
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Fall 2015

A study of kinematics and kinetics in time-
constrained arm movements
Oyindamola Owoeye
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Biomedical Engineering and Bioengineering Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Owoeye, Oyindamola, "A study of kinematics and kinetics in time-constrained arm movements" (2015). Theses. 262.
https://digitalcommons.njit.edu/theses/262

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.njit.edu%2Ftheses%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/262?utm_source=digitalcommons.njit.edu%2Ftheses%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A STUDY OF KINEMATICS AND KINETICS IN

TIME-CONSTRAINED ARM MOVEMENTS

by

Oyindamola Owoeye

Several studies such as the equilibrium point hypothesis (EPH) purport that the motor

signals that descend from the brain instead of encoding muscle torques, influence an

existing relationship between muscle torque and body configuration.

 In the present study, the possibility of torque depending explicitly on position was

tested using a task in which subjects (N=5) moved a simulated weightless frictionless mass

through a small (<8 degree) elbow extension in order to move a cursor on a screen to a

target location. Each subject completed 720 trials. On ~10% of trials the simulated mass

was increased unknown to the subject. The relationship between the cursor’s position and

the torque applied to the system was held constant even when the simulated mass was

increased. Thus, any change in torque produced was neither due the subjects’ perception

of the mass nor due to their perception of the cursor. The time at which the subjects torque

changed direction was seen to be significantly different (p<0.005) during trials which the

mass changed. This change in torque is concluded to be position-dependent. However the

possibility of this being a merely mechanical effect could not be ruled out by due to poor

EMG collection.

A post-hoc analysis of different position-dependent motor control models, was

done. Particularly, an exponential spring model, a linear spring model, and a linear spring

with relative damping model were each tested to see how well they could predict a change

in produced output torque from a change in position. Only the linear spring and relative

damping models were able to do so.

This experiment is not enough to prove that descending torque produced is

systematically position-dependent but the methodology for testing models is promising and

additional studies should be done along similar lines.

A STUDY OF KINEMATICS AND KINETICS IN

 TIME-CONSTRAINED ARM MOVEMENTS

by

Oyindamola Owoeye

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Masters if Science in Biomedical Engineering

Department of Biomedical Engineering

January 2016

APPROVAL PAGE

A STUDY OF KINEMATICS AND KINETICS IN

TIME-CONSTRAINED ARM MOVEMENTS

Oyindamola Owoeye

Dr. Richard Foulds, Thesis Advisor Date

Associate Professor of Biomedical Engineering, NJIT

Dr. Sergei Adamovich, Committee Member Date

Associate Professor of Biomedical Engineering, NJIT

Dr. Tara Alvarez, Committee Member Date

Professor of Biomedical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Oyindamola Owoeye

Degree: 	 Master of Science

Date: 	 August 2015

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2015

• Bachelor of Science in Mathematics,
University of Pittsburgh, Pittsburgh, Pennsylvania, 2012

Major: 	 Biomedical Engineering

iv

v

Since a man without limbs is no less loveable than I, and since I cannot conjure sentience,

and since a man with malfunctioning organs is no less loveable than I, and since my

laptop is less loveable than a dog, I must thank the God that created my lovability and

sentience. Before I had either I did not covet them and yet now here they are.

vi

ACKNOWLEDGMENT

 The coincidence of my time at NJIT as a student with Dr. Richard Foulds time as

a faculty was an extremely fortunate occurrence. While I can’t reasonably expect every

individual I come across in academia to be as encouraging, supportive, and inspiring as

Dr. Foulds has been in divers of my endeavors over the past two and a half years, I hope

that if I ever find myself in such a position, I will attempt to be the same for future

students. I’d like to thank Dr. Sergei Adamovich for taking a vested interest in my

research and providing many resources to further my insight in the field. I would also like

to thank Dr. Tara Alvarez for both her support and her superb teaching in the classroom.

 A special thanks goes out to John Hoinowski without who was always of great

assistance both during this study and in general. A special thanks also to Kevin and Kiran

who helped me familiarize with the HapticMASTER and endured countless hours of pilot

testing. They along with Madeline, Naphtali, and Peter were incredibly available to

bounce ideas with.

 No matter what I do or what I feel like I ever accomplish, I will always remember

and acknowledge that without my parents, I wouldn’t know how to use a spoon.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……............................………………..………………………… 1

 1.1 Objective……………………………………………………………………….. 1

 1.2 Past Animal Studies……………………………………………………………. 2

 1.3 Equilibrium-Point Models……………………………………………………… 3

2 METHODS…………………………………………………………………………. 11

 2.1 Admittance Control…………………………………………………………….. 11

 2.2 Experimental Set-up……………………………………………………………. 13

 2.3 Parameter Determination………………………………………………………. 17

3 RESULTS…………………………………………………………………………... 19

 3.1 Torque Sign Change……………………………………………………………. 19

 3.2 Cross-Determination…………………………………………………………… 23

4 DISCUSSION………………………………………………………………………. 27

 4.1 Discussion of Torque Sign Change……………………………….……………. 27

 4.2 Discussion of Cross-Determination……………………………………………. 28

 4.3 Future Directions……………………………………………………………….. 29

A APPENDIX…………………………………………………………………………. 30

 A.1 Matlab Code for Task………………………………………………………….. 30

 A.2 C# code for Task……………………………………………………………….. 36

 A.3 Matlab Code for Cross-Determination…………………………………………. 41

viii

LIST OF TABLES

Table Page

2.1 Torque Sign Change Points……………………………………………………. 20

ix

LIST OF FIGURES

Figure Page

1.1 Apparatus used in classic animal motion studies…………………………… 3

1.2 Convergent Force Fields……………………………………………………. 4

1.3 EMG over grid…………………………………………………………….… 5

1.4 Invariant characteristics…………………………………………………….. 6

1.5 Coriolis reaching trajectories…………………………………….…………. 8

2.1 Haptic Master Control Loop………………………………………………... 11

2.2 Screenshots of virtual environment from task………………………….…… 13

3.1 Example cursor trajectories…………………………………………………. 19

3.2 Example cursor trajectory for excluded trial………………………………... 20

3.3 Trial average cursor trajectory, torque, and arm angle……………………... 21-22

3.4 Cross determinations………………………………………………………... 24-26

1

CHAPTER 1

BACKGROUND

1.1 Objective

The aim of the present study is to investigate the possibility that the activations of muscles

in human arm movements, given a signal descending from the brain into the spinal cord,

are position dependent. Mathematically, this could be written as

𝑎(𝑡) = 𝑓(𝑠(𝑡), 𝑥(𝑡)) (1.1)

where 𝑎(𝑡) is the activation of a muscle at time 𝑡, 𝑠(𝑡) is motor signal that is sent from the

brain to the spinal chord, and 𝑥(𝑡) is a variable that is related to the positions and/or

velocity of the (parts of the) arm. What this Equation implies is that even if 𝑠(𝑡) is fixed,

𝑎(𝑡) can be different as a result of a different 𝑥(𝑡). Alternatively it is possible that the

central signal affects the muscle activation in a generally position-independent manner as

in

𝑎(𝑡) = 𝑔(𝑠(𝑡)) (1.2)

where 𝑔 is a monotonic function.

Equation 1.1 can be considered a generalization of theories from the past several decades.

Despite much research, position-dependent control has neither been proven nor disproven.

2

The following sections review these theories and discuss some reasons they haven’t been

completely accepted or rejected.

1.2 Past Animal Studies

The key to verifying position dependent spinal control is to fix 𝑠(𝑡), vary 𝑥(𝑡), and measure

𝑎(𝑡). Fixing 𝑠(𝑡) has been achieved in animal studies via direct microstimulation of the

spinal column. Gizster, Mussa-Ivaldi, and Bizzi performed such an experiment on bullfrogs

[4]. In their study, the bullfrog’s spinal column was transected at the calamus scriptorius

and microelectrodes were used to stimulate the frog’s lumbar spinal cord. The stimulation

elicited activation of the frog’s leg muscles resulting in a force produced at the frog’s ankle.

