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ABSTRACT 

QUANTIFYING PREHENSION IN PERSONS  
WITH STROKE POST REHABILITATION 

by 
Saumya Sara Puthenveettil 

This study describes the analysis of reaching and grasping abilities of the hemiparetic 

arm and hand of patients post stroke after a series of interactive virtual reality (VR) 

simulated training sessions and conventional physical therapy of similar intensity. Six 

subjects participated in VR training and five subjects in clinical rehabilitation for two 

weeks.  Subjects’ finger joint angles were measured during a kinematic reach to grasp 

test using CyberGlove® and arm joint angles were measured using the trackSTARTM 

system prior to training and after training.  Downward force applied to the object during 

grasping was assessed using Nano17TM, a force/torque sensor system that is added to the 

reach to grasp test paradigm for the VR trained subjects.  Results from total movement 

time, grasping time, and average applied force show that subjects significantly decreased 

their average kinematic times and force applied to object during reaching and grasping 

tasks.  Classification of hand postures using Linear Discriminant Analysis (LDA) during 

the reaching phase of movement shows an improvement in subjects’ accuracies and 

abilities to preshape their fingers post training in both groups.  A system utilizing 

magnetic trackers, a data glove, and a force sensor is sensitive to changes in motor 

performance elicited by a robotically facilitated, virtually simulated motor intervention 

and physical therapy of similar intensity.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this thesis is to quantify and compare hand preshaping and grasping 

abilities in stroke subjects who participated in two types of interventions for the 

hemiparetic arm and hand: interactive virtual reality (VR) simulated training and clinical 

rehabilitation training of similar intensity.  This study describes the design and testing of 

a system aimed at quantifying improvement in reaching and grasping abilities of the 

hemiparetic arm and hand of post stroke patients after a series of training sessions.  Six 

subjects participated in VR training and five subjects in clinical rehabilitation consisting 

of repetitive task practice (RTP) for two weeks.  Kinematic finger joint angle 

measurements and wrist positions were obtained using CyberGlove® and trackSTARTM 

systems pre and post training.  Force measurements were obtained using Nano17TM, a 

force/torque sensor system pre and post training for subjects in the VR training group.  

This study analyzes total movement times, grasping times, maximum vertical force 

applied to the object during grasping, classification of finger joint angles during hand 

preshaping, and correlations between finger joint angles.  Preshaping of finger joint 

angles into object shape is analyzed by classifying hand postures using Linear 

Discriminant Analysis (LDA) in order to determine improvement in preshaping of the 

hand pre and post rehabilitative training.  Total movement times, grasping times, 

maximum force, and hand preshaping accuracy are analyzed from data obtained from 

electromagnetic sensors, a data glove, and a force sensor system.     
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1.2 Background Information 

 

1.2.1 Prehension and Previous Research 

The evolution of the human hand during transport (reaching) and prehension (grasping) 

has been studied extensively in order to determine the underlying neural mechanisms of 

motor planning.  Prehensile motion refers to when the hand seizes an object and holds it.  

Prehension requires that the object be securely held, and thus stability is essential.   In 

order to achieve this stability, Napier classifies all human prehensile hand movements 

into two categories: power grip and precision grip [1].  In a power grip, the hand forms 

into a clamp with the palm and flexed fingers and opposing pressure by the thumb.  In the 

precision grip, the object is pinched between the fingers and thumb.   

Hand formation varies anatomically as the functional purpose of formation varies.  

During a power grip, the thumb is adducted at the metacarpophalangeal (MCP) and 

carpometacarpal joints and during the precision grip, the thumb is abducted at these 

joints.  The degree of finger flexion and the manipulation of the palm area varies 

depending on the dimensions of the object.  With small sized objects, the need for 

precision in grip becomes greater, and thus relies more heavily on the thumb and index 

finger digits which are well suited for fine control.  

Each finger of the human hand (Figure 1.1) consists of three joints, the distal 

interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP).  

The DIP and PIP joints have one degree of freedom each and the MCP joint has two 

degrees of freedom.  The thumb has three joints which are the interphalangeal joint with 
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one degree of freedom, and an MCP joint and trapeziometacarpal joint (TMJ) each with 

two degrees of freedom, for a total of 21 degrees of freedom [2].   

 

 
                 Figure 1.1  Hand anatomy. 

                 Source: American Society for Surgery of the Hand 
                     http://www.assh.org/Public/HandAnatomy/Pages/default.aspx [2] 
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Reach to grasp tests are utilized by researchers to study human movement.  

Although the set up of a reach to grasp test varies from one study to another, it generally 

consists of a subject seated with arm and hand in a preset position.  When cued, the 

subject is directed to reach for an object, and place it at a new position and then return to 

the initial position.  A typical reach to grasp test consists of multiple trials with different 

target objects or grasp criteria.  Experimentally, the transport component of movement 

can be measured from wrist movement, and the grasp or prehension component can be 

measuring from grip aperture, that is, the distance between thumb and index finger.   

During a reaching and grasping task, the fingers initially straighten and the grip 

increases, and as the hand approaches the object, grip closes in order to match the size of 

the object [3].  The “maximum grip aperture” is the time in which the opening distance 

between the thumb and index finger is the largest.  This occurs between 60-70% of the 

reach duration and is correlated with object size.  Factors that affect grasp kinematics 

include size of the object, weight, texture, and fragility.   

Theories on transport and prehension propose the existence of sub movements 

such as hand transport to object, wrist direction in space, and finger preshaping to a 

desired grip [4].  The hypothesis of Visuomotor Channels derived from research on 

monkeys describes the transport phase as possessing spatial information such as distance 

and direction while the grasping phase possesses information such as size and shape of 

object.  This hypothesis states that reaching and grasping possess neural pathways which 

trigger specific neurons during reaching and grasping tasks.   

For reaching, the primary visual cortex (V1) is connected to the primary motor 

cortex (M1) via the parietal occipital (PO) area and dorsal premotor cortex (Figure 1.2).  
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Area PO is where the location of objects is processed whereas the premotor cortex is 

where output or action is generated.  The neural pathway for grasping in monkeys 

connects V1 to M1 by connecting the dorsal extrastriate (ES) cortex to the anterior 

intraparietal area (AIP) to reach the ventral premotor cortex.  Neurons activated by hand 

movement were found to be concentrated in the AIP area.  Area AIP is connected to area 

F5 in the ventral premotor cortex which has been found to be related to grasping.  

Interestingly, neurons in F5 show selectivity in firing depending on the hand prehension, 

such as precision grip versus power grip [5].  

 

 

Figure 1.2  Primary visual cortex and primary motor cortex pathways during reaching 
and grasping. 
 
Source: Kandel ER, Schwartz JH, & Jessell TM (2000) Principles of neural science (McGraw-Hill, Health 
Professions Division, New York) 4th Ed, pp.1756-1779 [5] 
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Although there are sub movements involved in prehension, ultimately the 

transport and prehension phases must share a commonality in order to successfully grasp 

the target object.  This is due to the fact that the hand must be open before the target 

object is reached, which elicits a temporal dependence [6].  As such, Jeannerod and other 

studies note that the maximum grasp size occurs during the onset of the low velocity 

phase preceding contact with the target object.  This temporal commonality between 

grasp size and velocity implies that there are not only independent neural channels but 

also channels that work in synchrony.   

Transport error refers to grasp aperture that is either the exact size of object (or 

exceeds the size of the object) and hand in an incorrect position.  These two factors will 

render the hand incapable of grasping the object successfully.  Wing studied expected 

increases in transport error because of fast transport and reaching without vision in order 

to relate the increase in transport error to an increase in grasp aperture.  Three trials were 

run with subjects directed to pick up an object at normal pace, at fast pace, and with eyes 

closed.  Results show that grasp aperture was found to be greater in fast movements and 

no vision movements with less accurate transport trajectories.  This suggests that grasp 

aperture increases in order to compensate for transport errors.   

According to Fitts’s Law, there is a relationship between the speed and the index 

of difficulty of movement, in that as the movement time increases, the index of difficulty 

of movement increases, where the index of difficulty is the logarithm (base 2) of twice 

the movement amplitude divided by width of target.  An increase in movement time is a 

function of increasing movement amplitude and decreasing tolerance, and the minimum 

amount of information necessary to produce movement can be calculated using these 
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parameters [7].  Where Id is the binary index of difficulty, Ws is the tolerance, and A is 

the amplitude, Fitts’s law is:  

 bits/response (1.1)

 

Fitts’s law can be applied to prehension in that as the object width increases, 

movement time increases [8].  Bootsma et al tested Fitts’s law applied to prehension by 

studying the effect of amplitude, object width, and object size on movement time.  

Sixteen blocks of varying sizes and widths were used for this study where subjects were 

asked to pick up the objects at two different movement amplitudes (distance from starting 

to target object).   Total movement time was divided into the acceleration phase from the 

onset of movement to the peak velocity, and the deceleration phase, from the peak 

velocity until the hand motion reverses (after capturing object).  Results show that 

smaller object widths result in longer movement times caused by a longer deceleration 

phase and larger movement amplitude resulted in longer movement times.  Object size 

did not have an effect on movement time as long as the size does not approach the 

maximum size the subject can grasp.  Results from applying Fitts’s law to prehensile 

movement show that the movement time increases as the index of difficulty increases.   

Other prehension studies observe the effects of target velocity and how the 

velocity of a moving target affects the coupling of the transport and grasping phases.  The 

question is whether target velocity affects only grasping, or both reaching and grasping 

[9].  In this study, subjects were positioned in front of a track and asked to reach for and 

lift a cylindrical force transducer (moving target) when it approached at various velocities 

from a fixed distance and from varying distances (constant viewing time).  Results show 
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that when distance was constant and as the velocity increased, the movement time 

decreased.  However, with constant viewing time, movement time was unaffected.  

Additionally, as target velocity increased, the peak aperture increased in both conditions.  

This study demonstrates that target motion affects both the reaching and grasping 

components of movement.  Interestingly, when viewing time was held constant, reaching 

kinematics were not affected by changing target velocity.  Therefore, target velocity may 

not affect the information offered in generating transport commands when viewing time 

is constrained, whereas the amount of time the subject spends viewing the target offers 

more information.  This brings to light the significance of temporal information during a 

reaching action.  In the preshaping mechanism, as the target’s velocity increased, there is 

an increase in the peak aperture and peak aperture velocity.   

Prehension studies have been conducted in monkeys in order to serve as a model 

for human prehension and motor patterns [10].  In comparing the two species, both 

exhibit a peak velocity during the reaching phase and a maximum grip size that decreases 

upon grasping.  In order to study the effects of varying the size of the target object and 

the location, three Macaque monkeys were trained to reach for and grasp objects.  In the 

varying size trials, two cylinders of varying diameters, one small and one large were 

presented, and in the varying location trials, three identical objects were presented at 

different locations.  Reaching components were measured using wrist markers (infrared 

light-emitting diodes) and grasping components were measured using markers on the 

thumb nail and index finger.  Markers were also attached to the middle finger in order to 

measure the distance between the thumb and middle finger.  As expected, wrist velocity 

profiles were bell shaped and the maximum grip apertures occurred after the peak 
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velocity.  Results show that movement times were longer for the small object than the 

large object and object size and location do have an effect on reaching and grasping.   

In studying the preshaping component of the transport phase, a pioneering study 

tested the hypothesis that the hand molds to the contours of the object at the time of 

contact with object [11].  Subjects grasped fifteen different objects of approximately the 

same size but varying in shapes (convex or concave).  Six subjects began each trial with 

their hand in an initial position for a total of ten trials.  CyberGlove® (Virtual 

Technologies) was used to measure hand posture of the joint angles.  Joint angles 

measured include the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) of 

the index, middle, ring, and little fingers.  The goal of this study was to distinguish 

between postures throughout movement.  Discriminant functions computed from 

eigenvectors of the ratio of between groups covariance matrix to within groups 

covariance matrix were used to project the hand posture onto discriminant space.  The 

minimum distance between hand postures was used to match hand posture with object 

shape.  Results show that during reaching, between 30% to 70% of movement, fingers 

initially extend to maximum and then flex as the hand reaches the object.  Hand postures 

varied according to object shape.  After the peak hand aperture, hand shapes become 

gradually distinguishable, which takes place before the contact with the object.   

