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ABSTRACT 

 

THERMAL PROPERTIES OF GRAPHENE 

 

by 

 

Vishal Vijay Nakhate  

  

  

The two-dimensional (2D) monolayer structure of carbon atoms were initially considered 

as unstable. The 2D materials have recently been discovered and many researchers have 

started analyzing these materials. Graphene, a two-dimensional allotrope of graphite with 

sp2 bonded carbon atoms, is arranged in honeycomb structure. Graphene has excellent 

thermal conductivity and can be considered as a potential material for applications in the 

electronics industry where heating of materials is a serious concern. 

In this study, thermal properties of p and n doped graphene nanosheets and 

nanoribbons are studied as function of percentage composition of the dopants and the 

direction of dissipation of heat flux. Phonon dispersion spectra are presented for these 

structures using Materials Studio. Non- Equilibrium Molecular Dynamics simulation has 

been implemented for the calculations.  

Structures of doped graphene are modeled using Density Functional Theory to 

study the phonon dispersion.  The specific heat of pristine and doped graphene structures 

are reported.  
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CHAPTER 1 

INTRODUCTION 

 

In this thesis, the thermal properties of graphene are investigated. The details of this study 

are presented in eight chapters.  

The second Chapter begins with the basics of graphene. The fundamental 

properties of graphene and the processing of graphene are explained in this chapter.  

The third Chapter of this thesis focuses on the density of states of graphene and 

the influence of doping on the properties of graphene. This chapter also focuses on the 

influence of doping on the thermal properties of graphene. A literature survey on the 

thermal properties is presented in this chapter. Factors that affect the thermal conductivity 

of graphene are discussed. The basics of heat conduction, phonon dispersion and specific 

heat of graphene are presented. Specific heat of graphene and graphite is discussed in this 

chapter. 

The fourth Chapter focuses on the thermal transport in graphene. Greeen Kubo 

method is discussed in this chapter. 

The fifth Chapter deals with the computational methods that are utilized to 

simulate the band structure of materials. Density Functional Theory (DFT) method, Local 

Density Approximation (LDA) and Pseudopotential (PP) are presented in this chapter. 

The sixth Chapter summarizes the software tools and modules that are used for 

the simulation of the thermal properties. The methods that are used to calculate the 

phonon modes are highlighted in this chapter. 

The seventh Chapter focuses on the results and discussion. The various results, 

obtained in this study, are discussed and compared with the literature. 
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The eighth Chapter is the conclusion and recommendations followed by 

references. 
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CHAPTER 2 

OVERVIEW 

 

Carbon is the base for DNA and all life on earth. It is the most magnificent material in the 

periodic table. It can exist in many forms and graphite is the most common form. 

Graphite is made of stacked sheets of carbon. 

The two-dimensional (2D) monolayer structure of carbon atoms had been initially 

considered as unstable. Hence, it was believed that thin 2D films of carbon do not exist. 

2D materials have recently been discovered and many researchers have started to 

investigate them [1]. It has been demonstrated that graphene can be deposited on solid 

substrates [2]. Graphite is made of many layers of 2D lattices (Figure 2.1). It was 

believed that single sheet cannot be made from graphite but Russian scientists, 

Konstantin Novoselov and Andre Geim, discovered graphene which is one atom thick 

layer of graphite [1]. These scientists received the Nobel Prize in 2010 for their discovery 

of graphene and its remarkable properties. Graphene samples were initially made by 

simply etching the substrate off and holding the graphene by its edges [3]. 

Graphene is a 2D material.  Intrinsic graphene is a semimetal with zero band gap. 

It is an allotrope of carbon and is formed of a lattice of hexagonally arranged carbon 

atoms. Since 2004, graphene has been studied both experimentally and theoretically. It 

has excellent properties such as large electrical and thermal conductivity.  

Carbon atoms are packed in regular sp2 bond [4]. Graphene can be rolled into 1D 

nanotubes, stacked into graphite and wrapped up into zero-dimensional fullerenes (C60). 

Graphene can be considered as a building block for these carbon allotropes. Figure 2.3 
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shows the atomic structure of graphene fullerenes and carbon nanotubes. The distance 

between two carbon atoms is 1.42 Angstrom.  Single layer graphene, first demonstrated 

by Novoselov and Geim, is shown in Figure 2.2. In solid form, graphene has a density of 

1g/cm3.  Stability of graphene is because of its strong covalent planar bonds [5]. 

Graphene is about 0.34nm thick. It is composed of carbon atoms arranged hexagonally in 

a honeycomb structure. It has sp2 bonds which are about 0.14nm long [6]. Carbon has a 

total of six electrons; two electrons in the inner shell and four electrons in the outer shell. 

The outer four electrons take part in chemical bonding. In the case of graphene, each 

carbon atom in planar structure of graphene is bonded to three carbon atoms on the 2D 

plane. Hence, one electron is free for electronic conduction in 3D. These free electrons 

are called as pi (𝜋 ) electrons. These pi electrons are highly mobile. In the case of 

graphene, these pi orbitals are known to overlap and help in enhancing the carbon-carbon 

bonds. Graphene with up to ten layers is called Few Layer Graphene [FLG]. More than 

ten layers of graphene is graphite [7]. 

The atomic structure of single layered graphene is studied using Transmission 

Electron Microscopy (TEM). In order to perform TEM on graphene, the layers are 

generally suspended between two metal grids [8-9]. 
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Figure 2.1 (a) STM image of monolayer graphene (b) Atomically resolved image using 

STM. 
 

Source: M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Atomic Structure of 

Graphene on SiO2, Nano. Lett., 7 (6) (2007), pp. 1643-1648. 

 

Figure 2.2 Single layer of graphene first demonstrated by the Novoselov and Geim. 

 

Source: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva 

and A. A. Firsov, Electric field effect in atomically thin carbon films Sci., 306 (5696) (2004) pp. 666-669. 

 

 



6 
 

(a)                                           (b)                                            (c)     

 

Figure 2.3 (a) Atomic structure of graphene (b) Fullerenes. (c) Carbon nanotubes. 
 

Source: D. Kopeliovich, “Graphite” (2013), 

http://www.substech.com/dokuwiki/doku.php?id=graphite (Accessed 03/26/2015). 
 

 

        Fibrous carbon materials such as carbon composites have been reported to exhibit 

exceptional mechanical properties such as Young’s modulus. They have Young’s 

modulus higher than one TPa in case of carbon nanotubes (CNTs) as well as graphene 

and fullerene [10-11]. Such unique properties pave way for further research and 

exploring possibilities for practical applications. 

 

2.1 Graphene Production 

It has been suggested that graphene can replace silicon in the very near future due to its 

large mean free path. However, to produce graphene commercially has been a major 

obstacle. The main challenge is to be able to synthesize and process graphene in bulk 

quantities. Graphene is known to form irreversible agglomerates to form graphite through 

Vander Waals interaction unless the layers are well separated from each other. 