The frog’s ankle was restrained by a force transducer which also served the purpose of

measuring the force elicited by the stimulation (Figure 1.1). Multiple stimulation sites were

used and for each stimulation site, stimulation was repeated with the frog’s ankle placed at

different locations. Gizster et al. found that the evoked forces for a given stimulation site

depended on the location of the ankle. Usually, the plot of forces against ankle position

resulted in a “convergent force field”, that is, the forces tended to be directed toward a

certain location at which the force field was 0 (Figure 1.2). This point was termed the

equilibrium point. The equilibrium point and force field was shown to be dependent on the

site of spinal stimulation but not on the strength of stimulation. It should be noted that the

evoked forces would be slightly position dependent even if Equation 1.1 does not hold

simply due to mechanical properties of the limb; passive elastic forces will tend to bring

the limb towards a certain position and the torque produced by muscles is dependent on

3

muscle length. Gizster et al. did compensate for these forces when finding the convergent

force fields. They also collected electromyography (EMG) from the frog’s legs. The

amplitude of EMG can be considered related to the activation of muscles, thus, a

dependency of EMG amplitude on position lends further evidence to position-dependent

control. Indeed Gizster et al. found that the amplitude of EMG varied with position similar

to how force varied (Figure 1.3).

The conclusions drawn from the frog study cannot be assumed to hold true for humans as

well. However, similar experiments done with cats [10] and rats [7] have also shown

convergent force fields.

1.3 Equilibrium-Point Models

One of the earliest motor control theories that involved position-dependent control was

Merton’s “servo hypothesis” [6]. In Merton’s hypothesis, the length of a muscle is specified

by the descending signal similar to how the angle of a servo motor is specified. This mode

of control is achieved through modulation of the activity of 𝛾-motoneurons which controls

Figure 1.1 Apparatus used by Giszter, Mussa-Ivaldi, and Bizzi.
Source: Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993).

4

the sensitivity of the spindles to muscle-length. This change elicits the tonic stretch-reflex

to change the activity of the 𝛼-motoneurons thus, bringing the muscle to a specified

position. The servo hypothesis implied that a change in activity of 𝛼-motoneurons should

be delayed relative to a change in the activity of 𝛾-motoneurons. However, experiments

shows that changes in 𝛼-motoneuron activity and 𝛾-motoneuron activity are simultaneous.

The servo hypothesis had two more fatal flaws in the fact that it required a very high gain

of the stretch reflex and it implied a large delay due to its feedback loop. While the servo

hypothesis did not survive, it was the first theory to unite the control of movement and

posture into a single mechanism. It also provided a simple mode of control that simplifies

the inverse kinematics the brain would need to compute to achieve a goal motion. The

equilibrium-point hypothesis (EPH) shares these merits with the servo hypothesis but does

not have the same crucial flaws.

The original formulation of the equilibrium-point hypothesis was developed by

Anatol Feldman in 1966. The basis of the EPH was experiments involving spinal

stimulation of decerebrated cats [8]. Such experiments revealed that stimulation did not

Figure 1.2 Force fields measured by Giszter, Mussa-Ivaldi, and Bizzi.
Source: Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993).

5

correspond to muscle activation but instead to a change in the force-length characteristic

of the muscle. In general, the amount of force a muscle produces increases nonlinearly with

its length. The muscle will change length unless the load and the muscle force balance out.

The length at which the load and muscle force balance is termed the equilibrium point (EP).

The EPH is the hypothesis that the central signal changes the force-length characteristic

and thus, influences the EP (Figure 1.4). It should be noted that the EP is not determined

entirely by the central signal but the combination of the central signal and the external load.

Feldman hypothesized that voluntary movements are produced by shifting EPs from an

initial point to a desired point. In this way, posture and movement are controlled by the

same mechanism.

There are several versions of the EPH. The 𝜆 hypothesis postulates that the force-

length characteristic is modulated by changes in the threshold for the stretch reflex. This

hypothesis avoids the high gain required by a servo hypothesis since the central signal does

not directly specify the resulting muscle-length. It also implies a much lower delay than

Figure 1.3 EMG from frog semitendinosus muscle collected by Gizster et al. The position

of the each EMG trace corresponds with the position of the frog’s hindlimb during

stimulation.
source: Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993).

6

the servo hypothesis because the spinal cord’s interpretation of the spindle activity is

modulated as opposed to the spindle activity itself being modulated through the gamma-

motor neurons. This results in a much shorter feedback loop.

 The 𝜆 hypothesis can be formulated as

𝑎(𝑡) = 𝑐[𝑒𝑏(𝑥(𝑡)−𝜆(𝑡)) − 1] (1.3)

where 𝑡, represents time, 𝑏 and 𝑐 are constant parameters, 𝑎 represents the muscle

activation, 𝑥 the muscle length, and 𝜆 the threshold for the stretch reflex. Here, 𝜆 is

replacing 𝑠 from Equation 1.1 and has a specific physiological meaning.

Numerous studies have been conducted which purportedly disprove the EPH. The

main paradigm for such studies involves subjects learning a movement with a certain

external load and then subject repeating the movement with the load changing

unexpectedly. Under the internal dynamics model (IDM), the brain develops a physical

model of the system and through inverse kinematics computes the necessary muscle

Figure 1.4 Left: invariant characteristic. Right: two different ICs are shown

representing two different central commands in the EPH. The muscle length can be

changed under a constant load by shifting the IC as is seen by comparing EP1 to EP0.
Source: Latash, M. L. Neurophysiological Basis of Movement.

7

activations to complete the task. The central signal then directly specifies those muscle

activations. The IDM predicts that when the load is unexpectedly changed, unless the

central signal also changes, the muscle activations should remain the same. The EPH

predicts that changes in the external load should lead to changes in the muscle length which

should lead to changes in the muscle activation. A special situation is when the change in

the external load is only transient in which case the movement should still terminate at the

equilibrium point as the equilibrium point is determined by the final load and the central

signal. The property of the movement to terminate in the same position regardless of

transient changes in the load is termed equifinality. Thus, studies in which said conditions

are met but equifinality is not observed serve as disproof of the EPH.

In one such study conducted by Hinder and Milner, subjects were tasked with

moving a cursor on a screen to a target location via wrist flexion [5]. Their wrist flexion

was assisted by a motor that produced assisting torque proportional to the angular velocity

of their wrist. The action of the motor can be thought of as a negative damping force; since

normally damping increases the stability of a system, the motor destabilized their

movement resulting in oscillations around the endpoint. After many trials, subjects learned

to reach the target but oscillations persisted. In later trials, occasionally the assisting torque

of the motor was either reduced or completely eliminated. Hinder and Milner observed that

without the assisting torque, subjects undershot the target without oscillation and the

cumulative EMG was not significantly different (up until just before the oscillations would

typically start) than it was with the assisting torque. This study shows a scenario in which

it is evident that muscle activation is position independent and specified directly by the

brain. However this study is curious in the fact that the oscillations were never eliminated

8

despite subjects performing hundreds of trials. The oscillations are more expected in an

EPH style control due to the fact that the dynamics of the combination of EPH and the

assisting torque is akin to an underdamped nonlinear spring. If the brain directly specifies

the muscle activations after building a model, one would expect the brain could simply

compensate for the assisting torque by reducing the torque produced by the wrist and thus,

eliminate the oscillations.

In another study conducted by Dizio and Lackner in 1994, Subjects were tasked

with touching a target which was visible only before the onset of movement [2]. After

performing this task 40 times, the subjects repeated the task again but while sitting in a

dark room on a rotating platform. The rotation induced Coriolis forces on the arm which

are proportional to the speed of the arms movement and thus, presented a transient

perturbation. After 40 trials of the rotation condition, the subjects performed the task again

without rotation. The subjects showed a lack of equifinality both when initially

Figure 1.5 Average reaching movement paths for labyrinthine-defective (LD) and

control subjects before(pre) during (per) and after (post) rotation.
Source: DiZio, P., & Lackner, J. R. 2001

9

encountering the coriolis force, and immediately after the coriolis force was removed.

Their trajectories are akin to what one might expect if the subjects were producing a strictly

time-dependent force that was added to the externl forces independent of position (Figure

1.5).

