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ABSTRACT 

EFFECT OF TEMPERATURE ON TUNNELING AND QUANTUM  

EFFICIENCY IN CIGS SOLAR CELLS  

 

Sizhan Liu 

Utilizing the two-band approximation and Wentzel-Kramers-Brillouin (WKB) 

approximation, by including the temperature-dependent effective masses and 

nonparabolicity effects, an investigation of the temperature dependent band-to-band 

tunneling process is discussed. In comparison with the parabolic approximation and non-

parabolic approximation, the tunneling probability is strongly dependent on the non-

parabolicity factor. The temperature dependence of the energy band gap, electron 

effective mass and light hole effective mass is investigated. The tunneling current density 

function is derived by a series representation of the incomplete gamma function with 

non-parabolic effect and its variation at low temperature is also investigated. When the 

Fermi level of holes is in excess of that of electrons, i.e., EFp>>EFn, the current density 

function can be successfully simplified as the Fowler-Nordheim formulation. The 

quantum efficiency model, for CIGS solar cells, is discussed. Device modeling and 

simulation studies of a Cu(In1−x,Gax)Se2 (CIGS) thin film solar cell are carried out. A 

variety of graded band-gap structures, including space charge region (SCR) grading, back 

surface region grading, and double grading of the CIGS absorber layer are considered. A 

position-dependent absorption coefficient α(x, hv) is obtained by a differential equation 

for the photon flux φ(x, hv). The quantum efficiency can be calculated by IQE=(φ1-φ2)/φ3. 

The temperature dependence of the quantum efficiency is also investigated in this thesis. 
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CHAPTER 1 

INTRODUCTION 

 

This chapter introduces and provides an overview of the research that is to be undertaken 

in this study. 

Chapter 2 is a comprehensive literature review of various models on temperature 

dependence of the band gap, such as the Varshni relation and Bose-Einstein model. The 

temperature-dependent energy band gap of GaAs, with different models, ranging from 0K 

to 500K is investigated. The temperature dependence of the band gap is used to calculate 

the variation in tunneling probability with temperature.  

In Chapter 3, the effective mass is derived from Kane's two-band model that 

considers both the k∙p interaction and spin-orbit coupling as perturbations to the classical 

Hamiltonian in isotropic materials. The effective mass is achieved by non-parabolic 

dispersion relation of Kane's model. The dispersion relation implies that, at the bottom of 

the band, a parabolic relation E=ħ
2
k

2
/2me

2
 is preserved, while a small, non-parabolic 

correction αE
2
 is observed for higher E. It is to be noted that the non-parabolicity factor, α, 

depends on the electron effective mass as well as the band gap. The empirical models of 

effective mass, with non-parabolic effect, are also described. The light hole effective 

mass and the electron effective mass are used to estimate the temperature dependence of 

the tunneling probability and the tunneling current density with non-parabolic effects. 

In Chapter 4, quantum-mechanical tunneling is investigated especially in the 

non-parabolic band structure and with a variation of temperature. The conventional 

non-parabolic approximation of real band structures can be modified and generalized to 

approximate the complex band structures of common semiconductors with a significant 
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improvement in accuracy in comparison with the parabolic approximation. The tunneling 

current density is calculated from a non-parabolic dispersion relation. In the calculation, 

the supply function is replaced by a step function and a series representation of the 

incomplete gamma function is used to reduce the solution. The tunneling current density 

is greatly influenced by the behavior of the band structure so that the non-parabolic 

behavior of the band structure has additional contribution to the current density. The 

growth rate of the tunneling current density which has contributions from non-parabolic 

band behavior and parabolic band behavior, with increase of temperature, is almost the 

same.  

The quantum efficiency model, based on CIGS solar cells, is discussed in Chapter 5. 

Device modeling and simulation studies of Cu(In1−x,Gax)Se2 (CIGS) thin film solar cells 

have been carried out. There are a variety of graded band-gap structures, including space 

charge region (SCR) grading, back surface region grading, and double grading of the 

CIGS absorber layer. A grading in the absorber can improve cell performance and some 

modern CIGS solar cells already have such a graded band gap profile. It is difficult to 

discern the real benefit of grading, as varying material properties through the cell implies 

changing the mean value of the studied parameter, and it is almost impossible to produce 

a reference cell having the same properties as the studied cell. Hence, if one wants to 

study grading properties thoroughly, one should use numerical simulations. A 

position-dependent absorption coefficient α(x, hv) is obtained by a differential equation 

for the photon flux φ(x, hv). The quantum efficiency can thus be calculated by 

IQE=(φ1-φ2)/φ3. The temperature dependence of the quantum efficiency is also described 

in this thesis. 



 

3 

 

CHAPTER 2  

TEMPERATURE DEPENDENCE OF BAND GAP 

 

2.1 Varshni Relation 

The effect of temperature on band gap energy shrinkage has been quantified through 

several empirical or semi-empirical relations. The energy gap behavior, as a function of 

temperature, is reported in Figure 2.1. Among the empirical relations, the Varshni relation 

[1] is often used to assess the nonlinear temperature dependent band gap shift: 

 

 







T

T
EE gg

2

0  
(2.1) 

 

where, α and β are fitting parameters characteristic of a given material. Eg(0) is the band 

gap of the semiconductor at 0K. The Varshni relation is a combination of quadratic low 

temperature asymptotic behavior with linear high temperature dependence [2, 3]. The 

Varshni relation fits well for low temperatures (up to 360K); however, it shows deviation 

from experimental values, above 360K [4].  

 

Table 2.1 Varshni Equation Constants for GaAs, Si, and Ge [5] 

Material Eg(0)(eV) α(eVK
-1

) β(eVK
-1

) 

GaAs 1.519 5.405×10
-4

 204 

Si 1.17 4.73×10
-4

 636 

Ge 0.7437 4.77×10
-4

 235 
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Figure 2.1 Temperature dependence of energy gap of GaAs, Si and Ge. 

 

Table 2.1 and Eq. (2.1) are used to generate Figure 2.1, which shows that the band gaps 

of the three materials decrease as temperature increases. The labeled points are the band 

gap of each material at room temperature. Generally, the energy gap of semiconductors 

decreases with increase in temperature. However, there are some exceptions such as the 

lead chalcogenides – PbS, PbSe and PbTe in which the energy gap increases with 

increase in temperature [84]. 

 

2.2 Bose-Einstein Model 

The Bose-Einstein model, which considers electron interaction within crystals, also 

relates energy shift and temperature with Debye energy. According to this model, the 

band gap energy can be determined from [6]: 
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1)/exp(

2
)0()(




T
ETE

E

B
gg


 

(2.2) 

 

where, αB is a parameter associated with the strength of the exciton-phonon interaction 

within the crystal; the Einstein characteristic temperature, ΘE, is the average temperature 

of phonons interacting with the electronic subsystem. The Debye temperature for an 

Einstein oscillator can be determined from the relationship: ΘD = 4/3ΘE.  

A more precise and physically motivated formula which is a direct replacement of the 

Varshni equation with phonon interaction, based on a Bose-Einstein phonon model, has 

been given in [7]: 

 

    














 
 1

2
coth20

kT
ETE Bgg

B
B  

(2.3) 

 

where, Eg(0) is the band gap at zero temperature, αB is a dimensionless coupling constant, 

and kΘB is an average phonon energy. Typical values of these parameters are presented in 

Table 2.2. This model proposes a better description of the fairly flat dependence of energy 

gap at low temperatures. However, experimentally, the dependence of the energy gap at 

low temperatures is rather quadratic. 

A more elaborate model takes into account a more variable phonon dispersion, including 

optical phonons, and proposes the four-parameter formula: 

 



 

6 

 

   
 

 













 11

2

3

/2exp

31
0 6

22




gg ETE  
(2.4) 

 

 
643

2
2

2

2

3

8

4

13

13



 





  

(2.5) 

 

 /2T  (2.6) 

 

where, α' is the high-temperature limiting magnitude of the slope of the order of several 

10
−4

 eV/K, Θ is an effective average phonon temperature and Δ is related to the phonon 

dispersion.  

