
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 2013

A GPU program to compute SNP-SNP
interactions in genome-wide association studies
Srividya Ramakrishnan
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Ramakrishnan, Srividya, "A GPU program to compute SNP-SNP interactions in genome-wide association studies" (2013). Theses.
289.
https://digitalcommons.njit.edu/theses/289

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232274599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.njit.edu%2Ftheses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/289?utm_source=digitalcommons.njit.edu%2Ftheses%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A GPU PROGRAM TO COMPUTE SNP-SNP INTERACTIONS IN

GENOME-WIDE ASSOCIATION STUDIES

by

Srividya Ramakrishnan

With the recent advances in the next generation sequencing technologies, short read

sequences of human genome are made more accessible. Paired end sequencing of short

reads is currently the most sensitive method for detecting somatic mutations that arise

during tumor development. In this study, a novel approach to optimize the detection of

structural variants using a new short read alignment program is presented.

 Pairwise interaction effects of the Single Nucleotide Polymorphisms (SNPs) have

proven to uncover the underlying complex disease traits. Computing the disease risk

based on the interaction effects of SNPs on a case – control study is a difficult problem.

As another part of the thesis, a fast GPU program that can calculate the chi-square

statistics of SNP-SNP interactions and output the significant interacting SNPs is

presented. The algorithm is applied to the datasets of seven common diseases obtained

from Wellcome Trust Case Control Consortium (WTCCC). The algorithm computed the

significant SNP pairs much faster than the existing algorithms and also identifies 3

significant pairs associated with genes IL23R and C11orf30 which are associated with

pathogenesis in the Crohns disease dataset.

2

A GPU PROGRAM TO COMPUTE SNP-SNP INTERACTIONS IN

GENOME-WIDE ASSOCIATION STUDIES

by

Srividya Ramakrishnan

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Bioinformatics

Department of Computer Science

May 2013

4

APPROVAL PAGE

A GPU PROGRAM TO COMPUTE SNP-SNP INTERACTIONS IN

GENOME-WIDE ASSOCIATION STUDIES

Srividya Ramakrishnan

Dr. Usman Roshan, Thesis Advisor Date

Associate Professor of Computer Science, NJIT

Dr. Zhi Wei, Committee Member Date

Assistant Professor of Computer Science, NJIT

Dr. Alexandros V. Gerbessiotis, Committee Member Date

Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Srividya Ramakrishnan

Degree: 	 Master of Science

Date: 	 May 2013

Undergraduate and Graduate Education:

• Master of Science in Bioinformatics,
New Jersey Institute of Technology, Newark, USA, 2013

• Bachelor of Science in Biotechnology,
SASTRA University, Thanjavur, India, 2008

Major: 	 Bioinformatics

iv 5

6

With great love and honor I dedicate this thesis to

My father and Mother for encouraging and supporting me

To my sisters, who cared and believed in me

To my uncle and aunt, for the enormous affection, blessing and care

To my brother, who stands as an inspiration in my career.

To my grandfathers and grandmothers, who always loved and blessed me

To all my Friends, who supported me in every aspect of life.

I’d thank you all for loving and believing in me.

v

7

ACKNOWLEDGMENT

I extend a great Thanks to my thesis advisor Dr. Usman Roshan, for his guidance, support

and encouragement through the course of my study at New Jersey Institute of

Technology. It is been a great honor to work with him on a challenging research work. I

believe my learning’s from him would benefit me a growth in my career. I also thank Dr.

Zhi Wei, my professor and also Master’s thesis committee member for the support and

guidance. A Special thanks to Dr. Alexandros V. Gerbessiotis for being part of my

Master’s thesis committee.

 I would like a thank Dr. David Perel, University of Computing Systems. I have

been extremely fortunate to work with him and his team Kevin Walsh, Richard Gaine.

Working with them provided enormous opportunity to learn on Linux System

Administration and resolving issues. They have also been instrumental in completing

part of my research on the afs filesystems at NJIT. I would also like to thank University

of North Carolina computing systems for providing a sophisticated server enabled for

CUDA.

 I also thank my friend Vijay Jana who supported me and cared for me all through

ever since I have come to United States.

Once Again, I greatly thank you all for helping me in making this research a

success.

vi

8

TABLE OF CONTENTS

Chapter Page

1 STRUCTURAL VARIANT DETECTION PROBLEM 1

 1.1 Introduction…….……….......………………..….…………………………...... 1

 1.2 Existing Methods in Structural Variant Discovery………………………...…... 1

 1.3 Materials and Methods..………………………..….……………….................... 2

 1.4 Results and Discussion………………….…….......……………………………. 3

2 GWAS STUDY ON SNP INTERACTIONS …….………………………………... 4

 2.1 Background on GWAS ……………………….……………………………….. 4

 2.2 SNP Epistasis and Disease Risk ……………………………………………….

2.3 Methods…………………………………………………………………………

 2.3.1 SNP-SNP Interaction Model……………………………………………..

 2.3.2 Chi-square Statistics……………………………………………………...

 4

5

5

5

3 GPU PROGRAMMING USING CUDA C………………...………………………. 7

 3.1 Introduction……………………………………………………………………..

3.2 Background on GPUs ………………………………...…………………….......

7

7

 3.3 GPU AND CUDA Architecture………………………………………………... 8

 3.4 Heterogeneous Programming…………….………………….............................. 10

 3.4 Memory Coalescing…………………..………………..…………………….....

10

vii

9

4

TABLE OF CONTENTS

(Continued)

Chapter

PROBLEM STATEMENT…………………………………………..……………...

4.1 Background on Existing Programs....…………………………………………...

Page

11

11

 4.2 Implementation…..………………....……………………………………….…..

 4.2.1 Development Environment……………………………………………….

 4.2.2 Parallelization Algorithm………………………………………………...

11

11

12

 4.3 Dataset Used…………………………………………………………………... 14

 4.4 Results and Discussion………………………………………………………… 15

 4.4.1 Algorithm Running Time 16

5 CONCLUSION.…………………………………………………………………… 21

APPENDIX A GPU PROGRAM TO COMPUTE SNP-SNP INTERACTIONS

 USING GENOME-WIDE ASSOCIATION DATA………………….

