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ABSTRACT 

 

 

A GPU PROGRAM TO COMPUTE SNP-SNP INTERACTIONS IN 

GENOME-WIDE ASSOCIATION STUDIES 

 

by 

Srividya Ramakrishnan 

 

 

With the recent advances in the next generation sequencing technologies, short read 

sequences of human genome are made more accessible. Paired end sequencing of short 

reads is currently the most sensitive method for detecting somatic mutations that arise 

during tumor development. In this study, a novel approach to optimize the detection of 

structural variants using a new short read alignment program is presented. 

 Pairwise interaction effects of the Single Nucleotide Polymorphisms (SNPs) have 

proven to uncover the underlying complex disease traits. Computing the disease risk 

based on the interaction effects of SNPs on a case – control study is a difficult problem. 

As another part of the thesis, a fast GPU program that can calculate the chi-square 

statistics of SNP-SNP interactions and output the significant interacting SNPs is 

presented. The algorithm is applied to the datasets of seven common diseases obtained 

from Wellcome Trust Case Control Consortium (WTCCC). The algorithm computed the 

significant SNP pairs much faster than the existing algorithms and also identifies 3 

significant pairs associated with genes IL23R and C11orf30 which are associated with 

pathogenesis in the Crohns disease dataset. 
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                  CHAPTER 1 

                 STRUCTURAL VARIANT DETECTION PROBLEM 

 

    1.1  Introduction 

Structurally variants are 5% of the human genome and have more than 800 independent 

genes that are more likely to contribute to disease susceptibility. The expanded use of 

next-generation sequencing with “paired end” methods has enabled a whole-genome 

analysis with essentially unlimited resolution. The discovery of submicroscopic copy 

number variations (CNVs) present in our genomes has changed dramatically our 

perspective on DNA structural variation and disease (Stankiewicz et al 2010). It is now 

thought that CNVs encompass more total nucleotides and arise more frequently than 

SNPs. Detection of SVs in a human genome using NGS technologies was first presented 

by Korbel et al. (2007) and  later  Kidd et al. (2008) detected, experimentally validated 

and sequenced Structural variants (SVs) from eight different individuals. These validated 

sites are made publicly available through the Human Genome Structural Variation Project 

browser. In this thesis, a novel approach to identify structural variants is presented. 

 

1.2  Existing Methods in Structural Variant Discovery 

The current methods in structural variant detection use paired-end sequencing: Inserts 

from a genome are read at both the ends, which are later aligned to reference genome. If 

the mapping loci are identified correctly, an increase or decrease of the distance between 

the end reads indicates an insertion or deletion. 
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 The tools which were developed for Structural variant detection like Variation 

Hunter, PEmer (Korbel et al 2009), Pindel (Ye et al. 2009), BreakDancer (Chen et al. 

2009) focus mainly on the best mapping of each read provided by the mapping software in 

use. In a recent study (Hach et al. 2010), it is been demonstrated that ignoring possible 

mapping locations of a read may lead to loss of accuracy in Structural variant detection. 

VariationHunter implements a soft clustering method that aims to resolve repetitive 

regions of the human genome through a combinatorial optimization framework for 

detecting insertion and deletion polymorphisms. In this study, a short reads of Next 

generation Sequencing (NGS) genome of a Yoruba individual (NA18507) has been used.  

 

1.3  Materials and Methods 

True Structural variant discovery does not just depend upon the SV detection algorithm 

used but also largely depend upon the Short read alignment program. This research 

focuses on comparing the Structural variants identified on the short reads aligned using 

Stampy and a new short read aligner. Then compare the Structural variants with the 

known structural variants detected on NA18507 (Kidd et al). 

  Short reads for NA18507 were obtained from Next generation sequencing (NGS) 

reads from SOLiD™ for the Yoruban individual were obtained from the 1000 genomes 

project. A Perl script is used to map SOLiD™ color-space reads to base space. The shorts 

reads in the base space has to be mapped to the reference genome before being passed to 

the Structural variant detection program.  
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Whole genome short reads for NA18507 from SOLiD™ sequencing system has been 

obtained from 1000 Genomes project website. The dataset have a total number of reads is 

1,504,002,272 (approx 1.5 billion) of 51 bp length.  

 

1.4  Results and Discussion 

Stampy took approximately 30 days of CPU time to complete the mapping of the whole 

genome short reads of NA18507 to the human genome completely on phi.njit.edu. But the 

new short read aligner was not available due to unavoidable circumstances and was still 

under development. So it was not possible to continue research further on this area.  
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CHAPTER 2 

 

GWAS STUDY ON SNP INTERACTIONS 

 

2.1  Background on GWAS 

Genome-wide association study (GWAS) is an examination of many common genetic 

variants in different individuals to see if any variant is associated with a trait. GWAS 

typically focus on associations between single-nucleotide polymorphisms (SNPs) and 

traits like major diseases. These studies normally compare the DNA of two groups of 

participants: people with the disease (cases) and similar people without (controls). With 

the recent diverse range of SNP genotyping methods there are more than 4,000 SNP 

associations with a variety of diseases have been identified. 