 

Table 2.2 Parameters for the Temperature Dependence of the Band Gap According to Eq. 

(2.3) and Eq. (2.4) for Various Semiconductors [8] 

 α'(10
−4

 

eV/K) 

Θ(K) Δ αB(10
−4

 

eV/K) 

ΘB(K) 

Si 3.23 446 0.51 2.82 351 

Ge 4.13 253 0.49   

GaAs 4.77 252 0.43 5.12 313 

InP 3.96 274 0.48   

InAs 2.82 147 0.68   

ZnSe 5.00 218 0.36   

ZnO 3.8 659 0.54   
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2.3 Temperature-dependent Energy Gap of GaAs 

 

Table 2.3 List of Various Fitting Parameters in Different Models 

Model or equation  Fitting parameter Fitting 

parameter 

Fitting 

parameter 

Eq. (1.1) α=5.41×10
-4

 eVK
-1

 β=204K  

Eq. (1.3) αB=5.12×10
-4

 eVK
-1

 ΘB=313K  

Eq. (1.4) α'=4.77 Θ=252eV Δ=0.43 

 

 

Figure 2.2 Temperature dependent energy band gap of GaAs, with different models, 

ranging from 0K to 500K. Dashed line is from Varishni's model according to Eq. (2.1), 

the dotted line is according to Eq. (2.3) and the solid line is according to Eq. (2.4). The 

parameters used in the calculations are shown in Table 2.3. 
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CHAPTER 3  

EFFECTIVE MASS 

 

3.1 Non-parabolic Effect on Effective Mass 

Kane considered both the k∙p interaction and the spin-orbit coupling as perturbations to 

the classical Hamiltonian in isotropic materials. The resulting Hamiltonian can be 

diagonalized exactly and does not require the carrier kinetic energy E to be small. 

However, Kane’s solution is accurate only if the interaction with other bands can be 

neglected which does imply a small E. If Eg is defined as the prime band gap and Δ as the 

split-off splitting, the solution can be written as [9]: 

 

   









3

222

ggg EEPkEEEEE
 

(3.1) 

 

where, E' = E-(ħ
2
k

2
/2m0

2
) and P

2
 is the square of Kane's matrix element of the linear 

momentum between conduction band and valence band at k = 0. For the cases under 

consideration, ħ
2
k

2
/2m0

2 
is much smaller than E(k), E' ≈ E(k), E'<<Eg, and Δ<<Eg, the 

dispersion relation is ħ
2
k

2
/2m0

2 
= E(1+E/Eg). However, the approximations, E'<<Eg, and 

Δ<<Eg, are not valid in general such as in the case of InAs. Since we are looking for a 

solution near the band extremum, i.e., E ≈ 0, Eq. (3.1) can be approximated by preserving 

only E
2
 terms to find the dispersion relation in non-parabolic condition: 

 

2

0

22

2
EE

m

k

e




 
(3.2) 
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where, me is the electron effective mass at the band minimum and α is the 

non-parabolicity factor. Using the comprehensive k∙p perturbation approach, the electron 

effective mass at the bottom of the conduction band can be expressed in a following form 

[10, 11]: 

 






g

g

ge E

E

E

P

mm

3/2211
2

2

0 
 

(3.3) 

 

The first term describes the undisturbed effective mass whereas the second term 

represents the non-parabolic correction [10]. If the spin-orbit splitting and the momentum 

matrix elements are assumed to be constant and independent of temperature, the 

temperature independence of the effective mass is just a direct consequence of the 

temperature dependence of the energy band gap. It is given by: 

 

2

0

1
1











m

m

E

e

g

  
(3.4) 

 

The dispersion relation implies that, at the bottom of the band, a parabolic relation 

E=ħ
2
k

2
/2me

2 
is preserved, while a small, non-parabolic correction αE

2
 is observed for 

higher E. Note that the non-parabolicity factor, α, depends on the electron effective mass 

as well as the band gap. The effective mass is generally energy dependent and can be 

calculated for non-parabolic materials from Eq. (3.2) as: 
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 Em
dk

dE
kEm e 21)(

1

2 











   
(3.5) 

 

Therefore, both me and α can be determined with the help of Eq. (3.5) from experimental 

measurements of the carrier effective mass. Note that the traditional definition of the 

carrier effective mass, m*=ħ
2
(d

2
E/dk

2
)
-1

, is not valid for non-parabolic semiconductors 

because an assumption of constant, energy independent effective mass was made in the 

derivation of this relation [11]. 

For a carrier in state k with energy Ei(k) in a band labeled by subscript i, the direction 

averaged band mass mi(k) associated with electron is given by [12]: 

 

 
 kE

km
ik

i

2

23

11



 

(3.6) 

 

The conductivity effective mass, mc (where c is either e for electrons or h for holes), is 

the thermal average of this quantity which is determined by [13]: 
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where, f Tc 
μ
(Ej) is the Fermi-Dirac distribution function with Fermi level μ (chemical 

potential) and temperature Tc and E
j 
(k) is the energy of jth conduction or valence band; 

the index i is taken over the three principal cubic directions. The solution of Eq. (3.7), 

according to Eq. (3.1), is given by Riffe [14] as: 
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3.2 Empirical Models 

For applied high electric fields, the energy of carriers may be far from a band edge and 

then the variation of E(k) with k is non-parabolic. The conduction-band non-parabolicity 

is a result of mixing between states in different bands, especially conduction and valence 

bands. The energy dependence of the electron effective mass, due to the non-parabolicity, 

may be described by the following relation [36]: 
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(3.9) 

 

where, Eg is the energy band gap and K2 is the empirically adjusted parameter. This 

formula was discussed by Hopkins and the value of K2 in GaAs is given as -1.75 (in bulk 

material) and -1.4 (in two-dimensional electron gas) [16]. 

Another model is given by Hrivnak [17, 18]. He proposed and verified a 

semi-empirical relation for energy gaps at Γ point of tetrahedral semiconductors. The 

relation proposed by Hrivnak is used for the calculation of electron and light hole energy 

levels in quantum wells on the basis of the knowledge of the electron and light hole 

effective masses, the lattice constant, and the width of the well. This is given by: 
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where, m
Γ

e and m
Γ

lh are the values of the electron and light hole effective mass at the Γ 

point, respectively, and cg is determined by the ratio: 

 

am
cg
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(3.11) 

 

with a as the lattice constant. 

The temperature dependence of the energy gap in GaAs is calculated according to Eq. 

(2.1) with Eg(0)=1.519eV, α=5.405×10
-4

K
-1

, β=204K. 
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The generally accepted value of m
Γ

e /m0 at very low temperature is 0.0665 which has 

been experimentally determined by Chamberlain et al. [19] for GaAs. Using the value 

m0cg
2
=9.4eV [a(GaAs)=5.654Å], the temperature dependence of electron and light hole 

effective masses in GaAs is obtained as: 
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The temperature dependent reduced mass mr can be calculated as: 
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(3.15) 

 

Eq. (3.15) can be used to calculate the temperature-dependent transmission coefficient 

which is discussed in Chapter 4. Figure 3.1 shows the temperature dependence of the 

effective masses in which the green line represents the light hole effective mass, blue line 

is the electron effective mass and the red dashed line is the reduced effective mass. With 

increase in temperature, the effective masses decrease slightly. Light hole effective mass 

decreases faster than electron effective mass. The parameters used in the calculations are 

as follows: m
Γ

e(0) = 0.0665, m
Γ

lh(0) = 0.0951, αe = 1.848×10
-5

K
-1

, αlh = 3.902×10
-5

K
-1

,  

m0cg
2 
= 9.4eV, a(GaAs) = 5.654Å, E

Γ
g(0) = 1.519eV, α = 5.405×10

-4
K

-1
, β = 204K.  
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Figure 3.1 Temperature dependence of the effective masses, in GaAs, ranging from 0K to 

500K according to Hrivnak's model.  
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CHAPTER 4  

TUNNELING 

 

4.1 Introduction 

Quantum-mechanical tunneling in semiconductor diodes was first observed by Zener [21]. 

