinder. While the first equation defines two lines of
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Figure 1.2 Stability of Foppl's model

fixed points, the second equation determines the circulation F of each pair of twin

vortices in terms of their location in the plane.

Performing the linear stability analysis for the fixed points, we find the eigen-

values:

as a function of the location of each pair of fixed points. Since one of the eigenvalues

A1 ,2 is always negative, and the other one positive, the fixed point is always unstable.

Furthermore, by studying the expressions of the eigenvectors associated with the

eigenvalues, we can show that the fixed point is neutrally stable to all symmetric

perturbations, unstable to certain asymmetric perturbations and stable to other

asymmetric perturbations (Tang & Aubry 1997). Figure 1.2 schematically reproduces

the shape of the neutrally stable modes, that of the unstable mode and that of the

stable one.

In a numerical simulation of the viscous flow from the Navier-Stokes equations,

a small perturbation along the stable manifold was found to decay as time evolved
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Figure 1.3 Eigenspaces of Foppl's model

while a small perturbation along the unstable manifold was observed to grow with

time (Tang & Aubry 1997). The stability property of Foppl's model thus shows some

connection to that of the real, viscous flow. In this thesis, we explore this connection

further. Our technique consists in controlling the stability property of the potential

model. Such technique will be tested in our numerical simulation of the viscous flow

by integrating the full Navier-Stokes equations.

1.3 Objective and Control Strategy

The linear stability analysis of Foppl's model has shown that the steady twin vortices

are dynamically unstable. It is therefore natural to wonder whether one can control

the flow in the vicinity of the fixed point by keeping the orbit (in phase space) close

to the stable eigenspace, and therefore, close to the fixed point.

The fixed point is actually a saddle point with a two-dimensional center

eigenspace, a one-dimensional stable eigenspace, and a one-dimensional unstable

eigenspace, see figure 1.3 for the eigenspaces of Foppl's model. Our idea is to keep

the orbit close to the stable eigenspace by oscillating the cylinder vertically.
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Before applying any control, the cylinder's surface can be expressed by the curve

r4 —1 = 0. Our control technique will specifically aim at counteracting the motion

of the vortices along the unstable eigenspace. Our goal is to find a displacement

control function 6(t) which varies with time t in order to kill the instability along

the unstable eigenspace, see figure 1.4. As the cylinder is displaced from the initial

to , the zero normal velocity boundary condition needs to be satisfied at every time

step. This is achieved by imposing a small vortex distribution (7, t) on the cylinder

surface.

It is well known that vortex shedding behind a free cylinder will cause oscil-

lations of the cylinder which, in turn, will interact with the flow. Oscillations induced

by vortex shedding is another area of active research and numerous contributions

can be found in the literature (Bearman 1984, Brika & Laneville 1993, Blackburn&

Henderson 1999 ). In this study, we concentrate on the active control of the unsteady

lift by forced oscillations of the cylinder.

This thesis is organized as follows. In Chapter 2, we present our mathematical

model and active feedback control system of Foppl's vortex model by means of a

control function 6(t) representing the small displacement of the cylinder. In Chapter

3, we apply our control scheme to the real flow by numerically integrating the Navier-

Stokes equations for the impulsively started flow past a cylinder. Finally, Chapter

4 will be dedicated to the analysis of a control system based on a symmetric defor-

mation of the cylinder surface.



Figure 1.4 Control of the lift by oscillating the cylinder

9



CHAPTER 2

CONTROL OF FOPPL'S VORTICES BY FORCED OSCILLATIONS
OF THE CYLINDER

2.1 Mathematical Model

In this chapter, we study to control the lift on the cylinder to be zero in the unsteady

state. For this purpose, We displace the cylinder vertically by a distance 8(t) in order

to cancel the life coefficient CL (t) at all time t > 0. The problem here is to determine

6(t) at each time analytically in order to reach this goal.

We now approach the previous problem by using the perturbation method and

asymptotic expansion in order to enforce the boundary condition on the surface of

the cylinder. We consider the incoming flow onto a body whose surface is given

by the function F(r, γ,  t) = 0 where (r, γ) define the position of the point in polar

coordinates; for a displaced solid surface, the flow-tangency boundary condition is

given by the equation:

at all points on the body surface F(r, γ , t) = 0. Here, it is the velocity at any point on

the surface and the vector VF is normal to the body surface F(r, γ , t) = 0. In order

for the boundary condition to be satisfied at any time t, a small vortex distribution

Γ E (γ, t), where Γ  (γ , t) <1, is imposed on the boundary surface.

At the initial time t = 0, r = r0 , the solid surface is a circle with unit radius:

Let δ (t) be a small displacement of the cylinder surface with respect to the

initial circular cylinder r0 = 1, see figure 2.1. The goal of our study is to find a

10
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Figure 2.1 The displacement control function 6(t)

function 6(t) which stabilizes the system. The small displacement of the cylinder

6(t) is thus our control function and we assume δ (t) << 1, dδ(t)/dt << 1.

The velocity it at any point on the solid surface is the sum of the velocities

induced by the free stream, the Foppl's vortices and the vortex distribution on the

surface. It can then be written as:

where:

u→U is the velocity induced by the free-stream velocity U = 1.

u →v is the velocity induced by Foppl's vortices: Vortex 1 and Vortex 2.
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'FP is the velocity induced by the vortex distribution Γ c (γ , t) on the surface,

where the superscript 'c' represents the velocity induced by the control.

We can then rewrite equation (2.1) as:

where the subscripts r and γ  denote the radial and azimuthal components, respec-

tively.

In the basic state, the point on the cylinder surface can be expressed as

(cos γ , sin γ ) and the distance to the origin of the coordinates is r0 = 1. When

the cylinder displacement function δ (t) is applied, the cylinder moves in the vertical

direction and a point on the cylinder surface is defined as (cos γ , sin γ  + δ (t)). For

any point, this results in a change of the distance to the origin 0 of the coordinates

(see figure 2.1). Denoting this change by r,( γ , t), we can write:

Using the fact that in our control scheme the displacement function is very

small, that is δ (t) << 1, we can neglect the higher order term (δ (t)) 2 and write:

Recall that the basic state is one of the fixed points described by equations

(1.1), (1.2) corresponding to the steady circular cylinder. In the more general model

where the cylinder undergoes a displacement, the velocity at any point is composed

of the zeroth order term corresponding to the basic state and the first order term

induced by the small displacement. Generally, we have:
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We now introduce the function F(r,γ ,t) defining the displaced cylinder:

This gives us the derivatives of F as follows:

Substituting these derivatives and expression (2.6) (2.7) in equation (2.3) leads

to:

where the indices 0 and 1 refer to zeroth order and first order terms respectively.

We notice that in the basic state, we do not apply our control scheme and

the vortex distribution on the surface is zero. The vortex distribution function is

therefore a first order term and u rc0 = ul,cγ0 = 0. Noticing that δ(t) << 1, dδ(t)/dt <<1,

the first order term of the boundary condition becomes:

This is the theoretical boundary condition we obtain on the displaced cylinder

surface (cos γ, sin γ + δ (t)) at any time t > 0. In the next sections, we concentrate

on finding appropriate expressions for the various velocity components uUγ0,uvγ0,uUr1,uvr1 and ucr1.

uvl and ur 1 .
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2.2 Induced Velocity for a Point Located on the Displaced Surface

In this section, we consider any point on the displaced surface and calculate the

velocity at that point. For this, we calculate the various induced velocities, that is the

velocity induced by the incoming free stream U, that induced by the Foppl's vortices

±Γ , and that induced by the vortex distribution ΓE (γ , t) on the cylinder surface

(imposed by our control strategy). We carry out our analysis in polar coordinates.

