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ABSTRACT

A MATHEMATICAL MODEL OF WHEELCHAIR RACING

by
Susan J. Schenk

Wheelchair racing strokes are very complicated movements, which involve a

coupling between the athlete and his or her racing chair. Each body segment, as well as

the wheel, follows a distinct trajectory as the motion is performed. Understanding the

kinematics and kinetics of various stroke techniques would provide the athletes and their

coaches with information, which could help guide the racers toward improved

performances.

In this thesis, a mathematical model is developed, which is capable of providing

such valuable kinematic and kinetic information. This two-dimensional model represents

the body segments as a coupled pendulum system of point masses and the wheel as a

distributed-mass disk. Furthermore, the model incorporates several fundamental

assumptions, including that the stroke cycle can be divided into an arbitrary number of

consecutive ballistic phases such that segment positions are continuous at phase

boundaries.

Each phase is mathematically a second-order, nonlinear ordinary boundary value

problem (BvP). Numerical methods are used to solve the BVPs independently, resulting in

velocity discontinuities at the phase boundaries. These instantaneous velocity increases

or decreases must be caused by impulsive forces. In turn, these impulsive forces are

interpreted as muscular input and/or physical impacts.



In this research, the model is used to produce numerous stroke techniques, which

are consistent with a given racer's structural parameters and prescribed stroke

characteristics (racing speed, cycle time, recovery cycle time, the athlete's orientation in

the racing chair, and wheel contact and release angles). The kinematics of these different

techniques are contrasted. In addition, the muscular mechanical energy costs of these

strokes are determined and an interpretation as to the mechanical energy efficiency of

each technique is given.

The model is used to provide insight into the intricacies of an actual wheelchair

racing stroke. In this thesis, the kinematics and energetics of model-produced techniques

guide the analysis of these characteristics of an empirical stroke. One conclusion of this

analysis is that this model may be able to provide more mechanically efficient alternative

strokes from which the athlete can choose. Finally, suggestions are offered toward

improving the model.
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CHAPTER 1

INTRODUCTION

1.1 Purpose of Proposed Work

Many people are interested in the science of human motion, including surgeons operating

on those who have movement difficulties, physical therapists who assist patients

undergoing rehabilitation, coaches who guide athletes to maximal performance, and

others. A model of human motion, which is able to analyze accomplished motions and

possibly predict optimal motions, would be of great benefit to these people.

If better movements could be determined, surgeons would be certain that the

procedures they were about to perform would produce desired results: for example,

whether performing surgery to lengthen the hamstring muscles in a child with cerebral

palsy would enable the child to walk more stably. In addition, physical therapists would

know in what direction a client undergoing rehabilitation should be directed: for example,

teaching a post-operative knee surgery patient how to walk so that minimal forces and

moments are produced at the affected knee. Furthermore, coaches could train athletes to

produce optimal sport performances: for example, training an athlete to use a wheelchair

racing stroke that consumes the least amount of mechanical energy per unit distance

traveled.

In order to address these situations and others, researchers have made numerous

attempts at modeling all different types of human motion (Beckett and Chang 1968,

Cooper 1990, Hatze 1977, Mochon and McMahon 1980, Siegler, Seliktar, and Hyman

1
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1982). At present, it seems that there are two distinct approaches followed to model

movement: that which employs the inverse dynamics method and that which is based on

forward (direct) dynamics. In fact, most existing models seem to be based on inverse

dynamics (Winter 1984).

Inverse models ultimately determine the forces needed to cause a given motion;

that is, given the actual movement, the forces are found (ma = F). They require a

performed motion — specific locations of each body segment as functions of time — as

input. This input is easily obtained in a laboratory by using a motion analysis system,

which records segment locations via camera measurements sampled at a prescribed

frequency. Velocities and accelerations can then be calculated using finite difference

schemes on the provided segment locations at each instant. Equations provided by

Newton's Second Law of Motion (in both linear and angular forms) use these segment

accelerations, along with measured ground reaction forces and moments, to determine

joint reaction forces and moments at each joint in the body. One significant limitation of

inverse modeling is that because it requires detailed motion as input, it cannot be used to

predict new possible movements. That is, it can only compare existing (performed)

movements. Therefore, it is inappropriate to use inverse modeling if the goal is to predict

optimal, or even better, motions.

Forward models, on the other hand, determine the motion that results when given

forces are applied to a mechanical system; that is, given the acting forces, the motion is

found ( F = ma). The clear advantage of this approach is that it can be used to predict

new motions. However, this technique is not easy to use because there are no

straightforward means of measuring forces applied to the segments (including joint
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reaction forces). In fact, the authors of one textbook on human gait state that, "The direct

measurement of the forces and moments transmitted by human joints, the tension in

muscle groups, and the activation of the peripheral and central nervous systems is fraught

with methodological problems. That is why we in gait analysis have adopted the indirect

or inverse approach." (Vaughan, Davis, and O'Connor 1992)

The descriptions of each modeling approach given above emphasize that, if the

goal is to predict better motions, a new method of modeling must be developed. The

model described in this thesis is such a model. In order to allow for motion-predicting

capabilities without requiring forces as input, this model employs an alternative to

forward and inverse approaches, namely, the boundary-point method, which was first

utilized by Lacker et al. (1997).

The basic idea behind the boundary-point approach is that the motion to be

modeled can be approximated as a small number of consecutive ballistic phases.

Mathematically, each phase is a two-point boundary value problem consisting of the

following elements:

• equations of motion determined by the Lagrangian dynamics approach

• the positions and orientations of the body segments at an initial time (the

initial configuration)

• the positions and orientations of the segments at a final time (the final

configuration)

• the phase duration



Each phase is ballistic in that only gravitational forces and joint viscous forces act

on the system for the duration of the phase. This means that muscle forces are not

present during the phases. As will be explained shortly, in the boundary-point method

muscle activity occurs only at the interface times separating contiguous phases.

Therefore, claiming that a small number of phases will capture the essence of the motion

to be modeled means then that the muscles need be active only at a few salient instances

throughout the motion. If these few prescribed times and configurations could be

identified, then the remainder of the motion could be accomplished without additional

muscle activity but rather by the natural spontaneous flow of physical momentum and

energy between pendular segments and the gravitational field. If this is the case for

mechanically energy efficient solutions to a desired movement task, the boundary method

may be useful to find these optimal motions, the associated salient times and

configurations, and the net muscle input required to accomplish them.

Also note that, because body configurations are required only at two distinct times

of each phase, it is not necessary to input an entire motion to the model, as is the case in

inverse modeling. In this way, the model can be used in a predictive capacity, as it will

need to establish the segment configurations at all time steps between the given initial

and final times of each phase, and thus will produce a new motion.

Each phase's boundary value problem is solved independently via a shooting

and/or relaxation method routine, which requires preliminary guesses of the initial

velocity or the dynamic trajectory of each segment, respectively. Because each phase's

solution is found independently, segment velocities will not be continuous at the

boundary of consecutive phases, despite the fact that segment positions will match here in
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order for the entire motion to be continuous. These model-output velocity discontinuities

correspond to instantaneous changes in momentum at the phase boundaries, which in turn

must be produced by impulsive forces. Muscular activity and/or the imposition of a

constraint produce these impulsive forces. Thus, muscles are active only at the phase

boundaries.

Varying the phases of a motion by changing initial configurations, final

configurations, and/or durations will produce different model solutions (that is, possible

movements). Evaluating each of the model solutions in terms of a specified characteristic

might help indicate a best solution. For example, a number specifying the consumption

of mechanical energy by the body segments per unit distance traveled of each model-

found wheelchair racing motion can be used to designate which of these strokes is most

mechanical energy efficient.

In this dissertation, a model is developed, which is based on the two-dimensional

model proposed by Lacker (1997) that has been used primarily in gait and lower-body

motion analysis. Lacker's model is expanded upon in this thesis. The extended model is

then applied to upper-body motion, namely wheelchair racing, a relatively unexplored

area of human movement. Model-generated solutions are presented and compared to

analyses of actual wheelchair racing stroke techniques. Furthermore, the model's

capability to identify the best wheelchair racing stroke when only a few of the model

parameters are varied (the upper arm angle at a given variable time in the recovery phase

and the maximal elbow angle attained during the recovery phase) is investigated in this

research.
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1.2 Outline of Proposed Work

The model in this research is restricted to two dimensions and is, therefore, a first

approximation. By ignoring motion outside of the plane, the results of the model will

compare most favorably with actual wheelchair racing strokes that are dominantly planar

in nature. One such racing technique is the piston stroke, so named for its likeness to a

mechanical piston. In contrast, the butterfly stroke, which resembles the butterfly stroke

in swimming, is characterized by significant excursions outside the plane (that is, having

considerable abduction/adduction components). Therefore, model output is compared to

experimental data of piston strokes and not butterfly strokes.

Assuming symmetry in the wheelchair racing stroke allows the model to consider

only one side of the upper body. This specified side of the upper body is represented in

this model by a multi-segment (n-coupled) pendulum system. The linked pendulum

system consists of body segments represented as point masses and a wheel segment

modeled as a uniform, distributed-mass disk.

The equations of motion used in this model are written in a very general form,

which allows for the inclusion of n segments, where n is a specified integer. This makes

it possible to effortlessly adjust the model for different spinal-cord-injured individuals

with diverse functionalities. For example, a wheelchair racer with a high level spinal

cord injury, who has virtually no muscular control of his trunk, is modeled with a triple

pendulum system (n = 3) where one pendulum represents the upper arm, one is the

forearm, and the other is the wheel. On the other hand, an athlete with a lower level

injury, who has more use of his trunk, is described with a four-coupled system (n = 4),

where the additional segment is the trunk. In both cases, the model automatically

produces appropriate equations of motion.
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One of the fundamental assumptions of the model is that muscle impulsive forces

are present only at the onset of each defined phase of the motion, and therefore, provide

the initial velocities to the body and wheel segments. This means that muscle forces act

only at the beginning of each phase. The segments then move through the rest of each

phase without any muscle input, making the only active forces during these intermediate

times those due to gravity and joint viscosities. (Joint reaction forces, ground reaction

forces, and, in general, forces that maintain implicit system constraints are not used in the

Lagrangian method.) Clearly this is not quite realistic because muscles are active

continuously throughout an entire motion. Fortunately, experimentally-collected

electromyographic (EMG) data offers insight as to the times in the motion where the

muscles are most active. This corresponds to how the motion should be divided into

phases when the model is developed in order to agree with this primary assumption in a

first-approximation sense. Thus, EMG data must be collected on the upper body while

performing a piston wheelchair racing stroke.

Other experimental data helpful to the model is segment path data (positions of

each segment as a function of time) collected with a VICON 370 Motion Analysis

System. This data can be used to prescribe the necessary segment initial and final

configurations and the durations of the phases. As mentioned above, this experimental

data is analyzed to determine whether the motion in question is predominantly planar for

a given stroke technique and can therefore be captured for the most part by a two-

dimensional analysis. Experimental data is also compared with theoretical model output

in order to confirm the validity of the model. For these reasons, VICON data of the

appropriate upper body segments and the wheel must be collected for a piston stroke.
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Some parameters present in the model's equations of motion include measurable

anthropometric (body structure) data and structural racing wheelchair data. The lengths

of all included segments (upper arm, forearm, etc.) are taken on the athlete being

modeled. The masses and the locations of the centers of mass of the segments are

determined from tables generated by cadaver studies (Dempster 1955) or from shape-

dependent formulae. The wheel's full radius and pushrim radius, along with its mass, are

measured too. The viscosity of the wheel as a function of its velocity is found by

performing a simple experiment in which the wheel is allowed to slow from a given

speed and VICON data is collected. The decrease of wheel velocity as a function of time

is a measure of its viscosity.

In order to investigate the model's capability of identifying an energy-efficient

stroke technique, the model is then used to produce numerous different wheelchair racing

strokes. The mechanical energy cost to the body segments per unit distance traveled, an

approximation of required net muscle force input, is determined for each stroke

technique. Mechanical energy not supplied by muscular forces, impact energy loss, is

lost at various instances during the racing stroke cycle, including the following:

• at the ends of joint ranges of motion — when the arm segments are positioned

so that their included joint is at its extreme range of motion causing an

inelastic collision

• at pushrim impact — when the hand lands on the wheel's pushrim at the onset

of the push period causing an inelastic collision



9

Mechanical energy cost per unit distance traveled is defined as the quotient of the

muscular mechanical energy cost, that is the amount of mechanical energy that the body

(muscles) must supply in order to perform a given stroke cycle, and the distance covered

during one stroke. This muscular mechanical energy cost is found by adding the absolute

value of all impulsive changes in mechanical energy throughout one stroke cycle, which

are not impact energy losses. The distance traveled is determined by first finding the

cycle's change in wheel angle, AO , and then multiplying by the ratio of the wheel

circumference and 360° . Since wheel viscosity is assumed to be constant, AO can be

calculated.

Finally, model output strokes are compared as to their mechanical energy costs

per unit distance and their impact energy losses, as well as to an elite wheelchair racer's

actual stroke. An interpretation of energy efficiency of wheelchair racing techniques is

offered.

Once the proposed work outlined above is completed, it will provide several

original contributions to the fields of motional analysis and applied mathematics.

Specifically, new information that is offered by work contained in this thesis includes the

following:

• the limitations caused by the two-dimensional nature of the model are

established

• the model is used in an inverse fashion to calculate the muscular mechanical

energy cost of a performed wheelchair racing stroke



. model output is used to guide the biomechnical analysis of an actual stroke

technique

• both coupled and uncoupled motion of components of the athlete/chair

system are modeled

. a geometric derivation of the equations of motion of the system and the

projection theorem (when constraints are imposed) is given

• improvements upon the shooting method boundary-value-problem solving

technique are made

10



CHAPTER 2

PREVIOUS WORK DONE

The significant amount of work published examining the biomechanical and

physiological characteristics of many different types of human movement has been

reviewed (Winter 1984). Some researchers have even studied the mechanics of standard

wheelchair propulsion via inverse modeling (Boninger et al. 1997, Coutts 1990, Hofstad

and Patterson 1994, Rao et al. 1996, Robertson et al. 1996, Ruggles et al. 1994,

Sanderson and Sommer 1985, Shimada et al. 1998, van der Woude et al. 1989,

Vanlandewijck et al. 1994, and Veeger et al. 1989). To a lesser extent, wheelchair racing

technique has been investigated through inverse models (Higgs 1984, Ridgway et al.

1988, van der Woude et al. 1988, and Wang et al. 1995). A large majority of this

literature seems to report analyses of experimental data via inverse modeling. A four-link

kinematic inverse model is often used.

The most cited wheelchair propulsion kinematic analyses are those of Higgs

(1984), Ridgway et al. (1988), and Sanderson and Sommer (1985). These researchers

and several others (Boninger et al. 1997, Coutts 1990, Rao et al. 1996, Ruggles et al.

1994, Shimada et al. 1998, van der Woude et al. 1988 and 1989, Vanlandewijck et al.

1994, Veeger et al. 1989, and Wang et al. 1995) applied inverse models to experimental

data to describe wheelchair propulsion characteristics including motion patterns, segment

and joint kinematics, cycle timing parameters, and some joint kinetics. Robertson,

Boninger, Cooper, and Shimada (1996) used an inverse solution with a Newton-Euler

method and a back propagation algorithm in order to calculate net joint reaction forces

and moments involved in propelling a standard (non-racing) wheelchair. An abstract by

11
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Rodgers, Tummarakota, Lieh, and Schrag (1994) described a model employing the

Newton-Euler method on a three-rigid-segment system, which used a recursive inverse

dynamics approach to investigate standard propulsion. Some of the above-mentioned

studies (Sanderson and Sommer 1985, Shimada et al. 1998, and Veeger et al. 1989) have

tried to compare propulsion techniques, but these works are limited in that they only

remark differences and offer hypotheses as to why these disparities exist. These authors

have emphasized the need for more research in this area.

Cooper (J. Rehab. Res. Dev. 1990) modeled wheelchair racing by using a systems

approach (Newton's method), which is in turn dependent on determining joint torques

and forces via inverse dynamics. Hofstad and Patterson (1994) attempted to improve on

Cooper's models by determining which environmental effects were insignificant and

could, therefore, be neglected in the calculations. Their modified model equated force

with both acceleration and the resistance terms due to the environment. These

modifications permitted the use of simplified linear, first-order differential equations.

The addition of wheelchair acceleration and velocity as model input consequently

enabled the model to predict force output. This is again an inverse modeling approach,

relying on experimental data. Cooper (IEEE 1990) later reported some results on

optimizing the forces and energy associated with the wheelchair stroke by representing

force as the control variable and energy as the constraint in an optimal control problem.

The model in this thesis is based on the model of human gait developed by Lacker

and colleagues (1997). Lacker's model blended concepts from Mochon's and

McMahon's gait model (conservative ballistic swing phase — both swing and stance legs,

Mochon and McMahon 1980) and Beckett and Chang's gait model (nonconservative
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swing phase — swing leg only, Beckett and Chang 1968). Lacker also included the effect

of joint viscosities on the swing phase of gait. In his doctoral dissertation, Choi (1997)

extended Lacker's model to include the double support phase of gait, which along with

the existing swing phase, accounted for the entire walking motion.



CHAPTER 3

PROCEDURE FOR THE COLLECTION AND PROCESSING OF
EXPERIMENTAL DATA

3.1 Data Collection

3.1.1 The VICON Motion Analysis System

Data is collected in the Human Performance Motion Analysis Laboratory at Kessler

Medical Rehabilitation Research and Education Corporation in West Orange, New

Jersey. The lab is equipped with an Oxford Metrics Ltd. VICON 370 Motion Analysis

System, which is an instrument specifically designed to record human motion. The

device consists of a six-camera/computer setup, as well as retroreflective spherical

markers, which are adhered to the subject's body at desired locations. The six cameras,

positioned at various points around the lab space, are first calibrated to recognize a

known, marked-off volume and origin point in the lab. Once this calibration is

completed, the cameras are able to generate (x,y,z)-coordinates for the locations of the

markers at each recorded time frame. In this experiment, VICON was set to collect data

at a frequency of 120 Hertz.

