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ABSTRACT 

 

A STUDY OF KINEMATICS AND KINETICS IN  

TIME-CONSTRAINED ARM MOVEMENTS 

 

by  

Oyindamola Owoeye 

 

 

Several studies such as the equilibrium point hypothesis (EPH) purport that the motor 

signals that descend from the brain instead of encoding muscle torques, influence an 

existing relationship between muscle torque and body configuration. 

 In the present study, the possibility of torque depending explicitly on position was 

tested using a task in which subjects (N=5) moved a simulated weightless frictionless mass 

through a small (<8 degree) elbow extension in order to move a cursor on a screen to a 

target location. Each subject completed 720 trials. On ~10% of trials the simulated mass 

was increased unknown to the subject. The relationship between the cursor’s position and 

the torque applied to the system was held constant even when the simulated mass was 

increased. Thus, any change in torque produced was neither due the subjects’ perception 

of the mass nor due to their perception of the cursor. The time at which the subjects torque 

changed direction was seen to be significantly different (p<0.005) during trials which the 

mass changed. This change in torque is concluded to be position-dependent. However the 

possibility of this being a merely mechanical effect could not be ruled out by due to poor 

EMG collection. 

A post-hoc analysis of different position-dependent motor control models, was 

done. Particularly, an exponential spring model, a linear spring model, and a linear spring 

with relative damping model were each tested to see how well they could predict a change 



 

 

in produced output torque from a change in position. Only the linear spring and relative 

damping models were able to do so. 

This experiment is not enough to prove that descending torque produced is 

systematically position-dependent but the methodology for testing models is promising and 

additional studies should be done along similar lines. 
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CHAPTER 1  

BACKGROUND 

1.1 Objective 

The aim of the present study is to investigate the possibility that the activations of muscles 

in human arm movements, given a signal descending from the brain into the spinal cord, 

are position dependent. Mathematically, this could be written as  

 

𝑎(𝑡) = 𝑓(𝑠(𝑡), 𝑥(𝑡)) (1.1) 

  

where 𝑎(𝑡) is the activation of a muscle at time 𝑡, 𝑠(𝑡) is motor signal that is sent from the 

brain to the spinal chord, and 𝑥(𝑡) is a variable that is related to the positions and/or 

velocity of the (parts of the) arm. What this Equation implies is that even if 𝑠(𝑡) is fixed, 

𝑎(𝑡) can be different as a result of a different 𝑥(𝑡). Alternatively it is possible that the 

central signal affects the muscle activation in a generally position-independent manner as 

in 

 

𝑎(𝑡) = 𝑔(𝑠(𝑡)) (1.2) 

 

where 𝑔 is a monotonic function. 

Equation 1.1 can be considered a generalization of theories from the past several decades. 

Despite much research, position-dependent control has neither been proven nor disproven. 
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The following sections review these theories and discuss some reasons they haven’t been 

completely accepted or rejected. 

 

1.2 Past Animal Studies 

The key to verifying position dependent spinal control is to fix 𝑠(𝑡), vary 𝑥(𝑡), and measure 

𝑎(𝑡). Fixing 𝑠(𝑡) has been achieved in animal studies via direct microstimulation of the 

spinal column. Gizster, Mussa-Ivaldi, and Bizzi performed such an experiment on bullfrogs 

[4]. In their study, the bullfrog’s spinal column was transected at the calamus scriptorius 

and microelectrodes were used to stimulate the frog’s lumbar spinal cord. The stimulation 

elicited activation of the frog’s leg muscles resulting in a force produced at the frog’s ankle. 

The frog’s ankle was restrained by a force transducer which also served the purpose of 

measuring the force elicited by the stimulation (Figure 1.1). Multiple stimulation sites were 

used and for each stimulation site, stimulation was repeated with the frog’s ankle placed at 

different locations. Gizster et al. found that the evoked forces for a given stimulation site 

depended on the location of the ankle. Usually, the plot of forces against ankle position 

resulted in a “convergent force field”, that is, the forces tended to be directed toward a 

certain location at which the force field was 0 (Figure 1.2). This point was termed the 

equilibrium point. The equilibrium point and force field was shown to be dependent on the 

site of spinal stimulation but not on the strength of stimulation. It should be noted that the 

evoked forces would be slightly position dependent even if Equation 1.1 does not hold 

simply due to mechanical properties of the limb; passive elastic forces will tend to bring 

the limb towards a certain position and the torque produced by muscles is dependent on 
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muscle length. Gizster et al. did compensate for these forces when finding the convergent 

force fields. They also collected electromyography (EMG) from the frog’s legs. The 

amplitude of EMG can be considered related to the activation of muscles, thus, a 

dependency of EMG amplitude on position lends further evidence to position-dependent 

control. Indeed Gizster et al. found that the amplitude of EMG varied with position similar 

to how force varied (Figure 1.3). 

The conclusions drawn from the frog study cannot be assumed to hold true for humans as 

well. However, similar experiments done with cats [10] and rats [7] have also shown 

convergent force fields. 

1.3 Equilibrium-Point Models 

One of the earliest motor control theories that involved position-dependent control was 

Merton’s “servo hypothesis” [6]. In Merton’s hypothesis, the length of a muscle is specified 

by the descending signal similar to how the angle of a servo motor is specified. This mode 

of control is achieved through modulation of the activity of 𝛾-motoneurons which controls 

Figure 1.1 Apparatus used by Giszter, Mussa-Ivaldi, and Bizzi. 
Source: Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993). 

 



 

4 

 

 

the sensitivity of the spindles to muscle-length. This change elicits the tonic stretch-reflex 

to change the activity of the 𝛼-motoneurons thus, bringing the muscle to a specified 

position. The servo hypothesis implied that a change in activity of 𝛼-motoneurons should 

be delayed relative to a change in the activity of 𝛾-motoneurons. However, experiments 

shows that changes in 𝛼-motoneuron activity and 𝛾-motoneuron activity are simultaneous. 

The servo hypothesis had two more fatal flaws in the fact that it required a very high gain 

of the stretch reflex and it implied a large delay due to its feedback loop. While the servo 

hypothesis did not survive, it was the first theory to unite the control of movement and 

posture into a single mechanism. It also provided a simple mode of control that simplifies 

the inverse kinematics the brain would need to compute to achieve a goal motion. The 

equilibrium-point hypothesis (EPH) shares these merits with the servo hypothesis but does 

not have the same crucial flaws. 

 

The original formulation of the equilibrium-point hypothesis was developed by 

Anatol Feldman in 1966. The basis of the EPH was experiments involving spinal 

stimulation of decerebrated cats [8]. Such experiments revealed that stimulation did not 

Figure 1.2 Force fields measured by Giszter, Mussa-Ivaldi, and Bizzi. 
Source: Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993). 
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correspond to muscle activation but instead to a change in the force-length characteristic 

of the muscle. In general, the amount of force a muscle produces increases nonlinearly with 

its length. The muscle will change length unless the load and the muscle force balance out. 

The length at which the load and muscle force balance is termed the equilibrium point (EP). 

The EPH is the hypothesis that the central signal changes the force-length characteristic 

and thus, influences the EP (Figure 1.4). It should be noted that the EP is not determined 

entirely by the central signal but the combination of the central signal and the external load. 

Feldman hypothesized that voluntary movements are produced by shifting EPs from an 

initial point to a desired point. In this way, posture and movement are controlled by the 

same mechanism.  

There are several versions of the EPH. The 𝜆 hypothesis postulates that the force-

length characteristic is modulated by changes in the threshold for the stretch reflex. This 

hypothesis avoids the high gain required by a servo hypothesis since the central signal does 

not directly specify the resulting muscle-length. It also implies a much lower delay than 

Figure 1.3 EMG from frog semitendinosus muscle collected by Gizster et al. The position 

of the each EMG trace corresponds with the position of the frog’s hindlimb during 

stimulation. 
source: Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993). 
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the servo hypothesis because the spinal cord’s interpretation of the spindle activity is 

modulated as opposed to the spindle activity itself being modulated through the gamma-

motor neurons. This results in a much shorter feedback loop. 