 

 

2.2  SNP Epitasis and Disease Risk 

 

It may not be enough to conduct a GWAS study of SNPs considering one at a time to 

understand complex disease traits. Epistasis is the interaction between two genes that can 

suppress the effect of one gene over the other (Miko, I. 2008). Various studies suggest 

that the pairwise Epistatic effects on SNPs are causative for complex diseases such as 

sporadic breast cancer, late-onset Alzheimer’s disease (LOAD) etc.  In this research, an 

approach is presented to study the SNP - SNP interactions across the whole genome of 

GWAS data. 

 

                                          

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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2.3  Methods 

2.3.1  SNP -SNP Interaction Model 

 

Most common method to identify SNPs responsible for higher disease risk is to rank 

them based on the probability of disease risk under an assumption or model. In this study, 

chi-square statistics has been employed for the purpose. It is considered that every SNP 

above the linkage disequilibrium (LD) width interacts with every other SNP in the whole 

genome. The chi-square values are obtained for every pairwise interacting SNPs. Then 

the significant SNPs are identified by reporting the SNP pairs less than the bonferroni 

corrected p-value of 0.05. 

 

2.3.2  Chi-square Statistics 

A Chi-square Statistic (X2) is categorical distribution statistic of two independent groups. 

The test statistic is given by the formula. 

 

 
 

 

If given two random variables  

 

D- Disease Status 

 

G- Allele type 

Null Hypothesis to predict SNP interactions is the two SNPs are independent of each 

other (unrelated). 
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Table 2.1:  Contingency table for the Interacting SNP Data for Case and Controls 

 Interacting SNP Alleles 

      0 0     0 1     0 2      1 0      1 1      1 2     2 0     2 1      2 2 

Case      c1       c2 c3 c4 c5 c6 c7 c8 c9 

Control c10 c11 c12 c13 c14 c15 c16 c17 c18 

 

Total number of samples (n) 

=c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c13+c14+c15+c16+c17+c18 

  

The following are the conditions for the Interacting SNPs to be independent of disease 

risk 

1)   P(D,G) = P(D)P(G) 

2)   Probability of the disease P(D) is given by the formula  

      P(D=case) = (c1+c2+c3+c4+c5+c6+c7+c8+c9) / n 

3)   Probability of that interacting SNP pair will be given by the formula  

      P(G=0 0) = (c1+c10)/n 

4)   Expected Values can be calculated using the formula 

      E(X1) = P(X=case)P(Y=00)n = (c1+c2+c3+c4+c5+c6+c7+c8+c9)(c1+c10) / n 

Once the chi-square values are computed the p-values corresponding to 8 degrees of 

freedom is computed. The p-values are corrected to a bonferroni p-value of 0.05 cutoffs 

and only the significant p-values and the corresponding SNP positions are reported. 
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CHAPTER 3 

GPU PROGRAMMING USING CUDA 

 

3.1   Introduction 

Various studies suggest that the interactions between single nucleotide polymorphisms 

(SNPs) are causative for complex diseases such as sporadic breast cancer, late-onset 

Alzheimer’s disease (LOAD) etc. Identifying the epistatic effect associated with the 

disease can be computationally intensive at a genomic scale. It takes up to many days to 

identify the interactions in SNPs, even by using the latest multiple core CPUs. In Modern 

Computers, Graphic Processing units have more memory and bandwidth compared to the 

CPUs. Hence to GPUs with hundreds of cores can be employed in identifying the SNP- 

SNP interactions in a genomic scale. In this research project,  an implementation of Chi 

Square statistics capable of running on graphics processing units (GPUs) using the 

NVIDIA Compute Unified Device Architecture (CUDA) framework is presented to 

predict disease risk on a case-control population. 

 

3.2   Background on GPUs 

Increasing demand in the high resolution, 3D graphic cards have led to the production of 

GPUs with multiple cores at relatively lower rates. In the year 2006, to make use of the 

GPUs memory and bandwidth in resolving the complex computational challenges, 

NVIDIA released a proprietary development platform called Compute Unified Device 

Architecture (CUDA). CUDA™ is a parallel computing platform and programming 
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model that enables dramatic increases in computing performance by harnessing the 

power of the graphics processing unit (GPU). 

 

3.3   GPU AND CUDA ARCHITECTURE 

GPU uses much more of the hardware per core for data processing than CPUs, but 

possess far less hardware for data caching and flow control. This makes GPUs ideal to 

solve problems which require a small program being executed on a very large dataset in 

parallel. 

 CUDA extends GPU programmability using C functions called kernels, which 

when called is executed N times in parallel using the N different CUDA threads with 

unique thread ids in multiple blocks. There is a limit to the number of threads per block, 

since all threads of a block are expected to reside on the same processor core and must 

share the limited memory resources of that core. On current GPUs, a thread block may 

contain up to 1024 threads. However, a kernel can be executed by multiple equally-

shaped thread blocks, so that the total number of threads is equal to the number of threads 

per block times the number of blocks. Blocks are organized into a one-dimensional, two-

dimensional, or three-dimensional grid of thread blocks. The number of thread blocks in 

a grid is usually dictated by the size of the data being processed or the number of 

processors in the system, which it can greatly exceed. 

 CUDA C is an extension of C implementation which allows general purpose 

programming on GPUs. Currently CUDA C is largely used my many computational 

biologists and bioinformaticians to resolve many computationally intensive complex 

biological problems. 
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Figure 3.1  CUDA C - Heterogeneous Programming Model. 

Note: Serial code executes on the host while parallel code executes on the device. 