22

 A.1 CUDA C Program…………………………………………………………… 22

 A.2 Kernel Function……………………………………………………………… 27

APPENDIX B GPU PROGRAM SPECIFICATIONS……………………………….. 30

 B.1 Pre-requisites…………………………………………………………………. 30

 B.2 Command to Compile the Program…………………………………………... 30

 B.3 Execute the Program…………………………………………………………. 30

 B.3.1 Input Files…………………………………………………………….. 30

 B.3.2 Command Used .………………………..…………………………….. 30

viiii

10

TABLE OF CONTENTS

(Continued)

Chapter

Page

APPENDIX C PERL SCRIPT TO OBTAIN THE SNP IDS FROM SNP

 POSITIONS..……….………………………………………………..

31

REFERENCES …………………………………………………………………........... 33

 ix

11

LIST OF TABLES

Table Page

2.1 Contingency Table for the Interacting SNPs of Cases and Controls……..……... 6

4.1 Size of the WTCCC Datasets Used in the Study……..…………..……………… 15

4.2 Running Time of the WTCCC Datasets on the Program………………………… 16

4.3 Significant SNP Pairs Identified in the WTCCC Datasets………………………. 18

 x

12

LIST OF FIGURES

Figure Page

3.1 CUDA C - Heterogeneous Programming Model.……………………………….. 9

4.1 Algorithm Design for the CUDA C Program ….…….…………………………..

13

4.2 Comparison of the GPU vs. CPU

Implementation….…….………………………

17

xi

13

LIST OF ABBREVIATIONS

GWAS Genome Wide Association Study

SNP Single Nucleotide Polymorphism

GPU Graphical Processing Unit

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

WTCCC Wellcome Trust Case Control Consortium

 xii

1

 CHAPTER 1

 STRUCTURAL VARIANT DETECTION PROBLEM

 1.1 Introduction

Structurally variants are 5% of the human genome and have more than 800 independent

genes that are more likely to contribute to disease susceptibility. The expanded use of

next-generation sequencing with “paired end” methods has enabled a whole-genome

analysis with essentially unlimited resolution. The discovery of submicroscopic copy

number variations (CNVs) present in our genomes has changed dramatically our

perspective on DNA structural variation and disease (Stankiewicz et al 2010). It is now

thought that CNVs encompass more total nucleotides and arise more frequently than

SNPs. Detection of SVs in a human genome using NGS technologies was first presented

by Korbel et al. (2007) and later Kidd et al. (2008) detected, experimentally validated

and sequenced Structural variants (SVs) from eight different individuals. These validated

sites are made publicly available through the Human Genome Structural Variation Project

browser. In this thesis, a novel approach to identify structural variants is presented.

1.2 Existing Methods in Structural Variant Discovery

The current methods in structural variant detection use paired-end sequencing: Inserts

from a genome are read at both the ends, which are later aligned to reference genome. If

the mapping loci are identified correctly, an increase or decrease of the distance between

the end reads indicates an insertion or deletion.

2

 The tools which were developed for Structural variant detection like Variation

Hunter, PEmer (Korbel et al 2009), Pindel (Ye et al. 2009), BreakDancer (Chen et al.

2009) focus mainly on the best mapping of each read provided by the mapping software in

use. In a recent study (Hach et al. 2010), it is been demonstrated that ignoring possible

mapping locations of a read may lead to loss of accuracy in Structural variant detection.

VariationHunter implements a soft clustering method that aims to resolve repetitive

regions of the human genome through a combinatorial optimization framework for

detecting insertion and deletion polymorphisms. In this study, a short reads of Next

generation Sequencing (NGS) genome of a Yoruba individual (NA18507) has been used.

1.3 Materials and Methods

True Structural variant discovery does not just depend upon the SV detection algorithm

used but also largely depend upon the Short read alignment program. This research

focuses on comparing the Structural variants identified on the short reads aligned using

Stampy and a new short read aligner. Then compare the Structural variants with the

known structural variants detected on NA18507 (Kidd et al).

 Short reads for NA18507 were obtained from Next generation sequencing (NGS)

reads from SOLiD™ for the Yoruban individual were obtained from the 1000 genomes

project. A Perl script is used to map SOLiD™ color-space reads to base space. The shorts

reads in the base space has to be mapped to the reference genome before being passed to

the Structural variant detection program.

3

Whole genome short reads for NA18507 from SOLiD™ sequencing system has been

obtained from 1000 Genomes project website. The dataset have a total number of reads is

1,504,002,272 (approx 1.5 billion) of 51 bp length.

1.4 Results and Discussion

Stampy took approximately 30 days of CPU time to complete the mapping of the whole

genome short reads of NA18507 to the human genome completely on phi.njit.edu. But the

new short read aligner was not available due to unavoidable circumstances and was still

under development. So it was not possible to continue research further on this area.

4

CHAPTER 2

GWAS STUDY ON SNP INTERACTIONS

2.1 Background on GWAS

Genome-wide association study (GWAS) is an examination of many common genetic

variants in different individuals to see if any variant is associated with a trait. GWAS

typically focus on associations between single-nucleotide polymorphisms (SNPs) and

traits like major diseases. These studies normally compare the DNA of two groups of

participants: people with the disease (cases) and similar people without (controls). With

the recent diverse range of SNP genotyping methods there are more than 4,000 SNP

associations with a variety of diseases have been identified.

2.2 SNP Epitasis and Disease Risk

It may not be enough to conduct a GWAS study of SNPs considering one at a time to

understand complex disease traits. Epistasis is the interaction between two genes that can

suppress the effect of one gene over the other (Miko, I. 2008). Various studies suggest

that the pairwise Epistatic effects on SNPs are causative for complex diseases such as

sporadic breast cancer, late-onset Alzheimer’s disease (LOAD) etc. In this research, an

approach is presented to study the SNP - SNP interactions across the whole genome of

GWAS data.

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

5

2.3 Methods

2.3.1 SNP -SNP Interaction Model

Most common method to identify SNPs responsible for higher disease risk is to rank

them based on the probability of disease risk under an assumption or model. In this study,

chi-square statistics has been employed for the purpose. It is considered that every SNP

above the linkage disequilibrium (LD) width interacts with every other SNP in the whole

genome. The chi-square values are obtained for every pairwise interacting SNPs. Then

the significant SNPs are identified by reporting the SNP pairs less than the bonferroni

corrected p-value of 0.05.