 The 𝜆 hypothesis can be formulated as 

 

𝑎(𝑡) = 𝑐[𝑒𝑏(𝑥(𝑡)−𝜆(𝑡)) − 1] (1.3) 

 

where 𝑡, represents time, 𝑏 and 𝑐 are constant parameters, 𝑎 represents the muscle 

activation, 𝑥 the muscle length, and 𝜆 the threshold for the stretch reflex. Here, 𝜆 is 

replacing 𝑠 from Equation 1.1 and has a specific physiological meaning. 

Numerous studies have been conducted which purportedly disprove the EPH. The 

main paradigm for such studies involves subjects learning a movement with a certain 

external load and then subject repeating the movement with the load changing 

unexpectedly. Under the internal dynamics model (IDM), the brain develops a physical 

model of the system and through inverse kinematics computes the necessary muscle 

Figure 1.4 Left: invariant characteristic. Right: two different ICs are shown 

representing two different central commands in the EPH. The muscle length can be 

changed under a constant load by shifting the IC as is seen by comparing EP1 to EP0. 
Source: Latash, M. L. Neurophysiological Basis of Movement. 
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activations to complete the task. The central signal then directly specifies those muscle 

activations. The IDM predicts that when the load is unexpectedly changed, unless the 

central signal also changes, the muscle activations should remain the same. The EPH 

predicts that changes in the external load should lead to changes in the muscle length which 

should lead to changes in the muscle activation. A special situation is when the change in 

the external load is only transient in which case the movement should still terminate at the 

equilibrium point as the equilibrium point is determined by the final load and the central 

signal. The property of the movement to terminate in the same position regardless of 

transient changes in the load is termed equifinality. Thus, studies in which said conditions 

are met but equifinality is not observed serve as disproof of the EPH. 

In one such study conducted by Hinder and Milner, subjects were tasked with 

moving a cursor on a screen to a target location via wrist flexion [5]. Their wrist flexion 

was assisted by a motor that produced assisting torque proportional to the angular velocity 

of their wrist. The action of the motor can be thought of as a negative damping force; since 

normally damping increases the stability of a system, the motor destabilized their 

movement resulting in oscillations around the endpoint. After many trials, subjects learned 

to reach the target but oscillations persisted. In later trials, occasionally the assisting torque 

of the motor was either reduced or completely eliminated. Hinder and Milner observed that 

without the assisting torque, subjects undershot the target without oscillation and the 

cumulative EMG was not significantly different (up until just before the oscillations would 

typically start) than it was with the assisting torque. This study shows a scenario in which 

it is evident that muscle activation is position independent and specified directly by the 

brain. However this study is curious in the fact that the oscillations were never eliminated 
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despite subjects performing hundreds of trials. The oscillations are more expected in an 

EPH style control due to the fact that the dynamics of the combination of EPH and the 

assisting torque is akin to an underdamped nonlinear spring. If the brain directly specifies 

the muscle activations after building a model, one would expect the brain could simply 

compensate for the assisting torque by reducing the torque produced by the wrist and thus, 

eliminate the oscillations. 

In another study conducted by Dizio and Lackner in 1994, Subjects were tasked 

with touching a target which was visible only before the onset of movement [2]. After 

performing this task 40 times, the subjects repeated the task again but while sitting in a 

dark room on a rotating platform. The rotation induced Coriolis forces on the arm which 

are proportional to the speed of the arms movement and thus, presented a transient 

perturbation. After 40 trials of the rotation condition, the subjects performed the task again 

without rotation. The subjects showed a lack of equifinality both when initially 

Figure 1.5 Average reaching movement paths for labyrinthine-defective (LD) and 

control subjects before(pre) during (per) and after (post) rotation. 
Source: DiZio, P., & Lackner, J. R. 2001 
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encountering the coriolis force, and immediately after the coriolis force was removed. 

Their trajectories are akin to what one might expect if the subjects were producing a strictly 

time-dependent force that was added to the externl forces independent of position (Figure 

1.5). 

In response to the Hinder and Milner study as well as the Dizio and Lackner study, 

Feldman, Ostry, and Levin, stated that the subjects central commands may have 

unintentionally changed due to the subjects detecting the changes in the dynamics [3]. Such 

a theory led Dizio and Lackner to include subjects in their experiments with labyrinthine 

defects that prevented them from feeling the rotation. Feldman, Ostry and Levin also 

postulate that the central signal simply has to change in these situations because of the fact 

that they are experiencing negative damping due to the environment. Indeed, it is difficult 

to know whether or not the central signal changes since it cannot at this time be directly 

measured. For this reason, experiments often involve the subject being instructed not to 

react to changes in dynamics, and also involve quirks such as removing a visual target just 

as a subject starts reaching for it. The idea here is that if the subject cannot see the target, 

there will be no online corrections made during the movement. 

It is possible that there are multiple modes of control that can operate in parallel. 

While such a notion lacks the allure of simplicity that models such as the EPH have, it 

allows for the reconciliation of experimental results that seem to be at odds. The 

implication of such a possibility is that more needs to be done to identify when one mode 

of control is used over another so studies are not confounded by false premises. 

In the present study, a single joint arm flexion with a slightly damped inertial load 

is tested. The goal of the task is to use a physical interface to move an object displayed on 
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a screen to a target also on the screen. Since the goal object is virtual, it is theoretically 

possible to change the dynamics of the physical interface, while holding fixed the dynamics 

of the virtual interface. Instead of commanding subjects to “not react to a change”, subjects 

are not made aware of the change; instead of removing visual feedback, the visual feedback 

is manipulated to reinforce subjects’ lack of awareness of the change. The hope is that since 

the perturbation is not destabilizing, and since the subject is only concerned with the virtual 

object, their central signal should not change as long as the virtual object’s dynamics 

remain fixed. Thus, once the task is learned, the time-course of the subject’s central signal 

should remain the same but the location of their arm should be altered. If the time-course 

of the subject’s muscle activation is also altered, we can conclude that this is a paradigm 

in which muscle activations are position-dependent. 
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CHAPTER 2  

METHODOLOGY 

2.1 Admittance Control 

 

Admittance control is a mode of human-robot interface in which a robotic end-effector 

simulates a relationship between the force applied by the human, 𝒇𝒂, and the desired 

position of the end-effector 𝒙. Admittance controllers generally consist of three parts: a 

force sensor to measure the applied force, a computer that calculates the desired position 

of the end-effector at any time, and a lower level follower, e.g. a PID controller,  to bring 

the actual position, 𝒙, of the end-effector to the desired position. While there is technically 

a lag between the desired position and the actual position, if the follower is fast enough, 

this lag is negligent. 

 

 

A simple example of what can be achieved with an admittance controller is simulation of 

a frictionless weightless mass. To this end the force-position relationship used would be 

 

�̈̂� =
𝒇𝒂

𝑚
 

(2.1) 

Figure 2.1 Haptic Master Control loop. 
Source: Van der Linde, R. Q., et al. 
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where  �̈� represents the second time derivative of 𝒙, and 𝑚 the mass being simulated. This 

can be modified to include a constant “gravitational” field by incorporating another term: 

 

�̈̂� =
𝒇𝒂

𝑚
+ 𝒂𝒈 

(2.2) 

 

 

where 𝒂𝒈 is the acceleration due to gravity. 

Using admittance control devices allows the simulation of different physical scenarios that 

may never be encountered in real life. Such a paradigm is very valuable to motor control 

research for two reasons. Firstly, because any model of human motor production is in a 

sense “fit” to our observations of usual physical scenarios, but a good model should be able 

to make accurate predictions in a great variety of scenarios. Secondly, some studies, such 

as the current one take advantage of the physical scenario to shape the relationship between 

possible control variables and the motor goal. 