Another interesting study examined the effects of visual feedback and object 

shape on hand preshaping [12].  The evolution of hand preshaping was studied in order to 

determine temporal differences of varying object shapes against full vision, vision of only 

the target object, and no vision conditions.  The purpose of this study was to determine 

when distinguishable hand configurations were present and if visual feedback affected 
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the hand’s ability to preshape or if this is only affected by object shape regardless of 

visual feedback.  Subjects were presented three objects of varying shapes and widths.  A 

data glove was employed and individually calibrated to obtain measurements of MCP and 

PIP joint angles.  Subjects were asked to reach to and grasp objects when cued.  In the 

‘object vision’ condition, the room was completely darkened and only the objects were 

visible, which were painted light-green and fluorescent.  In the ‘no vision’ condition, 

subjects performed reach to grasp trials with eyes closed.  Position of wrist was measured 

using electromagnetic sensors.  Due to the inability to accurately measure thumb position 

using the data glove, the maximum aperture was calculated as the distance between the 

tip of the index finger and perpendicular finger displacement (index finger displacement) 

defined as: 

IFD=  L1 cosα + L2cosβ (1.2)

L1 and L2 are the lengths of individual subjects’ index finger phalanges, α and β 

are the flexion angles of the MCP and PIP joints.  Canonical discriminant analysis was 

used to obtain classification errors of hand preshaping as the hand reached for the object.  

The classification error is defined as the incorrectly classified data or data that is placed 

into the wrong group (misclassifications).  Results show that object shape affects hand 

posture throughout movement in all vision conditions, even the no vision condition.  This 

indicates the use of information regarding object shape in grasping, which is referred to 

as the early predictive phase.  Results also show that low classification errors were 

attained before 50% of movement time.  Results suggest that hand preshaping consists of 

both an early phase and late phase.  The early phase is a predictive phase where hand 

formation is selected while during the late phase, grasp on the object is optimized.   
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Reach to grasp experiments have also been advantageous in studying prehension 

of subjects with neurological disorders.  In the case of Parkinson’s disease (PD), subjects 

exhibit several motor impairments.  Among these impairments are tremor and 

bradykinesia (slow movement) and PD patients show significant impairment in 

synchronizing their movement [13].  Hand preshaping impairment was studied in PD 

subjects using three different object shapes.  For this study, ten PD patients and eight 

control subjects were employed with the hypothesis that PD subjects would have 

difficulty with preshaping during the reaching phase as compared to controls and would 

rely on visual feedback in order to accomplish this.  Results show that PD subjects’ 

movement time is significantly higher than normal controls.  Additionally, mean peak 

velocity of the wrist is significantly lower for PD subjects than for normal controls.  

Analysis of classification error rates of hand preshaping in PD subjects versus normal 

controls shows that after 35% of movement, control subjects’ classification error 

decreases with a steeper slope than PD subjects’ classification error at that time.  

Additionally from 55% to 95% movement time, PD subjects’ classification error was 

significantly higher than that of normal controls.  Both groups however display a steadily 

decreasing classification error as hand reaches object, and so the higher classification 

error among PD subjects suggests a delay in their ability to preshape their hand to match 

the object shape                   
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1.2.2 Stroke and Neurorehabilitation  

Every year, approximately 800,000 people suffer from stroke, leading to long term 

disability or death [14].  Stroke is the loss of brain functioning due to a lack of blood flow 

in the brain resulting from a blockage or hemorrhage.  Following stroke, upper extremity 

functioning is impaired in varying degrees from mild to severe levels of hemiparesis.  

Hemiparesis is characterized by weakness on one side of the body.  These impairments 

can consist of slower reaction times, muscle weakness, lack of motion, and motor control 

of limbs.    

One study aimed to research kinematic measurements that discriminated between 

normal and impaired motor functioning while drinking from a glass [15].  Normal 

subjects and subjects with hemiparesis as a result of stroke participated in a reaching task 

where they were instructed to reach for a drinking glass and take a sip.  Compared with 

normal subjects, stroke subjects had significantly slower total movement times and 

velocity profiles for stroke subjects were more oscillatory than those of healthy subjects.   

Other studies utilizing reach to grasp tests comparing stroke subjects with healthy 

subjects also found that stroke subjects had higher movement times than healthy subjects 

and lower peak velocities [16].  Stroke and other neurological disorders have inspired 

research in the field of neurorehabilitation in order to investigate plasticity of the human 

brain and recovery of function.  This is because dramatic recovery can be seen in the 

nervous system following brain injury.  Plasticity generally refers to modification of 

neural connections and organization among neurons.  For example with stroke, 

substantial improvement in motor function has been seen to occur in the first thirty days 

and more impaired subjects can continue to improve up to ninety days [17] prior to 



13 
 

rehabilitation.  Recovery of function refers to the individual’s ability to reacquire 

movement skills following injury. 

According to the theory of viscariation, in response to injury, the brain can 

reorganize such that one part of the brain can substitute for another in order to support 

lost functionality.  This neural reorganization is believed to support recovery of motor 

functioning post injury.  The phenomenon known as motor adaptation refers to the 

modification of one’s movement as a result of repetition across multiple trials [18].  

During this adaptation, the brain is believed to modify its movement in order to minimize 

the amount of energy, force, or inaccuracy of the movement.   Motor learning studies 

investigate how movement is modified among normal individuals.  

In the 1970’s, Richard Schmidt proposed the schema theory of motor learning 

which states that there are generalized sets of rules for spatial and temporal planning 

involved in movement termed the generalized motor program.  He proposed that after an 

individual makes a movement, there are four movement characteristics that are stored in 

short-term memory: (1) movement conditions such as position and weight of the object 

(2) generalized motor program (3) the results of the movement (4) sensory information 

about the movement : how it feels, looks, and sounds.  After storage into short-term 

memory, two schemas are created: recall schema (motor) and recognition schema 

(sensory) [19].  A prediction from schema theory is that as a particular movement is 

practiced, by varying the movement practice, motor learning will improve.   

Motor adaptation or motor learning can be facilitated with rehabilitative therapies.  

In constraint-induced movement therapy (CIMT), the less affected or unimpaired 

extremity is constrained and the impaired limb is practiced.  In a study comparing CIMT 
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with a less intensive motor intervention, CIMT subjects showed decreased cerebral 

activation implying the subjects’ abilities to more effectively recruit motoneurons to 

produce movement.  As a result, after therapy, CIMT subjects’ activation patterns more 

closely resembled that of normal volunteers.  Patients have also reported a decreased 

effort in producing movement post therapy [20].     

In a particular study, enhanced physical therapy was tested in stroke subjects who 

received more than twice the regular amount of physical therapy for the impaired arm 

along with behavioral therapy [21].  Results show that after six months, subjects in the 

enhanced physical therapy group among the mild group attained better arm function than 

those in the conventional physical therapy group, however the reverse was true for the 

severe group.  Due to the complexity of sensorimotor control involved in reaching and 

grasping tasks, even slight impairment of this control can adversely affect daily living.  In 

recent years, interventions for stroke rehabilitation include virtual reality training 

environments and robotic technology that utilize plasticity of the nervous system to 

promote recovery for hemiparesis.     

Robot facilitated therapy has been investigated in order to determine whether 

exercising the subjects’ impaired limb can promote motor recovery [22].  Robot assisted 

“video-games” were designed that promoted upper-limb motor recovery such as for 

shoulder or elbow motion.  Results from clinical tests show that patients improved in 

motor functioning to a greater degree than those in the control group.  The New Jersey 

Institute of Technology’s (NJIT) NeuroRehabilitation lab has successfully developed VR 

training environments using the HapticMaster robotic arm and CyberGlove® in order to 

create realistic and interactive training environments to rehabilitate persons with stroke.  
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The HapticMaster robotic arm is a six degree of freedom (X, Y, Z, Pitch, Yaw, and Roll) 

force controlled robotic arm and CyberGlove® is a data glove that obtains finger joint 

angle measurements.  Merians et al employed subjects with hemiparesis due to stroke to 

participate in a virtual reality simulated training program [23].  CyberGlove® and the 

Rutgers Master II-ND (force feedback glove) were connected to a PC that ran VR 

simulations providing continuous feedback about finger performance.  An algorithm 

increased the subject’s target goals for extension, flexion, and kinematic parameters when 

the subject’s performance improved.  Results show that subjects improved in their 

fractionation, motion, and speed.  Another study employed four different virtual 

simulations, including a VR piano session, that trained repetitive extension/flexion of 

fingers and shoulder as well as required subjects to reach forward utilizing trunk motion 

[24].   

VR training for subjects post stroke has resulted in improvement of the subjects’ 

overall movement path as well as kinematic measurements.  The advantages of the virtual 

reality simulation is that it is interactive and challenging, providing feedback to the 

subject.  This approach to training has resulted in improvements in kinematic 

measurements along with improvements in finger fractionation (degree of finger 

independence), finger strength, and improvement in clinical tests of upper extremity 

function [25, 26].  

This thesis will analyze changes in reaching and grasping abilities of persons with 

stroke subsequent to a program of VR training and an equivalent program of 

conventional physical therapy of similar intensity, using the reach to grasp paradigm. The 

aims of this thesis is first (i) to study the effects of VR rehabilitation training sessions on 
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the vertical force applied to a target object during a reach to grasp test, (ii) to study the 

effects of both VR rehabilitation and clinical rehabilitation on the kinematics of reaching 

and grasping; movement time and grasping time (iii) to determine whether rehabilitation 

improves the ability to distinguish between hand postures in the hand preshaping phase 

(iv) to compare correlations of finger joint angles of the unimpaired right hand of subjects 

to that of previous literature. 
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CHAPTER 2 

IMPLEMENTATION 

 

2.1 Subjects and Apparatus 

This study is a subset of ongoing research at the NeuroRehabilitation lab at NJIT which is 

supported in part by NIH grant HD 58301 and by the National Institute on Disability and 

Rehabilitation Research RERC grant #H133E050011.  Eleven subjects post stroke, 

average age 53, three females and eight males with mild to severe hemiparesis were 

recruited for this study.  The subjects in this study suffered from hemiparesis; their 

hemiparesis occurred on the side of the body opposite to the side of the brain where the 

lesion occurred.  Six subjects were virtual reality trained and five subjects were trained 

with conventional physical therapy.  Six subjects trained their hemiparetic hand with 

interactive virtual reality (VR) computer games and five subjects trained their 

hemiparetic hand with a program of non-automated repetitive task practice (RTP).   Force 

measurements for five subjects were acquired during the reach to grasp tests.  These 

subjects are the VR group subjects since the force sensor was not available for data 

collection until a later date.  Joint angle measurements during reach to grasp tests were 

acquired for ten subjects since there was an error in data collection for one subject from 

the VR group.  For classification, four subjects from the RTP group were selected for 

comparison with four subjects from the VR group.  Wrist kinematic data was acquired for 

all eleven subjects.   
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Subjects sat in front of a flat table and were presented objects of five different 

shapes and dimensions.  Objects shapes and dimensions are as follows: small circle 

(diam=3.2cm), small cube (l=9.5cm, w=3.2), big circle (diam=5.7cm), big cube 

(l=6.7cm, w=5.7cm), huge circle (diam=10 cm), and cylinder (diam=3.81 cm, 

height=10.8 cm).  Wolf Motor Function Test (WMFT) [27] and Jebsen Test of Hand 

Function (JTHF) [28] measurements were taken for each subject prior to training and 

after training.  The WMFT is a timed evaluation of upper extremity performance that 

measures limb and joint movement.  The JTHF is a timed evaluation of hand function 

which simulates every day activities to measure fine motor and weighted hand 

functioning.  Table 2.1 below lists subjects’ clinical information.   