2.3.2 Chi-square Statistics

A Chi-square Statistic (X2) is categorical distribution statistic of two independent groups.

The test statistic is given by the formula.

If given two random variables

D- Disease Status

G- Allele type

Null Hypothesis to predict SNP interactions is the two SNPs are independent of each

other (unrelated).

6

Table 2.1: Contingency table for the Interacting SNP Data for Case and Controls

 Interacting SNP Alleles

 0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2

Case c1 c2 c3 c4 c5 c6 c7 c8 c9

Control c10 c11 c12 c13 c14 c15 c16 c17 c18

Total number of samples (n)

=c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c13+c14+c15+c16+c17+c18

The following are the conditions for the Interacting SNPs to be independent of disease

risk

1) P(D,G) = P(D)P(G)

2) Probability of the disease P(D) is given by the formula

 P(D=case) = (c1+c2+c3+c4+c5+c6+c7+c8+c9) / n

3) Probability of that interacting SNP pair will be given by the formula

 P(G=0 0) = (c1+c10)/n

4) Expected Values can be calculated using the formula

 E(X1) = P(X=case)P(Y=00)n = (c1+c2+c3+c4+c5+c6+c7+c8+c9)(c1+c10) / n

Once the chi-square values are computed the p-values corresponding to 8 degrees of

freedom is computed. The p-values are corrected to a bonferroni p-value of 0.05 cutoffs

and only the significant p-values and the corresponding SNP positions are reported.

7

CHAPTER 3

GPU PROGRAMMING USING CUDA

3.1 Introduction

Various studies suggest that the interactions between single nucleotide polymorphisms

(SNPs) are causative for complex diseases such as sporadic breast cancer, late-onset

Alzheimer’s disease (LOAD) etc. Identifying the epistatic effect associated with the

disease can be computationally intensive at a genomic scale. It takes up to many days to

identify the interactions in SNPs, even by using the latest multiple core CPUs. In Modern

Computers, Graphic Processing units have more memory and bandwidth compared to the

CPUs. Hence to GPUs with hundreds of cores can be employed in identifying the SNP-

SNP interactions in a genomic scale. In this research project, an implementation of Chi

Square statistics capable of running on graphics processing units (GPUs) using the

NVIDIA Compute Unified Device Architecture (CUDA) framework is presented to

predict disease risk on a case-control population.

3.2 Background on GPUs

Increasing demand in the high resolution, 3D graphic cards have led to the production of

GPUs with multiple cores at relatively lower rates. In the year 2006, to make use of the

GPUs memory and bandwidth in resolving the complex computational challenges,

NVIDIA released a proprietary development platform called Compute Unified Device

Architecture (CUDA). CUDA™ is a parallel computing platform and programming

8

model that enables dramatic increases in computing performance by harnessing the

power of the graphics processing unit (GPU).

3.3 GPU AND CUDA ARCHITECTURE

GPU uses much more of the hardware per core for data processing than CPUs, but

possess far less hardware for data caching and flow control. This makes GPUs ideal to

solve problems which require a small program being executed on a very large dataset in

parallel.

 CUDA extends GPU programmability using C functions called kernels, which

when called is executed N times in parallel using the N different CUDA threads with

unique thread ids in multiple blocks. There is a limit to the number of threads per block,

since all threads of a block are expected to reside on the same processor core and must

share the limited memory resources of that core. On current GPUs, a thread block may

contain up to 1024 threads. However, a kernel can be executed by multiple equally-

shaped thread blocks, so that the total number of threads is equal to the number of threads

per block times the number of blocks. Blocks are organized into a one-dimensional, two-

dimensional, or three-dimensional grid of thread blocks. The number of thread blocks in

a grid is usually dictated by the size of the data being processed or the number of

processors in the system, which it can greatly exceed.

 CUDA C is an extension of C implementation which allows general purpose

programming on GPUs. Currently CUDA C is largely used my many computational

biologists and bioinformaticians to resolve many computationally intensive complex

biological problems.

9

Figure 3.1 CUDA C - Heterogeneous Programming Model.

Note: Serial code executes on the host while parallel code executes on the device.

Source: NVIDIA Compute Unified Device Architecture Programming Guide Version 2.1 Tech. rep.,

NVIDIA Corporation; 2008

10

3.4 Heterogeneous Programming

In CUDA programming model, the CUDA threads execute on a physically separate

device that operates as a coprocessor to the host running the C program. For example,

when the kernels execute on a GPU and the rest of the C program executes on a CPU.

The CUDA programs access the host and the device at their own separate memory spaces

in DRAM, referred to as host memory and device memory. Hence it is necessary to do

device memory allocation and de-allocation as well as data transfer between host and

device memory.

3.5 Memory Coalescing

Performance can be greatly improved by some good programming practices when using

the GPUs. It is evident that by increasing the global memory bandwidth by reducing the

number of bus transactions and coalesce memory accesses can help CUDA program

execute faster. Memory coalescing can be achieved by finding the memory segment that

contains the address requested by the lowest active thread and find all the other active

threads in the same segment then reducing the transaction size and by marking threads

inactive when transaction is complete.

11

CHAPTER 4

PROBLEM STATEMENT

4.1 Background on Existing Programs

Very few algorithms have been developed to predict the SNP-SNP interactions associated

to high risk of a disease. GBOOST (Dinu et al. (2012), a GPU implementation of logistic

regression for analyzing the interacting pairs of the SNPs. GENIE, another GPU CUDA

software package to identify epistatic interactions on SNPs was developed by Satish et al.

(2011). EPIBLASTER (Kam-Thong et al. 2011) is a GPU program to detect the epistatic

interaction between two locus using the logistic regression statistics.

The major limitations in using the existing SNP interaction programs are the

running time and the system requirements. Computing pair wise SNP interactions on a

genomic scale of a 5000 case control data costs so much CPU time and memory. The

other limitations in using these programs are hardware requirement. In this thesis, a

CUDA C program aimed to calculate chi-square statistics of interacting SNPs at

comparatively less running time is been developed.