Zener tunneling in semiconductor involves transitions between the valence and the 

conduction band induced by appreciable fields. It is also widely referred to as interband 

tunneling or band-to-band tunneling (BtBT) and, together with avalanche breakdown 

caused by impact ionization, it is considered as the working principle of the so-called 

Zener diodes. More recently, the effect of BtBT has attracted significant research interest 

due to its impact on device leakage in metal-oxide-semiconductor field-effect transistors 

(MOSFETs). Tunnel field-effect transistors (FETs) have the potential of achieving 

sub-threshold swing that is less than the thermal limit in conventional MOSFETs and 

therefore they have the potential for low-power computing applications [22-26]. 

 

 

Figure 4.1 Schematic of MOSFET structure. 
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A MOSFET, shown in Figure 4.1, consists of an n-(p-)doped silicon substrate with 

two, highly p-(n-)doped contacts, source and drain. The so-called channel region in 

between is covered by an insulating layer, the gate-oxide, which is in contact with the 

gate electrode. Without applying a voltage at the gate electrode, no current can flow from 

source to drain as the pn-juctions between each contact and the substrate act as two 

opposite diodes. When applying a positive (negative) voltage at the gate electrode, the 

channel region close to the gate oxide is "inverted" (i.e. from n-(p-) to p-(n-)doped) and 

current can flow between source and drain. 

Over 40 years ago, a theoretical investigation of Zener tunneling was provided by 

Kane [27]
 
who treated BtBT for direct gap semiconductor subjected to a uniform electric 

field. In order to obtain a compact formula, he used a two-band k∙p model to quantify the 

band structure, while the transition probabilities were calculated from Fermi's golden rule. 

The transmission coefficient is given by Kane [28, 29] and can also be obtained by WKB 

theory [30, 31]. WKB approximation provides such a tool, through which the 

transmission coefficient can be calculated from the wave vector, which is dependent on 

the type of barrier. For indirect band gap semiconductors and structures acted upon by 

non-uniform electric field, Kane's model and the WKB approximation have led to 

reasonable fits with recent experimental data. The phonon-assisted tunneling plays a 

significant role in case of silicon and other materials with indirect band gap. Often the 

barrier for tunneling is considered to be Ec-E [32-36], which is the barrier of electrons, or 

E-Ev [37], which is the barrier for holes.   

In this thesis, a theoretical analysis is shown based on the WKB approximation for 

tunneling probability combined with effective mass effect and non-parabolic effect. The 
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temperature dependence of the energy band gap, electron effective mass and light hole 

effective mass have been investigated based on GaAs in order to deduce the temperature 

effect on tunneling process. The temperature-dependent complex band structure is 

investigated. The non-parabolic approximation (NPA) is shown to describe the complex 

band structure of common semiconductor materials, such as GaAs, in the energy region 

that is important to BtBT. NPA shows ever more improvement in describing the complex 

band structure over the parabolic approximation (PA) due to the inherent elliptic nature of 

the complex bands inside a band gap region [38]. In comparison with parabolic 

approximation and non-parabolic approximation results, the tunneling probability and 

current density is found to have a strong dependence on non-parabolicity factor. The 

tunneling current density function is developed from a series representation for the 

incomplete gamma function into Tsu-Esaki tunneling current formula with the 

consideration of the non-parabolic effect and its variation with temperature is also 

investigated. 

 

4.2 Tunneling Mechanisms 

In the silicon-dielectric-silicon structure, sketched in Figure 4.2, a variety of tunneling 

processes can be identified. Considering the shape of the energy barrier alone, 

Fowler-Nordheim (FN) tunneling and direct tunneling can be distinguished. However, a 

more rigorous classification distinguishes between ECB (electrons from the conduction 

band), EVB (electrons from the valence band), HVB (holes from the valence band), and 

TAT (trap-assisted tunneling) processes. The EVB process is caused by electrons 

tunneling from the valence band to the conduction band. It thus creates free carriers on 
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both sides of the dielectric, which, for MOS transistors, gives rise to increased substrate 

current. The TAT process can either be elastic, which means that the energy of the carrier 

is conserved, or inelastic, where the carrier loses energy due to the emission of phonons. 

Furthermore, in dielectrics with a very high defect density, hopping conduction via 

multiple defects may occur. 

 

Figure 4.2 Schematic of the tunneling processes in a silicon-dielectric-silicon structure. 

The different tunneling processes are indicated by arrows and are described in the text. 

The abbreviations EED and HED denote the electron and hole energy distribution 

function. [39] 

 

4.3 Band-to-band Tunneling in Diodes 

The tunneling of interest in this thesis is band-to-band tunneling in silicon diodes and 

TFETs. For band-to-band tunneling to occur, the electrons in the valence band of the 

semiconductor tunnels across the band gap to the conduction band without the assistance 



 

19 

 

of traps as shown in Figure 4.3.  

 

Figure 4.3 Band diagram for the tunneling electrons with nonzero perpendicular 

momentum in the valence band and conduction band. A particle with nonzero 

perpendicular momentum tunneling across the band gap from the valence band at x=a to 

the conduction band at x=b. The transition from valence band-like properties to 

conduction band-like properties occurs at x=x0, and the overall tunneling barrier is 

indicated by the dark areas. EF,1 and EF,2 are the Fermi levels on the left side and on the 

right side respectively. qΦ0 is the effective barrier height. 

 

Figure 4.3 depicts band-to-band tunneling for a heavily doped p+/n+ diode with a 

constant electric field across the junction. An incident valence band electron with energy 

in the x direction tunnels across the band gap to the conduction band. The electron 

tunnels from the valence band at x=a to the conduction band at x=b, and the phonon 

interaction, for a transition from valence band-like properties to conduction band-like 

properties, occurs at x=x0. The tunneling barrier is indicated by the hatched areas in the 

figure.  

Assuming that there is no loss of energy during the transition as well as no scattering 

involved, the energy of the electron ending up in the conduction band should be equal to 

the sum of its energy at the start of tunneling in the valence band and the gained energy 

from the acceleration due to the electric field. Electron in the valence band can tunnel to 

any state in the conduction band such that the total energy and perpendicular momentum 

are conserved which is shown in the following equation [40]: 
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kc⊥=kv⊥+β⊥  

 

(4.2) 

where, F denotes the electric field and m
*

c and m
*

v are valence and conduction band 

effective masses respectively. β is the wave vector of the phonon. Under the continuum 

approximation, β can be any value so that kc⊥ is independent of kv⊥. Because this energy 

is quite small, the approximation is made so that no change in the total energy occurs 

with the phonon interaction, and the term ħβ is neglected. 

 

4.4 Complex Band Structure 

4.4.1 Parabolic Approximation 

For parabolic band, the dispersion relation in semiconductor is approximated by: 
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(4.3) 

 

where, m* is the effective mass. The imaginary part of the wave vector κ with valence 

band-like properties and conduction band-like properties can be derived respectively as: 

 

vxvv Em*2
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(4.4) 
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)(2
1 *

vxgcc EEm 


  Ep<Evx<Eg , 

 

(4.5) 

where, Evx(x)=E-Ev(x), m
*

c and m
*

v are electron and hole effective mass respectively, and 

Eg is the direct band gap.  

 

4.4.2 Non-parabolic Approximation 

The conventional non-parabolic approximation of real band structures can be modified 

and generalized to approximate the complex band structures of common semiconductors 

with a significant improvement in accuracy relative to the parabolic approximation. The 

improvement is due to the inherent elliptic nature of the complex band structures in the 

vicinity of the band gap, which has a critical impact on the band-to-band tunneling 

probability [38].
 