 

http://www.substech.com/dokuwiki/doku.php?id=graphite
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Various top down approaches have been utilized to make single layer graphene. 

Bottom up approaches such as epitaxial growth of graphene on SiC substrate, Chemical 

Vapor Deposition (CVD) etc. have also been implemented.  

 

2.1.1 Mechanical Exfoliation  

Graphene was first obtained in 2004 through mechanical exfoliation method. Novoselov 

and Geim prepared graphene by peeling off thinner graphite flakes from bulk graphite. 

The graphene flakes were deposited on Si-SiO2 substrates at sizes of approximately 

10𝜇𝑚2[12]. They used a scotch tape for the same. These scientists repeated the process 

until they got one-dimensional (1D) graphene. Graphite is many layers of graphene 

stacked together. The sp2 bonding between carbon atoms in graphene is very strong. The 

bonding between two graphene layers is due to Vander Waals force. This force is very 

weak and can be easily broken by external forces. This process of obtaining graphene is 

called mechanical exfoliation [13]. However, this process is time consuming and requires 

lot of man power. Graphene flakes of around 100 micrometer can be obtained by this 

process. Graphene prepared by this method is still widely used. The thickness of 

graphene obtained by this method cannot be controlled and uniform graphene cannot be 

obtained from this method. Hence, graphene prepared by this method has limited use. 
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Figure 2.4 Mechanical exfoliation of graphene. 
 

Source: “Graphene: Faster, Stronger, Bendier” (2013), http://www.ft.com/cms/s/0/6f4717b6-66f9-11e2-

a83f-00144feab49a.html (Accessed 03/24/2015). 
   

2.1.2 Chemical Vapor Deposition 

Layers of graphene have been synthesized by this method on metal substrates and then 

successfully transferred to various substrates. CVD is a process in which an epitaxial 

layer can be formed. Graphene, grown by this method, has numerous potential 

applications in the semiconductor industry. The graphene obtained by this method is 

highly pure. In this method, a carbon source is used in the reaction chamber where it 

reacts with the metal substrate and a material film is obtained on the substrate. The 

temperature of the substrate, the reactants, the chemical reaction, the gaseous products, 

the reaction products play important role and define the type of reaction that will occur. 

During the CVD process, the toxic by-products are removed from the reaction chamber. 

The epitaxial method produces graphene by removing silicon atoms from silicon carbide 

wafers.  Using metals as the catalyst, graphene is also produced on nickel sheets. Figure 

2.5 shows that high quality graphene films can be produced on nickel substrates under 
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ambient pressure. The produced film is transferred onto arbitrary substrates through 

etching of metal layers [14-15]. Methane is used as a source for carbon. After etching the 

metal, a substrate is brought in contact with the graphene film and it is pulled from the 

solution. In another method, graphene is coated with polydimethylsiloxane (PDMS) or 

poly-methyl methacrylate (PMMA). After this step, the metal is dissolved and graphene 

is lifted from the solution [16-17-18]. 

 

 

Figure 2.5 Graphene obtained by CVD on SiO2 substrate. 

 
Source: D. Wang, Y. Yang, D. Xie, T. Ren and Y. Zhang, Scalable and Direct Growth of Graphene Micro 

Ribbons on Dielectric Substrates, Sci. Reports, (2013), pp. 1348. 
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Figure 2.6 (a, b) Graphene grown by chemical vapor deposition (c) Raman spectra of 

graphene. 

 
Source: X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. 

Banerjee, L. Colombo and R. Ruoff, Large-area Synthesis of High-Quality and Uniform Graphene Films 

on Copper Foil, Sci., 324 (2009), pp.1312-1314. 
 
 

In the case of graphene, two peaks are created due to the Stokes phonon energy 

shift by laser excitation. A primary in-plane vibrational mode (1580cm-1) and a second-

order overtone of a different in-plane vibration peaks are created. D and 2D peaks are 

dependent on the laser excitation energy [19-20]. As the number of layers increases, the 

splitting of 2D peaks occurs. The 2D peak is split into number of modes; as a result, we 

can get a number of wider, shorter, higher frequency peaks. The increasing number of 

layers can also cause a smaller red shift of the G peak. Figure 2.6 (c) shows the Raman 

spectra from various spots of a CVD graphene film grown on Nickel [21]. 
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CHAPTER 3 

THERMAL PROPERTIES OF GRAPHENE 

 

3.1 Density of States 

The density of states represents the number of energy states in a solid. One-dimensional 

density of states of electrons represents the number of electron states per unit length per 

𝒅𝒌 in the Brillouin zone (k is the wave vector). In case of three dimensional structures, 

the density of states of phonons represents the number of phonon states per unit 

volume 𝒅𝝎. The distance between two Brillouin edges is 
𝟐𝝅

𝒂
 . The density of states of the 

solid, with 𝒏 dimensions, DnD is given as [22]: 

 

 

𝐷𝑛𝐷 =  
(𝑛−1 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑛−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒)𝑑𝑘

(
2𝜋𝑛

𝑎
)𝐿𝑛𝑑𝑘

                               (3.1) 

 

 

 

where, 𝐿𝑛  is the volume of unit space  𝑛 . Density of states per energy 

interval is as follows: 

 

𝐷𝑛𝐷 =  
(𝑛−1 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑛−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒)𝑑𝑘

(
2𝜋𝑛

𝑎𝑛 )𝐿𝑛𝑑𝜖
                                  (3.2) 

 

 

The equation 3.2 is used for calculating the thermal properties. It can be used in 

phonon dispersion relations and it is done by solving the dispersion relation for 𝑘.  
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The electron dispersion relation can be written as follows: 

 

𝑘 =  √
2𝑚𝜖

ℎ2                                                                (3.3) 

 

 

 

The equation 3.3 leads us to the following: 

 

 

 

𝜕𝑘 =  
1

2
√

2𝑚𝜖

ℎ2𝜖
𝜕𝜖                                                      (3.4) 

 

 

 

From the phonon dispersion relation, we get: 

 

 

𝑘 =  
𝜔

𝑣𝑔
                                                           (3.5) 

 

 

Therefore, 

 

 

𝜕𝑘 =  
𝜕𝜔

𝑣𝑔
                                                          (3.6) 

 

 

In case of 1D solids, the density of states is given as follows: 

 

 

𝐷 =  
𝑑𝑘

(
2𝜋

𝑎
)𝐿𝑑𝜖

                                                       (3.7) 

 

 

Therefore, the 1D electron density is as follows: 

 

 

𝐷𝑒 =  
1

2𝜋
√

2𝑚

ℎ2𝜖
                                                     (3.8) 
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As a result, the 1D phonon density of states is given by: 

 

 

𝐷𝑝 =  
1

2𝜋𝑣𝑔
                                                           (3.9) 

 

 

The 2D density of states is given by: 

 

 

𝐷2𝐷 =  
2𝜋𝑘𝑑𝑘

(
2𝜋

𝑎
)2𝐿2𝑑𝜖

                                                        (3.10) 

