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ABSTRACT 

RODENT TESTING DEVICE SURROGATE FOR SHOCKWAVE BLAST 

TESTING 

by 

Anthony C. Misistia 

 

Many laboratories around the world are conduct shockwave blast injury tests on 

rodents to simulate blast traumatic brain injury (TBI). Each of these laboratories 

has different techniques for creating the shockwave blasts as well as positioning 

the rats. There is no device to determine whether or not the rodent animal 

models actually experiences a true blast wave in a given set up. This device was 

developed as a method for verifying rodents undergoing true shockwave blasts 

through biometrics, instrumentation and the basic biomechanical responses a 

rodent experiences during such tests. Since the goal of shockwave blast testing 

is to replicate the live-fire conditions, it is important to have loads of 

biomechanical authenticity. 

A rodent test device (RTD) is developed to simulate the loading conditions 

of rats under shockwave blasts. At the most basic level the RTD is the same size 

and shape as a Sprawgue-Dawley rat so that it can be easily placed into a given 

laboratory set up that conducts shockwave blast research on rodents. Fidelity to 

the shape, size, weight and fundamental mechanics of a rat were important 

considerations in the development process given the range of diversity found in 

different laboratories. 
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Chapter 1 

INTRODUCTION 

 

1.1 Objective  

The objective of this thesis is to develop a device that measures and validates 

the biomechanical loading conditions presence experienced by live rodent 

models during shockwave blast test conditions including pressures, velocities, 

and acceleration. 

1.2 Background Information 

The nature of warfare in recent times has become drastically different. New types 

of firepower have been added to the clash and as a result, many unexpected 

complications have arisen. Specifically, firepower in the form of explosives such 

as improvised explosive devices (IED) and heavy artillery has led to a 

significantly higher amount of exposures to blast shockwaves. These numbers of 

exposures have been especially significant with the recent and continuing military 

operations abroad where United States military personnel encounters the 

detonations of many different kinds of IED which could produce a variety of 

bodily harm. 

A blast wave is formed when a volume of gases, that form as a result of 

the chemical reactions within a chemical explosive such as those found in IEDs, 

expand around and this expansion effectively pushes back the atmosphere 

surrounding an explosion. The high pressure portion of the atmosphere moves 

faster than that which hasn’t been compressed by the expansion wave from the 

initial gases. As this blast wave approaches a sudden peak value of pressure it 
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then is followed by an immediate decay. (Kinney and Graham) A typical blast 

wave in the form of a pressure vs. time graph is featured in Figure 1.1. This 

standard wave pattern is known as a Friedlander Wave. 

 

Figure 1.1 Friedlander Wave of a shock front as depicted by a pressure versus 
time graph. The Sharp peak to the left represents the overpressure of the 
shockfront while the proceeding pressure that is on the decay represents the 
blast winds. The baseline is representing the atmospheric pressure. Pressures 
above the baseline are referred to as the overpressure and those under the 
baseline are the underpressure. There are three main ways to categorize an 
explosive blast wave’s traits: shock intensity, duration and impulse. The shock 
intensity is characterized as the value of the peak overpressure. The duration of 
the blast wave is the value from the peak to the baseline pressure. The impulse 
is defined as the area beneath the shockwave from the point of the overpressure 
peak to the point where it decays to the baseline.  

Source: Kinney, Gilbert Ford and Kenneth Judson Graham. Explosive Shocks in Air. New York: 
Springer Science + Business Media, 1985.  pp. 91. 

 

The field effects of a shockwave blast on our military personnel are linked 

to a growing number of negative long and short term health effects. These effects 

include but are not limited to mild traumatic brain injury (TBI), moderate TBI and 
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pulmonary injury (S.T. Ahlers). These injuries are caused by not only the extreme 

pressures experienced during a blast wave but also by the damaging effects of 

involuntary acceleration of the head and neck experienced during the blast winds 

during the non-linear decay phase of the blast following the shock front (S.T. 

Ahlers).  

It is difficult to use actual explosions in the laboratory for reasons of safety, 

expense and lack of repeatability (Sundaramurthy and Chandra). One popular 

method of simulating field conditions of an explosion without using actual 

explosions is the use of a compressed gas based shock tube. In its most basic 

form, a compressed gas shock tube is composed of a driver section and a driven 

section. The driver section is the location where the gas is compressed into 

before being released manually or by rupture of a barrier that is containing it. The 

driven section is the area where the atmosphere would in theory be compressed 

by the rapidly expanding gases coming out of the driver section (Sundaramurthy 

and Chandra). This compressed atmosphere will then theoretically form the 

shockwave blast. Certain labs also employ other specific features in shock tubes 

to theoretically optimize the ability to generate and fine tune the properties of a 

shockwave blast. Such features include a transitional section to help form the 

wave structure when going from driver to driven section. 

Due to the rapidly growing incidents of blast exposures faced by men and 

women everyday around the world, there is an increased demand for 

understanding of the mechanisms and effects of shockwave blasts on a model. 

In order to conduct research on the exact physiological effects of shockwave 
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blasts, researchers seek to replicate the conditions of field blasts on smaller 

mammalian models such as rats and mice. Some negative health conditions in 

rodent models include loss of coordination, behavioral changes, retardation of 

spatial learning and acquisition of data impairment, amnesia (S.T. Ahlers) as well 

as post-concussive syndromes that has overlapping symptoms as PTSD such as 

fatigue, poor sleep, irritability, and impaired concentration in humans (Elder and 

Cristian).  

 Be it for an acceleration test on the mechanics of a rat or the pressures 

registered at the skull of a rodent, there are countless studies put out in recent 

time that implement some form or another of placing a rodent model into a 

plethora of different rigs that are believed to replicate field conditions of a blast as 

well as position the rat in such a way that would be an analog for the humans 

who are the ultimate goal of understanding the effects of physiologically. 

Hundreds of laboratories around the world are conducting what they claim to be 

shockwave blast injury tests on rodents.  

Each of these labs has different techniques for creating the blasts as well 

as a different location and position for the rat to experience it. The sizes and 

shapes of the shock tubes vary greatly in many cases. The driven sections have 

been listed as small and cylindrical as having a 22.62cm2 circumference (Budde, 

Shah and McCrea) to as large as a 71.12cmx71.12cm square profile 

(Sundaramurthy and Chandra). There is also different philosophy to what could 

be customized to lead to certain desired characteristics per outcome. For 

example in the case of shock intensity, many labs will employ a thicker barrier 
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between the driver and driven sections by adding more or thicker membranes 

(Sundaramurthy and Chandra). In other cases, some researchers sought the 

same results by simply moving the specimen further from the breach between 

the driver and driven sections (Budde, Shah and McCrea). There is also a 

distinction in each lab whether the test subject needs to be inside the shock tube 

driven section (Cernak) or somewhere outside of the shock tube (Budde, Shah 

and McCrea).  

There has yet to be a universal method or device to determine whether or 

not the rat actually experiences a true blast wave in a given set up. Because of 

this, there have been a number of papers published regarding injury mechanisms 

during a blast that have been considered founded on the false premises of true 

shockwave presence. Many of the studies show a lack of instrumentation close 

enough to the rodent, optimally on the rodent itself, to confidently confirm the 

presence of a Friedlander wave actually being present in the study. As a result 

the resulting data regarding the effects of a shockwave cannot be satisfactorily 

accepted because it isn’t necessarily clear if there was in fact a shockwave’s 

presence that could have been the insult to the injury.  
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CHAPTER 2 

DEVICE REQUIREMENTS 

The ultimate goal of the device is to verify rodents going through a true 

shockwave blast in a given experimental set up. These experiments have the aim 

of blast testing to replicate the live-fire conditions. In order to be a proper 

surrogate for rodent models that are undergoing these experiments, there are 

three main concerns that will be addressed in every portion of the design 

process.  

The first requirement is biofidelity with respect to mechanics. The device 

needs to be true to the size, shape, geometry and mass distribution as would be 

found in the live rat model. This is because size and shape could affect the way 

that the shock front interacts with a given body. Mass could also affect 

acceleration factors. The second is the ability to be instrumented. Specifically this 

refers to sensors that measure pressure, acceleration or anything else that may 

serve to quantify the loading conditions that the model may experience. The final 

design consideration is the ability to be durable. The device is not meant to be 

disposable or single use. It would be most useful as something that could be 

used many times before needing to be replaced. 
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CHAPTER 3 

DESIGN METHODOLOGY 

3.1 Design Overview 

The design method can be broken down into several portions. The first is the 

head. The design was gleaned from data from a real rat model. This was then 

simplified and given small design features that allow for it to be instrumented. 

The next portion was the body. The dimensions of the body were found using 

real rat models and the data was normalized and found at the different relevant 

body percentile sizes along the normal curve. The design was also made to 

include adaptations to facilitate instrumentation. The final section was the mass 

of the rat. This is where real data of rat masses were obtained and organized to 

account for the different percentiles size rats.  

3.2 Head Design 

The process of designing a head had several key focuses. These were biofidelity 

in shape, prototype manufacture feasibility and also the ability to be properly 

instrumented and adapted to fit multiple types of sensors. Geometric biofidelity 

was an incredibly important consideration due to the angles a surface presents 

itself to a blast wave having a significant effect on the way the wave will act upon 

the body. It determines the amount of stagnation pressure a body will encounter 

as opposed to purely static pressure.  

The head portion of the design was accomplished by obtaining the proper 

model, sampling the geometry, deconstructing the shape into a simpler form, 
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producing a series of sensors and experimenting with several forms of modular 

breakdowns to ease construction. 

3.2.1 Obtaining Sample Head 

One of the problems faced by researchers who attempt to instrument a rat for 

many different sorts of measurements pertaining to the experience of a 

shockwave blast is the fur. It is easily deformable so that shape movement 

measurements taken during acceleration video analysis are often fraught with 

potential error. It provides very little as far as a stable surface to find landmarks 

and use them to record any movements a rodent may experience during blast 

winds. Another problem presented by the fur is its capacity for shedding. 

Shedding fur often gets in the way of instrumentation and can occasionally show 

up in videos. The nuisance of hair to making proper measurements, both 

physical and instrumental is dealt with the same way human measurements are 

dealt with in a surgical or non-invasive instrumentation setting. This method is 

shaving the site of interest and also clipping away any surrounding hair that may 

also interfere with the measurements.  

When constructing a biofidelic model of a rat, there is a matter of feasibility 

and user friendliness that has to be taken into account. Though most of the 

rodents used in the testing of the effects of shockwave blasts are not the hairless 

variety, accounting for a fur layer in the most accurate way possible by micro-

rooting wool by hand into a dermal layer would be extraneous. This is for several 

reasons. One is that it would take months of work to get the density of fur found 
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in the head of a rat. It is also because the different breeds and strains of rats 

used have a variation in the types of fur they present in hair thickness, length and 

density. Ultimately the work would have to be shaved off in patches of interest 

anyway. Because of these reasons, the entire layer of fur around the head was to 

be forgone in the design process. 

The problem that was presented by the decision to not include a fur layer 

was obtaining accurate dimensions of a rat with a close and uniform shave. 

Electrical clippers are not the most precise when dealing with the small curves of 

a rodent head and depilatory products such as creams and waxes were likely to 

compromise the integrity of the measurements if they led to unintended 

consequences soft tissue decomposition or inflammation. 

Rather than attempt to get a rough estimate of the dimensions with a 

patchy rat for reference, a non-physical reference was used in its place. The 

center for injury biomechanics, materials and methods (CIBM3) has used MRI 

and CT scans on rats to obtain imaging of real life rodent anatomy. These 

images were then separated into the layers of the outer skin, the skeleton and 

brain to be separate three dimensional models. The image slices of the rats were 

then converted into digital three-dimensional models using computer programs 

such as mimics as described in detail in the book “Brain Neurotrauma: Molecular, 

Neuropsychological and Rehabilitation Aspects.” (Chandra and Sundaramurthy) . 

Figure 3.1 shows the rat’s outer dermal layer in the form of a stereolithographic 

image as a result of the above process.  



 

10 
 

 

Figure 3.1 Digital three dimensional model of the rodent skin outer layer 
obtained from an original MRI scan of the animal into the form of a 
stereolithographic image file as seen here.  