From Kane's two-band k∙p model, assuming that the conduction band 

minimum is at k0=0, the electron Hamiltonian in the vicinity of k0 is: 
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(4.6) 

  

where, m0 is the free electron mass, Eg is the energy band gap, and 
00

ˆ
ckvk upup   is 

the Kane's momentum matrix element between two unit cell functions (
0vku and 

0cku ) at 

band extremes. Assuming that ħ
2
k

2
/2m0 is negligible compared to E(k)' and letting 

Ep=2|p|
2
/m0, the secular equation is: 
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For E(k)>Eg, the conventional NPA of the conduction band can be obtained by defining 

m
*
=m0Eg/Ep, E'(k)=E(k)-Eg, and α=1/Eg which is given by [42]:
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For BtBT, the energy interest is within 0<E(k)<Eg. The solution of Eq. (4.7) therefore 

results in a complex k. We have k=iκ with: 
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and Eq=Eg/2. However, for real band structure in which the electrons and holes have 

different effective masses, the simple two-band model is not valid. Eq is no longer equal 

to Eg/2 with different electron and hole effective mass. It is assumed that the tunneling 

carriers start propagating through the energy band gap along the hole branch and 

transition to the electron branch occurs when Ep(x0)=Egm
*

c/(m
*

c+m
*

v) [41]. The NPA of 

complex branches in direct band gap is calculated by: 
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 Ep<Evx<Eg , 

(4.11) 

  

where, Evx(x)=E-Ev(x), κ is the imaginary part of the wave vector, m
*

c and m
*

v are 

electron and hole effective mass respectively, and Eg is the direct band gap. β is a 

parameter that describes the non-parabolicity in dispersion relation.  

 

Figure 4.4 Energy vs imaginary wave vector within the band gap according to Eq. (4.10) 

and Eq. (4.11) and the tunneling path assumed in calculation (solid line) with various 

values of β. (□ β =2, ○ β =3, ∆ β =4, + β →∞). Eg is the energy band gap and Ep is the 

energy at which the tunneling carriers crossover from the hole branch to the electron 

branch while transversing through the energy band gap. Parameters used in the 

calculation: Eg=1.52eV, m
*

c=0.06m0, m
*
v=0.09m0; m0 free electron mass, k0= ħ

-1
(2m0 )

1/2
.  

 

Figure 4.4 shows the hole branch and electron branch. The crossover point is at 

which the transition from valence band-like properties to conduction band-like properties 

occurs. In the limit of Evx→0
+
, we can find that κ is approaching to vxv Em 2

1


 . In the 
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limit of Evx→Eg
-
, κ is approaching to  vxgc EEm  2

1


 . The complex band structure 

performs a parabolic behavior near the real band extremes. When β = 2, the inherent 

elliptic nature of a complex band is revealed with joint two real bands at their extremes. 

With increase in β, the PA properties begin to dominate the complex band structure and, 

in the limit of β→∞, NPA totally becomes PA of complex band structure. 

 

 

Figure 4.5 Complex band structure for various electron-hole effective mass ratio 

γ=m
*

v/m
*

c. (□ γ =1, ∆ γ =1.25, ○ γ =1.5, + γ =1.75, ◊ γ =2). 

 

Not only the non-parabolicity factor greatly affects the complex band structure, but 

also the effective masses dominate the shift in its turning point. Figure 4.5 shows that, 

with increase in hole effective mass, the crossover point shifts towards the valence band 

which indicates that the energy Ep is even smaller with a longer tunneling path. 
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4.5 Tunneling Probability  

4.5.1 Transmission Coefficient Modeling 

The shape of the energy barrier has been treated as in Figure 4.6; the calculation of the 

quantum mechanical transmission coefficient can be investigated. The transmission 

coefficient T is defined as: 
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due to an incident wave in Region I and a transmitted wave in Region III as shown in 

Figure 4.6. The assumption of plane waves in both regions: 
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leads to the transmission coefficient: 
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Figure 4.6 Schematic of an energy barrier of a single-layer dielectric. Plane wave is 

incident on the rectangular potential barrier, a portion of the incident wave is transmitted 

and the rest is reflected at the energy barrier. 

 

Note that the quantum-mechanical current density Eq. (4.13) is equal in Region I and 

Region III. Considering only the incident wave in Region I and the transmitted wave in 

Region II allows the definition of a transmission coefficient T≤1. The wave function 

amplitudes AI, and AIII can be found by solving the stationary Schrodinger equation [39]: 
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(4.16) 

  

where, W(r) is an external potential energy, in the barrier region. This can be achieved by 

various methods. The Wentzel-Kramers-Brillouin approximation can be applied either 

analytically for a linear barrier or numerically for arbitrary barriers.  
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4.5.2 The The Wentzel-Kramers-Brillouin Approximation 

The Wentzel-Kramers-Brillouin approximation is one of the most frequently applied 

approximations to solve the Schrodinger's equation: 
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The transmission coefficient is give as [43]: 

 

))(2exp(
0
a

dxxgT   
(4.18) 

  

where, g is the prefactor, κ is the imaginary term of the electron wave vector in the barrier, 

and x is the physical distance across the barrier, 0<x<a, where, a is the barrier thickness. k 

is electron wave vector and, in the forbidden energy gap, k is purely imaginary, so that 

κ=ik, i=√-1. 

 

Figure 4.7 E-k plot depicting the increased band gap incurred by perpendicular 

momentum.  
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As shown in Figure 4.7, a particle with some perpendicular momentum, ħk⊥ , in the 

valence band tunnel to the conduction band with the same ħk⊥ . k⊥  is the wave vector to 

the perpendicular direction.  

Thus,  
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(4.19) 

Let κx=ikx, κv=ikv, κc=ikc, thus κvx=√(κv
2
+kv⊥

2
), κcx=√(κc

2
+kc⊥

2
).  

The tunneling probability can be rewritten in terms of the total momentum and 

perpendicular momentum ħk⊥  as:  
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 .  

This equation can be simplified by first factoring κv and κc out of the square root and then 

applying the Taylor series approximation that √1+α ≈1+α/2, for α<<1, as:  
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If the perpendicular momentum in the valence band and conduction band is zero, the 

integral of κ(x) can be written in terms of Evx as: 
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where, Evx(x)=E-Ev (x) = E-(Ev0-eFx) and dEvx=qFdx. F is the electric field which is 

assumed to be a positive constant. Substituting Eq. (4.19) into Eq. (4.22), the 

transmission coefficient of NPA can be written as: 
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Let Evx(βEp)
-1

=Zv, and (Eg-Evx)(βEg-βEp)
-1

=Zc, leading to: 
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(4.24) 

 

Finally, from Eq. (4.24), an analytical formula for the transmission coefficient of NPA is 

derived as: 
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where, mr is the reduced mass (tunneling effective mass) given by m
*

vm
*

c(m
*

v+m
*

c)
-1

. 

Eq. (4.25) reveals a non-parabolicity-dependent transmission coefficient. In order to 

investigate the variation of transmission coefficient with β, the prefactor is quite 

important which is defined as: 
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Figure 4.8 The value of prefactor δ according to Eq. (4.26) for the variation of β. 

 

The relation of δ and β is shown in Figure 4.8. As β→+∞ or β→-∞, the value of δ 

approaches a constant, 1.885, which is 3/24 . The transmission coefficient of NPA has 

a limit of minimum as: 
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PANPA TT ,  (4.28) 

  

which is the transmission coefficient of PA. The transmission coefficient increases as the 

portion of parabolic behavior of complex band structure decreases.  