Source: NVIDIA Compute Unified Device Architecture Programming Guide Version 2.1 Tech. rep., 

NVIDIA Corporation; 2008 
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3.4  Heterogeneous Programming 

In CUDA programming model, the CUDA threads execute on a physically separate 

device that operates as a coprocessor to the host running the C program. For example, 

when the kernels execute on a GPU and the rest of the C program executes on a CPU. 

The CUDA programs access the host and the device at their own separate memory spaces 

in DRAM, referred to as host memory and device memory. Hence it is necessary to do 

device memory allocation and de-allocation as well as data transfer between host and 

device memory. 

 

3.5   Memory Coalescing 

Performance can be greatly improved by some good programming practices when using 

the GPUs. It is evident that by increasing the global memory bandwidth by reducing the 

number of bus transactions and coalesce memory accesses can help CUDA program 

execute faster. Memory coalescing can be achieved by finding the memory segment that 

contains the address requested by the lowest active thread and find all the other active 

threads in the same segment then reducing the transaction size and  by marking threads 

inactive when transaction is complete. 
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CHAPTER 4 

 

PROBLEM STATEMENT 

 

 

4.1  Background on Existing Programs 

 

Very few algorithms have been developed to predict the SNP-SNP interactions associated 

to high risk of a disease. GBOOST (Dinu et al. (2012), a GPU implementation of logistic 

regression for analyzing the interacting pairs of the SNPs.  GENIE, another GPU CUDA 

software package to identify epistatic interactions on SNPs was developed by Satish et al. 

(2011). EPIBLASTER (Kam-Thong et al. 2011) is a GPU program to detect the epistatic 

interaction between two locus using the logistic regression statistics.  

The major limitations in using the existing SNP interaction programs are the 

running time and the system requirements. Computing pair wise SNP interactions on a 

genomic scale of a 5000 case control data costs so much CPU time and memory. The 

other limitations in using these programs are hardware requirement. In this thesis, a 

CUDA C program aimed to calculate chi-square statistics of interacting SNPs at 

comparatively less running time is been developed. 

 

4.2  Implementation 

4.2.2  Development Environment 

This program was implemented using C language and CUDA C language extension. It 

was developed on a GPGPU cluster that has 12 GBs RAM of main memory, dual Intel 

Xeon 2.67 GHz 6-core processors – X5650r, 3 NVidia Fermi M2050 GPU cards. The 
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NVIDIA Fermi M2050 card has 32 nodes and 384 cores. The programs were compiled 

using the gnu compiler and requires GSL 1.15 library installed on the system. 

 

4.2.3 Parallelization Algorithm 

An algorithm to parallelize the interaction analysis of different SNP pairs is proposed. 

The input dataset into ordered in a 1 dimensional array by placing all the rows next to 

each other. This helps the algorithm to achieve memory coalescing. In order to minimize 

the effect of a significant SNP allele over the other, the single chi-square values for all 

the SNPs are calculated and the single significant SNPs are removed before computing 

the pairs. To avoid SNP interactions due to the linkage disequilibrium, a LD width 

variable is introduced. Hence every reference column is compared with every other 

column above the LD width and the respective chi-square values are calculated. The 

pairwise p-value is computed from the chi-square values using a c function from the GSL 

library, to identify the significant interacting pairs.  The program reports all the SNP-SNP 

interactions that are significant at the bonferroni level calculated for each dataset. The 

bonferroni p-value = 0.05 / n, where n is the number of SNP-SNP interactions analyzed 

for the dataset. 
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Remove the insignificant 
SNPs

(p > 0.05/ jobs)

OUTPUT

Load the SNP alleles to 
the CPU Memory

Perform chisquare 
univariate test on 

individual SNPs

Arrange SNP data in a 
single dimensional array 
to achieve coalescence

Remove the significant 
SNPs

(p > 0.05/n)

Calculate the pairwise 
chisquare on the GPU

Copy the chisquare 
results to the host  (CPU 

program)

Calculate p-value for the 
chisquare values

Print the significant pairs 
P-value  <  bonferroni 

cutoff

INPUT

 

 

Figure : 4.1  Algorithm Design for the CUDA C Program 
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4.3 Dataset Used 

 

The Wellcome Trust Case Control Consortium (WTCCC) is a collaboration of 24 leading 

human geneticists, who will analyse thousands of DNA samples from patients suffering 

with different diseases to identify common genetic variations for each condition. The 

WTCCC released their data in the genome-wide association study of 14,000 cases of 

seven common diseases and 3,000 shared controls (Burton PR et al 2007). They obtained 

the comparison of the control data with data obtained from the following disease 

samples: type 1 diabetes, type 2 diabetes, inflammatory bowel disease, breast cancer, 

coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis, multiple 

sclerosis, ankylosing spondylitis, autoimmune thyroid disease, malaria and tuberculosis. 