4.2 Implementation

4.2.2 Development Environment

This program was implemented using C language and CUDA C language extension. It

was developed on a GPGPU cluster that has 12 GBs RAM of main memory, dual Intel

Xeon 2.67 GHz 6-core processors – X5650r, 3 NVidia Fermi M2050 GPU cards. The

12

NVIDIA Fermi M2050 card has 32 nodes and 384 cores. The programs were compiled

using the gnu compiler and requires GSL 1.15 library installed on the system.

4.2.3 Parallelization Algorithm

An algorithm to parallelize the interaction analysis of different SNP pairs is proposed.

The input dataset into ordered in a 1 dimensional array by placing all the rows next to

each other. This helps the algorithm to achieve memory coalescing. In order to minimize

the effect of a significant SNP allele over the other, the single chi-square values for all

the SNPs are calculated and the single significant SNPs are removed before computing

the pairs. To avoid SNP interactions due to the linkage disequilibrium, a LD width

variable is introduced. Hence every reference column is compared with every other

column above the LD width and the respective chi-square values are calculated. The

pairwise p-value is computed from the chi-square values using a c function from the GSL

library, to identify the significant interacting pairs. The program reports all the SNP-SNP

interactions that are significant at the bonferroni level calculated for each dataset. The

bonferroni p-value = 0.05 / n, where n is the number of SNP-SNP interactions analyzed

for the dataset.

13

Remove the insignificant
SNPs

(p > 0.05/ jobs)

OUTPUT

Load the SNP alleles to
the CPU Memory

Perform chisquare
univariate test on

individual SNPs

Arrange SNP data in a
single dimensional array
to achieve coalescence

Remove the significant
SNPs

(p > 0.05/n)

Calculate the pairwise
chisquare on the GPU

Copy the chisquare
results to the host (CPU

program)

Calculate p-value for the
chisquare values

Print the significant pairs
P-value < bonferroni

cutoff

INPUT

Figure : 4.1 Algorithm Design for the CUDA C Program

14

4.3 Dataset Used

The Wellcome Trust Case Control Consortium (WTCCC) is a collaboration of 24 leading

human geneticists, who will analyse thousands of DNA samples from patients suffering

with different diseases to identify common genetic variations for each condition. The

WTCCC released their data in the genome-wide association study of 14,000 cases of

seven common diseases and 3,000 shared controls (Burton PR et al 2007). They obtained

the comparison of the control data with data obtained from the following disease

samples: type 1 diabetes, type 2 diabetes, inflammatory bowel disease, breast cancer,

coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis, multiple

sclerosis, ankylosing spondylitis, autoimmune thyroid disease, malaria and tuberculosis.

To test the performance of the program based on running time and for finding significant

SNP pairs, the algorithm was tested on the following seven datasets. The size of the

datasets used for the analysis is reported in the Table 4.1.

15

Table 4.1 Size of the WTCCC datasets used in the study

Dataset Total # of

SNPs

No of

Controls

No of

Cases

Crohns disease (CD) 405306 1748 2938

Bipolar disease (BD) 396320 1868 2938

Type 1 Diabetes (T1D) 402532 1924 2938

Type 2 Diabetes (T2D) 402532 1924 2938

Coronary heart disease

(CAD)

404145 1926 2938

Rheumatoid arthritis (RA) 403301 1860 2938

Hypertension (HT) 402895 1952 2938

4.4 Results and Discussion

This study majorly contributes a new super fast algorithm to identify the pair wise

significant SNPs. The algorithm was made efficient to identify the SNP pairs without

testing all the pairs genome wide. To reduce the effect of false positives on the significant

pair prediction, the single significant SNPs are skipped by comparison with the

bonferroni corrected p-value of 0.05. The algorithm also restricts the analysis of pairs

below a linkage disequilibrium width (LD width) to avoid noise in the significant pair

results. Finally, the chi-square values of the computed SNP pairs are finally corrected to

the bonferroni corrected p–value of 0.05.

16

4.4.1 Algorithm Running Time

The program was used to analyse the effect of significant SNP pairs to disease

association of seven WTCCC datasets. The GPU program took much less time to identify

the significant pairs as opposed to other programs which runs on a CPU. The running

times of each of these dataset is reported in a Table 4.2.

Table 4.2 Running Time of the WTCCC Datasets using the program

WTCCC Dataset Running Time (hrs)

Crohns disease (CD) 14.15

Bipolar disease (BD) 12.1

Type 1 Diabetes (T1D) 10.3

Type 2 Diabetes (T2D) 10.45

Rheumatoid arthritis (RA) 12.2

Hypertension (HT) 10.3

Coronary heart disease (CAD) 10.1

17

 Figure 4.1 Comparison of the GPU vs. CPU implementation

The graph above dictates the estimated running time of the algorithm is a normal CPU

vs GPU implementations. The WTCCC datasets are placed against the x-axis and

running time in hours across the y-axis. From the graph it is evident that there are about

130% increase in the running time in using GPUs than CPU computation for this

algorithm.

