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ABSTRACT

TIME DOMAIN MEASUREMENT OF THE NONLINEAR
REFRACTIVE INDEX IN OPTICAL FIBERS AND

SEMICONDUCTOR FILMS

by
Hernando Garcia

A new technique to measure the nonlinear refractive index n 2 in optical fibers and

semiconductor films has been developed. It is based on the time delay two-beam

coupling of very intense picosecond laser pulses that have been self-phase modulated in

the nonlinear optical medium. The two beams are coupled in a slow responding medium

that is sensitive to time dependent phase distortions. We determine that the amount of

phase distortion experienced by the pulse is proportional to the nonlinear refractive index

of the medium. This time domain approach can also be applied to optical fiber amplifiers

in the presence of gain and to semiconductor films. Because the technique is base on pure

refraction the measurement of n 2 is insensitive to nonlinear absorption, thermal effects,

and surface roughness. With this technique we have measured n 2 in 20-m length of

Silica-glass, Ytterbium-doped, and Erbium-doped optical fibers at 1.064-µm. Also we

have measured the change of n 2 at 1.064-µm in the presence of a 980-nm pump laser in

Yb3+-doped and Er3+-doped fibers. Finally we have extended the technique to measure n 2

in 2-mm thick samples of GaAs, CdTe and ZnTe semiconductors. In the language of

ultrafast spectroscopist, if the best tool to characterize an ultrashort optical pulse is the

pulse itself, then the best tool to characterize an optical nonlinear medium is a pulse that

has been modified by the medium.
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CHAPTER 1

INTRODUCTION

1.1 Background

The field of nonlinear optics has experienced a very rapid increase in the past 20 years

due to its potential applicability in areas such as: optical communications, information

processing, medicine, biology, sensors, passive optical components, lasers, etc. Most of

today's fentosecond laser systems used in ultrafast optical research are possible because

of the use of nonlinear crystals. In optical communications for example, selfphase

modulation is used in conjunction with group-velocity dispersion to produce temporal

solitons in optical fibers. The quest to find condensed matter system that shows large,

fast nonlinearities and low absorption is still one that should be pursues. If it is found this

system should be ideal for information processing and switching. This assumes that

available integration technology can be developed.

Today's new exotic materials, in terms of doping composition and/or geometrical

structures, are paving the way to the synthesis of new nonlinear optical materials. These

new structures, fabricated by ion implantation, ion exchange followed by ion

implantation, sol-gel synthesis, sputtering, pulse laser ablations, or pulsed-laser

deposition, are very common. These chemicals trend in the compositions of matrix

glasses with nanoparticles of metals or semiconductors, combined with quantum

confinement effects are giving unprecedented results in terms of ultrafast responses and

strong nonlinearities. Nanocomposites, such as metal quantum dot composites of Cu

embedded in a fused silica matrix [1] are routinely produced in research labs with third

1
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order nonlinear response of the order of 10 40 cm2/W and relaxation times of the order of

a few picoseconds.

Another approach to generated huge nonlinear optical response is based on

electromagnetically induced transparency [2]. In this case, the nonlinearity comes from

the coupling of a metastable state and a lifetime-broadened state. Devices base on this

effect have already been proposed [3]. This type of effect can be called Optical

Resonance Engineering, because it is base on the understanding of the specific resonance

of atomic transitions.

Exotic fibers, especially those with novel geometrical structures, are very good

candidates for testing nonlinear optical effects that have not been realized before.

Microstructure optical fibers [4], or holey-fibers, show anomalous waveguide dispersion

in the 800-nm range, and show rigorously single mode behavior, which is impossible in

conventional fibers. In this range, powerful fentoseconds lasers can be found. This allows

confining TW of peak power in very small areas amplifying nonlinear optical effects

such as shock waves, and supercontinuum generation [5]. Holey fibers are particularly

attractive for photonic devices because their optical properties can be engineered during

fabrications.

Nonlinear optics also plays a key role in optical communications [6,7,8] limiting

the amount of power that can be transmitted per pulse before nonlinear optical effects

take place. The optical nonlinearities can lead to interference, distortion, and excess

attenuation. In general, stimulated Raman scattering, stimulated Brillouin scattering, and

four photon mixing will deplete some optical waves, and generate others by means of

frequency conversion. This will cause interference for other channels affecting direct
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detention and heterodyne detention systems. In the case of angle or phase modulated

system effects, such as cross phase modulation and self-phase modulation, will have

comparable effects as frequency conversion nonlinear phenomena.

Nonlinear effects in optical fibers can also be cumulative. This is the case of

linear, as well as nonlinear index change due to resonance transitions in rare-earth doped

fibers like Er3+, and Yb3+. For long-haul communications systems like 10,000 Km, where

fiber amplifier spacing is of the order of 100 Km, these effects may be important for

system design. These effects arise because of the resonance transitions in each of the

amplifier stage; we call these dynamic linear and nonlinear susceptibilities, because they

come from the presence of a pump laser in the amplifier.

Experimental techniques to quantify the above-mentioned nonlinearities are also a

very dynamic and expanding. The crucial need for strong and fast nonlinear optical

material demands a reliable method for the measurement of the magnitude and sign of the

nonlinear index of refraction. This characterization is important for material design and

development.

Previous measurements of nonlinear refraction have used complicated techniques

that may be applied to semiconductors or fibers independently. For example, in

semiconductors, techniques such as beam distortion [9,10], nonlinear interferometry [11],

degenerated four-wave mixing [12], nearly degenerated three-wave mixing [13], and

ellipse rotation [14] have been used. The beam distortion is a very simple technique

known as Z-scan. This technique is based on the analysis of transmittance in a nonlinear

medium through a fine aperture in the far field as a function of the sample position. The
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other three techniques based on interferometric and wave mixing required more complex

experimental setups.

In the case of fibers, Stolen [15] has developed a technique in the frequency

domain that allows n2 to be measured very precisely, but requires very long fibers

between 200-300 meters. In the technique described here, only a few meters of fiber are

needed.

Induce Grating Autocorrelation (IGA), originally developed for pulse

characterization [16] can be implemented for medium characterization. This technique

that we call Two-Beam Coupling (TBC) is totally based on a nonlinear effect called Self-

Phase Modulation (SPM). When a high intensity optical pulse propagates in a nonlinear

medium, it will experience a time dependent phase modulation. It is this phase

modulation that is used in a TBC experiment to characterize the nonlinear medium. TBC

can be applied to waveguide as well as semiconductor films. In the case of optical fibers,

Group Velocity Dispersion (GVD) can be neglected because of the small lengths of fiber

needed to generated SPM. In semiconductor films, thermal effects and absorption can be

neglected because SPM is based on pure refraction. Another important application of

TBC is the measure of dynamic susceptibilities in systems with gain. In this case, the

nonlinear third-order susceptibility can be measured at λo when there is another Xi

present. This is important for Erbium Doped Amplifiers.

1.2 Overview of the Dissertation

Our present research is focused in the use of TBC experimental techniques to measure the

third-order nonlinear susceptibility in semiconductors and waveguide structures like

optical fibers. Emphasis has been given to rare earth doped fiber like Er 3+ and Yb3+.
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These materials are commonly used in optical amplifiers. The third order susceptibility

for these fibers have been measured with and without a pump laser. The TBC technique

has been extended to semiconductor films where the magnitude and the sign of the third

order nonlinear susceptibility has been measured.

The dissertation consists of six chapters including this introduction. In chapter 2,

we present the constitutive relation of the induced polarization and the electric field, and

examine the relation between the nonlinear susceptibility and the Stark effect. Also, a

more complicated approach base on Kramers-Kronig nonlinear dispersion relation will be

outline. A density matrix, approach is followed for a quasi-three-level model with gain.

This model will be applied to the case of the rare earth-doped fibers. In chapter 3, the

theory of self-phase modulation will be described, the zero GVD regime will be analyzed

where the TBC technique can be applied. Chapter 4 will describe the photorefractive

effect, and the consequences of the TBC experiment in a slow responding medium. It will

be shown that the results of photorefractive beam coupling of Yao et al [17], and the two

beam coupling experiment in a slow responding medium of Trebino et al [18] are

identical except from a normalization constant. Also, We analyzed 'IBC experiments in a

photorefractive crystal when self-phase modulated pulses are used. Here we will

demonstrate how to extract the third-order susceptibility from an electric field

autocorrelation function. Chapter 5 describes the experimental technique and a brief

description of the laser system and electronics used„ also the main results for silica-glass

fibers, Erbium-doped fibers, and Ytterbium-doped fibers are presented. Chapter 6

presents the main results for the semiconductor, conclusions and possible research

directions.



CHAPTER 2

NONLINEAR OPTICAL SUSCEPTIBILTY

2.1	 Macroscopic Description of the Nonlinear Susceptibility

When very intense light interacts with matter, some of the optical properties of the

material system are modified. The study of this interaction is called nonlinear optics. The

beginning of nonlinear optics starts with the observation of the second harmonic

generation in single-crystal quartz by Franken et al. in 1961 [19], after the demonstration

of the first working laser by Maiman in 1960 [20]. Generally nonlinear optics refers to

the study of the interaction of intense electromagnetic fields with materials, to produce

modified fields that are different from the input fields in phase, frequency, and amplitude

[21].

The strength and form of the interaction depends on the underlying symmetrical

properties of the system. In general, the quantities that control the strength of the

interaction are called nonlinear optical susceptibilities. Even order susceptibilities are

responsible for harmonic effects such as sum and difference frequency generation, while

odd order susceptibilities are responsible for self-interaction effects such as self-phase

modulation, self-focusing, etc.

The derivation of the nonlinear susceptibility can be accomplished in different

ways. In this section, we will follow closely Boyd's [22] derivation of the nonlinear

susceptibility based on the argument used by Jha et al [23].

Using the electric dipole approximation, one can define the total polarization of a

system interacting with an electromagnetic field as

6
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the total energy density can be defined in terms of the total energy expansion in power

of the electric field, which is given by

So the knowledge of the total energy expansion as a function of the electric field allows

one to find the static limit of the total susceptibility of order n from the equation

From the above equation; it is easy to see that the nonlinear susceptibility is

directly related to the Stark effect in the static limit. We can take the above analysis

further by using standard quantum perturbation theory to calculate the energy of the

system, assuming that the total Hamiltonian of the system is given by

If there are N independent unit cells in the system, then the total energy is
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In the above expressions, the denotes the fact that the ground state must be taken

out of the summation symbol. If we replace all of the above denominators by some

average energy denominator hω o, including the ground state won't dramatically change

the final result. Using Equation (2.2) to calculate the susceptibilities up to order three, we

find that

We see immediately that the nonlinear susceptibilities are related to the electron

distribution function and as such, measure the deviation of the potential from the purely

harmonic form.

Approximated quantum results can be extended in terms of the linear index of

refraction using the results of [24]. In this case, the total field applied to the solid can be

replaced by an individual field acting on each atom that composes the solid with a field

correction factor given

in the above equation, n is the refractive index of the solid. The expressions for the linear

and third order nonlinear susceptibilities are given by
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In Eq. (2.8) Ni are the densities of the ith constituent, a represents the linear

electronic polarizability, and 7 represents the mean second electronic polarizability.

These are the Clausius-Mossotti equations for the linear and the nonlinear case. The

above equations are approximated using the low frequency limit so that the resonant

frequency is the dominant frequency ω o, and the optical field frequency is much lower

than the resonance frequency or ω«ωo . In this case the second electronic polarizability

can be expressed as

where Q is given by quantum mechanics calculation and expressed as the moments of the

ground state electron density

Where µ is the oscillator strength defined as µ  = 2mω o (x2 )h . Substituting the results of

Eq. (2.9) and (2.10) in Eq. (2.8), we get for the linear and nonlinear susceptibilities

In Eq. (2.11), the nonlinear refractive index is expressed in terms of the product of

the atom density and the dipole strength of the system. The value for Nµ and ω o can be

calculated by measuring the refractive index of two different frequencies. The parameter
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gµ, has been found experimentally using Eq. (2.11) and has a value of gµ=3 for most

optical solids.

2.1.1 Dispersion Relations for the Nonlinear Susceptibility

The above analysis was used to emphasize the physical origin of the nonlinear

susceptibility based on the moments of the charge distribution that were also correlated

with the Stark Effect. One of the limitations was the fact that the analysis can only be

applied to the low frequency limit -much lower than any resonance frequency of the

system- and that all the relevant frequencies were substituted with a mean absorption

frequency ωo . There is a universal dispersion curve for the nonlinear susceptibility that

can be calculated from causality principles using similar Kramers-Krönig relationships as

the ones used in linear optics [25]. The expression can be considered phenomenological

in the sense that it can only be applied to a two-band model for the semiconductor. The

expression describes some of the individual processes that contribute to the nonlinear

susceptibility.

It is well known that most optical solids show dispersion in the nonlinear index

which is positive for values below or near the two-photon absorption edge (2PA), or ħω≈

Eg/2, however, for wavelengths substantially above the 2PA, the nonlinear index of

refraction n2 becomes negative. Eq. (2.11) and Eq. (2.11a) predict the low frequency

magnitude of n2, but not the dispersion. The only process considered in deriving the

above equations are the calculations of the different moments of the charge, distribution

which are directly related to the DC-Stark effect.