To test the performance of the program based on running time and for finding significant 

SNP pairs, the algorithm was tested on the following seven datasets. The size of the 

datasets used for the analysis is reported in the Table 4.1. 
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Table 4.1 Size of the WTCCC datasets used in the study 

Dataset Total # of  

SNPs 

No of 

Controls 

No of 

Cases 

Crohns disease (CD) 405306 1748 2938 

Bipolar disease (BD)  396320 1868 2938 

Type 1 Diabetes (T1D)  402532 1924 2938 

Type 2 Diabetes (T2D) 402532 1924 2938 

Coronary heart disease 

(CAD) 

404145 1926 2938 

Rheumatoid arthritis (RA) 403301 1860 2938 

Hypertension (HT) 402895 1952 2938 

 

 

4.4  Results and Discussion 

This study majorly contributes a new super fast algorithm to identify the pair wise 

significant SNPs. The algorithm was made efficient to identify the SNP pairs without 

testing all the pairs genome wide. To reduce the effect of false positives on the significant 

pair prediction, the single significant SNPs are skipped by comparison with the 

bonferroni corrected p-value of 0.05. The algorithm also restricts the analysis of pairs 

below a linkage disequilibrium width (LD width) to avoid noise in the significant pair 

results. Finally, the chi-square values of the computed SNP pairs are finally corrected to 

the bonferroni corrected p–value of 0.05.  
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4.4.1 Algorithm Running Time 

The program was used to analyse the effect of significant SNP pairs to disease 

association of seven WTCCC datasets. The GPU program took much less time to identify 

the significant pairs as opposed to other programs which runs on a CPU. The running 

times of each of these dataset is reported in a Table 4.2. 

  

Table 4.2 Running Time of the WTCCC Datasets using the program 

WTCCC Dataset Running Time (hrs) 

Crohns disease  (CD) 14.15 

Bipolar disease (BD) 12.1 

Type 1 Diabetes (T1D) 10.3 

Type 2 Diabetes (T2D) 10.45 

Rheumatoid arthritis (RA) 12.2 

Hypertension (HT) 10.3 

Coronary heart disease (CAD) 10.1 
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  Figure 4.1 Comparison of the GPU vs. CPU implementation 

  

The graph above dictates the estimated running time of the algorithm is  a normal CPU  

vs  GPU implementations. The WTCCC datasets are placed against the x-axis and 

running time in hours across the y-axis. From the graph it is evident that there are about 

130% increase in the running time in using GPUs than CPU computation for this 

algorithm.
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Table  4.3  Significant pairs identified in the WTCCC datasets 

Dataset SNP1 SNP1 id Single p-value SNP2 SNP2 id Single p-value 

Pair wise Chi-

square 

Pair wise p-

value 

CD 9157 rs4655684 1.35E-07 273114 rs12789493 8.56E-04 7.92E+01 6.93E-14 

CD 9157 rs4655684 1.35E-07 273113 rs2155226 1.16E-03 7.85E+01 9.63E-14 

CD 9157 rs4655684 1.35E-07 273115 rs3862807 1.33E-03 7.69E+01 2.09E-13 

CD 9157 rs4655684 1.35E-07 273112 rs1892953 3.65E-03 7.54E+01 4.19E-13 

RA 12103 rs691531 1.98E-06 12134 rs3929937 1.79E-01 1.18E+02 1.03E-21 

RA 12103 rs691531 1.98E-06 12130 rs10782591 1.42E-01 1.11E+02 2.40E-20 

RA 12103 rs691531 1.98E-06 154313 rs9784858 2.69E-07 7.48E+01 5.32E-13 

RA 154034 rs4394275 4.87E-04 154295 rs2857212 9.59E-06 7.79E+01 1.31E-13 

RA 154040 rs2523534 3.99E-06 154236 rs3135392 1.69E-06 8.00E+01 4.81E-14 

RA 154040 rs2523534 3.99E-06 154186 rs910050 8.74E-07 7.66E+01 2.41E-13 

RA 154040 rs2523534 3.99E-06 154253 rs4530903 2.31E-07 7.60E+01 3.18E-13 

RA 154045 rs5025315 2.68E-05 154236 rs3135392 1.69E-06 7.47E+01 5.67E-13 

RA 154048 rs5022119 2.33E-05S 154236 rs3135392 1.69E-06 7.45E+01 6.14E-13 

RA 154095 rs2516478 6.66E-03 154295 rs2857212 9.59E-06 9.16E+01 2.22E-16 

RA 154107 rs760293 3.16E-06 154236 rs3135392 1.69E-06 8.74E+01 1.56E-15 

RA 154107 rs760293 3.16E-06 154186 rs910050 8.74E-07 8.13E+01 2.67E-14 

RA 154143 rs3130287 4.48E-07 154186 rs910050 8.74E-07 9.54E+01 3.65E-17 

RA 154143 rs3130287 4.48E-07 154236 rs3135392 1.69E-06 7.86E+01 9.32E-14 

RA 154186 rs910050 8.74E-07 154253 rs4530903 2.31E-07 9.58E+01 3.09E-17 

RA 154186 rs910050 8.74E-07 154296 rs2857210 9.47E-05 8.44E+01 6.32E-15 

RA 154186 rs910050 8.74E-07 154328 rs241403 1.50E-05 7.60E+01 3.14E-13 

RA 154195 rs9391858 3.64E-04 154236 rs3135392 1.69E-06 9.69E+01 1.88E-17 

RA 154195 rs9391858 3.64E-04 154230 rs5000563 1.43E-01 8.03E+01 4.28E-14 

RA 154195 rs9391858 3.64E-04 154234 rs3129877 1.43E-01 8.00E+01 4.81E-14 
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Dataset SNP1 SNP1 id Single p-value SNP2 SNP2 id Single p-value 