             Table 2.1  Subject Clinical Information 

 
 
 
 

Training Level Gender Ataxia

SUBJECT 1 VR Moderate F N

SUBJECT 2 VR Moderate M N

SUBJECT 3 VR Moderate M Y

SUBJECT 4 VR Moderate M Y

SUBJECT 5 VR Severe M N

SUBJECT 6 VR Moderate M N

SUBJECT 7 RTP Mild M N

SUBJECT 8 RTP Mild F N

SUBJECT 9 RTP Mild F N

SUBJECT 10 RTP Severe M N

SUBJECT 11 RTP Moderate M N
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2.2 Data Capture 
 

Position of joints and rotation of the subjects’ arms were recorded using four 

electromagnetic sensors (trackSTARTM system, Ascension Technologies, Inc.) attached 

with adhesive tape to the shoulder, elbow, wrist, and trunk.  The trackSTARTM (six 

degree of freedom) system’s sensors output x, y, and z position coordinates of the 

magnetic center of the four sensors relative to the origin of the transmitter.  Flexion and 

extension angles of finger joints were measured using resistive bend sensors in a glove 

(CyberGlove®, Immersion, Inc.) worn on both hands (Figure 2.1) [29].   

 

 
Figure 2.1  CyberGlove® with twenty-two resistive bend sensors. 

 
                           Source: Virtual Hand User's Guide. 2.7 [29] 
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The CyberGlove® sensors were individually calibrated for both hands for each 

subject during pre and post training sessions.  Calibration measurements were obtained 

with hand position corresponding to zero degrees, 90 degrees, and 20 degrees by 

directing subjects to flatten their hand on a table with fingers together, make a fist, and 

keep hand flat on surface with fingers stretched apart respectively.  Joint angles during 

experiments were calculated relative to their deviation from the zero, 90, and 20 degree 

calibration angles.  The flexion/extension of the metacarpophalangeal (MCP), proximal 

interphalangeal (PIP), and distal interphalangeal (DIP) joints of all five fingers were 

included in this study as well as abduction/adduction (ABD) joints of all five fingers.   

A six-axis force/torque sensor system (Nano17TM, ATI Industrial Automation) 

was mounted below the object to measure vertical force exerted on the object (Figure 

2.2).  The 17 mm diameter transducer for this system converts the resulting force and 

torque into analog strain gage signals[30].  The force/torque controller converts strain 

gage data into force and torque data.  These systems are connected to a PC through the 

serial port and all three devices were programmed using MATLAB and merged using 

C++.  Devices were synchronized to capture data at 100Hz. 
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                          Figure 2.2  Applied force and torque transducer. 
 
                               Source: A. I. Automation, "F/T Controller (CTL/CTLJ/CON): Six- Axis Force/Torque   
                               Sensor System," p. 223, 2010. [30] 
   
 

2.3 Procedure 

At the beginning of each trial, the subject’s hand is in a preset initial position. When 

cued, the subject is asked to reach to and grasp the object at a comfortable speed.  Once 

the object is grasped, it is lifted by the subject and placed on a 7.5 cm high platform on 

the table surface (Figure 2.3).  Trials were run for both impaired and unimpaired hands.  

Total trials per experiment were 120 (6 shapes x 2 hands x 10 trials).  If an object was not 

grasped successfully, another trial was run to replace it.   
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Figure 2.3  Reach to grasp test schematic: Trial begins with hand at rest, placed in initial 
preset position.  At cue, (1) subject reaches for the shape (centered) (2) places it on a 7.5 
cm high target platform (3) returns to initial position.  Trials are run for both hemiparetic 
and unimpaired hand.   

 
 

 

2.4 Data  Analysis 

 

2.4.1  Nano17TM  

Data from the force sensor was validated using the position profile (Figure 2.4) from an 

electromagnetic sensor (trackSTARTM).  Data retrieved from Nano17TM is organized into 

a matrix of six columns, the first three columns correspond to force components, Fx, Fy, Fz, 

and the last three columns correspond to torque components, Tx, Ty, Tz.  The rows of the 

matrix correspond to the total number of samples which corresponds to total time of one 



23 
 

trial.  To test the force sensor, one electromagnetic sensor was placed on the surface of 

the object ‘big cube’.  The force sensor was mounted below the object so that any 

displacement of the object would be detected by changes in force on the force sensor.  A 

subject was seated in the typical reach to grasp experiment manner and when cued was 

asked to pick up the object and place it on a platform.  Subject was not wearing a data 

glove and no electromagnetic sensors were attached to the subject for this force sensor 

test.   

Figure 2.4 shows the z (vertical) position output from the electromagnetic sensor 

and the z directional force (Fz) output from the force sensor.  Initially both profiles are 

constant with time, at approximately 1.61 seconds, the position graph dips below its 

initial position.  This corresponds to the time the object was lifted.  This data reveals that 

the time the object is lifted is 1.61 seconds for both the position and force graphs.  This 

indicates that the time the hand reaches object is approximately 1.21 seconds and from 

1.21 to 1.61 seconds, the subject is struggling to pick up the object (see force profile).  

From the position profile it can be inferred that between 1.61 seconds and approximately 

4.21 seconds, the object is being transported from its initial position to the platform (final 

resting position).  
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            Figure 2.4  Force and position graph. 

 
Force data was further evaluated using velocity profiles obtained from the wrist 

position electromagnetic sensor during a reach to grasp experiment.  The velocity profile 

in Figure 2.5 shows three peak velocities for the entire duration of a reach to grasp test.  

These peak velocities correspond to times of the three phases of movement: time of start 

to when hand reaches object, time when hand reaches object to when hand places object 

on platform, and time when hand places object on platform to when hand returns to initial 

position.  The force profile shown below is plotted using data obtained from force Fz 

component.  The force profile shows a peak during the time when the hand applied 
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maximum force to the object during the first phase of movement.  From approximately 

times 0-1.30 seconds, object is resting on force sensor, and from 1.96-3.75 seconds, there 

is no object on the force sensor because it has been lifted.  Since data was acquired at 100 

samples/second, maximum duration of movement is 3.75 seconds or 375 samples.  Force 

sensor data was plotted with the velocity profile to confirm that the time during which the 

hand reaches object occurs in the same time period for both profiles.  The force sensor 

data below indicates that from approximately 1.3 seconds to 1.96 seconds, the subject 

was struggling to lift the object.  The time movement begins at approximately .6 seconds 

is referred to as onset1.  The time hand reaches object is referred to as offset 1 (1.3 

seconds) and the time hand lifts object is referred to has onset 2 (1.96 seconds).      

 

 
 

           Figure 2.5  Velocity and force profiles. 
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In order to determine the offset 1 and onset 2 times from the force sensor profiles, 

the raw force sensor data was smoothed by filtering with a 3rd order Butterworth digital 

low pass filter with a cutoff frequency of 5 Hz, which is well below the Nyquist sampling 

frequency.  The butter function in Matlab was used to obtain the filter coefficients. Onset 

2 and offset1 was determined by calculating the slope of the force profile.  When the 

slope transitioned to a large negative value (-500), offset 1 was determined and when the 

slope transitioned to a low positive value (0.5), onset 2 was determined.  For onset 2, a 

threshold was also applied so that under the condition of this threshold and low slope, 

onset 2 could be determined.  Slope and threshold values were determined from trial and 

error of testing various force profiles for the six objects and six subjects.  Maximum force 

applied to object was determined by compiling minimum force values from raw 

unfiltered data.  Figure 2.6 is a flow chart that describes the steps in the MATLAB source 

code for determining offset 1 and onset 2 times.  See Appendix A and Appendix B for 

full version of the source code.    
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Apply Threshold Force (TF) 
and Threshold slope (TS)

START

STOP

FORCE SENSOR

Upload Force 
Data

Butterworth low pass filter

Is F>TF & 
slope<Ts

Set onset 2 value

YES

NO

i=i+1

Apply Threshold slope 
(T2S) and window (W)

Is slope<T2s

YES

Set offset 1 value

NO

i=i+W

 
 

Figure 2.6  Flow chart for MATLAB source code of force sensor data analysis. 
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2.4.2 Statistical Analysis of Kinematic and Force Data 
 

The normal distribution is a probability model that describes the probability distribution 

of a continuous random variable (Figure 2.7).  This model is generally bell-shaped where 

the center of the distribution refers to the highest probability.  The x-axis are the values of 

the random variable X and the y-axis is the probability of observing that value of X 

where the total area under the curve is 1.0 [31].  

 

                                   Figure 2.7  The Normal Distribution. 
 
                                           Source: Ralph B. D' Agostino, S., Lisa M. Sullivan, Alexa S. Beiser (2006).   
                                           Introductory Applied Biostatistics, Thomson Brooks/Cole. [31] 
  
 

The mathematical formula for a normal probability distribution where x is a 

continuous random variable, µ is the mean of the random variable X, and σ is the 

standard deviation of the random variable is: 

1

√2
/

 
 (2.1)
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According to the Central Limit Theorem, taking random samples of size n with 

replacement from a population with mean µ and standard deviation σ, the sampling 

distribution of the sample means is normally distributed.  This is generally true when 

n≥30, where µx is the mean of the sample means and σx is the standard deviation of the 

sample standard deviations:  

μ x= µ,   σx=√
 (2.2)

 

The Central Limit Theorem allows one to make inferences about the population 

based on the sample statistics .  This inference is made by transforming to a standard 

normal distribution Z. 

Z =
μ

  (2.3)

 

  However when the population standard deviation is unknown and the sample 

size is small (n<30), the Central Limit Theorem is not applicable and the distribution of 

the sample mean cannot be assumed as normal.  For this case, the t-distribution is used 

which is similar to the standard normal distribution except in the tail end of the 

distribution. For small sample sizes (n<30) and an unknown population standard 

deviation (σ) a t-test is administered.  A t-test is a statistical hypothesis test that follows a 

Student’s t- distribution.  The test statistic for paired data where   and sd are the mean 

and standard deviation of the difference scores and n is the number of pairs is: 
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                                   t=
√

                                                        (2.4)

 For this study, a one-tailed paired Student’s t-test was used to determine 

statistical significance of differences in time to reach object, grasping time, and 

maximum force applied to object pre training and post training.  A paired t-test examines 

dependant samples, that is, a pre-treatment and post treatment.  This study is one-tailed 

since the alternative hypothesis is that kinematic times post treatment have decreased and 

applied force has decreased.  The null hypothesis is that the means are equal and the null 

hypothesis can be rejected when the p-value is less than α which in this case is .05.  The 

p-value measures the significance of the data or the probability of observing a value that 

is as extreme or more extreme than the test statistic.  Normality of distribution of data is 

verified by graphing a histogram of the data across several trials.   

 

 

2.4.3 CyberGlove®  

Data from CyberGlove® is stored in a matrix of twenty columns that correspond to 

twenty of the twenty-two joint angle sensors.  Rows of the matrix correspond to total 

samples or total time of data collection.  All raw glove data was 2nd order  Butterworth 

low pass filtered with a cutoff frequency of 1 Hz to attenuate the high frequencies, and 

data was transformed from radians into degrees for analysis.  Wrist trajectories and onset 

and offset times from force sensor data were used to determine a window of time for 

preshaping of the hand for each subject.  Movement onset 1 is the time that movement 

first begins, offset 1 is the time the hand reaches the object, and onset 2 is the time of 

object lift.  Onset 1 is measured as 5% of wrist peak velocity between onset 1 and offset 
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1.  Figure 2.8 (not plotted to scale) is a kinematic profile of the entire movement 

sequence of the proximal interphalangeal joint for one trial beginning with initial resting 

position.  The green trajectory is the joint angle profile of the index PIJ and the blue 

velocity profile was obtained by differentiating the position vector of the wrist sensor.  

Data collection begins after the subject is cued with the sound of a bell.   

