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ABSTRACT 

REALIZATION OF DYNAMIXEL SERVO PLANT PARAMETERS TO 

IMPROVE ADMITTANCE CONTROL FOR A COMPLIANT 

HUMAN-ROBOT INTERACTION 

by 

Ahmad Zahid Rao 

In theory, admittance control offers a very effective method of implementing smooth 

human-robot interaction.  It allows the user’s applied force to control the movement of a 

powerful robot as if the robot were a small, passive mass. However, the real-world 

application of admittance control faces limitation posed by the dynamics of servo motors, 

the accuracy of the force sensors, and the computation speed of processors.  

This research investigates the limitations on achieving compliant passive behavior 

when using state-of-the-art actuators, sensors and processors. The work involves 

characterizing the dynamic behavior of the servo motors, development of improved 

differential equations representing admittance control, and testing to determine the ability 

of a robotic system to represent the behavior of passivity. A method has been developed 

for experimentally determining the inertial, and dissipative (damping and friction) 

characteristics of three different models of Dynamixel motors. These parameters are 

optimized using data from a pendulum drop test with mass at various distances from the 

center of rotation. With these parameters, we assess the ability of our motor model to 

generate an ideal motion based upon a torque input from the user. The aim is to 

understand the limitations of our control paradigm to allow users to be unable to feel any 

difference between the performances of the passive and motor joints. 
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CHAPTER 1  

INTRODUCTION 

 

Among the two most common Human-Robot Interaction control paradigms are 

admittance and impedance control which develop a relationship between the user’s input 

and the robot’s output. Admittance control uses the user’s applied force to drive the robot 

[1]. When the user applies a force to the robot, the robot decides how much it should 

move, in what direction and with what velocity? Newton’s second law of motion applies 

here. 

 Force = mass x acceleration                   (1.1) 

Double integration of the acceleration gets us the position which should be 

reached with the applied force. The robots are usually big and bulky, requiring a 

considerable amount of force to make them move. However, instead of putting the actual 

mass of the robot, a small virtual frictionless mass is put in the equation and the 

controller calculates the position for that frictionless mass in response to the applied 

force. The robot is then commanded to reach there. Thus, this allows the users to operate 

bulky robots with very little force, which is a core advantage of admittance control.  

The compliance of an admittance controlled robot, however, is limited by factors 

such as the characteristics of the actuators, the behavior of the sensors and the 

computational processing speed of the controllers. A lack of full understanding of the 

dynamics involved leads to inclusion of unwanted stiffness and oscillation in the system 

[2]. 

In this thesis, these limitations have been explored. The characteristic parameters 

of the servo motor system are optimized to make the admittance control using these 
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servos as smooth as possible. To do this, an experimental setup is designed to apply the 

pendulum drop test to the Dynamixel motors, MX-28, MX-64 and MX-106. The analysis 

is then carried out to find the inertial and dissipative characteristics on these motors. 

1.1  Review of Literature 

A.  Parameter Estimation 

Characterization and modeling of some Dynamixel motors have been attempted in 

previous work. An attempt was made to characterize the Dynamixel AX-12+ servo [3]. 

The servo was physically opened to examine the parts inside to understand how it works. 

In addition, mechanical and electrical measurements were done on the servo and the 

responses to various inputs were recorded to obtain parameters such as torque and 

friction. These obtained estimated parameters and measured movement profiles were 

used to develop a simulation model of the motor. However, this work was incomplete to 

fully understand the behavior of the servo. 

In another attempt, the researchers made a reference trajectory using Dynamixel 

MX-106 servo and used simple Iterative Learning Control method to find the servo 

commands that would produce a trajectory similar to the reference trajectory. They used a 

single model to estimate all the parameters together. To validate the developed model, an 

MX-106 servo based robot was tested for position control. The accuracy and energy 

efficiency were found to be satisfactory [2]. 

 A number of researchers have worked to estimate the moment of inertia of 

various servo systems for various applications. Most researchers have used observer 

based algorithms to estimate these parameters. 
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Some use estimated parameters such as motor speed and torque disturbance as 

observers to estimate the moment of inertia, others use direct output from filters such as 

Kalman filter as the estimate of moment of inertia, and yet some others use mathematical 

models to estimate motor speed based on a moment of inertia and compare it with actual 

motor speed until both speeds are close. In one study, the researcher has proposed an 

algorithm which multiplies the motor position to the reference torque input to get an 

estimate of the moment of inertia [4]. Change of inertia observer and torque observer 

have also been used by some researchers to estimate the inertia of a DC motor. However 

simpler, the method was found to be more accurate for larger DC motors [5]. 

 Induced torque harmonics have also been implemented in an attempt to determine 

the mechanical motor parameters such as mass moment of inertia and viscous damping in 

permanent magnet synchronous motor systems. These harmonics are chosen to be the 

ones that do not excite the motor in normal operation and thus could be used when the 

motor is actually operating. Motor’s velocity profile is measured as a result of these 

torque harmonics which is then used to estimate the parameters. These parameters are 

then used to calculate the torque and compared to the actual torque read by the 

piezoelectric sensors to prove the accuracy of the proposed method [6]. 

 In another study, a velocity controlled servo has been analyzed to estimate its 

inertia, viscous friction, Coulomb friction and a constant disturbance parameters using a 

two-step steady-state response method that employs a simple numerical model to 

estimate these parameters [7]. A brushless servo motor is then used to positively validate 

the model using step and sine-wave signals as the input. The results produced actually are 

comparable to that obtained by the standard recursive least squares method. 
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 Some researchers have also used genetic algorithms, neural networks and other 

such computational intelligence procedures to identify the mechanical motor parameters. 

In one study [7], the authors used Levenberg-Marquardt algorithm for optimization of 

motor parameters. Predefined standard signals have been used for parameter estimation 

too. Friction identification in open loop have also been attempted by [7] by applying a 

ramp to the servo. In closed loop system, researchers estimated damping in addition to 

inertia in a reaction wheel using a curve-fitting technique on responses to step signals. In 

closed loop, Dahl model of a linear motion was employed to estimate friction too [7]. 

 

B.  Dynamixel Servos 

The Dynamixel servos are being used widely in various research and development 

projects. They are robust, fast, and are easy to program and thus become a smart actuator 

for precise control. Their application ranges from educational uses to medical uses to 

industrial uses. Some of the recent research utilizing these actuators are discussed below. 

Considering the importance of robotics education for undergraduate and graduate 

students, a Coin Handling Arm for Robotic Mastery (CHARM) robot is developed which 

is aimed at teaching robotics in a conceptual way [8]. A camera is used to identify coins 

of different types on a rotating table that also have other objects on it. Once the coins are 

identified, each type of coins are put into their specific bins by the arm which is driven by 

the Dynamixel servomotors. This set up provides an alternate approach to the traditional 

LEGO Mindstorms kits for teaching purposes overcoming its limitations, not only in 

robotics but also in other fields such as physics and mathematics. 
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Another work is also directed towards the development and control of a robotic 

arm for educational purpose. The open-source Python software is used to control the 

Dynamixel motors in the 6-degrees of freedom BRACON robot turning this robot into a 

much cheaper and reliable solution for its purpose as compared to other available 

alternates [9]. 

Many biomedical related researches have also been utilizing the Dynamixel 

servos. In one work, the researchers developed a motorized remote probe control method 

for transesophageal echocardiography [10]. The conventional manual probe control faces 

problems such as poor ergonomics, leading to musculoskeletal disorders in the operators 

and hazardous X-ray exposures to its operators. To overcome these issues a remote 

control system is developed that uses two Dynamixel MX-28 motors as actuators for the 

probe movement and utilizes the Fuzzy Logic Toolbox in MATLAB as the controller.  

In another study, the researchers used the Dynamixel MX-106 smart servos to 

build a one DOF ankle prosthesis for the amputees that could provide flexion and 

dorsiflexion movements [11]. A fuzzy controller is used to control the position and torque 

of the motor depending upon the force inputs from the force sensors in the sole of the 

prosthesis. From this setup, they were able to obtain angular motion of the foot that was 

in the normal walking range. 