Pair wise Chi-

square 

Pair wise p-

value 

RA 154195 rs9391858 3.64E-04 154229 rs3135342 8.41E-02 7.86E+01 9.18E-14 

RA 154195 rs9391858 3.64E-04 154232 rs3129872 1.21E-01 7.78E+01 1.34E-13 

RA 154198 rs12528797 8.56E-06 154236 rs3135392 1.69E-06 9.83E+01 9.62E-18 

RA 154201 rs6930777 4.54E-06 154236 rs3135392 1.69E-06 1.01E+02 2.97E-18 

RA 154229 rs3135342 8.41E-02 154328 rs241403 1.50E-05 7.71E+01 1.89E-13 

RA 154230 rs5000563 1.43E-01 154328 rs241403 1.50E-05 7.60E+01 3.08E-13 

RA 154232 rs3129872 1.21E-01 154328 rs241403 1.50E-05 7.50E+01 4.92E-13 

RA 154234 rs3129877 1.43E-01 154328 rs241403 1.50E-05 7.48E+01 5.51E-13 

RA 154236 rs3135392 1.69E-06 154328 rs241403 1.50E-05 9.00E+01 4.75E-16 

RA 154236 rs3135392 1.69E-06 154296 rs2857210 9.47E-05 7.74E+01 1.61E-13 

RA 154272 rs9275765 3.39E-03 154304 rs2857154 4.66E-03 9.35E+01 9.16E-17 

RA 154272 rs9275765 3.39E-03 154305 rs7382347 7.29E-03 8.89E+01 7.61E-16 

RA 154272 rs9275765 3.39E-03 154306 rs2857129 1.10E-02 8.85E+01 9.18E-16 

RA 154273 rs9275772 5.61E-03 154304 rs2857154 4.66E-03 9.22E+01 1.64E-16 

RA 154273 rs9275772 5.61E-03 154305 rs7382347 7.29E-03 8.77E+01 1.33E-15 

RA 154273 rs9275772 5.61E-03 154306 rs2857129 1.10E-02 8.72E+01 1.76E-15 

RA 154275 rs9275793 5.40E-03 154306 rs2857129 1.10E-02 8.73E+01 1.62E-15 

RA 154275 rs9275793 5.40E-03 154304 rs2857154 4.66E-03 9.24E+01 1.51E-16 

RA 154275 rs9275793 5.40E-03 154305 rs7382347 7.29E-03 8.79E+01 1.23E-15 

RA 154295 rs2857212 9.59E-06 154367 rs9296069 1.00E-02 8.49E+01 4.98E-15 

RA 155430 rs9296318 3.26E-01 155460 rs10947857 1.80E-01 7.73E+01 1.72E-13 

RA 155433 rs2894387 2.72E-01 155460 rs10947857 1.80E-01 7.96E+01 5.79E-14 

CAD 12132 rs691531 1.58E-04 12162 rs3929937 7.73E-01 1.35E+02 2.12E-25 

CAD 12132 rs691531 1.58E-04 12158 rs10782591 6.70E-01 1.32E+02 1.17E-24 



20 

 

 

The above table gives the SNP positions and SNP ids of the interacting which are 

identified to be significant by this algorithm. The program reported 4 significant pairs in 

the crohns disease dataset. The significant SNP pairs identified in crohns disease dataset 

are part of the genes IL23R and C11orf30 which are biologically evident and significant 

in correlations with crohns disease pathogenesis. 

 The program reported about 2 significant pairs in Coronary Heart disease dataset 

rs691531, rs3929937 and rs691531, rs10782591 that lie in the chromosome 1 as part of 

the genes RPL17P5 and HS2ST1.There are about 34 significant pairs reported in the 

rheumatoid arthritis dataset that come from different genes RPL17P5 , HS2ST1, HLA S, 

HCP 5,HCG 26 , HLA-DRA , BAG6, TNXB, C6orf10.  

 There is not much significance seen in the datasets bipolar disease, hypertension, 

type 1 diabetes and type 2 diabetes. 
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CHAPTER 5 

CONCLUSION 

 

In this study, an algorithm which can identify the significant SNP pairs of a huge GWAS 

dataset is presented. This algorithm is efficient and fast paced to identify the significant 

SNP pairs.   

 The significant SNP pairs identified in Crohns disease dataset are part of the 

genes IL23R and C11orf30. These genes are biologically evident and significant in 

correlation to pathogenesis.   

 The algorithm performs well in getting rid of the false positives by assigning a LD 

width, removing the single significant SNPs and also by correcting the significant SNP 

pairs to bonferroni p-value of 0.05.  
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APPENDIX A 

GPU PROGRAM TO COMPUTE SNP-SNP INTERACTIONS USING  

GENOME-WIDE ASSOCIATION DATA 

This appendix includes the source code of the GPU program to compute the chi-square 

statistics of SNP-SNP interactions. 