2.2.1 Polar Coordinates

The location (x, y) of any point can be expressed in polar coordinates, that is:

where z(r, θ) denotes the position (x, y) by complex variable z = x + iy. The relation

between the velocity in polar coordinates and that in Cartesian coordinates is given

by the rotation:

Using the fact that ux = dx/dt, uy = dy/dt and cos θ + i sin θ  = z/r we can write: 

or, equivalently,
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We now consider a small perturbation (p, a) to an arbitrary point z(r, 0), and

denote the new position after perturbation by z' (r', 0'), such that:

Since we consider small perturbations only, i.e. ρ << 1, α << 1, we can neglect

high order terms and write:

This leads to the final expressions for the perturbed point z' and its complex

conjugate z':

In the next sections, we use equations (2.12), (2.13), (2.14), (2.15), (2.16) in

the calculation of the induced velocity at any arbitrary point on the displaced surface

of the cylinder.

2.2.2 Velocity Induced by the Free Stream

Our control strategy will constantly compensate for any motion the flow undertakes

away from zero lift. This compensation will be achieved by displacing the cylinder

at any time accordingly. In this sense, the controlled flow is time dependent, i.e.

unsteady. In the controlled regime, we consider an arbitrary point z'0(r'0, γ ) on the
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surface F(r,ty,t) = 0. The unsteady flow can be treated as the superimposition of

the steady flow and a small perturbation. The velocity induced by the free stream

at any point z'0(r'0 , γ) can be obtained from the complex potential:

and

Using equations (2.12), (2.13), (2.14) from the previous section, we have:

or, equivalently:

The position of any material point on the surface of the cylinder can be written

as:

Using Taylor's series expansion and neglecting second and higher order terms,

we now expand the unsteady velocity in terms of the leading order term (steady

state) and the first order term, that is:



where:

17

Since U = 1 and r0 = 1, we write the velocity at any point on the displaced

surface induced by the free stream as follows.

We notice that here the zeroth order radial velocity /.4.J0 = 0 actually reflects

the normal boundary condition on the solid surface satisfied by the basic state.

2.2.3 Position of the Image Vortex Pair for the Displaced Cylinder

We know that for the cylinder whose center is located at the origin (0, 0) of the

coordinates, the position of the image vortex corresponding to the point vortex

located at z = x + iy is 1.

We now consider the cylinder whose center is displaced and located at (0, 6(0).

For the point vortex located at z = x + iy, we denote the position of the image vortex

by zI = xI + iyI. We then calculate this position and find, see figure 2.2:
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Figure 2.2 Position of image point (x', y') for point (x, y) after displacement of
the cylinder
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Our next goal is to linearize the position of the image vortex (x', y') in terms

of the displacement function of the cylinder δ (t). For this purpose, we expand xI ,

V, keep the first term in δ (t) and neglect the higher order term. This leads to:

We can write the linearized complex position in the form:

This is the linearized position of the image vortex for the displaced cylinder

whose center is at (0, δ (t)). We will use this result in the next section.

2.2.4 Velocity Induced by Foppl's Vortices

We can calculate the velocity at the point zI0 on the displaced surface induced by the

two point vortices located at points 4, and their images located at points zI1,
in the controlled flow.

We now suppose that the positions of the two vortices in the basic state are

zi (r i , θ1 ), z2(r2, θ2), respectively, and that we apply small perturbations (ρ1, α1 ),

(ρ 2, α 2) to such positions such that ρ1 , ρ2 << 1, θ1, θ2 << 1. The new position of

the vortices are defined by 4M, OD, 4(7.2, 02 ), respectively, such that:
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Using complex variables, the flow dynamics induced by the point vortices at

the point z'0 on the displaced surface is given by:

where zI1, zI2 are the linearized positions of the image vortices in the unsteady state

corresponding to z;, 4, respectively. Recalling equation (2.12), we can deduce:

Using (2.15) and (2.24), we obtain the zeroth order and first order terms of all

position variables in the unsteady state:

We express the unsteady velocity in terms of the zeroth order term (basic state)

and the first order term, neglecting the higher order terms:
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We now expand (2.25) to obtain the expression of the velocity induced by

Foppl's vortices, the details of our expansion are:
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where r01 = |z1 - z0|, r 01is the distance between Foppl's Vortex 1 and the cylinder

surface in the basic state; r02  = |z2 - z0|, r02 is the distance between Foppl's Vortex

2 and the cylinder surface in the basic state; r2 1 = x2 1 + y2 1, r1is the distance between

Foppl's Vortex 1 and the center of the cylinder in the basic state;

r2 2 = x2 2 + y2 2, r2 is the distance between Foppl's Vortex 2 and the center of the cylinder in the basic

state. Since the two Foppl vortices are symmetric with respect to the center line of

the cylinder: r 1 = r2 , we simplify the notation by setting r = r 1 = r2.

Noticing that we are dealing with a unit circle r 0 = 1, we can write the zeroth

and first order induced velocity components as follows.
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These expressions give us the induced velocity at the point z'0on the solid

surface induced by the two point vortices and their images at time t. Here, the

leading order radial velocity urv0 = 0 reflects the normal boundary condition on the

solid surface satisfied by the basic state.

2.2.5 Velocity Induced by the Vortex Distribution along the Cylinder
Surface

Since the basic state is unstable (saddle point), any perturbed orbit will drift away

from the saddle point. While the lift of the basic state is zero, the motion of the

solution along the perturbed orbit is accompanied by a deviation of the lift from zero.

Such a deviation occurs also in the viscous flow as the flow drifts away from bubble

of vortices in the regime where the latter is unstable. Our objective is to prevent

any deviation of the lift from zero. In order to satisfy the no-slip normal boundary

condition on the solid surface (2.1) at any time t, we place a small vortex distribution

ΓE(γ , t) along the surface. The velocity at any point z'0 on the solid surface induced

by the vortex distribution is given by the expression:
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Using the relation between polar coordinates and Cartesian coordinates (2.10)

(2.11), we can write:

Therefore, the velocity at a point on the solid surface induced by the vortex

distribution can be expressed as:

We notice that the azimuthal velocity vc γ(γ,t)at any point z'0is dependent on

time t only and independent of the angle γ . This shows that, at every point z'0on

the solid surface, the azimuthal velocity vcγ(γ  t) is only a function of time t.

2.2.6 Vortex Distribution Function on the Cylinder Surface

Summarizing the previous results (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), the

various induced velocities at any point on the solid surface take the expressions:
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The zeroth order of the radial velocities 74 = 0 and u rv0 = 0 guarantees the

no-slip normal boundary condition on the solid surface for the basic state.