The Shoulder-Elbow-Forearm Robotics Economic (SEFRE) rehabilitation system 

is aimed for use by patients that have no upper limb muscle force or whose muscle force 

is limited due to any reason [12]. The SEFRE system has a KUKA robotic manipulator to 

which is attached a Forearm Supportive Mechanism (FSM). This FSM utilizes two 

Dynamixel motors that are used for elbow and forearm movement. A 1:3 gearbox is 
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added to increase the torque bearing capability for the elbow motion. This, however, 

reduces the speed and range of motion of the Dynamixel motor. To overcome the range 

of motion issue, ‘wheel mode’ has to be used instead of ‘joint mode’. A PID controller 

and an encoder algorithm is implemented to make the ‘wheel mode’ perform as a ‘joint 

mode’. The FSM controller gets user’s movement in the form of a Kalman filtered force 

data from a six-axis force sensor and drives the Dynamixel motors accordingly. Using the 

KUKA robot and the FSM, the intelligent controller is able to make efficient movements 

as concurrent and natural as a natural human motion. 

One of the research attempts to enable a humanoid robot to imitate the human 

motion. Microsoft Kinect is used for human motion tracking [13]. Since no body markers 

are used, the OpenNI skeleton tracking software is used to identify the human joints. This 

whole body data is then realized to an 18 DOF robot that has Dynamixel AX-12 servos as 

the actuators. The researchers are able to produce good real-time imitation of a dance 

using this setup. 

Another research involves the Dynamixel servos from the humanoid Bioloid kit 

from Robotis [14]. A webcam is used to capture the image of a free-hand drawing made 

by a human being. This image is then processed by curve fitting using the polygonal 

approximation which utilizes only 10% of the total points to reconstruct the image. Two 

AX-12 motors are used to build a robotic arm that would draw this reconstructed image. 

Their goal is to be able to use the whole humanoid robot to do this task in the future 

research work. 

In another work the researchers set to classify the surface on which a snake-like 

robot is moving on [15]. They built a snake-like robot with 16 Dynamixel AX-12 
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actuators, each attached at 90 degrees from the previous actuator. For three different gait 

patterns, using the information from the torque and current sensors that are built in these 

actuators, the analysis was carried out by applying the support vector machines and the 

K-means in order to predict the surface on which locomotion is being carried upon. 

In yet another work, the researchers developed an online VC++ based software to 

communicate with AVR microcontroller to control multiple Dynamixel MX-28 for a 

cockroach robot [16]. Since the cockroach robot has many degrees of freedom and it is 

required to have small size and weight while having high torque and strength, the MX-28 

thus becomes ideal for use. Their experimental paradigm produced an accurate and 

efficient robot. 

These selected works show the diverse applications for which the Dynamixel 

actuators are being used in the world. Their characteristics, ease of use and the capability 

to be controlled and feedback so many parameters makes these actuators a smart choice 

for researchers. 

Keeping in view the vast use of Dynamixel motors for robotics applications, 

where good estimates of parameters is very crucial for the optimum operation and to 

avoid erroneous performance, the characterization and modeling of these servos would 

play a fundamental role for improving the performance of admittance control with these 

servos and achieving compliant human robot interaction.  
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CHAPTER 2  

METHODOLOGY 

 

2.1  Experimental Setup for Pendulum Test 

The pendulum drop test is carried out with all the three motors, Dynamixel MX-28, MX-

64 and MX-106. In our case the pendulum drop test involves attaching a mass to the 

motor at some distance such that the mass can fall freely under the gravity’s influence in 

the vertical plane. 

 The base for each motor is designed such that it could mount the motor vertically. 

The head for each motor is designed such that it can hold a thin solid Aluminum rod for 

the movement with no backlash. The Aluminum rod has a length of 45.6 cm and is 

graduated at each 5 cm intervals starting at 20 cm from the proximal end which is at the 

center of rotation of the motor. It has a mass of 40.0 grams. 

 

 

Figure 2.1  3D printer attachments for the experimental setup. 
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 Attached to this rod is a moveable solid mass of 97 grams having a cubic 

geometry with a through-hole in the exact center, having the same diameter as of the rod, 

so that its center of mass is along the same axis as that of the center of mass of the rod. 

This mass can be moved up or down the rod very easily and can be held in place with 

small clips on its either side along the Aluminum rod. 

 The purpose of this moveable mass is to allow us to vary the gravitational torque 

during the pendulum test while having the mass of the exact same geometry for each trial. 

This negates the variations caused by the geometry of the mass from trial to trial. The 

mass is fixed at each distance, 20 cm, 25 cm, 30 cm, 35 cm and 40 cm, from the center of 

the rotation during the pendulum test and at each particular position, 6 pendulum drop 

trials are carried out, with 3 drops in clockwise direction and 3 drops in counter 

clockwise direction. This is repeated for each of the three motors. 

 

 

Figure 2.2  Pendulum drop test in progress. 
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 To carry out the pendulum drop test, the free end of the aluminum rod is raised 

manually to about 90 degrees from the vertical and then released. The position data for 

this movement is recorded until the rod comes to a rest, using the OptiTrack Motion 

Capture System. One reflective marker is put at the center of rotation on the motor’s head 

and the other is put at the center of mass of the fixed moveable mass. The cameras are put 

at a distance where the whole pendulum motion can be viewed. The camera system is 

then also calibrated for the axes before any recording is done so that it knows its 

orientation with respect to the ‘pendulum’. 

 

2.2  Analysis of Pendulum Test Data 

The pendulum drop test data recorded for each of the 90 trials is analyzed in MATLAB 

2015b. The OptiTrack software, Motive, allows to save the data in .csv (comma separated 

variable) file and this file can easily be opened in MATLAB. 

An imaginary line connecting the two reflective markers, representing the 

aluminum rod, is made and its angle from the vertical is computed. Since the pendulum is 

released from around an angle of around 90 degrees from the vertical, the data are 

checked for its rationality by making sure it starts from around that angle. As the 

pendulum motion continues, the pendulum should oscillates about the vertical, which is 

zero degrees angle. This change of angle data is later used for parameter estimation. 

 

2.3  Experimental Setup for Friction Estimation 

The friction in the motors needs to be known for the analysis. To get an estimate of the 

friction, a gradual force is applied to the free end of a small 10.5 cm long Aluminum rod, 



 

11 
 

whose one end is attached to the motor’s head at the center of rotation. At the precise 

instance when friction is overcome by the applied force, the rod starts moving. This 

force, which just overcame friction is considered as an estimation for the friction. 

To set up for recording data for this, the OptiTrack Motion Capture system is used 

again and is synchronized with a high speed OptoForce force sensor which is attached to 

the free end of the rod and it is this sensor where the gradual force is applied. To define 

the location of center of rotation and of the force sensor, one reflective marker is put at 

the center of rotation of the motor while another is put in the same plane at the base of the 

force sensor, respectively. Position and force data collection are both triggered and 

stopped at the same instance. 

 

 

Figure 2.3  Setup for recording data for friction estimation. 
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Figure 2.4  Synchronization of OptiTrack system using Arduino. 

 

 

Arduino Mega ADK board is used to send the sync commands from the PC to the 

OptiTrack. The ‘Legacy MATLAB and Simulink Support for Arduino’ is used for 

communication between MATLAB and Arduino. 

Six trials with each motor are carried out, 3 applying the force to move the rod in 

clockwise direction and other 3 for counter clockwise direction. 

 

2.4  Analysis of Friction Estimation Data 

The position data is saved in .csv file format and imported in MATLAB for analysis. The 

imaginary line connecting both the reflective markers, representing the small Aluminum 

rod, is computed and its angle is found with time. 