In [25] they include in the calculation of the n2 contributions such as 2PA,

electronic Raman effect, and the optical Stark effect. The analysis is based on extending
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the linear Kramers-Krônig (KK) to the case of nonlinear interactions. In this way

causality is incorporated naturally in the formalism as it occurs in the linear case. KK

formalism states that the change in the refractive index (An) at e is associated with the

change in the absorption coefficient (Da) through the spectrum (co'), and vice versa. The

nonlinear change can be calculated as

In the above equation, 4 is a parameter related to the cause of the change. It is

important to make clear here that the cause of the change does not necessarily need to be

optical in origin. The change of the nonlinear refractive index can be due to thermal or

electrical changes. Typical examples are the refractive index change resulting from

electron-hole plasma [26], or a thermal shift of the band edge [27].

The scheme to calculate the nonlinear refraction from Eq. (2.13) is to calculate the

different contributions to the nonlinear absorption. The absorption is easier to measure

than the refractive index itself. In [25], the contribution to the nonlinear absorption comes

from degenerate two-photon processes, nondegenerate two-photon absorption, and linear

and quadratic Stark effects. After the absorption coefficient is calculated for the different

contributions, the nonlinear refraction can be found using Eq. (2.13). A general scaled

form for n2 is given by

Where K' is a constant found by fitting the experimental data for a wide class of

semiconductors. Its value can be approximated by 1.50x10 -8 . Eg is the value of the energy

gap of the semiconductor in eV, and Ep is independent of the material and possess a value
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of 21 eV. In Fig. 2.1, we show the universal function G2 as a function of normalized

frequency with respect to the energy gap. It is easy to see that at the middle of the band

edge there is a change in the slope of the dispersion relation from a positive value for the

nonlinear coefficient below the TPA edge. It decreases and eventually reaches negative

values for the nonlinear refraction above the TPA edge. Experimentally, direct gap

semiconductors and some insulator materials follow this universal curve:

Also, in Fig. 2.1, it can be seen that the most significant contribution to the

nonlinear refraction comes from the TPA term, except in the band edge, where the

quadratic Stark effect is the dominant contribution. The most important result of this

analysis is that below the TPA, the value for the refractive index shows a positive value,

when there are only virtual carriers participating in the process. Above the TPA edge, the

nonlinear index starts to decrease and eventually becomes negative. This is accompanied

by the production of real carriers that increase the absorption. It is interesting to note that

TPA is the most significant contribution to the nonlinear refraction, and also one of the

most critical parameters that limit the performance of an optical switching device [28].
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Figure 2.1	 Dispersion of the nonlinear refractive index n2 as a function
of the energy normalized to the band gap. Each contribution correspond to

Two Photon Absorption (TPA), Raman Transition (RAM), Linear Stark Effect (LES),
and Quadratic Stark Effect (QES).

2.2	 Density Matrix Calculation of x (3)

There is an alternative approach for calculating nonlinear susceptibilities where there is

no need to specify the basis for the wave function. In fact, the density matrix is totally

independent of the wave function representation [29]. The approach used here is called

semiclassical description, in which the atomic system is quantized and the electrical field

interacting with matter is classical.

We will apply the density matrix for the case of a three-level system where the

terminal level is the ground state of the system [30]. The problem addressed here refers to

the case of a nondegenerate three-level system, where the total susceptibility of the

system is given by the individual contributions of each of the atomic laser transitions.
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This approach will be applied to the case of doped optical fibers to prove that in the

presence of a pump laser, a gain medium shows a decrease of the nonlinear optical

susceptibility.

Before we calculate the susceptibility of a quasi-three level system, let's derive

some of the properties of the density matrix approach. Consider a quantum system that is

characterized by the state

where

in the above equation, the un(r) are arbitrary complete set of basis functions. From

standard quantum mechanics, let A be some operator corresponding to some observable

of the system. Its expectation value is given by

The term in the square brakes on the right-hand side corresponds to the mn element of the

product of two matrices, Thus Eq. (2.17) can be expressed as

Assuming that we have enough information to calculate the assembled average for the

wave function coefficients of Eq. (2.15), then the expectation value of the operator A is
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Identifying the product under the bar on the right-hand side of the above equation with

the density operator p mn, and using the rule of matrix multiplication, we finally get for the

expectation value of the operator A

In Eq. (2.19) the symbol "tr" is the trace operator, which is the sum of all of the

diagonal elements of the above matrix. As can be seen, the expectation value of the

operator is independent of the choice of the basis function. Two important properties of

the density matrix are that first, it must be Hermitian in order that its eigenvalues are real

this can be express as pmn= p*nm.Second, because the wave function of the system must

have

Substituting Eq. (2.15) into Eq. (2.20), we obtain

Operating Eq. (2.21) from the left with um(r), using their orthonormality gives us

Using the definition of the density matrix, taking its time derivative, and using the

Hermitian properties of the Hamiltonian operator, we finally obtain for the equation of

motion of the density matrix



This can be written in operator form as

Eq. (2.24) describes how the density matrix evolves in time as the result of the

interactions that are included in the Hamiltonian. There are certain interactions that

cannot be included in the Hamiltonian such as collision of atoms. Such interactions can

lead to a change in the state of the systems. These effects must be include

phenomenologically, and appear as damping terms to the equation of motion.

2.3 Semiclassical Theory for X(3) in a Quasi-Three Level System

The most general system is shown in Fig. 5.2. We will assume that there is no connection

between level 14) and 12), and the total electric field in the system is a linear combination

of the pump, probe, and signal field (p, pr, s).
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Figure 2.2 Energy State in the quasi-three level system for the study
of the nonlinear susceptibility X(3) when there is a pump laser

present in the system.
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Let the transverse electric field in the system be

vector for the pump, probe, and signal light respectively. The total Hamiltonian of the

system is given by

field that oscillated with this frequency is a more effective driving term. Therefore, we

can drop the positive frequency driving field (this is called the rotating wave

approximation [25]). Using Eq. (2.24) to calculate the equation of motion of the density

•	 operators we find after some algebra, that
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In Eq. (2.27) ynm  represent the dipole diphase relaxation time, Ωn  are the Rabi frequencies

for each of the fields and are equal to µ nnEn/ħ, and the Δnm=ωf -ωnm  are the detuning factor

from the resonance transition frequencies. In addition, the R nm are the pumping rates for

the pump and the probe fields. We have to assume that the probe fields can promote

considerable amount of carriers to state |4). The A's are the corresponding relaxation rate

for each transition.

In order to solve Eq. (2.27), we need to know their corresponding rate equation for

the system. These equations are expressed in terms of population densities and at the end,

correlated with the density matrix, they are

Solving the above set of equations for the steady state case. Assuming that the relaxation

rate is A32>>A21 , the non-radioactive decay rate A32 is dominant over the pumping rate

R=R13=R31 , and that R'=R14=R41 , we can obtain for susceptibilities, using the equations

below
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Where N is the density of the rare earth atoms in the system. Using the rate equations to

calculated the population difference, we get for the total susceptibility at the signal field

the dipole relaxation time to be equal to twice the FWHM of the homogeneously

broadened transition, or γ12=Δω 12/2. The detuning normalized factor is defined as

If the intensity of the probe beam in Eq. (2.31) is neglected, we recover the same result of

Desurvire [30]. In that case, there is a resonance enhancement of the refractive index due

to the presence of the pump field. On the other hand, if there is no pump field and no

probe field, then the susceptibility is the same as the case of a two level system, which is

described in [31]. Eq. (2.31) is the total signal susceptibility. To get the nonlinear

susceptibility, we expand Eq. (2.31) in powers of Is and retain the linear terms in Is , that

gives us



The linear susceptibility at the probe field is given by

Expanding Eq. (2.35) in term of powers of /pr, and retaining only the linear terms

in /pr, we obtain for the nonlinear susceptibility at the probe field frequency as a function

of pump power /p

Eq. (2.34) and Eq. (2.36) show a pump-power functional dependency that is

nontrivial in the sense that you may expect an increase in the nonlinear susceptibility.

This is owed to the fact that the total susceptibility increased with the pump laser [32].

20
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The reason why the susceptibility decreased can be explained by the fact that the

nonlinear susceptibility is proportional to the higher moments of the charge density

distribution. When the pump field is turned on, the charge distribution is altered and the

charge density is modified. The pump field depletes the ground state from carriers that

may participate in the other transitions (i.e. probe, signal). Fig. 3 shows the dependency

of the normalized nonlinear susceptibility as the pump power is increased for the probe

and the signal field.

In Fig. 3 we can see that the nonlinear susceptibility of the signal field become

zero when the intensity of the pump is equal to the threshold pump intensity for

population inversion. This is a nonlinear case of electromagnetically induce transparency

[33]. The reason for the vanishing of the nonlinear susceptibility is simple, there is a long

live upper energy level. As the intensity of the pump increases the system will reach a

point where the population in the lower level is the same as in the upper level, and the

system is bleach. At this point there is a reduction of the absorption with a consequent

increased in the refraction through the KK relation. Classically in a two level system this

will be the end of the story, but if another energy level comes into play then there is

possible to invert the population, and the system will show optical gain, which is the case

for the laser. However if a second laser is turn on such as to couple the level of the first

transition to a third level then the absorption experience in the first transition can be

switched off Therefore changing the refractive index. Because the nonlinear refractive

index follows the same KK dispersion relations then the same argument can also be

applied to this case.



Figure 2.3 Decrease of the nonlinear susceptibility due to the presence of
a pump field, in the case of the probe and the signal field.
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CHAPTER 3

THE THEORY OF SELF-PHASE MODULATION

3.1 Self-Phase Modulation

When a high intensity optical pulse propagates in a nonlinear responding medium, it will

experience phase modulation. This phenomena known as Self-Phase Modulation (SPM),

was first observed [34] in the context of transient self-focusing of optical pulses

propagating in a solution of a CS 2-filled cell. The observation of SPM in solids and

glasses was done by Alfano and Shapiro using picoseconds pulses [35]. In optical fibers,

the first experimental observation [36] of SPM was done using fiber with a core filled

with CS2 . Stolen and Lin [37] performed a systematic study of SMP in silica glass fiber

using picoseconds laser pulses.

Self-phase modulation is the process by which an ultrashort optical pulse

propagating in a condensed medium changes the index of refraction of the medium. The

medium in turn imposes a phase change on the optical pulse. SPM is a totally refractive

phenomenon, and is due to the intensity dependent refractive index. This can be seen in

the following form. When an optical pulse propagates in a solid medium, it suffers a

phase change given by,

In the above equation, no is the refractive index of the system, n2 is the nonlinear

index of refraction, or Kerr coefficient, L is the medium length, I is the intensity of the

pulse, and ko=2π/λo The Kerr coefficient causes the frequency of the leading edge of the

pulse to decrease or red-shifted while the frequencies of the trailing edge of the pulse
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increases or gets blue-shifted. This can be seen in Fig. 3.1. In Fig. 3.2., the instantaneous

frequency of the pulse has been plotted as a function of pulse width using the equation

assuming a Gaussian pulse shape.

Figure 3.1 Self-phase modulated pulse before and after
passing through an optical Kerr medium.

In order to understand self-phase modulation it is necessary to derive the equation

that governs the optical pulse propagating in nonlinear media.

3.2 Nonlinear Wave Equation

To derive the nonlinear wave equation we will follow [38]. We start with the Maxwell

equations for the electric and magnetic field E and H using Gaussians units



Figure 3.2 Effect of the intensity dependent refractive index n2 on an optical
pulse. The leading edge frequencies of the pulse decrease, while

the trailing edge frequencies of the pulse increase.

where D=ЄE, B=µH, and J and p are the current and charge densities. In the case of

nonmagnetic materials B=H. As was stated before, the refractive index of an isotropic

material possessing an intensity-dependent nonlinear refractive index can be written as
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and neglected the (n2)2 term. In the absence of sources, Maxwell equations can be

simplified into the wave equation. From Eq. (3.3) we get

because the pulse is confined in a single direction. Eq. (3.5) can be average over the x

and y coordinates, assuming that the radial distribution is nearly constant, and neglecting

second order spatial derivatives we get for the wave equation,

Using plane wave solution in Eq. (3.6) of the form

where wo is the carrier frequency, ko is the carrier wave number, and A(z, t) is the pulse

envelope function. Expressing the displacement vector in terms of Fourier transforms as,

Using the above equation, the second derivative of the displacement vector can be

written in the form
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We can arrive at the above equation by expanding k2(ω) in a Taylor series around the

carrier frequency coo or

where kola =1 / vg is the inverse of group velocity, and ko(2) is the inverse of the group

velocity dispersion. Substituting Eq. (3.10) into Eq. (3.9) and using the following

properties of the Dirac Delta function

Eq. (3.9) becomes

Neglecting the second derivatives of the envelope function (slowly varying

envelope approximation), we get for the first term on the left-hand side of Eq. (3.6)

and for the term on the right hand side of Eq. (3.6),

Inserting Eqs. (3.12) to (3.14) into Eq. (3.6), we get the wave equation for the evolution

of the pulse envelope
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Eq. (3.15) is known as the Nonlinear Schrödinger Equation (NSE)[39]. The first

two terms describe the envelope evolution at the group velocity vg; the third term

determines the temporal pulse broadening due to group velocity dispersion; the fourth

term describes the second order of the nonlinear polarization. This term is responsible for

self-phase modulation and spectral broadening of the pulse.