In response to the Hinder and Milner study as well as the Dizio and Lackner study,

Feldman, Ostry, and Levin, stated that the subjects central commands may have

unintentionally changed due to the subjects detecting the changes in the dynamics [3]. Such

a theory led Dizio and Lackner to include subjects in their experiments with labyrinthine

defects that prevented them from feeling the rotation. Feldman, Ostry and Levin also

postulate that the central signal simply has to change in these situations because of the fact

that they are experiencing negative damping due to the environment. Indeed, it is difficult

to know whether or not the central signal changes since it cannot at this time be directly

measured. For this reason, experiments often involve the subject being instructed not to

react to changes in dynamics, and also involve quirks such as removing a visual target just

as a subject starts reaching for it. The idea here is that if the subject cannot see the target,

there will be no online corrections made during the movement.

It is possible that there are multiple modes of control that can operate in parallel.

While such a notion lacks the allure of simplicity that models such as the EPH have, it

allows for the reconciliation of experimental results that seem to be at odds. The

implication of such a possibility is that more needs to be done to identify when one mode

of control is used over another so studies are not confounded by false premises.

In the present study, a single joint arm flexion with a slightly damped inertial load

is tested. The goal of the task is to use a physical interface to move an object displayed on

10

a screen to a target also on the screen. Since the goal object is virtual, it is theoretically

possible to change the dynamics of the physical interface, while holding fixed the dynamics

of the virtual interface. Instead of commanding subjects to “not react to a change”, subjects

are not made aware of the change; instead of removing visual feedback, the visual feedback

is manipulated to reinforce subjects’ lack of awareness of the change. The hope is that since

the perturbation is not destabilizing, and since the subject is only concerned with the virtual

object, their central signal should not change as long as the virtual object’s dynamics

remain fixed. Thus, once the task is learned, the time-course of the subject’s central signal

should remain the same but the location of their arm should be altered. If the time-course

of the subject’s muscle activation is also altered, we can conclude that this is a paradigm

in which muscle activations are position-dependent.

11

CHAPTER 2

METHODOLOGY

2.1 Admittance Control

Admittance control is a mode of human-robot interface in which a robotic end-effector

simulates a relationship between the force applied by the human, 𝒇𝒂, and the desired

position of the end-effector 𝒙. Admittance controllers generally consist of three parts: a

force sensor to measure the applied force, a computer that calculates the desired position

of the end-effector at any time, and a lower level follower, e.g. a PID controller, to bring

the actual position, 𝒙, of the end-effector to the desired position. While there is technically

a lag between the desired position and the actual position, if the follower is fast enough,

this lag is negligent.

A simple example of what can be achieved with an admittance controller is simulation of

a frictionless weightless mass. To this end the force-position relationship used would be

�̈̂� =
𝒇𝒂

𝑚

(2.1)

Figure 2.1 Haptic Master Control loop.
Source: Van der Linde, R. Q., et al.

12

where �̈� represents the second time derivative of 𝒙, and 𝑚 the mass being simulated. This

can be modified to include a constant “gravitational” field by incorporating another term:

�̈̂� =
𝒇𝒂

𝑚
+ 𝒂𝒈

(2.2)

where 𝒂𝒈 is the acceleration due to gravity.

Using admittance control devices allows the simulation of different physical scenarios that

may never be encountered in real life. Such a paradigm is very valuable to motor control

research for two reasons. Firstly, because any model of human motor production is in a

sense “fit” to our observations of usual physical scenarios, but a good model should be able

to make accurate predictions in a great variety of scenarios. Secondly, some studies, such

as the current one take advantage of the physical scenario to shape the relationship between

possible control variables and the motor goal.

 The HapticMASTER is an admittance control robotic device that runs its

admittance control at a rate of 2500 Hz. The force sensor of the HapticMASTER is located

at the linkage of its end-effector allowing for any attachment to effectively control it.

13

2.2 Experimental Set-up

The visual environment consisted of 4 entities on a screen: a round cursor, a round target

in the center of the screen, a square target directly below the round target henceforth

referred to as the “near target”, and another square target directly below the near target

henceforth referred to as the “far target”. The three targets were all evenly spaced.

Subjects performed a task in which they moved the cursor from one target to the next in

sequence. Each trial was initialized by the subjects bringing the cursor to the round target.

This triggered the appearance of the near target in green as well as the far target in yellow.

Subjects then moved the cursor to the near target. Once the target had come to a stop within

the near target, following a short delay, the near target disappeared and the far target turned

Figure 2.2 Screenshots of the visual environment.

14

green. The far target color changed cued the subject to move the cursor to the far target. A

programmatic stopwatch was also started at this time, the stopwatch was paused whenever

the cursor was within the far target. If the cursor was moved into the full target and brought

to a stop before the stopwatch reached 700ms, the trial was a success, this was indicated to

the subject by the explosion of the target as well as the incrementing of a score in the top

left of the screen. If the subject failed to reach the far target in time, the trial was

unsuccessful as indicated by the mundane disappearance of the far target.

To control the cursor, subjects moved the end-effector of the HapticMASTER in

the vertical direction using only flexion of their elbow. Subjects sat in a chair with their

elbow placed on an elbow rest and grasped the HapticMASTER end-effector with their

dominant hand. The angle of the subject’s forearm was inferred from the position of the

HapticMASTER end-effector. To this end, a calibration was done for each subject in which

they performed several flexion and extension movements. The positions of the

HapticMASTER during these movements was fit to a circle yielding the vertical location

of the subjects elbow in the HapticMASTER’s coordinates, as well as the length of the

subject’s lever arm which was the distance from their elbow to their proximal phalanges.

A linear relationship between the angle of the subject’s forearm and the relative

position of the cursor was maintained:

𝑦 = 𝑘𝜃 + 𝜃0 (2.3)

where 𝜃 was the elbow angle, 𝑦 the relative position of the cursor, and 𝑘 and 𝜃0 the

parameters that defined their relationship, termed the scale and, offset respectively. There

15

was a kinetic relationship between the cursor’s position and the forces applied to the

rotational system comprised of the subject’s forearm and the HapticMaster’s end effector

imposed by the laws of rotational motion:

�̈� = 𝑘�̈� =
𝑘𝜏

𝐼
 (2.4)

where 𝜏 is the total torque applied to the system, and 𝐼 is the inertia of the system.

The moments of inertia of subjects’ arms, 𝐼𝑎 were inferred from measurements and

anthropometric ratios. The moment of inertia added by the HapticMASTER was given by

𝐼ℎ = 𝑚𝑟2 (2.5)

where 𝑚 is still the virtual mass simulated by the HapticMASTER and 𝑟 the

subject’s lever arm. Since the virtual mass could be controlled, the total inertia of the

system could be manipulated as it was the sum of the two inertias:

𝐼 = 𝐼𝑎 + 𝐼ℎ. (2.6)

Unknown to the subject, on ~10% of trials, the virtual mass was increased by a

factor of 1.25. This lead to a change in the moment of inertia by a factor of 𝛼 which

depended slightly on the subject but was always close to 1.18. Simultaneously, the cursor’s

scale was increased by the same factor. This yielded the modified Equations of motion:

16

�̈� =
𝜏

𝛼𝐼
 (2.7)

and

�̈� =
𝛼𝑘𝜏

𝛼𝐼
=

𝑘𝜏

𝐼
. (2.8)

This change occurred at the same time as the color change of the far target. Since subjects

were at rest at this point, there was no way for them to feel the change prior to the motion.

Such trial are termed “loaded trials”.

The task was completed in sets of 20 trials each. Subjects each completed five

sessions consisting of six sets each. To prevent muscle fatigue, subjects had a 30 second

rest period in between each set. Loaded trials were absent until the second set or the set

following the subject’s first set with at least 70% success. Loaded trials were chosen at

random from the last 11 trials of each set which the stipulation that any two loaded trials

had at least two standard trials in between them.

Two channels of EMG were recorded using a Delsys Bagnoli™ EMG system. The

first channel was used to record EMG activity from the subject’s biceps and the other

channel was used to record EMG activity from the subject’s triceps.

All subjects signed a consent form approved by the NJIT Institutional Review Board.