 The force data given by the force sensor is imported and calibrated using its 

sensitivity report provided by the manufacturer, to convert the counts to Newtons.  
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The force and position data are then plotted together, and the force, at the point in time 

when the position starts to change, is noted as the estimated friction. 

 This is done with each trial of each motor and a single value for an estimated 

friction for each motor is obtained by averaging the trials for that motor. This friction is 

then multiplied with the distance, from the center of the rotation to the force sensor, to get 

the frictional torque having units of Newton-meter. 

 

2.5  Optimization of Inertial and Dissipative Parameters 

The pendulum motion can be represented using the equations of motion by summing the 

moments in the system. The Dynamixel servos have their inherent inertial and dissipative 

parameters. The Aluminum rod and the moveable mass also apply their gravitational 

torque on the system during the free fall. The equation of motion for the pendulum drop 

hence becomes: 

 

𝐼𝛳̈ + 𝐵𝛳̇ + 𝐹 = −𝑚𝑟𝑜𝑑𝑔𝑙𝑟𝑜𝑑𝑐𝑜𝑚𝑠𝑖𝑛(𝛳) − 𝑚𝑚𝑎𝑠𝑠𝑔𝑙𝑚𝑎𝑠𝑠_𝑐𝑜𝑚𝑠𝑖𝑛(𝛳)     (2.1) 

 

Where ‘I’ is the moment of inertia of the system, ‘B’ is its damping, ‘F’ is the 

rotational friction of the Dynamixel. The change in angle of the pendulum is denoted by 

‘𝛳’, ‘g’ is the gravitational acceleration, ‘𝑚𝑟𝑜𝑑’ and ‘𝑙𝑟𝑜𝑑_𝑐𝑜𝑚’ are the mass and the 

distance of center of mass of the Aluminum rod from the center of rotation, respectively 

and ‘𝑚𝑚𝑎𝑠𝑠’ and ‘𝑙𝑚𝑎𝑠𝑠_𝑐𝑜𝑚’ are the mass and the distance of center of mass of the 

moveable mass from the center of rotation, respectively. The negative sign with 
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gravitational torques indicate the force of gravity in the negative direction i.e. 

downwards. This equation of motion can be re-arranged to be written as: 

 

𝐼𝛳̈ = −𝑚𝑟𝑜𝑑𝑔𝑙𝑟𝑜𝑑_𝑐𝑜𝑚𝑠𝑖𝑛(𝛳) − 𝑚𝑚𝑎𝑠𝑠𝑔𝑙𝑚𝑎𝑠𝑠_𝑐𝑜𝑚𝑠𝑖𝑛(𝛳) − 𝐵𝛳̇ − 𝐹                    (2.2) 

 

 
 

Figure 2.5  Free body diagram of the pendulum drop test. 

 

Previously, Simon et. al. [17] have developed a similar model to optimize the 

moment of inertia and damping of a leg’s pendulum motion under free fall. They used 

these estimations to develop a quantifying method for patients with spasticity, to help the 

care providers in diagnosis and rehabilitation for these individuals. The model uses the 
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Levenberg-Marquardt optimization which is a least-squares based algorithm to optimize 

our parameters of interest. Our model for the optimization is shown in figure below: 

 

 

Figure 2.6  Simulink model for parameter optimization. 

 

This Simulink model is fed with the position data from the pendulum test and a 

logically guessed value of ‘I’ and ‘B’ and the estimated value of ‘F’ found earlier. The 

model first generates a motion data based on the provided ‘I’, ‘B’ and ‘F’ values. It then 

runs its optimization algorithm and adjusts the parameters while calculating the least-

squares and attempting to generate a motion data with the least error and the least 

deviation from the actual data. Since ‘B’ and ‘F’ are both dissipative parameters, they 

cannot both be optimized in the same model at the same time. Therefore, two instances of 

this model are used. With one model, ‘I’ and ‘B’ are optimized. These optimized ‘I’ and 

‘B’ are fed to the other instance of the model to optimize for ‘F’. Optimized ‘F’ from the 

second model is then fed back to the first model to again optimize for ‘I’ and ‘B’. Once 
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the second model starts giving similar optimized values for ‘F’, we run the first model 

again for once to get the final optimized ‘I’ and ‘B’ values. This process is repeated for 

each of the 90 trials. Single averages of the ‘B’, ‘I’ and ‘F’ are recorded for each motor. 
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CHAPTER 3 

RESULTS 

 

 

3.1  Frictional Torque Estimation for Motors 

A small gradual torque is applied to the motor’s head while recording the position and 

torque. When the motor’s friction is overcome, a sudden change in the position takes 

place. And the torque at that very instance is recorded as the estimate of the frictional 

torque for the trial. In the Figure 3.1, the blue plot show the position with time while the 

red plot shows the torque applied with time. The marker shows the value of the torque 

peak at 8.27 seconds.  

 

Figure 3.1  Rotational friction estimation from a trial. 
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In similar fashion the friction from the trials for all the motors is noted. The 

results from the frictional torque estimation trials for all the motors are summarized in the 

Table 3.1 below.  

 

Table 3.1  Summarized results from frictional torque (Nm) estimation in counter 

clockwise (ccw) and clockwise (cw) directions 

 

All values are in 

Newton-meters 
MX-28 MX-64 MX-106 

Trial 1 ccw 0.01657 0.10100 0.11380 

Trial 2 ccw 0.01415 0.09668 0.12610 

Trial 3 ccw 0.01915 0.09522 0.11100 

Average for ccw 0.01660 0.09760 0.11700 

Trial 1 cw 0.01499 0.10710 0.14140 

Trial 2 cw 0.01931 0.11240 0.12870 

Trial 3 cw 0.02140 0.12390 0.11920 

Average for cw 0.01860 0.11450 0.12980 

Overall average 0.01760 0.10610 0.12340 

 

 

The table lists averages of rotational friction torque in counter clockwise and 

clockwise direction separately. It also gives a single value averaged from all the trials. 

These values are used as the initial estimates of friction in the optimization model.  
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3.2  Optimized Moment of Inertia, Damping and Friction of Motors 

Table 3.2, 3.3 and 3.4 summarizes the optimization results from the trials of MX-28, 

MX-64 and MX-106 respectively. They record the values of ‘I’, ‘B’ and ‘F’ that the 

optimization model estimated. The optimization model takes the actual position data and 

tries to match a new position data on it, and tells us what the parameters’ values are to 

produce this new data. The closeness of the match of the two position data, actually, 

represents the closeness of the values of the parameters given by the model to the actual 

values of those parameters for the servos.  

 

Table 3.2  Summarized results from optimization for MX-28 with a movable mass at 

various locations 

 

MX-28 Trials Friction 
Moment of  

Inertia (motor) 

Moment of  

Inertia (total) 
Damping 

MX28_40cm_ccw_1 0.0085 0.0060 0.0233 0.0319 

MX28_40cm_ccw_2 0.0114 0.0056 0.0229 0.0306 

MX28_40cm_ccw_3 0.0088 0.0065 0.0237 0.0322 

MX28_40cm_cw_1 0.0046 0.0063 0.0236 0.0353 

MX28_40cm_cw_2 0.0039 0.0068 0.0240 0.0362 

MX28_40cm_cw_3 0.0044 0.0063 0.0235 0.0348 

Average at 40cm 0.0069 0.0063 0.0235 0.0335 

MX28_35cm_ccw_1 0.0097 0.0064 0.0198 0.0334 

MX28_35cm_ccw_2 0.0090 0.0066 0.0199 0.0336 

MX28_35cm_ccw_3 0.0079 0.0066 0.0199 0.0357 

MX28_35cm_cw_1 0.0064 0.0067 0.0201 0.0364 

MX28_35cm_cw_2 0.0070 0.0065 0.0198 0.0349 

MX28_35cm_cw_3 0.0071 0.0064 0.0198 0.0347 

Average at 35cm 0.0079 0.0065 0.0199 0.0348 
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MX28_30cm_ccw_1 0.0087 0.0067 0.0167 0.0344 