 These digital models were then converted into tangible physical models 

using a three dimensional printer to be worked with. The parts were printed in 

white acrylonitrile butadiene styrene (ABS) plastic to allow for easy marking 

during the measurement and design process with these being used as a 

reference. These physical models are shown in Figure 3.2 below. 
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Figure 3.2 Physical three dimensional models of three layers of a rat’s head. 
From top to bottom they are the skin, the skull and the brain printed in white 
acrylonitrile butadiene styrene and used for physical measurements and size 
feasibility tests in the real world. 

 

3.2.2 Deconstruction 

Once a physical model was obtained of a rat head without fur, the process of 

breaking the structure down into a simpler form that could still easily be 

manufactured began. This was done first by taking into consideration the 

landmarks of a rat’s head. The chosen locations were the tip of the nose, the 
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stop (the proximal end of the animal’s muzzle), the brow, the peak of the head, 

crown, and the edge of the skull. Measurements were taken at the length 

between these points. This data was collected into table 3.1 below.  

Table 3.1 The Lengths Between Points of Interest in the Head-form of the Rat 

Points Locations Length between (mm) 

1-2 Nose to stop 14.3 

2-3 Stop to brow 10.2 

3-4 Brow to peak 7.3 

4-5 Peak to crown 10.3 

5-6 Crown to edge 2.7 

 

The widths and heights were then taken at these points in order to break 

the figure down into ellipsoid slices to simplify the geometry while still retaining 

much of the general angular shapes of the overall structure. These dimensions 

are listed in Table 3.2 

Table 3.2 Heights and Widths of the Head-form at Points of Interest 

Point Location Height (mm) Width (mm) 

1 Nose 7.51 7.51 

2 Stop 18.15 18.15 

3 Brow 24.00 28.00 

4 Peak 29.00 26.00 

5 Crown 28.00 23.00 

6 Edge 26.00 24.00 

 

Using the program Creo Parametric 2.0, these ellipses were then input as 

individual sketches with the acquired distances between them set as the 

measured lengths. A continuous sweep from point to point then rendered the 

simplified head model as one solid piece. This piece is shown in Figure 3.3. 
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Figure 3.3 Simplified solid model of rat head as a digital rendering made using 

the swept blend function through the ellipses drawn from the sample size at 

structurally significant parts of the head. The model was rendered in Creo 

Parametric 2.0 software. 
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3.2.3 Adaption for Instrumentation 

Once the bulk of the head was designed, consideration needed to be taken for 

how it would be instrumented. The process of choosing the sensors and the 

specific uses for each of the sensing elements will be discussed in depth in 

section 4.2 of this paper. This section is dedicated to the discussion of handling 

the practical design aspects of adapting the surrogate head model to 

accommodate these sensors.  

At least two pressure sensors are needed for this device. The first will be 

at the very tip of the nose which will encounter the complete head on force of the 

blast. This is important to measure because whether the animal is positioned 

supine or prone, it is the first point of the rodent body to encounter a shockwave 

if it is placed head first. This is an indicator of not only how much pressure that 

particular point has but also, as it is the nose, it has a clear correlation to how 

much pressure could travel directly to the lungs of the animal through the open 

passageway of the nostrils. In order to instrument this part, a hole was made the 

same size as the sensor going from the end of the nose all the way through to 

where the neck would be in order to be able to run the cables through. Exposing 

the cables to the shock wave or subsequent blast winds could cause 

unnecessary noise in data collection. 

Another hole was made to accommodate a second pressure sensor in the 

head. This hole however was not to be perfectly flat like the other but instead 

was to measure the pressure at the natural angle of the head at a specific 

location. The location chosen was the stop of the muzzle which is where the blast 
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wave would make contact closest to the brain first. In order to do this, the hole 

was made so that its circumference is tangential to the natural angle of the 

animal’s muzzle. In doing this, a more precise angle of measurement can be 

used to determine whether or not the animal actually may have encountered a 

blast wave to that point in the head. This feature was also united with the cavity 

left for cable leads as to once again not expose the cables to the blast wave 

which could damage them or produce noise in the subsequent readings.  The 

head including features to accommodate sensors is depicted in the Figure 3.4. 
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Figure 3.4 Simplified rat head model with instrumentation features included 

depicted as a digital, three dimensional rendering. Front sensor hole is shown at 

the bottom left corner and the angled sensor cavity is shown above it. A section 

is cut away to view the hollow of the skull at the top where the cables will go 

through.  
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3.3 Body 

Modeling the body of a rat apart from the head had its own specific challenges. 

Although deformable, because the exterior of the body is not intended to be 

heavily instrumented with sensors, the fur was allowed to be kept on the 

references during measurements. It was not necessary to resort to the digital 

shaving with MRI that was previously necessary in the head modeling.  

There was however a problem with the general shape of the rats. 

Although they have close masses, the body shape of individual rats can vary 

based on where they carry most of their weight much like human beings. The first 

attempt at rendering a body model of a rat had some oversights and 

oversimplifications because of this.  

In the first attempt a single Sprague-Dawley rat was taken and measured 

at every half inch along the seven inches of its body. No special attention was 

paid to any of the anatomical landmarks and as a result, despite the high 

sampling rate, it was not an accurate depiction of the body of a rat even in 

simplified form. Markers such as the shoulder and the pelvic structure were 

missed and by chance some heights such as those found in the legs and the 

widest point of the shoulders were still taken. As a result, the image was distorted 

as a swept blend because it was not sweeping between landmarks of the body 

but instead was just blending between random points. A drawing of this first 

version of the model can be seen in figure 3.5.  

Anatomically a vertebrate body acquires the majority of its shape, aside 

from that provided by hair or feathers, from the stretching of the skin over 

protrusions made from bones, fat or muscle. Neglecting the highest points and 
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lowest points of value and instead leaving them for chance and high sampling 

leads to fewer of these points between these sweeps and as a result paints a 

very inaccurate looking picture of what was attempted to be modeled. 

 

Figure 3.5 Drawing of first draft of the RTD body. 

Another issue with this version of the model was that this single rat may not have 

had a body that was necessarily representative of all Sprague-Dawley rats with 

the same amount of confidence. As a result, the plan for the body was 

completely overhauled to include the key details about anatomical landmarks as 

well as enough samples to ensure a confidence in the data. 

 

 



 

19 
 

3.3.1 Obtaining Body Geometry Samples 

In order to gather a massive amount of data on the geometry of Sprague-Dawley 

rats, a strategy had to be developed as well as several techniques of image 

analysis software and anatomical studies. 

There were a total of twenty-four rats that were measured and they were 

all in varying states of life. Some of them were anesthetized, some were recently 

deceased and some were thawed out frozen rats. All of them were roughly the 

same age and of similar masses as will be discussed further in section 3.3. The 

reason why the forms of life the rats were in was not highly concerning was 

because they were not in a state of decay and the landmarks that were picked 

were based on skeletal structure more than that of musculature or fat pockets 

which may have been damaged or obscured by the freezing and unfreezing 

process, rigor mortis or even the stiffness/looseness characteristic of 

anaesthetized animals that may not be present in live ones. The animals were 

photographed from a side on angle as well as from a bird’s-eye view. 

In order to properly use image analysis software, in this case Pro-Analyst, 

the photographs required a physical reference of known size in each photograph. 

It was necessary to design a ruler that would be able to be seen from both points 

of view that the pictures were being taken. A device was designed in Creo 2.0 to 

accommodate this need and it was 3-D printed in ABS plastic to be physically 

used in the process. A drawing of the reference ruler device can be seen in 

Figure 3.6. A photo of the device in use with a live but anaesthetized animal can 

be seen in Figure 3.7 from a side on view. 
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Figure 3.6 Drawing of reference ruler device for assisting in image analysis of 

rats. It was necessary to consider the natural way the body would lay upon the 

surface or up against a wall and how that would distort the measurements. As a 

result the ruler was given a solid floor but a wall with a large window cut out so 

that any extra mass from the thighs would not be impeded or squished up by a 

wall. The ruler was made in a bright color to contrast with the white fur of the rat 

so that it would be easier to spot certain landmarks against the background of 

red. Views from top left going clockwise are isometric, top, back, left.  
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Figure 3.7 Photos of a rat resting upon the ruler device. Above is the bird’s eye 

view and below is a side on view. This rat was anaesthetized and all of its 

muscles are relaxed. Its head is shaved on the top for easy instrumentation for 

another experiment. 
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 Two images were taken out of each of the twenty-four rats in this manner 

and uploaded into Pro-Analyst to analyze the geometric data. With the ruler as a 

reference point for an inch, the animals were each marked with seven reference 

points. These points were specific to the base of the neck, the end of the neck, 

the shoulder, the last rib, the pelvis, the thigh and the base of the tail. These 

points were chosen because they present the most recognizable skeletal 

features of the rat. The lengths between these points were noted and the heights 

and widths of these points per rat were taken down as well.  Tables A.1, 8 and 16 

in the appendix contain this data. 

3.3.2 Establishing Normal Geometry 

In order to be satisfied with the data obtained, it must be established that the 

data follows a normal distribution. Several methods were employed in doing this 

regarding the physical dimensions of the rats.  

The first method was to do a cursory check for asymmetry or tails in the 

data set using the skew function of excel. This gives a quick glance into whether 

a data set is asymmetrical to the upper or lower end of the data which would 

obscure it from being a normal distribution. This method was not strong as it did 

not give anything more than a very rough positive or negative value to describe 

the polarity of skewness but was unclear about the severity of how it was leaning. 

The next method was to establish an estimate of whether or not the data 

followed a normal distribution. In order to do this, each data set was organized 

smallest to largest and the amount of data, twenty-four, was tallied, averaged, 

and the standard deviation was found. Once this was done, a set of cumulative 
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distribution factors (CDF) needed to be established that correlate to the place 

where the numbers would fall in the breakdown. These CDF were then put into a 

normal inverse function of Microsoft Excel along with the mean and standard 

deviation to output the expected theoretical values at that value. The theoretical 

and observed values at these points were then compared by graphing them with 

z-values as the x-axis. This provided a rough estimate of whether or not the 

samples obtained fell along a normal distribution if they overlapped with the 

expected values.  

Once it was established that some of the data sets may have had outliers 

that were massively skewing the results, a methodology was established to 

sleuth out those data points. In order to do this, the following was needed to be 

calculated: the first quartile (Q1), the second quartile (Q2), the interquartile range 

(IQR; Q2-Q1) (D'Agostino, Sullivan and Beiser). The upper fence cutoff was 

determined to be: mean+1.5*standard deviation. The lower fence was 

determined to be: mean – 1.5*standard deviation. After the upper and lower 

fences were established then the raw data of lengths, widths and heights were 

pared from the few outliers they contained and obtained a more normalized 

appearance when graphed again using the previous method. An example of this 

can be observed in Figure 3.8 below. This was repeated when outliers were 

present and skewing the data but was not necessary for all of the data sets. 

Tables A.2-7, 9-15, and 17-23 contain this updated data without outliers. 
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Figure 3.8 Figures of observed and expected data before and after outlier 
removal. The x axis depicts the z-values and the y axis is millimeters of length 
between two points in the body. After the outliers were removed, the data points 
followed a normal distribution much better as it was very close to the expected 
outcome line.  
 

Finally, once this process was finished the final method to clarifying that 

the data fell along a normal distribution was to use the Ryan-Joiner method. This 

method is similar to the Shapiro-Wilk test which is a form of checking for proof 

that a data set does not follow a normal distribution (D'Agostino, Sullivan and 

Beiser). This was accomplished by using the program minitab and the P-value 

output by the program was compared with an established alpha value of 0.05. 

The result of the P-values being greater than alpha leads to the conclusion that it 

follows a normal distribution.  

3.3.3 Designing 50th Percentile Body 

Once it was established that the data at each point falls under a normal 

distribution, different sized models could be established to work for different size 

range rat bodies. The dimensions for the 50th percentile male body of a rat were 

Before Outlier Removal    Current Version 
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found by using the inverse normal cumulative distribution function of Excel. 

These numbers are listed in table 3.3. 