Eq. (3.15) can be further simplified by defining normalized variables such, as

where To and Po are related to the width and peak power of the pulse. Defining

y=n2ω o/cAeff and using the Eq. (3.16) into Eq. (3.15), we obtain

To2
where LNL = nonlinear length = 1/λPo, and LD = dispersion length = 	 . The sign of Eq.

113,1

(3.17) depends on dispersion regime. In the case of normal dispersion or 13 2 > 0, the +

sign is chosen, or minus in the case of anomalous dispersion or 13 2 < 0. Depending on the

relative magnitude of the fiber length L compared with LD and LNL, Eq. (3.17) describes

different regimes.

If the fiber length is such that L«LNL and LLD, the nonlinear term can be

neglected and the system is in the dispersion-dominant regime. In this case, the pulse

broadens. In the case of a simple unchirped Gaussian pulse, U(0, τ)=exp(-τ2/2), the pulse

broadens by a factor of (1+z2/LD) 1/2 as it propagates along the fiber. The dispersion-

dominant regimen is relevant when the condition below is such that
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The nonlinear-dominant regime is such that L 	 <<LD, while L ≥LNL. In  this case,

the dispersion term can be neglected and we obtain from Eq. (3.17),

The above two equations implied that as the pulse propagates in the nonlinear medium,

the pulse enveloped does not change its shape. The second equation tells us that because

of the nonlinear index, the pulse suffers a phase modulation or phase change. This

additional phase change is the shift experienced by the pulse as it propagates from the

point 0 to z in the nonlinear medium.

Fig. 3.3 shows the spectra for a Gaussian pulse obtain by taking the Fourier

transform of Eq. (3.20) in the case of zero absorption, and z=10LN L . It can be seen that

the pulse spectrum increases as the pulse propagates in the nonlinear medium.



Figure 3.3 Calculated spectrum for a Gaussian pulse of width τp
at a distance z=10LNL . The SPM is calculated by taking

the Fourier transform of Eq. (3.20).

In the case that the fiber length is longer than the two-length scales of the system LD and

411,, dispersion and nonlinearities act together as the pulse propagates along the nonlinear

medium. When the group velocity dispersion is compensated by the self-phase

modulation, Eq. (3.17) admits solitons solution or nondispersive energy solutions.

3.3 Another Point of View of the NLS Equation

Eq. (3.17) is also known in quantum field theory as the Gross-Pitaeveskii equation [40].

In quantum field theory, it is used to describe the breaking of the gauge invariant in

superfluity and superconductivity [41]. The envelope function is the condensate wave

function or the order parameter in a Bose-Einstein system. It represents the amplitude to
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annihilate a particle at any point x. This amplitude is proportional or of the order of N 1/2 ,

and it is expressed as

where N is the number of particles in the ground state, represented by IN). This condition

is called in condensed matter physics "off-diagonal long range order" (ODLRO), and was

introduced by Yang [42]. The Gross-Pitaeveskii equation can be easily derived by

assuming that in a condensate, particles interact through a δ-function potential of strength

g. In this case, each atom feels an additional potential proportional to the local density of

the condensate. This additional interaction can be included in the Schrödinger equation

to account for the atom-atom interaction. The Gross-Pitaevskii (GP) was introduced

originally to explain some of the properties of the Bose condensation state at T=0

temperature. The equation can be written as

Today there are very active areas of research in condensed-matter physics in the field of

Bose-Einstein condensation in diluted gases [43].

This close similarity with the NSE may allow one to use some of the results in the

solid state physics in the field of optics. It is remarkable that the structure of the

excitations predicted by Eq. (3.12) such as solitions and vortices can also be found in Eq.

(3.17), but in the temporal domain. When we discuss temporal solitons in the NSE in the

GP equation, we talk about spatial solitons and vortices. There is a vast amount of

research in terms of solving analytically and numerically the GP equations that can be

applied to optics. One intriguing aspect is the formation of multiple solitons and self-
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steepening of optical pulses propagating in a nonlinear media. Here, modulation

instabilities may affect the pulse shape and produce a transition to infinity of the

bandwidth of the pulse. This phenomenon can be called an optical phase transition. It

will be interesting to study this matter under the scope of the GP equation.



CHAPTER 4

TWO-BEAM COUPLING IN A SLOW RESPONDING MEDIUM

4.1 Two-Beam Coupling

Under certain circumstances, when two beams intercept in a nonlinear medium, energy

can be transferred from one beam to the other. Two-beam coupling is a process that is

automatically phase matched. The central argument in a two-beam coupling experiment

is that the refractive index change experienced by one beam is modified by the intensity

of the other beam.

There are several physical mechanisms that cause energy transfer, such as;

nonlinear response of a two-level system to pump-probe fields, stimulated Brillouin

scattering, and stimulated Raman scattering. In the next section, it will be shown that in

photorefractive material, energy transfer can be accomplished by the formation of an

intensity-dependent grating.

The intensity dependent refractive index is not the only mechanism through which

grating formation is possible. There are separate physical processes that can give rise to

index gratings. These include the photorefractive effect mentioned above, Drude

refractive index gratings, and absorption gratings [44]. An interesting point to consider

for the cubic and ferroelectric oxides is that no energy is transferred for long delays,

compared to the pulse width. However in the case of semiconductors, there is an

absorption background that persists even for long pulse delays long compared to the

pulse width [45]. This occur in semiconductors because the mechanisms to produce free

carrier grating is stronger in semiconductors than in the oxides, due to the large drift
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carrier mobility and long recombination lifetimes [46]. In two-beam coupling, all the

processes described can be present.

Figure 4.1 Beam geometry for two-beam energy coupling experiment.
The intersection angle in the crystal is 20. Both beams are

polarized perpendicular to the plane of the figure.

The effect of grating formation analyzed by S. L. Palfrey et al [47] will be

described in detail. In this case, phase gratings are associated with the real part of the

third-order nonlinear susceptibility, while amplitude gratings are associated with the

imaginary part of the third-order nonlinear susceptibility (absorption gratings). The

difference between the absorption grating and the phase grating can be understood as

follows: when the pulses are mutually coherent in the sample, they set up a spatial

modulation in the medium's optical properties. This induced grating can scatter radiation

in the probe direction, affecting the probe intensity. For transformed limited pulses, the

scattered radiation will be in phase with the probe if the grating comes from the

modulation of the absorption coefficient (amplitude grating). On the other hand, if the

grating is formed from a modulation in the refractive index (phase gratings), then the
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scattered light will be in quadrature with the probe, unless the pulses forming the grating

have some degree of phase modulation [47].

When two beams are combined in a medium, the optical susceptibility of the

medium is modified by the presence of the beams. At the same time, the beams are

modified by the susceptibility change. Because the fields cannot act instantaneously and

the change in the susceptibility can only influence the field at later times (causality), the

third-order nonlinear polarization at frequency co is given by

In the above equatio, Aijkl are the real and imaginary components of the third-order

nonlinear susceptibility tensor. In the pump-probe measurement, the total electric field E

consists of the sum of the pump field E1 and the probe field E2 Using the optical theorem,

the rate of energy loss due to this polarization for the probe beam is

If the angle between the probe and pump beam is small, and assuming that the

fields are polarized along the x-direction, the only term that contributes to the total energy

is the A. Out of the 24 combination of the fields i,j,k,l=1,2, the terms with i=1 (2 3)

describe the change of the pump intensity which are not measured. From the remaining

combinations, 8 are integrated over the small area along the y-direction and can be

neglected. The term with 2222 is a selfmodulation of the probe, which is a small effect.

Therefore the only terms are 2211 and 2112. Eq. (4.1) can be written as:
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In the case of the pump-probe experiment, the probe beam is just a replica of the

pump beam delayed by T seconds, expressed as

Substituting Eq. (4.3) and Eq. (4.4) into Eq. (4.2), the second term in Eq. (4.2) can

be expressed as

Eq. (4.5) is called the incoherent term. As can be seen, it depends on the

convolution of the intensity autocorrelation function of the electric field with the response

function A" for the induced bleaching or absorption. The response function for this term

can be expressed as

In the above equation, am is proportional to the absorbing carrier density, and τpop

is the effective reorientational diffusion time. We will touch on this later to prove that in

the case of oxides like BaTiO3, KnbO3 this term is very small compared with the case of

GaAs:Cr or CdMnTe:V, where a constant background can be observed in a two-beam

coupling experiment. Any phase information that may be contained in the pulse is lost

through this term. It is worth noting that this term will persist as long as the material
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response persists. This mean that it is not necessary for the pulses to be overlaped in time.

The incoherent term is, strictly speaking an absorption term, because it depends on the

imaginary part of the nonlinear susceptibility (see Apendix A for details).

The first term can be broken into two terms; the fist term is given by

it is interesting to see that both terms will give you phase information. Both terms are

called the coherent contribution. In the case of pure refraction, the first term will be equal

to zero. The term in Equation (4.6) is symmetrical around the delay time T, because if

is substituted with -T, the term remains the same.

In the case considered here, the contribution of the first term in the coherent

contribution can be neglected. Since the grating generated by the first term is a fast

responding grating which depends entirely on population differences, it is faster than the

pulse maximum delay time T. Secondly, the refraction grating (which can be thermal or

photorefractive in origin) is the consequence of many pulses accumulated over many T

periods. This is called a slow-responding medium. After many T periods, the grating is

formed and is driven into a steady state. In this case, the analysis of Kukhtarev [48] can

be applied.
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To simplify the second term, assume a model for the response function of the

medium. In the case of a slow responding medium, it is possible to assume that the real

component can be expressed as

in Eq. (4.8) τph is mostly due to the photorefractive effect, which is long compared to the

period of the train of pulses. For most commonly known slow responding material, the

grating response time is of the order of milliseconds or longer (even for the case of

semiconductors). The next step is to substitute into Eq. (4.8) the value for the electric

field. This is given by

and for the delay pulse

substituting Eq. (4.8), Eq. (4.9), and Eq. (4.10) into Eq. (4.7), performing the volume

integration, and making the following assumptions;

• Consider only the energy transfer to pulse m=0.

• Discard all the contributions from non-overlapping pulses. This will eliminate the

double sum in the t ' integration.

• The pulse period T is much smaller than the decay grating time τph. Since the only

relevant time in the response function A'(t-t) is mT, it can be taken out of the t '

integration, but not out of the sum.
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• The limit of the t ' integration can be extended up to infinity because the current pulse

is testing the grating made by previous pulses.

Using the above assumptions, Eq. (4.7) becomes

The sum over m is easy to perform. It will give an enhancement factor as a

consequence of the accumulation effects of the grating. In the above equation, the Im

expression can be dropped. There is an i factor, because the induced nonlinear

polarization is n/2 out of phase with the pump-probe field. With this in mind, the

following equation is obtained:

This expression can be normalized to 1 when T=0. By assuming a normalization

condition, all information about the physics underlining the grating effect is lost. Eq.

(4.12) will provide phase information if the incoming pulse has a time-dependent phase.

If the phase in the incoming pulse is time-independent, then the above expression is just a

normal autocorrelation [49] measurement of the pulse.

The result of Eq. (4.12) looks identical to the case of Levine et al [50]. Originally

the expression was used to study phase distortion in nonlinear media, particularly chirped

pulses and Self-phase modulated pulses [51]. In our case, we will use it as medium

characterization. In [50], it was proved that the same expression could be used for several

types of geometries such as three-beam coupling, two-beam coupling, and self-diffraction

as are shown in Fig. 4.2. In general, the expression inside the integral sign is commonly
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known as correlation function [49]. They are basically a mix of n distinct, or the same

replicas of light pulses. In the first case the correlation function are called cross-

correlations, and in the second case they are called auto-correlations.

Figure 4.2 Several Geometries for performing IGA experiments [50].

Because the optical pulses are creating a grating from which a secondary pulse or

the same pulse can be diffracted off, the experimental setup was called Induced-Grating

Autocorrelation or IGA [50,51,52]. Depending on the time response of the medium, it is

classified into fast-IGA, slow-IGA, and ultraslow-IGA. Fast-IGA has been applied to

measure the third order intensity autocorrelation: It has the advantage of detecting pulse

asymmetries [54,55]. On the other hand IGA-slow provides the same phase information

as in interferometric Second Harmonic autocorrelation (ISHGA). In the next section, we

will prove that the energy detected when two-beams intersect in a slow-responding
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medium-like a photorefractive crystal is proportional to the electric field autocorrelation

function. It will also be showed that the normalization constant is proportional to the

material parameters.

4.2 The Photorefractive Effect

The photorefractive effect is the change of the refractive index on an optical material that

results from the optically induced redistribution of charges (holes or electrons). The

photorefractive effect is quite different from the other nonlinear effects in the sense that it

cannot be described by a nonlinear susceptibility x (n) for any order of n. The reason for

this effect is that under a variety of steady state conditions, the photorefractive effect is

intensity independent [56].

For many electro-optic crystals with typical band gap energy of 2-3 eV, there are

energy levels deep in the band-gap region which originate from various imperfections

and impurities in the crystal. The index of refraction of some of these crystals may be

spatially modulated through photoionization and spatial rearrangement of bound charges

in these energy levels or trap-sites. The spatial modulation is due to the light field. The

subsequent response of the crystal is the formation of a static space charge electric field.