MX28_30cm_ccw_2 0.0086 0.0067 0.0167 0.0346 

MX28_30cm_ccw_3 0.0090 0.0062 0.0162 0.0332 

MX28_30cm_cw_1 0.0077 0.0069 0.0169 0.0343 

MX28_30cm_cw_2 0.0076 0.0068 0.0168 0.0341 

MX28_30cm_cw_3 0.0078 0.0066 0.0166 0.0337 

Average at 30cm 0.0082 0.0067 0.0167 0.0341 

MX28_25cm_ccw_1 0.0053 0.0065 0.0137 0.0360 

MX28_25cm_ccw_2 0.0051 0.0068 0.0140 0.0367 

MX28_25cm_ccw_3 0.0054 0.0068 0.0139 0.0367 

MX28_25cm_cw_1 0.0053 0.0068 0.0139 0.0388 

MX28_25cm_cw_2 0.0047 0.0071 0.0142 0.0392 

MX28_25cm_cw_3 0.0041 0.0072 0.0143 0.0400 

Average at 25cm 0.0050 0.0069 0.0140 0.0379 

MX28_20cm_ccw_1 0.0036 0.0076 0.0124 0.0416 

MX28_20cm_ccw_2 0.0028 0.0076 0.0124 0.0423 

MX28_20cm_ccw_3 0.0440 0.0075 0.0123 0.0405 

MX28_20cm_cw_1 0.0052 0.0074 0.0123 0.0386 

MX28_20cm_cw_2 0.0041 0.0079 0.0127 0.0421 

MX28_20cm_cw_3 0.0051 0.0074 0.0122 0.0390 

Average at 20cm 0.0108 0.0076 0.0124 0.0407 

MX-28 averages 0.0078 0.0068 
 

0.0362 
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Table 3.3  Summarized results from optimization for MX-64 with a movable mass at 

various locations 

 

MX-64 Trials Friction 
Moment of  

Inertia (motor) 

Moment of  

Inertia (total) 
Damping 

MX64_40cm_ccw_1 0.0866 0.0145 0.0317 0.0358 

MX64_40cm_ccw_2 0.0866 0.0145 0.0317 0.0361 

MX64_40cm_ccw_3 0.0866 0.0145 0.0317 0.0361 

MX64_40cm_cw_1 0.0871 0.0133 0.0305 0.0379 

MX64_40cm_cw_2 0.0834 0.0148 0.0320 0.0397 

MX64_40cm_cw_3 0.0873 0.0134 0.0307 0.0367 

Average at 40cm 0.0863 0.0142 0.0314 0.0371 

MX64_35cm_ccw_1 0.0929 0.0148 0.0282 0.0348 

MX64_35cm_ccw_2 0.0902 0.0145 0.0279 0.0349 

MX64_35cm_ccw_3 0.0902 0.0145 0.0297 0.0353 

MX64_35cm_cw_1 0.0835 0.0146 0.0280 0.0364 

MX64_35cm_cw_2 0.0842 0.0142 0.0276 0.0373 

MX64_35cm_cw_3 0.0855 0.0142 0.0276 0.0381 

Average at 35cm 0.0878 0.0145 0.0282 0.0361 

MX64_30cm_ccw_1 0.0915 0.0141 0.0241 0.0305 

MX64_30cm_ccw_2 0.0852 0.0152 0.0252 0.0359 

MX64_30cm_ccw_3 0.0905 0.0150 0.0250 0.0318 

MX64_30cm_cw_1 0.0872 0.0150 0.0250 0.0330 

MX64_30cm_cw_2 0.0896 0.0159 0.0259 0.0338 

MX64_30cm_cw_3 0.0836 0.0140 0.0240 0.0341 

Average at 30cm 0.0879 0.0149 0.0249 0.0332 

MX64_25cm_ccw_1 0.0874 0.0144 0.0216 0.0320 

MX64_25cm_ccw_2 0.0819 0.0146 0.0218 0.0357 

MX64_25cm_ccw_3 0.0855 0.0147 0.0218 0.0339 

MX64_25cm_cw_1 0.0750 0.0148 0.0219 0.0383 
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MX64_25cm_cw_2 0.0747 0.0148 0.0220 0.0385 

MX64_25cm_cw_3 0.0747 0.0134 0.0206 0.0367 

Average at 25cm 0.0799 0.0145 0.0216 0.0359 

MX64_20cm_ccw_1 0.0817 0.0159 0.0208 0.0292 

MX64_20cm_ccw_2 0.0815 0.0154 0.0202 0.0295 

MX64_20cm_ccw_3 0.0787 0.0146 0.0194 0.0317 

MX64_20cm_cw_1 0.0787 0.0161 0.0209 0.0320 

MX64_20cm_cw_2 0.0781 0.0143 0.0192 0.0323 

MX64_20cm_cw_3 0.0783 0.0160 0.0208 0.0332 

Average at 20cm 0.0795 0.0154 0.0202 0.0313 

MX-64 averages 0.0843 0.0147 
 

0.0347 

 

 

Table 3.4  Summarized results from optimization for MX-106 with a movable mass at 

various locations 

 

MX-106 Trials Friction 
Moment of  

Inertia (motor) 

Moment of  

Inertia (total) 
Damping 

MX106_40cm_ccw_1 0.1174 0.0250 0.0422 0.0491 

MX106_40cm_ccw_2 0.1157 0.0270 0.0442 0.0492 

MX106_40cm_ccw_3 0.1192 0.0308 0.0480 0.0502 

MX106_40cm_cw_1 0.1198 0.0256 0.0429 0.0444 

MX106_40cm_cw_2 0.1201 0.0274 0.0447 0.0447 

MX106_40cm_cw_3 0.1155 0.0292 0.0465 0.0514 

Average at 40cm 0.1180 0.0275 0.0448 0.0482 

MX106_35cm_ccw_1 0.1142 0.0298 0.0430 0.0510 

MX106_35cm_ccw_2 0.1123 0.0280 0.0414 0.0526 

MX106_35cm_ccw_3 0.1113 0.0271 0.0405 0.0537 

MX106_35cm_cw_1 0.1127 0.0257 0.0390 0.0591 

MX106_35cm_cw_2 0.1083 0.0365 0.0499 0.0600 
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MX106_35cm_cw_3 0.1066 0.0297 0.0431 0.0559 

Average at 35cm 0.1109 0.0295 0.0428 0.0554 

MX106_30cm_ccw_1 0.1045 0.0284 0.0384 0.0532 

MX106_30cm_ccw_2 0.1036 0.0294 0.0394 0.0547 

MX106_30cm_ccw_3 0.1112 0.0291 0.0391 0.0475 

MX106_30cm_cw_1 0.1234 0.0288 0.0388 0.0402 

MX106_30cm_cw_2 0.1234 0.0251 0.0351 0.0410 

MX106_30cm_cw_3 0.1178 0.0250 0.0350 0.0404 

Average at 30cm 0.1140 0.0276 0.0376 0.0462 

MX106_25cm_ccw_1 0.1234 0.0284 0.0356 0.0333 

MX106_25cm_ccw_2 0.1234 0.0272 0.0344 0.0330 

MX106_25cm_ccw_3 0.1234 0.0278 0.0350 0.0347 

MX106_25cm_cw_1 0.1234 0.0259 0.0331 0.0285 

MX106_25cm_cw_2 0.1234 0.0267 0.0339 0.0292 

MX106_25cm_cw_3 0.1234 0.0264 0.0336 0.0291 

Average at 25cm 0.1234 0.0271 0.0343 0.0313 

MX106_20cm_ccw_1 0.1234 0.0272 0.0320 0.0287 

MX106_20cm_ccw_2 0.1233 0.0262 0.0310 0.0277 

MX106_20cm_ccw_3 0.1224 0.0271 0.0319 0.0279 

MX106_20cm_cw_1 0.1234 0.0283 0.0332 0.0238 

MX106_20cm_cw_2 0.1234 0.0270 0.0318 0.0234 

MX106_20cm_cw_3 0.1234 0.0282 0.0330 0.0233 

Average at 20cm 0.1232 0.0273 0.0322 0.0258 

MX-106 averages 0.1179 0.0278 
 

0.0414 

 

 The ‘Friction’ has the units of Newton-meters, ‘Inertia (motor)’ and ‘Inertia 

(total)’ have the units of kilogram-meter2, and the ‘Damping’ has the units of Newton-

meter-second-1. The figures in Appendix A display the plots for the optimization of all 
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the trials with all the motors corresponding to the trials listed in the three tables above. 