 The HapticMASTER is an admittance control robotic device that runs its 

admittance control at a rate of 2500 Hz. The force sensor of the HapticMASTER is located 

at the linkage of its end-effector allowing for any attachment to effectively control it. 
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2.2 Experimental Set-up 

 

The visual environment consisted of 4 entities on a screen: a round cursor, a round target 

in the center of the screen, a square target directly below the round target henceforth 

referred to as the “near target”, and another square target directly below the near target 

henceforth referred to as the “far target”. The three targets were all evenly spaced.  

Subjects performed a task in which they moved the cursor from one target to the next in 

sequence. Each trial was initialized by the subjects bringing the cursor to the round target. 

This triggered the appearance of the near target in green as well as the far target in yellow. 

Subjects then moved the cursor to the near target. Once the target had come to a stop within 

the near target, following a short delay, the near target disappeared and the far target turned 

Figure 2.2 Screenshots of the visual environment. 
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green. The far target color changed cued the subject to move the cursor to the far target. A 

programmatic stopwatch was also started at this time, the stopwatch was paused whenever 

the cursor was within the far target. If the cursor was moved into the full target and brought 

to a stop before the stopwatch reached 700ms, the trial was a success, this was indicated to 

the subject by the explosion of the target as well as the incrementing of a score in the top 

left of the screen. If the subject failed to reach the far target in time, the trial was 

unsuccessful as indicated by the mundane disappearance of the far target. 

To control the cursor, subjects moved the end-effector of the HapticMASTER in 

the vertical direction using only flexion of their elbow. Subjects sat in a chair with their 

elbow placed on an elbow rest and grasped the HapticMASTER end-effector with their 

dominant hand. The angle of the subject’s forearm was inferred from the position of the 

HapticMASTER end-effector. To this end, a calibration was done for each subject in which 

they performed several flexion and extension movements. The positions of the 

HapticMASTER during these movements was fit to a circle yielding the vertical location 

of the subjects elbow in the HapticMASTER’s coordinates, as well as the length of the 

subject’s lever arm which was the distance from their elbow to their proximal phalanges.  

A linear relationship between the angle of the subject’s forearm and the relative 

position of the cursor was maintained: 

 

𝑦 = 𝑘𝜃 + 𝜃0 (2.3) 

 

where 𝜃 was the elbow angle, 𝑦 the relative position of the cursor, and 𝑘 and 𝜃0 the 

parameters that defined their relationship, termed the scale and, offset respectively. There 
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was a kinetic relationship between the cursor’s position and the forces applied to the 

rotational system comprised of the subject’s forearm and the HapticMaster’s end effector 

imposed by the laws of rotational motion: 

 

�̈� = 𝑘�̈� =
𝑘𝜏

𝐼
 (2.4) 

 

where 𝜏 is the total torque applied to the system, and 𝐼 is the inertia of the system. 

The moments of inertia of subjects’ arms, 𝐼𝑎 were inferred from measurements and 

anthropometric ratios. The moment of inertia added by the HapticMASTER was given by 

 

𝐼ℎ = 𝑚𝑟2 (2.5) 

 

where 𝑚 is still the virtual mass simulated by the HapticMASTER and 𝑟 the 

subject’s lever arm. Since the virtual mass could be controlled, the total inertia of the 

system could be manipulated as it was the sum of the two inertias: 

 

𝐼 = 𝐼𝑎 + 𝐼ℎ. (2.6) 

 

Unknown to the subject, on ~10% of trials, the virtual mass was increased by a 

factor of 1.25. This lead to a change in the moment of inertia by a factor of 𝛼 which 

depended slightly on the subject but was always close to 1.18. Simultaneously, the cursor’s 

scale was increased by the same factor. This yielded the modified Equations of motion: 
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�̈� =
𝜏

𝛼𝐼
 (2.7) 

 

 

and 

 

�̈� =
𝛼𝑘𝜏

𝛼𝐼
=

𝑘𝜏

𝐼
. (2.8) 

 

This change occurred at the same time as the color change of the far target. Since subjects 

were at rest at this point, there was no way for them to feel the change prior to the motion. 

Such trial are termed “loaded trials”. 

The task was completed in sets of 20 trials each. Subjects each completed five 

sessions consisting of six sets each. To prevent muscle fatigue, subjects had a 30 second 

rest period in between each set. Loaded trials were absent until the second set or the set 

following the subject’s first set with at least 70% success. Loaded trials were chosen at 

random from the last 11 trials of each set which the stipulation that any two loaded trials 

had at least two standard trials in between them. 

Two channels of EMG were recorded using a Delsys Bagnoli™ EMG system. The 

first channel was used to record EMG activity from the subject’s biceps and the other 

channel was used to record EMG activity from the subject’s triceps. 

All subjects signed a consent form approved by the NJIT Institutional Review Board. 
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2.3 Parameter Determination 

The amount of upwards force that needed to be applied at subjects’ hands to 

counteract the torque due to gravity needed to be determined. The torque due to gravity 

depends on the angle of the elbow according to 

 

 

𝜏𝑔 = 𝑚𝑎𝑔𝑟𝑎 cos(θ) (2.9) 

 

where 𝑚𝑎 is the mass of the subject’s forearm, 𝑔, the acceleration due to gravity, 𝑟𝑎 the 

effective radius of gyration of the subject’s arm, and 𝜃 the angle between the subject’s 

elbow and the horizontal plane supporting the elbow. The force needed to balance the 

torque is given by 

 

𝑓𝑎𝑛𝑡𝑖𝑔𝑟𝑎𝑣 =
𝜏𝑔

cos(𝜃) 𝑟
= 𝑚𝑎𝑔

𝑟𝑎

𝑟
. (2.10) 

 

This force was measured over the 15 degree range of motion used in the task. The force 

found was generally not constant but tended to be higher for greater angles. Applying the 

average force for some subjects proved to be adequate only for a small part of this range; 

at some portion of the range the force would either undercompensate or over compensate 

for gravity. Instead a force depending on the vertical displacement of the subject’s hand 

was used. This position dependent force was able to completely eliminate the effect of 

gravity. The average force required to balance the arm was used to compute the average 

gravitational torque being affecting their arm. The radius of gyration of the subjects arms 
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was computed as being located 82.7% of the distance between their elbow and ulnar styloid 

as given in anthropometric tables [12]. From the gravitational torque and the radius of 

gyration, the moment of inertia of the subject’s arm was computed. 

A damping force of 8𝐾𝑔 ∙ 𝑠 was applied during standard trials. This force was 

scaled up by 𝛼 during loaded trials. 
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CHAPTER 3  

RESULTS 

3.1 Torque Sign Change 

Five naive subjects (4 right-handed 1 left-handed) were tested in this study. Subjects 

learned to anticipate the move cue which led to their movements typically having a smooth 

profile as in figure 3.1. On some trials, subjects began moving prior to the cue, this is 

evident in the cursor trajectory as in figure 3.2. Such trials were excluded from analysis. 

The first two trials of each set were also excluded. A total of 1368 out of 3600 trials were 

excluded. 