18

Table 4.3 Significant pairs identified in the WTCCC datasets

Dataset SNP1 SNP1 id Single p-value SNP2 SNP2 id Single p-value

Pair wise Chi-

square

Pair wise p-

value

CD 9157 rs4655684 1.35E-07 273114 rs12789493 8.56E-04 7.92E+01 6.93E-14

CD 9157 rs4655684 1.35E-07 273113 rs2155226 1.16E-03 7.85E+01 9.63E-14

CD 9157 rs4655684 1.35E-07 273115 rs3862807 1.33E-03 7.69E+01 2.09E-13

CD 9157 rs4655684 1.35E-07 273112 rs1892953 3.65E-03 7.54E+01 4.19E-13

RA 12103 rs691531 1.98E-06 12134 rs3929937 1.79E-01 1.18E+02 1.03E-21

RA 12103 rs691531 1.98E-06 12130 rs10782591 1.42E-01 1.11E+02 2.40E-20

RA 12103 rs691531 1.98E-06 154313 rs9784858 2.69E-07 7.48E+01 5.32E-13

RA 154034 rs4394275 4.87E-04 154295 rs2857212 9.59E-06 7.79E+01 1.31E-13

RA 154040 rs2523534 3.99E-06 154236 rs3135392 1.69E-06 8.00E+01 4.81E-14

RA 154040 rs2523534 3.99E-06 154186 rs910050 8.74E-07 7.66E+01 2.41E-13

RA 154040 rs2523534 3.99E-06 154253 rs4530903 2.31E-07 7.60E+01 3.18E-13

RA 154045 rs5025315 2.68E-05 154236 rs3135392 1.69E-06 7.47E+01 5.67E-13

RA 154048 rs5022119 2.33E-05S 154236 rs3135392 1.69E-06 7.45E+01 6.14E-13

RA 154095 rs2516478 6.66E-03 154295 rs2857212 9.59E-06 9.16E+01 2.22E-16

RA 154107 rs760293 3.16E-06 154236 rs3135392 1.69E-06 8.74E+01 1.56E-15

RA 154107 rs760293 3.16E-06 154186 rs910050 8.74E-07 8.13E+01 2.67E-14

RA 154143 rs3130287 4.48E-07 154186 rs910050 8.74E-07 9.54E+01 3.65E-17

RA 154143 rs3130287 4.48E-07 154236 rs3135392 1.69E-06 7.86E+01 9.32E-14

RA 154186 rs910050 8.74E-07 154253 rs4530903 2.31E-07 9.58E+01 3.09E-17

RA 154186 rs910050 8.74E-07 154296 rs2857210 9.47E-05 8.44E+01 6.32E-15

RA 154186 rs910050 8.74E-07 154328 rs241403 1.50E-05 7.60E+01 3.14E-13

RA 154195 rs9391858 3.64E-04 154236 rs3135392 1.69E-06 9.69E+01 1.88E-17

RA 154195 rs9391858 3.64E-04 154230 rs5000563 1.43E-01 8.03E+01 4.28E-14

RA 154195 rs9391858 3.64E-04 154234 rs3129877 1.43E-01 8.00E+01 4.81E-14

19

Dataset SNP1 SNP1 id Single p-value SNP2 SNP2 id Single p-value

Pair wise Chi-

square

Pair wise p-

value

RA 154195 rs9391858 3.64E-04 154229 rs3135342 8.41E-02 7.86E+01 9.18E-14

RA 154195 rs9391858 3.64E-04 154232 rs3129872 1.21E-01 7.78E+01 1.34E-13

RA 154198 rs12528797 8.56E-06 154236 rs3135392 1.69E-06 9.83E+01 9.62E-18

RA 154201 rs6930777 4.54E-06 154236 rs3135392 1.69E-06 1.01E+02 2.97E-18

RA 154229 rs3135342 8.41E-02 154328 rs241403 1.50E-05 7.71E+01 1.89E-13

RA 154230 rs5000563 1.43E-01 154328 rs241403 1.50E-05 7.60E+01 3.08E-13

RA 154232 rs3129872 1.21E-01 154328 rs241403 1.50E-05 7.50E+01 4.92E-13

RA 154234 rs3129877 1.43E-01 154328 rs241403 1.50E-05 7.48E+01 5.51E-13

RA 154236 rs3135392 1.69E-06 154328 rs241403 1.50E-05 9.00E+01 4.75E-16

RA 154236 rs3135392 1.69E-06 154296 rs2857210 9.47E-05 7.74E+01 1.61E-13

RA 154272 rs9275765 3.39E-03 154304 rs2857154 4.66E-03 9.35E+01 9.16E-17

RA 154272 rs9275765 3.39E-03 154305 rs7382347 7.29E-03 8.89E+01 7.61E-16

RA 154272 rs9275765 3.39E-03 154306 rs2857129 1.10E-02 8.85E+01 9.18E-16

RA 154273 rs9275772 5.61E-03 154304 rs2857154 4.66E-03 9.22E+01 1.64E-16

RA 154273 rs9275772 5.61E-03 154305 rs7382347 7.29E-03 8.77E+01 1.33E-15

RA 154273 rs9275772 5.61E-03 154306 rs2857129 1.10E-02 8.72E+01 1.76E-15

RA 154275 rs9275793 5.40E-03 154306 rs2857129 1.10E-02 8.73E+01 1.62E-15

RA 154275 rs9275793 5.40E-03 154304 rs2857154 4.66E-03 9.24E+01 1.51E-16

RA 154275 rs9275793 5.40E-03 154305 rs7382347 7.29E-03 8.79E+01 1.23E-15

RA 154295 rs2857212 9.59E-06 154367 rs9296069 1.00E-02 8.49E+01 4.98E-15

RA 155430 rs9296318 3.26E-01 155460 rs10947857 1.80E-01 7.73E+01 1.72E-13

RA 155433 rs2894387 2.72E-01 155460 rs10947857 1.80E-01 7.96E+01 5.79E-14

CAD 12132 rs691531 1.58E-04 12162 rs3929937 7.73E-01 1.35E+02 2.12E-25

CAD 12132 rs691531 1.58E-04 12158 rs10782591 6.70E-01 1.32E+02 1.17E-24

20

The above table gives the SNP positions and SNP ids of the interacting which are

identified to be significant by this algorithm. The program reported 4 significant pairs in

the crohns disease dataset. The significant SNP pairs identified in crohns disease dataset

are part of the genes IL23R and C11orf30 which are biologically evident and significant

in correlations with crohns disease pathogenesis.

 The program reported about 2 significant pairs in Coronary Heart disease dataset

rs691531, rs3929937 and rs691531, rs10782591 that lie in the chromosome 1 as part of

the genes RPL17P5 and HS2ST1.There are about 34 significant pairs reported in the

rheumatoid arthritis dataset that come from different genes RPL17P5 , HS2ST1, HLA S,

HCP 5,HCG 26 , HLA-DRA , BAG6, TNXB, C6orf10.

 There is not much significance seen in the datasets bipolar disease, hypertension,

type 1 diabetes and type 2 diabetes.

21

CHAPTER 5

CONCLUSION

In this study, an algorithm which can identify the significant SNP pairs of a huge GWAS

dataset is presented. This algorithm is efficient and fast paced to identify the significant

SNP pairs.