Table 3.3 The Lengths Between Points of Interest and the Heights and Widths at 

those Points of Interest in Millimeters for the 50th Percentile Male Sprague-

Dawley Rat  

Position Length between 
(mm) 

Height (mm) Width (mm) 

1 17.4365 41.1325 39.10445 

2 11.38354 44.10393 43.82494 

3 36.85298 47.55217 51.52368 

4 44.66971 54.29552 60.61238 

5 40.6654 55.96283 69.39611 

6 26.01856 50.57267 54.28814 

7   28.73789 23.61623 

 

Once these dimensions were acquired, they were translated into seven 

ellipses with six lengths between them. A swept blend was created to go 

between these ellipses and the result was the model of the 50th percentile male 

body. It can be seen in Figure 3.9. 

One observation that can be made about the general structure of the 50th 

percentile male is that the widest point of this rat is in the thighs. While the neck 

and ribs are much thinner than this which forms an overall conical shape with the 

point going towards the head. 
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Figure 3.9 50th percentile Sprague-Dawley drawings with dimensions in 

millimeters. Views starting top right going clockwise are top, front and isometric. 
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3.3.4 Designing 90th Percentile Body 

The dimensions for the 90th percentile male body of a rat were found by using the 

inverse normal cumulative distribution function of Excel but by requesting .9 

instead of .5 in the input. These numbers are listed in table 3.4. 

Table 3.4 The Lengths Between Points of Interest and the Heights and Widths at 

those Points of Interest in Millimeters for the 90th Percentile Male Sprague-

Dawley Rat  

Position Length between 
(mm) 

Height (mm) Width (mm) 

1 19.65216 53.11392 41.96289 

2 15.66593 56.5367 47.64056 

3 40.66514 60.86347 65.85578 

4 46.91071 57.47492 77.48961 

5 48.94547 60.70458 75.97154 

6 35.24141 56.00125 72.83595 

7   36.12833 27.91288 

  

These dimensions were also translated into ellipses and then using Creo 

2.0, layered at the given length distances and a swept blend was featured 

between these ellipses to create the body shape of the 90th percentile rat model.  

An observation that can be made about the body shape of this animal is 

that there is much more uniformity in the overall shape and the body itself 

resembles a flattened cylinder. It is not particularly wide on either end. This 

model can be viewed in Figure 3.10 with exact dimensions. 
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Figure 3.10 90th percentile Sprague-Dawley drawings with dimensions in 

millimeters. Views starting top right going clockwise are top, front and isometric. 
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3.3.5 Designing 95th Percentile Body 

The dimensions for the 95th percentile male body of a rat were found by using the 

inverse normal cumulative distribution function of Excel but by requesting .95 

instead of .5 in the input. These numbers are listed in table 3.5. 

Table 3.5 The Lengths Between Points of Interest and the Heights and Widths at 

those Points of Interest in Millimeters for the 95th Percentile Male Sprague-

Dawley Rat  

Position Length between 
(mm) 

Height (mm) Width (mm) 

1 20.27257 56.51049 42.77322 

2 32.74957 60.06121 48.72224 

3 41.74957 64.63704 69.91873 

4 47.546 58.37624 82.27408 

5 51.29276 62.04881 77.83559 

6 37.85596 57.54018 78.094 

7   38.22342 29.13092 

  

These dimensions were also translated into ellipses and then using Creo 

2.0, layered at the given length distances and a swept blend was featured 

between these ellipses to create the body shape of the 95th percentile rat model.  

An observation that can be made about the body shape of this animal is 

that there is much more uniformity in the overall shape than that of the 50th 

percentile male. However though the body itself resembles a flattened cylinder 

like the 90th percentile, it does have a wide point at the ribcage which suggests 

that rats carry their extra weight in their torsos but when they are thinner most of 

their width is in their legs. This model can be viewed in Figure 3.11 with exact 

dimensions. 
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Figure 3.11 95th percentile Sprague-Dawley drawings with dimensions in 

millimeters. Views starting top right going clockwise are top, front and isometric. 
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3.4 Mass 

Just as important to the geometry of the animal, the mass of the animal naturally 

needs to have a degree of biofidelity. This is because when testing blast injury 

models, primary injury, injury due to the direct effects of pressure is not the only 

consideration when there is also secondary, effects of projectiles, and tertiary, 

effects due to wind (DePalma, Burris MD and Champion). The effects due to 

wind are especially important to have the RTD experience. This is because just 

like how the precision of focusing the magnitude, duration and impulse of a blast 

wave is still a current topic of debate and research, the precise control of blast 

wind features are also not completely perfected or not proven to be completely 

repeatable in many labs. The mass of the rat surrogate needs to be similar to the 

rat so that it can behave similarly in a given blast wind so that because of the 

behavior it can be recognized as experiencing the difference between blast winds 

and a shockwave. 

3.4.1 Obtaining Mass Samples 

The center for injury biomechanics, materials and medicine has been conducting 

tests on rodent models for over a year and through it, there can be found a large 

record of certain biometric data on the animals that have been used for testing. 

Specifically records were kept on the masses of 90 of the rats that have been 

used for testing so far. The raw data can be found in Table B.1 in the appendix. 
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3.4.2 Establishing Normality of Mass Values 

Although there was a large sample size of masses, it was not guaranteed that 

the samples would follow a normal distribution pattern. Because the tests have 

been done over the course of a year, there may have been rats that were of a 

much larger or smaller size because of the nature of a specific test in the lab 

which was outside of the typical distribution that would be found. Once again 

there were several methods used to establish the level of normality in this data 

like those of the geometric data points. 

The cursory check using the skew function of excel showed that there was 

a high likelihood that the data was going to have a tail on the upper end. As a 

result, it was understood that there were likely outliers to be found so after the 

Q1, Q3, IQR were calculated using the method from Section 3.3.2 upper fence 

was calculated as was the lower fence. Using these as cutoffs, the outliers were 

removed and a graph of the expected and observed versus the z-values was 

made once again using the same method as in 3.3.2 and it can be seen below in 

Figure 3.12. 
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Figure 3.12 Figure of observed and expected data versus z-values with outliers 

removed. The two figures are consistent with shape and values.   

 

 As a final check, the Ryan-Joiner method was employed to give a last 

clarification of if the data fell along a normal distribution curve. Using minitab, the 

output indicated a high likelihood of normality.  The output can be seen in the 

appendix. 

3.4.3 Finding 50th, 90th, 95th Percentile Masses 

Once the data was satisfactorily proven to fall along a normal distribution, the 

different percentile masses could be calculated to observe how much mass the 

RTD at the different percentiles should have. The ones sought after were the 

50th, 90th, and 95th percentile which were found by using the inverse normal 

cumulative function of excel corresponding to the CDF values, the average and 

the standard deviation of the data. These numbers are listed in the below table 

3.6. 
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Table 3.6 Calculated Masses of Different Percentile Rats Using the Normal Data 

Calculated Masses of different percentile rats 

Percentile Mass (grams) 

50th 348.33 

90th 377.15 

95th  385.32 

 

3.4.4 Reconciling Difference in Mass 

When considering the masses at a given percentile such as those found in 

Table 3.6, it is important to consider how that would reconcile with the volume of 

a given percentile such as those found in section 3.3. Using the silicone material 

the reasoning for which is given in Section 4.1.1, the difference in density 

between the silicone and the flesh of a rat leads to a difference when using it to 

represent the body of a rat. Given the volumes of a given percentile and the 

density of the material of 1.34 g/cc ( (Smooth-On) the mass of the model made of 

the material can be calculated. The difference between the model mass and the 

mass of the actual rat can be found. This difference in mass can then be 

translated back into a volume of silicone that would need to be eliminated. 

Conveniently this negative amount of silicone would be used as the void space 

for instrumentation in the body design as a hollow chamber through the center. 

These values can be seen in Table 3.7 below. Given any variances in the 

constructed body mass from the theoretical body mass from imperfect blending 

or factually incorrect material specification sheets, more void space can be drilled 

out to remove excess mass. 
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Table 3.7 Calculated Void Volumes of RTD Body 

Percentile Volume 
(mm3) 

Mass (g) Volume of 
Silicone 

Given mass 
(mm3) 

Difference in 
volume aka 
void volume 

(mm3) 

50th 404012 348.33 259701 144419 

90th 632828 377.15 281479 351470 

95th 786892 385.32 287310 499582 
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Chapter 4 

PROTOTYPE DEVELOPMENT 

Without a physical prototype, the design process for a device does not offer 

much in the way of information or problem solving unless digital models are used 

to simulate the conditions that a physical model would experience. This is not an 

optimal choice in the development of a device meant to verify the existence of a 

shockwave in an actual shock tube. As a result, the construction of the prototype 

was put into process.  

4.1 Manufacturing 

In order to properly manufacture the device, the process of translating a series of 

digital sketches into physical models began with selecting a medium. At first, a 

physical model was to be produced out of wood by producing the different 

diameters and a smooth transfer between the points on a lathe by a trained 

machinist. This turned out to not be as feasible as originally thought because the 

smooth rotational movements and curvatures produced by such a tool lend 

themselves to sweeps between circular diameters but do not accommodate 

elliptical shapes like the many that make up the layers of the body design.  

The next choice was to use a three dimensional printer to flesh out a 

prototype that would serve as the RTD body. Normally this would not be an 

option because most 3D printers are much too small to handle printing out a 

device the size of a small rolling pin but the CIBM3 laboratory uses an Ultimaker 

2 Extended printer which has a very large build tank and allows for a prototype to 
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be printed out in a vertical position. An example of the build tank size can be 

seen below in Figure 4.1.  

    

Figure 4.1 A demonstration of the build tank size of the 3D printer in the program 

Cura 2.0 used to arrange parts intended for printing. 

The available materials for 3D printing with the Ultimaker do not offer the 

sort of properties that are desirable for this particular function. This will be further 

discussed in Section 4.1.1. Instead it was decided that a mold needed to be 

made and cast to form the body of the RTD out of a material with more ideal 

properties. 

4.1.1 Material Selection 

The process of selecting a material came down to several criteria: specific 

gravity, modulus of elasticity, and durability. The materials considered under 
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these criteria were foam, ABS plastics such as those found in the 3D printer, 

ballistics gel and silicone.  

Polyurethane (PU) foams have remarkable chemical properties such as 

insulation, and low heat conduction as well as good mechanical strength. 

(Witkiewicz and Zielinksi). They present an impressive compressive modulus as 

well as shear and tensile strength in planes parallel and perpendicular to foam 

rise as seen in Table 4.1. The problem is that the nature of the material has two 

properties that are fundamentally detrimental to the nature of how the device 

would be used. One is that it is too lightweight. After accounting for the void 

space of the body cavity necessary for wires, the material would be much too 

light to act as a surrogate for the rat because it may be much more sensitive to 

the effects of blast winds on its acceleration if there are any. The other problem is 

that it is filled with air bubbles. These bubbles could behave similarly to 

microcracks which have been shown to be exploited by damaging energy 

presented by explosive blasts (Liu and Katsabanis). While experiencing a blast 

wave, compressible foam such as PU foam may either attenuate the magnitude 

of the pressure wave if there is a gap between it and the site of instrumentation 

or it could amplify it if it has no gap (Seitz and Skews). 
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Table 4.1 Physical, Mechanical and Chemical Properties of Polyurethane Foams 

 

Source: Witkiewicz, Wit and Andrzej Zielinksi. "Properties of the Polyurethane (PU) light foams." 

Advances in Material Science (2006): 35-51. 

The problem with ABS plastics was that there was no stretch to the 

material. The main mechanism of assembly for the device relies on a certain 

amount of give for the body to stretch around the head and hold it in place. This 

material would require a complete redesign of the body that would need to be 

produced as two halves of a shell that lock together.  
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Ballistics gel would have been a great material for use due to it being a 

commonly used flesh model. It would have additionally been great because it is 

transparent which would have allowed for seeing if the embedded accelerometer 

shifted during testing. There is one main problem with the ballistics gel that put a 

hamper on using it and that is the melting point for being able to pour it. The poly-

lactic acid that was to be used as the printed mold can warp at relatively low 

temperatures and anything that requires a hot plate to liquefy may pose a threat 

to the structural integrity of the mold.  