The optimization here tells that the values of the parameters gained are from a system 

that would produce a position data like the one shown if it undergoes the pendulum drop 

test. 

 

3.3  Testing the Results 

The results are tested to see if a torque, that was used to make simple movements with the 

motor passively, is input to the admittance control model, with the obtained values of the 

moment of inertia, damping and friction, would produce a position output that is same as 

the movements made in reality with the motor passively. 

 The admittance control model, shown in Figure 3.2, is a Simulink model that gets 

the torque input from the MATLAB workspace and uses the parameters obtained earlier 

to predict the position that would be reached with our Dynamixel motors.  

 

 

Figure 3.2  Simulink model for testing. 
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 The testing trials are divided into five categories depending upon the speed with 

which the motor was acted upon. These are: ‘Slow’, ‘Normal’, ‘Fast’, ‘Slow to Fast’, and 

‘Fast to Slow’. In the ‘Slow’, ‘Normal’ and ‘Fast’ trials, a constant speed was attempted 

to be maintained. In the ‘Slow to Fast’ and ‘Fast to Slow’ trials, the speed was varied 

within each trial. 

 For each trial, there are three plots, and these plots can be found in Appendix A.2. 

The first plot shows both the recorded Position and Torque with time. The second plot 

shows the measured torque and compares it with the reconstructed calculated torque, both 

of these are plotted on top of each other with respect to time. The third plot compares the 

actual change in position, recorded by the OptiTrack Duo motion capture system, with 

the change in position predicted by the admittance control model shown in Figure 3.2. 

 

 

3.4  Improved ODE for Implementing Admittance Control 

The improved Ordinary Differential Equation code for implementing admittance control 

incorporates the moment of inertia and damping as well as the friction parameters to 

predict the target position based on a torque input. This is a C code that is turned into a 

mex (MATLAB executable) file so that it can be run using the MATLAB platform while 

not compromising on the computational speed. 

The code for the ODE can be found in the Appendix B.1. The code is basically 

the code version of the Simulink model shown in Figure 3.2. Since the Friction cannot 

change instantaneously from a positive value to a negative value when the motion 

reverses direction from positive to negative in real world, the Friction is modeled as a 

hyperbolic tangent so that there is no tremendous instantaneous change in the value of 
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friction. In the code, the Friction is multiplied by a coefficient too. This coefficient is 

found by trial and error method to produce a hyperbolic tangent that is very close to the 

step function. Figure 3.3 shows the difference between a step function, a hyperbolic 

function and hyperbolic function that is multiplied with a coefficient. 

 

Figure 3.3  Step function verses hyperbolic tangent and a coefficient times hyperbolic 

function. 
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CHAPTER 4 

DISCUSSION 

 

A simple practical method has been shown in this research that could be used to optimize 

the parameters of a plant; in our case the plant are the Dynamixel servos. No specialized 

electrical measurement tools are needed and the optimization results obtained are quite 

reasonable. A few points can be deduced from the results. 

With a faster speed there seems to be a delay in the measured torques from the 

expected or calculated torques. This might have been due to the fact in order to move 

faster, the force sensor was held tightly between the fingers exerting a higher force in 

both the positive and the negative directions. It can be seen from the slow to fast and fast 

to slow trials, that within a single trial, if the speed is lower, this unexpected delay goes 

away. 

Measurements from the force sensor are however consistent. There seems to be a 

drift in the readings since the measured torque produces a position data that although has 

the expected shape but starts drifting in a direction. The direction of this drift is not 

always the same. Sometimes within a single trial, the drift changes direction. A possible 

explanation of it could be that the application of force on the force sensor in not correct. 

This can be built upon the fact that the measured torque is always less than the calculated 

torque. And the smaller measured torque, in reality is producing the position data that a 

higher torque must have produced. This drift also seems to be proportional to the speed of 

the motion, which is the higher the speed, the more drift there is. 
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However, with the bigger motor, the MX-106, the measured torque is much closer 

to the calculated torque. So the issue might be with the capability of the force sensor, 

since this particular force sensor is designed for higher loads, up to 200 N. 

The reason behind the recorded and the modeled position not entirely overlapping 

could also be the model’s inability to perfectly model the servos. There are various kinds 

of friction in a real servo system; static, viscous, coulomb etc., however, in our simple 

model we have only considered one friction. With the incorporation of the estimated 

friction of all the different kinds, the model would produce even better results. Also, as 

can be seen from the initial estimated friction and the optimized friction, during the 

optimization the friction value always decreases. This is because the initial estimates are 

the estimates of the static friction which if the friction needed to make the rotors move 

from a resting position. However, during a motion, this friction is lesser and since the 

optimization is done on a motion, the optimized value of friction is lower. Since the 

motion used in optimization started from a rest point, went through motion in either 

direction and comes to a stop at the end, the optimized value of friction can be thought of 

as a combination of all the different kinds of friction present in the servo system. 

 The admittance control model that is used to test the optimization not only allows 

to simulate the control algorithm but also to compare the accuracy of the improved ODE 

code. The ODE code, with the inclusion of friction parameter and with the modeling of 

this friction parameter as a hyperbolic tangent provides a more realistic approach. 

 Although, this research is focused on understanding the plant parameters of the 

Dynamixel servos, the results from test trials suggest a need to understand the force 

sensor in order to completely master the implementation of admittance control.  
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An understanding of the force sensor’s sensitivity, accuracy, drift with time as well as 

drift with prolong force application and the effects of various orientation of force sensor 

on the force reception will be a valuable contribution to the improvement of performance 

of the control algorithms utilizing the force sensors. Improved force reading algorithm 

can also be developed and implemented that removes tremors from the applied force in 

real-time. 

 The application of the improved ODE to the Dynamixel servos would also allow 

to understand the variation between simulated and practical implementation of the 

admittance control with optimized values for the plant parameters. 
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APPENDIX A 

PLOTS FOR OPTIMIZATION 

 

This appendix would contain all the optimization plots for all the motors. Each motor has 

6 trials with the mass at each of the 5 locations from motor’s center of rotation.  
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Figure A.1  MX-28 trials with mass at 40 cm. 
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Figure A.2  MX-28 trials with mass at 35 cm. 
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Figure A.3  MX-28 trials with mass at 30 cm. 
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Figure A.4  MX-28 trials with mass at 25 cm. 
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Figure A.5  MX-28 trials with mass at 20 cm. 
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Figure A.6  MX-64 trials with mass at 40 cm. 

 



 

37 
 

 

  

  

  

 

Figure A.7  MX-64 trials with mass at 35 cm. 
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Figure A.8  MX-64 trials with mass at 30 cm. 
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Figure A.9  MX-64 trials with mass at 25 cm. 
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Figure A.10  MX-64 trials with mass at 20 cm. 
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Figure A.11  MX-106 trials with mass at 40 cm. 
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Figure A.12  MX-106 trials with mass at 35 cm. 
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Figure A.13  MX-106 trials with mass at 30 cm. 
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Figure A.14  MX-106 trials with mass at 25 cm. 
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Figure A.15  MX-106 trials with mass at 20 cm. 
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APPENDIX B 

PLOTS FOR TEST DATA 

 

This appendix covers the plots for all the testing trials with all the motors, MX-28, MX-

64 and MX-106. Each motor has 10 trials and each trial has 3 plots. 