 

 

The electron density of states for two dimensions is given by: 

 

 

𝐷𝑒,2𝐷 =  
1

𝜋

𝑚

ℎ2                                                             (3.11) 

 

The 2D phonon density of states is given by: 

 

𝐷𝑝,2𝐷 =  
𝜔

𝜋𝑣𝑔
2                                                           (3.12) 

 

 

The three-dimensional (3D) density of states is given by: 

 

 

  𝐷3𝐷 =  
4𝜋𝑘2𝑑𝑘

(
2𝜋

𝑎
)3𝐿3𝑑𝜖

                                                        (3.13) 

 

 

The electron density of states is given as follows: 

 

 

𝐷𝑒,3𝐷 =  
1

2𝜋
(

2𝑚

ℎ2 )
3

2𝜖
3

2                                                   (3.14) 
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The 3D phonon density of states is given as follows: 

 

 

𝐷𝑝,3𝐷 =  
3𝜔2

2𝜋2𝑣𝑔
3                                                    (3.15) 

 

 

 

3.2 Doping of Graphene 

Graphene is a zero band gap semiconductor. The carrier concentration of the carbon layer 

must be adjusted to facilitate the transport in graphene based devices. This can be done 

by adjusting the Fermi level away from the Dirac point where the density of states is zero 

[23]. It can be done by chemical doping or electrostatic gating. It is shown in Figure 3.1. 

It can be done by chemical doping or electrostatic gating [24]. In conventional 

semiconductors, doping is achieved by substitution of charge donating species. The 

binding energy of the dopant Rydberg states is reduced by the square of the dielectric 

constant. Hence, dopant ionization takes place at room temperature. In case of graphene, 

which is a 2D structure, the doping precludes this bulk mechanism. The doping of 

graphene can be done by a variety of chemical means. Hole (p) or electron (n) doping can 

be achieved by contacting the carbon layer with different metals. Boron or nitrogen can 

be directly substituted into the carbon lattice by removing or donating electrons [25-26]. 

Graphene can also be doped by adsorption of chemical species on its surface. This 

process helps in enhancing the electrical properties of carbon based electronics [27-28]. 
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Figure 3.1 The doping mechanism in graphene.  

Source: G. Jo, M. Choe, S. Lee, W. Park, H. Y. Kahng and T. Lee, The application of graphene as 

electrodes in electrical and optical devices, IOP Sci., Nanotech., 23 (11) (2012). 

 

3.3 Significance of Thermal Properties of Graphene 

In this section, the phonon transport in graphene is discussed. The two-dimensional 

phonon transport and its relation to heat conduction is described. 

In the literature, the study of thermal properties of materials has seen rapid growth 

in recent years. Self-heating is a crucial issue. Hence, heat removal is of significant 

importance in the electronics industry. The quanta of lattice vibrations, that is phonons, 

are the main reason for heat conduction in materials. Carbon and its allotropes have 

unique ability to conduct heat. Bulk structures show different thermal properties as 

compared to nanostructures. In semiconductor nanowires, as well as in thin films, there is 

phonon boundary scattering [29]. In most of the solids, heat which is carried by phonons 

is also scattered by impurities, other phonons, lattice defects and interfaces. Theoretical 

studies of heat conduction reveal that phonon transport in 2D or 1D have exotic behavior 

and hence results in high thermal conductivity [30]. 
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The thermal properties of graphene are derived from those of graphite and bear 

the imprint of the highly anisotropic nature of the crystal [31]. Atomic structure plays an 

important role in materials ability to conduct heat.  Material of a nanometer scale shows 

different thermal properties. Validity of Fourier law is very important in low-dimensional 

systems. Carbon and its wide range of allotropes have unique thermal properties. Thermal 

conductivity of different allotropes are 0.01 WmK-1 for amorphous carbon and more than 

2000 WmK-1 at room temperature for graphene [32]. 

The measurements of thermal properties of graphene has led to more interest in 

this material and eventually heat conduction in lower dimensionality crystals. In Figure 

3.2, the thermal conductivity (K) values for sp2 bonding, sp3 bonding and disordered 

mixture of sp2 and sp3 is shown [33]. 

 

 

Figure 3.2 Thermal conductivity of bulk carbon allotropes as a function of temperature. 
 

Source: C. Y. Ho, R. W. Powell and P. E. Liley, Thermal conductivity of the elements: a comprehensive 

review, J. Phys. Chem. Ref. Data, 1 (2) (1972). 
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The Vander Waals interactions limit the heat flow in the cross-plane direction of 

graphene and graphite. In Figure 3.2, the thermal conductivity curve for diamond is for 

electrically insulating type-II diamond. Very high purity pitch-bonded graphite is called 

as polycrystalline graphite. There is significant difference in thermal conducitivity 

between pyrolytic graphite and polycrystalline graphite because of disoriented grains. At 

low T, K is proportional to Tγ, where γ varies over a wide range depending on graphite’s 

quality and crystallite size [33]. 

 

 

3.4 Basics of Heat Conduction 

 

It is important to discuss the nanoscale size effects on heat conduction. The thermal 

conductivity is defined by Fourier’s Law:  

 

𝑞 = −𝐾∇T                                                     (3.16) 

 

 

 

where, q is the heat flux, K is the thermal conductivity, ∇𝑇  = temperature 

gradient. K is constant for small temperature variations. K is a function of T in the wide 

temperature range. Acoustic phonons play a major role to carry heat in solid materials, 

which are ion-core vibrations in a crystal lattice and electrons. Therefore, 

 

                                                           𝐾 = 𝐾𝑝 + 𝐾𝑒                                                   (3.17) 

 

where, 𝐾𝑝 is the phonon contribution to thermal conductivity, 𝐾𝑒 is the electron 

contribution to thermal conductivity; 𝐾𝑒 is dominant in metals since metals have larger 
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concentration of free carriers. The electrical conductivity is defined by Wiedeman - Frenz 

law as follows: 

 

𝐾𝑐

𝜎𝑇
=

𝜋2𝑘𝑏2

3𝑒2                                                            (3.18) 

                                                                

where, 𝐾𝑏 is the Boltzmann Constant, 𝑒  is the charge of an electron. Phonons 

dominate heat conduction in graphite which also has metal like properties [34]. It is due 

to the strong covalent sp2 bonding resulting in efficient heat transfer by lattice vibrations.  