The angular acceleration was computed for each trial and filtered with a low pass 

Butterworth filter with a cutoff frequency of 25 Hz. The time relative to the far target color 

change that the angular acceleration reached 0 was computed for each trial. This elapsed 

Figure 3.1 Example trajectories for subject 1. On the abscissa is the elapsed time since the cursor 

was brought inside of the target. On the ordinate is the position of the cursor.  The targets are 

represented by the green boxes with their centers marked by the red dashed lines. 
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time, henceforth referred to as the torque sign-change point (TSCP) was averaged for each 

subject over all trials. The mean TSCP was computed independently for loaded trials and 

standard trials. The difference between the mean TSCP for loaded trials and the mean 

TSCMP for standard trials was computed for each subject and is summarized in Table 2.1 

A paired t test was performed on the mean TSCP revealing that there was a significant 

(p<0.005) increase in TSCP during loaded trials. Figure 3.3 shows the torques of the trial 

averages of the movements. For the preceding analysis trial averaging was not used prior 

to the computation of the TCSP but it is evident in figure 3.3 that the TCSP for the trial 

averaged loaded trial is delayed with respect to the TCSP trial averaged standard trial 

 

 

 

 

Figure 3.2 Example trajectory for subject 3. The trajectory near target is approached from below 

(above in the plot) instead of from below. This represents a reversal of movement direction after 

the subject moved to early. 
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Table 2.1 Torque Sign Change Points 

 

 

 

Subject 

Mean TSCP (±stdv) in seconds Difference in mean TCSP 

(Loaded – standard) Standard trials Loaded trials 

1 0.9322 (±0.0765) 0.9704 (±0.0904) 0.0382 

2 1.0592 (±0.0901) 1.0789 (±0.0858) 0.0197 

3 1.0156 (±0.0840) 1.0358 (±0.0848) 0.0203 

4 1.0001 (±0.0835) 1.0118 (±0.0903) 0.0117 

5 1.0979 (±0.0621) 1.1137 (±0.0451) 0.0158 

Figure 3.3a-b Trial averages of arm angle, torque, and cursor position. The trial average 

for standard trials is plotted in black while the trial average for loaded trials is plotted in 

magenta. It is evident that the torque crosses 0 later in the loaded trials. 
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 Figure 3.3c-e Trial averages of arm angle, torque, and cursor position. The trial average 

for standard trials is plotted in black while the trial average for loaded trials is plotted in 

magenta. It is evident that the torque crosses 0 later in the loaded trials. 

 



 

23 

 

 

3.2 Cross-Determination 

A post-hoc analysis of how well the kinetic and kinematic data fit the prediction of three 

different position-dependent control models. The first model is an exponential spring 

model obtained by taking the 𝜆 hypothesis (Equation 1.3) and assuming that torque is 

constantly proportional to activation yielding 

 

𝜏(𝑡 + 𝑡𝑑) = 𝑐[𝑒𝑏(𝜃(𝑡)−𝜆(𝑡)) − 1], (3.1) 

 

where 𝑡𝑑 represents a time delay. The next model is obtained by assuming that the produced 

torque is actually more akin to a linear spring due to the combined efforts of many different 

motor units. This takes the form 

 

𝜏(𝑡) = 𝑐(𝜃(𝑡) − 𝜆(𝑡)). (3.2) 

  

The third model is a relative damping model similar to the one proposed in [10] given by 

 

𝜏(𝑡 + 𝑡𝑑) = 𝑐𝑠(𝜃(𝑡) − 𝜆(𝑡)) − 𝑐𝑑 (�̇�(𝑡) − �̇�(𝑡)). (3.3) 

  

It should be noted that all these models normally have absolute damping which is being 

neglected here. It was assumed that once the motion was learned, from one trial to the next, 

𝜆(𝑡) was the same. Thus, the parameters of these models could be fit by eliminating 𝜆. This 

was achieved in the nonlinear 𝜆 hypothesis model by manipulating Equation 3.1 to obtain 
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log (
𝜏2(𝑡 + 𝑡𝑑) + 𝑐

𝜏1(𝑡 + 𝑡𝑑) + 𝑐
) = 𝑏(𝜃2(𝑡) − 𝜃1(𝑡)). 

(3.4) 

 

Likewise the linear spring model implies 

 

𝜏2(𝑡 + 𝑡𝑑) − 𝜏1(𝑡 + 𝑡𝑑) = 𝑐(𝜃2(𝑡) − 𝜃1(𝑡)) (3.5) 

  

And the relative damping model implies 

 

𝜏2(𝑡 + 𝑡𝐷) − 𝜏1(𝑡 + 𝑡𝑑) = 𝑐𝑠(𝜃2(𝑡) − 𝜃1(𝑡)) + 𝑐𝑑(𝜃2(𝑡) − 𝜃1(𝑡)). (3.6) 

  

Figure 3.4a Cross-Determination for subject 1. Each axes shows the coefficient of 

determination plotted versus the time delay for the three position-dependent activation 

models. The acceleration and Deceleration phase of the movement is analyzed separately. 
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The parameters in Equations 3.4 - 3.6 can all be determined via least squares regression. 

The goodness of the fit can be determined by the coefficient of determination. However, 

spurious fits can be obtained and the time delay, 𝑡𝑑 is unknown. For each subject and each  

model, the coefficient of determination was determined for a range of possible time delays. 

The coefficients of determinations for different time delays will be referred to as the cross-

determination as it is an extension of a cross-correlation.  

Figure 3.4b Cross-Determination for subject 2.  

 

Figure 3.4c Cross-Determination for subject 3. 
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Figure 3.4d Cross-Determination for subject 4.  

 

Figure 3.4e Cross-Determination for subject 5.  
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CHAPTER 4  

DISCUSSION 

4.1 Discussion of Torque Sign Change 

It should be noted that subjects were informed about the loaded trials only after the 

experiment had concluded and all reported that they hadn’t noticed the change in inertia 

during the experiment. The TSCP increase during loaded trials is in line with what would 

be expected in position-dependent control. For example, under the EPH, the lag in elbow 

angle caused by the increase in inertia would lead to the triceps remaining active longer 

than during standard trials. However, this result is not very strong on its own since the 

muscles are not the only producer of torque in the system. Particularly, a frictional torque 

that doesn’t scale with the moment of inertia could lead to somewhat similar results.  

A more useful measurement would be the duration of the tricep EMG burst during 

the movements.  Unfortunately, the EMG collected proved to be very nonstationary during 

the course of the experiment and only a small fraction of the trials showed EMG activity 

that looked related to the task. Initially this was believed to be due to the task eliciting too 

little muscle activation to yield significant EMG. The parameters of the experiment, 

namely the starting inertia and the maximum of the movement time were manipulated 

during pilot trials to achieve a higher EMG amplitude. While these parameter changes 

showed a boost in EMG signal initially, the quality of the EMG signal tended to fade in 

and out during the course of many trials. One additional subject was tested with a higher 

inertia and slightly shorter movement time than previous subjects and unlike with previous 

subjects, five electrodes were used (two recording from the biceps and three from the 
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triceps). This subject initially reported slight fatiguing. The EMG for this subject exhibited 

the same lack of stationarity as for the other subjects. 

4.2 Discussion of Cross-Determination 

In the computation of the coefficients of determination, a positive time delay corresponds 

to a comparison of kinematic variables (position, velocity, or exponential of position) to a 

future torque while a negative time delay corresponds to a comparison of kinematic 

variables to a past torque. Thus, a high coefficient of determination for a positive time 

delay implies that the kinematic variables linearly influence the torques produced 

afterwards. A high coefficient of determination for a negative time delay means that the 

torque has a linear influence on the kinematic variables that result afterwards. A coefficient 

of determination that is negative means that the model is even less well fit than a model 

that simply gives the average torque regardless of any other input. The exponential model 

generally fails to account for variance in future torques. This suggests that this model is 

invalid. For all five of the subjects, the linear spring model appears to explain 60-70% of 

the variance in torque around with a time delay of about 90ms. This would suggest that the 

linear spring model is somewhat valid. However this trend is only seen for the acceleration 

phase of the movement. The relative damping model explains variance in future torques in 

both the acceleration and deceleration phase for three of the subjects. This better 

performance could possibly be due to the model being more complex or due to it being 

more valid. The relative damping model also explains variance in past torques due to the 

linear relationship between acceleration and change of velocity. 

 Overall the study is inconclusive though its results point towards a position-

dependent interpretation of motor signals. It should still be noted that it is possible that 
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the motor system uses different strategies for different situations. More similar studies 

would need to be conducted to achieve a conclusive result.  

 

4.3 Future Directions 

The biggest flaw of this study is the lack of usable EMG data. A future project could aim 

at improving the quality of recorded EMG and re-conducting this same study. One 

possibility is that there was movement of the ground electrode.  