Phase 1 refers to the initial resting position upon hearing the bell.  Phase 2 begins 

movement and corresponds to the reaching phase where hand preshapes to the object’s 

shape.  This is commonly referred to as the transport phase.  As stated in previous 

literature, during the reaching phase, there is an acceleration, a peak velocity, and a 

deceleration [8].  Phase 3 begins when the hand reaches the object and the subject is 

struggling to pick up the object.  Phase 4 begins with hand picking up object and 

transporting the object to the platform.  Phase 5 refers to the time when the object is 

placed on the platform.  Phase 6 refers to when the hand returns to the initial resting 

position.  Phase 7 is the end of movement where hand is resting.  The three peaks in the 

velocity profile correspond to the times in the movement when the hand is transported 

from the initial position to the object, from the object to the platform, and from the 

platform back to the initial position.  The index PIJ trajectory reaches a minimum when it 

is grasping the object and returns to a value that is similar to the initial position (Phase 1) 

by the time it reaches Phase 7.     
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Figure 2.8  Index PIJ joint angle sensor from CyberGlove® plotted with velocity profile 
from trakSTARTM wrist sensor.  Seven phases of movement are involved in the reach to 
grasp test.  Duration of experiments varies for subjects depending on severity of 
impairment.   

 
 
 

2.4.4 Classification of Hand Preshaping using Linear Discriminant Analysis  

In statistics, machine learning, and pattern recognition, classification schemes are utilized 

to separate classes of data.  Linear Discriminant Analysis (LDA) produces linear features 

which is beneficial for separating classes of multidimensional data (Figure 2.9).  In this 

thesis, LDA is used in order to compare how accurately hand posture during the 

preshaping phase can predict what the target shape is pre and post rehabilitative training.  

In theory, LDA creates a decision boundary between different classes of 



33 
 

multidimensional data by projecting the data onto a new function which maximizes the 

ratio of between class scatter (SB) or covariance between classes and within class scatter 

(Sw) or covariance within classes [32-34].   

 

Figure 2.9  LDA Class Separation: A shows the distribution for y-axis and x-axis 
projections.  B shows the distribution using a new function formed from the linear 
combination of x and y. 
 
Source: SPSS Discriminant Analysis: 589-604. [34] 
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The discriminant function (y) is computed by obtaining the eigenvector solution (wT) for 

the ratio of SW
-1SB where x is the multidimensional joint angle vector. 

                                             
                                                      y=wTx                                                            (2.5) 
 
 

After transforming the hand postures into discriminant space, the minimum 

distance Dij
2 between the hand posture and the mean of each class can determine which 

posture belongs to each class.  In the present classification study, the training data, or the 

two classes are hand postures for two different shapes at one instant of time across 

multiple trials.  The observation is classified into one of the two classes by calculating the 

Mahalanobis distances between the hand posture to be classified and the hand posture for 

each class where S-1 is the pooled covariance matrix, where xi is a multidimensional 

observation, and µj is a multidimensional mean vector for the jth class.  

 

                                      Dij
2 = (xi-µj)' S

-1(xi-µj)                                             (2.6) 

 

 

The probability that a hand posture belongs to the jth class (G) given an observation vector 

X is determined by the posterior probability P Gj|X : 

 

                                           P Gj|X P X|G

∑ P X|G
                                                  (2.7) 

 

 

P X|Gj  is the probability that a hand posture in class j will have the observation vector X. 
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                  | |
| |

e / D                                     (2.8) 

 

 

The multivariate normal probability density function is f(X|Gj).  An observation is 

classified into one of two classes that has the minimum distance Dij
2 or maximum 

posterior probability which is a function of Dij
2.  In order to compare hand postures using 

LDA, all movement data was synchronized such that onset 1 across trials occurred at the 

same time.  Data captured during the reaching phase was normalized to 100 data points in 

order to concatenate the arrays across trials.  The MATLAB function ‘classify’ was used 

to perform LDA analysis on the finger joint angles to obtain a measurement of error 

(misclassification) during the hand preshaping phase in predicting object shape.  

LDA was performed for the preshaping phase, which is from times between onset 

1 and offset 1 to predict which of the two objects the hand posture belonged to.  Sensors 

measuring PIP, MCP, and abduction angles, of the index through ring fingers were 

analyzed to produce an eleven dimensional vector for two classes.  Two matrices for each 

class were stacked to create a final matrix (m, n, j) where m is the samples, n is the 11 

sensors for analysis, and j are the total number of trials for both objects.  For every 

moment of time the posterior probability of one observation belonging to one of the two 

classes (groups) was calculated and the higher posterior was awarded the observation.  

Misclassification rate at every time point across trials was tabulated in order to report 

classification errors.  Classification error was low pass filtered in order to produce the 

classification error curves.  Figure 2.10 below is a flow chart of the LDA classification 

analysis for hand preshaping.  See Appendix C and Appendix D for source code.   
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classified 

 

Figure 2.10  Flow chart of MATLAB source code for classification of hand preshaping. 
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Figure 2.13 below shows a kinematic trajectory for both big cube and big circle of 

the unimpaired hand of Subject 9.  This trajectory corresponds to the entire movement 

duration of a reach to grasp experiment.  The red traces correspond to the subject 

reaching for the big cube object while the blue traces correspond to the big circle object.  

Joint angles for the big circle require greater extension and correspond to the lower 

angles when grasped since this hand formation is closer to the 0 degrees calibration 

position. 

 

 
Figure 2.11  Joint angle data for entire movement: big cube and big circle, 10 trials each. 
 
 
 

Figure 2.12 below is identical to the trajectories in Figure 2.11 except that it 

considers only data from onset 1 to offset 1 and the data has been normalized to 100 

samples.  Figure 2.12 only considers movement in the preshaping phase (reaching).  
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From Figure 2.12 it can be seen that towards the end of movement, hand formation for 

big cube and big circle is completely distinguishable since the trajectories completely 

separate.  Figure 2.12 shows how closely the hand postures for big circle and big cube 

resemble one another in the initial resting position until the end of movement where 

trajectories separate.  For the LDA classification of hand posture for each subject, entire 

movement trajectories (Figure 2.11) were cut so that classification of hand preshaping 

was applied to only the hand formation phase (Figure 2.12).  Figure 2.13 shows the 

resulting classification error of applying the LDA classification scheme to Figure 2.12. 

 

 
Figure 2.12  Joint angle data for preshaping phase: big cube and big circle, 10 trials each, 
from onset1 to offset1. 
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Figure 2.13  Classification error of Figure 2.14.  Error gradually decreases until the end 
of movement when error reaches zero. 
 
 
2.4.5 Correlation of Finger Joint Angles 
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compared to results from a previous study of correlations obtained during natural every 

day hand movements [35].  Where  is the mean of the first finger joint and  is the mean 
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∑

∑ ∑
                                      (2.9)  

 

Correlation values vary between -1 and 1.  A value of 1 implies perfect linear relationship 

between the two variables such that an increase in the first variable dictates an increase in 

the second variable.  A value of -1 implies a negative linear relationship between the two 

variables such that an increase in the first variable dictates a decrease in the second 

variable. A value of zero implies no relationship.       
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CHAPTER 3 

RESULTS  

 

3.1 Total Movement Time: Hemiparetic 

Total movement time (MT) is the time from onset of movement (onset1) to when the 

hand reaches object (offset1).  All subjects in the RTP group decreased their average MT 

post training (Table 3.1).  Three out of five RTP subjects show a statistically significant 

(p<.05) decrease in MT (asterisk for subjects with significant improvement).  In the VR 

training group, four out of six subjects decreased their total movement time post training.  

Subjects 2 and 5 increased their MT post training.  One subject in the VR training group 

showed statistically significant decrease in MT.  Group mean MT for both VR trained 

and RTP trained show the impaired hand’s MT is greater than that of the unimpaired 

hand’s MT (Figure 3.1, Figure 3.2).  For both groups, shapes 1, 2, 3, and 4, correspond to 

‘small circle’, ‘small cube’, ‘big circle’, and ‘big cube’ respectively.  For the VR group 

shape 5 corresponds to the shape ‘huge circle’ and for the RTP group shape 5 

corresponds to the shape ‘cylinder’.  As a group, RTP subjects’ MT was greatest for 

‘cylinder’ for both hands.  There were no consistent trends in MT’s for the VR group that 

is based on object shape.   
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                 Table 3.1  Total Movement Times 

 
 
 

Pre Training (s) Post Training (s) Training

SUBJECT 1 1.30 1.05 VR

SUBJECT 2 0.72 0.85 VR

SUBJECT 3 1.31 1.16 VR

SUBJECT 4* 1.17 0.96 VR

SUBJECT 5* 0.65 0.76 VR

SUBJECT 6 1.41 1.41 VR

SUBJECT 7* 0.84 0.69 RTP

SUBJECT 8* 0.57 0.40 RTP

SUBJECT 9* 0.71 0.59 RTP

SUBJECT 10 2.29 2.41 RTP

SUBJECT 11 1.29 1.20 RTP



43 
 

 

         Figure 3.1  Group movement time averages for VR training. 

 
 

 

             Figure 3.2  Group movement time averages for RTP training. 
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3.2 Total Grasping Times (Hemiparetic) 

 

Grasping time is measured as the time period in which hand touches object and picks it 

up (Phase 3 in Figure 2.8 above).  Three out of six subjects in the VR training group 

decreased their grasping time post training (Table 3.2).  All five subjects in the RTP 

group decreased their grasping time post training with statistically significant (p<.05) 

decreases for four subjects.  Subjects with an asterisk corresponds to a significant p-value 

and values in bold correspond to an increase in MT. 

 

   Table 3.2  Group Grasping Times 

 

Pre Training (s) Post Training (s) Training

SUBJECT 1 1.58 1.39 VR

SUBJECT 2 0.34 0.39 VR

SUBJECT 3 0.12 0.09 VR

SUBJECT 4* 0.53 0.72 VR

SUBJECT 5 0.95 0.80 VR

SUBJECT 6 1.52 1.55 VR

SUBJECT 7* 0.15 0.09 RTP

SUBJECT 8* 0.20 0.12 RTP

SUBJECT 9* 0.40 0.25 RTP

SUBJECT 10* 0.25 0.12 RTP

SUBJECT 11 0.50 0.44 RTP



45 
 

3.3 Force Sensor  

 

Force sensor data for average maximum force applied to the object by the VR subjects 

pre and post training shows a statistically significant (p<.05) decrease in average force 

applied to objects for three out of five subjects for a majority of objects (Table 3.3).  

Average force difference is the difference in vertical force between pre training and post 

training.  Negative values correspond to an increase in force post training.  For subjects 5 

and 6, average force applied to object increased post training, where statistical 

significance is only seen for two objects.  Values with an asterisk correspond to a 

significant p-value and negative values correspond to an increase in force applied post 

training. 

 

 

    Table 3.3  Average Force Difference (N) 

 
Big Circle Big Cube Huge Circle Small Circle Small Cube 

SUBJECT 1 0.51* 0.36* -1.80 0.04* -0.19* 

SUBJECT 2 0.32* 0.61* 0.27* 0.03* 0.10 

SUBJECT 4 0.78* 0.47* 0.34 0.09* -0.86* 

SUBJECT 5 -1.33 -0.21 -0.26 -0.10 -0.37* 

SUBJECT 6 -2.81 0.17* -0.41 -0.06 -0.48 
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3.4 LDA Classification of Hand Preshaping 

 

Finger joint angle analysis from all eight subjects show a decrease in error post VR 

training and RTP training indicating that discriminating hand shape during prehension for 

the subjects improved.  Table 3.4 presents the times at which subjects reached an error of 

zero (times are normalized to percent of movement).  An error of zero implies accurate 

hand preshaping for the target object and the ability of the classifier to distinguish 

between two objects’ hand postures.  In Table 3.4, all subjects reached an error of zero 

earlier in time post-training than pre-training.  Three subjects did not reach an error of 

zero until after the hand touched object; Subject 3, Subject 4, and Subject 5.   