To distinguish between diffusive and ballistic phonon transport is important. In the case 

of diffusive transport, the size of the sample, L, is much larger than phonon mean free 

path. When phonon mean free path is larger than L, the thermal transport is termed as 

ballistic. Fourier’s law assumes diffusive transport.  Due to the crystal lattice 

anharmonicity, the thermal conductivity is called intrinsic. When the crystal is defect 

free, i.e., without defects and impurities, phonons cannot be scattered by other phonons 

and the intrinsic thermal conductivity reaches its limit [35, 36]. The thermal conductivity 

is limited by extrinsic factors such as phonon-rough-boundary or phonon defect 

scattering.  The equation for phonon thermal conductivity is as follows: 

 

𝐾𝑝 =  ∑ 𝐶𝑗 ∫ 𝐶𝑗 (𝜔)𝑣𝑗2(𝜔)𝜏𝑗(𝜔)𝑑𝜔                                     (3.19) 

 

where, 𝑣𝑗 =  
𝑑𝜔𝑗

𝑑𝑞
 is the velocity of the jth branch, 𝜏𝑗 is the phonon relaxation time, 

𝐶𝑗 is the heat capacity of the jth branch. 
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In pure crystals, phonon mean free path is limited by the phonon scattering which 

is due to crystal anharmonicity. This is called the Umklapp scattering where thermal 

conductivity is limited [37]. The thermal conductivity in such cases is called as intrinsic. 

In case of extrinsic thermal conductivity, the phonon scattering is due to extrinsic effects 

such as phonon-rough boundary or defect scattering. 

In nanostructures, the phonon group velocity decreases due to the quantization of 

phonon energy spectra. There is a decrease in thermal conductivity due to the change in 

phonon energies, density of states and change in group velocity. In case of 

nanostructures, the thermal conductivity can be increased by spatial confinement of 

acoustic phonons [38, 39]. We can evaluate the phonon boundary scattering and it is 

given by the following equation [40]: 

 

1

𝜏𝐵𝑗
=  

𝑣𝑗

𝐷

1−𝑝

1+𝑝
                                                             (3.20) 

 

where, 𝐷 is the grain size, 𝑝 is the probability of scattering and is given by: 

 

𝑝(𝜆) = exp (−
16𝜋2𝜂2

𝜆2 )                                                   (3.21) 

 

where, 𝜂 is the root mean square deviation of the height of the surface from the 

reference plane, 𝜆 is the length of the incident phonon wave. 

In case of nanostructures, the mean free path of phonons is very high. In such 

cases, there is quantization of phonon spectra; hence, the thermal conductivity 

dependence on the physical structure becomes complicated [40].  
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The specific heat depends on the density of states. Hence, specific heat depends 

on the dimensionality – i.e., 1D, 2D, or 3D structures which are also reflected in the 

thermal conductivity at low temperature. [40, 41]. In the case of 2D materials, the thermal 

conductivity is directly proportional to square of temperature. 

The thermal diffusivity also plays an important role which determines how 

quickly the material will get heated. It is given by the following equation: 

 

𝛼 =  
𝐾

𝐶𝑝𝜌𝑚
                                                              (3.22) 

 

where, 𝜌𝑚 is the density of the material. The thermal conductivity which depends 

on phonons is also affected when the structure is three dimensional (3D).  

 

3.5 Phonon Dispersion in Graphene 

 

The unit cell of graphene is shown in Figure 3.3. It is shown by dashed lines and it 

contains N=2 carbon atoms which leads to formation of three acoustic (A) and three 

optical (O) phonon modes. The phonon dispersion spectra is shown in Figure 3.4. It is 

based on the relation 𝐸 = ℏ𝜔 where ℏ= Planck’s constant, 𝐸 =Phonon energy and 𝜔 is 

the frequency. In case of graphene, which is 2D in nature, out of plane atomic 

displacement takes place. It is called as flexural (Z) phonons. The flexural out of plane 

acoustic (ZA) modes are responsible for the unusual thermal properties of graphene. The 

areal density of carbon atoms in graphene atoms is 3.82*1015 cm-2 [42]. 
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Figure 3.3 Atomic arrangement of graphene sheets. The outline of unit cell is represented 

by dashed lines.  

 
Source: E. Pop, V. Vashney and A. K. Roy, Thermal Properties of graphene: Fundamentals and 

applications, 37 (2012), pp. 1273-1281. 

 

The flexural out of plane acoustic (ZA) modes are responsible for the unusual 

thermal properties of graphene. 

 

Figure 3.4 Phonon dispersion of graphene. 

Source: E. Pop, V. Vashney and A. K. Roy, Thermal Properties of graphene: Fundamentals and 

applications, 37 (2012), pp. 1273-1281. 
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3.6 Specific Heat of Graphene 

 

The change in energy density U, when the temperature changes by 1K, is called specific 

heat, C, of a material. It is represented by [42]: 

 

𝐶 =
𝑑𝑢

𝑑𝑇
                                                         (3.23)                             

 

where, T is the absolute temperature. The specific heat also represents how 

quickly a body cools or heats. The specific heat is given by 𝐶 = 𝐶𝑒 + 𝐶𝑝 where the 

specific heat is stored by the lattice vibrations and free conduction electrons of a material. 

The phonon specific heat increases as the temperature of the material increases [43, 44]. 

At very high temperatures, the specific heat becomes constant and this is also called as 

Dulong-Petit limit which is shown in Figure 3.4. In case of graphite, the specific heat is 

around 30% higher than that of diamond because of the weak coupling between the 

graphite layers [45]. In case of graphene, when its flexural mode is thermally excited, it 

shows similar behavior.  The phonon contribution is obtained by integrating over the 

phonon density of states with a convolution factor. The convolution factor reflects the 

energy and occupation of each state. It is shown in the equation 3.24 [46]: 

 

𝐶𝑝ℎ =  ∫ 𝑘𝐵
𝜔𝑚𝑎𝑥

0
(

ℏ𝜔

𝐾𝐵𝑇
)2 𝑒

ℏ𝜔
𝐾𝐵𝑇

(𝑒

ℏ𝜔
𝐾𝐵𝑇−1)2

𝜌(𝜔)𝑑𝜔                                    (3.24) 

 

The above relation reflects the occupation and energy of each phonon state where 

𝜌(𝜔) = phonon density of states, 𝜔𝑚𝑎𝑥 = highest phonon energy of the material. When 
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𝜔 =0, the convolution factor is 1 and decreases to a value of ~0.1 at ℎ𝜔 =
𝐾𝐵𝑇

6
. As the 

temperature is increased, the phonon specific heat increases. At moderate temperatures, 

the specific heat cannot be calculated analytically. At low temperatures, 𝜌(𝑤)  is 

dominated by acoustic phonons. Thus, we get the information of phonon dispersion and 

dimensionality of the system from the specific heat at low temperatures [46].   

The specific heat of a material is dependent on temperature. At low temperatures, 

the specific heat 𝐶𝑝  is directly proportional to 𝑇
𝑑

𝑛  for phonon dispersion in the d 

dimensions [47, 48]. It yields information on the dimensionality and phonon dispersion. 

The phonon ZA modes dominate at low temperatures; then the specific heat is 

proportional to T2. The LA and TA phonons dominate at high temperature. Debye 

temperature is obtained when there is flattening of the phonon spectra [42]. This 

corresponds to high temperatures. It is shown in Figure 3.5; for temperatures below 50K, 

the specific heat for graphene is linear with temperature T. But, for graphite, below 10K, 

the specific heat is proportional to the cube of temperature. This is due to the weak 

interlayer coupling. Once the soft c-axis modes are filled up, the specific heat is 

proportional to the square of temperature.  
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Figure 3.5 Specific heat of graphite, diamond, graphene versus temperature. 