 The significant SNP pairs identified in Crohns disease dataset are part of the

genes IL23R and C11orf30. These genes are biologically evident and significant in

correlation to pathogenesis.

 The algorithm performs well in getting rid of the false positives by assigning a LD

width, removing the single significant SNPs and also by correcting the significant SNP

pairs to bonferroni p-value of 0.05.

22

APPENDIX A

GPU PROGRAM TO COMPUTE SNP-SNP INTERACTIONS USING

GENOME-WIDE ASSOCIATION DATA

This appendix includes the source code of the GPU program to compute the chi-square

statistics of SNP-SNP interactions.

A.1 CUDA C Program

Main.cu

Purpose: Main program which calls the kernel function

Output: Tab delimited text file containing the SNP interacting positions and p-values

#include <stdio.h>

#include <iostream>

#include <stdlib.h>

#include <string.h>

#include <cuda.h>

#include "book.h"

#include "kernel.cu"

#include <gsl/gsl_cdf.h>

#include <gsl/gsl_sf.h>

int main(int argc ,char* argv[]) {

 FILE *fp;

 int size;

/* Initialize rows, cols, ncases, ncontrols from the user */

 int rows=atoi(argv[2]);

 int cols=atoi(argv[3]);

 int ncases=atoi(argv[4]);

 int ncontrols=atoi(argv[5]);

 printf("%d,%d,%d,%d\n",rows,cols,ncases,ncontrols);

23

/*Kernel variable declaration */

 int THREADS = 256;

 int BLOCKS;

 int LD_width = 10;

 unsigned char *dev_dataT;

 float *results;

 float host_results[cols];

 float result; int colid;

 float p_temp;

 int host_colid[cols];

 float chisq[cols];

 int *dev_colid;

 int jobs, ref_col;

 int transfer = 0;

 float pair_cutoff = 0;

 float totaljobs ;

/* Variable initialized to perform univariate tests */

float c_zero, c_one, c_two, con_two,con_zero,con_one,c1_expected,c2_expected,

c3_expected,c_total;

float con1_expected, con2_expected, con3_expected,con_total ;

float chi,total,t_col1,t_col2,t_col3;

float p[cols];

/* set the cut off */

float cutoff = 0.05/cols;

printf("CUTOFF IS %e\n",cutoff);

/* Validation to check if the data file is readable */

fp = fopen(argv[1], "r");

if (fp == NULL) {

 printf("Cannot Open the File");

 return 0;

 }

size = rows * cols;

totaljobs = gsl_sf_choose(cols,2);

pair_cutoff = 0.05 / totaljobs ;

printf("Size of the data: %d pair_cutoff %e\n",size,pair_cutoff);

unsigned char *dataT = (unsigned char*)malloc(size*sizeof(unsigned char));

printf("Transferring data to Memory\n");

24

/* Transfer the SNP Data from the file to CPU Memory */

for(int i=0 ; i < size; i++) {

 int tmp;

 fscanf(fp,"%d",&tmp);

 dataT[i] = (char)(((int)'0')+tmp);s

 if(i == size - 1){

 transfer = 1;

 printf("SNP Data Transferred to the Memory.... Processing\n");

 }

 fflush(stdout);

}

fclose(fp) ;

/* Univariate tests on all columns */

for (int m = 0 ; m < cols ; m++) {

 int n = m;

 c_one = 1.0f; c_zero = 1.0f; c_two = 1.0f; con_one = 1.0f ; con_zero = 1.0f;

 con_two = 1.0f;

 while(n < ncases * cols) {

 if(dataT[n] == '0') { c_zero ++; }

 else if(dataT[n] == '1') { c_one++; }

 else if(dataT[n] == '2') { c_two++ ; }

 n = n + cols;

 }

 c_total = c_zero + c_one + c_two;

 n = m + ncases * cols;

 while(n < size) {

 if(dataT[n] == '0') { con_zero++; }

 else if(dataT[n] == '1') { con_one++; }

 else if(dataT[n] == '2') { con_two++ ; }

 n = n + cols;

 }

 con_total = con_zero + con_one + con_two;

 total = c_total + con_total;

 t_col1 = c_zero + con_zero;

 t_col2 = c_one + con_one;

 t_col3 = c_two + con_two;

 c1_expected = t_col1 * c_total / total;

 c2_expected = t_col2 * c_total / total ;

 c3_expected = t_col3 * c_total / total ;

 con1_expected = t_col1 * con_total / total ;

 con2_expected = t_col2 * con_total / total ;

 con3_expected = t_col3 * con_total / total ;

 chi = (c_zero - c1_expected) * (c_zero - c1_expected) / c1_expected;

25

 chi += (c_one - c2_expected) * (c_one - c2_expected) / c2_expected;

 chi += (c_two - c3_expected) * (c_two - c3_expected) / c3_expected;

 chi += (con_zero -con1_expected) * (con_zero -con1_expected) / con1_expected;

 chi += (con_one - con2_expected) * (con_one - con2_expected) / con2_expected;

 chi += (con_two - con3_expected) * (con_two - con3_expected) / con3_expected;

 chisq[m] = chi;

 p[m] = gsl_cdf_chisq_Q(chi,2);

 }

if(transfer == 1){

 /* Reading the dataT array for comparison and kernel function*/

 /* allocate the Memory in the GPU for SNP data */

 fflush(stdout);

 HANDLE_ERROR(cudaMalloc((unsigned char**) &dev_dataT, size *

sizeof(unsigned char)));

 HANDLE_ERROR(cudaMalloc((float**) &results, cols * sizeof(float)));

 HANDLE_ERROR(cudaMalloc((int**) &dev_colid,cols * sizeof(int)));

 /*Copy the SNP data to GPU dev_dataT*/

 HANDLE_ERROR(cudaMemcpy(dev_dataT, dataT, size * sizeof(unsigned char),

cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_colid,host_colid, cols * sizeof(int),

cudaMemcpyHostToDevice));

 /* as indexing start from 0 - 49 but cols are 50 so cols -1 */

 //fflush(stdout);

 printf("SNP 1 Uni p-value SNP 2 Uni p-value Chi-Square P-value\n");

 printf("##### ########### ##### ########### ########

########\n");

 for(int j=0;j < (cols - (2 * LD_width + 1));j++) {

 if(p[j] > cutoff) {

 jobs = cols - j;

 ref_col = j;