Silicone was narrowed down to the best choice as a result of its flexibility 

and the close specific gravity to that of water of 1.34 g/cc (Smooth-On), which is 

the largest contributor to the mass of the real rat body. It also cures at room 

temperature so it does not pose a threat to the shape of the mold from heat 

warping. 

4.1.2 Mold Design 

There were two versions of mold making that were attempted in the process of 

developing this device’s body. Each of them had strengths and weaknesses but 

ultimately only one was useful for this particular prototyping. 

 The first was to make the mold by using an old technique of pouring a 

container holding a facsimile with a molding material. The facsimile was a 3D 

printed version of the RTD body which was placed in a plastic container that was 

half filled with soft clay. The body was sprayed with a mold release and pressed 

halfway into the clay and plaster of Paris was poured into the remaining space. It 
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was allowed to set for an hour before it was overturned and the clay was taken 

out. The body and the half mold of plaster were sprayed once again with mold 

release, placed back into the container and then the remaining void space was 

filled with plaster of Paris. The container was set upon a shaking table to release 

any bubbles that would interfere with the quality of the mold.  

The second method devised to form a mold was to render one and 3D 

print it as a piece that could be poured into. This was accomplished by creating 

an assembly in Creo featuring a simple rectangular block slightly larger than the 

RTD body. Then the RTD body was used as a cut feature to carve out its exact 

shape. The piece was then bisected and given positive notches on one side and 

negative on another with a small tolerance so they may be easily joined together 

as a locking mechanism for the mold set up. Because it is radially symmetrical, 

the same half piece could be printed twice and lock together to be poured into. 

This can be seen in Figure 4.2. The two halves were printed in poly-lactic acid 

(PLA) plastic for finer shape. 
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Figure 4.2 Drawing of half of the mold with views from top left: isometric, bottom, 
left. 

 

4.1.3 Casting 

The two halves of printed mold were assembled and sealed with hot glue along 

the edges. Liquid tin-cure silicone rubber was then mixed in a separate container. 

Special care was taken to reduce all possible bubbles. The first way this was 

accomplished was to pour the liquid in from a very high position. In pouring liquid 

silicone from a high position, the flow of material is reduced to a narrow stream 
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and when the stream is extremely narrow, bubbles are likely to surface and are 

no longer in the bulk of the liquid thus present no hazard to the quality of the 

cast. The second measure that was taken was to rest the curing mold on a 

chemical shaking table to agitate the bubbles out with mechanical motion. Once 

these were done, a vacuum tank was applied to really make sure that the 

bubbles were reduced so that the device would be as durable as possible with 

the upcoming blast tests. 

4.1.4 Compiling Parts 

The parts were assembled by fitting the design elements together in their male to 

female leads. The head plugs into the void space of the body and the assembly 

is sealed into place with a little extra silicone to prevent slipping out of place but 

still allowing it to remain able to move like a real rat neck would.  

4.2 Instrumentation 

In the most initial phase of testing, the head of the rat will be equipped with two 

kulite pressure sensors of model number XCL-072 and XCL-152-17BARA as 

shown in Figure 4.3 and Figure 4.4 below (Kulite). The XCL-152 will be at the 

nose to measure the stagnation pressure and the XCL-072will be at an angle 

tangent to that of the muzzle stop to measure the pressure that would hit the 

brow of the animal and lead to the brain.  
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Figure 4.3 Schematic of a Kulite XCL-072 Pressure Sensor. 

Source: Kulite. "Miniature Leadless Pressure Transducer XCL-072 series." n.d. 

http://www.kulitesensors.com.cn/pdf_Data_Sheets/XCL-072.pdf. 10 11 2015. 

 

Figure 4.4 Schematic of a Kulite XCL-152 Pressure Sensor. 

Source: Kulite "Short Length Pressure Transducer XCL-152 Series." 2015. 
http://www.kulite.com/docs/products/XCL-152.pdf. 11 10 2015. 

 

In order to understand the acceleration effects on the models, the device 

was designed to accommodate an accelerometer sensor. Specifically the 

endevco 7264C accelerometer which has a small size and is graded for crash 

and shock testing will be the sensor used in these tests. A schematic of the 

sensor is featured below in Figure 4.5. 
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Figure 4.5 Endevco 7264C piezoresistive accelerometer schematic. 

Source: Endevco. "Model 7264C Piezoresistive accelerometer." n.d. 

https://www.endevco.com/product/prodpdf/7264C.pdf. 2015. 

 

In the RTD model, the instrumentation process was simple because all the 

sensors were considered in the design process. The two pressure sensors easily 

fit into their respective places in the head and the accelerometer was put into the 

cavity of the void space within the body. All the cables were fed through the body 

of the device so that they would be protected from the blasts.  

In the rat cadaver model, it was not nearly as convenient. While the nose 

sensor was easily glued to beneath the nose of the animal, the head sensor 

located at the brow required surgical intervention to make the sensor sit flush 

with the head of the animal. The head was shaved and a small hole was drilled 

through the skull to allow the sensor to be placed through and the sensor was 

secured in place with epoxy and silicone gel. 
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The accelerometer also required surgery to be properly placed. The torso 

of the rat was cut so that there was a small pouch formed between the muscle 

and the skin of the rat just below the ribcage. The accelerometer was encased in 

silicone and placed into this new cavity. The area was stapled shut.  

All cables and wires were then secured to the underbelly of the rat which 

would be the spot with the most protection for them as it lay in the prone position 

on the testing bed.  
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CHAPTER 5 TESTING 

Experiments are to be conducted using the CIBM3 9” diameter shock tube. The 

test models were to be both the instrumented RTD and a cadaveric rat. Both of 

these were to be placed on the bed of the harness device pictured in Figure 5.1 

for each of the tests and placed either inside or outside the tube in a given test. 

 

 

Figure 5.1 The harness clockwise from top left: right, top, isometric and front. 

 The first scenario was to test the RTD inside the tube as it withstood a 

blast using two 0.9mm Mylar membranes between the driving section and the 

driven section. The RTD was secured into place using a cloth strap that is part of 

the assembly of the harness structure. A pressure sensor was also located at the 
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surface of the shock tube to record incident pressure of the wave as well. This 

test was repeated three times. The RTD in this set up is featured below in Figure 

5.2. This testing scenario was repeated three times with the rat cadaver model as 

well. 

 

Figure 5.2 RTD inside the shock tube with a harness. 

The next testing scenario was similar to the previous in that it was also 

secured with the strap and it took place inside the shock tube only it used four 

Mylar membranes rather than two. This was also repeated on the rat cadaver. 

Each model experienced three tests. 

The third scenario is similar to the first where it has only two membranes 

and takes place inside the shock tube except the model is not strapped down 

and allowed to move freely if it is forced to by the blast wave or subsequent 
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winds.  Three tests of this were planned for each of the models. The rat cadaver 

model is depicted below in Figure 5.3 in this set up. 

Figure 5.3 Rat cadaver inside shock tube without harness 

The model and harness bed were then moved outside the shock 

tube where the model was placed so that the nose sensor was exactly 

four inches from the end of the barrel with two membranes. The test was 

repeated three times strapped and three times not strapped down on both 

the RTD and the rat cadaver model. The unstrapped RTD outside of the 

shock tube is pictured in Figure 5.4.  A pressure sensor probe was also 

placed four inches outside of the shock tube from the height of the top of 

the shock tube to record the incident pressure.  
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Figure 5.4 RTD unstrapped outside shock tube barrel. 
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CHAPTER 6 

Results, Summary and Future 

 

6.1 Results 

The data that was gathered from the instrumentation was divided into four 

points of interest. Peak overpressures describe how much pressures the models 

experience at each sensor location and angle as well as the peak pressure 

experienced at the incident pressure sensor along the tube to be a control 

checking for consistency of the shots. Impulse values are signifier of several 

features of a shockwave such as the peak overpressure and duration because 

they are the area formed under the peak of a pressure versus time graph. This 

will be discussed in greater detail in Section 6.1.2. The accelerations were 

measured by the Endevco sensor and give an output of how many g the model 

experienced in the positive or negative direction in alignment with the tube. 

Finally the velocities were calculated to verify shock occurred. 

6.1.1 Peak Overpressures 

The first set of overpressures to look over is the peak overpressures found by the 

sensor located at the nose. These values are depicted in Figure 6.1.  
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Figure 6.1 Overpressures at nose sensor. 

Given the small sample size of shots, the majority of these values 

between the RTD and the rat for a given scenario were very similar. There was 

some difference however in the overpressures found in the tests that took place 

outside of the shock tube.  

 The next set of overpressures was measured on the brow ridge at the top 

of the head which sat flush with the head. These values are depicted in Figure 

6.2. 
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Figure 6.2 Overpressures at head sensor. 

The overpressures found in this location were consistent except for a slight 

disparity in the higher membrane tests. This is to be expected in such a test 

because greater pressures often have greater variances from test to test. This 

can be noticed by the large standard deviation in the value of the peak 

overpressures for the rat at four membranes. 

The last set of peak overpressures examined is the incident pressures 

which are depicted in Figure 6.3. These are meant to indicate the consistency of 

the pressures from shot to shot in a sensor that has nothing to do with the RTD 

or rat cadaver model. The differences between the overpressures for each given 

scenario may have several contributing factors. One being that the RTD and rat 

models were tested on different days so environmental factors such as humidity 

and temperature may have affected the overpressure. 
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Figure 6.3 Incident pressures. 

6.1.2 Impulses 

The impulse values are key to understanding the shape of the wave that is 

encountered. Because the effects of a blast wave are not limited to simply the 

pressures presented by the peak overpressure but rather by all of the pressures 

that occur on the body including the subsequent blast winds as the overpressure 

degrades, it is an important value to evaluate the effectiveness of a surrogate for 

a test model. This evaluation is mainly based on reporting the consistency of the 

impulses in a given scenario between the RTD and the rat models. 
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Figure 6.4 Nose Impulse. 

 In Figure 6.4, the impulse values can be seen as having a consistent 

similarity for all of the given scenarios. As to be expected, there was a large 

standard deviation in the tests using four membranes instead of two. This is 

because the higher pressures tend to have a noisier signal and are less 

predictable than the lower pressure tests. 

 

Figure 6.5 Head Impulse. 
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The impulse values for the head sensors are even more consistent than those of 

the nose. This implies that the geometry used for the placement of the sensor as 

well as the shape of the RTD head was especially accurate to the geometry of a 

rat because the sensor encountered the wave in a very similar manner between 

the two different models. 

 

Figure 6.6 Incident Impulse. 

The closeness of impulse values between the different shots during each impulse 

verify that the waves were consistent and show that there were not any 

anomalous types of wave shapes during this series of tests. 

6.1.3 Accelerations 

The acceleration values are important in shockwave testing because there are 

secondary and tertiary causes for injury that can be predicted with acceleration 

values such as whiplash and falls. The following figures correspond to the 

acceleration sensed by the accelerometer. The positive values sense when the 

sensor was forced forward toward the membrane and the negative sensor 
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indicates when the sensor was experiencing a force moving away from the 

membrane. The first peak encountered was the negative value which is to be 

expected as the models would first be pushed back and then either fall or move 

back towards their original position by the compression resistant properties of 

their materials, flesh or silicone. 

 

Figure 6.7 Peak positive acceleration. 

 

Figure 6.8 Peak negative acceleration. 
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Looking at the negative peak, the only disparity that is very clear are the 

tests that were inside the tube and not strapped down. This makes sense 

because the rat was lighter than the RTD and the fur on the rat’s underbelly 

made a lower friction contact with the bed of the harness than the silicone of the 

RTD body.  

6.1.4 Velocities 

The velocities were found by finding the differences in distances from each 

sensor location and dividing them by the difference in arrival times between each 

sensor. These were then found for each of the spaces between the sensors 

along the shock tube as well as the sensors in the head of the models. For the 

shots outside of the tube there was an added value for the incident pressure 

sensor’s velocity. 

 

Figure 6.9 Velocities for 2 membranes, inside shock tube, secured by strap. 
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Figure 6.10 Velocities for 2 membrane, inside shock tube, not secured by strap. 

 

Figure 6.11 Velocities for 2 membrane, outside shock tube, secured by a strap. 
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Figure 6.12 Velocities for 2 membrane, outside shock tube, not secured by strap. 