Source: E. Pop, V. Vashney and A. K. Roy, Thermal Properties of graphene: Fundamentals and 

applications, 37 (2012), pp. 1273-1281. 

 

 

3.7 Thermal Conductivity of Graphene 

Figure 3.6 shows that the thermal conductivity of graphene is around 2000-4000 Wm-1K-1 

for free-standing samples (not attached to substrate) [49]. The thermal conductivity of 

graphene is compared to the thermal conductivity of diamond. The thermal conductivity 

of diamond is around 2200 W-1K-1. The thermal conductivity of other materials at room 

temperature is shown in Figure 3.7. Weak Vander Waals interactions are present for the 

heat flow in the cross-plane direction which results in limited heat flow. As shown in 

Figure 3.7, the specific heat of graphite at room temperature is around 6 Wm-1K-1. In case 

of graphene, the heat flow perpendicular to the graphene sheet is limited by weak Vander 

Waals force interactions with adjacent substrates.  
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The ballistic thermal conductance of graphene can be numerically calculated from 

phonon dispersion and is shown in Figure 3.6. At low modes, the flexural ZA modes 

dominate at low temperatures and the specific heat is directly proportional to T1.5 and the 

phonon dispersion with 𝜔 = 𝑞2. The thermal conductivity of graphene is ballistic when 

the phonon mean free path is more than the length of graphene. The phonon mean free 

path is around 600nm [42]. The thermal conductivity is diffusive when the phonon mean 

free path is less than the length of graphene. 

 

 

 

Figure 3.6 Thermal conductivity of graphene and other carbon materials versus 

temperature. 

 
Source: E. Pop, V. Vashney and A. K. Roy, Thermal Properties of graphene: Fundamentals and 

applications, 37 (2012), pp. 1273-1281. 
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Figure 3.7 Room temperature ranges of thermal conductivity data K for various carbon 

structures. 

 
Source: E. Pop, V. Vashney and A. K. Roy, Thermal Properties of graphene: Fundamentals and 

applications, 37 (2012), pp. 1273-1281. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

CHAPTER 4 

THERMAL TRANSPORT IN GRAPHENE 

 

 

 

Electronic devices are shrinking day by day and, with their shrinking size, the materials 

to materials interface become extremely important. The thermal properties depend on the 

interface between materials. In the case of materials at the nanoscale, the interface 

thermal resistance affects the thermal conductivity of the material. As heat dissipation is a 

major concern in nanoscale devices, the materials (and its choice) also play an important 

part in device applications. 

The thermal conductivity of graphene is difficult to be determined experimentally; 

hence the thermal conductivity is mostly predicted from theoretical methods. Non- 

equilibrium dynamics is the most intuitive theoretical method for determining the lattice 

thermal conductivity. In this method, the thermal conductivity is calculated from the ratio 

of the heat flux to a temperature gradient. In the simulation method, a heat flux is 

imposed and the resulting temperature gradient is calculated or heat flux required to 

maintain it is calculated when the fixed temperature gradient is imposed [50]. 

Molecular Dynamics (MD) simulations are performed in conjunction with a 

periodic simulation cell. In this method, the simulation cell is divided into an even 

number of equal sections - one as the hot section and another as the cold section. The heat 

is transferred from the cold section to the hot section and at regular intervals of time. 

Since the simulation cell is periodic, heat leaves the side of the hot section and enters the 

side of the cold section leading to two heat fluxes in opposing directions and 

corresponding temperature gradients. Several models have been tested to investigate the 
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thermal conductivity of graphene. The thermal conductivity is determined through 

phonon dispersion and has values in the range of 2000 W/mK to 5000W/mK. 

There are number of methods for calculating the thermal conductivity. One of the 

most popular methods is to transfer the heat from the hottest atom in the cold section to 

coldest atom in the hottest section. This method is called as Muller-Plahte method [50]. It 

is also called as reverse non-equilibrium molecular dynamics (R-NEMD).  

 

Figure 4.1 Typical set up in a non-equilibrium molecular dynamic simulation. 

Source:  S. Stackhouse, Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals, 

71 (2010), pp. 253-269. 

 

 

 

Figure 4.2 Temperature profile. 

Source: S. Stackhouse, Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals, 

71 (2010), pp. 253-269. 
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The hottest atom in the cold section is assumed to undergo an elastic collision 

with the coldest atom in the hot section at regular intervals. The velocities assigned to the 

atoms, before collision and post-collision, are determined in the simulation. The post 

collision velocity of the atom in the cold section is calculated as [50]: 

 

𝑣𝑐′ =  −𝑣𝑐 + 2 ∗
𝑚𝑐𝑣𝑐+𝑚ℎ 𝑣ℎ

𝑚𝑐+𝑚ℎ
                                               (4.1) 

 

The velocity of the atom in the hot section is calculated as: 

 

𝑣ℎ′ =  −𝑣ℎ + 2 ∗
𝑚𝑐𝑣𝑐+ 𝑚ℎ𝑣ℎ

𝑚𝑐+𝑚ℎ
                                          (4.2) 

 

where, 𝑚𝑐 is the mass of the atom in cold section, 𝑚ℎ is the mass of the atom in 

the hot section and 𝑣𝑐, 𝑣ℎ   is the velocities of the atoms in the hot section and cold section 

before collision and 𝑣𝑐′, 𝑣ℎ′is the velocity of the atom after collisions. The average heat 

flux is determined from [50]:  

 

𝑞𝑖 =  
1

2𝐴𝑁∆𝑡
∑

1

2

𝑁

𝑣𝑡
𝑛=1 𝑚ℎ(𝑣ℎ′(𝑛𝑣𝑡

2 − 𝑣ℎ(𝑛𝑣𝑡
2))                            (4.3) 

 

where, 𝑞𝑖  is the average heat flux flowing in the 𝑖  direction, 𝐴  is the cross 

sectional area which is perpendicular to 𝑖, 𝑁 is the total number of time steps, 𝑣𝑡 is the 

frequency of transfers in time steps. In the above equation, heat flows from both sides of 

the hot section to both sides of the cold section and the average of half of the exchanged 
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heat flowing in each of the two directions is considered. The magnitude of heat flux and 

the corresponding temperature gradient can be controlled by varying the frequency of 

heat transfers. 

            In another approach, the whole system is divided into slabs along the axial 

direction, and the temperature of each slab is calculated [50]. 