 BLOCKS = (jobs + THREADS - 1)/THREADS;

 /*Calling the kernel function */

 cudaPrintfInit();

 fflush(stdout);

kernel<<<BLOCKS,THREADS>>>(rows,cols,ncases,ncontrols,jobs,ref_col,dev_dataT,

26

results,dev_colid);

 cudaPrintfDisplay(stdout, true);

 cudaPrintfEnd();

 fflush(stdout);

 //Copy the results back in host

 HANDLE_ERROR(cudaMemcpy(host_results,results,cols *

sizeof(float),cudaMemcpyDeviceToHost));

 HANDLE_ERROR(cudaMemcpy(host_colid,dev_colid,cols *

sizeof(int),cudaMemcpyDeviceToHost));

 fflush(stdout);

 /* check condition to find out the SNP values to be sorted */

 for(int k = 11 ; k < jobs; k++) {

 float max = 0.0f ;

 for(int i=11; i < jobs; i++){

 if((host_results[i] >= max) && (p[ref_col + host_colid[i]] >

 cutoff)) {

 max = host_results[i];

 result = host_results[i];

 colid = host_colid[i];

 }

 }

 host_results[colid] = 0;

 p_temp = gsl_cdf_chisq_Q(result,8);

 final_colid= ref_col + colid;

 if(p_temp < pair_cutoff) {

 printf("%d %e %d %e %e

 %e\n",ref_col,p[ref_col],final_colid,p[final_colid],result,p_temp);

 }

 else {

 break;

 }

 }

 }

 else {

 continue;

 }

 }

/* free the Memory in the GPU */

fflush(stdout);

printf("\n###DONE###\n");

27

cudaFree(dev_dataT);

cudaFree(results);

cudaFree(dev_colid);

return 0;

}

else {

 printf("ERROR: ERROR loading the data.\n");

}

}

A.2 Kernel Function

Kernel.cu

Purpose : kernel function to calculate the chi-square values

Output : When called from the main function, computes the chi-square statistics of the

SNP pairs and returns the chi-square values to the main function

#include <stdio.h>

#include <iostream>

#include <stdlib.h>

#include <cuda.h>

#include <math.h>

#include "book.h"

#include "cuPrintf.cu"

__global__ void kernel(int rows, int cols , int cRows , int contRows ,int jobs,int ref,

unsigned char *snpdata,float *results,int *dev_colid){

 unsigned char x, y;

 int m, n ;

 unsigned int p = 0 ;

 int cases[9];

 int controls[9];

 int tot_cases = 1;

 int tot_controls= 1;

 int total = 1;

 float chisquare = 0.0f;

 float exp[10];

 float Conexpected[9];

28

 float Cexpected[9];

 float numerator1;

 float numerator2;

 int tid = threadIdx.x + blockIdx.x * blockDim.x;

 cases[0]=1;cases[1]=1;cases[2]=1;cases[3]=1;cases[4]=1;cases[5]=1;cases[6]=1;

 cases[7]=1;cases[8]=1;

controls[0]=1;controls[1]=1;controls[2]=1;controls[3]=1;controls[4]=1;controls[5]=1;con

trols[6]=1;controls[7]=1;controls[8]=1;

 if ((tid < jobs) && (tid > 10)) {

 for (m = 0 ; m < cRows ; m++) {

 x = snpdata[m * cols + ref];

 y = snpdata[m * cols + (ref + tid)];

 if (x == '0' && y == '0') { cases[0]++; }

 else if (x == '0' && y == '1') { cases[1]++; }

 else if (x == '0' && y == '2') { cases[2]++; }

 else if (x == '1' && y == '0') { cases[3]++; }

 else if (x == '1' && y == '1') { cases[4]++; }

 else if (x == '1' && y == '2') { cases[5]++; }

 else if (x == '2' && y == '0') { cases[6]++;}

else if (x == '2' && y == '1') { cases[7]++; }

 else if (x == '2' && y == '2') { cases[8]++; }

 else { //do nothing

 }

 }

 for (n = cRows ; n < cRows + contRows ; n++) {

 x = snpdata[n * cols + ref];

 y = snpdata[n * cols + (ref + tid)];

 if (x == '0' && y == '0') { controls[0]++; }

 else if (x == '0' && y == '1') { controls[1]++; }

 else if (x == '0' && y == '2') { controls[2]++; }

 else if (x == '1' && y == '0') { controls[3]++; }

 else if (x == '1' && y == '1') { controls[4]++; }

 else if (x == '1' && y == '2') { controls[5]++; }

 else if (x == '2' && y == '0') { controls[6]++;}

 else if (x == '2' && y == '1') { controls[7]++; }

 else if (x == '2' && y == '2') { controls[8]++; }

 else { //do nothing

 }

29

 }

 tot_cases =

 cases[0]+cases[1]+cases[2]+cases[3]+cases[4]+cases[5]+cases[6]

 +cases[7]+cases[8];

 tot_controls =

 controls[0]+controls[1]+controls[2]+controls[3]+controls[4]

 +controls[5]+controls[6]+controls[7]+controls[8];

 total = tot_cases + tot_controls;

 for(p = 0 ; p < 9; p++) {

 exp[p] = (float)cases[p] + controls[p];

 Cexpected[p] = tot_cases * exp[p] / total;

 Conexpected[p] = tot_controls * exp[p] / total;

 numerator1 = (float)cases[p] - Cexpected[p];

 numerator2 = (float)controls[p] - Conexpected[p];

 chisquare += numerator1 * numerator1 / Cexpected[p] +

 numerator2 * numerator2 / Conexpected[p];

 }

 cuPrintf("tid is %d\n", tid);

 dev_colid[tid] = tid;

 results[tid] = chisquare;

 cuPrintf("SNP1 is %d SNP2 is %d results[tid] is %f\n",ref

 ,dev_colid[tid], results[tid]);

 }

}

30

APPENDIX B

GPU PROGRAM SPECIFICATIONS

B.1 Pre-requisites

1. A NVIDIA Graphics card with CUDA Support

This includes any chipset from the Geforce 8, 9, 100, 200, 300, 400 and 500 series

with at least 256MB on-board RAM.