 

B.1 Testing Trials Plots for MX-28 

 

B.1.1 Slow to Fast Trial 1 with MX-28 

 

Figure B.1  MX-28 slow to fast trial 1, measured position and torque. 
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Figure B.2  MX-28 slow to fast trial 1, measured and calculated torque. 

 

 

 

Figure B.3  MX-28 slow to fast trial 1, recorded and predicted position. 
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B.1.2 Slow to Fast Trial 2 with MX-28 

 

Figure B.4  MX-28 slow to fast trial 2, measured position and torque. 

 

 

 

Figure B.5  MX-28 slow to fast trial 2, measured and calculated torque. 
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Figure B.6  MX-28 slow to fast trial 2, recorded and predicted position. 

 

 

B.1.3 Fast to Slow Trial 1 with MX-28 

 

Figure B.7  MX-28 fast to slow trial 1, measured position and torque. 
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Figure B.8  MX-28 fast to slow trial 1, measured and calculated torque. 

 

 

 

Figure B.9  MX-28 fast to slow trial 1, recorded and predicted position. 
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B.1.4 Fast to Slow Trial 2 with MX-28 

 

Figure B.10  MX-28 fast to slow trial 2, measured position and torque. 

 

 

 

Figure B.11  MX-28 fast to slow trial 2, measured and calculated torque. 
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Figure B.12  MX-28 fast to slow trial 2, recorded and predicted position. 

 

 

B.1.5 Fast Trial 1 with MX-28 

 

Figure B.13  MX-28 fast trial 1, measured position and torque. 
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Figure B.14  MX-28 fast trial 1, measured and calculated torque. 

 

 

 

Figure B.15  MX-28 fast trial 1, recorded and predicted position. 
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B.1.6 Fast Trial 2 with MX-28 

 

Figure B.16  MX-28 fast trial 2, measured position and torque. 

 

 

 

Figure B.17  MX-28 fast trial 2, measured and calculated torque. 
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Figure B.18  MX-28 fast trial 2, recorded and predicted position. 

 

 

B.1.7 Normal Trial 1 with MX-28 

 

Figure B.19  MX-28 normal trial 1, measured position and torque. 
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Figure B.20  MX-28 normal trial 1, measured and calculated torque. 

 

 

 

Figure B.21  MX-28 normal trial 1, recorded and predicted position. 
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B.1.8 Normal Trial 2 with MX-28 

 

Figure B.22  MX-28 normal trial 2, measured position and torque. 

 

 

 

Figure B.23  MX-28 normal trial 2, measured and calculated torque. 
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Figure B.24  MX-28 normal trial 2, recorded and predicted position. 

 

 

B.1.9 Slow Trial 1 with MX-28 

 

Figure B.25  MX-28 slow trial 1, measured position and torque. 
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Figure B.26  MX-28 slow trial 1, measured and calculated torque. 

 

 

 

Figure B.27  MX-28 slow trial 1, recorded and predicted position. 
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B.1.10 Slow Trial 2 with MX-28 

 

Figure B.28  MX-28 slow trial 2, measured position and torque. 

 

 

 

Figure B.29  MX-28 slow trial 2, measured and calculated torque. 
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Figure B.30  MX-28 slow trial 2, recorded and predicted position. 

 

 

B.2 Testing Trials Plots for MX-64 

B.2.1 Slow to Fast Trial 1 with MX-64 

 

Figure B.31  MX-64 slow to fast trial 1, measured position and torque. 
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Figure B.32  MX-64 slow to fast trial 1, measured and calculated torque. 

 

 

 

 

Figure B.33  MX-64 slow to fast trial 1, recorded and predicted position. 
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B.2.2 Slow to Fast Trial 2 with MX-64 

 

Figure B.34  MX-64 slow to fast trial 2, measured position and torque. 

 

 

Figure B.35  MX-64 slow to fast trial 2, measured and calculated torque. 
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Figure B.36  MX-64 slow to fast trial 2, recorded and predicted position. 

 

 

B.2.3 Fast to Slow Trial 1 with MX-64 

 

Figure B.37  MX-64 fast to slow trial 1, measured position and torque. 
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Figure B.38  MX-64 fast to slow trial 1, measured and calculated torque. 

 

 

 

Figure B.39  MX-64 fast to slow trial 1, recorded and predicted position. 
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B.2.4 Fast to Slow Trial 2 with MX-64 

 

Figure B.40  MX-64 fast to slow trial 2, measured position and torque. 

 

 

Figure B.41  MX-64 fast to slow trial 2, measured and calculated torque. 
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Figure B.42  MX-64 fast to slow trial 2, recorded and predicted position. 

 

 

B.2.5 Fast Trial 1 with MX-64 

 

Figure B.43  MX-64 fast trial 1, measured position and torque. 
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Figure B.44  MX-64 fast trial 1, measured and calculated torque. 

 

 

 

 

 

Figure B.45  MX-64 fast trial 1, recorded and predicted position. 
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B.2.6 Fast Trial 2 with MX-64 

 

Figure B.46  MX-64 fast trial 2, measured position and torque. 

 

 

 

 

Figure B.47  MX-64 fast trial 2, measured and calculated torque. 
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Figure B.48  MX-64 fast trial 2, recorded and predicted position. 

 

 

B.2.7 Normal Trial 1 with MX-64 

 

Figure B.49  MX-64 normal trial 1, measured position and torque. 
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Figure B.50  MX-64 normal trial 1, measured and calculated torque. 

 

 

 

Figure B.51  MX-64 normal trial 1, recorded and predicted position. 
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B.2.8 Normal Trial 2 with MX-64 

 

Figure B.52  MX-64 normal trial 2, measured position and torque. 

 

 

 

Figure B.53  MX-64 normal trial 2, measured and calculated torque. 
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Figure B.54  MX-64 normal trial 2, recorded and predicted position. 

 

 

B.2.9 Slow Trial 1 with MX-64 

 

Figure B.55  MX-64 slow trial 1, measured position and torque. 
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Figure B.56  MX-64 slow trial 1, measured and calculated torque. 

 

 

 

Figure B.57  MX-64 slow trial 1, recorded and predicted position. 
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B.2.10 Slow Trial 2 with MX-64 

 

Figure B.58  MX-64 slow trial 2, measured position and torque. 

 

 

 

 

Figure B.59  MX-64 slow trial 2, measured and calculated torque. 
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Figure B.60  MX-64 slow trial 2, recorded and predicted position. 

 

B.3 Testing Trials Plots for MX-106 

B.3.1 Slow to Fast Trial 1 with MX-106 

 

Figure B.61  MX-106 slow to fast trial 1, measured position and torque. 
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Figure B.62  MX-106 slow to fast trial 1, measured and calculated torque. 

 

 

 

Figure B.63  MX-106 slow to fast trial 1, recorded and predicted position. 
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B.3.2 Slow to Fast Trial 2 with MX-106 

 

Figure B.64  MX-106 slow to fast trial 2, measured position and torque. 

 

 

 

Figure B.65  MX-106 slow to fast trial 2, measured and calculated torque. 
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Figure B.66  MX-106 slow to fast trial 2, recorded and predicted position. 

 

 

B.3.3 Fast to Slow Trial 1 with MX-106 

 

Figure B.67  MX-106 fast to slow trial 1, measured position and torque. 
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Figure B.68  MX-106 fast to slow trial 1, measured and calculated torque. 

 

 

 

Figure B.69  MX-106 fast to slow trial 1, recorded and predicted position. 
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B.3.4 Fast to Slow Trial 2 with MX-106 

 

Figure B.70  MX-106 fast to slow trial 2, measured position and torque. 

 

 

 

Figure B.71  MX-106 fast to slow trial 2, measured and calculated torque. 
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Figure B.72  MX-106 fast to slow trial 2, recorded and predicted position. 

 

 

B.3.5 Fast Trial 1 with MX-106 

 

Figure B.73  MX-106 fast trial 1, measured position and torque. 
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Figure B.74  MX-106 fast trial 1, measured and calculated torque. 