 

𝑇𝑠 =
1

3𝑘𝑏𝑁
∑ 𝑚𝑖

𝑁
𝑖=1 𝑣𝑖

2                                                      (4.4) 

 

In this technique, the first layer is considered as hot layer and the middle layer is 

considered as cold layer. The hottest atom with the highest kinetic energy exchanges its 

energy with the adjacent atoms till the heat energy reaches the atom with minimum 

kinetic energy. The temperature gradient is very broad. Hence, the hottest atom at the 

cold section has the highest kinetic energy. The linear momentum and the energy of the 

system is conserved and the angular momentum is not conserved. However, the angular 

momentum can be neglected since the introduction of periodic boundary.  

 

4.1 The Green-Kubo Method 

 In this method, the entire lattice thermal conductivity can be calculated from one 

simulation. This is exactly opposite to non-equilibrium molecular dynamics method in 

which several simulations needs to be considered in various directions. In this method, 

there is less experimental work because the effect of section size or heat flux is not 

considered in the results. This method is for the most part limited to the study of those 

phases which are well described by a set of empirical pair potentials. 
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In equilibrium molecular dynamics, the system which is under investigation has 

constant average temperature and the average heat flux is zero. Due to fluctuations of 

temperature, a finite heat flux exists. In this method, there is a relation between lattice 

thermal conductivity of the system to time required for such fluctuations to dissipate.  

 

𝑘𝑖𝑗 =  
𝑉

𝑘𝑏𝑇2 ∫ < 𝑞𝑖(0)𝑞𝑗(𝑡) >
∞

0
𝑑𝑡                                            (4.5) 

 

 where, 𝑇 is the temperature of the system, 𝑞𝑖(0) the instant heat flux in the 

𝑗direction at time zero and 𝑞𝑗(𝑡)  the instantaneous heat flux in the 𝑖 direction at time 𝑡. 

In a molecular dynamics study, we consider time steps and thus, we consider the 

following equation 

 

𝑘𝑖𝑗 =  
𝑉∆𝑡

𝑘𝑏𝑇2
∑ (𝑁 − 𝑚)𝑀

𝑚=1 ∑ 𝑞𝑖
𝑁−𝑚
𝑛=1 (𝑚 + 𝑛)𝑞𝑗(𝑛)                     (4.6) 

 

where, 𝑁 is the total number of time steps, 𝑞𝑗(𝑛) the instantaneous heat flux in 

the 𝑗direction at time-step 𝑛,  𝑞𝑖(𝑚 + 𝑛) the instantaneous heat flux in the 𝑖 direction at 

time step (𝑚 + 𝑛).  

The energy is the total of kinetic and potential energy of each atom. 

 

𝜀𝑖 =  
1

2
𝑚𝑖𝑣𝑖

2 +  
1

2
∑ 𝑢𝑖𝑗

𝑁
𝑗 (𝑟𝑖𝑗)                                                  (4.7) 

 

where, mi is the mass of atom 𝑖, 𝑣𝑖 the velocity vector of atom 𝑖.  
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CHAPTER 5 

COMPUTATIONAL METHODS 

 

5.1 Density Functional Theory 

 

The density functional theory is used to calculate the electronic structure of matter. It is 

used in many fields to calculate the ground state of many body systems and electron 

density plays an important role. Its application ranges from molecules, atoms, solids, 

quantum and classical fields.  

Solving Schrodinger’s equation gives solutions to many ab-initio techniques. In 

order to describe arbitrary systems accurately, it is very important to solve this equation 

but we need to consider approximations. In the time-independent, non-relativistic 

Schrodinger equation, a Hamiltonian is used to describe a system containing nuclei and 

electrons. In this method, the system is considered as a homogenous electron gas and 

Fermi-Dirac statistics are applied. The model considers the electrostatic interaction 

between the nuclei and the electrons. The equation provides a relation between the 

potential and electronic density. We cannot predict chemical bonding of atoms by using 

the Schrodinger equation. 

Another approach is by the Hartree-Fock method which was developed to solve 

the time independent Schrodinger equation. It is the basis of molecular orbital theory 

[51]. It is assumed that electron motion can be considered as single particle function. The 

accuracy is not much in this method. This method is used in case of periodic systems.  
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The equation can be written as follows: 

 

𝑉𝐻𝐹(𝑥1) =  ∑ (𝐽𝑗(𝑥1) −  𝐾𝑗(𝑥1))𝑁
𝑗                                          (5.1) 

 

where, 𝑉𝐻𝐹 is the Hartree-Frock potential which is dependent on the spin orbitals. 

DFT is the widely used method. In this method, the system is described by its particle 

density. Wave function is not considered. Hence, the system is reduced to fewer 

coordinates via its particle density. DFT is dependent on Hohenberg-Kohn theorems [52]. 

The density of states plays an important role in determining the ground state of many 

systems and the second theorem states that the variation principle can be used to calculate 

this quantity. The ground state is a function of density. Physical properties and energy are 

function of density.  

Density functional theory depends on two mathematical theorems proposed by 

Kohn and Hohenberg. The first theorem states that “The ground state energy from 

Schrodinger’s equation is a unique functional of the electron density” [52].  It is used to 

calculate the Hamiltonian operator. There is mapping between electron density and wave 

function. In a way, ground state energy can be expressed as:  

 

𝐸[𝑛(𝑟)]                                                                (5.2) 

 

where, 𝑛(𝑟) is the electron density. The ground state electron density determines 

energy and wave function of the ground state.  
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However, the first theorem proposes that the electron density can be considered to 

solve the Schrodinger equation; it does not say anything about the functional. In the 

second theorem of Hohenberg-Kohn, it states that “The electron density that minimizes 

the energy of the overall functional is the true electron density corresponding to the full 

solution of the Schrodinger equation” [52]. 

The functional can be written in terms of single electron wave functions. The 

energy functional is, therefore, as follows: 

 

𝐸[{𝜓𝑖}] = 𝐸𝑘𝑛𝑜𝑤𝑛[{𝜓𝑖}] +  𝐸𝑋𝐶[{𝜓𝑖}]                                        (5.3) 

 

In the above equation, we have split the functional in a simple form where we 

can further write the above equation as follows [53]: 

 

𝐸𝑘𝑛𝑜𝑤𝑛[{𝜓𝑖}] =  
ℎ2

𝑚
∑ ∫ 𝜓𝑖∇

2
𝑖 𝜓𝑖𝑑3𝑟 +  ∫ 𝑉(𝑟)𝑛(𝑟)𝑑3𝑟 + 

𝑒2

2
∫ ∫

𝑛(𝑟)𝑛(𝑟′)

𝑟  𝑟′  𝑑3𝑟 𝑑3𝑟′ +

 𝐸𝑖𝑜𝑛                                                                                                  (5.4) 

 

where, the equation on the right hand side shows the electron kinetic energies, the 

Coulomb interactions between the electrons and the nuclei, between the pairs of electrons 

and the interactions between the pairs of nuclei.  