2. CUDA LLVM Compiler (NVCC)

3. GNU Scientific Library (GSL)

B.2 Command to Compile the Program:

nvcc -I/<Path to gsl library> /gsl1.15/include main.cu

-L/<Path to gsl library> /gsl1.15/lib –lgsl -lgslcblas

B.3 Execute the Program:

B.3.1 Input File:

SNP Dataset should be encoded as per additive and dominance coding ie Count of the

minor alleles per person.

Argument 1 - Number of rows in the dataset.

Argument 2 - Number of SNPs in the dataset.

Argument 3 - Number of Controls in the dataset.

Argument 5 - Number of Cases in the dataset.

B.3.2 Command Used:

<Executable> <Dataset Filename> <# Rows> <#SNPS> <# Controls> <# Cases> >

<Output Filename>

31

APPENDIX C

 PERL SCRIPT TO OBTAIN THE SNP IDS FROM SNP POSITIONS

Pos2snpid.pl

Purpose : Map the SNP positions to SNP ids.

Input : Output file from main.cu, SNP ids file

Output : Tab delimited text file with SNP positions mapped to SNP ids.

$SNPfile = shift;

$diseasefile = shift;

open(IN, $SNPfile);

@SNPfile = <IN>;

chomp @SNPfile;

close IN;

open(IN, $diseasefile);

@diseasesnps = <IN>;

chomp @diseasesnps;

close IN;

%SNPids = ();

@id1 = () ; @b = (); @id2 =();

for($i=0;$i < scalar(@SNPfile);$i++) {

 @a = split(/ /,$SNPfile[$i]);

 $SNPids{$a[0]} = $a[1];

}

@keys = keys(%SNPids);

$size = scalar(@keys);

for($j=0; $j < scalar(@diseasesnps); $j++) {

 @b = split("\t",$diseasesnps[$j]);

 if(defined($SNPids{$b[0]})) {

 $id1[$j] = $SNPids{$b[0]};

 }

 if(defined($SNPids{$b[2]})) {

32

 $id2[$j] = $SNPids{$b[2]};

 }

}

for($k=0;$k < scalar(@diseasesnps);$k++) {

 @m = split("\t",$diseasesnps[$k]);

 print "$m[0]\t$id1[$k]\t$m[1]\t$m[2]\t$id2[$k]\t$m[3]\t$m[4]\t$m[5]\n";

}

Usage:

perl pos2snpid.pl <FILE 1> <FILE 2>

FILE1 - File containing the list of SNP ids and SNP positions.

FILE2 - Output from the main.cu CUDA C program

33

REFERENCES

Stankiewicz P, Lupski JR (2010). Structural Variation in the Human Genome and its

Role in Disease. PubMed, PMID: 20059347.

Jan O. Korbel et al. (2007). Paired-End Mapping Reveals Extensive Structural Variation

in the Human Genome, PubMed, PMID: 20059347.

Kai Ye, Marcel H. Schulz1, Quan Long, Rolf Apweiler1 and Zemin Ning (2009).

Pindel: a Pattern Growth Approach to Detect Breakpoints of Large Deletions and

Medium Sized Insertions from Paired-end Short reads, Bioinformatics, 25 (21):2865-

2871.doi:10.1093/bioinformatics/btp394.

Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD,

Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis

ER (2009). BreakDancer: an algorithm for high-resolution mapping of genomic structural

variation, PubMed, PMID: 19668202.

Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc Birol, Evan

E Eichler, and S Cenk Sahinalp (2010).mrsFast: a Cache-Oblivious Algorithm for Short-

read Mapping, PMC, PMCID: PMC3115707.

 Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N,

Teague B, Alkan C, Antonacci F (2008). Mapping and Sequencing of Structural

Variation from Eight Human Genomes. Nature. 2008;453:56–64.

Miko, I. (2008) Epistasis: Gene interaction and phenotype effects. Nature Education 1(1).

http://www.ncbi.nlm.nih.gov/pubmed?term=Stankiewicz%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20059347
http://www.ncbi.nlm.nih.gov/pubmed?term=Lupski%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=20059347

34

NVIDIA Compute Unified Device Architecture Programming Guide Version 2.1 Tech.

rep (2008), NVIDIA Corporation.

Yung L.S, et al (2011). GBOOST: a GPU-based tool for detecting gene–gene interactions

in genome-wide case control studies. Bioinformatics. 27:1309–1310.

Satish Chikkagoudar, Kai Wang and Mingyao Li (2011). GENIE: a Software Package for

Gene-Gene Interaction Analysis in Genetic Association Studies using Multiple GPU or

CPU Cores. BMC Research Notes, 4:158 doi:10.1186/1756-0500-4-158

Kam-Thong T, Czamara D, Tsuda K, Borgwardt K, Lewis CM, Erhardt-Lehmann A,

Hemmer B, Rieckmann P, Daake M, Weber F, Wolf C, Ziegler A, Pütz B, Holsboer F,

Schölkopf B, Müller-Myhsok B(2011).EPIBLASTER-fast exhaustive two-locus epistasis

detection strategy using graphical processing units, PMC, PMCID: PMC3060319

Burton PR, Wellcome Trust Case Control Consortium.(2007) Genome-wide Association

Study of 14,000 Cases of Seven Common Diseases and 3,000 Shared Controls. Nature.

7;447(7145):661-78.

http://www.ncbi.nlm.nih.gov/pubmed?term=Wellcome%20Trust%20Case%20Control%20Consortium%5BCorporate%20Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/17554300

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 2013

	A GPU program to compute SNP-SNP interactions in genome-wide association studies
	Srividya Ramakrishnan
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Structural Variant Detection Problem
	Chapter 2: Gwas Study on SNP Interactions
	Chapter 3: GPU Programming Using Cuda
	Chapter 4: Problem Statement
	Chapter 5: Conclusion
	Appendix A: GPU Program to Compute SNP-SNP Interactions Using Genome-Wide Association Data
	Appendix B: GPU Program Specifications
	Appendix C: Perl Script to Obtain the SNP IDs from SNP Positions
	References

	List of Tables
	List of Figures
	List of Abbreviations