 

 

Figure 6.13 Velocities for 4 membrane, inside shock tube, not secured by strap. 
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The values across the board for the sensors of interest in the head between the 

RTD and the rat models were consistent with each other. This indicates that they 

experienced the same velocity of shock front in these locations. Furthermore 

because all of the velocities in both the incident pressure sensors and the head 

sensors were well above the acoustic velocity of air in standard temperature and 

pressure, 340.4m/s (Kinney and Graham) , it can be verified that the models did 

indeed experience shock waves in each scenario.  

6.2 Summary 

 When comparing the RTD to a rat cadaver, several conclusions can be 

made given the test results discussed in this paper. The RTD senses the same 

incident pressures as the rat model with close outputs in each pressure sensor 

located in the head. This allows it to verify the peak overpressures that the rat 

would experience in a given scenario. Also from these pressure sensors, the 

RTD allows the user to calculate the impulse values closely to those experienced 

by the rat cadaver. Because of this, not only can the peak overpressure be found 

but the shape of the wave that the rat would encounter can be found as well. This 

is significant in discussing the mechanisms of injury for a rat in a given blast 

wave based injury. This shows that the geometry of the head and body were 

accurate to that of a real rat. 

Also important in evaluating the mechanism of an injury is the 

accelerometer tests. Most of these tests were accurate in both the positive and 

negative peaks except for those tests where the rat was not harnessed. The 

differences between them can be accounted for by considering the mass 
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difference of almost 200 grams between the RTD and the rat cadaver. Also the 

rat has less friction with the bed of the harness due to fur as opposed to silicone. 

In future iterations, a larger void space will be made within the RTD body to make 

up for the extra weight of the sealing silicone and the instrumentation. Also it will 

have a lower friction surface on the underbelly. 

6.3 Future 

 There are a few ways that this project could be taken further. One way has 

been discussed before with alterations to the total mass of the RTD as well as 

reducing the friction of the outer shell. The RTD could also be instrumented with 

a gamut of sensors. These include external strain gauges to test the biofidelity of 

the outer layer to that of the skin of a rodent. Also the potential pressure of the 

inner cavity compared to those found in the lungs of the rat.  

 Another way that the project could go is based on the modular nature of 

the design. The head could be redesigned such that it would be able to change 

the angles of the neck to adapt to the different positions the rat may be placed in 

within other experimental set ups. Also all of these experiments could be done 

with different percentile sized rats or even repeated with mice and other rodents 

that are used for testing. The project can be taken in many directions. 
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Appendix A 

Raw Geometric Data of the Rodent Body 

Tables that display the length, width and height of the rat at varying points in the 

body of anatomical significance: base of neck, end of neck, shoulder, last rib, 

pelvis, thigh, tail base.  

Table A.1 Length in millimeters between points raw data 

Rat 1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 

1 18.52 7.00 25.81 43.82 18.52 7.00 

2 17.50 9.37 33.78 43.61 17.50 9.37 

3 18.07 11.43 36.42 43.21 18.07 11.43 

4 16.18 10.04 33.76 42.95 16.18 10.04 

5 19.61 10.09 34.04 45.80 19.61 10.09 

6 17.80 6.63 27.31 40.89 17.80 6.63 

7 16.58 7.40 37.49 43.59 16.58 7.40 

8 10.47 6.63 28.42 44.37 10.47 6.63 

9 17.30 14.10 39.90 43.76 17.30 14.10 

10 15.27 11.38 38.10 43.38 15.27 11.38 

11 18.02 11.82 39.32 44.22 18.02 11.82 

12 18.62 11.50 34.47 44.04 18.62 11.50 

13 17.08 11.14 27.28 46.15 17.08 11.14 

14 11.07 10.61 35.56 46.96 11.07 10.61 

15 20.07 10.68 39.19 45.95 20.07 10.68 

16 20.16 12.64 39.50 45.95 20.16 12.64 

17 14.82 11.65 37.90 36.63 14.82 11.65 

18 17.79 14.14 38.53 34.95 17.79 14.14 

19 18.97 13.72 36.96 53.16 18.97 13.72 

20 15.75 10.28 38.15 44.86 15.75 10.28 

21 14.16 16.42 35.74 47.80 14.16 16.42 

22 15.07 13.97 42.72 47.90 15.07 13.97 

23 17.72 14.09 37.34 50.55 17.72 14.09 

24 19.15 17.29 36.63 44.17 19.15 17.29 

average 18.52 7.00 25.81 43.82 18.52 7.00 

StdDev 17.50 9.37 33.78 43.61 17.50 9.37 

Q 1 18.07 11.43 36.42 43.21 18.07 11.43 

Q 3 16.18 10.04 33.76 42.95 16.18 10.04 

IQR 19.61 10.09 34.04 45.80 19.61 10.09 

U fence 17.80 6.63 27.31 40.89 17.80 6.63 

L fence 16.58 7.40 37.49 43.59 16.58 7.40 
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Table A.2 Length in millimeters between base of neck and end of neck with 

outliers removed 

Length 1-2 in millimeters with outliers removed 

Rat Measured length CDF Expected length z-value 

1 14.2 0.0 14.0 -2.0 

2 14.8 0.1 14.9 -1.5 

3 15.1 0.1 15.4 -1.2 

4 15.3 0.2 15.8 -1.0 

5 15.7 0.2 16.1 -0.8 

6 16.2 0.3 16.3 -0.7 

7 16.6 0.3 16.5 -0.5 

8 17.1 0.3 16.8 -0.4 

9 17.3 0.4 17.0 -0.3 

10 17.5 0.4 17.2 -0.2 

11 17.7 0.5 17.4 -0.1 

12 17.8 0.5 17.6 0.1 

13 17.8 0.6 17.8 0.2 

14 18.0 0.6 18.0 0.3 

15 18.1 0.7 18.2 0.4 

16 18.5 0.7 18.4 0.5 

17 18.6 0.8 18.6 0.7 

18 19.0 0.8 18.9 0.8 

19 19.2 0.8 19.2 1.0 

20 19.6 0.9 19.5 1.2 

21 20.1 0.9 20.0 1.5 

22 20.2 1.0 20.9 2.0 
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Table A.3 Length in millimeters between end of neck and shoulder outliers 

removed 

Length 2-3 in millimeters with outliers removed 

Rat Measured 
length CDF 

Expected 
length z-value 

1 6.63 0.02 4.58 -2.04 

2 6.63 0.06 6.26 -1.53 

3 7.00 0.10 7.18 -1.26 

4 7.40 0.15 7.86 -1.05 

5 9.37 0.19 8.42 -0.89 

6 10.04 0.23 8.91 -0.74 

7 10.09 0.27 9.34 -0.61 

8 10.28 0.31 9.75 -0.49 

9 10.61 0.35 10.13 -0.37 

10 10.68 0.40 10.50 -0.26 

11 11.14 0.44 10.86 -0.16 

12 11.38 0.48 11.21 -0.05 

13 11.43 0.52 11.56 0.05 

14 11.50 0.56 11.91 0.16 

15 11.65 0.60 12.27 0.26 

16 11.82 0.65 12.63 0.37 

17 12.64 0.69 13.02 0.49 

18 13.72 0.73 13.42 0.61 

19 13.97 0.77 13.86 0.74 

20 14.09 0.81 14.35 0.89 

21 14.10 0.85 14.91 1.05 

22 14.14 0.90 15.59 1.26 

23 6.63 0.02 4.58 -2.04 

24 6.63 0.06 6.26 -1.53 
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Table A.4 Length between shoulder and last rib in millimeters outliers removed 

Length 3-4 in millimeters with outliers removed 

Rat Measured 
length CDF 

Expected 
length z-value 

1 28.42 0.15 26.46 -1.05 

2 33.76 0.19 27.77 -0.89 

3 33.78 0.23 28.92 -0.74 

4 34.04 0.27 29.95 -0.61 

5 34.47 0.31 30.91 -0.49 

6 35.56 0.35 31.81 -0.37 

7 35.74 0.40 32.67 -0.26 

8 36.42 0.44 33.51 -0.16 

9 36.63 0.48 34.34 -0.05 

10 36.96 0.52 35.16 0.05 

11 37.34 0.56 35.99 0.16 

12 37.49 0.60 36.83 0.26 

13 37.90 0.65 37.69 0.37 

14 38.10 0.69 38.59 0.49 

15 38.15 0.73 39.55 0.61 

16 38.53 0.77 40.58 0.74 

17 39.19 0.81 41.73 0.89 

18 39.32 0.85 43.04 1.05 

19 39.50 0.90 44.64 1.26 

20 39.90 0.94 46.82 1.53 

21 42.72 0.98 50.77 2.04 
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Table A.5 Length in millimeters between last rib and pelvis outliers removed 

Length 4-5 in millimeters with outliers removed 

Rat Measured 
length CDF 

Expected 
length z-value 

1 40.9 0.1 30.8 -1.3 

2 43.0 0.1 32.8 -1.1 

3 43.2 0.2 34.4 -0.9 

4 43.4 0.2 35.8 -0.7 

5 43.6 0.3 37.0 -0.6 

6 43.6 0.3 38.2 -0.5 

7 43.8 0.4 39.3 -0.4 

8 43.8 0.4 40.4 -0.3 

9 44.0 0.4 41.4 -0.2 

10 44.2 0.5 42.4 -0.1 

11 44.2 0.5 43.4 0.1 

12 44.4 0.6 44.4 0.2 

13 44.9 0.6 45.4 0.3 

14 45.8 0.6 46.5 0.4 

15 45.9 0.7 47.6 0.5 

16 45.9 0.7 48.7 0.6 

17 46.2 0.8 50.0 0.7 

18 47.0 0.8 51.4 0.9 

19 47.8 0.9 53.0 1.1 

20 47.9 0.9 54.9 1.3 
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Table A.6 Length in millimeters between pelvis and thigh outliers removed 

Length 5-6 in millimeters with outliers removed 

Rat Measured 
length CDF 

Expected 
length z-value 

1 30.0 0.1 24.7 -1.5 

2 31.1 0.1 27.2 -1.3 

3 31.2 0.1 29.1 -1.1 

4 32.3 0.2 30.7 -0.9 

5 34.9 0.2 32.0 -0.7 

6 38.1 0.3 33.2 -0.6 

7 38.2 0.3 34.4 -0.5 

8 38.3 0.4 35.4 -0.4 

9 38.3 0.4 36.4 -0.3 

10 38.5 0.4 37.4 -0.2 

11 40.3 0.5 38.4 -0.1 

12 40.3 0.5 39.4 0.1 

13 40.4 0.6 40.3 0.2 

14 40.6 0.6 41.3 0.3 

15 42.3 0.6 42.3 0.4 

16 42.6 0.7 43.4 0.5 

17 45.1 0.7 44.5 0.6 

18 45.5 0.8 45.7 0.7 

19 45.6 0.8 47.1 0.9 

20 46.3 0.9 48.6 1.1 

21 49.1 0.9 50.5 1.3 

22 51.9 0.9 53.1 1.5 

23 54.4 1.0 57.7 2.0 
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Table A.7 Length in millimeters between thigh and tail base, outliers removed 

Length 6-7 in millimeters with outliers removed 

Rat Measured 
length CDF 

Expected 
length z-value 

1 15.9 0.0 11.4 -2.0 

2 19.1 0.1 15.0 -1.5 

3 20.4 0.1 17.0 -1.3 

4 20.4 0.1 18.4 -1.1 

5 20.5 0.2 19.6 -0.9 

6 21.9 0.2 20.7 -0.7 

7 22.8 0.3 21.6 -0.6 

8 23.7 0.3 22.5 -0.5 

9 24.7 0.4 23.3 -0.4 

10 26.0 0.4 24.1 -0.3 

11 26.4 0.4 24.9 -0.2 

12 27.6 0.5 25.6 -0.1 

13 27.7 0.5 26.4 0.1 

14 28.8 0.6 27.2 0.2 

15 28.8 0.6 27.9 0.3 

16 29.1 0.6 28.7 0.4 

17 29.7 0.7 29.5 0.5 

18 30.4 0.7 30.4 0.6 

19 31.3 0.8 31.4 0.7 

20 35.0 0.8 32.4 0.9 

21 35.4 0.9 33.6 1.1 

22 36.9 0.9 35.1 1.3 

23 40.2 0.9 37.1 1.5 

24 41.3 1.0 40.7 2.0 

 