The athlete, seated in his racing chair, is positioned on an inertial-roller system

called a CompuTrainer, which is described in the next section. A total of fourteen

markers are taped onto the individual at the palpable anatomical locations indicated in

Figure 3.1. All markers except C7 and L5 are on both the left and right sides of the body.

14
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C7	 seventh vertebrae of cervical spine	 MEP	 medial epicondyle of humerus

L5	 fifth vertebrae of lumbar spine	 RAD	 radius

TUB greater tubercle of humerus	 ULN	 ulna

LEP	 lateral epicondyle of humerus	 MET1 	 the first metacarpal

Figure 3.1 Location of the VICON markers on the wheelchair racer
(as seen from behind with palms facing into the page)

As can be seen in Figure 3.1, the markers are used to define the body segments.

For data analysis, all body segments are idealized as point masses or as rigid bodies

(frustrums). Both the trunk and the sagittal plane are created by C7, L5, and the average

of the tubercle markers. The upper arm is obtained from the tubercle, the lateral

epicondyle, and the medial epicondyle. The forearm is defined by the lateral epicondyle,

the medial epicondyle, the radius, and the ulna. The hand is created by the radius, the

ulna, and the first metacarpal. These definitions of body segments are summarized in

Table 3.1.
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Table 3.1 Definition of the body segments by the VICON markers

Body Segment Markers

Trunk and Sagittal Plane C7, L5, Average of left and right TUB'S

Upper Arm TUB, LEP, MEP

Forearm LEP, MEP, RAD, ULN

Hand RAD, ULN, MET1

In addition, two markers are placed on each wheel. One is adhered to the wheel

hub and the other is taped onto the wheel itself. (The wheel is a solid disk.) The distance

between the hub marker and the marker on the wheel is measured.

VICON records the x-, y-, and z-positions (relative to the lab, or global,

coordinate axes) of the centers of the spherical markers as the athlete races his

wheelchair. Each measurement is accurate to within a few millimeters (VICON 1998),

and the data is filtered to remove noise and reflection artifacts. Data is actually captured

for only a few seconds of the entire trial once the motion is steady. Because the athlete

races at roughly eight meters per second and VICON records coordinates at the speed of

120 frames per second, each data capture will contain several stroke cycles.

Identifying one complete racing stroke cycle is possible by analyzing recorded

VICON data. In this thesis, a cycle is defined from wheel contact to wheel contact. As a

first approximation, assume that the wrist joint center (the average of the RAD and ULN
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markers) is the part of the athlete's body that makes contact with the pushrim. During

push, the wrist center remains on the pushrim, which is a fixed distance from the wheel

hub. Mathematically, this means that the distance between the wrist joint center and the

hub is constant during push.

The information presented in Figure 3.2 is based on experimentally recorded

VICON data. Figure 3.2 graphs the wrist-hub distance of the empirical data. Circled in

the figure are the first push period and the next push period, which last from VICON

frame 55 to 59 and frame 113 to 117, respectively. Thus, one complete cycle is

approximately from frame 57 to 115. This cycle will be referred to as Piston Cycle 1 for

the remainder of this thesis.

Figure 3.2 The wrist-hub distance of empirical VICON data

3.1.2 The CompuTrainer Inertial-Roller System

To simulate road-racing conditions, a CompuTrainer setup is used. The racing chair is

positioned so that its wheels sit on top of inertial rollers, and the athlete/chair system,

therefore, does not translate in the lab. This means that there will be no translational

kinetic energy present in the athlete/chair system, only rotational kinetic energy.
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The rollers can be programmed to simulate the effect of resistance. It is necessary

to determine how much frictional dissipative force acts to slow down the wheel in the

experimental setup. To quantify the effect of wheel friction, a simple experiment is

performed where the moving wheel is allowed to slow down on its own. The results of

such a trial are depicted below in Figure 3.3.

Figure 3.3 The angular deceleration of a racing chair wheel on the CompuTrainer

Note that the wheel is decelerating linearly at a constant rate of 1.26 rad/s2 , which

is approximately 72.19 degs/s2 . Mathematically, this is expressible as the following

second-order, linear ordinary differential equation: 8 wh = —72.19. Solving this equation

produces expressions for the wheel velocity and the wheel angle as functions of time,

respectively given in Equations 3.1 and 3.2.
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3.1.3 Electromyography

Electromyography (EMG) data is recorded during the experiment. Electromyography is

the recording of electrical signals, which accompanies the chemical stimulation of muscle

fibers. These signals can be analyzed to determine the timing and relative intensity of the

muscular effort. Upper quadrant muscle activity is determined using surface electrodes

in standard muscle belly-tendon configurations wherever possible. The exceptional

muscle definition of the wheelchair athlete is exploited to identify and standardize

suitable electrode placements for those muscles, which have traditionally been difficult to

characterize using surface electromyography.

The sternal portion of the pectoralis major, the anterior, middle and posterior

portion of the deltoids, middle trapezius, supraspinatus, infraspinatus, biceps brachii, and

triceps brachii are all investigated in this research. For filtering purposes, five seconds of

EMG data is collected to determine background noise prior to the wheelchair racing trial

while the subject is at rest. The noise check is followed by the collection of EMG activity

(coincident with VICON data capture) during the wheelchair racing.

3.1.4 The Entire Experimental Setup

A photograph of an actual data collection session is found below in Figure 3.4. During

this trial, VICON, EMG, and maximal VO2 intake data were being recorded.



20

Figure 3.4 An actual trial of data collection where VICON, EMG, and
VO2 intake are being collected

3.2 Processing of Data

3.2.1 Filtering

Recording human motion by using the VICON Motion Analysis System described in

Section 3.1.1 involves sampling a continuous motion at a given frequency (120 Hertz) to

produce a discrete sequence of marker spatial positions. In doing so, there are several

possible sources of distortion to the collected data. One source of error is the accuracy

limitations of the VICON cameras. Another is noise in the signal received by the VICON

cameras. One common example of such noise is when the position of a marker's

reflection is identified, as opposed to the actual marker's location. Whatever the source

of error, as much of it as possible should be removed before the data is analyzed.
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A lot of this error can be removed by filtering the data. In order to determine an

appropriate filter, the spectrum of the collected data must be reviewed. According to

basic signal processing theory (Kuc 1988), the distinguishing characteristics of a signal

are most easily interpreted in the frequency domain. A Fourier transform of a data

sequence produces its spectrum and, in doing so, defines the frequency content of the

signal. To determine the frequency contents of the raw VICON data, fast Fourier

transforms (ffts) are applied to the x-position data of the markers, the y-position data of

the markers, and the z-position data of the markers separately. A typical spectrum of raw

VICON x-position data of all markers is given in Figure 3.5.

Figure 3.5 The spectrum of typical raw VICON x-position data

Once the x-data, y-data, and z-dataffts are obtained for a given set of raw VICON

data, the cutoff frequency ( ω c) of each must be decided upon. Cutoff frequencies are

used to determine how to filter the data. First the spectrum of the x-data is reviewed to

see in what frequency range most of the signal lies. Since the data collected in this
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research is low-frequency data, the filtered range will be from 0 to w e Hertz. For the data

collected in this thesis, cutoff frequencies typically are between eight and fourteen Hertz.

A second-order, lowpass digital Butterworth filter is then applied to the raw

x-data, which causes the frequency components in the raw data from zero to the co,. to be

passed through the filter unaffected, while the higher frequencies are eliminated. This

will remove any high-frequency noise or instrumentation error from the VICON x-data.

This filtered VICON position x-data will be smoother than the raw x-data and will be

used for analysis purposes. The y-data and z-data also undergo this whole process of

filtering. Figure 3.6 illustrates the affect of filtering on the raw VICON data.

Figure 3.6 A comparison of VICON x-position data of the right tubercle marker in its
raw form and its filtered form (with w e = 12 Hertz)

3.2.2 Projecting VICON Data into Two Dimensions

The three-dimensional VICON data is projected into the sagittal plane of the athlete to

make it two-dimensional. This allows for the comparison of actual motion to model

output. Since the CompuTrainer/athlete is set up in the direction of the lab's x-axis, the
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projected data is more or less parallel to the lab's xz-plane. (Because of slight tilting of

the athlete, the sagittal plane is not exactly parallel to the lab's xz-plane.) The algorithm

implemented in this thesis to project the three-dimensional data into the sagittal plane is

explained in detail in Section 5.2.



CHAPTER 4

OUTLINE OF THREE-DIMENSIONAL VICON DATA ANALYSIS
(INCLUDING INVERSE MODELING)

4.1 A Brief Overview of VICON Data Analysis

Once filtered VICON data is obtained on a wheelchair racing athlete, data analysis is

carried out on the collected data. It is assumed that the body, the chair, and the stroke

technique are symmetric allowing for the consideration of only one side of the body.

Mathematical analysis of filtered kinematic data provides the anatomical joint angles, the

pushrim contact angle, and the mechanical energy in the system throughout the

performed stroke cycle. These stroke characteristics are used to provide evidence that

two-dimensional mathematical modeling is able to capture the dominant characteristics of

this truly three-dimensional motion and will also contribute insight as to what exactly

happens during a racing stroke cycle.

Furthermore, inverse modeling is capable of determining the net joint reaction

forces and moments present throughout an observed stroke cycle. Input required by

inverse modeling consists of basic anthropometric parameters and wheelchair structural

characteristics, as well as the kinematics of the entire stroke cycle and the pushrim

contact forces and moments acting during push.

4.2 Structural Parameters

Required parameters for analyzing performed motions, as well as for modeling new

motions, include structural measurements of both the body segments and the wheelchair.

24
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Throughout this chapter, the wheel segment is represented as a solid disk. However, the

body segments are presented in two different ways, namely as point masses or as

distributed masses. Therefore, the following two alternative models are being considered

here: the point-mass body segment / disk wheel system and the distributed-mass body

segment / disk wheel system.

Regarding anthropometric data, segment masses and lengths are needed in both

model cases indicated above. Moreover, locations of the centers of mass are needed for

point-mass body segments, whereas the proximal and distal radii of each body segment

are required when distributed masses are being considered. The distributed mass model

assumes each segment to be an appropriate frustrum. These radii enable the calculation

of a segment's center of mass location, as well as its moments of inertia.

The most easily obtained of these required parameters are the segment lengths and

radii, which can be found simply by measuring them on the individual whose motion is

being examined. Of course, the masses of the segments cannot be obtained in such a

straightforward manner, as it is impossible to weigh each piece of the body separately.

However, previous research studies on cadavers (Dempster 1955) provide these numbers

by supplying each segment's percentage of the subject's total body mass. Such research

also furnishes the location of the center of mass of each body part. Listed below, in

Table 4.1 are these data for the upper body segments. In Table 4.2, the necessary

anthropometric data is given for the athlete whose motion is being modeled in this

research.
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Table 4.1 Anthropometric data on mean segments' percents of body mass and
locations of centers of mass (Dempster 1955)

Body
Segment

Percent of Total Body
Mass

Location of Center of Mass
(% from proximal end of segment)

Head/Neck 7.9 43.3

Trunk 56.5 60.4

Upper Arm 2.7 43.6

Forearm 2.2 43.0

Hand 0.6 50.6

Table 4.2 Structural body segment parameters for the left side of the wheelchair racer
modeled in this dissertation

Body
Segment

Mass
(kg)

Length
(m)

Location of Center
of Mass (m)

(from the proximal end)

Proximal
Radius (m)

Distal
Radius (m)

Upper
Arm

2.077 0.275 0.120 0.054 0.042

Forearm 1.692 0.253 0.109 0.038 0.029
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In addition, information about the wheelchair must be known. There are two

possible wheelchair racing circumstances, namely that which occurs under experimental

(lab) conditions, as well as that which takes place under actual, road-racing conditions.

As mentioned in the previous chapter, experimental data collection was done on a

CompuTrainer inertial-roller device. In this case, the only wheelchair components that

move and are, therefore, considered dynamic in both data analysis and modeling are the

wheels. This is because the rest of the racing wheelchair apparatus is held fixed in place

by the CompuTrainer and does not contribute to the overall motion of the

athlete/wheelchair system. In this case, the needed structural parameters, namely the

wheel's mass, full radius, and pushrim radius and the mass of the entire racing

wheelchair, are readily measurable.

On the other hand, road-racing conditions necessitate the inclusion of the entire

racing chair, which impacts on the motion of the athlete/wheelchair system. In this case,

the overall design of the chair is important. A simplified diagram of a typical racing

chair is given in Figure 4.1. Some of the important structural parameters are given in

Table 4.3.

Figure 4.1 A simple illustration of a typical racing wheelchair
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Table 4.3 Structural parameters for the racing chair modeled in this dissertation

Wheel Mass (kg) Wheel Full Radius
and Pushrim Radius (m )

Chair Mass (kg) Racing Chair Length (m)

1.538 0.328
0.191

3.167 1.74

4.3 Angle Calculations

Throughout the racing stroke cycle, the angular orientation of a given segment can be

described relative to a fixed coordinate system or else relative to another specified

segment. In the latter case, the segment's position is explained in terms of defined planes

of the body by stating anatomical joint angles. Human motion professionals frequently

use anatomical joint angles to describe body segment movement while performing a

prescribed task. Furthermore, the interaction between the athlete and the racing chair

during the stroke's push phase can be described by the pushrim contact angle.

4.3.1 Anatomical Joint Angles

Anatomical joint angle measurements, often of interest to clinicians, provide information

concerning the motion involved in completing a prescribed task. These joint angles can

be of use in comparing wheelchair racing stroke techniques. They will also be helpful in

determining how planar (two-dimensional) a given experimentally performed stroke is,

and therefore, provide some insight as to what extent two-dimensional model output will

be comparable to empirical data.
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Most joints allow for some degree of movement of attached segments relative to

one another. This movement is often described by referring to the three basic anatomical

planes. These planes are as follows: the sagittal, the frontal (or coronal), and the

transverse (horizontal). Figure 4.2 illustrates these planes.

Figure 4.2 The three anatomical planes of the body

In modeling the athlete used in this research, the body segments included are the

upper arm and the forearm. Therefore, the joints considered will be the shoulder joint

and the elbow joint. The shoulder connects the trunk (proximal segment) with the upper

arm (distal segment). The elbow attaches the upper arm (proximal segment) and forearm

(distal segment). The movement capabilities of these two joints are discussed below

(Nordin and Frankel 1989).

For the shoulder joint, flexion is defined as movement of the upper arm away

from the trunk in the sagittal plane. Extension, where the motion brings the upper arm

closer to the trunk, is the opposite of flexion in the sagittal plane. Shoulder abduction is

movement of the upper arm away from the trunk in the frontal plane. Adduction is the
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opposite of abduction, in which motion is toward the trunk in the frontal plane. (Flexion

and abduction are considered positive and extension and adduction are negative.) Lastly,

motion occurring about the long axis of the upper arm is known as internal (positive,

toward the trunk) or external (negative, away from the trunk) rotation.

The elbow joint is hinge-like and has only two degrees of freedom. It can

undergo flexion (positive) and extension (negative), which brings the forearm closer to or

further away from the upper arm, respectively, in the sagittal plane. The elbow is also

capable of pronation (positive) and supination (negative), which is caused by rotation

along the long axis of the forearm. Note that the palm of the hand faces down (pronation)

or upward (supination) if the elbow is flexed so that the forearm and upper arm are

perpendicular.

In order to determine these joint angles from given filtered VICON position data,

fixed local coordinate systems must first be embedded in the trunk, the upper arm, and

the forearm (Vaughan, Davis, and O'Connor 1992). The differences between the

orientation of the proximal segment's coordinate system and that of the distal segment

enable the calculation of these joint angles.

In general, the local z-axis is the longitudinal axis of the segment, the local x-axis

of the segment is directed anteriorly, and the segment's local y-axis is directed laterally

on the left side of the body (and medially on the right side of the body). Specifically,



Table 4.4 The determination of each segment's local coordinate system
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The local coordinate systems for the trunk-upper arm-forearm linked system are

shown in Figure 4.3.

Figure 4.3 An illustration of the local coordinate systems

The relative orientation of two adjoining segments provides the anatomical joint

angles. In accordance with the convention developed by Grood and Suntay (1983), the

definitions below, which are illustrated by the accompanying figures, are employed in

this analysis. Flexion, abduction, and internal rotation/pronation are denoted positive,

while extension, adduction, and external rotation/supination are negative.
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Note that in the given formulae for the calculation of these anatomical angles the

arcsine function is used. This is because most of these joint angles are between -900 and

+90° when measured from the vertical. One exception is elbow flexion/extension, which

takes on values between 0° (total flexion) and - 180° (full extension) from the vertical.
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Thus, for a given configuration of body segments, the shoulder and elbow

anatomical joint angles (flexion/extension, abduction/adduction, and internal rotation-

pronation/external rotation-supination) are determinable. Clearly, these angles will vary

with time. Moreover, the flexion/extension angles should be similar to the joint angles

obtained when the position data is projected into the sagittal plane (see Section 5.2).

Graphs of the shoulder and elbow angles of Piston Cycle 1 are shown in Figure

4.4 on the next page. Recall that a cycle lasts from wheel contact to wheel contact.
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Figure 4.4 The dynamic angles of the shoulder and elbow during Piston Cycle 1

From Figure 4.4 above, it is interesting to note the joint motion throughout the

stroke cycle. At push, the shoulder is maximally flexed, minimally abducted, and almost

maximally externally rotated, whereas the elbow is nearly fully extended and minimally

supinated. Shortly after push, the upstroke part of the cycle begins. Upstroke continues
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until the arm segments move toward their maximal height at about 65 — 70 % of the

cycle. During upstroke, the following joint motion occurs:

• The shoulder continues to extend, abduct, and internally rotate (causing the

upper arm to upward in the sagittal plane, away from the trunk in the frontal

plane, and rotate inward toward the trunk).