 Another change to the current study could be the timing mechanics. In this study, 

there was a pause between the subject reaching the near target and the far target color 

change subjects would prepare their motor command as much as possible prior to 

execution. Once the far target appeared, the timer was started to ensure that subjects’ 

movements were quick enough to both elicit measureable EMG and prevent the viability 

of online corrections. However, subjects didn’t always perfectly anticipate the color change 

of the far target. It would be better to have the timer start once the subject begins moving 

instead of once the target appears so that timing anticipation becomes less of a factor. 

The use of cross-determination was done post-hoc in this experiment and thus, the 

results of the cross-determination have no weight unless they are reproduced in a future 

experiment. It is also possible that the apparent relationships between kinematics and 

torques were idiosyncratic to this particular movement trajectory. Such an analysis should 

be done on movements with different velocity profiles. 
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CHAPTER 5 APPENDIX 

 

 

This appendix contain the Matlab and C# code used in the running of the experiment as 

well as part of the code used in the analysis, particularly that used to compute the cross-

determinations. 

A.1 Matlab Code for Task 

function OyindaHapticCurl(baseHapticMass,handLength,cForce) 

global g_position g_force g_timestamp g_posChannel g_trgtChannel 

g_emgChannel g_flag1 g_h g_k g_thetaStart g_r 

  

disp('running Haptic Curl') 

%% Create Constants 

  

targetWidth = .175; %proximity to target required to "hit" target 

centerWidth = .15; %proximity to center required to "hit" center 

inRange = 0; %flag for whether cursor is currently hitting full target 

outOfBounds = 2.3;%distance corresponding to out of bounds 

  

nReps = 20; %number of repetitions of same target before switching 

targets 

  

meanHold = .65; %mean time cursor needs to be in range of half target 

before full target appears 

hHoldRange = .25; %range of possible hold times 

hHold = meanHold + hHoldRange*(rand-.5); %time cursor needs to be range 

of half target 

cHold = 0; %time cursor needs to be in range of center before half 

target appears 

fullHold = .75;%time cursor needs to be range of full target to score 

% maxTime =1.75; %time alloted to reach full target to score 

  

speedThreshold = 1;%half target isn't considered reached unless the 

cursor speed is below this threshold 

  

  

% sw is a list of the reps in which the scale should increase 

n = 1; 

sw = zeros(1,10); 

  

if g_flag1 

    while n<10; 

        n=1; 

        i = 9; 

        while i<=60; 

            if rand>=.6 

                sw(n) = i; 

                i = i+2; 

                n = n+1; 

                if n > 10 

                    break 
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                end 

            end 

            i = i+1; 

        end 

    end 

end 

  

  

nScaleSwitch = 1; 

  

antiGrav = hm_constant_force([0,0,cForce]); 

  

%% Create record-keeping variables 

targetType= 0; %0 if seeking center, 1 if seeking half target, 2 if 

seeking full target 

  

dataMax = 50000;% max number of samples 

  

movementData = cell(1,nReps);%cell holding one data struct per movement 

  

%initialize arrays for each movement 

for i=1:nReps 

    movementData{i}.theta = zeros(1,dataMax); 

    movementData{i}.rawPosData = zeros(3,dataMax); 

    movementData{i}.force = zeros(3,dataMax); 

    movementData{i}.timeStamp = zeros(1,dataMax); 

    movementData{i}.toc = zeros(1,dataMax); 

    movementData{i}.scale = zeros(1,dataMax); 

end 

  

  

nMovement = 1; %number of reaching movement 

j=1; %data sample index 

nHit = 1; %index at which the target is reached 

  

  

%% Dynamic Variables 

  

rg = .827*(g_r-handLength); %radius of gyration of the arm as estimated 

from anthropometric tables 

armMass = cForce*g_r/rg; 

armInertia = armMass*rg^2; 

  

  

armLoadMassRatio = 4; %ratio of mass of medium load to arm mass 

midHapticMass = max([armMass*armLoadMassRatio,3]); 

midBaseInertiaRatio = 

(midHapticMass*cForce+armInertia)/(baseHapticMass*cForce+armInertia);%r

atio of base rotational inertia to medium rotational inertia 

  

hiMidMassRatio = 1.2;%ratio of mass of medium load to mass of high load 

hiHapticMass = midHapticMass*hiMidMassRatio; 

hiMidInertiaRatio = 

(hiHapticMass*cForce+armInertia)/(midHapticMass*cForce+armInertia); 

  

%ratio between change of arm angle and change of virual object position 

baseScale = 3; 
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midScale = midBaseInertiaRatio*baseScale; 

hiScale = hiMidInertiaRatio*midScale; 

  

  

scale = baseScale;%start at low scale 

offset = 0;%offset of position to allow smooth switching of scale 

  

prevTheta = 0;%store 1 lag of virtual position to calculate velocity 

  

repCount = 0; 

  

  

%% Send data 

fwrite(g_emgChannel,'begin') %start emg collection 

  

tInRange = tic; 

tBegin = tic; 

  

while repCount < nReps; 

     

     

    %calculate virtual position and send to unity 

    thetaRaw = atan2(g_position(3)-g_k,-g_position(1)-g_h)-

g_thetaStart; 

    theta = thetaRaw*scale+offset; 

     

     

    posData = ['X0','Y',num2str(theta),'Z']; 

    fwrite(g_posChannel,posData); 

     

    spd = abs(prevTheta-theta); %cursor speed 

     

    %record keeping 

     

    movementData{nMovement}.theta(j) = theta; 

    movementData{nMovement}.rawPosData(:,j) = g_position; 

    movementData{nMovement}.force(:,j) = g_force; 

    movementData{nMovement}.timeStamp(j) = g_timestamp; 

    movementData{nMovement}.toc(j) = toc(tBegin); 

    movementData{nMovement}.scale = scale; 

    movementData{nMovement}.targetType = targetType; 

     

     

     

    %CHECKING IF HALF TARGET IS REACHED 

    if targetType==1 

        if abs(theta-1)<targetWidth 

            if toc(tInRange)>= hHold && spd<speedThreshold 

                 

  

                targetType = 2;%flag the full target is being sought 

                fwrite(g_trgtChannel,'t2','char');% send full target to 

unity 

                 

                 

                %switch scales ~20% of the time 
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                if nScaleSwitch <= length(sw) && repCount+1 == 

sw(nScaleSwitch) 

                     

                    nScaleSwitch = nScaleSwitch+1;%increment number of 

scale switches 

                     

                    scale = hiScale;%change scale 

                    offset = (baseScale-hiScale)*thetaRaw;%offset 

virtual position so that cursor doesn't jump 

                     

                     

                    %switch inertia 

                    if hiHapticMass<0.2 

                        error('Specified mass is too small') 

                    end 

                     

                    Test_Haptic2(hiHapticMass); 

                     

                    fwrite(g_trgtChannel,'ScaleSwitched','char') 

                else 

                    scale = midScale; 

                    Test_Haptic2(midHapticMass); 

                    offset = (baseScale-midScale)*thetaRaw;%offset 

virtual position so that cursor doesn't jump 

                     

                end 

                 

                 

                %start countdown to reach full target 

                cumOutRange = 0; 

                tOutRange = tic; 

                 

                movementData{nMovement}.halfReached = nHit;%store index 

at which half target was reached 

            end 

        else 

            nHit = j; %update the index at which the target was first 

hit 

            tInRange = tic; %restart timer if cursor isn't close enough 

to target 

        end 

         

         

        %CHECKING IF FULL TARGET IS REACHED 

    elseif targetType ==2 

        if abs(theta-2)<targetWidth 

             

            %update cummalative time out of range if necessary 

            if ~inRange 

                cumOutRange = cumOutRange+toc(tOutRange); 

                inRange = 1; 

            end 

             

            if toc(tInRange)>= fullHold 

                 

                targetType = 0; %flag that the center is being sought 

                fwrite(g_trgtChannel,'center','char'); 
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                repCount=repCount+1; 

                fwrite(g_emgChannel,'next'); 