 

 

 

 

Figure B.75  MX-106 fast trial 1, recorded and predicted position. 
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B.3.6 Fast Trial 2 with MX-106 

 

Figure B.76  MX-106 fast trial 2, measured position and torque. 

 

 

 

Figure B.77  MX-106 fast trial 2, measured and calculated torque. 
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Figure B.78  MX-106 fast trial 2, recorded and predicted position. 

 

 

B.3.7 Normal Trial 1 with MX-106 

 

Figure B.79  MX-106 normal trial 1, measured position and torque. 
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Figure B.80  MX-106 normal trial 1, measured and calculated torque. 

 

 

 

 

Figure B.81  MX-106 normal trial 1, recorded and predicted position. 
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B.3.8 Normal Trial 2 with MX-106 

 

Figure B.82  MX-106 normal trial 2, measured position and torque. 

 

 

 

 

Figure B.83  MX-106 normal trial 2, measured and calculated torque. 
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Figure B.84  MX-106 normal trial 2, recorded and predicted position. 

 

 

B.3.9 Slow Trial 1 with MX-106 

 

Figure B.85  MX-106 slow trial 1, measured position and torque. 
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Figure B.86  MX-106 slow trial 1, measured and calculated torque. 

 

 

 

 

Figure B.87  MX-106 slow trial 1, recorded and predicted position. 
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B.3.10 Slow Trial 2 with MX-106 

 

Figure B.88  MX-106 slow trial 2, measured position and torque. 

 

 

 

 

Figure B.89  MX-106 slow trial 2, measured and calculated torque. 
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Figure B.90  MX-106 slow trial 2, recorded and predicted position. 
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APPENDIX C 

CODING SCRIPTS 

 

This appendix contains the code scripts used in the experiments. 

C.1 Script for Friction Estimation 

This code is used to find the estimate of friction.  

%% OptiTrack Data at 120 Hz 
M1 = xlsread('f-mx64-ccw-2.csv'); % position data 
f1 = M1(4:end,1); % frame 
x1_1 = M1(4:end,5)*1000; % mm 
z1_1 = M1(4:end,7)*1000; % mm 
x1_2 = M1(4:end,10)*1000; % mm 
z1_2 = M1(4:end,12)*1000; % mm 
x1 =  x1_2 - x1_1; % change signs here if abnormal plot 
z1 =  z1_2 - z1_1; % change signs here if abnormal plot 
rad = atan2(z1,x1); % atan2(x_free,z_free) 
rad(1) = rad(2); 
rad_ic = rad(1); 

  
%% OptoForce Data at 100 Hz 
fnm1 = load('ft-mx64-ccw-2.mat'); % force data 
measured_torque = fnm1.Fn; 

  
%% Plot 
figure(1) 
t120 = 0:1/120:(length(rad)/120)-1/120; 
t100 = 0:1/100:(length(measured_torque)/100)-1/100; 
[hAx,hLine1,hLine2] = plotyy(t120,rad,t100,measured_torque); 

  
title('Rotational Friction Trial MX-64'); 
xlabel('Time (Seconds)'); 
ylabel(hAx(1),'Position (Radians)'); % left y-axis 
ylabel(hAx(2),'Torque (Nm)'); % right y-axis 
set(hLine1,'linewidth',2); 
set(hLine2,'linewidth',2); 
% axis(hAx(1),[0 15 (min(rad)-.001) (max(rad)+0.001)]); 
axis(hAx(2),[0 15 min(measured_torque) max(measured_torque)+0.1]); 
set(hAx, 'Position', [.13 .11 .735 .815]); 
hAx(1).XTick = [0:3:15]; 
grid minor; 
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C.2 Script for Data Recording Synchronization 

This code is used to synchronize the recording from OptiTrack and OptoForce with the 

help of Arduino. 

% OptoForce initialization and checks 
if strcmp(computer('arch'),'win32'),      
    addpath '.\mex_files\32bit'; end    % If the MATLAB is 32bit 
if strcmp(computer('arch'),'win64'),      
    addpath '.\mex_files\64bit'; end    % If the MATLAB is 64bit 
ports = OptoPorts(3);         % For 3 axis sensors - Get an instance of 

the OptoPorts class (3 - only 3D sensors; 6 - only 6D sensors ) 
available_ports = ports.listPorts;% Get the list of the available ports 
if (isempty(available_ports)),  
    disp('No DAQ is connected...'); else disp(available_ports); end; 
if (ports.getLastSize()>0),     % Is there at least 1 available port? 
    port = available_ports(1,:);% If at least 1 port is available then 

select the first one 
    daq = OptoDAQ();% Get an instance of the OptoDAQ class (this class 

handles the actual sensor reading) 
    isOpen = daq.open(port,0);% Open the previously selected port (the 

second argument:  0 - high-speed mode; 1 - slower debug mode) 
    if (isOpen==1), 

         
        speed = 100; % Set the required DAQ's internal sampling speed 

(valid options: 1000Hz,333Hz, 100Hz, 30Hz) 
        filter = 0;% Set the required DAQ's internal filtering-cutoff 

frequency (valid options: 0(No filtering),150Hz,50Hz, 15Hz) 
        daq.sendConfig(speed,filter);% Sends the required configuration 
        channel = 1;% Some DAQ support multi-channel, othwerwise it 

must be 1 

         
        % Initialize Arduino for OptiTrack Sync In 
        a = arduino('COM14');% Check port number from device manager 
        a.pinMode(9,'output');% Specify the output pin 
        a.digitalWrite(9,0);% Stop OptiTrack data collection 

         
        % Calibrate force sensor 
        countspernewton = 451.89; 
        disp('Calibration in progress !'); 
        for u = 1:10 
            output = daq.read3D(channel);% For 3 axis sensors - Reads 

all the available samples (output.size) to empty the buffer 
            pause(0.1); 
            ex(u) = output.Fx(end); 
            ey(u) = output.Fy(end); 
        end 
        errx = sum(ex)/10; 
        erry = sum(ey)/10; 
        Fx = ex(end) - errx; 
        Fy = ey(end) - erry; 

             
        radius = 0.105; n = 0; 
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        disp('Start recording from Motive and press any key'); 
        pause 

         
        % Data recording loop 
        a.digitalWrite(9,1);% Start OptiTrack data collection 
        disp('Start')         
        tic; 
        while (n<2000 && output.size>=0 ),% Loop for 15sec (quit if any 

error) 
            n = n + 1;       % records the number of iterations 
            output = daq.read3D(channel);   % For 3 axis sensors - 

Reads all the available samples (output.size) 
            Fx = [Fx output.Fx(end)-errx];   % Fz stores all the 

received samples of output.Fz 
            Fy = [Fy output.Fy(end)-erry]; 
            time(n) = toc;             
            while toc<0.01; 
            end 
            tic 
        end 
        a.digitalWrite(9,0);% Stop OptiTrack data collection 
        disp('Stop recording from Motive and press any key'); 
        pause 

         
        % Clean-up 
        daq.close();   % Close the already opened DAQ 
        delete(a);     % Delete the object 
        clear daq;     % Destroy the OptoDAQ class 
        clear ports;   % Destroy the OptoPorts class 

         
        Fr = sqrt((Fx.^2)+(Fy.^2));         % Resultant force 
        Tr = (Fr(2:end)/countspernewton)*(radius);     % Rotational 

friction in Nm 
        Tx = (Fx(2:end)/countspernewton)*(radius);  
        Ty = (Fy(2:end)/countspernewton)*(radius);  
        figure(1) 
        plot(Tr); 
        hold on; 
        plot(Tx,'r'); 
        plot(Ty,'k'); 
    else 
        disp('The DAQ could not be opened'); 
    end 
end 
disp('Trial stopped'); 
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C.3 Script used for Optimization 

This code is used to run the optimizations. The first script is where the initial estimates 

are entered and from where the optimization functions are called.   