Table 3.5 presents classification errors for these three subjects throughout the 

duration of their movement.  In post-training, the three subjects achieve lower 

classification errors than pre-training throughout their movement.  Subject 3 and Subject 

5 do not reach an error of zero when hand touches object.  Figures 3.3, 3.4, and 3.5 shows 

typical profiles of classification errors in prediction object shapes.  As expected, the 

unimpaired hands present lower classification errors than the impaired hand.  Subject 1’s 

error rate for “huge circle” and “small circle” for both impaired hand and unimpaired 

hand decreases after training.  After 75% of the transport phase, both hands produce 

distinguishable hand shapes for these objects.  Figure 3.4 presents Subject 9’s 

classification errors also indicate distinguishable hand posture and high accuracy in hand 

preshaping by 75% of the preshaping phase.  Figure 3.5 presents the classification errors 

of the impaired hands of two subjects pre and post training.  Classification errors for the 

severely impaired subject is greater than that of the mildly impaired subject even after 
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50% of movement duration.  Both subjects show an improvement in preshaping accuracy 

post training.   

 

              Table 3.4  Times of Minimum Classification Error 

 

  Table 3.5  Classification Errors as Movement Progresses 

 

 

Minimum Classification Error of Hemiparetic Hand: Normalized Movement 
Time(%)

Pre-Training Post-Training

SUBJECT 1 74% 58%

SUBJECT 3 100% 100%

SUBJECT 4 100% 100%

SUBJECT 5 100% 100%

SUBJECT 7 60% 32%

SUBJECT 8 72% 47%

SUBJECT 9 64% 55%

SUBJECT 11 100% 71%

Classification Errors of Hemiparetic Hand: Normalized Movement Time (%)

Pre-Training Post-Training

25% 50% 75% 100% 25% 50% 75% 100%

SUBJECT 3 0.22 0.09 0.25 0.10 0.21 0.09 0.19 0.05

SUBJECT 4 0.31 0.31 0.21 0.00 0.21 0.10 0.14 0.00

SUBJECT 5 0.12 0.38 0.26 0.16 0.22 0.23 0.18 0.06
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Figure 3.3  Subject 1 classification errors of huge circle and small circle.  Subject 1 was 
VR trained. 
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Figure 3.4  Subject 9 hemiparetic hand classification error for cylinder and small cube.  
Subject 9 is a mildly impaired subject and is RTP trained 
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Figure 3.5  Classification error of hemiparetic hand for severe and mild impairment:  
Subject 5 is VR trained and Subject 8 is RTP trained.  Both subjects show improvement 
in hand preshaping post training. 
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3.5 Correlation of Finger Joint Angles 

Figure 3.6 presents the average correlations between three different pairs of joints 

of the same finger during a reaching task.  Average MCP-PIP and MCP-DIP 

correlations for the index, middle, and ring finger indicate a negative correlation 

when preshaping fingers for shapes big circle, big cube, small circle, and small 

cube.  However, PIP-DIP joint pair averages indicated a positive correlation.  

Figure 3.7 presents average correlations for each joint across fingers.  During 

reaching, correlations of pairs of index, middle, and ring fingers show that PIP has 

the highest average correlation while DIP has the weakest correlation.  Figure 3.8 

presents the correlations of each joint with respect to distance.  For each joint, 

correlations of index to middle finger (0 finger separation), middle to ring finger 

(0 finger separation) and index to ring finger (1 finger separation) were computed.  

Results show that correlations for each joint decreases with increasing finger 

separation. 

 

Figure 3.6  Average correlations for joint angle pairs of the same finger in a     
reaching task 
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Figure 3.7  Average correlations across fingers for pairs of same joints 

 

 
               Figure 3.8  Average correlations for varying finger separation
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CHAPTER 4 

DISCUSSION  

 

A decrease in total movement time post training is in line with results from previous 

studies of subjects who are VR trained and trained with conventional physical therapy.  A 

decrease in average total movement time to target object and average grasping time of 

target object suggests that post training, patients were able to move and grasp more 

efficiently and accurately during the reach to grasp test.  On average, subjects in the RTP 

group had highest movement times when reaching for the ‘cylinder’, which is the largest 

sized object for that group.  If the ‘cylinder’ object was available in the VR group, 

perhaps similar results could be observed.       

The decrease in applied force during grasping can be due to increased control of 

the hemiparetic arm and hand following VR training which allows the subject to press 

down on the object with less intensity.  According to the Wolf Motor Function Test, 

Subject 5 and Subject 6 are the most impaired subjects.  This may explain the subjects’ 

deviation in applied force measurements post training compared to Subject 1, 2, and 4.  

These results are similar to a previous study that showed that enhanced physical therapy 

did not show improvement for subjects who were severely impaired [21].  As indicated 

by this thesis, the use of a force sensor is beneficial in reach to grasp tests since it 

provides an accurate representation of the grasping phase, force applied, and a reliable 

determination for offset 1 and onset 2 times (grasping times).  

Correlations of finger joint angles during the reaching phase show the dependence 

of finger joint angles.   Results from this study are similar to that of previous research 
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which show strongest correlations between PIP-DIP joints and weakest correlations 

between MCP-PIP and MCP-DIP joints [35].  However in this study, MCP-PIP and 

MCP-DIP present a weak negative correlation.  Similar to previous research, homologous 

joint pairs of DIP joints exhibit the weakest correlation between fingers.  Also, with 

increasing finger separation, the correlation between homologous joint pairs decreases.  

That is, the correlation between MCP joints of the index/middle fingers and middle/ring 

fingers are higher than that of the index and ring fingers.  This relationship of decreasing 

correlation with increased finger distance is consistent for joint pairs of the MCP, PIP, 

and DIP joints.         

As a group, subjects tend to begin with larger classification error rates since 

during the resting position finger joint angles show little differences between objects, and 

minimum error rates at the end of movement since object has been grasped to form the 

contours of the shape.  As expected, classification errors for the impaired hand tend to be 

much higher than that of the unimpaired hand since hemiparesis hinders fine finger 

movement.  The results of this study are in line with previous research which indicates 

that low classification errors can be attained before 50% of movement [12].  As expected, 

Subject 3, 4, and 5 who did not achieve zero classification errors at 100% of movement 

correspond to subjects who had higher levels of motor difficulty.  Subjects 3 and 4 are 

ataxic and Subject 5 is the most clinically impaired subject in the study.  For all subjects, 

when movement begins (transport), the hand gradually evolves in order to optimize hand 

formation for the target shape [11].   

Improvement in classification errors or decrease in error during post training 

sessions may indicate improvement in fine finger movement.  Since the classification 
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error results consider up to eleven finger joint angles from the index to ring fingers, this 

analysis may provide insight into improvement in finger fractionation (finger 

independence) [26].  Since reaching and grasping involve different neural mechanisms, 

patients with neurological difficulty such as stroke subjects may be able to reach 

efficiently but have difficulty grasping and vice versa [19].  However, since these 

movements are synchronized, many patients experience difficulty in both types of motor 

control.   

Figure 2.11 demonstrates a smooth and consistent joint angle trajectory of one 

subject’s unimpaired hand.  In a majority of stroke subjects however, this trajectory is a 

stark contrast to the hemiparetic hand trajectory which shows disruptions in coordination 

and an inability to maintain stability.  It is this variance in the trajectory of the joint 

angles of the hemiparetic hand that is observed to have varied post treatment.  Since 

stroke subjects have difficulty controlling individual finger movements and coordination, 

improvements in motor control post treatment can be observed in trajectories that closely 

approximate the mean for each object being grasped.  This tighter trajectory can be a 

measure of accuracy regarding optimizing hand formation.  Across multiple trials, 

trajectories with lower variance seem to imply an ability to preshape with greater 

accuracy.  The classification scheme presented in this study is intended to measure the 

variability of the trajectories post training versus pre training and how treatment affects 

the predictability of hand preshaping.  
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CHAPTER 6 

CONCLUSION  

 
 
Virtual reality training of the hemiparetic arm and hand and conventional physical 

therapy can improve stroke subjects’ abilities to reach for objects and grasp them.  Due to 

the variety of subject demographics and severity of impairments, as well as the individual 

rehabilitative treatment of each subject, it is difficult to quantify improvement in 

subjects’ reaching and grasping abilities.  However, the present study demonstrates that 

these therapies are equally beneficial in aiding rehabilitation of subjects with hemiparesis.  

Virtual reality training with assistive robotics is particularly useful in quantifying motor 

treatments and providing an individualized and interactive training environment.  Post 

treatment, subjects exhibit lower movement times and grasping times as well as a 

decreased use of force.  Classification of hand preshaping is a predictive model that 

shows improved accuracy in predicting object shape following training.  Classification 

results demonstrate that training promotes fine movement of fingers in subjects.  The 

system as described utilizing magnetic trackers, a data glove, and a force sensor is 

sensitive to changes in motor performance following a virtually simulated motor 

intervention and conventional physical therapy.   
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APPENDIX A 

CHAPTER 3 ADDITIONAL FIGURES FOR CLASSIFICATION OF 
HEMIPARETIC HAND 
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      A1  Classification error with normalized movement time of impaired hand  
             for Subject 3. 

 

 

   A2  Classification error with normalized movement time of impaired hand  
          for Subject 4. 
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  A3  Classification error with normalized movement time of impaired hand  
         for Subject 7. 

 

 

 A4  Classification error with normalized movement time of impaired hand  
         for Subject 10. 
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   A5  Classification error with normalized movement time of impaired hand  
          for Subject 11.
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APPENDIX B 

SOURCE CODE FOR FORCE SENSOR 

 

% Source Code for Force Data 

begin=0; 
 
fileCount = 1; 
 
while(begin==0) 
 
s = serial('COM1'); 
set(s,'BaudRate',57600,'Terminator','CR'); 
s.InputBufferSize = 50000; 
set(s,'Stopbits',1); 
set(s,'Databits',8); 
 
fopen(s); 
 
fprintf(s,['CB 57600']); 
fprintf(s,['RS']); 
fprintf(s,['CS']) 
pause(1) 
out = get(s,'baudrate'); 
 
sc= fscanf(s); 
fprintf(s,['CD A']); 
sc= fscanf(s); 
readasync(s); 
by=s.BytesAvailable; 
if(by > 0) 
temp = fread(s,by); 
val = char(temp)'; 
end 
 
 
disp('Using input command press any key but a...'); 
[t, keyCode,deltaSecs ]=KbWait; 
disp('press a to start data collection... '); 
while KbName(keyCode)~='a' 
[t, keyCode,deltaSecs ]=KbWait; 
end 
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t1=tic; 
fprintf(s,['QS']); 
sc= fscanf(s); 
readasync(s); 
disp('press b to stop data collection... '); 
[t, keyCode,deltaSecs ]=KbWait; 
while KbName(keyCode)~='b' 
[t, keyCode,deltaSecs ]=KbWait; 
end 
 
finaltime=toc(t1) 
 
by=s.BytesAvailable; 
if(by > 0) 
temp = fread(s,by); 
val = char(temp)'; 
end 
 
%fprintf(s,['SB']); 
finaltime1=toc(t1) 
 
t1=tic; 
y=length(val); 
k=1; 
temp=double(val); 
 