 

 

 

 

 

 

 



 

70 
 

 

Table A.8 Height at varying points in the body raw data 

Height in millimeters Raw Data 

Rat 1 2 3 4 5 6 7 

1 35.3 35.8 46.0 54.1 55.4 54.7 32.1 

2 33.5 35.7 45.8 54.6 57.9 53.5 38.1 

3 39.4 39.5 50.8 67.5 59.5 37.6 25.9 

4 39.6 43.2 48.5 60.5 63.6 60.3 37.2 

5 35.8 41.4 47.2 55.8 56.8 51.7 29.9 

6 41.9 43.1 48.9 52.3 53.3 50.5 39.7 

7 36.0 36.2 46.5 53.6 57.1 52.0 36.4 

8 40.4 46.3 51.3 49.8 51.3 50.9 27.2 

9 53.7 51.8 53.7 54.3 57.1 50.7 27.7 

10 46.3 50.1 54.9 56.5 58.3 47.6 20.6 

11 45.8 46.9 53.4 54.8 54.8 54.8 31.2 

12 43.8 47.6 51.0 58.0 60.8 52.9 28.5 

13 41.3 42.8 45.5 52.3 48.5 49.4 29.0 

14 49.7 49.6 48.8 53.7 56.2 48.8 29.1 

15 45.3 50.8 51.0 53.9 55.7 52.1 30.0 

16 40.7 46.4 48.7 52.3 51.0 50.7 26.4 

17 40.5 44.0 48.3 54.9 55.8 50.4 29.4 

18 36.3 39.0 45.1 56.8 61.2 51.2 33.4 

19 49.9 55.2 56.9 73.1 85.4 70.9 43.3 

20 44.9 46.8 47.9 53.7 56.2 43.6 22.3 

21 48.2 47.1 48.2 51.2 50.9 32.1 18.2 

22 36.8 41.8 46.1 51.1 48.5 38.5 20.2 

23 40.4 47.1 52.0 56.2 60.6 44.9 23.3 

24 40.4 46.2 48.3 62.5 56.7 40.7 25.0 
mean 41.9 44.8 49.4 56.0 57.2 49.6 29.3 

Std 
Dev 5.2 5.1 3.2 5.3 7.2 7.8 6.4 

Q 1 38.8 41.7 47.0 53.3 54.5 46.9 25.7 

Q 3 45.4 47.3 51.1 56.6 58.6 52.3 32.5 

IQR 6.6 5.6 4.1 3.3 4.1 5.3 6.8 
Upper 
fence 

55.3 55.6 57.2 61.5 64.8 60.3 42.6 

Lower 
fence 

28.8 33.3 40.8 48.4 48.2 38.9 15.5 
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Table A.9 Height at base of neck in millimeters with outliers removed 

Height 1 in millimeters with outliers removed 

Rat Measured 
height CDF 

Expected 
height z-value 

1 33.5 0.0 22.1 -2.0 

2 35.3 0.1 26.8 -1.5 

3 35.8 0.1 29.4 -1.3 

4 36.0 0.1 31.3 -1.1 

5 36.3 0.2 32.8 -0.9 

6 36.8 0.2 34.2 -0.7 

7 39.4 0.3 35.4 -0.6 

8 39.6 0.3 36.6 -0.5 

9 40.4 0.4 37.6 -0.4 

10 40.4 0.4 38.7 -0.3 

11 40.4 0.4 39.7 -0.2 

12 40.5 0.5 40.6 -0.1 

13 40.7 0.5 41.6 0.1 

14 41.3 0.6 42.6 0.2 

15 41.9 0.6 43.6 0.3 

16 43.8 0.6 44.6 0.4 

17 44.9 0.7 45.7 0.5 

18 45.3 0.7 46.8 0.6 

19 45.8 0.8 48.1 0.7 

20 46.3 0.8 49.4 0.9 

21 48.2 0.9 51.0 1.1 

22 49.7 0.9 52.9 1.3 

23 49.9 0.9 55.5 1.5 

24 53.7 1.0 60.2 2.0 
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Table A.10 Height at end of neck in millimeters with outliers removed 

Height 2 in millimeters with outliers removed 

Rat Measured 
height CDF 

Expected 
height z-value 

1 35.7 0.0 24.3 -2.0 

2 35.8 0.1 29.2 -1.5 

3 36.2 0.1 31.9 -1.3 

4 39.0 0.1 33.9 -1.1 

5 39.5 0.2 35.5 -0.9 

6 41.4 0.2 36.9 -0.7 

7 41.8 0.3 38.2 -0.6 

8 42.8 0.3 39.4 -0.5 

9 43.1 0.4 40.5 -0.4 

10 43.2 0.4 41.5 -0.3 

11 44.0 0.4 42.6 -0.2 

12 46.2 0.5 43.6 -0.1 

13 46.3 0.5 44.6 0.1 

14 46.4 0.6 45.6 0.2 

15 46.8 0.6 46.7 0.3 

16 46.9 0.6 47.7 0.4 

17 47.1 0.7 48.8 0.5 

18 47.1 0.7 50.0 0.6 

19 47.6 0.8 51.3 0.7 

20 49.6 0.8 52.7 0.9 

21 50.1 0.9 54.3 1.1 

22 50.8 0.9 56.3 1.3 

23 51.8 0.9 59.0 1.5 

24 55.2 1.0 63.9 2.0 
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Table A.11 Height at shoulder in millimeters with outliers removed 

Height 3 in millimeters with outliers removed 

Rat Measured 
height CDF 

Expected 
height z-value 

1 45.1 0.0 26.4 -2.0 

2 45.5 0.1 31.6 -1.5 

3 45.8 0.1 34.5 -1.3 

4 46.0 0.1 36.6 -1.1 

5 46.1 0.2 38.3 -0.9 

6 46.5 0.2 39.8 -0.7 

7 47.2 0.3 41.2 -0.6 

8 47.9 0.3 42.5 -0.5 

9 48.2 0.4 43.7 -0.4 

10 48.3 0.4 44.8 -0.3 

11 48.3 0.4 45.9 -0.2 

12 48.5 0.5 47.0 -0.1 

13 48.7 0.5 48.1 0.1 

14 48.8 0.6 49.2 0.2 

15 48.9 0.6 50.3 0.3 

16 50.8 0.6 51.4 0.4 

17 51.0 0.7 52.6 0.5 

18 51.0 0.7 53.9 0.6 

19 51.3 0.8 55.3 0.7 

20 52.0 0.8 56.8 0.9 

21 53.4 0.9 58.5 1.1 

22 53.7 0.9 60.6 1.3 

23 54.9 0.9 63.5 1.5 

24 56.9 1.0 68.7 2.0 
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Table A.12 Height at last rib in millimeters with outliers removed 

Height 4 in millimeters with outliers removed 

Rat Measured 
height CDF 

Expected 
height z-value 

1 49.8 0.0 49.4 -2.0 

2 51.1 0.1 50.7 -1.5 

3 51.2 0.1 51.4 -1.2 

4 52.3 0.2 51.9 -1.0 

5 52.3 0.2 52.3 -0.8 

6 52.3 0.3 52.7 -0.6 

7 53.6 0.3 53.1 -0.5 

8 53.7 0.4 53.4 -0.4 

9 53.7 0.4 53.7 -0.2 

10 53.9 0.5 54.0 -0.1 

11 54.1 0.5 54.3 0.0 

12 54.3 0.5 54.6 0.1 

13 54.6 0.6 54.9 0.2 

14 54.8 0.6 55.2 0.4 

15 54.9 0.7 55.5 0.5 

16 55.8 0.7 55.9 0.6 

17 56.2 0.8 56.3 0.8 

18 56.5 0.8 56.7 1.0 

19 56.8 0.9 57.2 1.2 

20 58.0 0.9 57.9 1.5 

21 60.5 1.0 59.2 2.0 
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Table A.13 Height at pelvis in millimeters with outliers removed 

Height 5 in millimeters with outliers removed 

Rat Measured 
height CDF 

Expected 
height z-value 

1 48.5 0.0 48.4 -2.0 

2 48.5 0.1 50.3 -1.5 

3 50.9 0.1 51.3 -1.3 

4 51.0 0.1 52.1 -1.1 

5 51.3 0.2 52.7 -0.9 

6 53.3 0.2 53.2 -0.7 

7 54.8 0.3 53.7 -0.6 

8 55.4 0.3 54.2 -0.5 

9 55.7 0.4 54.6 -0.4 

10 55.8 0.4 55.0 -0.3 

11 56.2 0.4 55.4 -0.2 

12 56.2 0.5 55.8 -0.1 

13 56.7 0.5 56.2 0.1 

14 56.8 0.6 56.5 0.2 

15 57.1 0.6 56.9 0.3 

16 57.1 0.6 57.3 0.4 

17 57.9 0.7 57.8 0.5 

18 58.3 0.7 58.2 0.6 

19 59.5 0.8 58.7 0.7 

20 60.6 0.8 59.2 0.9 

21 60.8 0.9 59.9 1.1 

22 61.2 0.9 60.6 1.3 

23 63.6 0.9 61.6 1.5 
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Table A.14 Height at thigh in millimeters with outliers removed 

Height 6 in millimeters with outliers removed 

Rat Measured 
height CDF 

Expected 
height z-value 

1 40.7 0.1 35.3 -1.1 

2 43.6 0.2 37.2 -0.9 

3 44.9 0.2 38.9 -0.7 

4 47.6 0.3 40.4 -0.6 

5 48.8 0.3 41.8 -0.5 

6 49.4 0.4 43.1 -0.4 

7 50.4 0.4 44.3 -0.3 

8 50.5 0.4 45.6 -0.2 

9 50.7 0.5 46.8 -0.1 

10 50.7 0.5 48.0 0.1 

11 50.9 0.6 49.2 0.2 

12 51.2 0.6 50.4 0.3 

13 51.7 0.6 51.6 0.4 

14 52.0 0.7 52.9 0.5 

15 52.1 0.7 54.3 0.6 

16 52.9 0.8 55.8 0.7 

17 53.5 0.8 57.5 0.9 

18 54.7 0.9 59.4 1.1 

19 54.8 0.9 61.7 1.3 

20 60.3 0.9 64.8 1.5 
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Table A.15 Height at base of tail in millimeters with outliers removed 

Height 7 in millimeters with outliers removed 

Rat Measured 
height CDF 

Expected 
height z-value 

1 18.2 0.0 12.0 -2.0 

2 20.2 0.1 15.8 -1.5 

3 20.6 0.1 17.9 -1.3 

4 22.3 0.1 19.5 -1.1 

5 23.3 0.2 20.8 -0.9 

6 25.0 0.2 21.9 -0.7 

7 25.9 0.3 22.9 -0.6 

8 26.4 0.3 23.8 -0.5 

9 27.2 0.4 24.7 -0.4 

10 27.7 0.4 25.5 -0.3 

11 28.5 0.4 26.4 -0.2 

12 29.0 0.5 27.2 -0.1 

13 29.1 0.5 28.0 0.1 

14 29.4 0.6 28.8 0.2 

15 29.9 0.6 29.6 0.3 

16 30.0 0.6 30.4 0.4 

17 31.2 0.7 31.3 0.5 

18 32.1 0.7 32.3 0.6 

19 33.4 0.8 33.3 0.7 

20 36.4 0.8 34.4 0.9 

21 18.2 0.0 12.0 -2.0 

22 20.2 0.1 15.8 -1.5 

23 20.6 0.1 17.9 -1.3 
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Table A.16 Width raw data at varying points in millimeters 