global B; 
global I; 
global F; 
global l; 
cycles = 5; 

  
for i=1:cycles 
    if(i == 1) 
        B = 0.0286; 
        I = 0.0385; 
        F = 0.1234; 
        l = 0.20; 
    end 
    [B,I] = motorparams(B,I,F,l); 
    if(i == cycles) 
        Fp = F; 
    end 
    F = F_optimization(B,I,F,l); 
end 

 
Irod = (1/3)*0.0402*0.228^2;    % kgm^2 
Imass = 0.1034*l^2;             % kgm^2 
Imotor = I - Irod - Imass       % kgm^2 

 

 

 

Function that gets called for optimization of B and I. Similar function is used for F too. 

function [B,I,Kp,Kd] = motorparams(B,I,F,l) 
% MOTORPAREAMS demonstrates using LSQNONLIN with Simulink. 
systemmodel1    % Load the model 
global err 
pd0 = [I,B];        % Set initial values of I and B 

  
options = optimset('Algorithm','levenberg-marquardt',... 
    'Display','iter','TolX',0.001,'TolFun',0.001); 
[params] = lsqnonlin(@tracklsq, pd0, [], [], options); 
I = params(1); % Get optimized value of I 
B = params(2); % Get optimized value of B 

  
    function err = tracklsq(pd) 
        expdata = evalin('base','radnew'); % change variable name here 
        global edata 
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        I = pd(1); % set value of I into function workspace 
        B = pd(2); % set value of B into function workspace to be used 

in Simulink model 

  
        % Initialize sim options 
        [simopt] = simset('solver','ode3','SrcWorkspace','Current'); 
        ang_init = expdata(1,1); % get the initial angle from data 
        % Compute function value 
        [t,simOut] = sim('systemmodel1',[0 ((length(expdata)-

1)/120)],simopt); 

  
        figure(1) 
        plot(t,simOut(:,1),'r-','LineWidth',3); 
        drawnow; 
        hold on; 
        plot(t,expdata,'b-','LineWidth',3); 
        legend('optimized','actual'); 
        drawnow; 
        hold off; 
        pause(.01); 
        err = simOut(:,1) - expdata; 
        save e106_20cm_cw_3.mat err simOut expdata 
    end 
xlabel('Seconds'); 
ylabel('Radians'); 
title('Pendulum Actual vs Optimized Data (mx106-20cm-cw-3)'); 
end 

 

 

C.4 Script used for Testing 

This script is used to test the data and do the comparisons of torques and positions. 

%% OptiTrack Data at 120 Hz 
M1 = xlsread('mx28_slow_2.csv'); % position data 
f1 = M1(4:end,1); % frame 
x1_1 = M1(4:end,5)*1000; % mm 
z1_1 = M1(4:end,7)*1000; % mm 
x1_2 = M1(4:end,10)*1000; % mm 
z1_2 = M1(4:end,12)*1000; % mm 
x1 =  -x1_2 + x1_1; % change signs here if abnormal plot 
z1 =  -z1_2 + z1_1; % change signs here if abnormal plot 
rvector = sqrt(x1.^2 + z1.^2); 
radius = mean(rvector)/1000; % meters 
rad = atan2(z1,x1); % atan2(x_free,z_free) 
rad = rad(1:2400); 
rad_ic = rad(1); 

  
%% OptoForce Data at 100 Hz 
forcesensor = load('mx28_slow_2.mat'); % force data 
forceX = forcesensor.Fx(1:2000); 
torqueX = forceX * radius / 451.89; 
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%% Plot 
figure(1) 
t120 = 0:1/120:(length(rad)/120)-1/120; 
t100 = 0:1/100:(length(torqueX)/100)-1/100; 
[hAx,hLine1,hLine2] = plotyy(t120,rad,t100,torqueX); 
title('Position and Torque (mx28 slow - 2)'); 
xlabel('Time (Seconds)'); 
ylabel(hAx(1),'Position (Radians)'); % left y-axis 
ylabel(hAx(2),'Torque (Nm)'); % right y-axis 
set(hLine1,'linewidth',2); 
set(hLine2,'linewidth',2); 
axis(hAx(1),[0 20 ((ceil(min(rad)*10))/10)-0.1 

((floor(max(rad)*10))/10)+0.1]); 
axis(hAx(2),[0 20 (min(torqueX)-0.5) (max(torqueX)+0.5)]); 
% axis(hAx(2),[0 15 0 .05]); 
set(hAx, 'Position', [.13 .11 .735 .815]); 
hAx(1).YTick = 

[((ceil(min(rad)*10))/10):0.5:((floor(max(rad)*10))/10)]; 
hAx(2).YTick = [((ceil(min(torqueX)*100))/100)-

.00:0.04:((floor(max(torqueX)*100))/100)+.00]; 
hAx(1).XTick = [0:2:20]; 
grid minor; 

 
%% Calculation for expected torque with filtration 
I = 0.0068 + 0.0003; % 0.0003 for rod 
D = 0.0362; 
F = 0.0078; 
[B,A]=butter(2,2*5/120); % (order,2*cut-off/sampling-rate). 
frad=filtfilt(B,A,rad); 
vel = deriv671(frad,t120); 
acc = deriv671(vel,t120); 
calc_torque = (I*acc)+(D*vel)+(tanh(vel)*F); 

  
figure(2) 
plot(t120,calc_torque,'-','LineWidth',2);hold on;plot(t100,torqueX,'-

','LineWidth',2);%plot(t100,drift_torque,'g--') 
legend('calculated','measured'); 
title('Torque Comparison (mx28 slow - 2)'); 
xlabel('Time (Seconds)'); 
ylabel('Torque (Nm)'); 

  
%% for validation model  
input05=[t120' calc_torque']; 
input06=[t100' torqueX']; 

 
%% Comparing position data 
figure(3); 
plot(t120,rad,'-','LineWidth',2);hold on;plot(t120,rad1model(1:end-

1),'-','LineWidth',2); 
legend('optitrack','model');title('Position Comparison (mx28 slow - 

2)'); 
xlabel('Time (Seconds)');ylabel('Position (Radians)'); 
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C.5 Script used for ODE 

This is the actual function that gets called from the mex file. 

function f = frODEtanh(t,x, p, u,myStruct) 

  
Fcoef=tanh(100*x(2));%tanh-shaped coefficient for friction force 

  
F=p(3);%Friction force 
B=p(2);%Damping 
I=p(1);%Moment of Inertia 
FF=F*Fcoef; 

  
f(1) = x(2); 
f(2)=(-B*x(2) + u(1) -FF)/I; 
f = f(:); 

  

 

Following code is a demo of how to use the ODE code 

% odeRAF201550.mexw32 requires a time period (tspan) and initial 
% conditions (2 element vector x0) 
% tt and the upper limit of the for loop are determined by the length 

of the applied torque vector. 
% If the torque vector has length= 10000, the values below do not need 

to be changed. 

  
tspan = [0 .001]; % time span for solver 
x0    = [pi/2 0]; % initial conditions x0(1) is angle, x0(2) is angular 

velocity 
xtraj= x0(1);     % initialize trajectory to first initial condition 
tt=0:.001:10-.001;% Change to match length of applied torque vector 
for i=2:10000 % execute for length(torque)..change for vector of 

different length 

  
% call odeRAF201555 to solve equation of motion Itheta''= applied 

torque - Btheta'-Ffriction 
% INPUT ARGUMENTS B third argument has 3 values... I, B and Ffriction, 
respectively the ith value of applied torque (starting at index 2) is 
passed in the 4th argument. 
 [t,x] = odeRAF201555(tspan, x0,[.0325,.0975,.0552],[torque1(i)],[1e-6, 

1e-8, 10]); 

  
x0=[x(1,end) x(2,end)]; % make currently computed angle and angvel the 

ICs for 
% the next iteration of  the loop 
xtraj(i)=x0(1); % collect all values of x that are computed.  
end 
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