17

2.3 Parameter Determination

The amount of upwards force that needed to be applied at subjects’ hands to

counteract the torque due to gravity needed to be determined. The torque due to gravity

depends on the angle of the elbow according to

𝜏𝑔 = 𝑚𝑎𝑔𝑟𝑎 cos(θ) (2.9)

where 𝑚𝑎 is the mass of the subject’s forearm, 𝑔, the acceleration due to gravity, 𝑟𝑎 the

effective radius of gyration of the subject’s arm, and 𝜃 the angle between the subject’s

elbow and the horizontal plane supporting the elbow. The force needed to balance the

torque is given by

𝑓𝑎𝑛𝑡𝑖𝑔𝑟𝑎𝑣 =
𝜏𝑔

cos(𝜃) 𝑟
= 𝑚𝑎𝑔

𝑟𝑎

𝑟
. (2.10)

This force was measured over the 15 degree range of motion used in the task. The force

found was generally not constant but tended to be higher for greater angles. Applying the

average force for some subjects proved to be adequate only for a small part of this range;

at some portion of the range the force would either undercompensate or over compensate

for gravity. Instead a force depending on the vertical displacement of the subject’s hand

was used. This position dependent force was able to completely eliminate the effect of

gravity. The average force required to balance the arm was used to compute the average

gravitational torque being affecting their arm. The radius of gyration of the subjects arms

18

was computed as being located 82.7% of the distance between their elbow and ulnar styloid

as given in anthropometric tables [12]. From the gravitational torque and the radius of

gyration, the moment of inertia of the subject’s arm was computed.

A damping force of 8𝐾𝑔 ∙ 𝑠 was applied during standard trials. This force was

scaled up by 𝛼 during loaded trials.

19

CHAPTER 3

RESULTS

3.1 Torque Sign Change

Five naive subjects (4 right-handed 1 left-handed) were tested in this study. Subjects

learned to anticipate the move cue which led to their movements typically having a smooth

profile as in figure 3.1. On some trials, subjects began moving prior to the cue, this is

evident in the cursor trajectory as in figure 3.2. Such trials were excluded from analysis.

The first two trials of each set were also excluded. A total of 1368 out of 3600 trials were

excluded.

The angular acceleration was computed for each trial and filtered with a low pass

Butterworth filter with a cutoff frequency of 25 Hz. The time relative to the far target color

change that the angular acceleration reached 0 was computed for each trial. This elapsed

Figure 3.1 Example trajectories for subject 1. On the abscissa is the elapsed time since the cursor

was brought inside of the target. On the ordinate is the position of the cursor. The targets are

represented by the green boxes with their centers marked by the red dashed lines.

20

time, henceforth referred to as the torque sign-change point (TSCP) was averaged for each

subject over all trials. The mean TSCP was computed independently for loaded trials and

standard trials. The difference between the mean TSCP for loaded trials and the mean

TSCMP for standard trials was computed for each subject and is summarized in Table 2.1

A paired t test was performed on the mean TSCP revealing that there was a significant

(p<0.005) increase in TSCP during loaded trials. Figure 3.3 shows the torques of the trial

averages of the movements. For the preceding analysis trial averaging was not used prior

to the computation of the TCSP but it is evident in figure 3.3 that the TCSP for the trial

averaged loaded trial is delayed with respect to the TCSP trial averaged standard trial

Figure 3.2 Example trajectory for subject 3. The trajectory near target is approached from below

(above in the plot) instead of from below. This represents a reversal of movement direction after

the subject moved to early.

21

Table 2.1 Torque Sign Change Points

Subject

Mean TSCP (±stdv) in seconds Difference in mean TCSP

(Loaded – standard) Standard trials Loaded trials

1 0.9322 (±0.0765) 0.9704 (±0.0904) 0.0382

2 1.0592 (±0.0901) 1.0789 (±0.0858) 0.0197

3 1.0156 (±0.0840) 1.0358 (±0.0848) 0.0203

4 1.0001 (±0.0835) 1.0118 (±0.0903) 0.0117

5 1.0979 (±0.0621) 1.1137 (±0.0451) 0.0158

Figure 3.3a-b Trial averages of arm angle, torque, and cursor position. The trial average

for standard trials is plotted in black while the trial average for loaded trials is plotted in

magenta. It is evident that the torque crosses 0 later in the loaded trials.

22

 Figure 3.3c-e Trial averages of arm angle, torque, and cursor position. The trial average

for standard trials is plotted in black while the trial average for loaded trials is plotted in

magenta. It is evident that the torque crosses 0 later in the loaded trials.

23

3.2 Cross-Determination

A post-hoc analysis of how well the kinetic and kinematic data fit the prediction of three

different position-dependent control models. The first model is an exponential spring

model obtained by taking the 𝜆 hypothesis (Equation 1.3) and assuming that torque is

constantly proportional to activation yielding

𝜏(𝑡 + 𝑡𝑑) = 𝑐[𝑒𝑏(𝜃(𝑡)−𝜆(𝑡)) − 1], (3.1)

where 𝑡𝑑 represents a time delay. The next model is obtained by assuming that the produced

torque is actually more akin to a linear spring due to the combined efforts of many different

motor units. This takes the form

𝜏(𝑡) = 𝑐(𝜃(𝑡) − 𝜆(𝑡)). (3.2)

The third model is a relative damping model similar to the one proposed in [10] given by

𝜏(𝑡 + 𝑡𝑑) = 𝑐𝑠(𝜃(𝑡) − 𝜆(𝑡)) − 𝑐𝑑 (�̇�(𝑡) − �̇�(𝑡)). (3.3)

It should be noted that all these models normally have absolute damping which is being

neglected here. It was assumed that once the motion was learned, from one trial to the next,

𝜆(𝑡) was the same. Thus, the parameters of these models could be fit by eliminating 𝜆. This

was achieved in the nonlinear 𝜆 hypothesis model by manipulating Equation 3.1 to obtain

24

log (
𝜏2(𝑡 + 𝑡𝑑) + 𝑐

𝜏1(𝑡 + 𝑡𝑑) + 𝑐
) = 𝑏(𝜃2(𝑡) − 𝜃1(𝑡)).

(3.4)

Likewise the linear spring model implies

𝜏2(𝑡 + 𝑡𝑑) − 𝜏1(𝑡 + 𝑡𝑑) = 𝑐(𝜃2(𝑡) − 𝜃1(𝑡)) (3.5)

And the relative damping model implies

𝜏2(𝑡 + 𝑡𝐷) − 𝜏1(𝑡 + 𝑡𝑑) = 𝑐𝑠(𝜃2(𝑡) − 𝜃1(𝑡)) + 𝑐𝑑(𝜃2(𝑡) − 𝜃1(𝑡)). (3.6)

Figure 3.4a Cross-Determination for subject 1. Each axes shows the coefficient of

determination plotted versus the time delay for the three position-dependent activation

models. The acceleration and Deceleration phase of the movement is analyzed separately.

25

The parameters in Equations 3.4 - 3.6 can all be determined via least squares regression.

The goodness of the fit can be determined by the coefficient of determination. However,

spurious fits can be obtained and the time delay, 𝑡𝑑 is unknown. For each subject and each

model, the coefficient of determination was determined for a range of possible time delays.

The coefficients of determinations for different time delays will be referred to as the cross-

determination as it is an extension of a cross-correlation.

Figure 3.4b Cross-Determination for subject 2.

Figure 3.4c Cross-Determination for subject 3.

26

Figure 3.4d Cross-Determination for subject 4.

Figure 3.4e Cross-Determination for subject 5.

27

CHAPTER 4

DISCUSSION

4.1 Discussion of Torque Sign Change

It should be noted that subjects were informed about the loaded trials only after the

experiment had concluded and all reported that they hadn’t noticed the change in inertia

during the experiment. The TSCP increase during loaded trials is in line with what would

be expected in position-dependent control. For example, under the EPH, the lag in elbow

angle caused by the increase in inertia would lead to the triceps remaining active longer

than during standard trials. However, this result is not very strong on its own since the

muscles are not the only producer of torque in the system. Particularly, a frictional torque

that doesn’t scale with the moment of inertia could lead to somewhat similar results.