The essential steps involved in the photorefractive process are as follow [57]:

• When two mutually coherent light beams intersect inside a photorefractive crystal, a

light intensity pattern is created due to the beams interference. Charges are liberated

from trap-sites via photoionization in the regions where the light intensity is nonzero.

• The resulting charges can be moved around in the conduction band via diffusion until

they recombine with other ionized or empty traps at other sites. There is a net
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migration from regions of high intensity to those of low intensity. This creates a

pattern of charges, which follow that of the light intensity pattern.

• An electric field is induced by the charge pattern according to the Poisson equation:

This electric field pattern mimics the charge and light intensity pattern, but is shifted

by 7/2 .

• Finally, the space charge electric field induces a spatial modulation of the refractive

index through the linear electro-optic effect. This is a second-order nonlinear optical

response in which the index of refraction at a particular position in the crystal is

linearly proportional to the value of the static electric field at that point. It is given by

In the above equation, rij is the electro-optic coefficient, n i is the refractive index, and Al

is the space charge field created by the intersection of the two beams.

Figure 4.3 Band Trap Model of the photorefractive effect due to
Kukhtarev et al [48].
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Figure 4.4 Two mechanisms for photoconduction. (a) Band conduction
(b) Hopping, which is a single process [57].

The above process is shown in Fig. 4.3. Fig 4.4 shows an alternative mechanism

for photorefraction. It is based on the hopping of the carries between traps, and is a single

process whereby based on carriers hop between sites through photoassisted tunneling.

Depending on the recombination time, both models can give different or the same result

[57].
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Figure 4.5 Grating formation in a photorefractive material. The space-charge
field is in general out of phase with the incident irradiance.

4.3 Theory of Two-Beam Coupling in a Photorefractive Crystal

Here we will consider the coupling of mode-locked laser pulses in a photorefractive

crystal [11]. The reason to use photorefractive crystal is that in general, photorefractive

materials tend to show long grating formation time, and therefore can be considered as

slow-responding media. The time dependent space-charge field is governed by

where the constant a,b are complicated functions of material parameters [58]. The E. is

the magnitude of the space charge field, and E 1 , and E2 are the slow varying complex

optical-field envelopes interacting in the medium. In Eq. (4.15)I 0(t) is proportional to the

total intensity.
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Eq. (4.15) indicates that the space charge field is been driven by the interference

term E1(r,t)E2(r,t), and is erase by the uniform intensity L. There are two limitations to

Eq. (4.15). First, it is valid only in the case that the carrier recombination time is much

less than the pulse width, and spatial variations can be ignored. Otherwise, Eq. (4.15)

must couple with other equations that describe these variations or introduce these

variations phenomenologically by assuming a constant background free carrier

absorption. Second, fluctuation of the laser pulse in phase or amplitude must be taken

into account. In our case, because the pulses generating the grating come for the same

laser source these fluctuations can be ignored or assumed they show some degree of

correlation.

For a static case situation, the solution to Eq. (4.15) can be averaged over time and

be written as

where the () denotes an average over time T (repetitions rate):

Considering the fact that one pulse is delayed with respect to the other by a time td, Eq.

(4.16) can be written as

The next question is to verify that Eq. (4.17) is indeed a steady state solution we

numerically integrated Eq. (4.15) using a fourth-order Runge-Kutta method, a transform

limited Gaussian pulse in time, and assuming that we have a periodic train of pulses. Fig.
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4.6 and Fig. 4.7 show the variation of the space charge field from its steady state solution,

for the arrival of a new pulse after the grating has been formed.

Figure 4.6 (a) A strong optical beam leads a weak beam by 30 psec.
(b) When the two pulses overlap, the space charge field

momentarily deviates from its steady state value by
1 part in 10 5 .



Figure 4.7 (a) A strong optical beam leads a weak beam by 70 psec.
(b) When the two pulses overlap, the space charge field momentarily

deviates from its steady state value by 1 part in 10 5 .

47
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The interference of the two beams in a photorefractive crystal eventually will

produce a quasi-steady state space charge field given by Eq. (4.15). This creates a

refractive index grating. We will discuss next how the optical beams are coupled and

affected by this grating. To derive the wave equation, we assumed that there are no free

currents in the system. Maxwell's equation can be written as

where Є (r,t) is the total electric field inside the crystal, and D (r,t) is the

displacement vector. If we let the total electric field be written as the sum of the two

optical beams of the same frequency co o, wave vector k1 and k2, and polarization c1 and 62

we have the following equation

for the electric displacement, we have

and

The interference pattern must have periodicity cos(k g•r) and kg=k1 -k2. In Eq. (4.21)

co is the permittivity of free space, and e(r) is the relative dielectric tensor of the medium.

The modulation of the electric dielectric tensor is then written as

the space charge field Esc of Eq. (4.15) will modulated the dielectric tensor by the

electro-optic effect given by Eq. (4.17). Substituting Eq. (4.19), Eq. (4.20), Eq. (4.21), and Eq.
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(4.22) into Eq. (4.15), we obtain the couple wave equation for the electric field envelopes

El, and E2:

Assuming that the intensity of the two beams are equal Eq. (4.23b) can be solved to yield

Substituting Eq. (4.24) into Eq. (4.23), we get for the change in transmission of beam 1

Eq. (4.25) is the central result of this calculation. It says that the transmission

change in one of the beams after traversing a distance z in the photorefractive crystal is

equal to the electric field autocorrelation function. This is the same result as in [50].

4.4 Photorefractive Crystals

Photorefractive materials such as LiNbO3, BaTiO3, and Bi 12SiO 20 have been investigated

in the past for application in holography storage, optical data processing, and phase

conjugation [59]. One of the limitations of cubic and ferroelectric oxides is the slow

response time and poor efficiency for grating formation in the range 900~1500 nm. In

the case of semiconductors such as GaAs and CdTe, these materials have sensitive [60]
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and fast [61] responses However, because of the inherent energy band gap, they are

limited to operate in wavelengths longer than ~ 900 nm. In the present work, the

photorefractive crystal used is CdMnTe:V. This semiconductor has shown fast response

time for grating formation (in the order of msec), and larger sensitivity [62] in the range

of 900-1500-nm which is significant for experiments in the fiber communications

wavelengths. In the following paragraph we discuss some of the properties of the

photorefractive crystals used in experiments described in the next chapters.

4.4.1 BaTiO3

Barium Titanate is a ferroelectric crystal with tetragonal symmetry. The crystal has a pale

yellow color. The active material or deep levels are well know to be Fe [63]. BaTiO 3 has

an absorption spectrum that extends from the 800-nm up to the band edge at 410-nm. Fig.

4.8 shows the absorption as a function of wavelength.

BaTiO3 is known to have one of the highest electro-optic coefficients amount

inorganic crystals. The crystal has a large index modulation without an applied electric

field in the visible, select dopants are used to enhance the photorefractive properties. The

mobility of BaTiO3 is on the order of < 2-cm 2/V-sec, and a mobility-lifetime product <

2x10-10-cm2/V [64]. Table 4.1 summarized some of the physical properties of BaTiO 3 as

well as other photorefractive semiconductors
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Figure 4.8 BaTiO3 absorption spectrum as a function of Wavelength.

4.4.2 GaAs:Cr

This semiconductor has very fast response time for grating formation. It is known that the

deep levels come from intentionally doped with Cr. These deep levels can also arise from

stoichiometric defects [46]. The dominant defect in undoped material is a donor called

EL2 that is located 0.8 eV below the conduction band. The absorption spectrum is shown

in Fig. 4.9. GaAs:Cr exhibit a long tail in the absorption edge compared to InP:Fe also

shown in the same figure .
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Figure 4.9 Optical Absorption Spectra for GaAs:Cr (10 16 cm -3 ).

GaAs:Cr has excellent response in the IR, but it becomes very absorbing in the visible.

GaAs:Cr has very small electro-optic coefficient, and a large mobility of the order of

5000 cm2/V-sec.

4.4.3 CdMnTe:V

Most of the experiment performed here were done with CdMnTe:V. The bandgap of this

material is about 2.1 eV, but it can be modified through band gap engineering, in fact the

band gap of Cd 1-xMnxTe:V varies with mole fractions as 1.53 + 1.26x eV [65]. The grow

CdMnTe is not difficult. The challenging task is to make then photorefractive. The major

reason is the incorporation of Vanadium deep centers that act a recombination and trap

centers for photorefraction. The transmission spectrum is shown in Fig. 4.10.
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Figure 4.10 Transmission spectrum of Cd0.55Mn0.45Te:V

In the above figure we see that the absorption tail extend from 0.6 gm to beyond

1.5 gm. It is known that only one type of carrier act in the photorefraction of this

semiconductor. Fig. 4.11 shows the schematic energy level diagram for CdMnTe:V.

Figure 4.11 Energy level diagram depicting the positions of the ionization levels.
For vanadium and Manganese [66].
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CdMnTe:V possess a small electrooptic coefficient comparable with GaAs:Cr.

The mobility is 5 order of magnitude smaller than in GaAs, but it shows a fast response

time in the order of msec, most importantly it shows a broad range wavelength response

for photorefraction. Fig. 4.12 shows a graph of grating formation time as a function of

grating spacing.

Figure 4.12 Grating formation time as a function of grating spacing [66].

Table 4.1 summarized some of the properties of the three photorefractive materials

described here. There are few point to be mention, semiconductors tend to have short

grating time formation, while oxides tend to have long grating time formation. The

advantage of the semiconductor over the oxides is that their band gap can be tailored

through bandgap engineering. Moreover the wavelength response of the semiconductor

surpasses the oxides and can be extended from the visible up to the IR.

It is worth mentioned here that in the process of forming an index grating in a two

beam coupling experiment the semiconductor tend to develop at the same time an



55

absorption grating due to their long recombination time. There are two relevant time

scales in this process, one is the diffusion time which is related to the mobility, and the

other the recombination time, which is the time for a carrier through recombination be

trap by a deep level. In the oxides the diffusion time is of the order of 10 4 psec, while in

the semiconductors it is of the order of 1-2 psec. On the other hand, for the oxides the

recombination time is around 0.1 nsec, and for semiconductors —10-30 nsec. For

semiconductor because of the long recombination time, the carriers can diffuse long

distance before they get trap. In the oxides the carriers will get trap before they will be

able to diffuse away. This is the reason why in experiments perform with photorefractive

semiconductors there is and absorption background in top of the two beam coupling time

delay trace. In the oxides this constant absorbing background disappear (see apendix A

for details).

Table 4.1	 Comparison for the three photorefractives described above.



CHAPTER 5

EXPERIMENTAL MEASUREMENT OF n2 USING
INDUXED GRATING AUTOCORRELATION

5.1 Background

In Chapter two and Chapter three we present the theoretical background necessary to

calculate the nonlinear index of refraction for optical fibers and semiconductor films. In

the first sections of this chapter, a description of the experimental setup will be given. We

will argue that TBC-IGA is useful when the researcher is in possession of a well-

characterized pulse envelope. In practice TBC-IGA provides the phase of the pulse.

After characterizing the pulse envelope we will then show how TBC-IGA can retrieve the

phase of a pulse that has been self-phase modulated in an optical fiber. We will

characterize the nonlinearities of three different optical fibers. Silica-Glass polarization

preserving fiber, Erbium-doped fiber, and Ytterbium-doped fiber. Finally we will be

extending the technique to measure changes on the nonlinearities of the Erbium and

Ytterbium fibers due to a pump laser.

5.2 Experimental Setup

The experiments were performed with a harmonically mode-locked Quantronix Nd:YAG

laser, model 416 operating at a wavelength of 1.064-µm and running at a repetition rate

of 100.468 MHz, which produces a pulse every 10-nsec. The model 416 is a solid state

laser [68] consisting of a Neodymium doped Yttrium Aluminum Garnet (Nd:YAG)

crystal rod. Parallel to the rod there is a high pressure Krypton lamp. Both the crystal and

the lamp are located at the focal point of an elliptical gold reflector. Most of the energy in

this laser is converted to heat and must be removed by water-cooling. The laser uses a

352-quantronix mode locker. This is an acousto-optic modulator acting as a very fast

56
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optical gate. The mode locking technique implies that laser resonator modes will have a

coherent phase relationship. The proper modulation frequency for the laser to generate

pulses that grow to a stable value is given by

in the above equation fo stands for modulation frequency where L is the total length of the

resonator, and c is the speed of light. The frequency must be adjusted such that the length

of the cavity must be half the resonator mode spacing.

The width of the output pulse is such that the width of the pulse (M) is

determined by the number of resonator modes that are phase coherent or mode-locked. In

the case of a Gaussian pulse the pulse/bandwidth product is be given as the following

relationship

The first set of experiments were performed to characterized the pulse envelope

from our Nd:YAG laser. A second harmonic generation technique was used; the

experimental setup is shown in Fig 5.1. The laser output is send to a modified Michelson

interferometer through a 50/50 beam splitter, one of the arms is held fixed while the other

can be changed in length and consequently in delay by a Klinger stepper motor

controller, and by a translation stage. The translation stage has a 2-µm resolution and a

200-mm of travel for a total of 1500-psec delay. The translation stage is controlled with

a GPIB-488 National Instrument card, and a LabView computer program.