A.1 CUDA C Program 

Main.cu 

Purpose:  Main program which calls the kernel function 

Output:   Tab delimited text file containing the SNP interacting positions and p-values 

 

#include <stdio.h> 

#include <iostream> 

#include <stdlib.h> 

#include <string.h> 

#include <cuda.h> 

#include "book.h" 

#include "kernel.cu" 

#include <gsl/gsl_cdf.h> 

#include <gsl/gsl_sf.h> 

 

int main(int argc ,char* argv[]) { 

  FILE *fp; 

  int size; 

 

/* Initialize rows, cols, ncases, ncontrols from the user */ 

  int rows=atoi(argv[2]); 

  int cols=atoi(argv[3]); 

  int ncases=atoi(argv[4]); 

  int ncontrols=atoi(argv[5]); 

 

  printf("%d,%d,%d,%d\n",rows,cols,ncases,ncontrols); 
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/*Kernel variable declaration */ 

 

   int THREADS = 256; 

   int BLOCKS; 

   int LD_width = 10; 

   unsigned char *dev_dataT; 

   float *results; 

   float host_results[cols]; 

   float result; int colid; 

   float p_temp; 

   int host_colid[cols]; 

   float chisq[cols]; 

   int *dev_colid; 

   int jobs, ref_col; 

   int transfer = 0; 

   float pair_cutoff = 0; 

   float totaljobs ; 

 

/* Variable initialized to perform univariate tests */ 

 

float c_zero, c_one, c_two, con_two,con_zero,con_one,c1_expected,c2_expected, 

c3_expected,c_total; 

float con1_expected, con2_expected, con3_expected,con_total ; 

float chi,total,t_col1,t_col2,t_col3; 

float p[cols]; 

 

/* set the cut off */ 

float cutoff = 0.05/cols; 

printf("CUTOFF IS %e\n",cutoff); 

/* Validation to check if the data file is readable */ 

fp = fopen(argv[1], "r"); 

 

if (fp == NULL) { 

        printf("Cannot Open the File"); 

        return 0; 

   } 

 

size = rows * cols; 

totaljobs = gsl_sf_choose(cols,2); 

pair_cutoff = 0.05 / totaljobs ; 

 

printf("Size of the data: %d    pair_cutoff %e\n",size,pair_cutoff); 

 

unsigned char *dataT = (unsigned char*)malloc(size*sizeof(unsigned char)); 

printf("Transferring data to Memory\n"); 
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/* Transfer the SNP Data from the file to CPU Memory */ 

 

for(int i=0 ; i < size; i++ ) { 

        int tmp; 

        fscanf(fp,"%d",&tmp); 

        dataT[i] = (char)(((int)'0')+tmp);s 

        if(i == size - 1){ 

                transfer = 1; 

                printf("SNP Data Transferred to the Memory.... Processing\n"); 

        } 

        fflush(stdout); 

} 

fclose(fp) ; 

 

/* Univariate tests on all columns */ 

 

for (int m = 0 ; m < cols ; m++ ) { 

     int n = m; 

     c_one = 1.0f; c_zero = 1.0f; c_two = 1.0f; con_one = 1.0f ; con_zero = 1.0f; 

     con_two = 1.0f; 

      while(n < ncases * cols) { 

           if(dataT[n] == '0') { c_zero ++; } 

                else if(dataT[n] == '1') { c_one++; } 

                else if(dataT[n] == '2') { c_two++ ; } 

                n = n + cols; 

           } 

      c_total = c_zero + c_one + c_two; 

      n = m + ncases * cols; 

      while(n < size) { 

           if(dataT[n] == '0') { con_zero++; } 

                else if(dataT[n] == '1') { con_one++;  } 

                else if(dataT[n] == '2') { con_two++ ; } 

                n = n + cols; 

            } 

      con_total = con_zero + con_one + con_two; 

      total = c_total + con_total; 

      t_col1 = c_zero + con_zero; 

      t_col2 = c_one + con_one; 

      t_col3 = c_two + con_two; 

      c1_expected = t_col1 * c_total / total; 

      c2_expected = t_col2 * c_total / total ; 

      c3_expected = t_col3 * c_total / total ; 

      con1_expected = t_col1 * con_total / total ; 

      con2_expected = t_col2 * con_total / total ; 

      con3_expected = t_col3 * con_total / total ; 

      chi = (c_zero - c1_expected) * (c_zero - c1_expected) / c1_expected; 
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      chi += (c_one - c2_expected) * (c_one - c2_expected) / c2_expected; 

      chi += (c_two - c3_expected) * (c_two - c3_expected) / c3_expected; 

      chi += (con_zero -con1_expected) * (con_zero -con1_expected) / con1_expected; 

      chi += (con_one - con2_expected) * (con_one - con2_expected) / con2_expected; 

      chi += (con_two - con3_expected) * (con_two - con3_expected) / con3_expected; 

       chisq[m] = chi; 

       p[m] = gsl_cdf_chisq_Q(chi,2); 

      } 

if(transfer == 1){ 

        /* Reading the dataT array for comparison and kernel function*/ 

        /* allocate the Memory in the GPU for SNP data */ 

 

        fflush(stdout); 

 

        HANDLE_ERROR(cudaMalloc((unsigned char**) &dev_dataT, size * 

sizeof(unsigned char) )); 

        HANDLE_ERROR(cudaMalloc((float**) &results, cols * sizeof(float) )); 

        HANDLE_ERROR(cudaMalloc((int**) &dev_colid,cols * sizeof(int) )); 

 

        /*Copy the SNP data to GPU dev_dataT*/ 

 

        HANDLE_ERROR(cudaMemcpy(dev_dataT, dataT, size * sizeof(unsigned char), 

cudaMemcpyHostToDevice)); 