A more useful measurement would be the duration of the tricep EMG burst during

the movements. Unfortunately, the EMG collected proved to be very nonstationary during

the course of the experiment and only a small fraction of the trials showed EMG activity

that looked related to the task. Initially this was believed to be due to the task eliciting too

little muscle activation to yield significant EMG. The parameters of the experiment,

namely the starting inertia and the maximum of the movement time were manipulated

during pilot trials to achieve a higher EMG amplitude. While these parameter changes

showed a boost in EMG signal initially, the quality of the EMG signal tended to fade in

and out during the course of many trials. One additional subject was tested with a higher

inertia and slightly shorter movement time than previous subjects and unlike with previous

subjects, five electrodes were used (two recording from the biceps and three from the

28

triceps). This subject initially reported slight fatiguing. The EMG for this subject exhibited

the same lack of stationarity as for the other subjects.

4.2 Discussion of Cross-Determination

In the computation of the coefficients of determination, a positive time delay corresponds

to a comparison of kinematic variables (position, velocity, or exponential of position) to a

future torque while a negative time delay corresponds to a comparison of kinematic

variables to a past torque. Thus, a high coefficient of determination for a positive time

delay implies that the kinematic variables linearly influence the torques produced

afterwards. A high coefficient of determination for a negative time delay means that the

torque has a linear influence on the kinematic variables that result afterwards. A coefficient

of determination that is negative means that the model is even less well fit than a model

that simply gives the average torque regardless of any other input. The exponential model

generally fails to account for variance in future torques. This suggests that this model is

invalid. For all five of the subjects, the linear spring model appears to explain 60-70% of

the variance in torque around with a time delay of about 90ms. This would suggest that the

linear spring model is somewhat valid. However this trend is only seen for the acceleration

phase of the movement. The relative damping model explains variance in future torques in

both the acceleration and deceleration phase for three of the subjects. This better

performance could possibly be due to the model being more complex or due to it being

more valid. The relative damping model also explains variance in past torques due to the

linear relationship between acceleration and change of velocity.

 Overall the study is inconclusive though its results point towards a position-

dependent interpretation of motor signals. It should still be noted that it is possible that

29

the motor system uses different strategies for different situations. More similar studies

would need to be conducted to achieve a conclusive result.

4.3 Future Directions

The biggest flaw of this study is the lack of usable EMG data. A future project could aim

at improving the quality of recorded EMG and re-conducting this same study. One

possibility is that there was movement of the ground electrode.

 Another change to the current study could be the timing mechanics. In this study,

there was a pause between the subject reaching the near target and the far target color

change subjects would prepare their motor command as much as possible prior to

execution. Once the far target appeared, the timer was started to ensure that subjects’

movements were quick enough to both elicit measureable EMG and prevent the viability

of online corrections. However, subjects didn’t always perfectly anticipate the color change

of the far target. It would be better to have the timer start once the subject begins moving

instead of once the target appears so that timing anticipation becomes less of a factor.

The use of cross-determination was done post-hoc in this experiment and thus, the

results of the cross-determination have no weight unless they are reproduced in a future

experiment. It is also possible that the apparent relationships between kinematics and

torques were idiosyncratic to this particular movement trajectory. Such an analysis should

be done on movements with different velocity profiles.

30

CHAPTER 5 APPENDIX

This appendix contain the Matlab and C# code used in the running of the experiment as

well as part of the code used in the analysis, particularly that used to compute the cross-

determinations.

A.1 Matlab Code for Task

function OyindaHapticCurl(baseHapticMass,handLength,cForce)

global g_position g_force g_timestamp g_posChannel g_trgtChannel

g_emgChannel g_flag1 g_h g_k g_thetaStart g_r

disp('running Haptic Curl')

%% Create Constants

targetWidth = .175; %proximity to target required to "hit" target

centerWidth = .15; %proximity to center required to "hit" center

inRange = 0; %flag for whether cursor is currently hitting full target

outOfBounds = 2.3;%distance corresponding to out of bounds

nReps = 20; %number of repetitions of same target before switching

targets

meanHold = .65; %mean time cursor needs to be in range of half target

before full target appears

hHoldRange = .25; %range of possible hold times

hHold = meanHold + hHoldRange*(rand-.5); %time cursor needs to be range

of half target

cHold = 0; %time cursor needs to be in range of center before half

target appears

fullHold = .75;%time cursor needs to be range of full target to score

% maxTime =1.75; %time alloted to reach full target to score

speedThreshold = 1;%half target isn't considered reached unless the

cursor speed is below this threshold

% sw is a list of the reps in which the scale should increase

n = 1;

sw = zeros(1,10);

if g_flag1

 while n<10;

 n=1;

 i = 9;

 while i<=60;

 if rand>=.6

 sw(n) = i;

 i = i+2;

 n = n+1;

 if n > 10

 break

31

 end

 end

 i = i+1;

 end

 end

end

nScaleSwitch = 1;

antiGrav = hm_constant_force([0,0,cForce]);

%% Create record-keeping variables

targetType= 0; %0 if seeking center, 1 if seeking half target, 2 if

seeking full target

dataMax = 50000;% max number of samples

movementData = cell(1,nReps);%cell holding one data struct per movement

%initialize arrays for each movement

for i=1:nReps

 movementData{i}.theta = zeros(1,dataMax);

 movementData{i}.rawPosData = zeros(3,dataMax);

 movementData{i}.force = zeros(3,dataMax);

 movementData{i}.timeStamp = zeros(1,dataMax);

 movementData{i}.toc = zeros(1,dataMax);

 movementData{i}.scale = zeros(1,dataMax);

end

nMovement = 1; %number of reaching movement

j=1; %data sample index

nHit = 1; %index at which the target is reached

%% Dynamic Variables

rg = .827*(g_r-handLength); %radius of gyration of the arm as estimated

from anthropometric tables

armMass = cForce*g_r/rg;

armInertia = armMass*rg^2;

armLoadMassRatio = 4; %ratio of mass of medium load to arm mass

midHapticMass = max([armMass*armLoadMassRatio,3]);

midBaseInertiaRatio =

(midHapticMass*cForce+armInertia)/(baseHapticMass*cForce+armInertia);%r

atio of base rotational inertia to medium rotational inertia

hiMidMassRatio = 1.2;%ratio of mass of medium load to mass of high load

hiHapticMass = midHapticMass*hiMidMassRatio;

hiMidInertiaRatio =

(hiHapticMass*cForce+armInertia)/(midHapticMass*cForce+armInertia);

%ratio between change of arm angle and change of virual object position

baseScale = 3;

32

midScale = midBaseInertiaRatio*baseScale;

hiScale = hiMidInertiaRatio*midScale;

scale = baseScale;%start at low scale

offset = 0;%offset of position to allow smooth switching of scale

prevTheta = 0;%store 1 lag of virtual position to calculate velocity

repCount = 0;

%% Send data

fwrite(g_emgChannel,'begin') %start emg collection

tInRange = tic;

tBegin = tic;

while repCount < nReps;

 %calculate virtual position and send to unity

 thetaRaw = atan2(g_position(3)-g_k,-g_position(1)-g_h)-

g_thetaStart;

 theta = thetaRaw*scale+offset;

 posData = ['X0','Y',num2str(theta),'Z'];

 fwrite(g_posChannel,posData);

 spd = abs(prevTheta-theta); %cursor speed

 %record keeping

 movementData{nMovement}.theta(j) = theta;

 movementData{nMovement}.rawPosData(:,j) = g_position;

 movementData{nMovement}.force(:,j) = g_force;

 movementData{nMovement}.timeStamp(j) = g_timestamp;

 movementData{nMovement}.toc(j) = toc(tBegin);

 movementData{nMovement}.scale = scale;

 movementData{nMovement}.targetType = targetType;

 %CHECKING IF HALF TARGET IS REACHED

 if targetType==1

 if abs(theta-1)<targetWidth

 if toc(tInRange)>= hHold && spd<speedThreshold

 targetType = 2;%flag the full target is being sought

 fwrite(g_trgtChannel,'t2','char');% send full target to

unity

 %switch scales ~20% of the time

33

 if nScaleSwitch <= length(sw) && repCount+1 ==

sw(nScaleSwitch)

 nScaleSwitch = nScaleSwitch+1;%increment number of

scale switches

 scale = hiScale;%change scale

 offset = (baseScale-hiScale)*thetaRaw;%offset

virtual position so that cursor doesn't jump

 %switch inertia

 if hiHapticMass<0.2

 error('Specified mass is too small')

 end

 Test_Haptic2(hiHapticMass);

 fwrite(g_trgtChannel,'ScaleSwitched','char')

 else

 scale = midScale;