𝐸𝑋𝐶 is the exchange correlation functional. It describes the quantum mechanical 

effects. To calculate the electronic properties, Hohenberg-Kohn theorem provides basis 

of the ground state density of the system. However, it is not possible to calculate the 

ground state energy. Hence, we have to consider Kohn-Sham equations from which the 
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ground state energy can be calculated. In order to do so, it should be assumed as a 

functional of charge density. The Kohn-Sham equation is given as [54]: 

 

[
−ℏ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓(𝑟)] 𝛹𝑖(𝑟) = ∈𝑖 𝛹𝑖(𝑟)                                    (5.5) 

 

where, ∈𝑖 is the energy of the orbit [55]. 

 

𝑣𝑒𝑓𝑓(𝑟) = 𝑉(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶(𝑟)                                     (5.6) 

 

where, (𝑟) is the potential that defines the interaction between an electron and 

atomic nuclei; 𝑉𝐻(𝑟) is the Hartree potential and is written as: 

 

𝑉𝐻(𝑟) =  𝑒2 ∫
𝑛(𝑟′)

𝑟  𝑟′ 𝑑3𝑟′                                                  (5.7) 

 

The Hartree potential describes the electron density of all the electrons:  

 

𝑉𝑋𝐶(𝑟) =  
𝛿𝐸𝑋𝐶(𝑟)

𝛿𝑛(𝑟)
                                                             (5.8) 

 

where, 𝑉𝑋𝐶 is the functional derivative of the exchange correlation energy. 
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5.2 Basis Set 

A basis is used to build molecular orbitals which are created by combining linear 

functions.  

 

5.2.1 Slater Type Orbitals 

Slater type orbitals are named after the physicist John Slater. It is used to calculate basis 

functions. It gives the Eigen functions of the hydrogen atom. It is given by: 

 

∅𝑎𝑏𝑐
𝑆𝑇𝑂(𝑥, 𝑦, 𝑧) = 𝑁𝑥𝑎𝑦𝑏𝑧𝑐𝑒−𝜁Υ                                          (5.9) 

 

where, N is the normalization constant, 𝜁 is the width of the orbital. In equation 

5.9, the angular momentum is controlled by a,b,c. 

However, in computational methods, STO is not used that much because the 

integrals are difficult to compute. 

 

5.3 Local density Approximation 

Local density approximation is highly used in DFT to determine the exchange-correlation 

energy functional. LDA is given by [53]: 

 

𝐸𝑥𝑐 =  ∫ 𝑑𝑟𝜌(𝑟)𝜖𝑥𝑐(𝜌(𝑟))                                            (5.4) 

 

where, 𝐸𝑥𝑐 is the exchange correlation energy per electron in a uniform gas of 

density 𝜌 which is calculated with probability𝜌(𝑟). Further we can write: 
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𝜖𝑥𝑐(𝜌(𝑟)) =  𝜖𝑥(𝜌(𝑟)) +  𝜖𝑐(𝜌(𝑟))                                   (5.5) 

 

where, 𝜖𝑥 is the exchange term, 𝜖𝑐 is the correlation term. When the density is not 

homogenous, LDA is applied by considering homogenous electron gas to be positive. 

The equation is as follows: 

 

𝜖 =  −
3

4
(√

3

Π

3
) ∫ 𝜌(𝑟

4

3) 𝑑𝑟                                              (5.6)  

 

The exchange-correlation potential corresponding to the exchange-correlation energy is: 

 

𝑉𝑥𝑐(𝑟) =  
𝛿𝐸𝑥𝑐

𝛿𝑛
                                                        (5.7) 

 

In LDA, the charge density is non-uniform but the electron gas is uniform and this 

is the only system for which 𝜖𝑥𝑐 can be calculated. For electron-rich anions, LDA does 

not provide accurate description. Hence, LDA predicts erroneously the anionic species to 

be stable [56]. 

 

5.4 Pseudopotential 

The electron-ion interaction cannot be accurately described by Fourier components since 

it decays slowly. Hence, pseudopotential is crucial for plane-wave total energy methods 

[55]. It represents Columbic potential term for core electrons. Pseudo-wave functions 

with lesser nodes describe valence electrons. The pseudopotential approximation replaces 
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core electrons with a weaker potential. It can be represented by Fourier co-efficient. 

Kohn Sham radial equation which contains the contribution from valence electrons. 

Softer pseudopotentials have a large cut-off radius but it is less accurate. The use of 

pseudopotential can help us in reducing the number of electrons, reduce the size of basis 

sets and include relativistic effects.  The most general form of pseudopotential is as 

follows: 

 

𝑁𝐿 =  ∑ 𝑙𝑚 >  𝑉𝑙 < 𝑙𝑚                                               (5.8) 

 

where, 𝑉𝑙 is the pseudopotential for angular momentum, 𝑙𝑚 > are the spherical 

harmonics.  

A pseudopotential that uses same potential in each angular momentum is called as 

Local pseudopotential. The drawback of local pseudopotential is that only few elements 

can be described even if it is computationally much more efficient. In modern plane-wave 

electronic structure codes, the two most used pseudopotentials are Ultrasoft and Norm-

conserving pseudopotentials.  

 

5.4.1 Norm-conserving Pseudopotential 

Norm-conserving pseudopotentials are capable of describing the scattering properties of 

electrons and ions in a variety of atomic environments. It is necessary to have an 

exchange-correlation defined accurately and, to do so, it is necessary to have the real and 

pseudo wave functions to be identical so that, from both wave functions, we obtain 
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identical charge densities. Norm-conserving pseudopotential describes the scattering 

properties from the ion core. 

 

5.4.2 Ultra-soft Pseudopotential  

The ultra-soft pseudopotential was developed by Vanderbilt which is a generalization of 

the equation of Kleinman-Bylander. This pseudopotential uses fewer plane-waves for 

calculations and attains smoother pseudo-wave functions. The cutoff energy, when using 

ultrasoft pseudopotential, is about half that of conventional norm-conserving 

pseudopotential.  
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CHAPTER 6 

 

 ATOMISTIX TOOLKIT DETAILS 

 

 

Materials Studio 7.0 was used for carrying out the simulations. It offers a lot of features 

for materials modeling. There are separate products that integrate into Materials Studio to 

create a comprehensive range of materials modeling tools.  The module used to perform 

the calculations is CASTEP. The CASTEP module helps to perform first-principles 

quantum mechanical calculations. This helps to explore the properties of crystals and 

surfaces in the solid state. The model of graphene structure is verified on the module by 

establishing a comparison of the literature and experiments. The model is then extended 

to simulate the properties of graphene.  

The performance of CASTEP can be more efficient if the symmetry of the 

structure is taken into account. Therefore, the symmetry of the structure is considered as 

P1 symmetry. The time required for a CASTEP calculation increases with the cube of the 

number of the atoms in the system. The properties that are calculated by using this 

module are as follows: Band structure of graphene, Density of states, Thermodynamic 

properties. In calculating the band structures, electronic eigenvalues along high symmetry 

directions in the Brillouin zone are calculated non-self-consistently for both valence and 

conduction bands, using electronic charge densities and potentials generated during the 

simulation. In calculating the density of states, electronic charge densities and potentials 

are generated during the simulation. In case of phonon dispersion, phonon frequencies 

and eigenvectors along high symmetry directions in the Brillouin zone are calculated. 