                 

                 

                % set scale and offset for return to center 

                scale = abs(theta/thetaRaw); 

                offset = 0; 

                 

                 

                movementData{nMovement}.success=1;%record movement as a 

success 

                nMovement = nMovement+1;%increment movement number 

                j=0; %reset index for next movement 

                 

                 

            end 

             

            %reset timer for time out of range 

            tOutRange = tic; 

        else 

             

            inRange = 0; 

             

            %if time runs out or out of bounds 

            if 

toc(tOutRange)+cumOutRange>fullHold||abs(theta)>=outOfBounds 

                 

                targetType = 0; %flag that the center is being sought 

                fwrite(g_trgtChannel,'centerF','char'); 

                repCount=repCount+1; 

                fwrite(g_emgChannel,'next'); 

                 

                 

                % set scale and offset for return to center 

                scale = abs(theta/thetaRaw); 

                offset = 0; 

                 

                movementData{nMovement}.success = 0;%record movement as 

a failure 

                nMovement = nMovement+1; %increment movement number 

                 

                j=0; %reset index for next movement 

                 

                 

            end 

            tInRange = tic; 

        end 

         

         

        %CHECKING IF CENTER IS REACHED 

    elseif targetType == 0 

        if abs(theta)<centerWidth 

            if toc(tInRange)>= cHold 

                targetType = 1; 

                fwrite(g_trgtChannel,'ht2','char'); 
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                hHold = meanHold + hHoldRange*(rand-.5); %randomize 

hold time 

                 

                 

                %reset to low scale if necessary 

                scale = baseScale; 

                offset = 0; 

                 

                if baseHapticMass<0.2 

                    error('Specified mass is too small') 

                end 

                 

                Test_Haptic2(baseHapticMass); 

                %xDamp = hm_damping([0,xDamping,0]); 

                 

                 

                 

                 

                 

            end 

             

             

        else 

             

            tInRange = tic;%reset timer for being in range 

        end 

    end 

     

     

     

    prevTheta = theta; %update memory bank 

    j=j+1; %update index 

     

end 

  

fwrite(g_emgChannel,'stop') %end emg collection 

  

% %truncate data arrays 

% for i=1:nReps 

%     nLast = find(movementData{i}.time,1,'last'); %find last used 

index 

%     movementData{i}.theta = movementData{i}.theta(1:nLast); 

%     movementData{i}.rawPosData = 

movementData{i}.rawPosData(:,1:nLast); 

%     movementData{i}.force = movementData{i}.force(:,1:nLast); 

%     movementData{i}.timeStamp = movementData{i}.time(1:nLast); 

%     movementData{i}.toc = movementData{i}.time(1:nLast); 

%     movementData{i}.targetType = movementData{i}.targetType(1:nLast); 

% 

% end 

  

saveas = SaveAs; 

if ~strcmpi(saveas,'null') 

save(['C:\Users\admin\Documents\MATLAB\work\Oyinda\SavedData\',saveas,'

.mat']); 

fwrite(g_emgChannel,['saveas',saveas]); 

end 
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hm_dcf(antiGrav); 

 

A.2 C# Code for Task 

using UnityEngine; 
using System; 
using System.Collections; 
using System.Net; 
using System.Net.Sockets; 
using System.Text; 

  
public class Effects : MonoBehaviour { 

     
    //references to targets in order to display and hide them 
    public GameObject 

_ht1,_ht2,_ht3,_t1,_t2,_t3,_center,_tele1,_tele2,_tele3; 

     
    //used to set position of cursor 
    private Vector3 _pos; 

  
    //used to set position and rotation of fireworks 
    private Vector3 _expPos; 
    private Quaternion _expRot; 

  
    //used to hold fireworks object 
    public GameObject _explosion; 

  
    //used to indicate whether or not explosion is triggered 
    private bool _expTrue; 
    //used to indicate which targets are visible 
    private string _centerActive="1", _htActive="0", _tActive="0"; 

     
    //used to flag if visible targets need to be updated 
    private int _updateTargets=1; 

     
    //keeps track of number of successful movements 
    private int _score = 0; 

     
    //Socket members 
    private Socket _servSock1, _clientSock1, //for positions 
    _servSock2, _clientSock2; //for targets 

     
    private IPEndPoint _localPort1 = new 

IPEndPoint(IPAddress.Parse("128.235.117.204"),4949), 
    _localPort2 = new 

IPEndPoint(IPAddress.Parse("128.235.117.204"),4950); 

     
    private byte[] _buffer1,_buffer2; 
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    // Use this for initialization 
    void Start ()  
    { 
        Application.runInBackground = true; 
        StartServers(); 
        _expRot  = _t1.transform.rotation; 

  
    } 

     
    // Update is called once per frame 
    void Update ()  
    { 
        //update cursor location 
        transform.position = _pos; 

  
        //instatiate explosion if necessary 
        if (_expTrue) 
        { 
            Instantiate (_explosion, _expPos, _expRot); 
            _expTrue = false; 
        } 

  
        //update displayed targets if necessary 
        if (_updateTargets==1) { 
            _updateTargets = 0;// unflag update targets 

             
            //default all targets to invisible 
            _ht1.SetActive(False);_ht2.SetActive (False);_ht3.SetActive 

(False); 
            _tele1.SetActive (False);_tele2.SetActive 

(False);_tele3.SetActive(False); 
            _t1.SetActive (False);_t2.SetActive (False);_t3.SetActive 

(False); 

             

             

             
            //turn flagged targets back on 
            if (_centerActive=="1") { 
                _center.SetActive (true); 
            }else{ 
                _center.SetActive(False); 
            } 

             
            if (_htActive!="0") { 
                switch (_htActive) { 
                case "1": 
                    _ht1.SetActive (true); 
                    _tele1.SetActive(true); 
                    break; 
                case "2": 
                    _ht2.SetActive (true); 
                    _tele2.SetActive(true); 
                    break; 
                case "3": 
                    _ht3.SetActive (true); 
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                    _tele3.SetActive(true); 
                    break; 

                 
                } 
            } else if (_tActive!="0") { 
                switch (_tActive) { 
                case "1": 
                    _t1.SetActive (true); 
                    _expPos = _t1.transform.position; 
                    break; 
                case "2": 
                    _t2.SetActive (true); 
                    _expPos = _t2.transform.position; 
                    break; 
                case "3": 
                    _t3.SetActive (true); 
                    _expPos = _t3.transform.position; 
                    break; 

             
                } 
            } 

             
        } 

         
    } 

     

     
    private void StartServers() 
    { 

         
        //open sockets 
        _servSock1 = new Socket (AddressFamily.InterNetwork, 

SocketType.Stream, ProtocolType.Tcp); 
        _servSock2 = new Socket (AddressFamily.InterNetwork, 

SocketType.Stream, ProtocolType.Tcp); 

         
        //bind ports 
        _servSock1.Bind (_localPort1); 
        _servSock2.Bind (_localPort2); 

         
        //begin listening for connections 
        _servSock1.Listen (0); 
        _servSock2.Listen (0); 

         
        Debug.Log ("listening"); 

         
        //begin accepting connections 
        _servSock1.BeginAccept (AcceptCallback1, null); 
        _servSock2.BeginAccept (AcceptCallback2, null); 
    } 

     
    private void AcceptCallback1(IAsyncResult AR) 
    { 
        _clientSock1 = _servSock1.EndAccept (AR); 
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        _buffer1 = new byte[1024];//create buffer 
        _clientSock1.BeginReceive (_buffer1, 0, _buffer1.Length, 

SocketFlags.None, new AsyncCallback (PositionReceivedCallback), null); 
        Debug.Log ("Positions connection made"); 
    } 

     
    private void AcceptCallback2(IAsyncResult AR) 
    { 
        _clientSock2 = _servSock1.EndAccept (AR); 
        _buffer2 = new byte[1024];//create buffer 
        _clientSock2.BeginReceive (_buffer2, 0, _buffer2.Length, 