 Test_Haptic2(midHapticMass);

 offset = (baseScale-midScale)*thetaRaw;%offset

virtual position so that cursor doesn't jump

 end

 %start countdown to reach full target

 cumOutRange = 0;

 tOutRange = tic;

 movementData{nMovement}.halfReached = nHit;%store index

at which half target was reached

 end

 else

 nHit = j; %update the index at which the target was first

hit

 tInRange = tic; %restart timer if cursor isn't close enough

to target

 end

 %CHECKING IF FULL TARGET IS REACHED

 elseif targetType ==2

 if abs(theta-2)<targetWidth

 %update cummalative time out of range if necessary

 if ~inRange

 cumOutRange = cumOutRange+toc(tOutRange);

 inRange = 1;

 end

 if toc(tInRange)>= fullHold

 targetType = 0; %flag that the center is being sought

 fwrite(g_trgtChannel,'center','char');

34

 repCount=repCount+1;

 fwrite(g_emgChannel,'next');

 % set scale and offset for return to center

 scale = abs(theta/thetaRaw);

 offset = 0;

 movementData{nMovement}.success=1;%record movement as a

success

 nMovement = nMovement+1;%increment movement number

 j=0; %reset index for next movement

 end

 %reset timer for time out of range

 tOutRange = tic;

 else

 inRange = 0;

 %if time runs out or out of bounds

 if

toc(tOutRange)+cumOutRange>fullHold||abs(theta)>=outOfBounds

 targetType = 0; %flag that the center is being sought

 fwrite(g_trgtChannel,'centerF','char');

 repCount=repCount+1;

 fwrite(g_emgChannel,'next');

 % set scale and offset for return to center

 scale = abs(theta/thetaRaw);

 offset = 0;

 movementData{nMovement}.success = 0;%record movement as

a failure

 nMovement = nMovement+1; %increment movement number

 j=0; %reset index for next movement

 end

 tInRange = tic;

 end

 %CHECKING IF CENTER IS REACHED

 elseif targetType == 0

 if abs(theta)<centerWidth

 if toc(tInRange)>= cHold

 targetType = 1;

 fwrite(g_trgtChannel,'ht2','char');

35

 hHold = meanHold + hHoldRange*(rand-.5); %randomize

hold time

 %reset to low scale if necessary

 scale = baseScale;

 offset = 0;

 if baseHapticMass<0.2

 error('Specified mass is too small')

 end

 Test_Haptic2(baseHapticMass);

 %xDamp = hm_damping([0,xDamping,0]);

 end

 else

 tInRange = tic;%reset timer for being in range

 end

 end

 prevTheta = theta; %update memory bank

 j=j+1; %update index

end

fwrite(g_emgChannel,'stop') %end emg collection

% %truncate data arrays

% for i=1:nReps

% nLast = find(movementData{i}.time,1,'last'); %find last used

index

% movementData{i}.theta = movementData{i}.theta(1:nLast);

% movementData{i}.rawPosData =

movementData{i}.rawPosData(:,1:nLast);

% movementData{i}.force = movementData{i}.force(:,1:nLast);

% movementData{i}.timeStamp = movementData{i}.time(1:nLast);

% movementData{i}.toc = movementData{i}.time(1:nLast);

% movementData{i}.targetType = movementData{i}.targetType(1:nLast);

%

% end

saveas = SaveAs;

if ~strcmpi(saveas,'null')

save(['C:\Users\admin\Documents\MATLAB\work\Oyinda\SavedData\',saveas,'

.mat']);

fwrite(g_emgChannel,['saveas',saveas]);

end

36

hm_dcf(antiGrav);

A.2 C# Code for Task

using UnityEngine;
using System;
using System.Collections;
using System.Net;
using System.Net.Sockets;
using System.Text;

public class Effects : MonoBehaviour {

 //references to targets in order to display and hide them
 public GameObject

_ht1,_ht2,_ht3,_t1,_t2,_t3,_center,_tele1,_tele2,_tele3;

 //used to set position of cursor
 private Vector3 _pos;

 //used to set position and rotation of fireworks
 private Vector3 _expPos;
 private Quaternion _expRot;

 //used to hold fireworks object
 public GameObject _explosion;

 //used to indicate whether or not explosion is triggered
 private bool _expTrue;
 //used to indicate which targets are visible
 private string _centerActive="1", _htActive="0", _tActive="0";

 //used to flag if visible targets need to be updated
 private int _updateTargets=1;

 //keeps track of number of successful movements
 private int _score = 0;

 //Socket members
 private Socket _servSock1, _clientSock1, //for positions
 _servSock2, _clientSock2; //for targets

 private IPEndPoint _localPort1 = new

IPEndPoint(IPAddress.Parse("128.235.117.204"),4949),
 _localPort2 = new

IPEndPoint(IPAddress.Parse("128.235.117.204"),4950);

 private byte[] _buffer1,_buffer2;

37

 // Use this for initialization
 void Start ()
 {
 Application.runInBackground = true;
 StartServers();
 _expRot = _t1.transform.rotation;

 }

 // Update is called once per frame
 void Update ()
 {
 //update cursor location
 transform.position = _pos;

 //instatiate explosion if necessary
 if (_expTrue)
 {
 Instantiate (_explosion, _expPos, _expRot);
 _expTrue = false;
 }

 //update displayed targets if necessary
 if (_updateTargets==1) {
 _updateTargets = 0;// unflag update targets

 //default all targets to invisible
 _ht1.SetActive(False);_ht2.SetActive (False);_ht3.SetActive

(False);
 _tele1.SetActive (False);_tele2.SetActive

(False);_tele3.SetActive(False);
 _t1.SetActive (False);_t2.SetActive (False);_t3.SetActive

(False);

 //turn flagged targets back on
 if (_centerActive=="1") {
 _center.SetActive (true);
 }else{
 _center.SetActive(False);
 }

 if (_htActive!="0") {
 switch (_htActive) {
 case "1":
 _ht1.SetActive (true);
 _tele1.SetActive(true);
 break;
 case "2":
 _ht2.SetActive (true);
 _tele2.SetActive(true);
 break;
 case "3":
 _ht3.SetActive (true);

38

 _tele3.SetActive(true);
 break;

 }
 } else if (_tActive!="0") {
 switch (_tActive) {
 case "1":
 _t1.SetActive (true);
 _expPos = _t1.transform.position;
 break;
 case "2":
 _t2.SetActive (true);
 _expPos = _t2.transform.position;
 break;
 case "3":
 _t3.SetActive (true);
 _expPos = _t3.transform.position;
 break;

 }
 }

 }

 }

 private void StartServers()
 {

 //open sockets
 _servSock1 = new Socket (AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp);
 _servSock2 = new Socket (AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp);

 //bind ports
 _servSock1.Bind (_localPort1);
 _servSock2.Bind (_localPort2);

 //begin listening for connections
 _servSock1.Listen (0);
 _servSock2.Listen (0);

 Debug.Log ("listening");

 //begin accepting connections
 _servSock1.BeginAccept (AcceptCallback1, null);
 _servSock2.BeginAccept (AcceptCallback2, null);
 }

 private void AcceptCallback1(IAsyncResult AR)
 {
 _clientSock1 = _servSock1.EndAccept (AR);

39

 _buffer1 = new byte[1024];//create buffer
 _clientSock1.BeginReceive (_buffer1, 0, _buffer1.Length,

SocketFlags.None, new AsyncCallback (PositionReceivedCallback), null);
 Debug.Log ("Positions connection made");
 }

 private void AcceptCallback2(IAsyncResult AR)
 {
 _clientSock2 = _servSock1.EndAccept (AR);
 _buffer2 = new byte[1024];//create buffer
 _clientSock2.BeginReceive (_buffer2, 0, _buffer2.Length,