Width in millimeters Raw Data 

Rat 1 2 3 4 5 6 7 

1 38.7 38.8 46.1 53.0 68.0 77.4 44.3 

2 30.7 37.1 58.6 60.4 66.9 73.2 45.6 

3 35.9 41.9 57.0 65.7 75.8 69.6 25.9 

4 38.0 44.9 58.2 64.5 69.3 59.3 28.8 

5 36.8 43.5 58.2 61.5 68.6 65.5 28.5 

6 39.4 41.7 48.9 64.6 70.0 61.5 24.4 

7 40.4 43.0 53.5 67.5 68.8 59.2 27.0 

8 45.0 47.9 61.1 54.9 55.4 47.8 21.0 

9 38.1 45.6 52.1 63.8 65.5 47.8 19.9 

10 44.3 52.7 58.5 60.4 61.1 58.8 26.8 

11 38.4 44.3 58.9 65.5 73.9 71.7 19.5 

12 40.7 44.8 55.0 61.4 64.6 70.2 25.8 

13 41.8 49.5 56.5 58.3 78.6 75.8 26.0 

14 38.5 44.5 50.1 60.1 65.9 45.1 25.4 

15 39.6 44.2 48.6 60.5 68.5 55.3 23.8 

16 37.8 40.8 51.2 67.0 70.8 63.0 21.4 

17 38.6 43.4 50.9 65.9 77.2 57.9 27.2 

18 36.5 40.9 51.7 66.0 72.1 63.0 24.6 

19 36.3 47.7 58.0 67.6 67.0 48.8 20.3 

20 38.3 44.3 52.9 64.8 71.5 53.0 18.4 

21 42.3 45.7 55.2 61.5 72.6 34.5 22.2 

22 42.6 47.2 53.9 73.4 76.5 65.8 22.8 

23 36.7 40.7 50.8 63.5 65.6 43.4 22.9 

24 40.4 45.8 49.4 57.7 57.3 35.8 16.9 

average 39.0 44.2 54.0 62.9 68.8 58.5 25.4 

StdDev 3.0 3.4 4.0 4.5 5.8 12.0 6.8 

Q 1 37.5 41.8 50.9 60.4 65.8 48.5 21.3 

Q 3 40.5 45.7 58.0 65.8 72.3 66.7 26.9 

IQR 2.9 3.9 7.1 5.4 6.4 18.2 5.6 

Upper 
fence 

44.9 51.5 68.7 73.9 81.9 94.0 35.2 

Lower 
fence 

33.2 36.0 40.2 52.3 56.2 21.2 13.0 
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Table A.17 Width in millimeters at the base of the neck with outliers removed 

Width 1 in millimeters with outliers removed 

Rat Measured 
width CDF 

Expected 
width z-value 

1 35.9 0.1 25.4 -1.5 

2 36.3 0.1 27.7 -1.3 

3 36.5 0.1 29.3 -1.1 

4 36.7 0.2 30.7 -0.9 

5 36.8 0.2 31.9 -0.7 

6 37.8 0.3 33.0 -0.6 

7 38.0 0.3 33.9 -0.5 

8 38.1 0.4 34.9 -0.4 

9 38.3 0.4 35.8 -0.3 

10 38.4 0.4 36.7 -0.2 

11 38.5 0.5 37.5 -0.1 

12 38.6 0.5 38.4 0.1 

13 38.7 0.6 39.2 0.2 

14 39.4 0.6 40.1 0.3 

15 39.6 0.6 41.0 0.4 

16 40.4 0.7 41.9 0.5 

17 40.4 0.7 42.9 0.6 

18 40.7 0.8 44.0 0.7 

19 41.8 0.8 45.2 0.9 

20 42.3 0.9 46.6 1.1 

21 42.6 0.9 48.2 1.3 

22 44.3 0.9 50.5 1.5 

 

 

 

 

 

 

 

 

 

 



 

80 
 

Table A.18 Width in millimeters at the end of the neck with outliers removed 

Width 2 in millimeters with outliers removed 

Rat Measured 
width CDF 

Expected 
width z-value 

1 37.1 0.0 24.0 -2.0 

2 38.8 0.1 28.7 -1.5 

3 40.7 0.1 31.3 -1.3 

4 40.8 0.1 33.2 -1.1 

5 40.9 0.2 34.7 -0.9 

6 41.7 0.2 36.1 -0.7 

7 41.9 0.3 37.3 -0.6 

8 43.0 0.3 38.4 -0.5 

9 43.4 0.4 39.5 -0.4 

10 43.5 0.4 40.5 -0.3 

11 44.2 0.4 41.5 -0.2 

12 44.3 0.5 42.5 -0.1 

13 44.3 0.5 43.5 0.1 

14 44.5 0.6 44.4 0.2 

15 44.8 0.6 45.4 0.3 

16 44.9 0.6 46.5 0.4 

17 45.6 0.7 47.5 0.5 

18 45.7 0.7 48.7 0.6 

19 45.8 0.8 49.9 0.7 

20 47.2 0.8 51.2 0.9 

21 47.7 0.9 52.8 1.1 

22 47.9 0.9 54.7 1.3 

23 49.5 0.9 57.2 1.5 
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Table A.19 Width in millimeters at the shoulder with outliers removed 

Width 3 in millimeters with outliers removed 

Rat Measured 
width CDF 

Expected 
width z-value 

1 46.1 0.0 28.7 -2.0 

2 48.6 0.1 34.4 -1.5 

3 48.9 0.1 37.5 -1.3 

4 49.4 0.1 39.7 -1.1 

5 50.1 0.2 41.6 -0.9 

6 50.8 0.2 43.2 -0.7 

7 50.9 0.3 44.7 -0.6 

8 51.2 0.3 46.1 -0.5 

9 51.7 0.4 47.3 -0.4 

10 52.1 0.4 48.6 -0.3 

11 52.9 0.4 49.8 -0.2 

12 53.5 0.5 50.9 -0.1 

13 53.9 0.5 52.1 0.1 

14 55.0 0.6 53.3 0.2 

15 55.2 0.6 54.5 0.3 

16 56.5 0.6 55.7 0.4 

17 57.0 0.7 57.0 0.5 

18 58.0 0.7 58.3 0.6 

19 58.2 0.8 59.8 0.7 

20 58.2 0.8 61.4 0.9 

21 58.5 0.9 63.3 1.1 

22 58.6 0.9 65.6 1.3 

23 58.9 0.9 68.7 1.5 

24 46.1 0.0 28.7 -2.0 
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Table A.20 Width in millimeters at the last rib with outliers removed 

Width 4 in millimeters with outliers removed 

Rat Measured 
width CDF 

Expected 
width z-value 

1 53.0 0.0 33.8 -2.0 

2 54.9 0.1 40.4 -1.5 

3 57.7 0.1 44.0 -1.3 

4 58.3 0.1 46.7 -1.1 

5 60.1 0.2 48.9 -0.9 

6 60.4 0.2 50.8 -0.7 

7 60.4 0.3 52.6 -0.6 

8 60.5 0.3 54.2 -0.5 

9 61.4 0.4 55.7 -0.4 

10 61.5 0.4 57.1 -0.3 

11 61.5 0.4 58.5 -0.2 

12 63.5 0.5 59.9 -0.1 

13 63.8 0.5 61.3 0.1 

14 64.5 0.6 62.7 0.2 

15 64.6 0.6 64.1 0.3 

16 64.8 0.6 65.5 0.4 

17 65.5 0.7 67.0 0.5 

18 65.7 0.7 68.6 0.6 

19 65.9 0.8 70.4 0.7 

20 66.0 0.8 72.3 0.9 

21 67.0 0.9 74.5 1.1 

22 67.5 0.9 77.2 1.3 

23 67.6 0.9 80.8 1.5 

24 73.4 1.0 87.4 2.0 
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Table A.21 Width in millimeters at the pelvis with outliers removed 

Width 5 in millimeters with outliers removed 

Rat Measured 
width CDF 

Expected 
width z-value 

1 57.3 0.1 43.3 -1.5 

2 61.1 0.1 47.4 -1.3 

3 64.6 0.1 50.3 -1.1 

4 65.5 0.2 52.8 -0.9 

5 65.6 0.2 54.9 -0.7 

6 65.9 0.3 56.8 -0.6 

7 66.9 0.3 58.6 -0.5 

8 67.0 0.4 60.3 -0.4 

9 68.0 0.4 61.9 -0.3 

10 68.5 0.4 63.4 -0.2 

11 68.6 0.5 65.0 -0.1 

12 68.8 0.5 66.5 0.1 

13 69.3 0.6 68.0 0.2 

14 70.0 0.6 69.6 0.3 

15 70.8 0.6 71.2 0.4 

16 71.5 0.7 72.9 0.5 

17 72.1 0.7 74.6 0.6 

18 72.6 0.8 76.6 0.7 

19 73.9 0.8 78.7 0.9 

20 75.8 0.9 81.1 1.1 

21 76.5 0.9 84.1 1.3 

22 77.2 0.9 88.1 1.5 

23 78.6 1.0 95.5 2.0 
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Table A.22 Width in millimeters at the thigh with outliers removed 

Width 6 in millimeters with outliers removed 

Rat Measured 
width CDF 

Expected 
width z-value 

1 34.5 0.0 24.8 -2.0 

2 35.8 0.1 32.1 -1.5 

3 43.4 0.1 36.1 -1.3 

4 45.1 0.1 39.0 -1.1 

5 47.8 0.2 41.4 -0.9 

6 47.8 0.2 43.6 -0.7 

7 48.8 0.3 45.5 -0.6 

8 53.0 0.3 47.2 -0.5 

9 55.3 0.4 48.9 -0.4 

10 57.9 0.4 50.5 -0.3 

11 58.8 0.4 52.0 -0.2 

12 59.2 0.5 53.5 -0.1 

13 59.3 0.5 55.0 0.1 

14 61.5 0.6 56.6 0.2 

15 63.0 0.6 58.1 0.3 

16 63.0 0.6 59.7 0.4 

17 65.5 0.7 61.4 0.5 

18 65.8 0.7 63.1 0.6 

19 69.6 0.8 65.0 0.7 

20 70.2 0.8 67.1 0.9 

21 71.7 0.9 69.5 1.1 

22 73.2 0.9 72.5 1.3 

23 75.8 0.9 76.5 1.5 

24 34.5 0.0 24.8 -2.0 
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Table A.23 Width in millimeters at the base of the tail with outliers removed 

Width 7 in millimeters with outliers removed 

Rat Measured 
width CDF 

Expected 
width z-value 

1 16.9 0.0 16.9 -2.0 

2 18.4 0.1 18.6 -1.5 

3 19.5 0.1 19.6 -1.2 

4 19.9 0.2 20.3 -1.0 

5 20.3 0.2 20.8 -0.8 

6 21.0 0.3 21.4 -0.7 

7 21.4 0.3 21.8 -0.5 

8 22.2 0.3 22.2 -0.4 

9 22.8 0.4 22.6 -0.3 

10 22.9 0.4 23.0 -0.2 

11 23.8 0.5 23.4 -0.1 

12 24.4 0.5 23.8 0.1 

13 24.6 0.6 24.2 0.2 

14 25.4 0.6 24.6 0.3 

15 25.8 0.7 25.0 0.4 

16 25.9 0.7 25.4 0.5 

17 26.0 0.8 25.9 0.7 

18 26.8 0.8 26.4 0.8 

19 27.0 0.8 27.0 1.0 

20 27.2 0.9 27.7 1.2 

21 28.5 0.9 28.6 1.5 

22 28.8 1.0 30.3 2.0 
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Appendix B 

Collected and sorted rodent mass data 

The following data in table B.1 is the masses in grams of 90 rats collected and 

sorted. 