• The elbow becomes less extended (causing the sagittal-plane angle between

the forearm and the upper arm to decrease) and is used right after push to flick

the wrist producing a burst of supination.

Once the arm segments reach maximum height, the downstroke part of the cycle

commences. Downstroke lasts until the pushrim is contacted. During downstroke, the

following joint motion occurs:

• The shoulder flexes, adducts, and externally rotates (causing the upper arm to

move downward in the sagittal plane, closer to the trunk in the frontal plane,

and rotate outward away from the trunk).

• The elbow extends (causing the sagittal-plane angle between the forearm and

the upper arm to increase) and flicks the wrist again, producing a burst of

supination.

Also of interest is the relatively small shoulder abduction/adduction range of

motion throughout the cycle. This is consistent with a piston-style wheelchair racing
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stroke. It will be important to compare the experimental sagittal-plane joint motion

behaviors with that indicated by model output.

4.3.2 Pushrim Contact Angle

At the onset of the push phase of the stroke, the athlete and the racing wheelchair contact

each other when the racer hits the pushrim of the wheel. This racer/chair contact

continues throughout the duration of push. If the wheel is considered as a segment, it

clearly cannot internally or externally rotate nor can it abduct or adduct at any time in the

cycle, since it is secured on its axle in a fixed manner which does not allow movement in

these directions. However, the wheel canflex or extend (produced by rotating about the

hub axle) relative to the athlete's forearm segment during push. That is, there is a

dynamic angle between the forearm segment and the line segment connecting the wheel

hub to the point of contact on the pushrim throughout push. Since this angle is analogous

to flexion/extension, it is called a wl,. Figure 4.5 illustrates the pushrim contact angle.

Figure 4.5 The pushrim contact angle, a „,h
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To calculate the pushrim contact angle at an instant in the push phase of the

racing stroke, the point of contact is first approximated by the location of the wrist joint

center relative to the global axes. Since the coordinates of the wheel hub are also known,

In the case of Piston Cycle 1, the three-dimensional wheel contact angle was

determined to be approximately 80.2 degrees. The configuration of push in this trial, as

determined from filtered VICON data, is illustrated in Figure 4.6.

Figure 4.6 Push configuration of Piston Cycle 1



40

4.4 Joint Reaction Forces and Moments

When the body segments must remain in contact with the pushrim of the wheel during

the push phase, forces of constraint (pushrim contact forces) are present, as are moments.

These forces, in turn, cause reaction forces and moments at each of the body joints.

Inverse modeling allows for the computation of joint reaction forces and moments by

using the linear and angular forms of Newton's Second Laws if it is possible to clinically

measure these forces/moments of constraint. Many labs are equipped with ground

reaction force plates, which will record such data when a subject walks over them,

performs a squat while standing on them, etc. However, similar instrumentation, which

would record forces and moments applied to a wheelchair pushrim, has only recently

been developed and is still being improved (Asato et al. 1993).

In several studies (Boninger et al. 1997, Robertson et al. 1996, and Shimada et al.

1998), the SMART Wheel (developed by Cooper's group) or a similar device, which has

strain gauges attached to a wheel's pushrim, was used to determine these constraint

forces/moments during standard (non-racing) wheelchair propulsion. Subjects had to

propel a lab chair outfitted with the SMART Wheel and not their own chair in these

investigations. Wheelchair racing athletes, like most athletes, are quite particular about

their chairs and wheels, which are custom-made to suit the individual in most cases.

Therefore, a portable device, as opposed to an instrumented SMART Racing Wheel, would

be necessary for racing studies to allow the athlete to use his or her own chair and wheels.

Such a device is not yet available. Perhaps this is because during wheelchair racing at

moderate to fast speeds, the percentage of time spent in the push phase is relatively small,

often only about five percent. Thus, even if a portable device were designed to measure



41

pushrim impact forces and moments, it would only provide information during a small

amount of the stroke cycle.

Because such portable instrumentation was not available in this experiment,

required input for inverse modeling of experimental data could not be furnished.

Therefore, this dissertation does not include the determination of joint reaction forces and

moments during push. However, the procedure for calculating these kinetic data via

inverse modeling is outlined here for completeness of discussion (Vaughan, Davis, and

O'Connor 1992). To begin the determination of the reaction forces and moments existing

at the wrist, elbow, and shoulder, it is necessary to create free-body diagrams for the

whole system showing all forces/moments acting on the necessary segments. Such a

free-body diagram of the forces acting on the system is shown in Figure 4.7 below.

Figure 4.7 A free-body diagram of the forces present in the system during push
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Applying the linear form of Newton's Second Law to the free-body force diagram gives

the vector equations below.

The following symbols are used above: Fpush is the measured pushrim contact

force, pt is the gravitational vector, m„g is the mass of the segment, and asegCG is the

acceleration of each segment's center of gravity, which can be found by using a finite

difference scheme on center-of-gravity position data. In this way, the joint reaction

forces at the wrist, elbow, and shoulder are found consecutively.

An analogous technique is used to determine the joint reaction moments. The

wrist reaction moment equals the calculable change of angular momentum of the hand l

minus the sum of measured moments and those produced by the pushrim contact forces

and the wrist joint reaction force on the hand. Once the moment at the wrist is found, it is

possible to calculate those at the elbow and shoulder in similar fashion.

expressible in terms of the moments of inertia, angular velocities, and angular accelerations, all of which
are known or determinable quantities
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4.5 Energy Calculations on Experimental Data

Analysis of experimental data also includes calculating mechanical energies of the body

segments and of the racing chair during a given motion. In the following sections, details

are given for determining the total mechanical energies of both the wheelchair and the

body segments under experimental racing conditions (and not actual road-racing

conditions). For a given segment, total mechanical energy includes the sum of its

potential and kinetic energies. Details are provided on calculating the energies of a disk

wheel, a point-mass body segment, and a distributed-mass body segment.

4.5.1 Wheelchair Energy Calculations

The energies of the wheelchair will be examined first. Again, only one side is

considered, as symmetry is assumed to exist. The wheel is a solid disk of given radius,

constant density, and mass, which locates the center of mass at the hub. The racing

wheelchair is a combination of wheels and rigid bodies maintained at fixed orientations

to each other. As noted above, experimental wheelchair racing conditions — and not

actual road-racing circumstances — are examined here. Therefore, the only dynamic part

of the racing chair in the experimental setup case is the wheels.

Because the athlete is seated in the wheelchair, wheel motion is affected by the

mass of the entire athlete/chair system. This mass, mrest, consisting of the body mass and

chair mass not accounted for by specific segments included in the model, is idealized to

be equally-distributed at the wheels' hubs as a point mass on each side. That is, half m—rest

(total body mass plus chair mass minus the masses of the segments already included in

the model) is located at each hub. Therefore, the masses involved in computing the
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mechanical energy of one side of the racing wheelchair are actually the mass of one

wheel and half M—rest-

To compute the potential energy, half m—rest plus the mass of one wheel and the

wheel hub's height from the floor, which is recorded during the VICON trial, will be

used. Moreover, since the chair is fixed in the CompuTrainer device for experimental

data collection, the hub height will remain relatively constant throughout the cycle.

Potential energy equals the product of the sum of half m-rest and the mass of one wheel, the

gravitational constant (9.81 m/s2), and the hub height.

As for the wheel's translational kinetic energy, its component is zero in

experimental racing conditions because the chair is held fixed in place, and therefore, the

hub remains stationary. The wheel can move in only one direction, namely it rotates

about the wheel axle. Computation of the wheel's rotational kinetic energy requires the

moment of inertia and the angular velocity of the wheel about its axle.

To determine this angular velocity, the velocity of the marker on the wheel is first

found. For empirical data, this velocity is determined by applying a finite difference

scheme to the wheel marker's position data to obtain the x-, y-, and z-components of the

marker's velocity. The finite difference method used to obtain these velocity components

is given by Equation 4.2 where x i (j), x2(j), and x3 (j) are used to denote the x-, y-, and z-

position of the wheel marker, respectively, at time j.
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The linear velocity of the marker on the wheel is then given by Equation 4.3.

The angular velocity of the wheel, ω wh, is determined by calculating the quotient

of the marker's velocity and the distance from the hub to the marker, as indicated in

Equation 4.4.

This angular velocity, ωwh , is used to determine the rotational component of

kinetic energy provided by the motion of each wheel. A solid, uniform disk has moment

of inertia (about an axis through its center and perpendicular to the disk) equal to half the

product of the radius squared and the mass. Rotational kinetic energy is calculated as

one-half the moment of inertia times the angular velocity squared.

Therefore, the chair's rotational kinetic energy at time t is determined by Equation

4.5, where mwh  is the mass of one wheel and vwh is the wheel's velocity. Recall that

v = rco . Also, no-slip conditions have been assumed.
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Figures 4.8 and 4.9 indicate the results of an analysis of Piston Cycle 1 data.

Fixing the racing chair on the CompuTrainer results in the hub being almost stationary,

which in turn causes the wheelchair potential energy to be almost constant as seen in

Figure 4.8. If the athlete contacts the pushrim and his hands are moving slower than the

wheel, the wheel will lose speed. This explains the initial lower kinetic energy of the

wheel evident in Figure 4.9. This effect was also described by Sanderson and Sommer

(1985).

Figure 4.9 The wheel's rotational kinetic energy in Piston Cycle 1
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4.5.2 Body Segment Energy Calculations

The energies of the body segments will now be examined. Again, only one side of the

body will be considered. Each segment's mass and center of mass's height from the floor

will be used to compute its potential energy. When the segment is represented as a point-

mass, its mass, the location of its center of mass, and its velocity are needed to determine

its kinetic energy. On the other hand, when the segment is idealized as a distributed-

mass, the moments of inertia about its three segment (local) coordinate axes through its

center of mass and the angular velocities about its segment axes are also required to find

its kinetic energy due to rotation. Since the athlete/chair is not translating under

experimental conditions, the segments' translational kinetic energies are zero.

The masses of each segment are found, as explained in Section 4.2, by using

information from anthropometric tables (Dempster 1955), once the total body mass is

determined by weighing the individual. Each segment's center of mass's height from the

floor is resolved from marker position data and either table information (point-mass case)

or a mathematical formula, which is dependent on segment structural data (distributed-

mass case). Potential energy, mass times gravitational constant (9.81 m/s2) times height

of the center of mass, is then found.

If the body segments are assumed to be point masses, then a segment's kinetic

energy is calculated as half its mass times the square of the velocity of its center of mass.

This velocity is obtained by applying a finite difference scheme to center of mass position

data, which can be calculated from recorded marker kinematic data. The finite difference

method used in this research is supplied below by Equation 4.6 where xi(j), x2(j), and
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x3(j) are used to denote the x-, y-, and z-position, respectively, of the segment's center of

mass at time j.

The velocity of the center of mass of the segment is then given by

Equation 4.7.

The point-mass segment's kinetic energy is now calculated via Equation 4.8,

where m„g is the mass of the segment.

The kinetic energy of a distributed mass is found by adding the kinetic energy of

its center of mass and the rotational kinetic energy of the distributed mass about its center

of mass (Mansour et al. 1982). In order to find this supplementary rotational kinetic

energy, its moments of inertia about its three axes will be needed. An assumption

necessary to make at this point is that all segments can be thought of as rigid bodies. A

rigid body, as defined by Goldstein (1980), is "a system of particles in which the

distances (between every two particles) are fixed and cannot vary with time."
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It is assumed that the distributed-mass body segments are shaped like frustrums.

Below are the formulae used to calculate the moments of inertia about the segment local

axes through the center of mass, as well as the locations of the centers of mass, which are

notably comparable to those supplied by anthropometric table data (Dempster 1955).

These formulae are derived in Appendix A.
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Table 4.5 lists the moments of inertia and the locations of the center of mass

pertaining to the individual modeled in this thesis. As can be seen, the calculated values

are in reasonable agreement with table data.

Table 4.5 Moments of inertia about the segment axes through the centers of mass and
locations of the centers of mass from anthropometric tables (Dempster 1955) and as
calculated for frustrums

Segment Ix Iy
Iz Location of Center of Mass

(kg m2) (kg m2) (kg m2) (% from proximal end)
(table data in parentheses)

Upper Arm 0.0139 0.0139 0.00247 45.9	 (43.6)

Forearm 0.00931 0.00931 0.000994 45.7	 (43.0)

Now that the moments of inertia about the segment axes are known, the angular

velocities of the segments about these axes are needed in order to calculate the additional

rotational kinetic energies. When considering three dimensions (which is the case of

empirical data), the concept of rigid body rotation must be examined in detail (Goldstein

1980). There are six degrees of freedom available to locate a rigid body in three-

dimensional space: a point (x,y,z) that locates the body's center of mass and three angles

that orient it relative to some fixed global coordinate axes xyz (an inertial frame of

reference). Embedding a fixed local coordinate system x'y'z' in each segment so that the

origin coincides with the segment's center of mass, provides an important non-inertial
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frame of reference. In fact, the rotations that are needed to determine the rotational

energies of each segment are those about the three local coordinate axes, which mandates

the determination of transformation equations relating the inertial (global xyz) and non-

inertial (local x'y'z') coordinates.

There are many different sequences of rotations, which can relate the global and

local set of axes. These are called Euler schemes. The following explanation considers

the Euler xyz scheme, which is illustrated below. All rotations are assumed positive if

they occur in a counterclockwise direction. Both sets of axes begin coincident with one

another. The local axes are then rotated an angle 0 1 about the global x-axis. This

produces intermediate axes , and The next rotation of an angle 02 about the

intermediate maxis creates the line of nodes (the intersection of the yz-plane and the

plane). Once again, transitional axes, 	 and	 are formed. The last rotation

through an angle 0 3 about the '-axis completes the orientation of the local axes denoted

x'y'z', and hence, completes the orientation of the body segment. The scheme is denoted

xyz because of the order of the three rotations.' Anatomically, this scheme can be

thought of as "tilt, somersault, twist." It is illustrated in Figure 4.10 on the next page.

1 Twelve Euler schemes exist: xyz, xyx, xzy, xzx, yxz, yxy, yzx, yzy, zxy, zxz, zyx, and zyz. (Note that no two
consecutive rotations are permitted about the same axis.)
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Figure 4.10 The xyz Euler scheme ("tilt, somersault, twist")

Thus, to relate global xyz-coordinates to local x'y'z'-coordinates, the complete

transformation equations are obtained by multiplying the three individual rotations

together in the appropriate order. This rotation is given by Equation 4.9 below where cj

and sj are abbreviations for cosθj and sinθj  respectively, and E denotes the rotation

matrix for the Euler angles.
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To extract the Euler angles from experimentally-collected position data, the

idealization of each body segment as a rigid body must first be carefully considered.

First, define a segment's local data as its filtered VICON position minus the location of

its center of mass. Examining local data reduces the rigid body motion to pure rotation,

as the linear displacement of its center of mass is already removed. If the segment was a

true rigid body and its marker positions were measured exactly, then the rotation matrix

required to match the marker position data from time t to time t+ I could be found by

solving the linear system R(t)Y, = .ka, +1 , where x j (t) , an element of vector x, represents

the jth-marker's local position at time t.

However, this straightforward approach cannot be immediately undertaken in the

case of empirical data. VICON data, even after filtering, has some measurement error

and each segment's markers, which are attached to the skin, tend to not remain at

constant fixed distances from one another, so that the segment position data recorded

experimentally does not exactly represent a rigid body. That is, there is no exact rotation

solution, R(t), to the matrix equation R(t)Y, = .5ei+1 . Therefore, the closest rotation

matrix, R(t), that can be found which fits local marker data at time t to local data at time

t+1 needs to be determined.
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Having a relationship, E, between coordinates in the inertial reference system

(global) and coordinates in the non-inertial frame (local) enables the calculation of the

required angular velocities of a given segment about its local axes through its center of

mass (Goldstein 1980). These velocities are expressible in terms of the segment's Euler

angles and their time-derivatives. Each angle is first examined separately.

Since ωθ l is parallel to the global x-axis, the complete rotation transformation

must be applied to obtain local coordinates and the component in the x-direction is

selected to get the following:

To find ωθ 2 only the final rotation needs to be used to obtain local coordinates

since its direction is the same as the η' axis. This gives the following η'-direction

components for ωθ 2 .

Finally, since ωθ 2 lies along the local z'-axis, it only has one non-zero component

which is in the z'-direction:



56

These separate contributions to the local angular velocities are combined to give

the components of co with respect to the body axes written below in Equation 4.11.

To calculate the needed velocities of the Euler angles, a finite difference scheme

is used. This scheme is given by Equation 4.12 below, where 01(j), 02(j), and 0 3 (j) are

used to denote the three Euler angles at time j.

Therefore, the components of a rigid body's additional distributed-mass rotational

kinetic energy are given by Equations 4.13 — 4.15 below where cj and sj are abbreviations

for cosine and sine of θj, respectively. To obtain the total kinetic energy of a rigid body,

these quantities are added to the segment's center of mass kinetic energy (as calculated in

the point-mass case via Equation 4.8).
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In summary, to obtain the total energy present in a given segment at time t, its

potential energy and its rotational kinetic energy must be calculated. The potential

energy is calculated from recorded position data and the kinetic energy is found by using

velocities from position data (point mass), as well as Euler angles and their derivatives

(distributed mass).

Figures 4.11 through 4.14 present Piston Cycle 1 body segment and total system

(athlete/chair) energies. In all cases, results from both the point-mass body segment /

disk wheel system and the distributed-mass body segment / disk wheel system are

included.