KDP Crystal

SH

Harmonically Mode-Locked Nd-YAG Laser
wavelength = 1064 nm, Pulse Width = 54 psec

,A Repetition Rate = 100 MHz

B
Translation Stage6E4

M = Mirror
B = Beamsplitter
H = Half-Wave Plate
L = Lens
D = Detector
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The two parallel, but noncollinear beams were focused with a 10-cm focal length

into a 2-mm KDP crystal. The KDP crystal was cut for phase matching at 532-nm. The

second harmonic generated signal is produced only when the two beams are temporally

and partially overlapped into the crystal. The second harmonic signal is generated in the

bisecting direction of the two focused beams. This type of autocorrelation is called

"background free". The two 1.064-µm beams emerging from the KDP crystal were

eliminated with a 720 ND filter. The 532-nm signal is collimated with a pinhole and

detected with a THORLABS silicon photodetector model PDA50. This photodetector has

a bandwidth up to 10 MHz, an active area of 5-mm 2 , and a spectral responsivity from

400-nm to 1100-nm. One of the arms of the Michelson interferometer was chopped at 2

kHz and detected with an EG&G 5209 looking amplifier.

The data was collected with a computer LabView program in pairs corresponding

to the delay time and the signal strength. The computer program gives the user the ability

to average each point at the same location N-times or by N-runs. Averaging the data over

many run helps to decorrelate the noise level and laser fluctuations. The averaging is

done in order to increase the signal/noise ration, especially when the signal level is very

weak.

Second harmonic generation (SHG) takes place due to the presence in the KDP

crystal of a second order nonlinearity. The energy detected in the photodetector is

proportional to the intensity of the SHG signal. The second harmonic signal is

proportional to the square of the complex amplitude of the total incident field in the

sample. It is given by
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The total energy of the detected SHG signal will be proportional to its intensity. It

is given by a second order autocorrelation function express as

Fig. 5.2 shows a typical autocorrelation trace for our Nd:YAG laser, and the

corresponding fitting to a Gaussian beam profile of the form here:

Figure 5.2. SHG Autocorrelation measure of the pulse width

The FWHM of the pulse in this particular trace is equal to t=63.015 psec. Fig. 5.3

shows the same graph in a log scale. It can be seen that the pulse corresponds to a well
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behaved transform limited Gaussian pulse. Even at the wings of the pulse, the fitting is

extremely good.

Figure 5.3. Same autocorrelation as in Fig. 5.3. but in a log scale.

In all of the traces taken in the experiments the pulse width varies between 50 to

70 psec. A common experimental procedure was to take several autocorrelations traces at

the beginning of every experiment. This ensures that the correct pulse parameters were

used at the end. To confirm the fact that the pulse was a transform limited, we took

spectral measurements of the pulse before it had been coupled into the fiber. We were

limited by the optical spectrum analyzer 0.1-nm resolution. To measure the spectral width

of the laser pulse, some of the light coming out the Nd:YAG laser was coupled into an

optical fiber head run through an Advantes-Q8381A optical spectrum analyzer. Fig. 5.4

shows the spectrum of our pulse, it is easy to see that the analyzer limits the resolution.

Using Eq. (5.2) we found for the pulse/bandwidth product ,as seen here:
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This product should be of the order of 0.5. The bandwidth of the pulse can be resolved in

an optical spectrum analyzer with a resolution of the order of 0.01-A .

Figure 5.4. Spectral bandwidth of the output pulse of the Nd:YAG laser.

5.3 Measure of n2 in Optical Fibers

5.3.1 Fiber Nonlinearities

Fiber nonlinearities may limit the amount of information that can be transmitted in high-

bit-rate transmission systems. There are several processes that contribute to the fiber

nonlinearities. It is well known for example that about 18% of the fiber nonlinearities

come from Raman effect [69]. This constitutes a non-instantaneous, nonlinear response
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that can be observed in the femtosecond regime. Other contributions are electronic and

nuclear nonlinearities, electrostriction, and thermal effects. In the picosecond regime all

these nonlinearities contribute to the total nonlinear refractive index of optical fibers. The

control of the nonlinear properties of optical fiber is of fundamental importance for

system design, particularly for high-power optical amplifiers and soliton systems.

Therefore it is of fundamental importance to have a reliable method available for

measuring the nonlinear refractive index of optical fibers.

The technique presented here will provide the researcher another experimental

tool for measuring the nonlinear refractive index of optical fibers. There are Two

advantages to this technique: first, that it is based on pure refraction, and second that it

can be implemented with short lengths of fibers, something which is of paramount

importance for fiber design and development. The new demands and challenges imposed

on optical fibers by the rapid increase in the telecommunication industry cause fibers in

to carry more wavelengths over greater distances, often at higher bit rates and power

levels [70]. The distance over which the signal must travel can vary from 300-m facility

premises to several thousand of kilometers in submarine cable systems. The bit rate per

wavelength may only be 10 Mb/s on premises, but can be up to 10 Gb/s in long haul

systems. The frenzied demand of bandwidth for Internet access, CATV, and data

networking has driven the development of the entire telecommunication industry.

Optical fibers entering young adulthood are fundamental elements of the

telecommunication infrastructure.

An integral part of most optical networks is that optical amplifiers are used to

reduce the need for optoelectronic regenerators. Signals must travel longer distance
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before they are amplified. The combination of longer distances and high optical powers

from optical amplifiers give rise to the potential for fiber nonlinear effects that must be

controlled and characterized. Fiber nonlinearities can be classified in two categories:

stimulated scattering and refractive index fluctuations. Depending on the power level,

each of these effects will play a different role and produce different effects.

The importance of the nonlinear effects in optical fibers can be understood on their

waveguiding properties. In general, silica-based fibers show very low nonlinear

properties [711 The third order nonlinear susceptibility is two to three order of magnitude

less than that of traditional nonlinear material such as CS2. However in general the

efficiency of the nonlinear process is not only determined by the nonlinear coefficient,

but also by the product of the pump power density and the interaction length. This can be

understood as follows: in the case of bulk media the laser light is focused into a spot size

of radius ro. Because of diffraction, the size of the spot size changes or diffracts as it

propagates through the media according to the formula shown here:

The product of power density and distance expressed as the following:

where P is the average power in the medium, and L is the length of the medium it can be

seen that in bulk media the product of the pulse density and the interaction length is
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independent of the degree of focusing. In the case of an optical fiber, because the

transverse dimension is constant the product is given by the equation,

where a is the radius of the fiber core. In an optical fiber a~λ, then, we see that

the ratio of fiber length and fiber radius can be of the order of 10 9-10 10 for a typical 1-km

fiber. Such a great advantage over the bulk counterpart significantly reduces the threshold

for the observation of nonlinear process in optical fibers. The above process is shown in

Fig. 5.5.

Figure 5.5 Experimental geometry for pumping light in a nonlinear

bulk material (top), and optical fiber (bottom).
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Several power thresholds can be calculated for different nonlinear processes. This

will help us to identify the regime where pure self-phase modulation is the dominant

mechanism.

5.3.2 Nonlinear Optical Powers Thresholds for Several Nonlinear Processes

To identify the regime where TBC-IGA can be applied, it is necessary to calculate the

power levels needed it to excite or stimulated different nonlinear processes. In the first

case let us calculated the effective length of a typical silica glass fiber. For silica fibers

the absorption coefficient at 1.55-µm has a value of α=0.048-km- 1 , and for a typical fiber

length, L=20-m, used in 'TBC-IGA experiments, we get for the effective length, Leff, as

As can be seen the effective length is equal to the fiber length. With the above result lets

determine if we are the dispersion-dominant or nonlinear-dominant regime by using Eq.

(3.18). Using a pulse width of 61 ps and a fiber dispersion 13 2 .06 ps2/m we can find the

dispersion effective length

therefore our fiber length is much smaller than the effective length of the dispersion

regime. To determine if in our case the nonlinear regime is more relevant than the

disperse regime, we need to calculate the effective nonlinear length given by Eq. (3.18).
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For a typical fiber we have Aeff=50 µm2 , γ=2.0x10-5 cm -1 -W-1 , then we find the nonlinear

effective length, assuming a Pavg=0.2 W

It is evident from the above number that we are in the nonlinear dominant regime.

Therefore we can neglect any dispersion in the fiber and use Eq. (3.19) to describe the

propagation of the pulse in the fiber.

The next step is to find what types of nonlinear effects we can observed at an

average power of 0.2 W and at 20 m length of fiber. The most important nonlinearities in

optical fibers are stimulated Raman scattering, self-phase modulation, and stimulated

Brillouin scattering:

Stimulated Raman Scattering: stimulated Raman scattering is a nonlinear effect in

which light in the fiber interacts with molecular vibration (optical phonons) and in which

scattered light is generated at a wavelength longer than that of the incident light [72].

There is a power threshold defined such that at this power the Raman scattered light will

deplete the pump signal by about 50% [69,73], and it is given by

where gr is the Raman gain coefficient. It can be express as g r=(4.7/λµm)x10-12 cm/W

[78] L is the fiber length, Aeff  is the effective area defined as
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Aeff can be obtained by computer analysis from the index profile of the fiber. It has been

shown that Aeff can be approximated by the Namihira relation [74,75],

where MFD is the mode field diameter of the fiber. It is important to note that for a

Gaussian intensity profile the effective area corresponds to 10) 02 , where coo is the 1/e

width of the field. The Raman gain coefficient is at its maximum at a pump-Raman

separation of about 500 cm-1 . For silica glass it takes a value of the order of 4.4x10 -12

cm/W at 1.064 gm. Using the same value for Aeff=50 µm2, we can use Eq. (5.10) for the

case of ps pulses if the length of the fiber is substituted by an effective length that takes

into account the walk-off length. This length is expressed as Leff=π1/2Lw=π1/2To/|d|where

d is the walk-off parameter which is of the order of 2-6 ps/m, for a 54-ps pulse, the

effective length is Leff=47.85 m. We find a peak power threshold of the order of

Ppeak =379.97 W, this correspond to a average power of 2 W. In the case of polarization

preserving fibers, the critical power is twice small, because the gain coefficient is two

times higher. As we can see the critical power is high compared to the power used in the

experiment performed here.
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Stimulated Brillouin Scattering: Stimulated Brillouin scattering is similar to SRS

except that it involves the interaction of light with a acoustical phonon or sound waves.

The gain coefficient for SBS is over two orders of magnitude larger (gb=4x10-9 cm/W)

than the gain coefficient in SRS, and wavelength independent. The maximum gain in

SBS occurs for a shifting of about 200 cm -1 . One of the main differences between SRS

and SBS is that for phase matching conditions the SBS signal propagates in the opposite

direction from the pump. The critical or threshold power is given by the equation

which corresponds to an a average power of 7.0 mW. For polarization preserving fibers

this value is 3.5 mW. As can be seen, SBS is the dominant nonlinear process that takes

place in fibers. The only advantage of SBS is that because the pump propagates in the

opposite direction of the scattering wave, the interaction length is short.

Self-Phase Modulation: Self-phase modulation has been explained in chapter 3.

The threshold power for the signal to develop a nonlinear phase shift of one rad at the

fiber output is the following

This corresponds to an average power of 87 mW.

From the above analysis we conclude that the experiment performed here can be

analyzed in the self-phase modulated regime. Because of the short fiber length we can
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neglect GVD. Because of the low power needed to generate self-phase modulation, we

neglect SBR, and SRS as well. It is self-phase modulation the effect that we will use to

measure the nonlinear refractive index in three types of fibers, silica-glass fiber, Erbium-

doped fiber, and Ytterbium-doped fiber.

5.4 Two Beam Coupling with a Self-Phase Modulated Pulse

In chapter three we developed the equation used to described the propagation of an

optical pulse in a medium where self-phase modulation is the dominant nonlinear effect.

In the previous section we have shown that in optical fibers of short length (L<20 m) and

low power (Pavg<300 mw) this regime can be applied, and GVD, SRS, SBS can be

neglected. We also showed in chapter four that in a two beam coupling experiment the

energy scatter of one beam along the direction of the other beam was proportional to the

electric field autocorrelation function. We also pointed out that any time dependent

phase contained in the pulse, will be retrieved by a two beam coupling experiment

perform in a slow responding media (photorefractive crystal). This phase retrieval

technique [73] will be used now to characterize the medium where the self-phase

modulation was originated.

Let us recall some of the main results of chapter three and chapter four. If we

assumed that the input pulse into the fiber is a transformed limited Gaussian pulse, as in

Eq. 5.5, then the solution to Eq. (3.19) can be expressed as:
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To test if the above equation is correct, we performed a series of experiments

using the autocorrelation function technique (as described in section 5.2) of the pulse

propagating through the fiber and without propagating to the fiber. According to Eq.

(5.14) the intensity-intensity autocorrelation function must look the same. In other words

the shape of the pulse must remain the same. The experiments were performed in a 20 m

length of (polarization preserving) Silica-glass optical fiber. The experimental setup is the

same as described in section 5.2, except that in one of the experiments the pulse is sent to

the fiber and then to the modified Michelson interferometer. Fig. 5.6 shows two

autocorrelation traces of the same pulse. One of the pulses has been propagated in the

optical fiber. As can be seen, the pulse shaped does not change and can still be

approximated by a Gaussian pulse of the same width.
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Figure 5.6 Autocorrelation of a pulse that has been self-phase modulated

in an optical fiber in comparison with one that has not been.