SocketFlags.None, new AsyncCallback (TargetsReceivedCallback), null);
 Debug.Log ("Targets connection made");
 }

 private void PositionReceivedCallback(IAsyncResult AR)
 {
 int received = _clientSock1.EndReceive(AR);//amount of received

data
 Array.Resize(ref _buffer1, received);//truncate buffer to used

portion
 //Debug.Log ("Checkpoint A");

 string pText= Encoding.ASCII.GetString (_buffer1);//interpret

received data as a string

 //find starts and ends of x and y data in string
 int xStart = pText.IndexOf ("X");
 int yStart = pText.IndexOf ("Y");
 int yEnd = pText.IndexOf ("Z");
 //Debug.Log ("Checkpoint B");

 //parse received positioin data if possible
 if (xStart >= 0 && yStart >= xStart+1 && yEnd >=yStart+1)
 {
 string xText = pText.Substring (xStart + 1, yStart - xStart

- 1);
 string yText = pText.Substring (yStart + 1, yEnd-yStart-1);
 //Debug.Log("Checkpoint C");

 //convert position from text to float
 float xPos = Convert.ToSingle (xText);
 float yPos = Convert.ToSingle (yText);

 //set position
 _pos.x = xPos;
 _pos.y = yPos;

 //Debug.Log("Checkpoint D");
 }

40

 //clear out buffer and begin receiving again
 _buffer1 = new byte[1024];
 _clientSock1.BeginReceive (_buffer1, 0, _buffer1.Length,

SocketFlags.None, new AsyncCallback (PositionReceivedCallback), null);

 if (received == 0)
 {
 _servSock1.BeginAccept (AcceptCallback1, null);//begin

accepting connections

 }
 }

 private void TargetsReceivedCallback(IAsyncResult AR)
 {

 int received = _clientSock2.EndReceive(AR);//amount of received

data
 Array.Resize(ref _buffer2, received);//truncate buffer to used

portion

 string targetList = Encoding.ASCII.GetString

(_buffer2);//get list of active targets as string

 //flag active targets for update thread
 if (targetList.IndexOf ("ht") == 0)
 {
 Debug.Log ("center reached");
 _updateTargets = 1;//flag targets for update
 _htActive = targetList.Substring (2, 1);
 _tActive = "0";
 } else if (targetList.IndexOf ("t") == 0) {
 Debug.Log ("half target reached");
 _updateTargets = 1;
 _tActive = targetList.Substring (1, 1);
 _htActive = "0";
 } else if (targetList.IndexOf ("center") == 0) {
 Debug.Log ("full target reached");
 _updateTargets = 1;
 _tActive = "0";
 _htActive = "0";

 if(targetList.IndexOf("centerF")!=0)
 {
 _expTrue = true;
 _score++;
 }

 if(targetList.IndexOf("reset")==0)

41

 {
 _score=0;
 }

 }

 //clear out buffer and begin receiving again
 _buffer2 = new byte[1024];
 _clientSock2.BeginReceive (_buffer2, 0, _buffer2.Length,

SocketFlags.None, new AsyncCallback (TargetsReceivedCallback), null);

 if (received == 0)
 {
 _servSock2.BeginAccept (AcceptCallback2, null);//begin

accepting connections
 Debug.Log ("listening");

 }

 }

 void OnGUI () {
 // Make a background box
 string score = _score.ToString ();

 GUIStyle scoreStyle = new GUIStyle ("button");
 scoreStyle.fontSize = 40;
 if (GUI.Button(new Rect(10,10,250,45), "Points:

"+score,scoreStyle))
 _score = 0;

 }

}

A.3 Matlab Code for Cross-Determination

ids = {'AA','AR','KK','YW','CM'};
warning off %#ok<WNOFF>

resampled = cell(20,1);

TR = 3; %amount of time to resample in seconds
rfs = 2000; %resampling frequency
tR = 0:1/rfs:TR; %query times

42

tStart = 0.65;
tEnd = 1.2;
nStart = ceil(tStart*rfs);
nEnd = floor(tEnd*rfs);

upAccThreshhold = .02; %minimum magnitude of acceleration to count for

upward phase
downAccThreshhold = -.02; %maximum acceleration to count for downward

phase
[B,A] = butter(2,50/(2*rfs));

%span of cross correlation
lagMin = -0.2;
lagMax = .2;
lags = round(lagMin*rfs):round(lagMax*rfs);

for idn = 1:5
 load([ids{idn},'keep'])
 nNormal = 0;
 nCatch = 0;

 normalTrialTheta = zeros(1,length(tR));
 catchTrialTheta = zeros(1,length(tR));
 normalTrialForce = zeros(3,length(tR));
 catchTrialForce = zeros(3,length(tR));
 normalTrialPos = zeros(3,length(tR));
 catchTrialPos = zeros(3,length(tR));
 normalTrialRawTheta = zeros(1,length(tR));
 catchTrialRawTheta = zeros(1,length(tR));

 upSsr1 = 0*lags;
 upSsr2 = 0*lags;
 upSsr3 = 0*lags;
 downSsr1 = 0*lags;
 downSsr2 = 0*lags;
 downSsr3 = 0*lags;
 upSst1 = 0 *lags;
 upSst2 = 0 *lags;
 upSst3 = 0 *lags;
 downSst1 = 0 *lags;
 downSst2 = 0 *lags;
 downSst3 = 0 *lags;

 %%
 for nSes = 1:5
 for nTrial = 1:6
 try

load(['C:\Users\Me\Documents\MATLAB\Research\',ids{idn},'\',ids{idn},nu

m2str(nSes),'_',num2str(nTrial)]);
 baseInertia = armInertia+baseHapticMass*g_r;

43

 highInertia = armInertia + hiHapticMass*g_r;
 catch
 continue
 end
 for nRep = 8:20
 if goodTrials(nSes,nTrial,nRep) &&

(goodTrials(nSes,nTrial,nRep-1) || (nRep<20 &&

goodTrials(nSes,nTrial,nRep+1)))
 %remove repetitions
 [~,uI,rI] =

unique(movementData{nRep}.timeStamp,'stable');
 movementData{nRep}.toc =

movementData{nRep}.toc(uI);
 movementData{nRep}.rawPosData =

movementData{nRep}.rawPosData(:,uI);
 movementData{nRep}.timeStamp =

movementData{nRep}.timeStamp(uI);

 %trim arrays
 nLast = find(movementData{nRep}.toc,1,'last');

%find last used index
 movementData{nRep}.rawPosData =

movementData{nRep}.rawPosData(:,1:nLast);
 movementData{nRep}.timeStamp =

movementData{nRep}.timeStamp(1:nLast)*0.001; %adjust timestamps to

seconds
 movementData{nRep}.toc =

movementData{nRep}.toc(1:nLast);
 %movementData{nRep}.scale =

movementData{nRep}.scale(1:nLast);

 %resample
 nOnset = rI(movementData{nRep}.halfReached);
 tOnset = movementData{nRep}.timeStamp(nOnset);

 rawPos = interp1(movementData{nRep}.timeStamp-

movementData{nRep}.timeStamp(nOnset),movementData{nRep}.rawPosData',tR)

';
 rawTheta = pi/180*asin((rawPos(3,:)-g_k)/g_r);

 %calculate accelerations
 startingVal = median(rawTheta(1:ceil(rfs*.01)));
 filtTheta = filter(B,A,rawTheta-

startingVal)+startingVal;
 vel = diff(FiltTheta)./diff(tR);
 acc = diff(vel)./diff(tR(2:end));
 resampledData{nRep}.acc = filter(B,A,acc-

acc(1))+acc(1);
 resampledData{nRep}.rawTheta = rawTheta;
 resampledData{nRep}.vel = vel;