  

4.5.3 Temperature-dependent Transmission Coefficient 

The temperature-dependent transmission coefficient can be calculated from Eq.(4.25): 

 

    TmTET rgNPA

2/3exp   (4.29) 

  

The temperature-dependent reduced mass mr and energy band gap Eg have been 

calculated in Chapter 2 and Chapter 3. 
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Figure 4.9 Temperature-dependent transmission coefficient of NPA with various values 

of β. (□ β =2, ○ β =3, ∆ β =4, + β →∞). T
B
 is tunneling probability T with an index of B 

which is defined as B=qFħ, q is elementary electric charge, F is electric field, and ħ is 

reduced Planck constant. 

 

As is shown in Eq. (4.29), the transmission coefficient can be divided into two parts, 

the non-parabolic-dependent part δ, and the temperature-dependent part Eg
3/2

mr
1/2

. Figure 

4.9 shows the total effects. With increase in temperature, the transmission coefficient also 

increases. As the non-parabolicity factor β increases, it is shifted towards the low 

probability and tends to be a constant which is given by Eq. (4.27) when β approaches 

infinity. 

 

4.6 Tunneling Current Density 

4.6.1 The Density of States  

The density of states function is used to describe how many quantum states are available 

in the band per unit energy interval. Thus, for a three-dimensional electron distribution, 
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the density of states can be defined as dEdNg dd /33   where, N3d(E) is the number of 

quantum states with energy less than E. For an isotropic semiconductor, constant energy 

surfaces represent spheres in k space. In a material with the lattice constant a, each 

volume element of size (2π/a)
3
 is occupied by two quantum states (one for each direction 

of spin). Counting all states within a sphere of radius k and dividing by a
3
 leads to 

  23

3 3/ kkN D  . Then, for non-parabolic band, the density of states is [44]: 
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For parabolic band, the density of states is: 
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4.6.2. The Tsu-Esaki Model 

The tunneling current is usually written as an integral over the product of two 

independent parts, which only depend on the energy perpendicular to the interface: the 

transmission coefficient T and the supply function N: 
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which is known as Tsu-Esaki formula [45,48]. 

In the derivation of Tsu-Esaki Model with non-parabolic approximation, three 

assumptions are made. The first assumption is Effective-mass approximation: the 

different masses corresponding to the band structure of the considered material are 

lumped into a single value for the effective mass. The second assumption is PA and the 

last assumption is conservation of parallel momentum, that is, only transitions in the 

x-direction are considered. This model has been proposed by Duke and was used by Tsu 

and Esaki for the modeling of tunneling current in resonant tunneling devices. When 

electrons tunnel from the valence band, Emin is the lowest conduction band edge and Emax 

is the highest valence band edge.  

The net tunnel current density from Electrode 1 to Electrode 2 can be written as the 

net difference between current flowing from Side 1 to Side 2 and vice versa: 

 

1221   JJJ  (4.33) 

  

The current density through the two interfaces depends on the perpendicular component 

of the wave vector kx, the transmission coefficient T, the perpendicular velocity υx, the 

density of states g, and the distribution function at both sides of the barrier: 

 

         xxxx dkEfEfkgkqTdJ 21121 1   (4.34) 

  

         xxxx dkEfEfkgkqTdJ 12212 1   (4.35) 
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f1(E) is the probability of Electrode 1 being occupied by electrons and [1-f2(E)] is the 

probability of Electrode 2 being vacant. In this expression, it is assumed that the 

transmission coefficient depends only on the momentum perpendicular to the interface. 

The density of kx states g(kx) is given by: 
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where, g(kx, ky ,kz ) denotes the three-dimensional density of states in the momentum 

space. Considering the quantized wave vector components within a cube of side length L, 

each position in k-space being filled with a cubic unit cell volume of V=(2π/L)
3
, 
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The density of states within the cube yields: 
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where, the factor 2 is spin degeneracy. For the non-parabolic dispersion relation, the 

velocity and energy component in the tunneling direction obey: 
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Hence, Eq. (4.34) and Eq. (4.35) become: 
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where, 
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Integration of expression Eq. (4.42) can be performed in polar coordinates. Using polar 

coordinates for the parallel wave vector components, 
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 and the total energy Et according to the non-parabolic dispersion relation yields: 
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 hence,  
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The non-parabolic dispersion relation implies that, at the bottom of the band with a 

parabolic relation, mkE 2/22 is preserved, while a small, non-parabolic correction 

αE
2
 is observed for higher E. The total energy can be expressed as xrt EEE   when 

the product of α, Er and Ex is small enough. 

Thus, we get: 
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and 
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where,   TkEEEt BiFrx /, , ζi is composed of two Fermi-Dirac integrals. The 

selected Fermi-Dirac integrals are summarized in Appendix [46]. The solutions of the two 

integrals are given, respectively, by: 
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Thus, 
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The supply function N through the barrier is N=n1→2 - n1→2,  
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Evaluating the difference 1221   JJJ , the net current through the interface equals, 
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4.6.3 Supply Function Modeling 

N(E) is the supply function that describes the difference in the supply of carriers. With 

parabolic dispersion relation, it is given by [47]: 
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with non-parabolic dispersion relation,  
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where, f1 and f2 denote the energy distribution function near the interfaces. Since the 

exact form of these distributions is usually not known, approximate shapes are commonly 

used, and furthermore, it is assumed that the distributions are isotropic. 

 

4.6.4 Fermi-Dirac Distribution 

In equilibrium, the energy distribution function of electrons and holes is given by the 

Fermi-Dirac statistics: 
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The integral of f is: 
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and it can be integrated analytically using: 
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Thus, the total supply function Eq. (4.56) becomes: 
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4.6.5 Tunneling Current Density Function 

The Tsu-Esaki model for the calculation of tunneling currents requires a considerable 

computational effort. However, for practical device simulation, it is desirable to use 

compact models that do not require large computational resources.  

In order to find a simple approximation of Eq. (4.52): 
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(4.62) 

  

to avoid numerical integration, as a first approximation, T→0 is assumed. The Fermi 

function f(x) can be replaced by a step function [39]: 
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Without loss of generality, it can be assumed that EF,1>EF,2. The innermost integral can 

then be evaluated analytically for three distinct regions: 

When E > EF,1, f1(E-EF,1)=0, f2(E-EF,2)=0,  

 

0N  (4.64) 

  

When EF,2 > E>EF,1, f1(E-EF,1)=1, f2(E-EF,2)=0, 
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When E <EF,2, f1(E-EF,1)=1, f2(E-EF,2)=1, 
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Hence, 
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This leads to the following expression for the current density: 
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The first integral represents tunneling current from electron states that are low in energy 

and face a high energy barrier. Hence, as a second approximation, the first integral is 

neglected. By inserting the expression of transmission coefficient from Eq. (4.67) in the 

second integral, the current density becomes: 
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expressions. Eq. (4.69) can be written as J=J1+J2 with: 
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and its solution is: 
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where, Γ(a,x) is the "upper" incomplete gamma function which is given by: 
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The widely used asymptotic series representations for the incomplete gamma function is 

[49, 50]: 
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and by inserting this expression in Eq. (4.72) and Eq. (4.73) with the low-order terms 

neglected, yields: 
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Hence, the current density yields: 
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(4.79) 

 

where, Δ=EF,1-EF,2. 

The direct BtBT current in field-induced p-n junction can be calculated according to 

Eq. (4.78) and Eq. (4.79). Under conditions of thermal equilibrium, Δ is zero that cannot 

lead to BtBT current flow. But when a reverse bias voltage is applied, an energy window 

is open over which the current flows. When the applied voltage is much smaller than the 

band gap, the resulting field due to the voltage is only a small fraction of the built-in 

electric field at the junction; the extra field can be neglected.  