Figure 4.11 Potential energies of the arm segments in Piston Cycle 1
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Figure 4.12 Rotational kinetic energies of the arm segments in Piston Cycle 1

Figure 4.13 Total energies of the arm segments in Piston Cycle 1
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Figure 4.14 Total energy of the athlete/chair system in Piston Cycle 1

Although the point-mass and distributed-mass energies seem to be nearly

identical, as evidenced by the graphs above, it is important to note that there are

meaningful differences. Close examination of the arm segments' kinetic energies in the

distributed-mass case reveals that the additional component of rotational kinetic energy

about the segment's center of mass is quite significant during specific moments of the

racing stroke cycle. These additional kinetic energy amounts are graphed in Figure 4.15

and their percentages of the overall rotational kinetic energies in the arm segments are

shown in Figure 4.16.
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Figure 4.15 The rotational kinetic energy of the arm segments about their centers of mass

Figure 4.16 The percent of arm segments' total kinetic energies provided
by rotation about the segments' centers of mass

It is apparent from the figures that both arm segments' kinetic energies are greatly

affected by rotation about their centers of mass immediately preceding, during, and

instantly following the push period. Furthermore, upper arm rotation, and to a lesser

extent forearm rotation, is again significant at about 70 % of the stroke cycle, which is

when maximum height is reached and downstroke is initiated. Therefore, segment

rotation is significant near the push period and at maximum height, but is insignificant

elsewhere in the cycle. That is, if a point-mass model is used, it will capture the behavior

of the wheelchair racing motion most effectively during the upstroke and downstroke



periods of the recovery phase. Since the mathematical model presented in this thesis

includes point-mass segments, this model will best simulate recovery upstroke and

downstroke.
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CHAPTER 5

OUTLINE OF TWO-DIMENSIONAL DATA ANALYSIS

5.1 Two-dimensional Data

There are two specific instances in this research when data is two-dimensional, namely

the case of the model and when VICON data is projected into the sagittal plane of the

athlete being modeled. Projecting VICON data into the sagittal plane causes the

unconstrained, three-dimensional racing motion to now possess only the two degrees of

freedom afforded by the plane. Some of this two-dimensional projected data is used as

input to the model so that experimentally accomplished racing strokes can be simulated

in this research.

The details of segment angle calculations and an outline of mechanical energy

analysis for two-dimensional data are provided in this chapter. Once this analysis is

complete, projected empirical racing strokes can be compared with those produced by the

model.

5.2 Projection of VICON Data into the Sagittal Plane

In order to project filtered VICON data into the sagittal plane, two main steps must be

completed. First, the sagittal plane must be defined and second, the three-dimensional

marker position data must be projected into it. Specifically, this algorithm is as follows:
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1) The left and right tubercle markers' VICON locations are averaged to give

TubMid, the midpoint of the tubercles, which is assumed to lie in the sagittal

plane. The sagittal plane goes through TubMid, C7, and L5. The vector

fromTubMid to C7 is crossed with the vector from TubMid to L5 to produce

n , a vector normal to the sagittal plane.



Figure 5.1 illustrates the algorithm outlined above.
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Figure 5.1 Projecting a known point into the sagittal plane

5.3 Structural Parameters

Each segment's mass, center of mass location, and length are needed to complete an

analysis of the two-dimensional data in the point-mass / disk wheel model. These

parameters are all input of the mathematical model. Once again, the segment's length is

measurable and its mass and the location of its center of mass are determinable by

anthropometric tables (Dempster 1955). In addition, each wheel's mass, full radius, and

pushrim radius, as well as the total chair mass, which can all be measured, must be

known.
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5.4 Angles

There are three different types of angles, which are used to describe two-dimensional

movement. They are the segment horizon angle 0, the joint anatomical angle aft, and the

pushrim contact angle αwh . The determination of these angles is described in this section.

The model output consists of O's so that extracting horizon angles from projected, filtered

VICON data will allow for the comparison of model predictions and empirical

movement. Also, model horizon angles (0's) should be manipulated to provide two-

dimensional anatomical joint angles (aft 's), which are meaningful to the clinician.

5.4.1 Segment Horizon Angles

One important angle used to compare empirical data projected into the sagittal plane with

model output is the angle a segment forms with the horizontal, the horizon angle.

Horizon angles are denoted by O's. Horizon angles are model output. To determine the

horizon angle for a given segment from projected data, Equation 5.2 is employed. The

sign function included in this formula causes the segment horizon angle to be designated

positive if it measured counterclockwise from the horizontal or else negative. Also, the

arctan2 function is used (as opposed to just arctan) because it has a full range from zero

to 2n. Figure 5.2 illustrates this calculation with an example showing the horizon angle

of the upper arm.
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Figure 5.2 Calculation of the horizon angle of the upper arm

The dynamic horizon angles of Piston Cycle 1, as determined from filtered,

projected VICON data, are given below in Figure 5.3. A counterclockwise (positive)

upper arm angle indicates that this arm segment is above the horizon. This is comparable

to shoulder joint extension. Note that the wheel completes almost two revolutions in one

complete stroke cycle.

Figure 5.3 Piston Cycle 1 dynamic horizon angles of the upper arm, forearm, and wheel



5.4.2 Anatomical Joint Angles

Once the anatomical joint centers are projected into the sagittal plane, the anatomical
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Figure 5.4 The inherent relationship between the joint angle and
the angles of its proximal and distal segments

In Figure 5.5, the two-dimensional shoulder and joint angles of Piston Cycle 1 are

graphed. For comparison, the three-dimensional shoulder and elbow flexionlextension

angles are indicated in light gray.

Figure 5.5 Piston Cycle 1 dynamic joint angles of the shoulder and elbow

5.4.3 Pushrim Contact Angle

The athlete's body comes into contact with the pushrim at the onset of push. They

remain in contact until the end of push, namely release. While they are in contact, an

angle is formed between the forearm segment and the line segment joining the wheel hub



Figure 5.6 The pushrim contact angle, α wh

This angle, the pushrim contact angle, varies during the push phase. It is

approximated by assuming that the wrist joint center is the body part which makes

contact with the pushrim. For model output, the pushrim contact angle is an immediate

to the projected wheel hub. In the Piston Cycle I trial, the two-dimensional wheel

contact angle is 82.2°.
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5.5 Energy Calculations on Two-Dimensional Data

Expressions for components of the system's total mechanical energy, including the

potential energy and kinetic energy of the body segments and the wheel, are given in this

section. These expressions can be used to determine mechanical energies for both model

output and for projected, filtered VICON data.

5.5.1 Wheelchair Energy Calculations

Since experimental racing conditions, and not actual road racing, are being modeled, only

the wheels of the chair move. Once again, the system's mass, which is not accounted for

by the segments, will be used in wheelchair energy calculations. It is assumed that this

mass, mrest, is equally distributed at the two hubs.

In two dimensions, the wheel is a circular lamina with a given radius. Each

wheel's center of mass is located at the center of its circle (its hub). To compute the

chair's potential energy, hub height is needed. Projected, filtered VICON data includes

hub height. On the other hand, model output consists of theoretical segment angles.

Therefore, simple trigonometric relationships along with known segment lengths must be

used to determine the height of the hub in this case. The wheel's potential energy is

Assuming no-slip conditions, the athlete/chair system will move forward at the

same rate as the wheels. However, in the CompuTrainer setup, the chair does not

translate since it remains in a fixed position throughout the entire racing stroke.

Therefore, the translational kinetic energy of the athlete/chair system is zero.
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To determine the kinetic energy of the wheel caused by rotation, its angular

velocity, ωw h, is needed. The wheel's angular velocity at a specific time,ωw h (t) is

calculated by applying the finite difference scheme given by Equation 5.5 to dynamic

wheel horizon angle data'.

A circular lamina has a moment of inertia about its center (its polar moment of

inertia) equal to half the product of the radius squared and the mass. Therefore, a

wheel's rotational kinetic energy at time t is determined by Equation 5.6, where mwh is

the mass of the wheel and is the wheel's velocity.

Figures 5.7 and 5.8 indicate the results of an analysis of Piston Cycle 1 data. As

in the three-dimensional analysis of this empirical data, the wheelchair potential energy is

nearly constant and the initial kinetic energy of the wheel is minimal. For comparison,

the three-dimensional wheel energies are indicated in light gray.
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Figure 5.8 The wheel's kinetic energy in Piston Cycle 1

5.5.2 Body Segment Energy Calculations

As was mentioned previously, there are two possible idealizations of body segments

considered in this thesis, point-mass or distributed-mass. Each body segment is assumed

to be a simple point mass in the two-dimensional analysis for the reasons given at the end

of Section 4.5.2. To compute the potential energy of a point-mass body segment, its

mass and the height of its center of mass are needed. The horizon angles from projected,

filtered VICON data or from the model, in conjunction with segment masses, lengths,

locations of centers of mass, basic trigonometry, and a specified global origin enable the

calculation of this height. The derivation of the formula for the potential energy of a
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given segment is included in Section 6.4. Basically, V seg = mg(c.o.m. height), where

c.o.m. height denotes the height of the segment's center of mass.

In order to find a given segment's rotational kinetic energy, all segments'

structural parameters, horizon angles, and horizon angle velocities are needed. Note that

only one angle — the horizon angle — is needed to locally orient a segment in two-

dimensional space. This is because there are three degrees of freedom in this case: a

point (x,y) to locate the center of mass and one angle, 0 , to orient it from the horizontal.

For projected data and for model output, the horizon angles are calculable or

given, respectively. The angular velocities are then found by applying the finite

difference scheme given by Equation 5.7 in which 0(j) is the segment angle at time j to

these horizon angles.

Detailed derivation of the formulae for the body segments' kinetic energies is

presented in Section 6.4. For completeness in this chapter, expressions for the potential

energy and the rotational kinetic energy of the upper arm and forearm segments in the

point-mass model are given in Table 5.1. In the table, the following abbreviations are

used:
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Table 5.1 Formulae for the potential and rotational kinetic energies of the upper arm and
forearm point-mass segments

Figures 5.9 through 5.12 present the energies of the arm segments and of the

athlete/chair system in Piston Cycle 1 data. For comparison, corresponding three-

dimensional energies are indicated in light gray.

Figure 5.9 Potential energies of the arm segments in Piston Cycle 1



Figure 5.10 Rotational kinetic energies of the arm segments in Piston Cycle 1
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Figure 5.11 Total energies of the arm segments in Piston Cycle 1

Figure 5.12 Total energy of the athlete/chair system in Piston Cycle 1



CHAPTER 6

THE MATHEMATICAL MODEL: THE BASIC COMPONENTS

6.1 The Approach

The model used in this thesis is an extension of the Motion Analysis Performance System

(MAPS) model developed by Lacker and colleagues (1997), which was originally utilized

to find an individual's optimal gait pattern. As an extension, the model will follow the

same basic approach employed by MAPS. The MAPS approach has the advantage over

more traditional (inverse) methods that are commonly used in modeling motion in that it

does not require extensive kinematic data as model input. It also allows for the

attainment of a complete set of solutions that can accomplish a desired physical task,

which are all consistent with a given individual's structural parameters including the

segment masses, lengths, and locations of the centers of mass.

In this model, the stroke is considered to be symmetric so that only one side of the

athlete and racing chair system needs to be included. The human body is idealized to be

an inelastic, two-dimensional, n-1 -segment, coupled-pendulum system in which each

pendulum represents a body segment. Because the model is two-dimensional, the effects

of movement out of the sagittal plane will not be captured. In this way, this modeling

attempt is a first approximation. Furthermore, the pendulums are represented as simple

point masses, rather than distributed masses. The wheelchair is modeled as one segment,

the wheel, which is represented as a uniform disk. The wheel additionally has half the

mass of the athlete/chair system not accounted for by the n segments, located at each hub.

The disk is attached to the end of the body segment system.
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Wheelchair racing, like walking, is a cyclic motion. It may be reasonable to

assume that the best stroke technique, which is to be repeated continually over the whole

race, would be the one, which has the least mechanical energy cost per unit distance

traveled. The best stroke would plausibly have two primary ingredients. First, the

athlete's arm segments would be moved in an efficient way. Secondly, the racer would

conserve energy by using muscles only at optimal times during the stroke cycle to impart

necessary propulsive and/or braking forces. If these two conditions were to be met, the

mechanical energy cost could conceivably be minimal, resulting in peak performance.

In modeling the racing stroke, this idea is taken into account. The main

assumption of the model is that the wheelchair racing stroke can be captured by

dissecting the entire cycle into an arbitrary number of consecutive phases, at the

beginning of which impulsive forces supplied by the muscles are allowed to occur. That

is, the only times that muscular energy can be supplied during the stroke cycle is at the

boundaries of the prescribed phases. Although this is an extreme simplification of how

human motion occurs, the close correlation of MAPS theoretical gait output with

experimental gait data indicates that this method may be a good first approximation in

modeling a cyclic motion (Choi 1997). A fundamental contribution toward enhancing

this sport would be to determine where these phases should occur (that is, how to

partition the entire stroke cycle into phases — when the muscles should be used — for

maximal mechanical energy efficiency).

A phase consists of an initial configuration, a final configuration, and a time

duration. An initial or final configuration consists of the locations and orientations of all

modeled segments (both body and chair) at the onset or end of the phase, respectively.
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Once the phases are established, Lagrange equations of motion for the human/wheelchair

system will be applied. These equations will be constrained when the athlete is

contacting the pushrim of the wheel (during what is clinically called push) or when a

joint's extreme range of motion is attained. The equations will be unconstrained

immediately following pushrim release and up until the next pushrim contact (during

recovery) provided that no joint extreme range of motions are encountered.

The Lagrangian equations are second-order, nonlinear, ordinary differential

equations. Together with the time duration and initial and final configurations provided

by a given phase, the equations of motion create a well-posed, two-point boundary value

problem (BvP). This BVP is solved via numerical methods for each phase, and the

solutions are concatenated to simulate the complete continuous stroke motion. The

mechanical energy cost per unit distance traveled is calculated for the output model

solution.

Each racing stroke, whether it is experimentally performed or produced by the

model, is characterized by several independent motion parameters, for example wheel

velocity, cycle time, maximum shoulder elevation angle, and wheel contact angle. If

there are P stroke parameters, then simultaneously varying all of them over a range

consistent with the athlete's physical capabilities, produces a ρ-dimensional motion

space. Every point in this space represents a racing stroke technique characterized by

those P parameters. Thus, systematically varying the P quantities allows for the

determination of all racing stroke cycles that an individual is capable of doing.

Moreover, each of these techniques has a calculated mechanical energy cost per unit
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distance. Searching this ρ-dimensional motion space or a specified subset of it allows for

the determination of the most energy-efficient technique.

6.2 The Human Body Structure

As was stated in the previous section, the body is represented as an inelastic, coupled-

pendulum system in two dimensions. As a first approximation, each pendulum is simply

a point mass located at a model-input specified distance from its pivot point.

In the model, segment masses and lengths are required input. Each segment's

mass is calculated as a percent of total body mass of the athlete to be modeled according

to anthropometric table data (Dempster 1955). Furthermore, each segment's length is

measurable on the individual. The location of the center of mass of each segment must

also be specified and is supplied by tables.

The number of body segments (and, therefore, joints) included in the model is

allowed to vary depending on the athlete whose stroke is being investigated. This is

possible because the model uses a general relationship matrix, described below, to

identify how the segments are related to one another. This is an important feature when

simulating the motion of wheelchair racers, as these spinal-cord-injured individuals have

diverse degrees of functionality.

For example, it is sufficient to model a person with a high-level spinal cord injury

(who has no control over the abdominal muscles) by considering only two body segments

— namely, an upper arm and a forearm. The trunk does not have to be included in this

case because it cannot move during the stroke cycle. In fact, the trunk remains stationary

throughout the movement, lying on the motionless legs for support. On the other hand, to
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simulate the stroke of a racer with a lower-level injury (who is capable of producing

trunk motion) three body segments are used — a trunk, an upper arm, and a forearm. The

ability to move the trunk enables the athlete to produce a pump-like motion with this

segment throughout the stroke.

Once the number of segments is assigned, they, represented as pendulums, are

attached to one another in a specific order. One segment is designated to be the root

segment of the system. The origin of the coordinate system is located at a specified end

(either proximal or distal) of the root segment. From this root segment grows a general

tree structure in which each segment has specific ancestors and descendants. In travelling

from a given segment to the root, any segment traversed is an ancestor. Any segment

that considers a given segment as its ancestor is known as a descendant. This vocabulary

is illustrated in the three-segment, point-mass model of Figure 6.1.

Figure 6.1 An illustration of ancestors and descendants

This segment-relationship formulation is used to easily determine the equations of

motion for a general branched-tree structured system (Choi 1997). The specifics of this

approach are discussed in Section 6.4.
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6.3 The Racing Wheelchair Structure

Since the model output is to be compared with empirical data collected on the

CompuTrainer, the racing chair can be represented in simplified form'. Once again,

athlete/chair movement symmetry is assumed and only one side is considered. This half

chair is represented in the model simply as one uniform disk, which has an additional

mass of (1/2) Mrest ,half of the athlete/chair system mass not accounted for by the n

segments, located at its hub. Chair structural input required by the model includes the

wheel's mass, full radius, and pushrim radius, as well as the total mass of the athlete/chair

system, which are all readily measurable.

An additional parameter needed as model input is the orientation of the athlete in

the chair. Specifying the location of the origin of the system's root segment relative to

the hub of the wheel will furnish this information. It is also determinable by identifying

an initial or final configuration of the system.