We now return to the boundary condition on the cylinder surface (2.9). Substi-

tuting expressions (2.37)—(2.46) into this boundary condition for the controlled flow,

we obtain the vortex distribution along the surface:

which leads to the final expression:
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This is the vortex distribution function ΓEγ , t) along the surface of the cylinder.

The result of (2.47) is quite intuitive, as we now explain. Since we use the quasi-

steady position of the image vortex, we know that the normal velocity at any point z' 0

on the surface of the cylinder caused by the incoming flow U and the Foppl vortices

+F is identically zero. Therefore, the normal velocity at the location z'0due to the

motion of the cylinder sin γd(t)/dt is exactly equal to the normal velocity caused by the

vortex distribution ΓE (γ , t).

We can see that the kernel of the integral (2.47) has a singularity at τ  = γ . The

integral is therefore a Principal Value (P. V.) integral. However, by using a change

of variable and Fourier series, we can see that the singularity at τ  = γ  is a removable

singularity. We now seek a solution of ΓE (γ , t) in the form:

This gives us:

We use Fourier series to solve this equation for p(γ ) and set

We now make a change of variable and set τ  - γ  = θ. In the new variable, the

Fourier series becomes:

Now the left hand side of (2.48) can be expanded as:



We notice here that:

Defining:

We can write:
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Comparing the two sides of equation (2.48), we have:

This implies that:



where:

This completes our findings. The solution for the vortex distribution function

ΓE (γ , t) can be expressed as:

We notice here that cos γ  is an even function about γ , which implies that the vortex

distribution function ΓE(γ,  t) is also an even function. Hereafter, we say that ΓE (γ , t)

is symmetricly distributed about γ .

The fact that the vortex distribution function ΓE(γ , t) is proportional to cos γ

implies that the corresponding induced tangential velocity vc θgiven by equation (2.46)

is zero. As it is well known, an ideal flow allows the flow to slip along the wall. For

example, Foppl's model allows tangential slip along the cylinder surface as described

in equation (2.40).

We should mention here that the previous solution is one solution and that there

may be other solutions to the mathematical problem (2.47). The solution (2.49) does

satisfy the normal no slip boundary condition on the surface of the cylinder, that is:
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as well as the boundary condition at infinity, that is:
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2.3 Control by Displacement of the Cylinder

2.3.1 Linearization of the Control System

We now derive our feedback control law. For this purpose, we consider the flow

dynamics in its unsteady state at any time t. The point vortices ±F are perturbed

from the fixed point locations at z 1 , z2 to the new positions zi , 4, and the material

point on the surface of the cylinder is perturbed from z0 to zI0 . The variables z

12 denote the location of the image vortices with respect to the displaced cylinder

F (r , γ , t) = 0, t > 0 in the unsteady state, corresponding to z'1, z'2. In Cartesian

coordinates, the complex potential of the system is:

Here, ΓE (γ , t) is the vortex distribution on the cylinder surface F(r, γ , t) imposed to

satisfy the boundary condition of the cylinder surface in the unsteady state. The

expression of ΓE (γ , t) has been obtained in (2.49). The dynamics of the point vortex

model is then given by:
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where the incoming free stream velocity is denoted by U = 1. Using equation (2.12),

we can rewrite the above expressions in polar coordinates:

Here, we use the same notation (as in the previous section) to linearize the

system with respect to the fixed point positions z i (r i , θ1), z2(r2, θ2 ) and the circular

cylinder surface z0 (r0 ,rγ). The positions of the vortices are perturbed by means of

small disturbances (ρ i , α i ), (ρ 2 , α 2 ), where ρ i , ρ2 << 1, θ1 , θ2 << 1. The new positions

of the point vortices after perturbation are defined by z'1(r'1, θ'1). Using the results

of the linearized new position after perturbation (2.26) (2.27) (2.28) (2.29) (2.30) in

the previous section and substituting these expansions into the our control system

equations, we have:
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We now proceed by adding and subtracting the equations of motion for the

two vortices. In doing so, we use the fact that the vortices are symmetrically located

with respect to the x-axis in the basic state, that is z 1 = Z 2 , and that:

Our manipulation leads to:
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We now introduce the following symmetric and asymmetric modes:

where the subscript 'S' refers to the symmetric mode, and the subscript 'A' denotes

the antisymmetric mode.

For convenience of calculation, we define the real parts, A(r), B(r) and

imaginary parts, C(r), D(r) which are all functions of the position of the fixed point

r for the two complex-variable functions in the previous expressions, such that:

Using the fixed point equations (1.1), (1.2), we obtain:

We can deduce the functions A(r), B(r), C(r), D(r) taking the form:

Here, the angles are identical, i.e. θ  = θ1 = -θ 2 , due to the symmetry of two fixed

points z 1 =z2 .



Using the above results, we deduce the linearized control system:

35

We recall the expression (2.49) for the vortex distribution function F,(7, t) on

the cylinder surface and notice that:



We now define:
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The control system for the symmetric mode and asymmetric mode takes the

following matrix form.

Symmetric mode:



37

Asymmetric mode:

We can see here that our control technique has no effect on the center

eigenspace, and that the displacement function δ (t) only modifies the stable/unstable

subspace. We will solve this dynamical system numerically and give the expression

of the eigenvalues corresponding to the asymmetric mode in the next subsection.

In the basic state, this system simplifies since there is no displacement of the

cylinder, i.e. δ (t) = 0, d δ(t)/dt= 0. In this case, the system can be written in the more

compact form:

We now calculate the eigenvalues of the previous Jacobian matrices and obtain:
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Here, we recover the stability results for the basic state obtained in Chapter 1, which

shows that the fixed point is a saddle point, with a two-dimensional center eigenspace

and a two-dimensional stable/unstable eigenspace.

2.3.2 Pressure Distribution on the Solid Surface

In the following, we design our feedback control algorithm to control the lift of the

cylinder at anytime t > 0 based on the pressure distribution on the solid surface.

We now perform an analysis for the pressure distribution on the solid surface

similar to that previously performed for induced velocities. In other words, we

decompose the pressure in terms of a basic state (zeroth order term) and a small first

order perturbation. In the following, we work with the pressure coefficient, that is

In the above derivation, we have used the fact that the normal velocity on the cylinder

surface vanishes at all times t > 0 in the basic state. Neglecting the second order

terms v2r1, v2γ1, we obtain the leading order (steady state) and first order pressure

coefficient terms:
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We recall expression (2.49) that the small vortex distribution on the cylinder

surface ΓE (γ , t) is a periodic function about γ  which gives us:

We use the azimuthal induced velocities results in (2.38), (2.40), (2.42), (2.44),

(2.46) and calculate the first two terms of the pressure coefficient for a point (r'0, γ )

on the surface of the cylinder:

The first order term of the pressure coefficient for the symmetric point (r'0, - γ )

on the cylinder surface can be calculated in a similar manner:
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This leads to a differential pressure coefficient between two points (r() , 7) and

—'y) located symmetrically on both sides of the centerline:

As we expected, the differential pressure coefficient is a function of both δ (t)

and the asymmetric variables ρA, αA•

In the basic state, there is no displacement of the cylinder, i.e. δ (t) = 0. This

implies:

For a symmetric perturbation which implies ρA = 0, αA = 0, expression (2.59)

shows that ΔCp = 0; however, for an asymmetric perturbation ρA ≠ 0, αA≠0,

(2.59) shows ΔCp ≠0. The amplitude ofΔCpcan thus be considered as a measure

of the distance between the flow and the stable/unstable eigenspace.