%for n=k:y 
d=strfind(val, ','); 
%end 
 
y2=length(d); 
kf=zeros(1,y2); 
for n=2:y2 
 
if val(d(n)-1)>=0&&val(d(n)-2)>=0&&val(d(n)-3)>=0&&val(d(n)-4)>=0&&val(d(n)-
5)>=0&&val(d(n)-6)>=0&&val(d(n)-7)>=0 
value=val(d(n)-7:d(n)-1); 
c=cellstr(value); 
X = str2double(c); 
kf(n)=kf(n)+X; 
 
end 
 
end 
Testing=isnan(kf); 
kf(Testing)=0; 
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for n=2:y2 
if kf(n)==0 
value2=val(d(n)-7:d(n)-2); 
 
c=cellstr(value2); 
X = str2double(c); 
kf(n)=kf(n)+X; 
end 
end 
r=(y2)/6; 
 
datafinal=zeros((y2)/6,6); 
k=2; 
n=1; 
m=1; 
 
for m=m:1:r; 
if m<r+1; 
for k=k:k+5 
if k<length(kf)+1 
if n<7 
datafinal(m,n)=datafinal(m,n)+kf(k); 
end 
 
n=n+1; 
end 
end 
 
n=1; 
k=k+1; 
end 
end 
%%add time to matrix 
 
sec=zeros(m,1); 
k=1; 
for time=finaltime/m:finaltime/m:finaltime 
 
sec(k)=sec(k)+time; 
k=k+1; 
end 
 
datafinal2=horzcat(sec,datafinal); 
 
filename=['code_data\datafinal' num2str(fileCount) '.txt']; 
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save(filename,'datafinal2','-ASCII'); 
fileCount = fileCount+1; 
 
fprintf(s,['^Q']); 
fprintf(s,['^S']); 
fclose(s); 
finaltime7=toc(t1) 
end
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APPENDIX C 

SOURCE CODE FOR CALCULATING OFFSET 1 AND ONSET 2 

 
% Source Code for calculating offset1 and onset2 
% Upload force sensor data 
% filter data 
 
pathname = uigetdir; 
cd(pathname); 
clc 
subject_list = ls(pathname); 
 
for ja =1:1 
 
for ia=2:3 
for ma=1:2 
for ka=8 
switch ma 
case 1 
impairedHand = ['left']; 
case 2 
impairedHand = ['right']; 
end 
 
 
 
switch ia 
case 2 
dir = [pathname '\pretest\' impairedHand '\']; 
case 3 
dir = [pathname '\posttest\' impairedHand '\']; 
end 
 
switch ka 
case 1 
Object = ['bigcircle']; 
case 2 
Object = ['bigcube']; 
case 3 
Object = ['smallcircle']; 
case 4 
Object = ['Hugecircle']; 
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case 5 
Object = ['smallcube']; 
case 6 
Object = ['Pentagon']; 
case 7 
Object = ['Playdoh']; 
case 8 
Object = ['Wedge']; 
 
end 
 
s= [dir Object] 
cd(s) 
files=ls('ForceSensor*.txt'); 
 
TF=isempty(files) 
if TF==1 
break 
end 
 
 
 
files=cellstr(files); 
 
if isempty(files)==1 
break; 
end 
 
 
ttt=length(files); 
ccc=1; 
table=zeros(ttt,2); 
 
 
for GG=1:1:ttt 
x=char(files(GG,ccc)); 
NAME=x; 
x=load(x); 
original=x; 
 
 
if length(x)<100 
offset1=-999999; 
onset2=-999999; 
table(GG,1)=table(GG,1)+offset1; 
table(GG,2)=table(GG,2)+onset2; 
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clearvars x 
break 
end 
 
[B,A]=butter(3,.1,'low'); 
x=filtfilt(B,A,x); 
 
 
for i=1 
 
if isnan(x(i,4))==1 
offset1=-999999; 
onset2=-999999; 
table(GG,1)=offset1; 
table(GG,2)=onset2; 
 
break 
end 
end 
 
 
 
time=zeros(length(x),3); 
i=1; 
n=4; 
r=length(x); 
 
 
[min1,min2]=min(x(1:length(x)/1.5,4)); 
for i=min2:length(x)-2 
 
deltaY3=(x(i+1,4))-(x(i,4)); 
deltaX3=(x(i+1,1)-x(i,1)); 
deltaY3a=(x(i+2,4))-(x(i+1,4)); 
deltaX3a=(x(i+2,1)-x(i+1,1)); 
if (deltaY3/deltaX3)<=.5 &&(deltaY3a/deltaX3a)<=.5 && x(i,4)>-700 
value=i; 
onset2=x(i,1); 
break 
end 
end 
 
for i=1:length(x) 
 
if exist('value')==0 
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onset2=-999999; 
 
end 
 
end 
 
if isnan(x(1,4))==0 
 
n=1; 
mo=1; 
w2=3; 
for m2=1:1:min2-w2 
mo; 
deltaY4=(x(m2+w2,4))-(x(m2,4)); 
deltaX4=(x(m2+w2,1)-x(m2,1)); 
 
 
slope4(mo,1)=m2; 
slope4(mo,2)=(deltaY4/deltaX4); 
mo=mo+1; 
 
end 
 
if exist('slope4')==0 
offset1=-999999; 
onset2=-999999; 
table(GG,1)=offset1; 
table(GG,2)=onset2; 
 
break 
end 
 
 
for m3=1:1:length(slope4) 
if slope4(m3,2)<-500 
ansy=m3; 
break 
end 
end 
 
 
[lowest,c2]=min(slope4(:,2));   c2=ansy; 
xoffset=slope4(c2); 
final_offset=zeros(w2,3); 
for m2=1:1:w2; 
y=xoffset:1:xoffset+w2; 
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final_offset(m2,1)=y(m2); 
final_offset(m2,2)=x(y(m2),1); 
final_offset(m2,3)=x(y(m2),4); 
end 
 
offset1=final_offset(1,2); 
 
else 
offset1=-999999; 
onset2=-999999; 
 
 
end 
 
table(GG,1)=offset1; 
table(GG,2)=onset2; 
if table(GG,2)~=-999999 
if table(GG,1)>table(GG,2) 
table(GG,1)=-999999; 
table(GG,2)=-999999; 
 
end 
end 
 
if table(GG,1)==table(GG,2) 
table(GG,1)=-999999; 
table(GG,2)=-999999; 
 
end 
 
clearvars slope* 
clearvars x 
clearvars value 
clearvars onset2 
clearvars offset1 
end 
xlswrite('offset1_onset2.xls', files, 'Times','A1'); 
xlswrite('offset1_onset2.xls', table, 'Times','B1'); 
 
clearvars ForceSensor* 
clearvars table 
end 
end 
end 
end 
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APPENDIX D 

 
UPLOAD GLOVE DATA FILES FOR CLASSIFICATION OF HAND POSTURES 

 
 
%Upload Glove data files for classification without force times 
 
clear all 
close all 
 
 
pathname1 = uigetdir; 
pathname2=uigetdir; 
 
 
for ia=3 %1:3 
for ma=2 %1:2 
 
for ka=3%:5 
switch ma 
case 1 
impairedHand = ['left']; 
case 2 
impairedHand = ['right']; 
end 
 
 
 
switch ia 
case 2 
dir = [pathname1 '\pretest\' impairedHand '\']; 
case 3 
dir = [pathname1 '\posttest\' impairedHand '\']; 
end 
 
switch ka 
 
case 1 
Object1 = ['bigcircle']; 
Object2 = ['smallcube']; 
case 2 
Object1 = ['bigcircle']; 
Object2 = ['smallcircle']; 
case 3 
Object1 = ['bigcube']; 
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Object2 = ['bigcircle']; 
case 4 
Object1 = ['smallcube']; 
Object2 = ['smallcircle']; 
case 5 
Object1 = ['smallcube']; 
Object2 = ['bigcube']; 
case 6 
Object1 = ['bigcube']; 
Object2 = ['smallcircle']; 
 
case 7 
Object1 = ['cylinder']; 
Object2 = ['bigcircle']; 
case 8 
Object1 = ['cylinder']; 
Object2 = ['smallcube']; 
case 9 
Object1 = ['cylinder']; 
Object2 = ['bigcube']; 
case 10 
Object1 = ['Hugecircle']; 
Object2 = ['smallcube']; 
case 11 
Object1 = ['Hugecircle']; 
Object2 = ['bigcircle']; 
case 12 
Object1 = ['Hugecircle']; 
Object2 = ['bigcube']; 
case 13 
Object1 = ['Hugecircle']; 
Object2 = ['smallcircle']; 
case 14 
Object1 = ['Hugecircle']; 
Object2 = ['Wedge']; 
 
end 
ka 
clear Shape1file* 
clear Shape2file* 
clear force* 
clear cycled* 
 
 
 
s1cali=[dir 'calibration'];                      cd(s1cali); 



72 
 

if strcmp('left',impairedHand)==1 
shape1cali=ls('LCG*.txt'); 
Calitemp=load(shape1cali(1,:)); 
Cali2temp=load(shape1cali(2,:)); 
Cali3temp=load(shape1cali(3,:)); 
end 
 
if strcmp('right',impairedHand)==1 
shape1cali=ls('RCG*.txt'); 
Calitemp=load(shape1cali(1,:)); 
Cali2temp=load(shape1cali(2,:)); 
Cali3temp=load(shape1cali(3,:)); 
end 
 
s1= [dir Object1]; 
cd(s1); 
 
if strcmp('left',impairedHand)==1 
Shape1files=ls('LCG*.txt'); 
Shape1files=cellstr(Shape1files); 
end 
 
if strcmp('right',impairedHand)==1 
Shape1files=ls('RCG*.txt'); 
Shape1files=cellstr(Shape1files); 
end 
 
s2= [dir Object2]; 
cd(s2); 
if strcmp('left',impairedHand)==1 
Shape2files=ls('LCG*.txt'); 
Shape2files=cellstr(Shape2files); 
end 
 
if strcmp('right',impairedHand)==1 
Shape2files=ls('RCG*.txt');        Shape2files=cellstr(Shape2files); 
end 
 
switch ia 
case 2 
dir2 = [pathname2 '\pretest\' impairedHand '\']; 
case 3 
dir2 = [pathname2 '\posttest\' impairedHand '\']; 
end 
filename3=[dir2 Object1 '\Cycled.xls']; 
filename4=[dir2 Object2 '\Cycled.xls']; 
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[num3,txt3,raw3] = xlsread(filename3); 
[num4,txt4,raw4] = xlsread(filename4); 
 
 
cycledtimes1=zeros(length(txt3),3); 
 
kk=['_1.txt';'_2.txt';'_3.txt';'_4.txt';'_5.txt';'_6.txt';'_7.txt';'_8.txt';'_9.txt';'10.txt';'11.txt';'12.t
xt']; 
 
for i=1:size(txt3,1) 
 
for k=1:length(kk) 
val=strfind(Shape1files(i,1),kk(k,:)); 
val=cell2mat(val); 
if isempty(val)==0 
break 
end 
end 
Shape1filesa(k,1)=Shape1files(i,1); 
cycledtimes1(k,1)=num3(i,1); 
cycledtimes1(k,2)=num3(i,2); 
cycledtimes1(k,3)=num3(i,3); 
end 
 
kk=['r1.txt';'r2.txt';'r3.txt';'r4.txt';'r5.txt';'r6.txt';'r7.txt';'r8.txt';'r9.txt';'10.txt';'11.txt';'12.txt']
; 
% 
 
 
 
cycledtimes2=zeros(length(txt4),3 
 
kk=['_1.txt';'_2.txt';'_3.txt';'_4.txt';'_5.txt';'_6.txt';'_7.txt';'_8.txt';'_9.txt';'10.txt';'11.txt';'12.t
xt']; 
 
for i=1:size(txt4,1) 
 
for k=1:length(kk) 
val=strfind(Shape2files(i,1),kk(k,:)); 
val=cell2mat(val); 
if isempty(val)==0 
break 
end 
 
end 
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Shape2filesa(k,1)=Shape2files(i,1); 
cycledtimes2(k,1)=num4(i,1); 
cycledtimes2(k,2)=num4(i,2); 
cycledtimes2(k,3)=num4(i,3); 
end 
 
 
t=1; 
for i=1:length(Shape1filesa) 
if iscellstr(Shape1filesa(i,:))==1 
Shape1filesa1(t,:)=Shape1filesa(i,:); 
t=t+1; 
end 
end 
Shape1filesa=Shape1filesa1; 
t=1; 
for i=1:length(Shape2filesa) 
if iscellstr(Shape2filesa(i,:))==1 
Shape2filesa1(t,:)=Shape2filesa(i,:); 
t=t+1; 
end 
end 
Shape2filesa=Shape2filesa1; 
for i=1:length(cycledtimes1) 
if cycledtimes1(i,1)<20 
cycledtimes1(i,1)=0; 
end 
end 
 
for i=1:length(cycledtimes2) 
if cycledtimes2(i,1)<20 
cycledtimes2(i,1)=0; 
end 
end 
 