6.4 The Equations of Motion

Since the purpose of this model is to determine possible paths of motion for the

athlete/wheelchair system, it is necessary to develop equations of motion, which are then

solved to give possible trajectories of the body segments and the wheel. There are

several formulations of the fundamental laws of dynamics, which can be used to

determine these equations. In this model, the Lagrangian approach is followed.
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In order to develop the equations of motion via the Lagrangian method, the first

necessary step is to choose appropriate independent generalized coordinates. In an n-

coupled pendulum system whose two-dimensional motion is being considered, there are n

degrees of freedom when the motion is unconstrained and n-k degrees of freedom when

there are k independent equations of constraint. The n generalized coordinates are chosen

to be the angles the segments make with the horizontal (the horizon angles), where

counterclockwise is considered positive. This choice is illustrated in the four-segment

point mass / disk model of Figure 6.2.

Figure 6.2 The dynamic horizon angles in a four-segment, point-mass/disk model

In modeling the wheelchair/racer system, the local origin is at a specified end of

the root segment. From this origin, the location of all segments' centers of mass can be

described via the dynamic horizon angles and model-input structural parameters. It is

important to note that when the racer is not in contact with the wheel (that is, during
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recovery — unconstrained motion), the motion of the racer and the chair (the wheel) are

considered separately. However, when the racer is pushing the wheel (during push —

constrained motion) the coupled motion of the racer and the chair is examined.

To derive the Lagrange equations of motion, expressions for the potential and

kinetic energies of the system are needed. These expressions will be derived as generally

as possible in this section. During push, it is assumed that the system consists of a point-

mass pendulum system (the body segments and the point mass at the hub of the wheel),

which has a distributed-mass wheel segment attached to its terminal end (at the hub). On

the other hand, two separate systems are considered during recovery. The first is a point-

mass pendulum system consisting of the body segment point masses and the point mass

located at the wheel hub, and the second is a disk wheel segment.

Expressions for the energies of any given point-mass pendulum system will be

derived first, which is sufficient for obtaining the recovery phase's equations of motion.

This derivation will be followed by the determination of the energies of a disk wheel,

which are necessary to include in finding the push phase's equations of motion.

Consider a pendulum system made up of s segments. Let each segment be

represented by a discrete number of point masses so that there are a total ofp point

masses in the system. Choi (1997) used a p x s relation matrix R to express the

relationship between the s segments. Given that the ith point mass is on segment m, R 's

components are defined as follows:
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where is the length of the ith segment (model input), z, is the distance from the m th

segment's end closest to the root segment to the ith point mass, i ranges from 1 top, and j

ranges from 1 to s. Note that R 's p rows contain information about the point masses in

the system and its s columns concern the segments.

For example, consider the system represented in Figure 6.3 below. In the figure,

R„ indicates the radius of the pushrim.

Figure 6.3 The three-segment, point-mass / disk wheel model

Temporarily ignoring the distributed-mass wheel in Figure 6.3, the relation matrix

of the three-segment, point-mass system is as follows:
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The x- and y-coordinates of p point masses located on any branched-tree, s-

segment system are now concisely expressed as follows:

where 8 ; is the horizon angle of the ith segment (time-dependent; model output).

The x- and y-components of the velocities of these point masses are obtained by

differentiating their x- and y-coordinates with respect to time. Therefore, the velocity

components are as follows:

where sin 0 and cos O are defined to be diagonal matrices with nonzero elements

Equations 6.2 through 6.5 enable the concise expression of the potential and

kinetic energies of any branched-tree structure, point-mass segment pendulum system.

The pendulum system's potential energy is found by summing the potential energy of all
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point masses. Therefore, the potential energy of the point-mass pendulum system is

given by Equation 6.6 in matrix form.

where 1 is a 1 x p vector of ones and p x p mass matrix M has nonzero elements equal

to the masses of the points on its diagonal. For example, the diagonal mass matrix of the

point-mass system in Figure 6.3 is as follows:

Performing the multiplication in Equation 6.6 gives the potential energy of the

point-masses of the body segments in summation form. This is as follows:

The kinetic energy of the pendulum system is similarly found by summing up the

kinetic energies of all point masses and is expressible in matrix form. It is derived as

follows:



Performing the matrix multiplication of Equation 6.9 gives the pendulum

system's kinetic energy in summation form. This is as follows:
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Next, the energy contributions from the wheel segment's distributed mass must be

found. For the following calculations, the disk wheel is attached at the terminal end of

the point-mass pendulum system, which is the hub. The hub is not assumed to remain at

a fixed location, which means that it is free to move in the plane. In Section 6.5, details

will be given for imposing this constraint.

To obtain an expression for the potential energy present in the disk wheel, an

integral must be evaluated. Let dm be a small element of mass on the wheel as indicated

in gray in Figure 6.4. Note that any small section of the wheel dm can be located by the

variables r, the radial distance from the hub, and 0, the variable angle from the horizontal

with the hub.

Figure 6.4 A small section of mass on the disk wheel indicated in gray
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Although Equation 6.11 gives a wheel point's linear velocity, it is important to

note that all points on the wheel have the same angular velocity about the hub, namely

energies must be summed. Since there are an infinite number of points on the disk wheel,

an integral is used to determine the disk wheel's kinetic energy. This derivation proceeds

as follows:
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where k represents the wheel segment.

From the point-mass pendulum system's kinetic energy expression in Equation

6.10, it is seen that the point mass at the hub of the wheel has kinetic energy equal to

segment is the wheel and the rkl are from the point-mass pendulum system's relation

matrix R . This means that the distributed mass of the wheel adds only the quantity
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mass system given in Equation 6.10. This suggests altering the relation and diagonal

mass matrices given in Equations 6.1 and 6.7, respectively, so that the point-mass / disk

wheel segment is represented appropriately. The necessary modification to the relation

matrix of Equation 6.1 consists of adding a rovk, at the bottom of the matrix with a

row at the bottom with diagonal element m wh. That is, for the system pictured in Figure

6.3, R and M will now be as follows:

With these new matrices, the potential energy of the point-mass / disk wheel

system can be expressed as given by Equation 6.6 provided that the 1 x p vector 1
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becomes T , a vector of ones except for a zero as its pt" element. Moreover, the system's

kinetic energy can be expressed exactly as given by Equation 6.9. In summary then,

Equations 6.14 and 6.15 describe the energies of the whole point-mass / disk wheel

system.

Now that the kinetic and potential energies of the point-mass disk wheel system

have been derived, equations of motion will be obtained via the Lagrangian approach. In

general, given a system described by s independent variables (for example, the horizon

angles of the s segments), the Lagrangian equations of motion are given by Equation 6.16

(Wells 1967). The terms on the right hand side are generalized forces acting on the

system in the θi direction. They will be examined in depth at a later point.

To obtain the terms on the left-hand side of Equation 6.16, derivatives of the

system's kinetic energy are needed. These are as follows:



Substituting these derivatives into the Lagrangian equations of motion given by

Equation 6.16 produces the equation

which simplifies to Equation 6.19 below. These are the Lagrangian equations of motion.

Now consider the terms on the right-hand side of Equation 6.19. The first term

gives the net, non-conservative generalized force (due to gravity and, if included, joint

viscosities) acting on the system in the θ i direction. These generalized forces in the

directions of the segment angles are expressible as linear combinations of Fxj and Fr,
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forces acting on the p point masses in the xj- and yi.- directions, respectively, for
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Define an s x 1 generalized force vector Q, an s x 2p coordinate change matrix A,

and a 2p x 1 force vector F as follows:

This notation allows Equation 6.20 to be expressed simply as Q = AF . Thus, the

non-conservative generalized forces can be found by multiplying the coordinate

transformation matrix by a force vector comprised of forces in the point masses' x- and y-

directions. In this thesis, the only non-conservative generalized forces included are those

provided by gravity. Furthermore, a generalized gravitational force in the 0 ; direction can

be expressed as in Equation 6.21 below.



Defining Г , an s x 1 vector, as g R TM 1 T allows the generalized gravitational

forces to be expressed concisely. This abbreviation is used in Equation 6.23 below.

At this point, it is possible to write the Lagrangian equations of motion for an

unconstrained system. These are given by Equation 6.24 below.

For a constrained system, the second term on the right-hand side of Equation 6.19

must be included. This term is the net generalized force in the θi direction due to the

constraints imposed on the system. (More details on constraints are given in Section 6.5.;

Given k constraints, Gj(θ 1 ,...,θs ) = 0 where j = 1,...,k , these constraint forces are
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It is important to note that the units of these generalized force terms are Newton-

meters, which means that generalized forces in the angular directions are torques. These

generalized force expressions will now be incorporated into the Lagrangian equations of

motion given by Equation 6.19. For simplicity, the matrices and vectors given in Table

6.1 will be used.

Table 6.1 Definition of matrices and vectors appearing in the equations of motion



The movement of the system during a specific phase is completely determined by

a two-point boundary value problem. The BVP consists of the equations of motion given

for the phase. The s + k unknown dynamic variables in the equations of motion, which

horizon angles and the Lagrange multipliers.

These matrix equations are converted into a system of second-order differential
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Therefore, the equations of motion are given by the following system of second-

order differential equations, Equation 6.29:

The above system of equations can be written more concisely. This gives the

Lagrange equations of motion for a constrained system as follows:

Equation 6.30 is of the general form mass x acceleration = force. This

generalized mass matrix is (s + k) x (s + k). If it is possible to invert this square matrix,



101

There are a total of s+k equations given above, the first s of which define a

system of second-order, ordinary differential equations. The remaining k equations are

algebraic equations for the ?Cs. This allows for the simultaneous computation of the k

multipliers are determined, the forces of constraint may be calculated via Equation 6.27.

6.5 Constraints

The types of constraints, which are included in this model of wheelchair racing, are listed

and briefly described below in Table 6.2.

Table 6.2 Constraints, which occur during wheelchair racing

Constraint Description

Joint angle range of motion

The angle that two adjoining body segments make is limited

anatomically by the joint's range of motion. The model

must take these limitations into account.

Fixed hub

The wheel hub is at a fixed orientation and distance from the

origin of the root segment in the model. These parameters

are required model input.

In general, constraints restrict the allowable motion of a system. The constraints

listed in the table confine the athlete/chair system considered in this research in specific

ways. In order for constraints to be imposed and then maintained, forces must act on the
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system. These are the forces of constraint. One advantage of the Lagrangian approach is

that these forces are automatically accounted for in the equations of motion and they do

not need to be specified as model input. That is, including constraint forces explicitly in

the equations of motion is not necessary when the Lagrangian method is followed but is

necessary when a Newtonian approach is taken (Wells 1967). In fact, it is possible to

calculate the constraint forces via the transformation equations, the equations of

constraint, and the Lagrange multipliers, as per Equation 6.27.

In the following sections, each constraint listed in the table is examined in detail.

To include active constraints (elements of the constraint vector G) in the system's

of constraint.

6.5.1 Joint Angle Range of Motion

Anatomically there are restrictions in the possible range of motion of each joint. This

means that it is impossible for a joint whose range of motion is [α min ,α max ] to open

smaller than αmin or larger than α max . Figure 6.5 illustrates this constraint for a joint with

range [25°,180°].



Figure 6.5 The range of motion of a joint

As was explained in Section 5.4.2, the magnitude of a model-determined joint

the joint's range of motion. The constraint will be imposed immediately once the model

outputs a configuration, which produces a joint angle that is at either extreme of the

allowable range of motion. Therefore, the constraint function is either
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By Equation 6.26, the components of the generalized forces of constraint are

determined to be torques, this means that the constraint must be released when the

induced torque changes direction.

6.5.2 Fixed Hub

The racing stroke cycle is made up of time spent in push and time spent in recovery.

During recovery, the athlete's body segments and the wheel of the racing chair move

independently of one another and the wheel segment need not be included in the dynamic

coupled pendulum model. However, during push, their motion is coupled and the athlete

must maintain contact with the pushrim of the racing chair's wheel. This necessitates the

wheel's inclusion as a segment in the system during push.

As a first approximation, assume that the wrist is the body part, which stays in

contact with the pushrim during push. Attaching the wheel segment to the wrist end of

the forearm segment will force this condition. The system will then be modeled

appropriately provided that the hub of the wheel is fixed in its correct (model input)

orientation to the system's root segment and is not free to move in the plane.

To fix the hub in such a manner, first take into account that the racing wheelchair

used by an athlete is custom designed so that there is a snug fit between the athlete's

body and the seat. Therefore, it is assumed that the local origin of the system s remains at
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a fixed distance from and unvarying orientation (horizon angle) to the wheel hub. These

two quantities (distance D and angle ()hub) are required as input to the model and are

illustrated in the four-segment, point-mass / disk system of Figure 6.6 below.

Figure 6.6 The fixed orientation of the athlete in the racing chair

Since the local origin is located at the root segment, the local coordinates of the

wheel hub are (D cos() hub D sin() hub ) . If there are n segments in the system, these local

coordinates can also be found by tracing through all n segments from the root (origin) to

the end of the wheel segment. If the point-mass system's relation matrix R defined in

Equation 6.1 of Section 6.4 is modified to become ii so that its diagonal terms are now

L's instead of z's, then the coordinates of the end of the wheel segment are

value to indicate the wheel segment. Thus, fixing the hub results in the following system

of equations of constraint:
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6.6 Non-Conservative Generalized Forces

In general, the sum of non-conservative generalized forces acting on the system make up

the vector Q of Section 6.4. In MAPS, joint viscous forces are the only permitted

dissipative forces (tacker 1997, Choi 1997). However, because model output presented

in this thesis agreed reasonably well with experimental data without including joint

viscous forces, these parameters were set identically to zero in this work.



CHAPTER 7

THE MATHEMATICAL MODEL: OBTAINING A SOLUTION

7.1 The Two-Point Boundary Value Problem

As was previously mentioned, the entire racing stroke cycle is divided up into an

arbitrary number ( N ) of distinct phases, p1,...pN. Each phase, pi, is mathematically a

two-point boundary value problem consisting of the following items:

• the equations of motion, which include all constraints acting on the system

during the phase

Because the phases will later be concatenated to form the entire stroke cycle

solution, the boundary configurations of two neighboring phases must match up so that

the final configuration of phase i is the same as the initial configuration of phase i+1.

solution throughout the stroke cycle, which is obviously desirable. Although the

kinematic solution will be continuous, each phase (two-point BVP) is solved

independently from the other phases. Even adjacent phases, pi+1 and pi-1, have no effect

on the solution of a given phase, pi.

Furthermore, each phase is regarded as ballistic. This means that only the forces

present in each phase's equations of motion (including gravitational forces, joint viscous
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forced, and constraint forces) act on the system throughout the phase. There are no

muscular forces or other external forces acting on the system for the duration of the

phase, as these types of forces are not present in the equations of motion.

7.2 Method of Solution

To determine the trajectory of the segments during a phase, its two-point BVP is solved

numerically by the shooting method (Press et al.). Assume the model includes s

I Joint viscous forces are excluded in this thesis.



These new error vectors indicate the influence each component of the initial velocity

vector has on determining the end configuration, in effect producing a measure of
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Iteration now occurs and continues until the error vector is zero, at which point a solution

to the BVP is found.

7.3 Interpretation of the Solution

The solutions of all N phases are concatenated to form the entire stroke cycle. Although

the configurations are required to match at the boundaries of the phases, the angular

velocities have no such restriction. Moreover, because the phases are solved

independently, these velocities are likely to be discontinuous at the phase boundaries.

Denote the discontinuity in segment angular velocities between phases i-1 and i as

system's generalized momentum. Impulsive generalized forces cause these instantaneous
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changes in generalized momentum. Thus, these impulsive generalized forces may be

calculated from the discontinuities in the segments' angular velocities at the phase

boundaries, which are model output.

Moreover, these impulsive generalized forces have two sources of origin. One

source is instantaneous muscle input from the athlete. The second source is physical

impulsive generalized forces acting on the system at that instant. In the wheelchair

racing stroke there are two occurrences which can produce physical impulsive

generalized forces. One physical impulsive generalized force is the impact force caused

by the full extension or flexion of a joint. The other is the impact force caused by the

athlete's inelastic collision with the pushrim at the moment of push. Because these

instantaneous physical generalized forces arise from impacts, they will be referred to as

impact forces.

It is certainly possible that the total impulsive generalized forces calculated at

some phase boundaries have components of instantaneous muscle input and

instantaneous impact forces. It is desirable to separate these forces so that the athlete's

muscular input is known. In order to resolve this net muscle input, these non-muscular

impact forces must be subtracted out of the calculated total impulsive generalized force at

the phase boundary. Therefore, these instantaneous impact forces need to be determined.

This is accomplished by the projection method, which is explained in Sections 7.4 and

8.4. It is important to note that required muscle input at a phase boundary may be

positive, a source of energy, or negative, a sink of energy. If muscle input is positive, the

muscles must supply energy to the system by acting propulsively. On the other hand, if

muscle input is negative, the muscles must remove energy from the system by braking.
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As was already stated, the number of phases chosen is arbitrary. Because muscle

input is only possible at the phase boundaries, increasing the number of phases allows for

more frequent muscular action, and in the limit, approaches continuous muscle activity.

In fact, using N phases in the model to simulate a VICON-recorded racing stroke

technique, which consists of F frames of kinematic data, results in a Lagrangian form of

the inverse method in the limit as N approaches F.

However, it is plausible that an energetically efficient stroke does not require

frequent (or continuous) muscle input. This means that a small number of phases may be

adequate for the purpose of this research, which seeks a mechanically energy efficient

stroke technique. In fact, in the ideal case perhaps the net muscle input required is zero.

That is, the net effect of the gravitational forces, joint viscous forces, constraint forces,

and impact forces acting on the system cause the segments to complete a racing stroke

without any muscle input at all. This would clearly define a mechanically efficient stroke

technique for the athlete. If such an ideal solution exists, it would certainly be extremely

sensitive to such parameters as push timing and the point of force application. Even if an

ideal solution does not exist, the model is still useful provided that the wheelchair racing

stroke can be idealized into prominent times when the muscles are active (that is, phase

boundaries).