Table B.1 Masses of rats both raw data and outliers removed in grams 

rat 
mass  with  
outliers (g) 

Mass with 
outliers  
removed (g) 

CDF Expected 
mass (g) 

z-values 

1 290.0 300.0 0.0 292.1 -2.5 

2 300.0 310.0 0.0 301.4 -2.1 

3 310.0 310.0 0.0 306.3 -1.9 

4 310.0 316.0 0.0 309.8 -1.7 

5 316.0 316.0 0.1 312.5 -1.6 

6 316.0 318.0 0.1 314.8 -1.5 

7 318.0 320.0 0.1 316.8 -1.4 

8 320.0 320.0 0.1 318.5 -1.3 

9 320.0 324.0 0.1 320.1 -1.3 

10 324.0 324.0 0.1 321.6 -1.2 

11 324.0 326.0 0.1 323.0 -1.1 

12 326.0 326.0 0.1 324.2 -1.1 

13 326.0 326.0 0.2 325.4 -1.0 

14 326.0 330.0 0.2 326.6 -1.0 

15 330.0 330.0 0.2 327.7 -0.9 

16 330.0 330.0 0.2 328.7 -0.9 

17 330.0 330.0 0.2 329.7 -0.8 

18 330.0 330.0 0.2 330.7 -0.8 

19 330.0 330.0 0.2 331.6 -0.7 

20 330.0 330.0 0.2 332.5 -0.7 

21 330.0 333.0 0.3 333.4 -0.7 

22 333.0 335.0 0.3 334.2 -0.6 

23 335.0 335.0 0.3 335.1 -0.6 

24 335.0 337.0 0.3 335.9 -0.6 

25 337.0 339.0 0.3 336.7 -0.5 

26 339.0 339.0 0.3 337.5 -0.5 

27 339.0 339.0 0.3 338.3 -0.4 

28 339.0 340.0 0.3 339.0 -0.4 

29 340.0 340.0 0.4 339.8 -0.4 

30 340.0 340.0 0.4 340.5 -0.3 

31 340.0 341.0 0.4 341.3 -0.3 

32 341.0 341.0 0.4 342.0 -0.3 

33 341.0 342.0 0.4 342.7 -0.3 

34 342.0 344.0 0.4 343.4 -0.2 

35 344.0 344.0 0.4 344.1 -0.2 

36 344.0 345.0 0.4 344.8 -0.2 

37 345.0 345.0 0.5 345.5 -0.1 

38 345.0 345.0 0.5 346.2 -0.1 

39 345.0 345.0 0.5 346.9 -0.1 

40 345.0 346.0 0.5 347.6 0.0 

41 346.0 346.0 0.5 348.3 0.0 
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Masses of rats both raw data and outliers removed in grams 

42 346.0 346.0 0.5 349.0 0.0 

43 346.0 346.0 0.5 349.7 0.1 

44 346.0 348.0 0.5 350.4 0.1 

45 348.0 350.0 0.5 351.1 0.1 

46 350.0 350.0 0.6 351.8 0.2 

47 350.0 350.0 0.6 352.5 0.2 

48 350.0 350.0 0.6 353.2 0.2 

49 350.0 350.0 0.6 354.0 0.3 

50 350.0 350.0 0.6 354.7 0.3 

51 350.0 350.0 0.6 355.4 0.3 

52 350.0 350.0 0.6 356.1 0.3 

53 350.0 350.0 0.6 356.9 0.4 

54 350.0 350.0 0.7 357.6 0.4 

55 350.0 350.0 0.7 358.4 0.4 

56 350.0 350.0 0.7 359.2 0.5 

57 350.0 353.0 0.7 360.0 0.5 

58 353.0 354.0 0.7 360.8 0.6 

59 354.0 354.0 0.7 361.6 0.6 

60 354.0 355.0 0.7 362.4 0.6 

61 355.0 356.0 0.7 363.3 0.7 

62 356.0 360.0 0.8 364.2 0.7 

63 360.0 360.0 0.8 365.1 0.7 

64 360.0 360.0 0.8 366.0 0.8 

65 360.0 360.0 0.8 367.0 0.8 

66 360.0 364.0 0.8 368.0 0.9 

67 364.0 367.0 0.8 369.0 0.9 

68 367.0 370.0 0.8 370.1 1.0 

69 370.0 370.0 0.8 371.2 1.0 

70 370.0 380.0 0.9 372.4 1.1 

71 380.0 380.0 0.9 373.7 1.1 

72 380.0 385.0 0.9 375.1 1.2 

73 385.0 390.0 0.9 376.5 1.3 

74 390.0 390.0 0.9 378.1 1.3 

75 390.0 390.0 0.9 379.9 1.4 

76 390.0 390.0 0.9 381.9 1.5 

77 390.0 390.0 0.9 384.2 1.6 

78 390.0 390.0 1.0 386.9 1.7 

79 390.0 400.0 1.0 390.3 1.9 

80 400.0 400.0 1.0 395.2 2.1 

81 400.0 400.0 1.0 404.6 2.5 

82 400.0 300.0 0.0 292.1 -2.5 

83 410 ------- ------- ------- ------- 

84 410 ------- ------- ------- ------- 

85 420 ------- ------- ------- ------- 

86 420 ------- ------- ------- ------- 

87 435 ------- ------- ------- ------- 

88 440 ------- ------- ------- ------- 

89 440 ------- ------- ------- ------- 

Mean 354.7 348.3       

StdDev 31.9 22.5       

Q 1 335         

Q 2 364         
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Appendix C 

Normality Data 

The following data represented by the figures in this section is the output of the 

Ryan-Joiner test in Minitab. Listed along with the graph is the P value which can 

be compared to a predetermined alpha value of .05, meaning that a P-value 

greater than 0.05 is a sign of normality. 

 

Figure C.1 Normality of data for percentile versus neck length in mm. 
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Figure C.2 Normality of data for percentile versus neck to shoulder length in mm. 

 

Figure C.3 Normality of data for percentile versus shoulder to rib length in 

millimeters. 
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Figure C.4 Normality of data for percentile versus rib to pelvis length in mm. 

 

Figure C.5 Normality of data for percentile versus pelvis to thigh length in 

millimeters. 
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Figure C.6 Normality of data for percentile versus thigh to tail base length. 

 

Figure C.7 Normality of data for percentile base of neck height in millimeters. 
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Figure C.8 Normality of data for percentile end of neck height in mm. 

 

Figure C.9 Normality of data for percentile shoulder height in millimeters. 
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Figure C.10 Normality of data for percentile rib height in millimeters. 

 

Figure C.11 Normality of data for percentile pelvis height in millimeters. 
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Figure C.12 Normality of data for percentile thigh height in millimeters. 

 

Figure C.13 Normality of data for percentile tail base height in millimeters. 
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Figure C.14 Normality of data for percentile base of neck width in millimeters 

 

Figure C.15 Normality of data for percentile end of neck width in millimeters 
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Figure C.16 Normality of data for percentile shoulder width in millimeters. 

 

Figure C.17 Normality of data for percentile rib width in millimeters. 



 

97 
 

 

Figure C.18 Normality of data for percentile pelvis width in millimeters 

 

Figure C.19 Normality of data for percentile thigh width in millimeters 
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Figure C.20 Normality of data for percentile tail base width in millimeters. 

 

Figure C.21 Mass normality 



 

99 
 

APPENDIX D 

PRESSURE AND TIME GRAPHS 

The following are the raw results of tests in the form of pressure and acceleration 

versus time graphs. The table, Table D.1 is the outline of the parameters of each 

test.  

Table D.1 Outline of Test Parameters 

Shot Number Number 
of Membranes 

Location Model Secured with 
Strap 

1535 2 Inside RTD Yes 

1536 2 Inside RTD Yes 

1537 2 Inside RTD Yes 

1538 4 Inside RTD Yes 

1539 4 Inside RTD Yes 

1540 4 Inside RTD Yes 

1541 2 Inside RTD No 

1542 2 Inside RTD No 

1543 2 Inside RTD No 

1544 2 Outside RTD No 

1545 2 Outside RTD No 

1546 2 Outside RTD No 

1547 2 Outside RTD Yes 

1548 2 Outside RTD Yes 

1549 2 Outside RTD Yes 

1550 2 Outside Rat Yes 

1551 2 Outside Rat Yes 

1552 2 Outside Rat Yes 

1553 2 Outside Rat No 

1554 2 Outside Rat No 

1555 2 Outside Rat No 

1556 2 Inside Rat Yes 

1557 2 Inside Rat Yes 

1558 2 Inside Rat Yes 

1559 4 Inside Rat Yes 

1560 4 Inside Rat Yes 

1561 4 Inside Rat Yes 

1562 4 Inside Rat Yes 

1563 2 Inside Rat No 

1564 2 Inside Rat No 

1565 2 Inside Rat No 
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Figure D.1 1535 pcceleration versus time of shot.  

 

Figure D.2 1535 pressure versus time of nose, head and incident sensors. 
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Figure D.3 1536 acceleration versus time of shot.  

 

Figure D.4 1536 Pressure Versus Time of Nose, Head and Incident Sensors. 
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Figure D.5 1537 acceleration versus time of shot. 

 

Figure D.6 1537 pressure versus time of nose, head and incident sensors. 
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Figure D.7 1538 acceleration versus time of shot. 

 

Figure D.8 1538 pressure versus time of nose, head and incident sensors. 
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Figure D.9 1539 acceleration versus time of shot. 

 

Figure D.10 1539 pressure versus time of nose, head and incident sensors. 
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Figure D.11 1540 acceleration versus time of shot.  

 

Figure D.12 1540 pressure versus time of nose, head and incident sensors. 
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Figure D.13 1541 acceleration versus time of shot. 

 

Figure D.14 1541 pressure versus time of nose, head and incident sensors. 
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Figure D.15 1542 acceleration versus time of shot.  

 

 

Figure D.16 1542 pressure versus time of nose, head and incident sensors. 
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Figure D.17 1543 acceleration versus time of shot.  

 

Figure D.18 1543 pressure versus time of nose, head and incident sensors. 
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Figure D.19 1544 acceleration versus time of shot. 

 

Figure D.20 1544 pressure versus time of nose, head and incident sensors. 
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Figure D.21 1545 acceleration versus time of shot.  

 

Figure D.22 1545 pressure versus time of nose, head and incident sensors. 
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Figure D.23 1546 acceleration versus time of shot.  

 

Figure D.24 1546 pressure versus time of nose, head and incident sensors. 
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Figure D.25 1547 acceleration versus time of shot.  

 

Figure D.26 1547 pressure versus time of nose, head and incident sensors. 
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Figure D.27 1548 acceleration versus time of shot.  

 

Figure D.28 1548 pressure versus time of nose, head and incident sensors. 
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Figure D.29 1549 acceleration versus time of shot.  

 

Figure D.30 1549 pressure versus time of nose, head and incident sensors. 
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Figure D.31 1550 acceleration versus time of shot.  

 

Figure D.32 1550 pressure versus time of nose, head and incident sensors. 
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Figure D.33 1551 acceleration versus time of shot.  

 

 

Figure D.34 1551 pressure versus time of nose, head and incident sensors. 
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Figure D.35 1552 acceleration versus time of shot.  

 

Figure D.36 1552 pressure versus time of nose, head and incident sensors. 
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Figure D.37 1553 acceleration versus time of shot.  

 

Figure D.38 1553 pressure versus time of nose, head and incident sensors. 
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Figure D.39 1554 acceleration versus time of shot.  

 

Figure D.40 1554 pressure versus time of nose, head and incident sensors. 
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Figure D.41 1555 acceleration versus time of shot.  

 

Figure D.42 1555 pressure versus time of nose, head and incident sensors. 
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Figure D.43 1556 acceleration versus time of shot.  

 

Figure D.44 1556 pressure versus time of nose, head and incident sensors. 
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Figure D.45 1557 acceleration versus time of shot.  

 

Figure D.46 1557 pressure versus time of nose, head and incident sensors. 
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Figure D.47 1558 acceleration versus time of shot.  

 

Figure D.48 1558 pressure versus time of nose, head and incident sensors. 
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Figure D.49 1559 acceleration versus time of shot.  

 

Figure D.50 1559 pressure versus time of nose, head and incident sensors. 
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Figure D.51 1560 acceleration versus time of shot.  

 

Figure D.52 1560 pressure versus time of nose, head and incident sensors. 
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Figure D.53 1561 acceleration versus time of shot. 

  

Figure D.54 1561 pressure versus time of nose, head and incident sensors. 
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Figure D.55 1562 acceleration versus time of shot. 

 

Figure D.56 1562 pressure versus time of nose, head and incident sensors. 
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Figure D.57 1563 acceleration versus time of shot. 

 

Figure D.58 1563 pressure versus time of nose, head and incident sensors. 
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Figure D.59 1564 acceleration versus time of shot. 

 

Figure D.60 1564 pressure versus time of nose, head and incident sensors. 
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Figure D.61 1565 acceleration versus time of shot. 

 

Figure D.62 1565 pressure versus time of nose, head and incident sensors. 
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