If Eq. (5.14) is substituted into Eq. (4.12) and the integral normalized the such that

when the delay time is zero the electric field autocorrelation function is equal to 1, we

can obtain the phase of the pulse. Any nonlinear time-dependent phase in the pulse can be

retrieve. In other words a linear time dependency will be cancel out in the complex

conjugated operation in the integral. The final equation is given by
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In Eq. (5.15) u=t/τp  is the normalized time with respect to the pulse width, and

x=τ/τ p is the normalized delay. The normalization constant N is such that when x=0 the

integral is equal to 1/N. Because Eq. (5.15) has no analytical solution for the case of a

Gaussian self-phase modulated pulse then the integration must perform numerically.

Defining the self-phase modulation strength as (see appendix B for derivation)

the nonlinear index of refraction n2 in cm 2/W is given by

Fig. 5.7 shows a series of IGA traces for pulses that have experience different self-

phase modulation strengths (SPMS = 5, 10, 15). It can be seen that as the self-phase

modulation strength increases the pulse develops a series of oscillations in the wings that

are reminiscence of an interference pattern. At the bottom of these oscillations the IGA

trace must go to zero. There are some critical values of the self-phase modulation

strength at which two new oscillations are added to the trace. The IGA trace develop a

new oscillation every time the self-phase modulation strength increases by it. This is in

contradiction where the reported values given in [73]. The correlation function must also

be symmetric and real for a pulse whose intensity is a real even function.



74



75

Figure 5.7 Theoretical IGA-traces for several values of SPMS.

5.5 TBC-IGA Experimental Setup

To obtain self-phase modulated pulse we couple the output of our Nd:YAG laser

into an optical fiber, and the output pulse of the fiber is sent to a 50/50 beam-splitter and

into a modified Michelson interferometer. One of the pulses is sent to a variable delay

composed of a stepper-motor-retroreflector combination, controled by a Klinger stepper

motor controller CM100 with a 2-µm resolution. The two beams are then focus by a pair

of 10-cm focal-length in a CdMnTe:V photorefractive crystal. This crystal acts as a slow

responding medium forming a grating with a period given by
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where 0 is the angle of intersection of the two beams. One of the beams is chopped, and

the transfer modulation is detected in the direction of the other beam with a THORLABS

silicon photodetector model PDA50 and an EG&G locking amplifier. The time constant

in the locking amplifier is generally set to 100-ms.

The data is collected with a LabView interface program, this program has an

internal time constant of 4 times the time constant in the locking amplifier. The program

collects data in two different modes, locally or by swept. In the first case N data points

are collected and average at the same location. This is less time-consuming, but the

signal-to-noise ratio can be low, especially if your laser system has intensity fluctuation.

The reason for such low signal-to-noise ratio can be understood in that laser fluctuations

are time correlated at the same point, and show in your detector as signals. The second

method consists of taking N swept collecting a single data point each location, and

averaging at the end. This method decorrelates noise and laser fluctuations, improving the

signal-to-noise figure.

The data is recorded as a function of delay and saved in data files for later

analysis. Each experimental section consists of first recording a SHG-autocorrelation

trace of the pulse, then switching to the IGA-setup using mirrors on kinematics mounts.

Fig. 5.8 shows the experimental setup for the IGA-TBC experiment, and Fig. 5.7 shows a

typical IGA-TBC trace for the case of 20-m of polarization preserving Silica-Glass fiber.



Figure. 5.8 Typical autocorrelation trace for 18.2 m

of polarization maintaining fiber.
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The analysis of the data uses only a single fitting parameter. The single parameter

is the self-phase modulation strength. A series of nonlinear numerical recipes were used

to fit the normalized experimental data [77] (see appendix C for details). The

experimental data is normalized such that at zero delay |k(0)| 2equals to 1. The time delay

is also normalized with respect to the pulse width.

For each fiber a set of IGA traces were taken at different power levels. The self-

phase modulation strength is found as a fitting parameter, and the nonlinear index of

refraction is equal to the slope of the graph of the SPMS, up to a multiplicative constant,

as a function of average power.

The maximum average power couple into the fiber should be taken such that the

SRS peak is minimum. If the power in the fiber is strong enough to generate SRS, the

pulse will suffer both shape, and phase distortion. Fig. 5.10 shows the SHG-

autocorrelation as well as the TBC-IGA traces of a pulse that have propagated in 20 m of

silica glass fiber with an average power of 1.5 W. The distortion is evident, recalling that

the critical power for the generation of SRS is around 1 W in silica-glass fiber. TBC-IGA

must always be performed with average power at least 1/3 of the SRS critical power.

In the next 3 sections we will describe the experiment performed with three types

of optical fibers. Some of the results will be compared with the ones available in the

literature. The result for silica-glass fiber is well established; this is not the case for Er-

doped as well as Yb-doped optical fiber.



Figure 5.10 Shaped distortion (a), and phase distortion (b)

experience by a pulse in the presence of SRS.
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5.6 Measure of n2 in Silica-Glass Fiber

A 24 m length silica-glass fibers was used in the first set of experiments. The

composition of this fiber is unknown. The fiber has a deformation along one direction of

the core making it elliptical in shape. This shape breaks rotational symmetry and

maintains the fiber polarization. The introduction of this asymmetry is done with the

purposed of minimizing polarization rotation due to modal birefringence. The fiber

effective core area is A eff=5x10-7cm2. A series of IGA traces were taken, varying the

average power couple into the fiber. The average power was varied from 0.25 to 1.4 W.

The average power was measured with a power meter locate in from of the fiber output.

The light loss in the output focal lens must be taken into account.

Figure 5.11 Experimental IGA-trace and their corresponding

Theoretical IGA-trace using Eq. (5.15).
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Fig. 5.11 shows a 0.5 W average power TBC-IGA trace and their corresponding

nonlinear fit, with the best SPMS found. Fig. 5.12 present the result of several IGA traces

and the corresponding SPMS plotted as a function of average power. Using the slope

found on the graph and the parameters for the fiber given in table 5.1. The slope of Fig.

5.12 is (ωoτpQ/Pavg)=22.54±0.8443, and we get for the nonlinear index of refraction

n2 = (2.44±0.0914)x10-16 cm2/W =(0.85±0.03184)x10-13 esu cm2

this is within 5% of the value reported by Stolen, et al. [78].

This is remarkable because we need only one fitting parameter, more importantly

the length of the fiber is short compared with hundreds of meter used by Stolen [78].

TBC-IGA is ideal for fiber development and design because the nonlinear properties of

optical fibers can be characterized with only a few meters with psec pulses or few cm

with fs pulses.

Table 5.1	 Parameters used to calculate the n2 for silica-glass fiber.



Figure 5.12 SPMS as a function of average power for Silica-glass fiber.

5.7 Measure of n 2 in Erbium-Doped Fiber

Erbium-doped fibers are of fundamental importance in today telecommunication

industry. Erbium-doped fiber is widely used in optical amplifier for their high-gain and

broad laser transition in the 1.53 µm window [79]. Glass fibers with Erbium-ion doping

are use in optical communication as laser or as in-line optical amplifiers.

Erbium amplifiers provide advantages over regenerative repeaters because of the

complexity and high-speed electronics needed in electronic repeaters. The complexity

increases as the bit rates increases. Erbium-doped fibers, on the other hand, do not require

high-speed electronics, and the optical gain of the amplifier does not change with the bit

rate (bit rate transparency) [80]. Despite of all the research work done in Erbium-doped
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fibers, there are only few papers reporting the measure of n2 and the study of the

nonlinear optical properties of Erbium-doped optical fibers [81,82,83,84]. The reported

value for n2 in Erbium-doped fibers is very inconsistent, and most researches assume that

the same value found in silica-glass fibers can be extrapolated or use in the case of

Erbium-doped fibers. What is worse is the lack of a systematic study of the effect of

doping concentration on the nonlinear optical properties of Erbium-doped fibers.

Table 5.2 EDF-MP980 fiber parameters

Parameter Value

Cutoff wavelength

Core Radius

880 nm

1.63 µm

Refractive index diff ( Δn) 0.0146

Numerical aperture 0.207

Peak absortption (near 1.53 µm) 5.20 dB/m

Peak absorption (near 980 nm) 4.22 dB/m

MFD at 1.55 µm 6.17 µm

Estimated erbium concentration 8x1024 m -3

Effective Area 1.24x10-7cm2
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The fiber used in this research is an EDF-MP980 made by Lucent Technologies. Some of

the parameters for this fiber are shown in Table. 5.2. Fig. 5.13 shows the emission and

absorption cross section for this fiber as a function of wavelength.

Figure 5.13 Experimental absorption and emission cross-section

for the EDF-MP980 fiber used in these experiments.

It was found that the fiber turn blue and greenish as the power was increased. The

power level was keep below 400 mW, because the power threshold for SRS power was

found to be of the order of 500 mW at 1064 nm. Fig. 5.14 shows three peaks at 600 mW

average power in the fiber. The first peak is located at 1064 nm corresponding to the

center wavelength of the laser. The second peak located at 1116 nm correspond to a

Raman shift of Δv=437.92 cm -1 . The third peak located at 1332 nm correspond to a

parametric mixing of the Raman peak and the 2(0116401064 which has totally been

depleted.
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Figure 5.14 Spectrum of nonlinear processes in EDF-MP980

erbium-doped fiber for power level above 600 mW.

A series of IGA-TBC traces in a L=10 m length Erbium-doped fiber were taken. The

maximum average power couple into the fiber was 300 mW corresponding to a

maximum peak power of 55 W. Fig. 5.15 shows two traces corresponding to the

minimum and maximum power use, the traces are shown with their corresponding fit.

The effective area was determined by its index profile to have a value of A eff =1.24x10-7

cm2 [85]. Fig. 5.16 shows the graph of the self-phase modulated strength as a function

average power. Using the value found for the sloped on Fig. 5.16 we get for the nonlinear

refractive index of our Erbium-doped fiber

n2=(3.416±0.01714)x10-16 cm2/W=(1.191±0.00597)x10 -13 esu

Once again, the value is within 5% of the reported value [81]. This is remarkable

because in this case only 10 meters of fiber were used.



Figure 5.15 IGA-TBC traces for Er-doped fiber for different power levels.
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Figure 5.16 Self-phase modulated strength as a function

of average power for Er-doped fiber.

5.8 Measure of n2 in Ytterbium -Doped Fiber

Another rare-earth doped element that had lased in glass is Ytterbium [86]. Ytterbium

doped fibers had been used as high power fiber lasers [87] that can be used as high power

pump in optical amplifiers. Also Yb-doped fibers are used in cascaded Raman resonator

laser with outputs up to 8.5 W at 1472 [87]. Cascaded Raman resonators are fabricated by

writing a UV induces grating in the fiber where each Raman pulse pumps the subsequent

Stokes emission [88].

Ytterbium-doped fibers offered a number of interesting aspects. For example,

there is an absence of exited state absorption (ESA), since apart for the laser energy level

transitions all the other energy levels are in the UV region [89]. Also the laser transitions
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show broad spectral range that allow for significant tuning range. The fluorescence shows

a wavelength covered from 1.015 to 1.40 p.m, which exceeds that covered by the Nd fiber

laser [89]. Fig. 5.17 shows the energy level diagram of Yb in silica host and the

fluorescence spectrum after [89].

Figure 5.17 Energy levels and fluorescence of Yb in silica host [89].

In spite of all the applications of Yb-doped fibers there is a lack of information

about its nonlinear properties. There is no literature available about the value of the

nonlinear index of refraction.

We measured n2 using 20 meters of Yb-doped fiber. The fiber use in this

experiments was obtain from researches at Lucent Technologies in Murray Hill. There is

a little of information about the technical specification of the fiber. In Table 5.3 we

summarized the information that we posses about this fiber.
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The Raman peak starts to appear around 400 mW of average power or 74 W peak

power. The experiments were performed with an average power range of 100-320 mW.

Fig. 5.18 presents the output spectrum of the fiber when pumped with 1064 nm. The

graph is not at scale. The peak at 1332 nm correspond to the parametric mixing of the

signal at 1198.4 nm and the signal at 1062.8 or 2x0)1332 - 0 1062 = 0) 1332. The signal at

1198.4 nm can be identified as the Stokes Raman peak. The 665 nm to a parametric

mixing, and the 532 nm may possible correspond to upconversion. There is an interesting

point to make, when the fiber was pumped with 980 nm a peak corresponding to

amplified spontaneous emission (ASE) located at 1032 nm appear in the spectrum.

Therefore the 1064 nm laser is located at the tail of the absorption peak in this fiber.
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Figure 5.18 Spectrum of the Yb-doped fiber when pumped with 1064 nm.

Several traces were taken, and recorded with different power for analysis. There is

not reference to compared the experimental results, except for bulk glass crystal made of

Yb3+:KYW, which has a value of n 2=8.7x10 -16 cm2/W at 1080 nm [90]. Fig. 5.19

correspond to the IGA traces for the maximum and minimum power levels. Fig. 5.20 to

the graph of the self-phase modulate strength as a function of average power. Although

the value of the effective area is unknown, we calculate the nonlinear index/effective area

ratio as

n2 /Aeff= (5.173±0.0123)x10 -9 w -1=(1.474±0.043)x10 -7 cm-2 esu

This value is comparable with the Er-doped fiber case.



Figure 5.19 IGA traces for Yb-doped fiber for Pavg=0.1 and 0.300 W.
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Figure 5.20 Self-phase modulated strength as function of

average power for Yb-Doped fiber.