7.4 The Projection Method

The projection method is used to predict the magnitude of the impulsive, non-muscular

impact forces. The two circumstances for which the projection method must be

employed in modeling wheelchair racing are those described in Section 6.5, namely at
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joint angle extremes and at pushrim contact. First consider pushrim contact. When the

(n-1)-coupled body segment pendulum system hits the pushrim of the wheel, the

segments' trajectories, and thus velocities, are instantly redirected so that the constraint

(the circular path of the pushrim) is followed. Essentially what occurs is that the

velocities of the segments are projected into the tangent space of the constraint.

Similarly, when a joint angle is at its extreme range of motion, the joint's segments must

instantaneously alter their trajectories to avoid hyperextension or hyperflexion. Details of

the projection theorem and the calculations involved are given in Section 8.4.



CHAPTER 8

A GEOMETRIC DERIVATION OF THE EQUATIONS OF MOTION

8.1 Introduction and Definitions

In this section, a non-rigorous, general derivation of the model's equations of motion will

be presented. The calculus of variations is employed through a geometric approach.

Equations for both the unconstrained and constrained cases, as well as the projection

method, will be obtained.

Although many of the notations used in this section will be the same as those in
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Least Action, any observed path of the conservative mechanical system that satisfies the

given boundary configurations must be a critical path of the action A.

8.2 The Unconstrained Conservative System



The second integral in Equation 8.1 is simplified via integration by parts as

follows:
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The fundamental lemma of the calculus of variations states that if

This gives the Lagrangian equations of the observed motion for unconstrained

conservative systems, Equation 8.2, below.

8.3 The Constrained Conservative System

Next, consider a system with k independent constraints where the k x 1 -constraint vector,



neighboring paths are on the surface, they must satisfy all constraints, giving
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and the inner product definition is modified to integrate from t, to tf. Moreover, since this

inner product equation must hold for all constraints (i.e., for i = 1,...,k), the test

functions consistent with all constraints, 0 (0 , must satisfy the homogeneous system
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Integrate the second term in Equation 8.4 by parts, let c = 0, and recall that test

functions vanish at the endpoints. This allows the variation of the action of a constraint-

surface path to be expressed as follows, where the inner product is modified to integrate

from tc to tf.



This gives the Lagrangian equations of observed motion for constrained

conservative systems, Equation 8.7, below.
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8.4 The Constraint Interface and the Projection Theorem

Equations 8.2 and 8.7 allow for the determination of the equations of observed motion for

an unconstrained conservative system or a constrained conservative system. Now

consider the moment, tc, when a constraint is imposed on an unconstrained (pre-

constraint) system causing it to become constrained (post-constraint).

Let the neighborhood of the critical path be defined piecewise as

of the unconstrained and constrained critical paths can be represented as

neighboring paths will remain on the surface of constraint for the appropriate time

interval.

The action of the critical path Θ*  (t) is obtained by summing the actions of the

unconstrained critical path and of the constrained critical path. That is,

appropriate time interval.

Setting the variation of the action of this critical path equal to zero via Equation



The boundary conditions allow for simplification, giving Equation 8.9, which

describes the variation of the action of the critical path:
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Consider the following cases:

Case 1: The path contacts the surface of constraint C at time t, and has the same

configuration as the critical path at that instant.
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configuration on C as before, but then perturb the path on the surface C.

illustrated below.
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1c)	 Combine cases la and lb to account for any paths which still contact C at

Θcom  at time tc, but are perturbed in both of the time intervals [ t o , tc ) (pre-

constraint) and (tc,tf ] (post-constraint). That is,



In this combined case, the system's motion must satisfy

(post-constraint). Note that because case lc combined cases la and lb, no

new necessary conditions were established.

This concludes Case 1.

Case 2: The path contacts the surface of constraint C at time t, and does not have

the same configuration as the critical path at that instant.

Perturb the path in both the pre-constraint and the post-constraint regions
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that since the path (and not the velocity) must be continuous at the constraint
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In this case, Equation 8.9 becomes

first and second integrals are identically zeroes, respectively. Furthermore, since
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Consider the quantity enclosed in braces in Equation 8.10. Recall that the

Lagrangian is defined in matrix form as

M is the Θ-dependent generalized mass cosine matrix defined in Section 6.4.

Equation 8.11 below.

Factoring out the symmetric generalized mass cosine matrix in Equation

8.11 gives Equation 8.12.

Given M, a positive-definite symmetric matrix, a new inner product with

Equation 8.12 is now expressible as follows where all quantities in the equation

are evaluated at contact, the instant when the system becomes constrained (i.e., at

time tc):
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tangent space to the surface of constraint C at any given point, it further follows

contact, for t, t tf so that the post-constraint path will remain on the surface

of constraint during this time interval. Figure 8.1 below illustrates the geometric

relationship between the pre- and post-constraint generalized velocities at contact,

where pictorial orthogonality indicates M-orthogonality.

Figure 8.1 An illustration of the relationship between pre- and
post-constraint generalized velocities at contact

As can be seen in Figure 8.1, note that just before contact, the pre-
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space of the surface of constraint C (of which the system is not yet aware).

However, instantaneously after contact, the post-constraint generalized velocity

system. This instantaneous jump accounts for the discontinuity of velocities and

requires the presence of impulsive forces at the time of contact. Physically, this

contact often corresponds to an inelastic collision and the impulsive forces are the

vector at contact, it is necessary to have an explicit representation of T . Such a

representation is possible since T is the homogeneous solution of

Substituting these expressions into Equation 8.12 gives the following relationship,



Equation 8.16 is altered to give the following relationship between the

pre- and post-constraint generalized velocities at the time of contact, namely

Equation 8.17 is called the Projection Theorem because it is the

M-projection of the pre-constraint system's generalized velocity into the tangent

space of the surface of constraint at the moment of contact, which gives the

generalized velocity of the system immediately after the constraint is imposed. It
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represents a generalization of the principle conservation of momentum for

constrained systems. Furthermore, if there are no constraints acting on the

system, A is the identity matrix and the Projection Theorem is exactly reduced to

From the Projection Theorem, Equation 8.17, it also follows that

generalized velocity vector immediately after contact is given by Equation 8.18.

8.5 Numerical Implementation of the Projection Theorem

To calculate the post-impact segment angular velocities when a constraint is enacted in

the stroke cycle, the projection theorem is applied. Recall that the post-constraint

generalized velocity vector at contact is given in terms of the pre-constraint generalized

velocity vector at contact by Equation 8.18, which contains an inverse matrix.

Computing inverses of ill-conditioned matrices may produce large numerical errors.

Therefore, if A T MA is ill-conditioned, Equation 8.18 may yield a poor computational

solution.

The steps below outline the method of numerically obtaining the generalized
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and being careful to reduce numerical errors that would arise if the columns of A were to

be nearly dependent. All quantities in the steps are evaluated at contact, i.e., at t c .

1)	 Let M, which is symmetric and positive definite, be decomposed as

M =W TW . It follows from Equation 8.17 that

tangent space of the constraint T . Note that these column basis vectors

may be near one another so that A T MA may be nearly singular and ill-

conditioned. This issue will be resolved in Step 4 below.

3)	 Define 74 = WA so that Equation 8.19 gives the following:

Note that Equation 8.20 may be considered as either the normalized
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4) Factor A = QR , where Q is orthonormal and R is upper triangular and

invertible. This is analogous to the Gram-Schmidt process and produces

an orthonormal basis for T , causing the basis vectors to be far apart.

This is important because using orthogonality in computations reduces

numerical roundoff error.

5) Making these substitutions in Equation 8.12 gives the following since Q is

orthonormal and R is invertible:
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Figure 8.2 illustrates the steps described above.

Figure 8.2 Steps taken to numerically project a the system's angular velocity vector



CHAPTER 9

MODEL RESULTS: WHEELCHAIR RACING STROKE SOLUTIONS

9.1 The Model Applied to Wheelchair Racing: Assumptions and Input

One main assumption of this model is that it is possible to divide a complete wheelchair-

racing stroke into a small number, N, of consecutive ballistic phases. Mathematically,

this means that N BVPs need to be solved for the segments' dynamic horizon angles and

that adjacent solutions must be continuous. It is desirable to find a solution with as few

phases as possible. This ensures a minimal dimension of the motion space, which will be

searched for an optimal stroke technique.

In this thesis, three-phase solutions are presented. The phases are referred to as

Release 1, Release 2, and Push. These phases have the following characteristics, where

configuration refers to the segments' positions (horizon angles) and assumptions are

indicated:

Release l:

1) Release 1 begins immediately after the pushrim is released and continues until

a specified time during the upstroke.

2) ASSUMPTION: the elbow joint is constrained to a particular range of motion and

cannot exceed an indicated maximal angle during Release 1; this results in a

"stiff arm segment," where the elbow angle remains fixed, in Release 1 once

this constraint is enacted.
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3) Release 1-model segments include an upper arm, a forearm, and an unattached

wheel; the motions of the arm segments and of the wheel are uncoupled

during Release 1.

4) The Release 1 initial configuration is the same as the final configuration of

Push; the final configuration of Release 1 is identical to the initial

configuration of Release 2.

Release 2:

1) Release 2 begins after Release 1 and continues until the athlete contacts the

pushrim; that is, Release 2 includes part of the upstroke as well as the full

downstroke.

2) ASSUMPTION: The range of motion of the elbow joint is not constrained during

Release 2. In practice, there appears to be no loss of generality in making this

assumption, since elbow joint angles exceeding the maximum range of motion

used in Release 1 are not observed in Release 2.

3) Release2-model segments include an upper arm, a forearm, and an unattached

wheel; the motions of the arm segments and of the wheel are uncoupled

during Release 2.

4) The Release 2 initial configuration is the same as the final configuration of

Release 1; the Release 2 final configuration is the same as the initial

configuration of Push (except for the position of the wheel segment).
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Push:

1) Push begins after Release 2 and concludes the three-phase cycle.

2) To instantaneously project Release 2 final velocities, simulating the effect of

pushrim impact, the duration of push can be set to 0.0 seconds. Consequently,

the immediate effect of pushrim impact on the wheel and arm segment angular

velocities is calculated at the beginning of this instantaneous Push by M-

projecting the final Release 2 angular velocities into the tangent space of the

Push-model in the wheel contact configuration. This process enables the

effect of the impact at the moment pushrim contact to be separated from what

occurs during Push.

3) Push-model segments include an upper arm, a forearm, and an attached wheel,

the hub of which is fixed in position; the motions of the arm segments and of

the wheel are coupled during Push.

4) The Push initial configuration is the same as the final configuration of Release

2 (except for the wheel segment); the Push final configuration is identical to

the initial configuration of Release 1.

The two assumptions included in the above list are justified in a first

approximation sense by Piston Cycle 1 empirical data. Specifically, the assumption that

the elbow angle does not exceed a specified maximum during Release 1 is reasonable in

that the experimental elbow angle remains near but does not exceed 160 degrees for an

early portion of the stroke cycle. This constraint is not required during Release 2, as the



elbow angle remains well below any such maximum in the empirical data. This joint

angle is graphed in Figure 9.1 below.

139

Figure 9.1 Piston Cycle 1 elbow angle

The cyclic nature of the three-phase solution is illustrated in Figure 9.2. ICS and

FCC are abbreviations for initial configuration and final configuration of phase j,

respectively. The duration of phase j is denoted ti. Arrows in the diagram indicate

equivalence.

Figure 9.2 A three-phase wheelchair racing stroke solution



In such a three-phase, three-segment model solution, there are a total of ten

independent parameters. These are as follows:
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Specifying these ten independent motion parameters will mathematically yield a

complete model wheelchair racing stroke motion, provided that the BVPs are solvable.

However, it is possible to choose another set of ten, more clinically relevant independent

parameters, which would also define a model stroke. The following independent set is

used in this dissertation:
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To obtain a model solution, reasonable values must be chosen for each of these

ten clinical parameters, which then serve as model input. Piston Cycle 1 data provides

such appropriate numbers. The values are as follows:



Figure 9.3 The pushrim release configuration of Piston Cycle 1

4) Piston Cycle 1 consists of 59 frames of VICON data making the total

cycle time approximately 0.483 seconds.

5) The graph in Figure 9.4 shows Piston Cycle 1 horizon angle data arranged

in the following order: Push — Release 1 — Release 2. At 0.033 seconds,

cusp-like features are apparent in the horizon angles inferring the

boundary of Push and Release 1. Thus, Push lasts 0.033 seconds, which

means that the recovery cycle time is 0.450 seconds.
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Figure 9.4 Piston Cycle 1 horizon angle data arranged in the orderPush-Release1-Release2
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6-7) The wheel contact angle is 37.711 degrees as determined from Piston

Cycle 1 data. The wheel release angle is 47.265 degrees, as seen in Figure

9.3.

8-10) Figure 9.4 provides values for the maximal elbow joint angle, the upper

arm horizon angle at the end of Release 1, and the time of Release 1.

Recall that Release 1 is constrained by a maximal elbow angle. This

means that when the constraint is enacted, the upper arm and the forearm

horizon angles are parallel. In the figure, these horizon angles are

approximately parallel from 0.033 seconds (end of Push) to about 0.208

seconds giving Release 1 time to be 0.175 seconds. During this time, the

maximum elbow angle is less than 160 degrees as can be seen in

Figure 9.1. At 0.208 seconds, the upper arm horizon angle is roughly

—31 degrees.

9.2 A Three-Phase Model Solution

Providing the mathematical model with the ten-parameter set of input described in the

previous section results in a model solution. Since this model input was obtained from

Piston Cycle 1 data, model output will be compared to this experimental data once the

model results are presented. In Figures 9.5 and 9.6 below, the model solution's dynamic

horizon angles are graphed in the phase order of Push — Release 1 — Release 2 and the

phase boundaries are indicated by vertical dashed lines. In each of the figures, empirical

angles are indicated in gray for comparison.
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Figure 9.6 Model solution wheel's horizon angle

The model solution arm segments' horizon angles are continuous throughout the

cycle. However, at several instances in the cycle angular velocity discontinuities exist.

At these times, impulsive generalized forces due to either muscular effort or impact

situations are present. Figures 9.7 and 9.8 show the arm segments' angular velocities and

the wheel's angular velocity throughout the cycle, respectively. Again, Piston Cycle 1

data is indicated in gray and phase boundaries are shown as dashed lines.
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Figure 9.8 Model solution wheel's angular velocity

Instantaneous changes in velocities cause sudden gains or losses in the kinetic

energy of the system. Figure 9.9 provides the total kinetic energy in the system

throughout the cycle. Piston Cycle 1 data is indicated in gray and dashed lines represent

phase boundaries.
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Figure 9.9 Model solution kinetic energy of the athlete/chair system

To understand the theoretical and empirical movements and energies, each

phase's horizon angles and kinetic energies, as well as changes in kinetic energies at the

phase boundaries, must be interpreted. First consider the 0.033-second Push phase, the

first sections of Figures 9.5, 9.7, and 9.9. While the athlete is in contact with the wheel,

the arm segments must move on the arc prescribed by the pushrim, which does not allow

for much variation in terms of the trajectories of the segments. Also, since the initial and

final configuration of Push were taken from Piston Cycle 1 data and the duration is only

0.033 seconds, the Push-phase BVP is easily solved to be close to the experimental angles.

This explains the exceptional mode1-empirical match of segment horizon angles indicated

in Figure 9.5. A study of the model and the empirical arm segments' horizon angles

shows that following the rim of the spinning wheel during Push forces the following:

• The horizon angle of the upper arm becomes more negative as this segment

flexes.

• The horizon angle of the forearm becomes less negative as this segment

extends.
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• The elbow angle increases as a result of a flexing upper arm and an extending

forearm.

Consideration of the Piston Cycle 1 arm segments' angular velocities during the

push period reveals that those of the upper arm and forearm are inversely related. That is,

the upper arm's clockwise velocity increases while the forearm's counterclockwise

velocity decreases after achieving a maximum. In the model solution, the arm segments'

angular velocities are also inversely related. However in this case, the upper arm

(clockwise) is slowing while the forearm (counterclockwise) is quickening, which is the

opposite of empirical data.

The wheel rotates more slowly during Push than during the recovery phase. This

is most likely because the collision of the athlete's hand (which is probably moving

slower than the wheel) with the pushrim causes the wheel to slow down. Piston Cycle 1

data indicates that the wheel's velocity increases steadily through the duration of the push

period. This is presumably due to the athlete imparting a quick but gradual push to the

rim, allowing for the transfer of some arm segment energy to the wheel. At the end of the

push period, empirical data shows the wheel velocity is maximal.

On the other hand, because model phases are ballistic the arm segments cannot

gradually impart force to the wheel. Furthermore, wheel viscosity is present in the

model. Therefore, the wheel velocity in the model solution is decreasing slightly

throughout Push.

Throughout the stroke cycle, the wheel's kinetic energy is large relative to that of

the arm segments. In Piston Cycle 1 data, the push period includes a rapid climb in the
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athlete/chair system's kinetic energy, which can be explained by the large increase in

wheel velocity during this time. In contrast, because the model solution's wheel velocity

is almost constant, no such rise in system kinetic energy exists during Push.

Although empirical energies exhibit no discontinuities, model solution energies

are characterized by kinetic energy jumps at the phase boundaries. The first such

discontinuity in the system's kinetic energy is present at 0.033 seconds, or about 7 % of

the stroke cycle, which is the Push-Release1 phase boundary. This immediate jump of

18.824 Joules of kinetic energy must be supplied by propulsive muscular input. This can

be interpreted as a required instantaneous push when the athlete releases the rim. In a

sense, the gradual increase in kinetic energy over the full duration of push in Piston Cycle

1 is reduced in the model solution to this burst of energy at pushrim release.