The results of phonon spectra can be used to compute energy (E), entropy(S), free energy 

(F) and the lattice heat capacity (Cv) as function of temperature. The results of the 
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thermodynamic calculations can be visualized using the thermodynamic analysis tools. 

The formulae are based on the work by Baroni et al. The temperature dependence of the 

energy is given by:  

 

𝐸(𝑇) =  𝐸 +  𝐸𝑧𝑝 +  ∫
ℏ𝜔

exp(
ℏ𝜔

𝑘𝑇
)−1

𝐹(𝜔)𝑑𝜔                                        (6.1) 

 

where, 𝐸𝑧𝑝 is the zero point vibrational energy, 𝑘 is the Boltzmann constant, ℏ is 

the Planck’s constant, 𝐹(𝜔) is the phonon density of states. The zero point vibrational 

energy can be evaluated as follows: 

 

𝐸𝑧𝑝 =  
1

2
∫ 𝐹 (𝜔) ℏ𝜔𝑑𝜔                                                    (6.2) 

 

The vibrational contribution to the free energy, F, is given by: 

 

𝐹(𝑇) =  𝐸𝑡𝑜𝑡 +  𝐸𝑧𝑝 + 𝑘𝑇 ∫ 𝐹(𝜔)ln [1 − exp (
ℏ𝜔

𝑘𝑇
)] 𝑑𝜔                   (6.3) 

 

The vibrational contribution to the entropy, S, is given as follows: 

 

𝐶𝑣(𝑡) = 𝑘 ∫
(

ℏ𝜔

𝑘𝑇
)

2
exp(

ℏ𝜔

𝑘𝑇
)

[exp(
ℏ𝜔

𝑘𝑇
)−1]

2 𝐹(𝜔)𝑑𝜔                                      (6.4) 

 

Heat capacity in the Debye model is given by Ashcroft and Mermin. The heat 

capacity is compared to the actual heat capacity predicted by the Debye model. Hence, 
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we get the temperature dependent Debye temperature. Heat capacity in Debye model is 

as follows: 

 

𝐶𝑣
𝐷(𝑇) = 9𝑁𝑘(

𝑇

Θ𝐷
)3 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1)2 𝑑𝑥                                         (6.5) 

 

where, N is the number of atoms per cell. Thus by calculating the specific heat, 

we get the actual Debye temperature. 

 

6.1 Molecular Dynamics 

Molecular Dynamics is used for calculating the equilibrium statistical-mechanical 

calculations. Newton’s equation is solved step by step from a given starting point. It is 

implemented by solving DFT equations rather than from empirical potentials of 

interatomic interactions. With the help of explicit electronic structure optimization, the 

electrons are kept on the Born-Oppenheimer surface after each step. In CASTEP 

simulation module, molecular dynamics is based on the Verlet algorithm for integration 

of the equations of motion.  

 

6.1.1 Ensembles 

Newton’s equation can help us in exploring the constant-energy surface of the system. 

When the system is exposed to external pressure, the total energy is not conserved and 

extended forms of MD is required. Temperature and pressure need to be controlled. The 

thermodynamic ensembles, handled by CASTEP and the ones which are used, are 

constant temperature, constant volume (NVT), constant energy, constant volume (NVE). 
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The system needs to be in thermal equilibrium with minimum energy. Therefore, 

a system run needs to be done. The ensemble is essential to perform this operation. We 

have used NVT ensemble to equilibrate the system. It uses Hamiltonian equations of 

motion. Nose-Hoover thermostat is used. In this thermostat, the position and velocities 

are generated by adding some dynamic variables which are coupled to the particle 

velocities. This is called thermostatting.  

 

6.2 Calculation of Phonon Modes 

The phonons of a system are calculated by considering a starting point in the force 

constant matrix. It is given by second derivatives with respect to the atoms in Cartesian 

space. The force constant matrix between two atoms, i and j, is given by: 

 

𝐹(𝑘) = ∑ (
𝜕2𝑈

𝜕𝛼𝜕𝛽
)𝑅 exp (𝑖𝑘(𝑟𝑖𝑗 + 𝑅))                                     (6.6) 

 

where, R represents the sum over lattice vectors within the cutoff radius. The 

force constants is then converted into the dynamical matrix D and is given as follows: 

 

𝐷𝑖𝛼𝑗𝛽 =  
1

√𝑚𝑖𝑚𝑗
𝐹𝑖𝛼𝑗𝛽(𝑘)                                                (6.7) 

 

The origin of the three acoustic phonons depends on the energy derivatives. 

The sum of all the derivatives must be equal to zero when there is no external 

force. The equation is given as follows: 
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∑ (
𝜕𝑈

𝜕𝛼𝑖
) = 0𝑁

𝑖=1                                                            (6.8) 

 

By differentiating the above equation, we get: 

 

(
𝜕2𝑈

𝜕𝛼𝑖𝜕𝛼𝑖
) = − ∑ 𝑟(

𝜕2𝑈

𝜕𝛼𝑖𝜕𝛼𝑖
)                                                 (6.9) 

 

where, summation excludes the case when i = j. The equation shows that the on 

diagonal elements of the force constant matrix are equal to the negative sum of the off-

diagonal element. 
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CHAPTER 7 

 RESULTS AND DISCUSSION 

 

The specific heat of graphene nanoribbon (GNR), both doped and undoped are discussed 

in this chapter. The simulation shows that the specific heat decreases when the graphene 

structure is doped with boron and nitrogen. The specific heat of graphene structures has 

been presented here in Figures 7.1 to 7.5. The specific heat of zig-zag graphene 

nanoribbon (ZGNR) is as follows: 

  

 

Figure 7.1 Specific heat of zig-zag graphene nanoribbon. 
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Figure 7.2 Specific heat of armchair zig-zag graphene nanoribbon. 

 

 

Figure 7.3 Specific Heat of 1% Boron doped graphene nanoribbon. 
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Figure 7.4 Specific heat of 1% Nitrogen doped graphene nanoribbon. 

 

 

Figure 7.5 Specific heat of various graphene nanoribbons.  

Figure 7.5 shows the change in specific heat of various graphene nanoribbons. 

This is due to increase in phonon scattering which is observed when graphene is doped 

with boron and nitrogen. 
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CHAPTER 8 

 CONCLUSIONS 

 

The materials ability to conduct heat is rooted in its atomic structure. The low-

temperature specific heat contains information about both the dimensionality of the 

system and the phonon dispersion. The specific heat of various graphene structures have 

been presented. The graphene structures cause phonon quantization which can be 

observed in the heat capacity at low temperatures. Small quantities of doped nitrogen and 

boron atoms in graphene structure results in a considerable decline of specific heat of 

graphene by almost one-half of the ideal sheet. 
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