5.9 Measure of n2 at 1064 nm in Yb-doped and Er-doped Fibers

in the Presence of a 980 nm Pump Laser

The increasingly demanding application of Erbium-doped fiber amplifiers (EDFA) in

telecommunication, ultralong soliton systems, and soliton laser sources, requires a deep

understanding of the effects of the pump laser in the optical properties of the amplifier at

the signal level. The amplification provides by EDFA is produced by optically pumping

an absorption band to provide gain in the signal emission band. Promoting carriers to

upper energy levels implies modification of the optical absorption coefficient of the

system and consequently of the refractive index through the Kramers-Kronig relations.
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There has been few studies on the pump induce refractive index change at the

signal level in EDFA [91,92,93]. They all focus on the pump effects on the linear index

of refraction, and none have address the effect of the pump on the nonlinear index of

refraction n2 .

In chapter two the theory for the nonlinear susceptibility in the presence of a pump

laser in a quasi-two-state system was developed. We found the most general expression

for the nonlinear susceptibility when there was a probe beam and a pump beam in the

system. In this section we use IGA-TBC to verify the results found in chapter two. The

experiments were done in two steps; first an IGA trace with a nominal P. signal average

value, and no pump is recorded, then a series of IGA-traces varying the pump power and

maintaining fix Po are recorded. The change in the nonlinear refractive index is found

from the variation of the self-phase modulation strength as the pump power is increased.

There is a difference between the Er-doped fiber and the Yb-doped fiber. In the

case of the Erbium the average power at 1064 nm signal can be considered constant and

only the power evolution of the pump laser must be model. For the Ytterbium the signal,

as well as, the pump average power evolves in the fiber. In this case an effective power is

defined as

where P(z) is the local average power of the signal, and L is fiber length.
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5.9.1 Experimental Setup

The experiments were performed with the same fibers used in the measurement of the

nonlinear index of refraction. The pump in the case of Er-doped fiber was couple counter

propagating to the probe beam. The pump beam is a 980-nm diode laser with 80 mW

maximum output power operating in cw-mode. SDL-2000-1 butterfly diode laser mount

in a LDM-4980 model with temperature controller and current driver. In the case of the

Er-doped fiber the pump was couple in the fiber with 10x microscope projector, counter

propagating with respect to the 1064 nm probe beam. For the Yb-doped fiber the pump

and the probe or signal copropagate in the fiber. The coupling is in free space with 10x-

microscope projector in a 2x1 power combiner made by fusion splicing. Fig. 5.21 shows

the experimental setup.

5.9.2 Er3+-Doped System

lets us recall that in the case of the Erbium-doped fiber there is not signal field, the 1.064-

µm laser is the probe beam. And the nonlinear susceptibility is given by

The above equations give us the value for the nonlinear susceptibility in the case that the

pump power is constant over the entire fiber length. In real experimental conditions the

pump power changes over the length of the fiber, therefore one must refers to an effective

susceptibility, which is the integral of the susceptibility over the fiber length divide by the

fiber length.
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Figure 5.21 Counter propagating geometry for the measurement of

the nonlinear refractive index in Er-doped fiber.

5.9.3 Yb3+-Doped System

In the case of the Yb-doped fiber the probe beam is zero, the 1.064 p.m is the signal

beam. The real part for the nonlinear susceptibility is given as
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The above equation has to be complemented with the power evolution along the fiber for

the signal as well as the pump field.

Figure 5.22 Copropagating geometry use to measure the nonlinear

refractive index change in Yb-doped fiber.

5.9.4 Experimental Results

20 m of the EDF-MP980 Er-doped fiber with Erbium concentration of 8x10 24 m-3 , and

absorption coefficient of 4.22 dB/m, where used in this experiment. The pump threshold
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power was Ppth = 0.8-mw at 980-nm. Experiments were perform with different pump

power levels from 0 to 10 mw, and 100 and 250 mw of 1.064 µm. The coupling geometry

was counterpropagating. It is assumed that there is some exited state absorption in the

system with an absorption coefficient of 4 dB/m. For the case of the Erbium doped fiber

the probe beam intensity can be considered constant along the entirely fiber length.

The experiment is first performed with no pump present. An IGA-trace with a

100-mW or 250 mW is recorded as reference. After the reference trace is recorded a sets

of traces are taken increasing the pump power with the same probe nominal power. The

power of the pump beam is model as [82]

where aos is the absorption coefficient, ∞ ES is the excited state absorption coefficient ~4

dB/m. Fig. 5.23 shows the pump power evolution and the normalized nonlinear index of

refraction in the fiber as a function of distance. From the graph we see that the nonlinear

index remain constant at the beginning but when the probe beam interact with the pump

beam the nonlinear index of refraction decreases. Because the change happens only at the

last few meters of the fiber, what it is measure using IGA-TBC is an effective change in

the nonlinear refractive index. The experimental change in the nonlinear refractive index

is found by fitting the experimental IGA traces and recording the change in the self-phase

modulating
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Figure 5.23 (a) Evolution of the pump power as a function of distance

(b) decreased of the nonlinear refractive index.
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strength. Fig. 5.24 shows an experimental IGA-trace with no pump present and one with

10 mW of pump power in the fiber. It is evident that the broadening of the central peak

and the shifting of the oscillation are signature of the decreased of the nonlinear index of

refraction.

Figure 5.24 Shifting of the oscillation of the IGA trace when the pump

Laser is turn on.

In Fig. 5.25 the change in the normalized nonlinear refractive index is plotted as a

function of the pump power level. We have used the following relation to correlate the

susceptibility given by Eq. (5.19)
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It is clear that the nonlinear index of refraction decreases because the self-phase

modulation strength decreases. This decrease is predicted by Eq. (5.19). It can be

understood as follows: the nonlinear susceptibility depends on the population difference

between level |1) and level |4). As the pump is turn on carriers are removed from level |1)

and promoted to level |3). As a consequence they do not contribute to the nonlinear

susceptibility at 1.064-μm. For long haul communication this may be beneficial, but for

systems were control of the nonlinear susceptibility is critical, such as long haul soliton

systems this effect will be detrimental to soliton instability. Eq. (5.19) predicts a decrease

of 7-9 % in the nonlinear susceptibility as it is observed in the experimental data.



Figure 5.25 Decrease of the nonlinear index of refraction
for (a) 100 mW of probe power, and (b) 250 mW of

probe power as a function of pump power.

In the case of Yb-doped fiber the 1.064- μm laser experience gain. The signal

beam acts as the probe, this is similar to the case of EDF-amplifiers. The power

evolution of the signal and the pump laser has to be model in the analysis of IGA-TBC

experiment. We assumed a saturate signal power of 1 mw for the 1.064-gm laser, and a

0.1 mw threshold power for the 980-nm. The analysis of the power evolution follows the

same as in [94].

The erbium dopant assumed to be confined in the center of the core, the rate

equation for the evolution of the pump (q), and signal (p) at wavelengths λp,

λs,normalized to their respective intrinsic saturation powers take the form

56



103

corresponding cross section radios. The a's are the absorption coefficients. Because the

signal power changes along the fiber lets us defined an effective power defined by

The experiment was done in two steps; first a trace with the pump on is take and

recorded. This trace corresponds to the signal propagating in the fiber with an effective

power Peffwith the pump off. The difference in the self-phase modulation strength of the

two traces corresponds to the change in the nonlinear susceptibility. Physical parameters

for the fiber are, αp=270 dB/m, α s=1 dB/m, L=20-m. Fig. 5.26 shows the evolution of the

signal and the pump along the fiber. Fig. 5.27 the experimental IGA traces corresponding

to the case of pump on and off Finally Fig. 5.28 shows the decreased of the nonlinear

index of refraction due to the presence of the pump compared with the theoretical model.

Again the system shows a decreased on n 2 of the order of 9%.

In the model of the evolution of the pump power amplified spontaneous emission

(ASE) is not included. The gain experience by the signal field is low The pump power

couple in the fiber is about 10 mW, the signal experienced gain at the beginning of the

fiber and is attenuated in the remaining length. The absorption peak of Yb is at 1032 nm,

and not at 1064 nm. Therefore the 1064 nm laser is at the tail of the absorption band. This

can be observed in Fig. 5.17.



Figure 5.26 Evolution of the (a) pump power
(b) signal power as a function of z from Eq. (5.23).
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Figure 5.27 IGA traces for Yb-doped fiber with pump on and off

105

Figure 5.28 Decrease of n2 as a function of pump power for Yb-doped fiber.



CHAPTER 6

MEASURE OF 112 IN SEMICONDUCTORS USING
TBC-IGA

6.1	 Self-phase Modulation in Two Different Nonlinear Media

In section 3.2 we showed that in the nonlinear-dominant regime the wave equation

describing the propagation of an optical pulse in a medium was given by

in Eq. (6.2) (Po represent an initial phase. Eq. (6.1) linear because any linear combination

of solutions of Eq. (6.1) is also a solution of Eq. (6.1). This mean, in physical terms, that

a pulse propagating in a set of N-nonlinear optical media will experienced a total self-

phase modulation given by the sum of the self-phase modulation that the pulse

experience in each of these media. This can be express as

If the pulse is a transformed limited Gaussian then the total self-phase modulation

is given by

In the case that the pulse propagates in two nonlinear media, the total self-phase

modulation is given by

106
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where 1 and 2 represent each of the media.

In the case of TBC-IGA the above analysis mean that if a second medium is

introduced in the path of a pulse that has been self-phase modulated, the total SPM

experienced by the pulse is given by the sum of the contributions of each medium. This

additional SPM produces narrowing or broadening of the initial IGA-trace, depending on

the sign of n2 in the second medium. If the first media is well characterized then the

magnitude and the sign of n2 in the second media can be found.

If the first medium is an optical fiber, the magnitude of n2 in the second media is

calculated by the change of the SPM strength when the second medium is introduced in

the path of a pulse. If the second media is a semiconductor then the change in SPM is

express as

The sign of n2 is obtain by the increased/decreased of the total SPM strength when

the semiconductor is place in the path of the optical pulse. If the total SPM increases, the

nonlinear refractive index is positive on the other hand, if SPM decreases, the nonlinear

refractive index of the semiconductor is negative.
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One of the simplest and widely used approaches to the measurement of the

nonlinear index of refraction in semiconductor films is the single beam Z-scan technique

[95]. This technique measures the nonlinear phase distortion by measuring the

transmittance of a Gaussian laser beam through the nonlinear medium and subsequently

through a fine aperture in the far field. As the nonlinear medium is translated through the

focus of the laser beam, the variance in the transmittance through the aperture is a

consequence of the resultant intensity dependent nonlinear lens and hence a measure of

n2 . Due to the confined mode of an optical fiber, the necessary spatial variation of the

intensity dependent refractive index is precluded and thus Z-scan cannot be applied to

single mode fibers. Although Z-scan is easy to implement, and requires little data

manipulation, it is very sensitive to surface roughness and nonlinear absorption.

TBC-IGA is suitable for the measurement of n2 in optical fibers [96,97] as well as

semiconductor films [98]. The sign and magnitude can be extracted, and it is insensitive

to surface roughness, and nonlinear absorption. TBC-IGA is totally base on pure

nonlinear refraction. One of the limitations of TBC-IGA at the picosecond level is the

need for high average powers in order to produce detectable changes in the SPM strength.

This limitation can be overcome with fentosecond laser pulses. If fentosecond laser

pulses are used the average power can be reduce to milliwatts.

6.2 Experimental Setup

Fig. 6.1 shows the experimental setup used to measure the nonlinear refractive index in

semiconductor films. A train of 60.36-ps pulses generated by a cw mode-locked Nd:YAG

laser running at 100-MHz repetition rate, were propagated in a 20-m Silica fiber, which

generates SPM pulses. After propagating through the fiber the pulses were split in a
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modified Michelson interferometer with a translation stage in one of the arms to produce

time delay between the two pulses. The two beams were recombined in a photorefractive

CdMnTe:V crystal (slow responding medium).

Figure 6.1	 Experimental setup, the bottom figure shows the
Setup for the case of the semiconductor.
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The experimental procedure is as follows: first, an IGA trace is recorded as a

function of time delay with an average power of 100 mW out the fiber. We call this trace

the reference IGA-trace. Second, place the semiconductor in the path of the pulse, and

before it is couple into the fiber as shown in Fig. 6.1. The average power couple into the

fiber must be such that the output power is 100 mW. This second IGA-trace is recorded,

and the observed shift in the oscillations must be proportional to the value for n2 in the

semiconductor. If the IGA-trace narrowed, the SPM-strength increases and the sign of n2

in the semiconductor is positive. If the SPM-strength decreases, the IGA-trace broadens,

and the sign of n2 in the semiconductor is negative. The magnitude of n2 is calculated

from the increased (decreased) SPM-Strength due to the presence of the semiconductor

film. Fig. 6.3 shows the experimental IGA traces for 1-mm thick samples of GaAs, CdTe

and ZnTe. Table. 6.1 shows some of the parameters used in the calculation, and the

experimental results for n2 are shown in table 6.2. The results are also compared with

values obtain using Z-scan [99].

Table 6.1	 Experimental values used to calculated n2.
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Table 6.2	 Experimental values for n2 obtaining by sing Z-scan [99] and TBC-IGA.