However, with increase in applied voltage, the change in the electric filed must be 

considered. If we already know the built-in voltage, we get the electric field:  
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 0qF  (4.80) 
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Consider the effective mass and band gap of GaAs as reference at 300K with 

Eg=1.4225eV, me=0.0632m0, mlh=0.0881m0. Set qF=1eV/m, ħ=6.58×10
-16

eV∙s, EFn=0.4eV, 

qΦ0=1.06eV and σ as a constant; the current density J of parabolic band structure and 

non-parabolic band structure versus Δ is shown in Figure 4.10.  

 

Figure 4.10 The current density J of parabolic band structure and non-parabolic band 

structure versus Δ. 

 

Figure 4.10 reveals that the non-parabolic band structure has a higher tunneling 

current density than the parabolic band structure.  
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Figure 4.11 The current density J with various β. 

 

The relation between the non-parabolicity factor β and α is α=-1/(βEq); 

Eq=Egmc/(mc+mv). The tunneling current is minimum when β→∞, α→0, which is shown 

in Figure 4.11. As the non-parabolicity factor β increases or α decreases, the ratio of 

non-parabolic behavior of the complex bands decreases which indicates that the 

non-parabolic correction αE
2 

is decreasing. When α→0, J2 becomes zero and the 

tunneling current is only contributed from the parabolic behavior of the complex band. 

The direct BtBT current J with the variation of Δ is shown in Figure 4.10 and Figure 

4.11. Assuming Δ>>qΦ0 , the terms which contain 
  2/3

0 q
e


 can be neglected and the 

current density becomes: 
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 With parabolic dispersion relation and neglecting the higher order terms, for a further 

approximation, Eq. (4.82) reduces to: 
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(4.83) 

  

 which is the equation commonly known as the Fowler-Nordheim formula.  

 

4.6.6 Temperature-dependent Tunneling Current Density 

Considering that the total energy E also changes with temperature, the temperature 

dependent effective barrier height qΦ0 yields: 

 

)()(0 TEETEq Fng   (4.84) 

  

EFn is assumed as a constant and the total energy E is approximated by the thermal energy 

with the kinetic term being neglected which can be written as 

E=1/2m
*
v

2
+3/2kBTC≈3/2kBTC, where, m

*
, v, and TC are the effective electron mass, 

electron velocity, and electron temperature, respectively, kB is the Boltzmann constant 

[51].
 
Hence, Eq. (4.84) can be written as:  

 

TkETEq BFng 
2

3
)(0   

(4.85) 

  

α is a parameter characterizing the relation between the electron temperature in the plane 
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parallel to the junction interface and the device temperature (α=TC/T). When electrons are 

in the equilibrium sate, α should be 1. Recall that the Fermi function is a step function. At 

T=0, the energy levels will be completely filled up to the certain energy which is called 

Fermi energy and there will be no occupied states with the energy higher than Fermi 

energy. However, as the temperature is increased, the Fermi function smears out so that 

the step function is not accurate at high temperature. The energy band gap Eg and reduced 

mass mr are temperature-dependent which is already calculated above so that δ can be 

modified as a function of temperature T.  

 

Figure 4.12 Temperature dependent tunneling current density is calculated according to 

Eq. (2.1) with Eq. (3.15). Parameters used in calculation: β=2, EFn=0.9eV, EFp=0.1eV, 

qF=1eV/μm, ħ=6.58×10
-16

eV∙s, m0=9.1×10
-31

kg, m
Γ

e(0)=0.0665, m
Γ

lh(0)=0.0951, 

αe=1.848×10
-5

K
-1

, αlh=3.902×10
-5

K
-1

, m0cg
2
=9.4eV, a(GaAs)=5.654Å, E

Γ
g(0)=1.519eV, 

α=5.405×10
-4

K
-1

, βEg=204K. The tunneling current density of parabolic band and 

non-parabolic band is almost parallel with the temperature increase from 0K to 500K.   
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CHAPTER 5  

QUANTUM EFFICIENCY MODEL – APPLICATION TO SOLAR CELLS 

 

5.1 Introduction  

A solar cell is an electronic device which directly converts sunlight into electricity via the 

photovoltaic effect. Light incident on the solar cell produces both a current and a voltage 

to generate electric power. This process requires firstly, a material in which the absorption 

of light raises an electron to a higher energy state, and secondly, the movement of this 

higher energy electron from the solar cell into an external circuit. The electron then 

dissipates its energy in the external circuit and returns to the solar cell. A variety of 

materials and processes can potentially satisfy the requirements for photovoltaic energy 

conversion, but, in practice, nearly all photovoltaic energy conversion uses 

semiconductor materials in the form of a p-n junction. 

 

 

Figure 5.1 Schematic cross section of a typical Cu(InGa)Se2 solar cell. 
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Figure 5.1 shows a cross-sectional schematic of a Cu(InGa)Se2 solar cell. This 

structure utilizes a soda lime glass substrate, coated with a sputtered Mo layer as a back 

contact. After Cu(InGa)Se2 deposition, the junction is formed by chemical bath–deposited 

CdS with thickness ≤50 nm. Then a high-resistance (HR) ZnO layer and a doped 

high-conductivity ZnO layer are deposited, usually by sputtering or chemical vapor 

deposition [52]. 

In this Chapter, device modeling and simulation studies of a Cu(In1−x,Gax)Se2 (CIGS) 

thin film solar cell have been carried out. A variety of graded band-gap structures, as 

shown in Table 5.1, including space charge region (SCR) grading, back surface region 

grading, and double grading of the CIGS absorber layer have been considered. 

Introducing a grading in the absorber can improve cell performance [53] and some 

modern CIGS solar cells have such a graded band gap profile [54]. It is difficult to 

discern the real benefit of grading, as varying material properties through the cell implies 

changing the mean value of the studied parameter, and it is almost impossible to produce 

a reference cell having the same properties as the studied cell. Hence, if one wants to 

study grading properties thoroughly, one should use numerical simulations. Several 

authors have already performed simulations of graded solar cells [55-60]. 
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Table 5.1 CIGS Solar Cells With Various Absorber Band Gap Profiles 

 

 

An optimal graded band-gap profile, such as a double grading consisting of SCR grading 

and back surface grading, improves the efficiency significantly [61]. A new world record 

efficiency of Cu(In,Ga)Se2 thin-film solar cells is 20.3% [62].
 

 

5.2 Photon Energy and Flux 

Light travels at speed c in vacuum which has a frequency f and a wavelength λ. 

Frequency can be related to the wavelength by the speed of light in the equation: 
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fc   (5.1) 

  

The energy of a photon, as described in “The Basics of Quantum Theory”, is given by the 

equation: 

 

hfE   (5.2) 

  



hc
E   

(5.3) 

  

The higher the frequency, shorter is the wavelength, and the greater the energy of the 

photon.  

Photon flux is another important concept because it allows us to understand how much 

light actually comes into contact with devices on the surface of the earth, and therefore 

how many electrons can be generated for current flow. Flux is a fancy word for the 

amount of something coming into contact with or passing through a given surface area. 

Therefore, the photon flux is just the amount of photons incident on the surface of a solar 

cell in a given time. The photon flux is given by the equation: 

 

Area

Numberphotons
  

(5.4) 

  

where, Φ is the photon flux, photonsNumber  is the number of photons per second and Area 

is in square meters. 

http://solarwiki.ucdavis.edu/The_Science_of_Solar/1._Basic/I._Introductory_Physics_for_Solar_Application/A._Atoms_and_Materials/1._Basics_of_Quantum_Theory
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5.3 Generation Rate 

The generation rate gives the number of electrons generated at each point in the device 

due to the absorption of photons. Generation is an important parameter in solar cell 

operation. 

Neglecting reflection, the amount of light which is absorbed by a material depends 

on the absorption coefficient (α in cm
-1

) and the thickness of the absorbing material. The 

intensity of light at any point in the device can be calculated according to the equation: 

 

xeII  0  (5.5) 

  

where, α is the absorption coefficient typically in cm
-1

,
 
x is the distance into the material 

at which the light intensity is being calculated and I0 is the light intensity at the top 

surface. 