 
 
check=find(cycledtimes1(1:end,1)); 
t=1; 
for i=1:length(check) 
cycledtimes1a(t,1)=cycledtimes1(check(i),1); 
cycledtimes1a(t,2)=cycledtimes1(check(i),2); 
cycledtimes1a(t,3)=cycledtimes1(check(i),3); 
t=t+1; 
end 
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cycledtimes1=cycledtimes1a; 
check=find(cycledtimes2(1:end,1)); 
t=1 
for i=1:length(check) 
cycledtimes2a(t,1)=cycledtimes2(check(i),1); 
cycledtimes2a(t,2)=cycledtimes2(check(i),2); 
cycledtimes2a(t,3)=cycledtimes2(check(i),3); 
t=t+1; 
end 
 
cycledtimes2=cycledtimes2a; 
v=1; 
 
min1=min(cycledtimes1(:,1)); 
sub=min1-1; 
 
cd(s1) 
Data1=[]; 
OriginalData1=[]; 
i2=1; 
for i=1:size(cycledtimes1,1) 
clear x1 
clear xtemp 
clear nonzeroentry 
x=load(char(Shape1filesa(i))); 
[b,a]=butter(2,1/50); 
x=filtfilt(b,a,x); 
x=calibration(x,Calitemp,Cali2temp,Cali3temp); 
 
 
 
if cycledtimes1(i,1)~=-999999 
 
if i2<size(cycledtimes1,1)+1 
if length(x)>=(cycledtimes1(i,2)) 
if cycledtimes1(i,2)>0 
x1=x(cycledtimes1(i,1)-sub:floor(cycledtimes1(i,2)),:); 
end 
end 
end 
 
if i2<size(cycledtimes1,1)+1 
 
if cycledtimes1(i,2)<0 
x1=x(cycledtimes1(i,1)-sub:end,:); 
end 
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end 
 
 
if i2<size(cycledtimes1,1)+1 
 
if size(x,1)<(cycledtimes1(i,2)) 
x1=x(cycledtimes1(i,1)-sub:end,:); 
end 
 
end 
 
 
if size(x1,1)<100 
x4=zeros(100,20); 
x4(1:size(x1,1),:)=x1(:,:); 
for ii=size(x1,1)+1:length(x4) 
x4(ii,:)=x1(size(x1,1),:); 
end 
x1=x4; 
end 
 
x2=(size(x1,1)/100); 
x3=zeros(100,20); 
for norm=1:100 
x3(norm,:)=(x1(floor(x2*norm),:)); 
end 
Data1=cat(3,Data1,x3); 
 
else 
CONTINUE 
end 
i2=i2+1; 
 
 
x=x(cycledtimes1(i,1)-sub:end,:); 
if size(x,1)<500 
x4test=zeros(500,20); 
x4test(1:size(x,1),:)=x(:,:); 
 
 
for ii=size(x,1)+1:length(x4test) 
x4test(ii,:)=x(length(x),:); 
end 
x=x4test; 
end 



77 
 

 
xx=(size(x,1)/500); 
xxx=zeros(500,20); 
for normx=1:500 
xxx(normx,:)=(x(floor(xx*normx),:)); 
end 
OriginalData1=cat(3,OriginalData1,xxx); 
end 
 
min2=min(cycledtimes2(:,1)); 
sub2=min2-1; 
 
cd(s2) 
Data2=[]; 
i2=1; 
 
OriginalData2=[]; 
for i=1:size(cycledtimes2,1) 
clear x1 
clear xtemp 
clear nonzeroentry 
x=load(char(Shape2filesa(i))); 
[b,a]=butter(2,1/50); 
x=filtfilt(b,a,x); 
x=calibration(x,Calitemp,Cali2temp,Cali3temp); 
if cycledtimes2(i,1)~=-999999 
 
 
if i2<size(cycledtimes2,1)+1 
if size(x,1)>=(cycledtimes2(i,2)) 
if cycledtimes2(i,2)>0 
x1=x(cycledtimes2(i,1)-sub2:floor(cycledtimes2(i,2)),:); 
end 
end 
end 
 
if i2<size(cycledtimes2,1)+1 
 
if cycledtimes2(i,2)<0 
x1=x(cycledtimes2(i,1)-sub2:end,:); 
end 
 
end 
 
if i2<size(cycledtimes2,1)+1 
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if size(x,1)<(cycledtimes2(i,2)) 
x1=x(cycledtimes2(i,1)-sub2:end,:); 
end 
 
end 
% end 
 
if size(x1,1)<100 
x4=zeros(100,20); 
x4(1:size(x1,1),:)=x1(:,:); 
for ii=size(x1,1)+1:length(x4) 
x4(ii,:)=x1(size(x1,1),:); 
end 
x1=x4; 
end 
 
x2=(size(x1,1)/100); 
x3=zeros(100,20); 
for norm=1:100 
x3(norm,:)=(x1(floor(x2*norm),:)); 
end 
Data2=cat(3,Data2,x3); 
else 
CONTINUE 
end 
i2=i2+1; 
 
x=x(cycledtimes2(i,1)-sub2:end,:); 
x=x(1:end,:); 
if size(x,1)<500 
x4test=zeros(500,20); 
x4test(1:size(x,1),:)=x(:,:); 
 
 
for ii=size(x,1)+1:length(x4test) 
x4test(ii,:)=x(size(x,1),:); 
end 
x=x4test; 
 
end 
xx=(size(x,1)/500); 
xxx=zeros(500,20); 
for normx=1:500 
xxx(normx,:)=(x(floor(xx*normx),:)); 
end 
OriginalData2=cat(3,OriginalData2,xxx); 
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end 
 
FinalData=cat(3,Data1,Data2); 
OriginalData=cat(3,OriginalData1,OriginalData2); 
NofTri=[size(Data1,3);size(Data2,3)]; 
 
FinalData1=FinalData(:,:,:); 
 
FinalData1a=FinalData(:,5,:); 
FinalData1a1=FinalData(:,6,:); 
FinalData1b=FinalData(:,8:10,:); 
FinalData1c=FinalData(:,12:14,:); 
FinalData1d=FinalData(:,16:18,:); 
FinalData11=cat(2,FinalData1a,FinalData1a1,FinalData1b,FinalData1c,FinalData1d); 
 
Errors=LinDiscrimTMS(FinalData11,NofTri); 
Mean_Errors=mean(Errors); 
[b,a]=butter(2,.1); 
Errorsfilt=filtfilt(b,a,Errors); 
 
MCP1=[]; 
for i=1:size(FinalData,3) 
MCP1=cat(2,MCP1,FinalData(:,6,i)); 
end 
 
 
MCP1whole=[]; 
for i=1:size(OriginalData,3) 
MCP1whole=cat(2,MCP1whole,OriginalData(:,6,i)); 
end 
 
ABD1=[]; 
for i=1:size(FinalData,3) 
ABD1=cat(2,ABD1,FinalData(:,8,i)); 
end 
 
 
ABD1whole=[]; 
for i=1:size(OriginalData,3) 
ABD1whole=cat(2,ABD1whole,OriginalData(:,8,i)); 
end 
 
 
if ia==2 && ma==1 
pretestErrors_left=(Errorsfilt); 
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end 
 
if ia==3 && ma==1 
posttestErrors_left=(Errorsfilt); 
end 
 
if ia==2 && ma==2 
pretestErrors_right=(Errorsfilt); 
end 
 
if ia==3 && ma==2 
posttestErrors_right=(Errorsfilt); 
end 
 
end 
end 
 
clear test1 
figure(3) 
yy=size(OriginalData,3); 
test1(:,1:yy,1)=OriginalData(:,10,:); 
plot(test1) 
 
clear test1 
figure(4) 
yy=size(FinalData11,3); 
test1(:,1:yy,1)=FinalData11(:,5,:);   % iABD 
plot(test1) 
 
end 
 
figure(1);hold on 
plot(pretestErrors_left,'linewidth',2) 
hold on 
plot(posttestErrors_left,'r','linewidth',2) 
hold on 
plot(pretestErrors_right,'g','linewidth',2) 
hold on 
plot(posttestErrors_right,'m','linewidth',2) 
legend('pretest_Left','posttest_left','pretest_Right','posttest_Right'; 
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APPENDIX E 

 
UPLOAD GLOVE AND FORCE DATA FOR CLASSIFICATION OF HAND 

POSTURES FOR VR SUBJECTS 
 
 

% Upload glove data and force data for classification of VR subjects 
 
s1= [dir Object1 '\offset1_onset2.xls'] 
 
s1cali=[dir 'calibration'                cd(s1cali); 
if strcmp('left',impairedHand)==1 
shape1cali=ls('LCG*.txt'); 
Calitemp=load(shape1cali(1,:)); 
Cali2temp=load(shape1cali(2,:)); 
Cali3temp=load(shape1cali(3,:)); 
end 
 
if strcmp('right',impairedHand)==1 
shape1cali=ls('RCG*.txt'); 
Calitemp=load(shape1cali(1,:)); 
Cali2temp=load(shape1cali(2,:)); 
Cali3temp=load(shape1cali(3,:)); 
end 
 
s2= [dir Object2 '\offset1_onset2.xls'] 
filename1=s1; 
filename2=s2; 
 
 
sheet='Times'; 
[num1,txt1,raw1] = xlsread(filename1,sheet); 
[num2,txt2,raw2] = xlsread(filename2,sheet); 
s1= [dir Object1]; 
cd(s1); 
 
if strcmp('left',impairedHand)==1 
Shape1files=ls('LCG*.txt'); 
Shape1files=cellstr(Shape1files); 
end 
 
if strcmp('right',impairedHand)==1 
Shape1files=ls('RCG*.txt'); 
Shape1files=cellstr(Shape1files); 
end 
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s2= [dir Object2]; 
cd(s2); 
if strcmp('left',impairedHand)==1 
Shape2files=ls('LCG*.txt'); 
Shape2files=cellstr(Shape2files); 
end 
 
if strcmp('right',impairedHand)==1 
Shape2files=ls('RCG*.txt'); 
Shape2files=cellstr(Shape2files); 
end 
 
switch ia 
case 2 
dir2 = [pathname2 '\pretest\' impairedHand '\']; 
case 3 
dir2 = [pathname2 '\posttest\' impairedHand '\']; 
end 
filename3=[dir2 Object1 '\Cycled.xls']; 
filename4=[dir2 Object2 '\Cycled.xls']; 
 