41

We know that in the basic state there is no lift on the cylinder. This can be

shown from the leading order term of the pressure coefficient. We have indeed:

When a small perturbation is applied to the basic state, the lift of the cylinder

becomes non-zero due to the unstable motion of the vortices. In our control scheme,

we impose a small displacement on the cylinder, defined by the displacement function

δ (t) , in order to counteract the deviation of the lift from zero at any given time. We

can find the displacement function δ (t) by imposing the first order lift coefficient to

be zero at any time t. We can thus write:

which leads to the expression of the displacement function of the cylinder:

where the coefficients a(r), b(r) are independent of γ  and t and dependent on r only.



where k(γ ) is defined as:

We observe that our control function δ (t), or displacement function of the

cylinder, is a linear combination of the asymmetric unstable motion (ρA , αA) of the

vortices.

A close observation of the last two terms of equation (2.58) shows that the lift

coefficient caused by the unsteady motion of Foppl's vortex is linearly determined

by the asymmetric mode (ρA, αA) and can be expressed as:
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Equations (2.60) and (2.66) imply that the relation between the control function

δ (t) and the lift coefficient CO) on the cylinder caused by the unsteady motion of
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Foppl's vortices is:

Equation (2.67) shows that our linear control technique relates the control

function 6(t) to the unsteady lift at all times in a linear fashion. This relation will

be used in an attempt to control the lift in the real viscous flow in Chapter 3.

We can also calculate the leading order steady drag and the first order unsteady

drag as follows:
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As expected, we can see that the drag on the cylinder is dependent on the

symmetric mode (PS , as ) only and the displacement function 8(t) has no effect on

the drag. Therefore, the drag remains the same with or without control.

Finally, we calculate the eigenvalues of our linear control system. Since our

control modifies the asymmetric modes only and has no effect on the symmetric

mode in the unsteady state, we consider the asymmetric modes only:

We now calculate the eigenvalues of the asymmetric modes. Recall that our

linear control system shows that the cylinder displacement function 5(t) can be

expressed as a linear combination of the asymmetric modes, that is:

By setting

and
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Now we can write the asymmetric mode in the compact form:

The eigenvalues are given by the expression:

This result of eigenvalues is described in the next section.

2.4 Summary

In this chapter, we have used forced motions of the cylinder to actively control the

potential flow of the Foppl model and have designed an active feedback method to

systematically maintain the lift zero at any time t > 0. We have used asymptotic

expansions to achieve linear control and have carried out the linear stability analysis

of the control system. In particular, we have found that our control scheme has

no effect on the center manifold (symmetric mode) of Foppl's vortex model, and

that it modifies the stable/unstable manifold (asymmetric mode) only. Our sensor

measures the lift at all times, while the actuator is the forced displacement of the

cylinder counteracting any deviation of the lift from the zero value. The displacement

function 6(t) is linearly determined at all times.

Figure 2.3 shows the eigenvalues of the stable/unstable manifold without and

with control.

Figure 2.4 shows the coefficients a(r), b(r)/r of the control function as functions

of r in equations (2.61) and (2.62), where r is the distance of the point vortices to the

center of the cylinder in the fixed point. In the real viscous flow, the steady position

of the bubble reflects the magnitude of the Reynolds number. More precisely, the

distance r increases with Reynolds number.
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Figure 2.3 Eigenvalues of the stable/unstable manifold without and with control

Figure 2.4 Coefficients a(r), b(r)/r of the control function from equations (2.61)
and (2.62)
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Figure 2.5 Time dependent control function δ(t) for different initial perturbations

Figure 2.5 shows the control function δ (t) in equation (2.60) for two different

initial perturbations in Foppl's model ρA = 0.3, αA = 0.1; ρA = 0.3, αA = -0.1.

Figure 2.6 shows the comparison of lift CL (t) in Foppl's model without and

with control for a specific asymmetric perturbation ρA = 0.3, αA = 0.1.



Figure 2.6 Comparison of lift on the cylinder without and with control
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CHAPTER 3

FEEDBACK CONTROL OF VORTEX SHEDDING BY NUMERICAL
SIMULATION

In this chapter, we apply our feedback control technique to the viscous flow by

numerically integrating the Navier-Stokes equations. Our goal is to prevent the

lift from becoming non-zero when vortex shedding develops. In this chapter, we

confine ourselves to low Reynolds number values (Re < 200) where the flow is two

dimensional.

Although numerical methods for simulating vortex shedding past a circular

cylinder are quite mature, computations incorporating a feedback controller still

remain a challenge. Until now, only a few results have been reported (Park et al.

1994, Gunzburger et al. 1996,Min & Choi 1999). Since the numerical integration

of the Navier-Stokes (N-S) equations at every time step is slower than the actual

response of the flow, it is unlikely that a real time, closed-loop control can be designed

based on the numerical integration of the full Navier-Stokes equations alone. In this

chapter, we seek to design a feedback controller capable of maintaining the lift close

to zero in the viscous flow.

Our control technique is inspired by the control of Foppl's model derived in

Chapter 2. For this, we consider the impulsively started flow past a cylinder at Re =

100. At early times, the (uncontrolled) flow consists of a bubble of counter-rotating

twin vortices. As time increases, the bubble breaks and vortex shedding develops.

Our control technique can be described as follows. As soon as vortex shedding starts,

the flow is controlled by displacing the cylinder by a distance 8(t) measured with

respect to the steady state. Our control technique consists in displacing the cylinder

to counteract the motion of the twin vortices. In the numerical procedure, we first

examine the lift coefficient CO) at each time step and test whether the latter is
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within an acceptable threshold CL,. If it is, the control is turned off. Otherwise, the

control is turned on and the cylinder displaced by a certain distance δ(t) calculated

at each time according to the particular state of the flow at that time. Using the

terminology of control theory, our sensor is the lift, and our actuator is the motion

of the cylinder itself. An appropriate displacement of the cylinder is sought in order

to change the dynamics of the flow field in a desirable manner. We now present our

numerical method.

3.1 Numerical Method

3.1.1 Governing Equations

We consider a flow around a fixed cylinder, the incoming free stream being U∞ .

Hereafter, the fixed system of coordinates whose origin is located at the center of

the cylinder is referred to as (V, g') (figure 3.1). The superscript ' will therefore be

used to denote the variables in the fixed system of coordinates and symbols with the

notation ~ will refer to dimensional variables. The two dimensional N-S equations

in the fixed system of coordinates (x', can then be expressed as follows:

Continuity Equation:

Momentum Equation:

where = u'i+v'j denotes the velocity of the flow field. The variables p and v denote

the velocity vector of the flow field, the density of the fluid and the kinematic viscosity

of the fluid, respectively. The streamfunction ψ'(x', y') and vorticity ω'= V'x v'in

the fixed system of coordinates (x', 	 are defined by:
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Substituting the definition of ψ' and ω' in the continuity equation (3.1) and

momentum equation (3.2), we derive the continuity and momentum equations in the

fixed system of coordinates.