SocketFlags.None, new AsyncCallback (TargetsReceivedCallback), null); 
        Debug.Log ("Targets connection made"); 
    } 

     
    private void PositionReceivedCallback(IAsyncResult AR) 
    { 
        int received = _clientSock1.EndReceive(AR);//amount of received 

data 
        Array.Resize(ref _buffer1, received);//truncate buffer to used 

portion 
        //Debug.Log ("Checkpoint A"); 

         

         
        string pText= Encoding.ASCII.GetString (_buffer1);//interpret 

received data as a string 

         
        //find starts and ends of x and y data in string 
        int xStart = pText.IndexOf ("X"); 
        int yStart = pText.IndexOf ("Y"); 
        int yEnd = pText.IndexOf ("Z"); 
        //Debug.Log ("Checkpoint B"); 

         
        //parse received positioin data if possible 
        if (xStart >= 0 && yStart >= xStart+1 && yEnd >=yStart+1)  
        { 
            string xText = pText.Substring (xStart + 1, yStart - xStart 

- 1);                        
            string yText = pText.Substring (yStart + 1, yEnd-yStart-1); 
            //Debug.Log("Checkpoint C"); 

             

  

             
            //convert position from text to float 
            float xPos = Convert.ToSingle (xText); 
            float yPos = Convert.ToSingle (yText); 

             
            //set position 
            _pos.x = xPos; 
            _pos.y = yPos; 

             
            //Debug.Log("Checkpoint D");             
        } 
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        //clear out buffer and begin receiving again 
        _buffer1 = new byte[1024]; 
        _clientSock1.BeginReceive (_buffer1, 0, _buffer1.Length, 

SocketFlags.None, new AsyncCallback (PositionReceivedCallback), null); 

  
        if (received == 0)  
        { 
            _servSock1.BeginAccept (AcceptCallback1, null);//begin 

accepting connections 

             
        } 
    } 

     
    private void TargetsReceivedCallback(IAsyncResult AR) 
    { 

         
        int received = _clientSock2.EndReceive(AR);//amount of received 

data 
        Array.Resize(ref _buffer2, received);//truncate buffer to used 

portion 

         

     

             
            string targetList = Encoding.ASCII.GetString 

(_buffer2);//get list of active targets as string 

         

         
        //flag active targets for update thread 
        if (targetList.IndexOf ("ht") == 0)  
        { 
            Debug.Log ("center reached"); 
            _updateTargets = 1;//flag targets for update 
            _htActive = targetList.Substring (2, 1); 
            _tActive = "0"; 
        } else if (targetList.IndexOf ("t") == 0) { 
            Debug.Log ("half target reached"); 
            _updateTargets = 1; 
            _tActive = targetList.Substring (1, 1); 
            _htActive = "0"; 
        } else if (targetList.IndexOf ("center") == 0) { 
            Debug.Log ("full target reached"); 
            _updateTargets = 1; 
            _tActive = "0"; 
            _htActive = "0"; 

             
            if(targetList.IndexOf("centerF")!=0) 
            { 
                _expTrue = true; 
                _score++; 
            } 

  
            if(targetList.IndexOf("reset")==0) 
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            { 
                _score=0; 
            } 

  
        } 

         

                 
        //clear out buffer and begin receiving again 
        _buffer2 = new byte[1024]; 
        _clientSock2.BeginReceive (_buffer2, 0, _buffer2.Length, 

SocketFlags.None, new AsyncCallback (TargetsReceivedCallback), null); 

  
        if (received == 0)  
        { 
            _servSock2.BeginAccept (AcceptCallback2, null);//begin 

accepting connections 
            Debug.Log ("listening"); 

             
        } 

         
    } 

     
    void OnGUI () { 
        // Make a background box 
        string score = _score.ToString (); 

         
        GUIStyle scoreStyle = new GUIStyle ("button");   
        scoreStyle.fontSize = 40; 
        if (GUI.Button(new Rect(10,10,250,45), "Points: 

"+score,scoreStyle)) 
            _score = 0; 

     

         
    } 

  

  

         

     
} 

 

A.3 Matlab Code for Cross-Determination 

ids = {'AA','AR','KK','YW','CM'}; 
warning off %#ok<WNOFF> 

  

  
resampled = cell(20,1); 

  
TR = 3; %amount of time to resample in seconds 
rfs = 2000; %resampling frequency 
tR = 0:1/rfs:TR; %query times 
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tStart = 0.65; 
tEnd = 1.2; 
nStart = ceil(tStart*rfs); 
nEnd = floor(tEnd*rfs); 

  

  
upAccThreshhold = .02; %minimum magnitude of acceleration to count for 

upward phase 
downAccThreshhold = -.02; %maximum acceleration to count for downward 

phase 
[B,A] = butter(2,50/(2*rfs)); 

  
%span of cross correlation 
lagMin = -0.2; 
lagMax = .2; 
lags = round(lagMin*rfs):round(lagMax*rfs); 

  
for idn = 1:5 
    load([ids{idn},'keep']) 
    nNormal = 0; 
    nCatch = 0; 

     
    normalTrialTheta = zeros(1,length(tR)); 
    catchTrialTheta = zeros(1,length(tR)); 
    normalTrialForce = zeros(3,length(tR)); 
    catchTrialForce = zeros(3,length(tR)); 
    normalTrialPos = zeros(3,length(tR)); 
    catchTrialPos = zeros(3,length(tR)); 
    normalTrialRawTheta = zeros(1,length(tR)); 
    catchTrialRawTheta = zeros(1,length(tR)); 

     

     
    upSsr1 = 0*lags; 
    upSsr2 = 0*lags; 
    upSsr3 = 0*lags; 
    downSsr1 = 0*lags; 
    downSsr2 = 0*lags; 
    downSsr3 = 0*lags; 
    upSst1 = 0 *lags; 
    upSst2 = 0 *lags; 
    upSst3 = 0 *lags; 
    downSst1 = 0 *lags; 
    downSst2 = 0 *lags; 
    downSst3 = 0 *lags; 

     

     
    %% 
    for nSes = 1:5 
        for nTrial = 1:6 
            try 
                

load(['C:\Users\Me\Documents\MATLAB\Research\',ids{idn},'\',ids{idn},nu

m2str(nSes),'_',num2str(nTrial)]); 
                baseInertia = armInertia+baseHapticMass*g_r; 
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                highInertia = armInertia + hiHapticMass*g_r; 
            catch 
                continue 
            end 
            for nRep = 8:20 
                if goodTrials(nSes,nTrial,nRep) && 

(goodTrials(nSes,nTrial,nRep-1) || (nRep<20 && 

goodTrials(nSes,nTrial,nRep+1))) 
                    %remove repetitions 
                    [~,uI,rI] = 

unique(movementData{nRep}.timeStamp,'stable'); 
                    movementData{nRep}.toc = 

movementData{nRep}.toc(uI); 
                    movementData{nRep}.rawPosData = 

movementData{nRep}.rawPosData(:,uI); 
                    movementData{nRep}.timeStamp = 

movementData{nRep}.timeStamp(uI); 

                     

                     
                    %trim arrays 
                    nLast = find(movementData{nRep}.toc,1,'last'); 

%find last used index 
                    movementData{nRep}.rawPosData = 

movementData{nRep}.rawPosData(:,1:nLast); 
                    movementData{nRep}.timeStamp = 

movementData{nRep}.timeStamp(1:nLast)*0.001; %adjust timestamps to 

seconds 
                    movementData{nRep}.toc = 

movementData{nRep}.toc(1:nLast); 
                    %movementData{nRep}.scale = 

movementData{nRep}.scale(1:nLast); 

                     

                     
                    %resample 
                    nOnset = rI(movementData{nRep}.halfReached); 
                    tOnset = movementData{nRep}.timeStamp(nOnset); 