        HANDLE_ERROR(cudaMemcpy(dev_colid,host_colid, cols * sizeof(int), 

cudaMemcpyHostToDevice)); 

 

        /* as indexing start from 0 - 49 but cols are 50 so cols -1 */ 

 

        //fflush(stdout); 

        printf("SNP 1   Uni p-value     SNP 2   Uni p-value     Chi-Square      P-value\n"); 

        printf("#####   ###########     #####   ###########     ########        

########\n"); 

 

        for(int j=0;j < (cols - (2 * LD_width + 1));j++) { 

            if( p[j] > cutoff ) { 

                jobs = cols - j; 

                ref_col = j; 

                BLOCKS = (jobs + THREADS - 1)/THREADS; 

 

                /*Calling the kernel function */ 

                cudaPrintfInit(); 

 

                fflush(stdout); 

 

                

kernel<<<BLOCKS,THREADS>>>(rows,cols,ncases,ncontrols,jobs,ref_col,dev_dataT, 
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results,dev_colid); 

 

 cudaPrintfDisplay(stdout, true); 

 cudaPrintfEnd(); 

 

 fflush(stdout); 

 

                //Copy the results back in host 

                HANDLE_ERROR(cudaMemcpy(host_results,results,cols * 

sizeof(float),cudaMemcpyDeviceToHost)); 

                HANDLE_ERROR(cudaMemcpy(host_colid,dev_colid,cols * 

sizeof(int),cudaMemcpyDeviceToHost)); 

 

                fflush(stdout); 

                /* check condition to find out the SNP values to be sorted */ 

 

                for(int k = 11 ; k < jobs; k++) { 

                float max = 0.0f ; 

                        for( int i=11; i < jobs; i++ ){ 

                                        if((host_results[i] >= max) &&  (p[ref_col + host_colid[i]] >      

                                         cutoff)) { 

                                                max = host_results[i]; 

                                                result = host_results[i]; 

                                                colid = host_colid[i]; 

                                        } 

                        } 

                        host_results[colid] = 0; 

                        p_temp = gsl_cdf_chisq_Q(result,8); 

                        final_colid= ref_col + colid; 

                        if( p_temp <  pair_cutoff ) { 

                                printf("%d      %e      %d      %e      %e       

                                %e\n",ref_col,p[ref_col],final_colid,p[final_colid],result,p_temp); 

                        } 

                        else { 

                                break; 

                         } 

                } 

               } 

        else { 

                continue; 

        } 

        } 

 

/* free the Memory in the GPU */ 

fflush(stdout); 

printf("\n###DONE###\n"); 
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cudaFree( dev_dataT ); 

cudaFree( results ); 

cudaFree(dev_colid ); 

return 0; 

} 

else { 

 

        printf("ERROR: ERROR loading the data.\n"); 

} 

} 

          

 

A.2 Kernel Function 

Kernel.cu 

Purpose : kernel function to calculate the chi-square values 

Output  :   When called from the main function, computes the chi-square statistics of the 

SNP pairs and returns the chi-square values to the main function 

 

#include <stdio.h> 

#include <iostream> 

#include <stdlib.h> 

#include <cuda.h> 

#include <math.h> 

#include "book.h" 

#include "cuPrintf.cu" 

 

__global__ void kernel( int rows, int cols , int cRows , int contRows ,int jobs,int ref, 

unsigned char *snpdata,float *results,int *dev_colid){ 

        unsigned char x, y; 

        int m, n ; 

        unsigned int p = 0 ; 

        int cases[9]; 

        int controls[9]; 

        int tot_cases = 1; 

        int tot_controls= 1; 

        int total = 1; 

        float chisquare = 0.0f; 

        float exp[10]; 

        float Conexpected[9]; 
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        float Cexpected[9]; 

        float numerator1; 

        float numerator2; 

 

        int tid  = threadIdx.x + blockIdx.x * blockDim.x; 

        cases[0]=1;cases[1]=1;cases[2]=1;cases[3]=1;cases[4]=1;cases[5]=1;cases[6]=1; 

        cases[7]=1;cases[8]=1; 

              

     

controls[0]=1;controls[1]=1;controls[2]=1;controls[3]=1;controls[4]=1;controls[5]=1;con

trols[6]=1;controls[7]=1;controls[8]=1; 

        if ((tid < jobs) && (tid > 10 )) { 

                for ( m = 0 ; m < cRows ; m++ ) { 

 

                             x = snpdata[m * cols + ref]; 

                             y = snpdata[m * cols + (ref + tid)]; 

 

                                if ( x == '0' && y == '0') { cases[0]++; } 

                                else if (x == '0' && y == '1') { cases[1]++; } 

                                else if (x == '0' && y == '2') { cases[2]++; } 

                                else if (x == '1' && y == '0') {  cases[3]++; } 

                                else if (x == '1' && y == '1') {  cases[4]++; } 

                                else if (x == '1' && y == '2' ) { cases[5]++; } 

                                else if (x == '2' && y == '0' ) { cases[6]++;} 

else if (x == '2' && y == '1') { cases[7]++; } 

                                else if (x == '2' && y == '2') { cases[8]++; } 

                                else { //do nothing 

                               } 

 

                        } 

                for ( n = cRows ; n < cRows + contRows ; n++ ) { 

                              x = snpdata[n * cols + ref]; 