 %compute torques

44

 if any(sw == nRep)
 resampledData{nRep}.Torque =

highInertia*resampledData{nRep}.acc;
 else
 resampledData{nRep}.Torque =

baseInertia*resampledData{nRep}.acc;
 end

 end

 end

 for nRep = 9:20
 if goodTrials(nSes,nTrial,nRep-1) &&

goodTrials(nSes,nTrial,nRep) && any(sw==nRep)

 upTorqueRatio = zeros(nEnd-nStart,1);
 upAngleDiffLag = zeros(nEnd-nStart,length(lags));
 upAngleDiff = zeros(nEnd-nStart,1);
 upVelDiff = zeros(nEnd-nStart,1);
 upTorqueDiffLag = zeros(nEnd-nStart,length(lags));
 downTorqueRatio = zeros(nEnd-nStart,1);
 downVelDiff = zeros(nEnd-nStart,1);
 downTorqueDiffLag = zeros(nEnd-

nStart,length(lags));
 downAngleDiffLag = zeros(nEnd-nStart,length(lags));
 downAngleDiff = zeros(nEnd-nStart,1);

 kUp = 0;
 kDown = 0;

 for i = nStart:nEnd
 if resampledData{nRep}.acc(i) > upAccThreshhold

&& resampledData{nRep-1}.acc(i) > upAccThreshhold
 kUp=kUp+1;
 upVelDiff(kUp) = resampledData{nRep-

1}.vel(i)-resampledData{nRep}.vel(i);
 upTorqueRatio(kUp) =

log(resampledData{nRep-1}.Torque(i)/resampledData{nRep}.Torque(i));
 upAngleDiff(kUp) = resampledData{nRep-

1}.rawTheta(i)-resampledData{nRep}.rawTheta(i);
 for m = lags
 upTorqueDiffLag(kUp,m-lags(1)+1) =

resampledData{nRep-1}.Torque(i+m)-resampledData{nRep}.Torque(i+m);
 upAngleDiffLag(kUp,m-lags(1)+1) =

resampledData{nRep-1}.rawTheta(i-m)-resampledData{nRep}.rawTheta(i-m);

 end

45

 elseif resampledData{nRep}.acc(i) <

downAccThreshhold && resampledData{nRep-1}.acc(i) < downAccThreshhold
 kDown=kDown+1;
 downTorqueRatio(kDown) =

log(resampledData{nRep-1}.Torque(i)/resampledData{nRep}.Torque(i));
 downVelDiff(kDown) = resampledData{nRep-

1}.vel(i)-resampledData{nRep}.vel(i);
 downAngleDiff(kDown) = resampledData{nRep-

1}.rawTheta(i)-resampledData{nRep}.rawTheta(i);
 for m = lags
 downTorqueDiffLag(kDown,m-lags(1)+1) =

resampledData{nRep-1}.Torque(i+m)-resampledData{nRep}.Torque(i+m);
 downAngleDiffLag(kDown) =

resampledData{nRep-1}.rawTheta(i)-resampledData{nRep}.rawTheta(i);
 end
 end
 end

 up1 = 0*lags;
 up2 = 0*lags;
 up3 = 0*lags;

 downSsr1 = 0*lags;
 downSsr2 = 0*lags;
 downSsr3 = 0*lags;
 if kUp>0

 upTorqueRatio = upTorqueRatio(1:kUp);
 upTorqueDiffLag = upTorqueDiffLag(1:kUp,:);
 upAngleDiffLag = upAngleDiffLag(1:kUp,:);
 upAngleDiff = upAngleDiff(1:kUp);
 upVelDiff = upVelDiff(1:kUp);

 [ssr,sst] = getSS(upTorqueDiffLag,upAngleDiff);
 upSsr1 = upSsr1+ssr;
 upSst1 = upSst1+sst;

 [ssr,sst] =

getSS(upTorqueDiffLag,[upAngleDiff,upVelDiff]);
 upSsr2 = upSsr2+ssr;
 upSst2 = upSst2+sst;

 for i = 1:length(lags)
 if(all(isfinite(upAngleDiffLag(:,i))))
 [ssr,sst] =

getSS(upTorqueRatio,[upAngleDiffLag(:,i),ones(size(upTorqueRatio))]);
 upSsr3(i) = upSsr3(i)+ssr;
 upSst3(i) = upSst3(i)+sst;
 end
 end

 end

46

 if kDown>0

 downTorqueRatio = downTorqueRatio(1:kDown);
 downTorqueDiffLag =

downTorqueDiffLag(1:kDown,:);
 downAngleDiffLag = downAngleDiffLag(1:kDown,:);
 downAngleDiff = downAngleDiff(1:kDown);
 downVelDiff = downVelDiff(1:kDown);

 [ssr,sst] =

getSS(downTorqueDiffLag,downAngleDiff);
 downSsr1 = downSsr1+ssr;
 downSst1 = downSst1+sst;

 [ssr,sst] =

getSS(downTorqueDiffLag,[downAngleDiff,downVelDiff]);
 downSsr2 = downSsr2+ssr;
 downSst2 = downSst2+sst;

 for i = 1:length(lags)
 if(all(isfinite(downAngleDiffLag(:,i))))
 [ssr,sst] =

getSS(downTorqueRatio,[downAngleDiffLag(:,i),ones(size(downTorqueRatio)

)]);
 downSsr3(i) = downSsr3(i)+ssr;
 downSst3(i) = downSst3(i)+sst;
 end
 end

 end

 end
 end
 end

 end

 figure
 subplot(2,3,1)
 plot(lags/rfs,upSsr1./upSst1)
 subplot(2,3,2)
 plot(lags/rfs,upSsr2./upSst2)
 subplot(2,3,3)
 plot(lags/rfs,upSsr3./upSst3)
 title(ids{idn})

 subplot(2,3,4)
 plot(lags/rfs,downSsr1./downSst1)
 subplot(2,3,5)
 plot(lags/rfs,downSsr2./downSst2)
 subplot(2,3,6)
 plot(lags/rfs,downSsr3./downSst3)

47

 save([ids{idn},'correlations'])

end

function [sse, sst] = getSS(y,x)

w = x\y;

e = (x*w-y);
sse = sum(e.^2,1);
sst = var(y,0,1)*size(y,1);

sse(isnan(sse)) = 0;
sst(isnan(sse)) = 0;

48

REFERENCES

[1] de Lussanet, M. H, Smeets, J. B & Brenner, E. "Relative damping improves linear

mass-spring models of goal-directed movements." Human movement science 21.1

(2002): 85-100.

[2] DiZio, P., & Lackner, J. R. "Coriolis-force-induced trajectory and endpoint deviations

in the reaching movements of labyrinthine-defective subjects." Journal of

Neurophysiology 85.2 (2001): 784-789.

[3] Feldman, A. G., et al. "Recent tests of the equilibrium-point hypothesis (lambda

model)." Motor Control 2.3 (1998): 189-205.

[4] Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. Convergent force fields organized in

the frog's spinal cord. The Journal of Neuroscience 13(2) (1993): 467-491.

[5] Hinder, M. R., & Milner, T. E. The case for an internal dynamics model versus

equilibrium point control in human movement. The Journal of Physiology,

549(3), (2003): 953-963.

[6] Latash, M. L. Neurophysiological Basis of Movement. Champaign, IL: Human

Kinetics, 2008. Print.

[7] Lemay, M. A., & Grill, W. M. "Endpoint forces evoked by microstimulation of the

cat spinal cord." [Engineering in Medicine and Biology, 1999. 21st Annual

Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering

Society] BMES/EMBS Conference, 1999. Proceedings of the First Joint. Vol. 1.

IEEE, 1999.

[8] McIntyre, J., & Bizzi, E. Servo hypotheses for the biological control of movement.

Journal of Motor Behavior, 25(3), (1993): 193-202.

[9] Shadmehr, R. "The equilibrium point hypothesis for control of movement."

Baltimore, MD: Department of Biomedical Engineering, Johns Hopkins

University (1998).

[10] Tresch, M. C., & Bizzi, E. Responses to spinal microstimulation in the chronically

spinalized rat and their relationship to spinal systems activated by low threshold

cutaneous stimulation. Experimental Brain Research, 129(3), (1999): 401-416.

[11] Van der Linde, R. Q., et al. "The HapticMaster, a new high-performance haptic

interface." Proc. Eurohaptics. 2002.

49

[12] Winter, D. A. Biomechanics and motor control of human movement. Hoboken, NJ:

John Wiley & Sons, 2009. Print.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Fall 2015

	A study of kinematics and kinetics in time-constrained arm movements
	Oyindamola Owoeye
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Background
	Chapter 2: Methodology
	Chapter 3: Results
	Chapter 4: Discussion
	Chapter 5: Appendix
	References

	List of Tables
	List of Figures