                     
                    rawPos = interp1(movementData{nRep}.timeStamp-

movementData{nRep}.timeStamp(nOnset),movementData{nRep}.rawPosData',tR)

'; 
                    rawTheta = pi/180*asin((rawPos(3,:)-g_k)/g_r); 

                     

                     
                    %calculate accelerations 
                    startingVal = median(rawTheta(1:ceil(rfs*.01))); 
                    filtTheta = filter(B,A,rawTheta-

startingVal)+startingVal; 
                    vel = diff(FiltTheta)./diff(tR); 
                    acc = diff(vel)./diff(tR(2:end)); 
                    resampledData{nRep}.acc = filter(B,A,acc-

acc(1))+acc(1); 
                    resampledData{nRep}.rawTheta = rawTheta; 
                    resampledData{nRep}.vel = vel; 

                     
                    %compute torques 
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                    if any(sw == nRep) 
                        resampledData{nRep}.Torque = 

highInertia*resampledData{nRep}.acc; 
                    else 
                        resampledData{nRep}.Torque = 

baseInertia*resampledData{nRep}.acc; 
                    end 

                     

                     
                end 

                 

                 
            end 

             

             

             
            for nRep = 9:20 
                if goodTrials(nSes,nTrial,nRep-1) && 

goodTrials(nSes,nTrial,nRep) && any(sw==nRep) 

                     
                    upTorqueRatio = zeros(nEnd-nStart,1); 
                    upAngleDiffLag = zeros(nEnd-nStart,length(lags)); 
                    upAngleDiff = zeros(nEnd-nStart,1); 
                    upVelDiff = zeros(nEnd-nStart,1); 
                    upTorqueDiffLag = zeros(nEnd-nStart,length(lags)); 
                    downTorqueRatio = zeros(nEnd-nStart,1); 
                    downVelDiff = zeros(nEnd-nStart,1); 
                    downTorqueDiffLag = zeros(nEnd-

nStart,length(lags)); 
                    downAngleDiffLag = zeros(nEnd-nStart,length(lags)); 
                    downAngleDiff = zeros(nEnd-nStart,1); 

                     

                     

                     
                    kUp = 0; 
                    kDown = 0; 

                     
                    for i = nStart:nEnd 
                        if resampledData{nRep}.acc(i) > upAccThreshhold 

&& resampledData{nRep-1}.acc(i) > upAccThreshhold 
                            kUp=kUp+1; 
                            upVelDiff(kUp) = resampledData{nRep-

1}.vel(i)-resampledData{nRep}.vel(i); 
                            upTorqueRatio(kUp) = 

log(resampledData{nRep-1}.Torque(i)/resampledData{nRep}.Torque(i)); 
                            upAngleDiff(kUp) = resampledData{nRep-

1}.rawTheta(i)-resampledData{nRep}.rawTheta(i); 
                            for m = lags 
                                upTorqueDiffLag(kUp,m-lags(1)+1) = 

resampledData{nRep-1}.Torque(i+m)-resampledData{nRep}.Torque(i+m); 
                                upAngleDiffLag(kUp,m-lags(1)+1) = 

resampledData{nRep-1}.rawTheta(i-m)-resampledData{nRep}.rawTheta(i-m); 

                                 
                            end 
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                        elseif resampledData{nRep}.acc(i) < 

downAccThreshhold && resampledData{nRep-1}.acc(i) < downAccThreshhold 
                            kDown=kDown+1; 
                            downTorqueRatio(kDown) = 

log(resampledData{nRep-1}.Torque(i)/resampledData{nRep}.Torque(i)); 
                            downVelDiff(kDown) = resampledData{nRep-

1}.vel(i)-resampledData{nRep}.vel(i); 
                            downAngleDiff(kDown) = resampledData{nRep-

1}.rawTheta(i)-resampledData{nRep}.rawTheta(i); 
                            for m = lags 
                                downTorqueDiffLag(kDown,m-lags(1)+1) = 

resampledData{nRep-1}.Torque(i+m)-resampledData{nRep}.Torque(i+m); 
                                downAngleDiffLag(kDown) = 

resampledData{nRep-1}.rawTheta(i)-resampledData{nRep}.rawTheta(i); 
                            end 
                        end 
                    end 

                     
                    up1 = 0*lags; 
                    up2 = 0*lags; 
                    up3 = 0*lags; 

                     
                    downSsr1 = 0*lags; 
                    downSsr2 = 0*lags; 
                    downSsr3 = 0*lags; 
                    if kUp>0 

                         
                        upTorqueRatio = upTorqueRatio(1:kUp); 
                        upTorqueDiffLag = upTorqueDiffLag(1:kUp,:); 
                        upAngleDiffLag = upAngleDiffLag(1:kUp,:); 
                        upAngleDiff = upAngleDiff(1:kUp); 
                        upVelDiff = upVelDiff(1:kUp); 

                         

                         
                        [ssr,sst] = getSS(upTorqueDiffLag,upAngleDiff); 
                        upSsr1 = upSsr1+ssr; 
                        upSst1 = upSst1+sst; 

                         
                        [ssr,sst] = 

getSS(upTorqueDiffLag,[upAngleDiff,upVelDiff]); 
                        upSsr2 = upSsr2+ssr; 
                        upSst2 = upSst2+sst; 

                         
                        for i = 1:length(lags) 
                            if(all(isfinite(upAngleDiffLag(:,i)))) 
                            [ssr,sst] = 

getSS(upTorqueRatio,[upAngleDiffLag(:,i),ones(size(upTorqueRatio))]); 
                            upSsr3(i) = upSsr3(i)+ssr; 
                            upSst3(i) = upSst3(i)+sst; 
                            end 
                        end 

                         

                         
                    end 
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                    if kDown>0 

                         
                        downTorqueRatio = downTorqueRatio(1:kDown); 
                        downTorqueDiffLag = 

downTorqueDiffLag(1:kDown,:); 
                        downAngleDiffLag = downAngleDiffLag(1:kDown,:); 
                        downAngleDiff = downAngleDiff(1:kDown); 
                        downVelDiff = downVelDiff(1:kDown); 

                         

                         
                        [ssr,sst] = 

getSS(downTorqueDiffLag,downAngleDiff); 
                        downSsr1 = downSsr1+ssr; 
                        downSst1 = downSst1+sst; 

                         
                        [ssr,sst] = 

getSS(downTorqueDiffLag,[downAngleDiff,downVelDiff]); 
                        downSsr2 = downSsr2+ssr; 
                        downSst2 = downSst2+sst; 

                         
                        for i = 1:length(lags) 
                            if(all(isfinite(downAngleDiffLag(:,i)))) 
                            [ssr,sst] = 

getSS(downTorqueRatio,[downAngleDiffLag(:,i),ones(size(downTorqueRatio)

)]); 
                            downSsr3(i) = downSsr3(i)+ssr; 
                            downSst3(i) = downSst3(i)+sst; 
                            end 
                        end 

                         
                    end 

                     
                end 
            end 
        end 

         
    end 

     
    figure 
    subplot(2,3,1) 
    plot(lags/rfs,upSsr1./upSst1) 
    subplot(2,3,2) 
    plot(lags/rfs,upSsr2./upSst2) 
    subplot(2,3,3) 
    plot(lags/rfs,upSsr3./upSst3) 
    title(ids{idn}) 

     
    subplot(2,3,4) 
    plot(lags/rfs,downSsr1./downSst1) 
    subplot(2,3,5) 
    plot(lags/rfs,downSsr2./downSst2) 
    subplot(2,3,6) 
    plot(lags/rfs,downSsr3./downSst3) 
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    save([ids{idn},'correlations']) 

     
end 

function [sse, sst] = getSS(y,x) 

  
w = x\y; 

  
e = (x*w-y); 
sse = sum(e.^2,1); 
sst = var(y,0,1)*size(y,1); 

  
sse(isnan(sse)) = 0; 
sst(isnan(sse)) = 0; 
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