Streamfunction equation (continuity equation):

Vorticity transport equation (momentum equation):

In order to control the lift on the cylinder at any time t > 0, we displace the

cylinder vertically at every time step by an appropriate distance δ (t). We then need

to compute the flow past the moving cylinder. For this purpose, we use a moving

system of coordinates (x, g) attached to the center of the cylinder at every time. The

transformation between the fixed coordinates (v ,y) and the moving coordinates

(x, g) is given by (see figure 3.1):

We now proceed to derive the governing equations in the moving system of

coordinates (x, g). The relation between the velocities of the flow field in the fixed

system of coordinates (u', V') and those in the system of moving coordinates(ü, V) is

given by:
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Figure 3.1 Fixed coordinates and moving coordinates

We now introduce the streamfunction ψ and vorticity ω variables in the moving

system of coordinates (x, y) through the relations:

We can see from equation (3.7) that the expression of the streamfunction , ψ(x,y)

includes the displacement function δ(t). Comparing equations (3.3), (3.4) in the fixed

system of coordinates and those ((3.7), (3.8)) in the moving system of coordinates,

we find that the streamfunction ψ'(x', y') and vorticity ω'(x', y') in the fixed system

of coordinates are identical to the streamfunction and vorticity in the moving system

of coordinates ψ'(x', y') and ω'(x', y'). This simple relation facilitates our computational

scheme. The streamfunction equation (continuity equation) and vorticity transport

equation (momentum equation) in the moving system of coordinates now become:
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Streamfunction equation (continuity equation):

Vorticity transport equation (momentum equation):

We now transform the moving Cartesian coordinates (x, y) into the (moving)

polar coordinates (r, θ) by the relation:

We then give details on the derivation of the vorticity transport equation. The

derivation of the streamfunction equation can be performed in a similar manner.

Equation (3.10) can be rewritten as:

We now introduce nondimensional variables, using the free stream velocity U ∞

and the radius of the cylinder a as reference and length scales:

Here we recall that the variables defined with ~ are dimensional, the other variables

being nondimensional. The vorticity transport equation (3.10) in the dimensionless

form can be expressed as:
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where the Reynolds number is defined in terms of the diameter 2a of the cylinder

and the free stream velocity U∞ , that is:

Our computational domain is defined with exponential polar coordinates (ε, η),

such that:

Such a mapping (see figure 3.2) offers the advantage that although the computa-

tional domain is of limited size and appropriate for numerical simulations, the flow

is considered in a very large physical domain and potential flow is assumed at the

outer edge of the domain.

Using the differential relation between the original polar coordinates (ε, η)  and

the exponential ones,δ/δr = 1/2πr δ/δξ , δ/δθ = 1/δπ δ/δη we derive the vorticity transport

equation in the computational domain (e, n) from equation (3.13). The latter reads:

where the symbols E, V, V,7 have the following meaning:

A similar analysis applied to the streamfunction equation leads to the following

equation:



Figure 3.2 Computational domain (6, 71)
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Equations (3.16) and (3.17) are the governing equations we use to compute the

flow past the moving cylinder, in the computational domain 	 n). We can see here

that the control function 6(t) appears through the variables V and V, 7 in the vorticity

transport equation (3.16) expressed in the computational domain (e,77). For zero

displacement, i.e. 6(t) = 0, we recover the equations of motion for a fixed cylinder.

The vorticity transport equation (3.16) is solved by an Alternative-Direction Implicit

(ADI) algorithm and the streamfunction equation (3.17) is integrated by means of

a Fast Fourier Transform (FFT) algorithm. The accuracy of the numerical scheme

is second order in space and first order in time. The details of the discretization

procedure have been described in Tang & Aubry (1997) for a fixed cylinder (6(t) = 0).

These authors also validated the code against numerical and/or experimental results.

A good agreement with others' findings was found. Since an additional difficulty is

introduced due to the motion of the cylinder in the present work, particular attention

needs to be given to the numerical scheme. This will be the object of the next

paragraph.

3.1.2 Numerical Details

It is well-known that vortex shedding occurs when Reynolds number exceeds a critical

value Re > Re„. One of the most important consequences of vortex shedding

consists in generating non-zero, oscillating lift on the body. Since our purpose is to

control any deviation of the lift from zero value, we use the lift as sensor. In the

impulsively started flow, the initial stage is characterized by a steady flow consisting

of a recirculating bubble of two symmetric vortices rotating in opposite directions. At

this early stage, the symmetry of the flow with respect to the centerline implies zero

lift on the body. In this case, control is not applied, the cylinder is fixed (6(t) = 0)

and the flow is computed in the fixed system of coordinates. As time increases, the

two vortices become asymmetric and the lift starts deviating from its zero value.
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At later times, vortex shedding fully develops and the lift oscillates. Our goal is

to prevent the lift from deviating from zero. Our control technique is as follows.

When the lift is larger than a predefined threshold in absolute value: |CL(t)| >

control is applied and δ(t) ≠ 0. In this case, we calculate the flow in the system

of coordinates moving with the cylinder. Since our technique consists of a closed-

loop control scheme, whether the actuator is turned on or off at a particular time

depends entirely on the actual flow situation at that time. We can see indeed from

our results presented in the next section that actuation is not applied in a continuous

fashion. Closed-loop (feedback) control is more advantageous than open-loop control

for several reasons. First, it adapts to varying flow conditions; second, it requires

less energy input.

There are two numerical subtleties we would like to discuss. The first point is

that our computation always starts in the fixed system of coordinates since the flow

consists of the symmetric bubble at early stages and the lift is nearly zero during

this initial time period. We then switch our computation to the moving frame as

soon as the lift CO) exceeds the predefined threshold CL, in absolute value. At any

given time, we thus need to transform the expression of the streamfunction ψ and

vorticity w in the fixed mesh to a formulation in the moving mesh, and vice versa.

Since each grid point (ξm , ηn) in the moving mesh is located within one grid element

(i, j , i+1, j+1) in the fixed mesh, see figure 3.3, we calculate the streamfunction

(or vorticity) value at the grid point (ξm , ηn) in the moving mesh by averaging the

streamfunction values at the four grid vertices in the fixed mesh, that is

The same equation holds when ψ is replaced by ω. Likewise, the transformation of

the streamfunction (or vorticity) from the moving system of coordinates to the fixed
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Figure 3.3 Streamfunction ψ (m, n) at the point (m, n) in the moving coordinates

system of coordinates is carried out using equation (3.18) where the fixed coordinates

and moving coordinates are interchanged.

The second point is that it is important to check the vorticity flux δω/δr along the

cylinder surface. Theoretically, the integral of the vorticity flux δω/δξ along the cylinder

surface is equal to zero. This can be shown from the N-S equations. We can write:

which implies:

Since Cp (0, 1) and Cp (0, 0) actually denote the same stagnation point, the left hand

side of the previous equation is zero, and therefore, the integral in the right hand
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side is also zero, that is

In our numerical scheme, we use

which gives us second-order accuracy to calculate the vorticity flux. This formula

also meets the requirement (3.19) in a satisfactory manner.

3.2 Results and Discussions

We present our results at the Reynolds number value Re = 100 which is higher than

the critical Reynolds number Recr (Recr=47-48). The size of the computational

domain (ξ, η)is given by Δξ = 0.004, Δη=1/256 and the time step was chosen to

be ΔT = 0.005.