                              y = snpdata[n * cols + (ref + tid)]; 

 

                                if ( x == '0' && y == '0' ) { controls[0]++; } 

                                else if (x == '0' && y == '1') { controls[1]++; } 

                                else if (x == '0' && y == '2') { controls[2]++; } 

                                else if (x == '1' && y == '0') { controls[3]++; } 

                                else if (x == '1' && y == '1') { controls[4]++; } 

                                else if (x == '1' && y == '2' ) { controls[5]++; } 

                                else if (x == '2' && y == '0' ) { controls[6]++;} 

                                else if (x == '2' && y == '1') { controls[7]++; } 

                                else if (x == '2' && y == '2') { controls[8]++; } 

                                else { //do nothing 

                               } 
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                               } 

 

                             tot_cases =  

                            cases[0]+cases[1]+cases[2]+cases[3]+cases[4]+cases[5]+cases[6] 

                            +cases[7]+cases[8]; 

                            tot_controls =  

                            controls[0]+controls[1]+controls[2]+controls[3]+controls[4] 

                           +controls[5]+controls[6]+controls[7]+controls[8]; 

                            total = tot_cases + tot_controls; 

 

                                for( p = 0 ; p < 9; p++) { 

                                                exp[p] = (float)cases[p] + controls[p]; 

                                                Cexpected[p] = tot_cases * exp[p] / total; 

                                                Conexpected[p] = tot_controls * exp[p] / total; 

                                                numerator1 = (float)cases[p] - Cexpected[p]; 

                                                numerator2 = (float)controls[p] - Conexpected[p]; 

                                                chisquare += numerator1 * numerator1 / Cexpected[p] +   

                                                numerator2 * numerator2 / Conexpected[p]; 

 

                                } 

 

                                cuPrintf("tid is %d\n", tid); 

                                dev_colid[tid] = tid; 

                                 results[tid] = chisquare; 

                                cuPrintf("SNP1 is %d SNP2 is %d results[tid] is %f\n",ref  

                               ,dev_colid[tid], results[tid]); 

                } 

} 
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APPENDIX B 

 

GPU PROGRAM SPECIFICATIONS 

 

 

B.1  Pre-requisites  

 

1. A NVIDIA Graphics card with CUDA Support 

This includes any chipset from the Geforce 8, 9, 100, 200, 300, 400 and 500 series 

with at least 256MB on-board RAM. 

2. CUDA LLVM Compiler (NVCC) 

3. GNU Scientific Library (GSL) 

 

B.2  Command to Compile the Program: 

 

nvcc -I/<Path to gsl library> /gsl1.15/include main.cu 

-L/<Path to gsl library> /gsl1.15/lib –lgsl  -lgslcblas 

 

 

B.3  Execute the Program: 

 

B.3.1  Input File: 

 

SNP Dataset should be  encoded  as per additive and dominance coding ie  Count of the 

minor alleles per person. 

 

Argument 1  -  Number of rows in the dataset. 

 

Argument 2  -  Number of SNPs in the dataset. 

 

Argument 3  -  Number of Controls in the dataset. 

 

Argument 5  -  Number of Cases in the dataset. 

  

B.3.2  Command Used: 

 

<Executable>  <Dataset Filename> <# Rows> <#SNPS> <# Controls> <# Cases>  >  

<Output Filename> 
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APPENDIX C 

 PERL SCRIPT TO OBTAIN THE SNP IDS FROM SNP POSITIONS 

 

 

Pos2snpid.pl 

Purpose : Map the SNP positions to SNP ids. 

Input     :  Output file from main.cu, SNP ids file 

Output  :  Tab delimited text file with SNP positions mapped to SNP ids. 

 

$SNPfile = shift; 

$diseasefile = shift; 

 

open(IN, $SNPfile); 

@SNPfile = <IN>; 

chomp @SNPfile; 

close IN; 

 

open(IN, $diseasefile); 

@diseasesnps = <IN>; 

chomp @diseasesnps; 

close IN; 

 

%SNPids = (); 

@id1 = () ; @b = (); @id2 =(); 

 

for($i=0;$i < scalar(@SNPfile);$i++) { 

        @a = split(/ /,$SNPfile[$i]); 

        $SNPids{$a[0]} = $a[1]; 

} 

 

@keys = keys(%SNPids); 

$size = scalar(@keys); 

 

for($j=0; $j < scalar(@diseasesnps); $j++ ) { 

        @b = split("\t",$diseasesnps[$j]); 

        if(defined($SNPids{$b[0]})) { 

                        $id1[$j] = $SNPids{$b[0]}; 

        } 

        if(defined($SNPids{$b[2]})) { 
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                        $id2[$j] = $SNPids{$b[2]}; 

        } 

} 

 

for($k=0;$k < scalar(@diseasesnps);$k++) { 

         @m = split("\t",$diseasesnps[$k]); 

         print "$m[0]\t$id1[$k]\t$m[1]\t$m[2]\t$id2[$k]\t$m[3]\t$m[4]\t$m[5]\n"; 

} 

 

 

Usage: 

 

perl pos2snpid.pl  <FILE 1>  <FILE 2> 

 

FILE1 -  File containing the list of  SNP ids and SNP positions. 

FILE2 - Output from the main.cu CUDA  C program 
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