Next, the 0.175-second Release 1 phase is examined. The model solution arm

segments' horizon angles agree with empirical at the beginning of the phase, as Piston

Cycle 1 data was input for the Release I BVP. Recall that the model assumes that the

elbow cannot exceed a maximum angle of 160 degrees during this phase. This elbow

constraint forces the arm segments to move independently until this greatest permitted

angle is achieved at which time the arm becomes stiff. While the elbow remains at

maximal extension, the graphs of the horizon angles of the upper arm and forearm are

parallel to one another, which is seen in Figure 9.5. Although the concavities of the

model and empirical curves do not agree, both data indicate that the upper arm and the

forearm extend during Release 1 (upstroke).

During this phase, Piston Cycle 1 analysis shows that the upper arm's

counterclockwise velocity rises from zero degrees per second, representing the change in
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direction of this arm segment after pushrim release. The counterclockwise velocity of the

forearm slows to almost zero and then increases slightly. This indicates a pause in the

angular motion of the forearm after release.

Angular velocities of the model solution arm segments disagree with those of the

experimental data. While both arm segments' velocities are counterclockwise in the

model solution, both decrease for most of Release 1. Furthermore, when the model

elbow constraint is imposed, a collision of segments occurs resulting in a loss in angular

velocity for both arm segments. Careful examination of Figure 9.7 shows this impact

happens at approximately 0.066 seconds into the cycle. That is, slight arm segments'

velocity discontinuities occur after 0.033 seconds of Release 1, when the elbow constraint

is enacted and impact occurs. Reaching maximal elbow joint range of motion results in

the arm segments' velocities being projected into the tangent space of the constraint,

causing both segments to lose velocity.

Since the wheel and the arm are moving independently during this phase, the

motion of the arms does not influence the wheel in any way. Figure 9.8 indicates that the

Piston Cycle 1 wheel angular velocity is varying considerably here, although this is most

likely an artifact of projecting the cambered wheel into the sagittal plane of the athlete.

In this case, the local maxima and minima during recovery should be smoothed out of the

graph. The motion of the disk wheel in the two-dimensional model will not encounter

this problem, as there is no camber to the wheel. The model solution wheel's angular

velocity slows linearly during Release 1, as per the mode1-included effect of wheel

viscosity.
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Release 1-phase system kinetic energies primarily increase in empirical data but

decrease in the case of the model. Since no joint viscous forces are included in the

model, arm segment energy is conserved within a given phase. Therefore, during Release

1 (upstroke) while arm segment potential energies are increasing, their kinetic energies

must decrease. This result, along with the presence of wheel viscosity in the model,

ensures a decrease in system kinetic energy during Release 1. Furthermore, as

mentioned above, imposition of the elbow constraint causes an instantaneous loss in the

arm's kinetic energy. In this model solution, this impact energy loss is approximately

0.374 Joules. It is important to interpret this energy loss in the system as due to a

physical impact and not from muscular activity.

Another discontinuity in the model solution system's kinetic energy occurs at the

Release1-Release2 phase boundary, or at 0.208 seconds of the stroke cycle. This sudden

2.297-Joule jump in system kinetic energy must be provided by a propulsive muscular

effort. Most likely, this energy requirement is necessary to allow for the completion of

the upstroke portion of the cycle. It is interesting to note that this burst roughly coincides

with a system kinetic energy local maximum in the empirical data, perhaps offering an

explanation for this Piston Cycle l's observed energy increase.

Lastly, the 0.275-second Release 2 phase is analyzed. Release 2 includes the end

of upstroke followed by downstroke. Piston Cycle 1 data reveals the following segment

horizon angle behaviors:

• The graph of the upper arm's horizon angle is concave down. The upper arm

first extends until reaching a maximal excursion of about 8 degrees above the
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horizontal at 0.358 seconds (0.15 seconds into Release 2), the high point of

the cycle. At this time, it flexes to begin the downstroke and finally contact

the pushrim at the end of this period.

. The graph of the forearm's horizon angle is primarily concave down until

about 0.4 seconds of the stroke cycle where a point of inflection occurs and

the graph continues concave up. The elbow is flexed maximally to

approximately —54 degrees at 0.267 seconds in the cycle, which is 0.059

seconds into Release 2.

Qualitatively, some of this empirical horizon angle behavior is captured by the

model solution. The graph of the model upper arm angle is concave down, as it is in the

experimental case. However, the solution's upper arm maximal extension angle of

roughly —9 degrees at 0.325 seconds in the cycle (0.117 seconds into Release 2) occurs a

bit sooner and does not allow the upper arm to achieve the height present in Piston Cycle

1 data. Furthermore, the graph of the solution's forearm angle is only concave up and

does not contain a point of inflection. There allows for considerably less forearm flexion

in the model solution to a maximum of only about —52, which occurs immediately at the

beginning of Release 2. This does not closely coincide with the —54-degree flexion,

which takes place at about 21 % of this phase in Piston Cycle 1.

During Release 2, empirical data shows the upper arm's counterclockwise

velocity remaining relatively constant for a while and then slowing as this segment's

maximal extension is reached. At this point, the velocity is zero, allowing for a change in

direction as the segment initiates downstroke. Throughout downstroke, the upper arm's
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clockwise velocity increases then levels off as the pushrim is neared. The forearm's

counterclockwise velocity, which is much smaller than that of the upper arm, decreases

during the first portion of the phase and reaches zero sooner than the upper arm segment.

This indicates a change in direction, as the forearm comes forward toward the pushrim

during downstroke. Once the forearm is positioned above the rim, it stretches down

toward the rim and reverses its direction again as the forearm thrusts in extension to

allow the hand to hit the rim.

The model solution arm segments' angular velocities are qualitatively the same as

Piston Cycle 1 data. The upper arm's counterclockwise velocity decreases through zero

(sooner than experimentally achieved) to increase in the clockwise direction. This is

consistent with the explanation given above. The forearm's clockwise velocity similarly

decreases through zero, at which point increasing counterclockwise velocity exists. One

difference between the model solution and experimental data is that the model forearm

velocity only reaches zero once indicating a sole change in angular direction. Also, the

time at which this direction change occurs in the model solution is between the two

direction-change empirical instances.

As for the model solution wheel's angular velocity, it once again slows linearly

during Release 2. This is consistent with the wheel constant angular deceleration term

present in the model. A decrease in the wheel velocity in Piston Cycle 1 data could

indicate that contact with the wheel was already made. It is possible that the athlete's

body rubbed against the wheel prior to pushrim contact causing it to slow. Otherwise, it

could be that the stroke cycle endpoint has not accurately been identified and may

actually occur a few VICON frames before it was originally identified.
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Empirically, the system kinetic energy decreased, increased to a maximum, then

decreased again. The first decrease in Piston Cycle 1 system kinetic energy is due to the

slowing of the arm segments as they complete the upstroke portion of the cycle. At this

time, descent begins and the arms speed up as they move toward the wheel, which

accounts for the system kinetic energy increase. The final loss of kinetic energy is

plausibly caused, at least in part, by a wheelchair athlete's skill level. That is, in order for

the racer to land his hands on the pushrim accurately, the segments must slow down

somewhat to allow for correct positioning. This system kinetic energy loss might also be

attributed to the decrease in wheel velocity at the end of the Release2-phase time.

The graph of the system kinetic energy of the model solution in Figure 9.9 is

slightly concave up. Considering that the wheel slightly loses kinetic energy throughout

Release 2, this is explained, once again, by the fact that arm total energy is conserved

because there is no joint viscosity included in this ballistic-phase model. Therefore, as

the arms rise toward maximum height and potential energy consequently increases,

kinetic energy must decrease. On the other hand, during the downstroke part of Release

2, potential energies decrease forcing kinetic energies to increase in this portion of the

phase.

Assuming a cyclic racing stroke, the end of Release 2 must coincide with the

beginning of Push. In other words, the original system kinetic energy must be restored

via the Release2-Push phase boundary. At this pushrim contact boundary configuration,

changes in system energy occur in the model as the result of both physical impact and

impulsive muscle forces.
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First consider the impact energy loss. Projecting the segments' angular velocities

at the end of the Release 2 phase into the fixed-hub constraint tangent space is achieved

by using the computational method summarized in Figure 8.2. This is implemented in

the initial part of the Push phase solution. Since the attached wheel model is used in

Push, the appropriate fixed-hub constraint is enforced and Release 2 ending angular

velocities will be instantaneously projected to values consistent with pushrim contact

without wheel displacement but allowing for instantaneous changes in wheel rotation

speed and arm segments angular velocities. In the model solution, the Release 2

velocities are projected as given in Table 9.1.

Table 9.1 Projection of the segments' velocities at pushrim contact

Segment Pre-projection angular velocity

(Release 2 final velocity) in degs/s

Post-projection angular

velocity in degs/s

Upper arm -509.160 -788.842

Forearm 686.557 1016.789

Wheel 1211.613 940.960

This change in velocities results from a physical impact, namely collision of the

athlete with the pushrim. It is not caused by muscle activity. In this model solution,

approximately 1.897 Joules of energy was lost as a result of pushrim contact.
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The final discontinuity in system kinetic energy is an effect of the assumed cyclic

nature of the motion and contributes to muscle energy cost. That is, in order to perform

yet another full stroke cycle, the segments' projected velocities must return to the values

they have at the beginning of Push, which are —228.405, 294.406, 272.450 degrees per

second for the upper arm, forearm, and wheel respectively. To do so, all segments'

velocities must decrease, implying that the muscles must provide a braking force at the

post-projection Release2-Push phase boundary. In this model solution, the instantaneous

decrease in system kinetic energy here is approximately 18.725 Joules and must be

supplied by the muscles.

From these results, it is possible to determine the mechanical energy cost per unit

distance of the model solution. To complete the racing stroke cycle given by the model

solution, muscles must provide the following:

• a propulsive action to create 18.824 Joules of mechanical energy at the Push-

Release 1 phase boundary ( at the instant of pushrim release)

• a propulsive action to create 2.297 Joules of mechanical energy at the

Release1-Release2 phase boundary

• a braking action to remove 18.725 Joules of mechanical energy at the post-

projection Release2-Push phase boundary

Consider the braking action listed above. Since muscles must provide impulsive

forces at this time, it is assumed here that this braking action of muscles, which removed

mechanical energy from the pendulum-wheel system, requires metabolic energy and,
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therefore, must be tallied as an energy cost. From the principle of the conservation of

energy, work is being performed by the pendulum-wheel system on the muscles.

Although some of this work might be stored as potential energy in elastic structures such

as muscle ligaments and tendons, this stored-energy contribution is assumed to be

negligible compared to that which is dissipated as thermal energy. In other words, it is

assumed that the braking muscle action requires metabolic energy to produce impulsive

forces, which remove system mechanical energy as heat, in a similar way that metabolic

energy is required to produce impulsive muscle forces, which add mechanical energy to

the pendulum-wheel system. Furthermore, it is assumed that the metabolic muscle

energy costs are proportional to the sum of the absolute values of the mechanical (non-

impact) energy changes in the wheelchair stroke. Thus, the sum of these absolute-value

mechanical (non-impact) energy changes per unit distance will be a measure of the

metabolic energy required to move the athlete/chair system a unit distance while

performing that racing stroke technique.

In the model solution described in this section, the muscles are required to create

a total of 39.846 Joules of mechanical energy for this racing stroke technique to be

performed. Since a distance of 3.218 meters is covered in this 0.483-second cycle, the

mechanical energy cost per unit distance of this stroke method is 12.382 Joules per meter.

Alternatively, the mean muscle mechanical power per unit distance is 25.636 Watts per

meter. Furthermore, in performing the model-suggested racing technique a total of 2.271

Joules of energy are lost due to physical impacts (elbow lock and pushrim contact). If

this is normalized to distance traveled, approximately 0.706 Joules per meter are lost

through impacts.
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9.3 A Twenty-Phase "Inverse" Model Solution

As was mentioned in Chapter 7, the model can be used in an inverse fashion by breaking

the racing stroke down into many ballistic phases, allowing the muscles to act frequently

(at many phase boundaries) throughout the cycle. Such an inverse analysis of Piston

Cycle 1 data was conducted. The "inverse" solution consisted of an eighteen-phase

recovery period (seventeen 0.025-second phases and one 0.008-second phase) and a two-

phase push period (two 0.025-second phases). Figure 9.10 shows this twenty-phase

"inverse" model solution arm segments' horizon angle in the Pushl-Push2-Release1--

Release2-...-Release18 order. The empirical data is indicated in gray for comparison.

Because so many phases exist, dashed lines have not been used in Figure 9.10 to indicate

them, but they exist approximately every 0.025 seconds.

The extremely close empirical-theoretical match is a direct result of the large

number of very short duration phases. That is, solving a 0.025-second BVP, with initial

and final configurations given by Piston Cycle 1 data, does not allow for much deviation

from the experimentally performed trajectory.

Figure 9.10 "Inverse" model solution arm segments' horizon angles
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Figure 9.11 indicates the "inverse" model solution system's kinetic energy results.

Recall that phase-boundary discontinuities are attributed to impulsive muscular input

and/or the presence of impulsive impacts. Also remember that the motion is considered

cyclic, requiring consideration of the relationship between the final and initial energies

indicated.

Figure 9.11 "Inverse" model solution kinetic energy of the athlete/chair system

Overall, the "inverse" model solution system's kinetic energy graph displays

similar qualitative behavior to that of Piston Cycle 1. Since model phases are ballistic,

small changes in energy at phase boundaries suggest the ballistic nature of the athlete's

actual technique at these times in the stroke cycle. In other words, the natural flow of

physical momentum and energy between the arm segments and the gravitational field is

incorporated into the athlete's racing method during these time periods. Figure 9.11

reveals that a large portion of the racer's recovery phase, from approximately 0.05

seconds to 0.4 seconds, exhibits this ballistic behavior.
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On the other hand, large energy increases or decreases at phase boundaries

indicate muscular action. Empirical EMG data can be used to corroborate this

interpretation of model output. The "inverse" model solution system's kinetic energy

graph in Figure 9.11 implies that the athlete significantly used muscle during the recovery

period's downstroke, at pushrim contact, and at pushrim release. This explanation can be

used to interpret the Piston Cycle 1 system's kinetic energy graph.

To calculate the muscular energy cost of the athlete's racing technique, the

absolute values of the changes in mechanical energy present at appropriate phase

boundaries must be added. This number represents the total mechanical energy change

caused by either muscular propulsion or braking. The total mechanical muscular energy

cost of the stroke technique produced by this "inverse" model solution is 81.193 Joules,

or 25.231 Joules per meter. Accepting this "inverse" solution as representative of the

actual stroke technique implies that the wheelchair racer's current stroke technique costs

25.231 Joules per meter. Note that this value is slightly more than twice the 12.282-Joule

per meter muscular energy cost of the technique given by the three-phase model solution.

This suggests that the athlete could improve his racing method if he were trained to use

his muscles less often (at only three specified times in the stroke cycle) and to incorporate

the spontaneous energy transfers between segments and the gravitational field that can

occur from an appropriate ballistic motion. That is, if he could perform the technique

that more closely approximates the three-phase model solution.

As for the impact energy loss, pre-projection system kinetic energy at the end of

Release 18 must be subtracted from post-projection system kinetic energy. No energy is

lost due to the elbow reaching its maximum angle because in this "inverse" model such a



160

constraint was not included. Therefore, the impact energy loss is solely due the collision

at pushrim contact. In this solution, 2.290 Joules of energy were lost at impact, making

the impact energy loss 0.712 Joules per meter. Comparing this with the 0.706-Joule per

meter cost of the three-phase model solution indicates no significant difference.

9.4 The Search for an Optimal Technique

It has already been suggested that the athlete modeled in this thesis could improve his

mechanical energy efficiency by changing his wheelchair-racing technique. In fact, the

three-phase model solution stroke was found to cost half the muscular energy expenditure

than the actual motion performed. An important question to answer is whether the model

could produce other solutions, which are even more efficient than the particular three-

phase solution already described in Section 9.2. A search for such an optimal three-phase

wheelchair racing stroke technique will be described in this section.

Varying the ten independent stroke parameters simultaneously in the three-phase

stroke cycle creates a ten-dimensional motion space. In this thesis, a three-dimensional

subset of this full motion space is considered in search of a mode1-suggested optimal

stroke technique. That is, seven parameters are specified constants, while the other three

are systematically varied to produce a subset of potential strokes in the three-dimensional

subspace of possible new solutions. The seven fixed parameters are as follows:

• the initial wheel velocity = 1244.1 degrees per second

• the orientation of the athlete in the racing chair = 0.490 meters and —41.971

degrees
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• the total cycle time = 0.483 seconds

• the recovery phase time = 0.450 seconds

• the wheel contact angle = 37.711 degrees

• the wheel release angle = 47.265 degrees

The three alterable parameters are then the elbow constraint angle during Release

1, the upper arm horizon angle at the end of Release 1, and Release 1 time. Varying

these three parameters corresponds to altering the configuration and timing of the

muscular effort during the recovery phase idealized in the three-phase model to the

interphase time and configuration at the Release 1-Release2 boundary. Piston Cycle 1

data indicates that the elbow angle does not exceed 160 degrees while the stiff arm

segment exists. A reasonable maximal elbow angle range to search is from 160 degrees

to 180 degrees. The empirical data also implies that the upper arm horizon angle at the

end of Release 1 could realistically be between —51 and —20 degrees. In addition,

Release 1 could conceivably be as short as 0.04 or as long as 0.22 seconds. (Refer to

Figures 9.1 and 9.4.)