An interesting problem we need to address is to select an optimal control

function δ (t) based on our analysis in Chapter 2. Since a relation between the

Reynolds number of the flow and the position of the fixed point (recirculating bubble)

is hard to obtain in the viscous flow, a quantitative description of the fixed point

in the real flow will be helpful. Figure 3.4 shows the lift as a function of time in

the uncontrolled flow at Reynolds number Re = 100 while figure 3.5 displays the

corresponding streamlines at two different times. Figure 3.4 shows that in the initial

stage, the lift is nearly zero. However, at about t = 360, the lift starts developing

some oscillations. At that time, the streamlines still show a symmetric bubble of

counter-rotating vortices whose center is located at about r = 5 from the center of

the cylinder. At t = 400, lift oscillations have grown and the flow patterns exhibit

vortex shedding (see figure 3.5).
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Figure 3.4 Lift in the uncontrolled flow for Re=100

One of the most important aspects of any closed-loop control technique lies

in the design of the feedback control law. In the closed-loop control technique used

by others and based on suction/blowing through the cylinder surface, the feedback

control law is defined by:

where u denotes the velocity at the suction/blowing point on the cylinder, G(0, η ) is

the predefined velocity profile at the suction/blowing point, and F(t) refers to the

feedback function defined by:

Here, K(Re) is the feedback coefficient (or feedback gain), (ξ, (Re), 0) is the sensor

location on the centerline, downstream of the cylinder, M(t, ξ = ξ s (Re), η = 0) is the

variable measured at the sensor location (ξS(Re), 0) when the control is applied to

the flow (forced flow), and Mmax (t, ξ = ξs(Re), η = 0)) is the maximal value of the-- 



Figure 3.5 Streamline of the uncontrolled flow at Re = 100
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variable in the uncontrolled flow. The variable measured by the sensor can be the

flow velocity, vorticity, pressure or any other relevant flow parameter. Here, we use

the notation K(Re) and ξs(Re) because both the feedback coefficient K and sensor

location ξs depend on the Reynolds number.

We notice that there are three empirical parameters in the previous feedback

control method which need to be selected: (i) the velocity profile G(0, η) at the

suction/blowing point(s) on the cylinder surface (for example, G(0, η ) can be taken as

a parabolic (quadratic) function); (ii) the feedback coefficient(feedback gain) K(Re)

(usually obtained by numerical experiments), (iii) the sensor location (ξs(Re), 0)

downstream of the cylinder on the centerline. This sensitivity of the control technique

to these various parameters has been documented by other researchers. Park et

al. (1994), for instance, successfully suppressed vortex shedding at Re = 60 using

suction/blowing slots on the cylinder but found that their result is only valid for a

limited range of sensor positions. In addition, the sensor location must be different

for various Reynolds numbers. For instance, the sensor location valid for suppressing

vortex shedding at Re = 60 may not be successful for the control of vortex shedding

at Re = 80. The valid region of sensor locations (ξ = ξs(Re), η = 0) was determined

by trial and error only.

In summary, feedback control of vortex shedding by means of suction/blowing

has been achieved numerically in the past. Whether a particular control technique

has been successful, however, has been strongly dependent on the selection of three

parameters: the velocity profile G(0, η ), the feedback coefficient(feedback gain)

K(Re) and the specific sensor location ( ξ  = ξs(Re), η = 0) .

In our control algorithm, the sensor location is not a parameter since the sensor

simply measures the lift. Likewise, the position of the actuator is irrelevant due to

the fact that the actuator is the motion of the cylinder itself. The amplitude of the
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forced motion at each time step, however, needs to be determined. This translates

into finding the displacement function, δ(t), at each time. Recall that δ(t) should

be kept small compared to the radius the cylinder a, and the flow close the fixed

point, in order to remain within the realm of linear control theory used in Chapter 2.

Although, in some cases, linear control theory has been found to be applicable to the

nonlinear regime of the flow, so far, all our attempts to control the flow after vortex

shedding has settled have been unsuccessful. In practice, the lift coefficient threshold

for turning the control on or off is kept small, in the order of CL, = 0(10 -3 ). Recall

that if the lift is larger than the threshold in absolute value, the control is applied.

Since the threshold for the lift coefficient CL, is kept small, we can apply

the linear control algorithm derived in Chapter 2. In this algorithm, the control

function δ (t) is proportional to the lift at each time step, see equation (2.67), with

the coefficient of proportionality being DEN(r). An investigation of DEN(r) in the

model shows that, for the values of r relevant in the viscous flow, DEN(r) is of the

order of 10- i. We thus consider the linear relation:

where A is a constant, whose value depends on the distance of the vortices to the

center of the cylinder, and therefore on Reynolds number.

As mentioned before, we computed the flow at Re = 100. In order to control

this flow, we first chose the lift threshold CLE = 0.001, and the control function

δ(t) = CL(t)/A, where A is a constant, equal to 0.1. Figure 3.6 compares the lift

without and with control. We can see that the lift on the cylinder is controlled in a

satisfactory manner.

Figure 3.7 gives the corresponding displacement control function 6(t) in this

case.
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Figure 3.6 Comparison of lift coefficient without and with control at Re = 100,
A = 0.1



Figure 3.7 Control function δ (t) for controlled flow at Re = 100, A = 0.1
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Figure 3.8 compares the streamlines of the flow without and with control. We

can see that vortex shedding is fully suppressed by our control technique.

In a second attempt to control the flow at Re = 100, we chose the lift threshold

criterion to be CL, = 0.001 as in the first computation, but the coefficient A in the

control function (5(t) = CL (t)/A, was chosen to be A = 0.5.

Figure 3.9 compares the lift without and with control. Once again, we observe

that the lift on the cylinder is controlled in a satisfactory manner.

Figure 3.10 gives the corresponding control function 8(t) in this case. Here, the

control function 6(t) is smaller than in the previous case (Figure 3.7).

Figure 3.11 allows to compare the streamlines without and with control,

showing that the control technique fully suppresses vortex shedding.



67

Figure 3.8 Comparison of the streamlines without and with control for Re = 100,
A = 0.1
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Figure 3.9 Comparison of lift coefficient without and with control for Re = 100,
A = 0.5



Figure 3.10 Control function 8(t) for controlled flow at Re = 100, A = 0.5
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Figure 3.11 Comparison of streamlines without and with control for Re = 100,
A = 0.5



CHAPTER 4

CONTROL OF FOPPL'S VORTEX MODEL BY SYMMETRIC
SURFACE DEFORMATION

In this chapter, we consider the possibility to control Foppl's vortex model by an

unsteady deformation of the cylinder surface. Controlling fluid flows by means of

compliant walls is the subject of a certain number of investigations and has broad

practical applications (Moro & Bewley 1994, Gad-el-Hak 1996, Lumley & Blossey

1998).

We consider deforming the cylinder surface in response to the actual flow

situation at each time step. Here again, we concentrate on controlling the lift or

the drag in the unsteady state. A deformation function rE(γ , t) which depends on

both position γ  and time t would be most appropriate. Unfortunately, the non-

uniformity of the deformation along the solid surface introduces mathematical diffi-

culties through convoluted integral equations.