It can be seen inTable 6.2 that the IGA technique is within 5% of the accepted Z-

scan value. It must be emphasized that although IGA is more involve in the

implementation because it requires a two beam coupling arrangement, its advantage over

Z-scan is that TBC-IGA can also be implemented in waveguide structures, like optical

fibers were Z-scan is preclude. In regard to other conventional techniques to measure n2,

the experimental arrangements are more complicate and only the magnitude can be

recovered. It is to the author's knowledge that only two techniques provide the sign

information of n2 they are Z-scan and TBC-IGA.
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Figure 6.2	 Experiental IGA traces for (a) GaAs, and (b) CdTe.

Figure 6.3	 Experimental IGA-Traces with and without the semiconductor for

for positive n2 in ZnTe.

6.3	 Conclusions

We have demonstrated theoretically and experimentally that the nonlinear susceptibility

of optical fibers and semiconductors films can be extracted from a TBC-IGA trace of a

picosecond pulse that has been self-phase modulated in the fiber or the semiconductor.

This is a consequence of the fact that the energy detected in a TBC-IGA experiment is

proportional to the electric field auto correlation function. This technique used to
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characterized optical pulses, has been used here to characterized the medium where the

pulse has propagates.

We also show that the results of Levine et al [50] were the same when the

analysis was done using the space charge field analysis of two beam coupling in a

photorefractive crystal [11]. We also found that the persistent absorption background

present in the IGA trace of photorefractive semiconductors was due to the fact that

semiconductors show long recombination times, as opposed to the short recombination

times of the oxides. These long recombination times in semiconductors allow the

formation of absorbing gratings whose duration were long than the laser repetition rates.

By identifying the dominant disperse and nonlinear effects in short length of

fiber, we were able to find the correct experimental conditions for the case of pure self-

phase modulation regime. The nonlinear index of refraction was experimentally

determined for silica-glass, Erbium-doped, and Ytterbium-doped fibers. The values found

for n2 were in excellent agreement-within 5%- with the accepted values.

Using the density matrix approach we proved that the nonlinear index of

refraction decreases in Er-doped and Yb-doped fibers in the presence of a pump laser.

This decrease is the consequence of the charge redistribution when the pump laser is

presence. This result beneficial for long haul communication systems may be detrimental

for system where rigorous control of the nonlinear susceptibility is needed.

We also extended the technique to semiconductor films. We showed that the

magnitude and the sign of n2 could be determined in a semiconductor, because the total

self-phase modulation experience by a pulse is the sum of the contribution of each of the

nonlinear media that the pulse interact with. The values found were within 5% of the
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values obtain from Z-scan. The advantage of TBC-IGA over Z-scan is that IGA is

insensitive to surface roughness, and nonlinear absorption, because it is based on a pure

refractive nonlinear phenomena.

TBC-IGA can be very useful in fiber development and design because it allows

the characterization of the nonlinear optical properties of the fiber, especially of exotic

optical fibers, and rare earth-doped fibers were production of long fibers is difficult.

Finally, this work should be try with fentosecond laser pulses. In this regime only

few centimeters of fiber, and very low power levels are needed. In this case the pulse

envelope must be modified to a sech type function. But in principle the same theory can

also be applied. The technique at fentosecond level will be more attractive because of the

low power needed to produce enough detectable self-phase.
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APENDIX A

CALCULATION OF THE INCOHERENT TERM FOR
A GAUSSIAN PULSE

The incoherent term in Eq. (4.22) can be analytical calculated for a transform limited

Gaussian pulse. The incoherent term is

assuming that the electric field is given by

and that the response function can be approximated as

In the above equations τ p is the pulse FWHM, τpop is related to the population

effects, also apop is related to the efficiency or deep of the population grating. Substituting

Eq. (A.2) and Eq. (A.3) into Eq. (A.1), assuming that the pulses have the same average

power and performing some arrangements we get

Completing the square in the first integral and regrouping terms we get from Eq.

(A.4)
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Eq. (A.7) describes the incoherent term due to the free carrier population; it is a function

of the free carrier relaxation time, either by recombination or diffusion.
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APENDIX B

DERIVATION OF THE RELATION BETWEEN THE
AVERAGE POWER AND THE FIELD AMPLITUDE

FOR A SELF-PHASE MODULATE GAUSSIAN PULSE

In the theory of self-phase modulation in a non-dispersive media, the self-phase

modulation experience by the pulse can be written as

assuming a Gaussian pulse envelope of the form

The total power per pulse is given by

the peak intensity can be express as

the peak intensity of the pulse can also be written in conventional unit as

where P is the average power of the laser, τr is the laser repetition rate, T ip is the laser

pulse width, and Aeff is the effective area. Substituting Eq. (B.5) into Eq. (B.4), and

replacing the expression of U0 in Eq. (B.1) then we get for the self-phase of modulation

of the pulse.
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and the expression used in the text for n2 in terms of the self-phase modulation strength is
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APENDIX C

COMPUTER PROGRAM USED TO CURVE-FIT
THE EXPERIMENTAL DATA

The curve-fit the normalized experimental data, the following set of programs were

developed in C-language, and run in a Sparc-10 Sun work station. Remarkable the same

program can be run in a personal computer using any of the available C-compilers for

PC. We program uses nonlinear curve fitting routines from the standard Numerical

Recipes [1]. The subroutine call in the program is called MRQMIN, it is base on the

Levenberg-Marquardt method. This method is powerful when the model does not depend

linearly on the set of N unknown parameters like the case of Eq. (5.2?). Even though

there is only one parameter to be fit, the model does no depend linearly on that parameter.

The user must provide the model and the first derivative of the model. The first derivative

is easy to calculate because is taken with respect to the fitting parameter, and can always

be performed inside the integral sign.

The program calls a subroutine called FUNC1. This function evaluates the fitting

function and its derivative with respect to the fitting parameter. The program stops

converging when the best chi-square estimate is found such that the quantity defined as

is a minimum. In Eq. (C.1) the y i are the experimental data points, and the y are the

calculated by the model. The σi are the standard deviation of each experimental data

point. The convergence time for the program is found to be in between 5 to 10 sec for

256 to 512 data points. Remember that when the electromagnetic field is express in term
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of complex numbers, at the end of the calculation the real part is the one that must be

retained.

#include <stdio.h>
#include <math.h>
void funcsl();
float WAMP[2000];
float WTIME[2000];
int LISTA[5];
float SIG[2000];
int MFIT;
float *CHSQ,*CHSQ 1 ;
float PARM[5];
float F;
main(argc, argv)
int argc;
char *argv[];
{

float **covar,**alpha;
float *alamda;
float n;
float nl,n2;
int nparm;
FILE *fp,*fl;
int ndat;
double part;
int i;
void mrqmin();
float **matrix(),*vector();
if(argc!=2)
{

printf("used SPM Strength Q\n");
exit();
}

/* set the initial value for the fitting parameters*/
sscangargv[1],"%f\n",&PARM[1]);
nparm=1;
MFIT=nparm;
LISTA[1]=1;
covar=matrix( 1 ,nparm, 1 ,1);
alpha=matrix( 1 ,nparm, 1 , 1 );
CHSQ=vector( 1 ,nparm);
fp=fopen("expdata","r");
fl=fopen("PARM2","w");
i=1;
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/*read the input data*/
while(fscanf(fp,"%f %f\n",&WTIME[i],&WAMP[i])!=EOF)
{

SIG[i]=1.0;
i++;

}

ndat=i-1;
fclose(fp);
n=-1.0;
/*call the fitting routine whith alamada set to -1 */
alamda = &(n);
mrqmin(WTIME,WAMP,SIG,ndat,PARM,nparm,LISTA,MFIT,covar,alpha,CHS
Q,FUNCS1,alamda);
n2=0.0;
nl=*(CHSQ);
printf("%f %f\n",n1,n2);
while(abs(nl-n2) > 0.0001)
{

n2=*CHSQ;

mrqmin(WTIME,WAMP,SIG,ndat,PARM,nparm,LISTA,MFIT,covar,alpha,CHS
Q,FUNCS1,alamda);
n1=*CHSQ;
printf("%f %f %f\n",n1,n2,PARM[1]);
}

n=0.0;
alamda = &(n);
mrqmin(WTIME,WAMP,SIG,ndat,PARM,nparm,LISTA,MFIT,covar,alpha,CHS
Q,FUNCS1,alamda);
fprintf(fl,"%f\n",PARM[1]);
}

MFIT subroutine called by the main program; this program calculated the value of

the model for each data point, and its first derivative with respect to the fitting parameter.

#include <stdio.h>
#include <math.h>
float x;
float a2,a3;
void FUNCS1(xl,a,afunc,dyda,ma)
float xl;
float a[];
float *afunc, *dyda;
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int ma;
{

float R,R1;
int n;
float midpnt();
float volt(),volt1();
float upper,lower;
x=x1;
upper=0.6959098;
lower=-0.6959098;
a2=a[1];
a3=a[2];
for(n=1;n<8;n++)
R=midpnt(volt,lower,upper,n);
*afunc= 0.9183411086214*R*R;
for(n=1;n<6;n++)
R1=midpnt(voltl,lower,upper,n);
dyda[1]=0.9183411086214*R1*R1;
return;
}

float volt(b)
float b;

float F;
F = exp(-1.39*(b*b + pow(b+x,2.0)))*cos(a2*(exp(-2.77*pow(b+x,2.0)) - exp(-
2.77*b*b)));
return (float) F;
}

float voltl(b1)
float bl;
{

float F;
float Fl;
float F2;
Fl = exp(-1.39*(b1*b 1 + pow(b1+x,2.0)))*sin(a2*(exp(-2.77*pow(bl+x,2.0)) - exp(-

2.77*bl *b1)));
F2 = exp(-2.77*pow(bl+x,2.0)) - exp(-2.77*b1*b1);
F = Fl*F2 + a3;
return (float) F;
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APPENDIX D

THE NONLINEAR SUSCEPTIBILITY FOR A
QUASI-THREE LEVEL SYSTEM IN THE

PRECENSE OF A PUMP LASER

D.1 Semiclassical Theory for x (3) in a Quasi-Three Level System

In this appendix we derive in detail the nonlinear susceptibility for a quasi-three level

system in the presence of a pump laser. Using the Hamiltonian given in Eq. (2.26) and

Eq. (2.24) the equation of motion for the density matrix operator is given by

In Eq. (D.1) γnm represent the dipole diphase relaxation time, O n are the Rabi frequencies

for each of the fields and are equal to µEn/ħ, and the Δnm=ωf-ω rm are the detuning factor

from the resonance transition frequencies. In addition, the R nm are the pumping rates for

the pump and the probe fields. We have to assume that the probe fields can promote
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considerable amount of carriers to state 14). The A's are the corresponding relaxation rate

for each transition.

The rate equation for the system is the time evolution of the populations of the

different levels. They are express in terms of : The pumping rates R., the transition

probabilities Wm„, and the relaxation rates A.. Where m,n= 1,2,3,4 corresponding to the

different energy levels. Particles leaving n-level per unit time will contribute negatively

to the time evolution of that level (depopulation).

Solving the above set of equations for the steady state case. Assuming that the relaxation

rate is A32>>421, the non-radioactive decay rate A32 is dominant over the pumping rate

R=R13=R31, and that R-R14=R41, we can obtain from Eq. (D.2)
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in Eq. (D.3) we used A21	 which is the fluorescence life time, and k=R'τ1 . The

population in level 13) is zero because of the predominant non-radioactive decay to level

12). Using the following definitions for the transitions and pumping rates

in the above relations the is ,p,pr correspond to the signal, pump, and probe intensities, Mc ii

to the FWHM of the homogenously transition such that γ12 =Δmω12/2 is the inverse of the

dipole relaxation time. There is thresholds pump power where the system is fully

inverted, and a probe and signal saturation power where the system is totally bleached

denote by th, and sat. the o denotes the frequency difference between level I and j, and

we allow for some detuning factor in the transitions.

Solving Eq. (D.1) for the steady state case we get after some algebra for the non-

diagonal elements of the density matrix

As we pointed in chapter 3 in the rotating wave approximation the term with the

negative exponent in the electric field is a better driving field, then the total polarization

of the system can be expressed as



using the above expression we get for the susceptibility for each of the fields

Where N is the density of the rare earth atoms in the system. Using the rate equations to

calculated the population difference, we get for the total susceptibility at the signal field

In the Eq. (D.6) n is the index of refraction, and we have defined the dipole relaxation

time to be equal to twice the FWHM of the homogeneously broadened transition, or

712=40112/2. The detuning normalized factor is defined as

If the intensity of the probe beam in Eq. (D.6) is neglected, we recover the same result of

Desurvire [30]. In that case, there is a resonance enhancement of the refractive index due

to the presence of the pump field. On the other hand, if there is no pump field and no

probe field, then the susceptibility is the same as the case of a two level system, which is

described in [31]. Eq. (D.7) is the total signal susceptibility. To get the nonlinear

127
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susceptibility, we expand Eq. (D.7) in powers of Is and retain the linear terms in Is that

gives us

Using the expression x = x (1) +3x (3)|Є2| + 	 , we get for the real part of the third order

nonlinear susceptibility

The linear susceptibility at the probe field is given by

Finally expanding Eq. (D.10) in term of powers of Ipr, and retaining only the

linear terms in /p„ we obtain for the nonlinear susceptibility at the probe field frequency

as a function of pump power Ip
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