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ABSTRACT 

TILT SIMULATION: VIRTUAL REALITY BASED  

UPPER EXTREMITY STROKE REHABILITATION 

 

 

by 

Harish Damodaran 

The primary objective of this research is to design a recreational rehabilitation videogame 

that interactively encourages purposeful upper extremity gross motor movements. The 

simulation is also capable of continuous game modification to fit changing therapy goals, 

to match the needs of the players, and to provide continued motivation while capturing 

the interactive repetition. This thesis explains the design and features of this latest 

simulation - Tilt. Tilt uses physics to develop an engaging training experience and 

provides a realistic approach to virtual reality simulation including friction, elasticity and 

collisions between objects. It is designed to train upper extremity function as a unit 

involving multiple modalities simultaneously, either unilaterally or bilaterally. 

 It is the latest addition to the NJIT Robot Assisted Virtual Rehabilitation (RAVR) 

system. It Employs the Cyber Glove and Flock of Birds systems to interface with the real 

world. This allows training motor function of patients that come to use in day to day life 

like making use of hands, fingers and shoulders to pick small objects on table, moving 

them and placing them elsewhere. 
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CHAPTER 1  

INTRODUCTION 

1.1 Objective 

The primary objective of this research is to design a recreational rehabilitation videogame 

that interactively encourages purposeful upper extremity gross motor movements. The 

simulation is also capable of continuous game modification to fit changing therapy goals, 

to match the needs of the players, and to provide continued motivation while capturing 

interactive repetition. This thesis explains the design and features of the latest simulation 

- Tilt. Tilt uses physics to develop an engaging training experience and provides a 

realistic approach to virtual reality simulation including friction, elasticity and collisions 

between objects. It is designed to train upper extremity function as a unit involving 

multiple modalities simultaneously, either unilaterally or bilaterally. 

To understand the significance of these training measures and benefits of utilizing 

virtual reality simulations in training, more needs to be understood about stroke and its 

effects on impairments, neuroplasticity of stroke victims and the current use of virtual 

reality in stroke rehabilitation.  

1.2 Stroke 

A stroke (sometimes called a cerebrovascular accident (CVA)) is the rapidly developing 

loss of brain function(s) due to interruption of the blood supply to the brain. This can be 

due to ischemia (lack of blood flow) caused by blockage (thrombosis, arterial embolism),           
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or by a hemorrhage (leakage of blood). As a result of a stroke the affected area of the 

brain is unable to function, leading to inability to move one or more limbs on one side of 

the body, inability to understand or formulate speech, or inability to see one side of the 

visual field. [1] 

         

 
Figure 1.1  Representation of Ischemic stroke and Hemorrhage.  
Source: http://dr-lokku.com/docblog/files/2009/09/stroke-2.jpg              
    

Stroke is the second most common cause of death in the United States and it is the 

third largest cause of death, killing 137,119 people in 2006. About 6,400,000 stroke 

survivors are alive today; Data from National Institute of Neurological Disorders and 

Stroke (NINDS) studies show that about 795,000 people suffer a new or recurrent stroke 
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each year. About 610,000 of these are first attacks and 185,000 are recurrent attacks. 

From 1995 to 2005 the death rate from stroke declined 33.5 percent, and the actual 

number of stroke deaths declined 18.4 percent [2]. 

This indicates that the total number of survivors of stroke is on a rise. Since stroke 

is also the leading cause of adult disability, with 65% of the nearly four million people in 

the United States who have survived a stroke living with minor to severe impairments 

[3]. Impairments such as muscle weakness, loss of range of motion, and impaired force 

generation create deficits in motor control that affect the stroke survivor’s capacity for 

independent living and economic self-sufficiency. Hence a new and improved form of 

stroke rehabilitation is important.  

1.3 Neuroplasticity in Stroke Victims 

The concept of neuroplasticity includes all possible mechanisms of neuronal 

reorganization, including recruitment of non damaged pathways that are functionally 

similar to the damaged ones, synaptogenesis, dendritic arborization, and reinforcement of 

existing but functionally silent synaptic connections. Animal and human studies have 

shown that important variables in learning and relearning motor skills and in changing 

neural architecture are the quantity, duration and intensity of training sessions. There is 

evidence to demonstrate that plasticity is “use-dependent” and intensive massed and 

repeated practice may be necessary to modify neural organization [4-9] and effect 

recovery of functional motor skills [10,11]. The importance of intensity and repetition has 

also been confirmed for stroke patients in the chronic phase in the treatment paradigm 

referred to as constraint-induced-movement-therapy (CIMT) [5,10]. Use-dependent 

cortical expansion has been shown up to 6 months after 12-days of CI therapy in people 
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post stroke. In addition to the repetitive and intensive training necessary to induce neural 

plasticity, sensorimotor stimulation must involve the learning of new motor skills. 

Evidence strongly emphasizes that learning new motor skills is essential for inducing 

functional plasticity. Therefore, it appears that critical variables necessary to promote 

motor changes and neural plasticity are the dynamic and adaptive development and 

formation of new motor skills. It is believed that adaptive training paradigms that 

continually and interactively move the motor outcome closer and closer to the targeted 

skill are important to foster formation of better organized motor skills [14].This change in 

neural plasticity can be brought about by the use of virtual reality in rehabilitative 

training.  