In this chapter, we concentrate on the particular case of a symmetric surface

deformation. Note that the motion of the cylinder treated earlier can also be

considered as a particular, antisymmetric, surface deformation. The perturbation

methods are very similar in these two particular cases.

We thus follow the perturbation approach described in Chapter 2 and consider

a small uniform surface deformation r e (t) at each time t, see figure 4.1. The defor-

mation is mathematically introduced by a uniform source distribution function QE(t)

placed along the cylinder surface, which, at every time, takes care of the new

boundary condition. We first present our mathematical model and then proceed

with our analysis in the following sections.
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Figure 4.1 Control of vortex shedding by symmetric surface deformation

4.1 Mathematical Model

As in our previous analysis, we represent the cylinder surface by the function

F(r, γ, t) = 0 where the variables (r, γ ) denote the position of the point in polar

coordinates; the flow-tangency boundary condition is given by the equation:

at all points on the body surface F(r, γ , t) = 0. Here, it is the velocity at any point on

the surface. In this symmetric surface deformation case, a small source distribution

QE(T) is imposed on the boundary surface to satisfy the boundary condition. Here,

we assume QE(t) << 1.

Let rE(t) be a small deformation of the body surface with respect to the initial

circular cylinder r 0 = 1 where rE(t) << 1, drE(t)/dt << 1.  The goal of our study is to find

a control function r E (t) which either controls the lift or the drag at any time.
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As in the previous sections, we decompose the velocity into three terms:

where u→U refers to the velocity induced by the free-stream velocity U, u→v denotes

the velocity induced by Foppl's vortices, and u→c is the velocity induced by the source

distribution QE(t) on the cylinder surface. Equation (4.1) now becomes:

where the subscripts r and γ  denote the radial and azimuthal components, respec-

tively.

The function F(r, γ , t) defining the deformable solid surface is expressed by

This gives us:

Substituting these derivatives in equation (4.2) and expressing the velocity in

terms of the zeroth order (basic state) and first order (perturbation) components,

we have

where the indices 0 and 1 refer to zeroth and first order terms, respectively.

We notice that the velocities uc r0 is identically zero since the source distribution

QE(t) is not applied in the basic state, i.e. ucr0 = 0 and assume that

drE(t)/dt << 1. The first order term of the boundary condition then becomes:dt
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In the next section, we will seek expressions for uUr1, , and uvr1, u rc1 in terms of

the control function rE(t)
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4.2 Induced Velocity at a Point on the Deformable Surface

4.2.1 Velocity Induced by the Free Stream

We use a perturbation method similar to that used in Chapter 2. At any time t > 0,

we consider an arbitrary point z'0(r'0 , γ ) on the deformable surface F (r, γ , t) = 0. The

unsteady flow can be treated in terms of the steady flow and a small perturbation.

The velocity induced by the free stream at any point F ) (r, γ, t) can be obtained from

the complex potential:

The corresponding induced velocity is given by:

We now deduce the expression of the radial and azimuthal components of the

induced velocity. Expressing the fact that there is no azimuthal perturbation on the

solid surface, we have:

Using equations (2.12), (2.13), (2.14) from Chapter 2, we can write:

Expressing the unsteady velocity in terms of the leading order term (steady

state) and first order terms, we obtain the velocity at any point on the deformable

surface induced by the free stream, that is:
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The zeroth order term of the radial velocity uUr0 = 0 reflects the normal

boundary condition on the solid surface in the basic state.

4.2.2 Velocity Induced by the Point Vortices

Similarly, we can calculate the velocity at the point z'0 on the deformable surface

induced by Foppl's two point vortices located at points z'1, z'2  and their images located

at points 1/z'1, 1/z'2 in the controlled flow.

Using the same procedure as that in Chapter 2, we suppose that the positions of

the two vortices in the basic state are z 1 (r1 , θ1), z2 (r2 , θ02) respectively, and that small

perturbations (ρ 1, α1 ), (ρ 2, α2) are applied to these positions such that ρ1 , ρ2 << 1,

θ1,θ2<<1.The new position of the point vortices are defined by z'1(r'1,θ'1), z'2(r'2, θ'2)

respectively, such that:

The flow dynamics induced by the point vortices at the point zi0 on the

deformable surface is given by:

Using expression (2.12) in Chapter 2, we deduce:
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Noticing that z'0, z'0 = r'2 0, we can write:

where: r0 , 1 , = |z'0 - z'1| is the distance between Foppl's Vortex 1 and the cylinder

surface in the unsteady state, r0'2' = "z'0 - z'2| the distance between Foppl's Vortex 2

and the cylinder surface in the unsteady state.

Expanding the velocity in the controlled state in terms of the leading order

(basic state) and first order terms and using the linearization of the position

coordinates after perturbation in the unsteady state (2.15) derived in Chapter 2, we

can expand equation (4.10) as follows:
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where r01, r0e r, r1, r2 have the same definition as those in Chapter 2.

The zeroth and first order terms of the various velocity components can thus be

deduced, these terms correspond to the velocity at the point z'0on the solid surface

induced by the two point vortices and their images at time t:
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Here, the leading order radial velocity 4 0 = 0 reflects the normal boundary condition

on the solid surface satisfied by the basic state.

We can compare the result of the first order velocity urv 1 (4.13) and uvγ1 (4.14)

with those (2.33), (2.34) obtained in Chapter 2. We can see that the first order term

of the velocity component uvr1, uvγ consists of two parts: the first part is caused by

the deformation of the cylinder surface rE (t) (δ (t) in Chapter 2); the second part

is caused by the perturbation of the point vortices (ρα1, α l), (ρ2, α2). In both the

symmetric surface deformation (expressed by rE (t) in this chapter) and the antisym-

metric surface deformation (expressed by δ (t) in Chapter 2), the perturbation of the

point vortices (ρ1 , α l), (ρ2, α2) does not affect the normal velocity uv 1 and its effect

on the azimuthal velocity uv γ1remains the same.

4.2.3 Velocity Induced by the Source Distribution on the Cylinder
Surface

In order to satisfy the no-slip normal boundary condition on the solid surface (2.1) at

any time t, we place a small source distribution QE (t) along the surface. The velocity

at any surface point (cos 'y, sin 'y) induced by the source distribution is given by:



In polar coordinates, the velocity becomes:
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This implies that the velocity induced by the source distribution at a point on

the solid surface is:

This result can be explained as follows. Since we apply the uniform surface

source distribution QE(t) which depends on time t only, the normal velocity vcr(γ, t)

is also only time dependent and there is no azimuthal velocity at any point

(r'0 cos γ, r'0 sin γ).

4.2.4 Source Distribution Function on the Cylinder Surface

Summarizing the previous results (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), the

various induced velocities at any point on the solid surface take the expressions:
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The zeroth order term of the radial velocities uUr0 = 0 and uvr0 = 0 guarantees

the no-slip normal boundary condition on the solid surface for the basic state. We

can see that this term is the same as that calculated in Chapter 2 in the case of the

displacement δ(t) of the cylinder. The first order term, however, is different reflecting

different perturbations applied to the cylinder.