%read cycled file 
[num3,txt3,raw3] = xlsread(filename3); 
[num4,txt4,raw4] = xlsread(filename4); 
 
 
cycledtimes1=zeros(length(txt3),3); 
 
kk=['_1.txt';'_2.txt';'_3.txt';'_4.txt';'_5.txt';'_6.txt';'_7.txt';'_8.txt';'_9.txt';'10.txt';'11.txt';'12.t
xt']; 
 
for i=1:length(txt3) 
 
for k=1:length(kk) 
val=strfind(Shape1files(i,1),kk(k,:)); 
val=cell2mat(val); 
if isempty(val)==0 
break 
end 
end 
Shape1filesa(k,1)=Shape1files(i,1); 
cycledtimes1(k,1)=num3(i,1); 
cycledtimes1(k,2)=num3(i,2); 
cycledtimes1(k,3)=num3(i,3); 
end 
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forcetimes1=zeros(length(txt1),2); 
kk=['r1.txt';'r2.txt';'r3.txt';'r4.txt';'r5.txt';'r6.txt';'r7.txt';'r8.txt';'r9.txt';'10.txt';'11.txt';'12.txt']
; 
 
for i=1:size(txt1,1) 
 
for k=1:length(kk) 
val=strfind(raw1(i,1),kk(k,:)); 
val=cell2mat(val); 
if isempty(val)==0 
break 
end 
end 
 
forcetimes1(k,1)=num1(i,1); 
forcetimes1(k,2)=num1(i,2); 
 
end 
 
 
cycledtimes2=zeros(length(txt4),3); 
 
kk=['_1.txt';'_2.txt';'_3.txt';'_4.txt';'_5.txt';'_6.txt';'_7.txt';'_8.txt';'_9.txt';'10.txt';'11.txt';'12.t
xt']; 
 
for i=1:size(txt4,1) 
 
for k=1:length(kk) 
val=strfind(Shape2files(i,1),kk(k,:)); 
val=cell2mat(val); 
if isempty(val)==0 
break 
end 
 
end 
Shape2filesa(k,1)=Shape2files(i,1); 
cycledtimes2(k,1)=num4(i,1); 
cycledtimes2(k,2)=num4(i,2); 
cycledtimes2(k,3)=num4(i,3); 
end 
 
 
forcetimes2=zeros(length(txt2),2); 
kk=['r1.txt';'r2.txt';'r3.txt';'r4.txt';'r5.txt';'r6.txt';'r7.txt';'r8.txt';'r9.txt';'10.txt';'11.txt';'12.txt']
; 
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for i=1:length(txt2) 
 
for k=1:length(kk) 
val=strfind(raw2(i,1),kk(k,:)); 
val=cell2mat(val); 
if isempty(val)==0 
break 
end 
end 
 
forcetimes2(k,1)=num2(i,1); 
forcetimes2(k,2)=num2(i,2); 
 
end 
 
 
t=1; 
for i=1:length(Shape1filesa) 
if iscellstr(Shape1filesa(i,:))==1 
Shape1filesa1(t,:)=Shape1filesa(i,:); 
t=t+1; 
end 
end 
Shape1filesa=Shape1filesa1; 
t=1; 
for i=1:length(Shape2filesa) 
if iscellstr(Shape2filesa(i,:))==1 
Shape2filesa1(t,:)=Shape2filesa(i,:); 
t=t+1; 
end 
end 
Shape2filesa=Shape2filesa1; 
 
check=find(forcetimes1(1:end,1)); 
t=1 
for i=1:length(check) 
forcetimes1a(t,1)=forcetimes1(check(i),1); 
forcetimes1a(t,2)=forcetimes1(check(i),2); 
t=t+1; 
end 
 
forcetimes1=forcetimes1a; 
check=find(forcetimes2(1:end,1)); 
t=1; 
for i=1:length(check) 
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forcetimes2a(t,1)=forcetimes2(check(i),1); 
forcetimes2a(t,2)=forcetimes2(check(i),2); 
t=t+1; 
end 
 
forcetimes2=forcetimes2a; 
 
check=find(cycledtimes1(1:end,1)); 
t=1; 
for i=1:length(check) 
cycledtimes1a(t,1)=cycledtimes1(check(i),1); 
cycledtimes1a(t,2)=cycledtimes1(check(i),2); 
cycledtimes1a(t,3)=cycledtimes1(check(i),3); 
t=t+1; 
end 
 
cycledtimes1=cycledtimes1a; 
check=find(cycledtimes2(1:end,1)); 
t=1; 
for i=1:length(check) 
cycledtimes2a(t,1)=cycledtimes2(check(i),1); 
cycledtimes2a(t,2)=cycledtimes2(check(i),2); 
cycledtimes2a(t,3)=cycledtimes2(check(i),3); 
t=t+1; 
end 
 
cycledtimes2=cycledtimes2a; 
v=1; 
for i=1:size(cycledtimes1,1) 
if cycledtimes1(i,1)>0 
newvector1(v,1)=cycledtimes1(i,1); 
v=v+1; 
end 
end 
av1=mean(newvector1); 
 
v=1; 
for i=1:size(cycledtimes2,1) 
if cycledtimes2(i,1)>0 
newvector2(v,1)=cycledtimes2(i,1); 
v=v+1; 
end 
end 
av2=mean(newvector2); 
cd(s1) 
Data1=[]; 
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OriginalData1=[]; 
i2=1; 
for i=1:size(cycledtimes1,1) 
clear x1 
clear xtemp 
clear nonzeroentry 
x=load(char(Shape1filesa(i))); 
[b,a]=butter(2,1/50); 
x=filtfilt(b,a,x); 
x=calibration(x,Calitemp,Cali2temp,Cali3temp); 
 
if cycledtimes1(i,1)~=-999999 
 
sub=min(cycledtimes1(:,1)); 
sub=sub-1; 
if i2<size(forcetimes1,1)+1 
if forcetimes1(i2,1)>0 && size(x,1)>=floor((forcetimes1(i,1)*100)) 
x1=x(cycledtimes1(i,1)-sub:floor(forcetimes1(i,1)*100),:); 
end 
end 
 
 
if i2<size(forcetimes1,1)+1 
if length(x)>=cycledtimes1(i,1)&&cycledtimes1(i,2)>0 
if forcetimes1(i2,1)>0 && size(x,1)<floor(forcetimes1(i,1)*100) 
x1=x(cycledtimes1(i,1)-sub:cycledtimes1a(i,2),:); 
end 
end 
end 
if i2<size(forcetimes1,1)+1 
if forcetimes1(i2,2)<0 && size(x,1)>=(cycledtimes1(i,2)) 
x1=x(cycledtimes1(i,1)-sub:cycledtimes1a(i,2),:); 
end 
end 
 
if i2<size(cycledtimes1,1)+1 && i2>=size(forcetimes1,1)+1 
if length(x)>=(cycledtimes1(i,2)) 
if cycledtimes1(i,2)>0 
x1=x(cycledtimes1(i,1)-sub:floor(cycledtimes1a(i,2)),:); 
end 
end 
end 
 
if i2<size(cycledtimes1,1)+1 && i2>=size(forcetimes1,1)+1 
 
if cycledtimes1(i,2)<0 
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x1=x(cycledtimes1(i,1)-sub:end,:); 
end 
 
end 
 
 
if size(x1,1)<100 
x4=zeros(100,20); 
x4(1:size(x1,1),:)=x1(:,:); 
for ii=size(x1,1)+1:length(x4) 
x4(ii,:)=x1(size(x1,1),:); 
end 
x1=x4; 
end 
 
x2=(size(x1,1)/100); 
x3=zeros(100,20); 
for norm=1:100 
x3(norm,:)=(x1(floor(x2*norm),:)); 
end 
Data1=cat(3,Data1,x3); 
 
else 
CONTINUE 
end 
i2=i2+1; 
 
 
x=x(cycledtimes1(i,1)-sub:end,:); 
if size(x,1)<500 
x4test=zeros(500,20); 
x4test(1:size(x,1),:)=x(:,:); 
 
 
for ii=size(x,1)+1:length(x4test) 
x4test(ii,:)=x(length(x),:); 
end 
x=x4test; 
end 
 
xx=(size(x,1)/500); 
xxx=zeros(500,20); 
for normx=1:500 
xxx(normx,:)=(x(floor(xx*normx),:)); 
end 
OriginalData1=cat(3,OriginalData1,xxx); 
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end 
 
 
 
cd(s2) 
Data2=[]; 
i2=1; 
 
OriginalData2=[]; 
for i=1:size(cycledtimes2,1) 
clear x1 
clear xtemp 
clear nonzeroentry 
x=load(char(Shape2filesa(i))); 
[b,a]=butter(2,1/50); 
x=filtfilt(b,a,x); 
x=calibration(x,Calitemp,Cali2temp,Cali3temp); 
if cycledtimes2(i,1)~=-999999 
 
sub2=min(cycledtimes2(:,1)); 
sub2=sub2-1; 
 
if i2<size(forcetimes2,1)+1 
if forcetimes2(i2,1)>0 && length(x)>=floor((forcetimes2(i,1)*100)) 
x1=x(cycledtimes2(i,1)-sub2:floor(forcetimes2(i,1)*100),:); 
end 
end 
 
 
if i2<size(forcetimes2,1)+1 
if length(x)>=cycledtimes2(i,1)&&cycledtimes2(i,2)>0 
if forcetimes2(i2,1)>0 && length(x)<floor(forcetimes2(i,1)*100) 
x1=x(cycledtimes2(i,1)-sub2:cycledtimes2a(i,2),:); 
end 
end 
end 
if i2<size(forcetimes2,1)+1 
if forcetimes2(i2,2)<0 && length(x)>=(cycledtimes2(i,2)) 
x1=x(cycledtimes2(i,1)-sub2:cycledtimes2a(i,2),:); 
end 
end 
 
 
if i2<size(cycledtimes2,1)+1 && i2>=size(forcetimes2,1)+1 
if length(x)>=(cycledtimes2(i,2)) 
if cycledtimes2(i,2)>0 
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x1=x(cycledtimes2(i,1)-sub2:floor(cycledtimes2a(i,2)),:); 
end 
end 
end 
 
if i2<size(cycledtimes2,1)+1 && i2>=size(forcetimes2,1)+1 
 
if cycledtimes2(i,2)<0 
x1=x(cycledtimes2(i,1)-sub2:end,:); 
end 
 
end 
 
%if isempty('x1')==1 
if size(x1,1)<100 
x4=zeros(100,20); 
x4(1:size(x1,1),:)=x1(:,:); 
for ii=size(x1,1)+1:length(x4) 
x4(ii,:)=x1(size(x1,1),:); 
end 
x1=x4; 
end 
 
x2=(size(x1,1)/100); 
x3=zeros(100,20); 
for norm=1:100 
x3(norm,:)=(x1(floor(x2*norm),:)); 
end 
Data2=cat(3,Data2,x3); 
else 
CONTINUE 
end 
i2=i2+1; 
 
x=x(cycledtimes2(i,1)-sub2:end,:); 
x=x(1:end,:); 
if size(x,1)<500 
x4test=zeros(500,20); 
x4test(1:size(x,1),:)=x(:,:); 
 
 
for ii=size(x,1)+1:length(x4test) 
x4test(ii,:)=x(size(x,1),:); 
end 
x=x4test; 
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end 
xx=(size(x,1)/500); 
xxx=zeros(500,20); 
for normx=1:500 
xxx(normx,:)=(x(floor(xx*normx),:)); 
end 
OriginalData2=cat(3,OriginalData2,xxx); 
end 
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APPENDIX F 

 
SOURCE CODE TO RETRIEVE GRASPING TIMES AND TOTAL 

MOVEMENT TIMES FILES 
 

 
% Source Code to retrieve grasping times and total movement times files 
 
clear all 
close all 
pathname1 = uigetdir; 
 
for ia=2:3 
for ma=1 
 
for ka=1:5 
switch ma 
case 1 
impairedHand = ['left']; 
case 2 
impairedHand = ['right']; 
end 
 
 
switch ia 
case 2 
dir = [pathname1 '\pretest\' impairedHand '\']; 
case 3 
dir = [pathname1 '\posttest\' impairedHand '\']; 
end 
 
switch ka 
 
case 1 
Object1 = ['Hugecircle']; 
case 2 
Object1 = ['bigcircle']; 
 
case 3 
Object1 = ['smallcircle']; 
 
case 4 
Object1 = ['bigcube']; 
 
case 5 



92 
 

Object1 =  ['smallcube']; 
 
case 6 
Object1 = ['cylinder']; 
 
end 
 
 
filename1=[dir Object1 '\Cycled.xls']; 
[num3,txt3,raw3] = xlsread(filename1); 
 
h=size(num3,1) 
 
if ia==2 
for i=1:h 
pretest(i,ka*4-1)=num3(i,3) 
pretest(i,ka*4-2)=num3(i,2) 
pretest(i,ka*4-3)=num3(i,1) 
end 
end 
 
if ia==3 
for i=1:h 
posttest(i,ka*4-1)=num3(i,3) 
posttest(i,ka*4-2)=num3(i,2) 
posttest(i,ka*4-3)=num3(i,1) 
end 
end 
 
end 
end 
end
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