The equation can be used to calculate the number of electron-hole pairs being 

generated in a solar cell. Assuming that the loss in light intensity (i.e., the absorption of 

photons) directly causes the generation of an electron-hole pair, the generation G in a thin 

slice of material is determined by finding the change in light intensity across this slice. 

Consequently, differentiating the above equation will give the generation at any point in 

the device: 

 

xeG   0  (5.6) 

  

where, Φ0 = photon flux at the surface, α = absorption coefficient and x = distance into 
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the material. The above equations show that the light intensity exponentially decreases 

throughout the material and the generation is highest at the surface of the material. For 

photovoltaic applications, the incident light consists of a combination of many different 

wavelengths, and, therefore, the generation rate at each wavelength is different. The 

generation rate at different wavelengths in silicon is shown below. 

 

5.4 Absorption Coefficient 

5.4 .1 Absorption Coefficient with Urbach Tail 

The absorption coefficient determines how far into a material light of a particular 

wavelength can penetrate before it is absorbed. In a material with a low absorption 

coefficient, light is only poorly absorbed, and if the material is thin enough, it will appear 

transparent to that wavelength. The absorption coefficient depends on the material and 

also on the wavelength of light being absorbed.  

The absorption coefficient α is composed of two parts. When hv<Eg+EU/2, weak 

sub-bandgap absorption takes place, α is proportional to   Ug EEhv /exp  . When 

hv>Eg+EU/2, stronger absorption takes place and α is proportional to gEhv  [83]. EU is 

the characteristic Urbach band-tail energy and Eg is band gap energy. The Urbach tail 

dominates absorption near but below the band gap and further below the band gap is 

dominated by free-carrier absorption [63].  
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Figure 5.2 Absorption coefficient of a semiconductor with band gap Eg versus energy. 

[64] 

 

5.4.2 Urbach Energy 

 

 

Figure 5.3 Urbach tail occurrence scheme. 

 

Urbach tail can be a telltale signature of the presence of impurities and disorder [65]. 

Urbach tail is due to the broadening of the exciton absorption band which occurs when 

charged impurities in the lattice induce phonon-induced micro-electric fields.  
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The exponential conduction-band (CBT) model developed by Grein [66] assumed 

that a “transport edge” Ec exists within the electron density, g(E), of the conduction band. 

In some amorphous semiconductors, such as a-Si:H, the absorption is dominated by a 

single band tail. CBT model denotes that the absorption is dominated by the conduction 

band tail. The electron does not interact with phonons; thus no valence-band tail forms in 

its approximation. Ionic crystals, other insulators, crystalline semiconductors, and 

amorphous semiconductors show experimental tails in the energy dependence of the 

optical absorption. 
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

 
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E

Ehv
exp0  

(5.7) 

  

EU is the Urbach energy which represents the width of the exponential tail, EF is the 

energy of the Urbach focus which coincides roughly with the energy of the lowest free 

exciton at zero lattice temperature. The width EU appears to have additive contributions 

from thermal origin, Eth, and structure origin, Est [67]. For high quality crystalline 

semiconductors, EU is a direct measure of the temperature-induced disorder, while for 

amorphous or highly doped materials, EU becomes larger because of the contributions 

from both thermal and structural (topological) disorders.  

 

   
XT

stthU UkUkEEE 22   (5.8) 
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U is mean square displacement (also called thermal shifting) of the atoms in an alloy 

that arises from both static and dynamic disorder. The first term represents the 

contribution of electron/exciton-phonon interaction like the Debye-Waller factor and the 

second term is due to the mean-square deviation of atoms, caused by the structural 

disorder, from a perfectly ordered lattice. 

The width of the exponential tail EU, in long wavelength, can be described by the 

form EU=kT/σ+Ws, where the steepness parameter [68]: 

 

   kThvhvkT pp 2/tanh/20 
 

(5.9) 

  

Ws describes the broadening of the edge due to the static (defect induced) disorder, 

Wd=kT/σ describes the broadening by the dynamic (phonon induced) disorder. The 

temperature dependence of Eth is linear above the Debye temperature Θ, then dropping 

rapidly at Θ and passing over to power law variation at low temperature, clearly 

implicating phonons. Est increases with the structure disorder, implying that Eth arises 

from the instantaneous thermal disorder introduced by phonons. 

EU can be modelled as an Einstein oscillator which takes into account contributions 

of dynamic thermal, static structural and compositional disorders. According to this 

model, the Urbach energy can be expressed by: 

 

       BeACXETEE T

UUU 
 1/ 1,  (5.10) 
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where, A and B are constants related to thermal, structural and compositional disorders. Θ, 

the Einstein temperature, is the same as that discussed earlier in the temperature 

dependence of the band gap. Cody [69] explained a similar variation of EU in α-Si using 

an empirical relation of a modified version of Eq. (5.10): 
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(5.11) 

  

X is an adjustable parameter related to the structural disorder. The value of Θ is obtained 

from a theoretical fit of the temperature dependence of Eg using the Manoogian-Wolley 

relation [70]. σ0 varies from 0.7 for highly ionic crystals such as NaCl to about 4 for InAs. 

Its value for CdS is 2.2. For single crystals (low X values) of CdS, EU is 11.9meV at 

300K and 5.1meV at 77K. The effect of disorder, caused by radiation and excessive 

doping, on the experimental value of X has been reported in the literature. For highly 

copper-doped CdS films, X can be large as 32-58 [71]. 

The Eg(T) behavior is compared with the model proposed by Manoogian and 

Woolley [72]. This is described by: 

 

      ]12/[coth0  TVUTETE s

gg  
(5.12) 

  

where, Eg(0) is the band gap energy at 0K, the second term represents the effect of the 

lattice thermal dilation, and the third term is related to the electron-phonon interaction 

[73].
 
U, s, V and Θ are adjustable parameters nearly independent of temperature [74, 75].
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Θ is the frequency of phonon excitation which is approximately related to the Debye 

temperature ΘD through Θ ≈ (3/4)ΘD.  

 

5.5 Quantum Efficiency 

The quantum efficiency (QE) is the ratio of the number of carriers collected by the solar 

cell to the number of photons of a given energy incident on the solar cell. The quantum 

efficiency may be given either as a function of wavelength or as energy. If all photons of 

a certain wavelength are absorbed and the resulting minority carriers are collected, then 

the quantum efficiency at that particular wavelength is unity. The quantum efficiency for 

photons with energy below the band gap should be zero theoretically. However, because 

of the existence of Urbach tail, photons can also be absorbed with energy below the band 

gap. 

There are two types of quantum efficiency of a solar cell that are often considered. 

External quantum efficiency (EQE) is the ratio of the number of charge carriers collected 

by the solar cell to the number of photons of a given energy incident on the solar cell 

from outside (incident photons). Internal quantum efficiency (IQE) is the ratio of the 

number of charge carriers collected by the solar cell to the number of photons of a given 

energy that shine on the solar cell from outside and are absorbed by the cell. 

 

5.6 Quantum Efficiency Model 

5.6.1 The Position-dependent Absorption Coefficient 

Considering both absorption processes, Mattheis [76] developed a model to describe the 

absorptance; the absorption coefficient α is modeled by Kichartz [77] as follows: 
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(5.13) 

  

where, A is a constant for fundamental absorption in a direct band gap semiconductor. 

When photon energies are even slightly above the band gap, band-tail absorption 

superposes with direct absorption in a direct band gap semiconductor. The value 

hv=Eg+EU/2 is to fulfill the requirement that α(hv) is a continuous and derivable function. 

However, the exact value of the transition energy corresponding to tail to band absorption 

has not been determined precisely [78].  