Substituting results (4.21),(4.23),(4.25) into the boundary condition (4.4), we

obtain the source distribution along the surface:
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We observe here the source distribution function WO is proportional to the

deformation velocity of the surface of the cylinder, representing the mass input or

output along the cylinder surface per unit time corresponding to the cylinder surface.
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4.3 Control by Symmetric Deformation of the Cylinder Surface

4.3.1 Linearization of the Control System

Following the procedure presented in Chapter 2, we assume that the point vortices

are perturbed from the location z1 , z2 to z'1, 4, and that a point on the solid surface

is perturbed from zo to 4. The dynamics of the perturbed point vortex model in

Cartesian coordinates is given by:

Using the expression (2.12) in Chapter 2, we convert the control system from

Cartesian coordinates to polar coordinates:

Here, we use the same notation (as in the chapter 2) to linearize the system

with respect to the fixed point positions zi (ri, Or), z2(r2, 02) and the circular cylinder

surface zo (ro , 7). The positions of the vortices are perturbed by means of small

disturbances (p 1 , a i ), (p2 , a2 ), where pl, P2 << 1, 0 1 , 02 << 1.



using Cauchy formula, we can show that:

of the control system with respect to the fixed point leads to:
Lineariztion 
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Adding and subtracting the equations of motion for the two vortices and using

the symmetric and asymmetric modes as those defined in Chapter 2, we have:
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where A(r), B(r) C(r), D(r) are the same as those defined in (2.50), (2.51), (2.52),

(2.53) in Chapter 2.

We can rewrite the above control system in the following matrix form.

Symmetric mode:

Asymmetric mode:

As expected, this shows that a uniform surface deformation rE(t) of the cylinder

has an effect on the symmetric mode only, without influencing the asymmetric mode.

This implies that our symmetric control scheme will alter the center manifold of the

fixed point, without affecting the stable/unstable manifold. We now discuss whether

a control scheme based on such a deformation can control the force (lift and drag)

exerted on the solid body.

4.3.2 Pressure Distribution on the Solid Surface

We now proceed with our analysis and calculate the pressure distribution on the

cylinder surface. We recall the expressions of the zeroth order (steady state) and

first order terms of the pressure coefficient (??), (??) in Chapter 2 substitute in the

azimuthal induced velocity expressions (4.18), (4.20), (4.22), (4.24), (4.26), we can
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calculate the zeroth and first order terms of the pressure coefficient for a point (r'0, γ )

on the surface of the cylinder.

We then deduce the differential pressure coefficient between two points located

symmetrically with respect to the centerline:

which is only a function of the asymmetric variables (ρA, αA).

We now calculate the lift on the cylinder. Since the leading order term of the

induced azimuthal velocities uUγ0, uvγ0 is the same as those in Chapter 2, the leading

order term of the lift coefficient is still zero, that is:
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The first order term of the lift coefficient is:

Since the differential pressure ΔCp i (γ ) (4.30) only depends on the asymmetric

mode ( ρA, αA) and does not depend on the surface deformation functionrE(t),we

can conclude that any symmetric deformation of the cylinder has no effect on the

vertical component of the force, i.e. the lift. In contrast, we now show that a

symmetric surface deformation can control the horizontal component of the force,

i.e. the drag. For this purpose, we impose the first order term of the drag coefficient

to be zero at all times t > 0. The leading order term of the drag coefficient is the

same as that given in Chapter 2, that is:

The first order term of the drag coefficient is given by
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We conclude here that the first order term of the drag coefficient depends on

both the symmetric mode (ρS, αS) and the deformation function rE (t) . It is therefore

possible to obtain a symmetric deformation control function rE(t) by imposing CD1 =

0. We now present the function obtained in this manner:

where e(r), f(r) are defined by:
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where k (y) is defined as:

By deforming the cylinder surface with the control function (4.31), we can force

the drag of the perturbed flow to keep the value as it has in the basic state.

4.4 Results and Discussions

In this chapter, we have considered the possibility of controlling the perturbed flow

of Foppl's potential flow model by deforming the surface of the cylinder. We have

considered a particular deformation only, a time dependent and uniform deformation.

This was achieved by means of a deformation control function rE (t) chosen by forcing

the drag to keep the value the same as it has in the basic state. Such a deformation

was realized by introducing a symmetric source distribution Q (t) along the surface of

the cylinder to ensure that the boundary condition on the solid boundary is satisfied

at each time.

We can linearize the control system around the fixed point. The linearized

motion of the symmetric and asymmetric modes are given by the following expression.

Symmetric mode:
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As expected, the symmetric deformation affects the center manifold only and

has no effect on the lift coefficient CL . However, it can control the drag coefficient

CD. This is achieved by choosing a suitable deformation function rE(t) in equation

(4.31).



CHAPTER 5

CONCLUSION

In this thesis, we have designed two active, closed loop control algorithms aiming at

manipulating the flow undergoing the previous instability. In the first algorithm, the

lift is kept at zero value, while in the second scheme, the drag is maintained at the

drag value of the steady recirculation bubble.

The two algorithms were derived analytically via a reduced model which we

choose to be Foppl's potential flow model. In this model, the fixed point represents

the recirculation bubble which is always unstable. The linear stability analysis of

the fixed point showed that there is a two-dimensional center eigenspace spanned by

symmetric modes, a one-dimensional stable eigenspace spanned by an asymmetric

mode and a one-dimensional eigenspace spanned by another asymmetric mode. Our

goal was to control the solution perturbed away from the fixed point in order to either

keep the lift to zero or keep the drag to the drag value of the fixed point. In both

control algorithms, the actuator consists of a change in the boundary condition at

the surface of the cylinder. This change was treated analytically through the domain

perturbation method and asymptotic expansions.

In the first algorithm, the cylinder is displaced by a distance 5(0 , which plays

the role of our control function. The motion of the cylinder is represented by a vortex

distribution at the surface of the cylinder. We have used asymptotic expansions to

derive the control system and to express the distance 5(t) required at all times in order

to cancel the non-zero lift in the solution perturbed away from the fixed point. The

control function 5(t) was found to be a linear function of the asymmetric eigenspace,

thus implying that the displacement of the cylinder has no effect on the symmetric

(center) eigenspace of the fixed point. We could thus successfully impose zero lift on
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the cylinder at all times t > 0 by displacing the cylinder vertically. The application

of the control algorithm to a numerical simulation of the viscous, impulsively started

flow past a cylinder (based on the full Navier-Stokes equations), showed that we

could keep the lift close to zero in the viscous flow as well, when the controller

was applied before vortex shedding sets in. Compared to the more commonly used

feedback control technique based on suction/blowing, our control approach is less

dependent on the control parameters such as sensor location, velocity profile, etc..

In the second algorithm, the surface of the cylinder was deformed in a uniform

manner along the surface, so that at every time, the solid body is a cylinder whose

radius varies in time. Here, our control function is the change in radius, r e (t) ,

compared to the radius of the cylinder in the original Foppl's model. Mathematically,

this uniform surface deformation was represented by a source distribution along the

surface of the cylinder. We have used asymptotic expansions to derive the control

system and have found that the control function r E (t) is determined solely by the

symmetric eigenspace of the fixed point, thus implying that it has no effect on the

asymmetric mode. In this manner, we could control the drag in order to prevent the

latter from deviating away from the drag value of the steady state.
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