These allowable ranges of the three variables specify a volume, which must be

searched. Figure 9.12 gives a pictorial representation of an example of searching this

three-dimensional subset of the motion space. Each grid point in the figure represents a

model solution, which would have an associated muscle mechanical energy cost and

impact energy loss.
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Figure 9.12 A three-dimensional subspace of the athlete's motion space

The motion subspace search produces a large number of three-phase model

solutions, each with a calculated mechanical energy cost and impact energy loss. These

numbers are shown in Table 9.2 for a sample of search-generated solutions where the

elbow angle could not exceed 160 degrees. In this table, impact energy loss is indicated

parenthetically. Since wheel velocity and total cycle time are not varied, every cost/loss

value corresponds to travelling 3.218 meters. All energy values are given in Joules. The

highlighted box represents the solution in this table, which most closely matches Piston

Cycle 1 parameters.
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Several general trends concerning muscular energy costs are noticed by

examining Table 9.2. These trends are depicted in Figure 9.13.
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Figure 9.13 Trends in muscular energy costs of several model solutions

As can be seen in Figure 9.13, increasing Release 1 time decreases muscle energy

cost independent of the upper arm angle at the end of Release 1. Furthermore, this

decrease occurs very quickly when the end upper arm angle is high. This is intuitive

because requiring the upper arm to rise relatively high in a short amount of time would

take a large burst of propulsive energy. Allowing more time to raise would make this

motion easier to produce and require a smaller energy spurt. As the upper arm need not

necessarily achieve such height, permitting more time for the segment to rise does not

impact the muscle energy cost as much. Figure 9.13 also shows that, regardless of

Release 1 time, increasing the upper arm angle at the end of Release 1 correlates to an

increase in muscle energy cost. Analogous to the preceding discussion, this effect is most

pronounced for the shorter Release 1 times.

Inspection of Table 9.2 also reveals some trends concerning impact energy losses.

Unlike the graph depicting muscular energy costs in Figure 9.13, however, the impact

energy loss graph is not monotonic. Impact energy loss graphs for Release 1 times fixed
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between 0.04 and 0.10 seconds exhibit local maxima and minima as can be seen in Figure

9.14. For the rest of the considered Release 1 times, however, the energy loss due to

impact decreases as upper arm angle increases. Similar behavior occurs if the upper arm

angle is fixed between —43 ° and —24 ° where local minima points exist as Release 1 time

is varied. A sample of these curves is shown in Figure 9.15.

Figure 9.14 Trends in impact energy losses of several model solutions
(Release 1 times fixed)

Figure 9.15 Trends in muscular energy costs of several model solutions
(Upper arm angle at the end of Release 1 fixed)
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It is not surprising that animations of solutions nearby one another on the chart

have a similar look. However, observing those further from one another reveals a wide

variety of possible wheelchair racing stroke techniques, all of which agree on the eight

set stroke parameters. To highlight the variations among solutions, four of the sixty-three

table solutions along with the three-phase solution of Section 9.2 will be discussed.

Solutions will be named as follows: Release1 time — Release 1 upper arm final angle —

Maximum elbow angle. The five solutions to be discussed are given in Table 9.3.

Table 9.3 Model solutions and their energy costs/losses

The five model solutions each look quite different when animated. 0.04,-51,160

looks exactly like a mechanical piston, as it is characterized by an up-and-down motion

throughout which the wrist remains very close to the pushrim. In this stroke technique,

the wrist trajectory runs parallel to the pushrim during the upstroke, then proceeds
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vertically upward until downstroke is initiated at which point it travels vertically

downward until it follows the rim's arc once again. This stroke technique will be called

the piston stroke.

In contrast, the wrist trajectory of 0.04, —20,160 is very circular. The wrist travels

up and back after release and then lifts during the upstroke to a point above the circle

made by the pushrim. During downstroke, the wrist appears to travel parallel to the rim

for the entire duration until contact is made. The arm segments undergo a lot of

excursion in this technique. This stroke technique will be known as the roundest stroke.

The stroke of 0.17, —31,160 is not quite as round looking as the roundest stroke

(0.04, —20,160). The wrist seems to stay well inside the pushrim circle for the entire

cycle, reducing the total excursion of the arm segments. That is, the wrist trajectory is

not parallel to the pushrim arc in this technique. Furthermore, this technique was

developed by matching the ten stroke parameters of Piston Cycle 1. This stroke

technique will be referred to as the Piston Cycle 1 — like stroke.

0.22,-20,160's stroke lacks the roundness at the end of Release 1 that

characterizes the Piston Cycle 1 — like stroke (0.17, —31,160) and the empirical technique.

The trajectory of the wrist is more elliptical and does not run parallel to the rim at all.

Nonetheless, it looks like a reasonable pushing stroke. This stroke technique will be

called the elliptical stroke.

The stroke given by 0.22,-51,160 does not look like a true racing stroke in that it

is characterized by minimal arm segment excursion. It looks like a slight swinging of the

arms, in a pendular fashion. After release, the wrist proceeds up and back from the rim

(but not high at all). Next the wrist moves toward the rim running parallel to its arc to a
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point higher than the prescribed contact. At this time, it moves back down, still with the

rim's arc, until the arm segments are in the prescribed contact configuration. Thus, the

wrist is near the pushrim throughout the stroke cycle. This solution involves a small

movement relative to the other model solutions. This stroke technique will be known as

the pendulum swing stroke.

The maximum upper arm horizon angle (shoulder extension) achieved by the five

solutions also varies widely. Maximal shoulder extension, from largest to smallest, is as

follows: 25.211 ° (roundest), 7.382 ° (piston), —8.321 ° (elliptical), —9.258 ° (Piston Cycle 1

— like), —29.351 ° (pendulum swing). When compared to the 8.379 degrees achieved in

Piston Cycle 1, the piston stroke is closest. The large excursion of the segments in the

roundest stroke caused its too great extension, whereas the minimal excursion of the

pendulum swing stroke did not allow for enough extension.

Although the elbow angle was constrained in all the solutions to not exceed 160

degrees, its minimum during the entire cycle differed greatly in these five solutions.

Moreover, minimal elbow angle is an observable characteristic of the solutions'

animations. Piston Cycle 1 minimum elbow angle is 101.127 degrees, which is much

more obtuse than 62.696° (piston), 70.370 ° (roundest), and 90.965 ° (Piston Cycle 1 —

like). Both the elliptical stroke and the pendulum swing stroke, with 101.103 ° and

102.418 ° respectively, came closest to the empirical minimal angle. From this analysis it

is suggested that stroke solutions with large excursions include minimal elbow angles that

are too acute.

In terms of the mechanical muscular energy costs of the solutions, although they

vary greatly from a minimum of 32.740 Joules to a maximum of 79.629 Joules, all except
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one solution has the following required muscle activity pattern: propel (Push-Release1

boundary), propel less (Release1-Release2 boundary), brake (projected Release2-Push

boundary). The sole exception requires a propel-brake-brake pattern. These results

imply by continuity that a two-phase wheelchair racing cycle should exist where no

muscle energy change occurs at the Release1-Release2 boundary. In other words, the

entire recovery period is a single ballistic phase.

At the Push-Release 1 boundary, the following muscular energy requirements

exist: 41.206 J (roundest), 20.484 J (elliptical), 18.824 J (Piston Cycle 1 — like), 17.319 J

(pendulum swing), and 16.678 J (piston). Muscle energy input of —14.958 J (roundest),

6.531 J (piston), 2.297 J (Piston Cycle 1 — like), 1.446 J (pendulum swing), and 1.056 J

(elliptical) are necessary at the Release 1-Release2 boundary. And, to complete the cycle

at the projected Release2-Push boundary, —23.465 J (roundest), —20.549 J (piston),

—19.965 J (elliptical), —18.725 J (Piston Cycle 1 — like), and —13.974 J (pendulum swing)

must be supplied by muscular braking action.

These three boundary muscular energy requirements can be explained by studying

the solutions and is seen in their animations. The first boundary energy cost seems

dependent on the end of Release 1 upper arm segment angle requirement. The strokes

demanding upper arm angles of —20 ° have the largest first boundary energy costs,

whereas those needing to reach only —51 ° have the smallest. The second boundary

energy cost appears to be related to Release 1 time allowance. That is, the shorter

Release 1-time solutions also have the greatest muscular energy costs at this boundary.

The third boundary energy cost is associated with the cyclic assumption of the stroke. It



170

seems related to the amount of excursion achieved by the stroke technique, with

techniques covering larger distances having higher braking muscular needs at this point.

In summary, the muscular energy requirements from highest to lowest are given

in the following list:

Impact energy losses are also important. It is not surprising that the roundest

stroke has the largest elbow impact energy loss of 1.291 Joules. This collision energy loss

is seen in the animation, where the forearm is thrust into extension as the arm segments

speed through Release 1 and a high final angle for the upper arm is reached. All other

solutions have elbow impact losses less than half of this solution's.

Impact energy losses sustained when the athlete contacts the pushrim are more

substantial in all cases. The amount of this loss is dependent on how close the segments'

angular velocities are to the tangent space of the fixed-hub constraint. If the trajectory is

such that the pushrim is being approached tangentially, then projected momentums will

be closer to pre-projected values and less energy loss will occur. The pendulum swing

stroke had the greatest pushrim-contact impact energy loss at 4.312 Joules. This loss can

be observed in the animation as the forearm segment approaches the pushrim almost



171

perpendicularly. It seems reasonable that this would cause a large decrease in segments'

velocities at collision. In contrast, the stroke with the least pushrim-contact energy loss

of 1.056 Joules is the elliptical stroke.

In summary, the impact energy losses from highest to lowest are given in the

following list:

Searching the three-dimensional subspace of the athlete's motion space generates

many model solutions. A grid of solutions similar to that shown in Table 9.2 is created

for each maximal elbow angle considered in the exploration The patterns described

above for the case of an elbow constrained to not exceed 160 degrees existed for other

specified elbow angle maxima. Furthermore, the muscle energy cost and the impact

energy loss at corresponding grid points were higher and lower respectively as the

maximal elbow angle increased.

The analysis of five solutions (160-degree elbows) revealed that numerous racing

stroke techniques are possible and each has unique characteristics, which describe them.

Furthermore Table 9.3 suggests that of these five the most muscular energy efficient

stroke is the pendulum swing stroke, whereas that which minimized impact energy loss is
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the elliptical stroke. The same is true for similar looking strokes, which were produced

by models that included different maximum elbow angles.

It is interesting that the most muscular-efficient pendulum swing stroke found in

the search looked least like the athlete's racing method modeled in this study. Perhaps

this is because not much must be done to maintain the specified fast racing speed under

experimental racing conditions (with minimal wheel friction). In this case, employing a

pendulum swing stroke would maintain the wheel velocity with the least amount of

muscular effort.

On the other hand, there are many instances during actual wheelchair racing when

wheel deceleration is greater than the experimental conditions modeled in this thesis,

namely on the CompuTrainer with minimal free wheel energy dissipation. For example,

wheel speed decreases quickly when racing on a rough road surface and especially when

traveling uphill. Under these circumstances, the pendulum swing stroke would most

likely not be capable of maintaining the prescribed wheel speed without a considerable

increase in muscular effort. That is to say, another stroke technique may be more energy

efficient in these cases.

It is also important to consider the role that impact energy loss plays in choosing a

stroke technique. It is plausible that there is a threshold to the amount of impact energy,

or impact forces, that an athlete can withstand without causing pain and/or doing damage

to his or her joints. If this limit were quantifiable, perhaps some of the search-generated

stroke solutions would be disregarded as physiologically unavailable. Removing these

injurious techniques may reveal a true best solution that the athlete is capable of
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achieving. This would validate the use of this model in guiding wheelchair racers toward

optimal performances.



CHAPTER 10

CONCLUSION

10.1 A Summary of the Model and Results

The mathematical model presented in this thesis includes many assumptions, which

reduce the complexity of movement. These simplifications include restricting the motion

to the sagittal plane, representing the body segments as point masses, and condensing

continuous muscle activity into a discrete number of instances throughout the movement.

It has been shown in this thesis, however, that even such an elementary model is capable

of offering insight into the kinematics of motion, specifically wheelchair racing, and

capturing much of its essence.

Animation and anlaysis of model output strokes revealed close agreement with an

experimental technique. Furthermore, since most model-produced racing methods

presented in this work contained only three phases, it seems possible to simulate the

trajectory of the arm segments during a wheelchair racing stroke by concatenating

relatively few ballistic-phase model solutions. This means that muscles need not be

active continuously throughout the stroke cycle, which in turn intimates that the model

may be useful in suggesting possible ways to increase the athlete's mechanical energy

efficiency.

Using the model in an inverse fashion enabled the calculation of an approximated

muscular energy cost per unit distance of the racer's current technique. Modeling

174



175

techniques found in the literature have not been able to separate the amount of system

kinetic energy provided by muscular effort from that due to transfer of energy between

segments and the gravitational field. For that reason, determining the muscular

mechanical energy efficiency of a given movement has not been very accurate in the past.

This is one of the primary contributions to the field of movement analysis that this new

modeling technique offers.

Moreover, the muscular energy cost of the performed experimental stroke was

found to be twice as high as other racing methods found by the model. This suggests that

a stroke can be accomplished rather efficiently by exploiting the natural exchange of

energy between the segments and the gravitational field, which reduces the athlete's

required muscular effort. An analysis of several mode1-determined possible racing

techniques, which were consistent with several specified wheelchair racing stroke

parameters, was conducted. The results of this investigation provided insight into stroke

kinematics and energetics.

The achievements detailed above describe the original contributions of work

included in this thesis to the fields of motion analysis and applied mathematics. In

summary, this research provides the following new information: the limitations caused by

the two-dimensional nature of the model are established; the model is used in an inverse

fashion to calculate the muscular mechanical energy cost of a performed wheelchair

racing stroke; model output is used to guide the biomechnical analysis of an actual stroke

technique; both coupled and uncoupled motion of components of the athlete/chair system

are modeled; a geometric derivation of the equations of motion of the system and the
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projection theorem (when constraints are imposed) is given; and improvements upon the

shooting method boundary-value-problem solving technique are made.

10.2 Suggestions for Future Work

Although the model was successful in reproducing the qualitative behavior of a three-

dimensional motion in this thesis, it definitely has limitations. Applying this two-

dimensional model to movements which involve large excursions outside the sagittal

plane would not be prudent. It is therefore suggested that the model be expanded to

include some part of this out-of-the-plane motion, but not necessarily to incorporate the

full range of three-dimensional space. For example, in wheelchair racing it is important

to allow the upper arm to move in the frontal plane, enabling this segment to abduct or

adduct. If this were accomplished in the model, butterfly strokes could also be studied.

Adding this one degree of freedom to the n-segment model would be a first step toward a

full, three-dimensional model.

Furthermore, it was pointed out in Section 4.5.2 that a large part of the system's

kinetic energy comes from considering the rotation of distributed-mass segments.

Therefore, it is proposed that the model be modified to represent the arm segments as

distributed masses, rather than employ the current point-mass idealization. This would

hopefully provide more accuracy in determining kinetic energy, which would improve

the calculation of the muscular energy cost and impact energy loss of a given stroke

technique.

As for the capabilities of the model to identify the optimal racing stroke, there are

several opportunities for improvement. It was proposed in Section 9.4 that there might be
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a maximal impact energy loss that the athlete could absorb without becoming injured.

Calculating the pushrim impact force from model output would provide necessary input

to an inverse model, so that joint reaction forces and moments could be determined. If

the model described in this thesis could output impact forces, then motion labs not

equipped with such impact-measuring instruments as the SMART Wheel could use the

model to resolve these quantities instead.

Also, it might be insightful to change the experimental racing conditions by

increasing wheel friction or by reducing racing speed to see whether a search of an

individual's motion subspace under these circumstances would reveal an optimal motion.

In this thesis, only three of ten stroke parameters were varied in ranges suggested by

empirical data. As a first improvement, the ranges of these parameters could be widened

to include values beyond those suggested experimentally. Expanding the subspace search

might produce a better technique, which is completely different from what racers

currently do. This is reminiscent of the Fosbury flop technique, in which high jumpers

propel their bodies over the bar backward. When this technique first appeared it was

unlike anything seen up to that point in time and completely revolutionized the sport of

high jumping. Perhaps such a wheelchair racing technique could be discovered by a

larger search. Lastly, it is also suggested that other stroke parameters be altered to find

their effects on the racing method. It would be interesting to explore a larger motion

subspace or even the full ten-dimensional movement space itself.



APPENDIX A

THE DERIVATION OF THE MOMENTS OF INERTIA THROUGH THE
CENTER OF MASS AND THE LOCATION OF THE CENTER OF MASS FOR

THE FRUSTRUM

First, the volume is calculated. From the figure above, it follows that

Next, the moments of inertia about the three axes are calculated.
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And by symmetry, /y = Ix .

These equations must be adjusted via the paralle1-axis theorem in order to provide

moments of inertia about axes that run through the center of mass of the frustrum. The

paralle1-axis theorem states that I = /,„, + Mh 2 , the moment of inertia about a given axis

equals the sum of the moment of inertia about a parallel axis through the center of mass

and the product of the mass and the distance separating these axes squared. In order to

find the moments through the center of mass, the z-axis coordinate of the center of mass

is determined below. (Clearly, the x- and y-coordinates of the center of mass are both

zero by the symmetry of the solid.)
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APPENDIX B

OBTAINING THE CLOSEST ROTATION MATRIX FOR
RIGID BODY MOVEMENT

Finding the closest rotation matrix, R, which will rotate a given segment's local marker

data at time t onto its local marker positions at time t+1, involves solving a least-squares

problem. Basically, the error between the local marker data at time t+1 and the rotated,

time-t local marker data should be minimal (Arun, Huang, and Blostein 1987). Define

The last step follows from the fact that R is a rotation matrix, and therefore
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since each term is a scalar and a scalar's transpose is itself. Therefore, in order for E 2 to

By using the fact that if a is a row vector and b is a column vector, then ab =

value decomposition, let the singular value decomposition of C be PГQT , where P and Q

are orthogonal matrices and F is a diagonal matrix. Let the sought rotation matrix, R, be

set equal to the product PQ T . Note that R is orthogonal. Then the following reasoning

for the rigid body rotation.
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