The generation rate at distance x from the surface is: 

 

  ),(),(, hvxhvxhvxG   
(5.14) 

 

G(x,hv) can also be described as photon flux Φ(x, hv) in unit depth [79]: 
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(5.15) 

  

According to Eq. (5.14) and Eq. (5.15), we obtain a differential equation for the photon 

flux Φ(x, hv) using a position-dependent absorption coefficient α(x, hv): 
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(5.16) 
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5.6.2 Modeling of Double-graded Band Gap Structure – Application to Solar Cells 

We consider the double-graded band gap structure; the solar cell is modeled by two 

linearly graded regions as shown in Figure 5.4. 

 

Figure 5.4 Energy diagram of a double-graded band gap absorber. Light is incident from 

the left. 

 

The position-dependent band gap is given by: 

 

min)()0( ExwxEwxE frontg    (5.17) 

 

 )()()( min xdEwxEdxwE backg    (5.18) 

  

 and  are grading parameters which are defined as follows: 
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(5.20) 

  

According to Eq. (5.13), a photon with energy between Emin+EU/2 and Efront+EU/2 will be 

absorbed through the Urbach tail from x=0 up to the coordinate x f r o n t  where band to 

band absorption begins. When hv= Emin+EU/2 , the layer thickness is w. 

As in the previous analysis, a photon with energy between Emin and Eback will be 

absorbed by band to band absorption and sub-band gap absorption from x=xback to x=d. In 

order to proceed with the solution for Eq. (5.16), three absorption regimes are defined 

that yield different solutions for ϕ(x,hν): 

Region 1: 2/min UEEhv  ,where only sub-band gap absorption takes place. 

Region 2: 2/2/min UfrontU EEhvEE  , where the range backfront xxx  is band to 

band absorption; sub-band absorption takes place elsewhere. 

Region 3: 2/Ufront EEhv  , the range backxx  is band to band absorption; sub-band 

absorption takes place elsewhere. 

 

5.6.3 Quantum Efficiency Calculations 

The internal quantum efficiency (IQE) of solar cells, defined as the fraction of extracted 

charge carrier flux to absorbed photon flux, is critically determined by the absorption 

coefficient α of the material and the carrier collection function fC of the cell. The internal 

quantum efficiency (IQE) of a photovoltaic absorber, between the depths x1 and x2, is 

http://www.sciencedirect.com/science/article/pii/S0927024810006276#eq0005
http://www.sciencedirect.com/science/article/pii/S0927024810006276#eq0010
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defined by the integral: 
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(5.21) 

  

where, G(x,hν) is the generation rate of carriers obtained and fC is the probability that a 

carrier reaches the contact, contributing to the photocurrent [80]. 

The interpretation and analysis of experimental IQE curves depend strongly on the 

detailed knowledge of the absorption and electronic properties of the solar cell. Assume 

the case where carrier collection is perfect, i.e. fC=1, and proceed to the non-ideal 

collection case. The IQE curves are obtained from [81]: 
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The solution of photon flux ϕ of each region is shown below: 

Solution in region 1: 
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Solution in region 2: 
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Solution in region 3: 
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The quantum efficiency can be calculated according to Eq. (5.22) and the simulation 

result is shown in Figure 5.5 with the variation of β. 

 

 

Figure 5.5 Internal quantum efficiency IQE vs. wavelength for various β. (Red 

Efront=1.54, β=0.5; purple Efront=1.34, β=0.3; blue Efront=1.04, β=0), assuming A=5×10
4
 

cm
−1

eV
−1/2

, Eback=1.54 eV, Emin=1.04 eV, w=1μm, d=2μm, EU=0.03.  
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Figure 5.6 The comparison of simulation results and experimental results. Left is the 

simulation result which is internal quantum efficiency IQE vs. Wavelength. The red part 

is region 1, indigo part is region 2, green part is region 3 and blue part is region 4. On the 

right side is the experimental result: Normalized QE for selected devices incorporating 

absorbers with normal and double profiling. [82] 

 

The diagram on the right side of Figure 5.6 shows the normalized quantum efficiency 

(QE) of selected normal and double profiling devices from Ref. [82]. The experimental 

data reveals that normal profiling devices do not collect efficiently in the long 

wavelengths. The double profiling devices, on the other hand, not only have an improved 

response in the long wavelengths but in the short wavelengths as well. Comparing the 

simulation results shown on the left with the experimental data, it fits well with the 

experimental results. As the gradient parameter β decreases, the quantum efficiency curve 

broadens in long wavelengths which is shown in Figure 5.6 
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5.6.4 Temperature-dependent Quantum Efficiency 

The temperature dependence of the Urbach energy, EU can be calculated from Eq. (5.11), 

assuming A=0.15, B=0.025 and the Debye temperature Θ=130K. The temperature 

dependence of Eg is given by the Manoogian-Wolley relation, assuming U=5×10
-5

, 

V=3×10
-4

, s=1, Eg(0)=1.04.  

 

 

Figure 5.7 The quantum efficiency of the CIGS solar cell as a function of temperature 

and wavelength. The wavelength was varied from 0.2μm to 1.1µm, and temperature from 

0K to 600K. 
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The temperature dependence of the Urbach energy, EU, can be calculated from Eq. 

(5.11), assuming A=0.15, B=0.025 and the Debye temperature Θ=130K. The temperature 

dependence of Eg is calculated using the Manoogian-Wolley relation, assuming U=5×10
-5

, 

V=3×10
-4

, s=1, Eg(0)=1.04. The temperature dependence of quantum efficiency is shown 

in Figure 5.7. It indicates that, at short wavelengths, quantum efficiency does not vary 

with temperature. At long wavelengths, the quantum efficiency broadens with increasing 

temperature T. 
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CHAPTER 6  

CONCLUSIONS  

 

The physical phenomenon of quantum-mechanical tunneling is investigated especially in 

the non-parabolic band structure and with a variation of temperature. The conventional 

non-parabolic approximation of real band structures can be modified and generalized to 

approximate the complex band structures of common semiconductors with a significant 

improvement in accuracy in comparison with the parabolic approximation. The tunneling 

current density is calculated from a non-parabolic dispersion relation. In the calculations, 

the supply function is replaced by a step function and a series representation of the 

incomplete gamma function is used to reduce the solution. The tunneling current density 

is greatly influenced by the behavior of the band structure and the non-parabolic behavior 

of the band structure has additional contribution to the current density. 

Quantum-mechanical tunneling is investigated especially in the non-parabolic band 

structure and with a variation of temperature.  

The quantum efficiency model based on CIGS solar cells has been discussed. In this 

model, the gradient parameters are discussed. The experimental data reveals that devices, 

with normal profile, do not collect efficiently in the long wavelengths. The double profile 

devices, on the other hand, not only have an improved response in the long wavelengths 

but in the short wavelengths as well. As the gradient parameter β increases, the quantum 

efficiency also increases in long wavelengths. The temperature-dependent quantum 

efficiency is investigated by modeling the temperature dependence of the Urbach energy 

and band gap based on CIGS solar cells. It indicates that, at short wavelengths, quantum 

efficiency does not vary with temperature. At long wavelengths, higher than 0.6μm, the 
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quantum efficiency broadens with increasing temperature T.  
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APPENDIX 

FERMI-DIRAC INTEGRALS 

The selected Fermi-Dirac integrals are given in this appendix. Considering the integrals 

of the form, 
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We can solve them using the geometric series expansion: 
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where, ζ(p) is the Riemann zeta function, and Γ(p) is the Euler beta function.  
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Selected Fermi-Dirac integrals are summarized in the following table: 

Table A.1 Selected Fermi-Dirac Integrals 

p ζ(p) Γ(p) I =(1-1/2
p-1

)ζ(p)Γ(p) 

3/2 2.612 √π//2 0.383√π 

5/2 1.314 3√π/4 0.650√π 

2 π
2
/6 1 π

2
/12 

3 1.202 2 1.803 

4 π
4
/90 6 7π

4
/120 

6 π
6
/945 120 31π

6
/252 
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