1.4 Virtual Reality and Robots in Stroke Rehabilitation  

Virtual Reality (VR) can be defined as an approach to user-computer interface that 

involves real-time simulation of an environment, scenario or activity that allows for user 

interaction via multiple sensory channels. Virtual environments in virtual reality systems 

can be used to present rich and complex multimodal sensory information to the user that 

can elicit a substantial feeling of realness. [15, 16] 

Visual stimuli are grouped by the level of immersion. Fully immersive system 

systems allow for changing visual perspective with head movement for example the Cave 

Automatic Virtual Environment (CAVE). Three dimensional presentations utilizing 

stereoscopic projections or displays with a fixed visual perspective are considered semi- 

immersive. Two-dimensional presentations that make use of a computer display are 

considered non-immersive. Rehabilitation using virtual reality is currently utilizes two- 
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dimensional presentations and three dimensional stereoscopic projections as they bring 

about maximum desired effect of training.  

In the real world, knowledge about the environment is gained directly through the 

senses; vision, hearing, touch, proprioception, smell. In the virtual world, the same senses 

are utilized to obtain information about the virtual world through a human–machine 

interface (e.g., head-mounted visual display). The human machine interface can provide 

information specific to one or more senses, depending on the type of devices that have 

been selected for use. The information gathered about the virtual environment through 

the interface is then used to guide interactions of the participant within the virtual world. 

Input from the virtual environment can also be combined with natural sensory inputs 

from the real environment, to create a hybrid input to the central nervous system (CNS).  

                                   
Figure 1.2  Commercially available VR system IREX. 

 
Use of VR as a training environment may provide a rehabilitation tool that can be 

used to exploit the nervous systems’ capacity for sensorimotor adaptation by providing a 

technological method for individualized, intensive and repetitive training. In addition to 
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the training intensity and volume necessary to induce neural plasticity, sensorimotor 

stimulation would involve the learning of new motor skills. Computerized systems are 

well suited to this and afford great precision in automatically adapting target difficulty 

based on individual subject’s ongoing performance. When virtual reality simulations are 

interfaced with movement tracking and sensing glove systems they provide an engaging, 

motivating and adaptable environment where the motion of the limb displayed in the 

virtual world is a replication of the motion produced in the real world by the subject.[17]  

Evidence suggests that sensorimotor training in VR may actually have similar 

effects to those noted after real-world training. This evidence comes from several 

domains. First, studies that have compared the kinematics of movements performed 

during interaction in a virtual visual environment to those when acting in the real world 

have found remarkable similarities. For example, healthy subjects responding to targets 

moving at different velocities exhibit similar movement time, path curvature time, time to 

peak velocity, and reactions times whether the task is performed in a VE or in the real 

world [18, 19]. Interestingly, stroke patients' kinematics for reach–to-grasp movements 

also show similarities in peak wrist velocity, angular shoulder/elbow relationship and 

maximum grip aperture when acting in the virtual versus a real environment [20]. 

The advantage of using VR in community, clinical and laboratory settings is that 

by virtue of its programmability, environments and the amount and type of feedback can 

be modified according to the user's motor capacities, motivation and therapeutic goals 

[21]. In addition, sensory parameters of the environment can be creatively adapted to 

evoke responses to a larger number of situations in a shorter amount of time than is 

available in physical set-ups. VR based applications can provide adaptive learning 
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algorithms and graded rehabilitation activities. These can be methodically manipulated to 

interactively move the subject’s performance towards a targeted skill [22] which is  

important to optimize re-learning of motor skills [14]. 

The New Jersey Institute of Technology Robot Assisted Virtual Rehabilitation 

(NJIT-RAVR) system consists of engaging virtual environments and simulations which 

include the above mentioned attributes of a VR system. Chapter two mentions in detail 

the various components of this system and their specialized training hardware. Chapter 3 

explains in detail the design and features of the latest addition to this system- Tilt game 

simulation.  
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CHAPTER 2  

NJIT RAVR SYSTEM 

 

Many traditional therapeutic interventions have been used in rehabilitation to promote 

functional recovery with outcome studies yielding varied and inconsistent results with the 

use of virtual reality, repetitive training can be provided to affected parts with an 

engaging environment. This intensive and repetitive training method has been shown to 

be effective in promoting cortical plasticity and behavioral recovery [23]. 

The following chapter describes the New Jersey Institute of Technology Robot 

Assisted Virtual Rehabilitation (NJIT RAVR) system [24, 25]. The following will be 

described; 1) the hardware required to connect the user with the virtual world, 2) the 

different simulations currently available as part of the NJIT RAVR library of simulations, 

3) the kinematic measures available with the system. 

2.1 Hardware 

Different commercially available hardware is used to connect the user with the virtual 

world. Depending on the measurements to be made and user experience required, one of 

the following systems is chosen in the NJIT- RAVR system.  

2.1.1 Flock of Birds 

Flock of Birds manufactured by Ascension technology (Burlington, Vermont) is a pulsed 

DC magnetic technology that can measure six degrees of freedom. Flock of Birds is used 

to measure the position and orientation of the users hand in the real world three 

dimensional space in the NJIT-RAVR system. The sensor is attached to the wrist of the 
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user, the X, Y and Z values of the sensor determine the position of the hand with respect 

to the Flock of Birds transmitter. The pitch, roll and yaw would then determine the angle 

and orientation of the user’s wrist in the virtual environment [25, 26]. 

The Flock of Birds communicates with the virtual environment using the Virtual 

Reality Peripheral Network (VRPN)[27]. VRPN is an open source technology that helps 

in interfacing VR peripherals like the Flock of Birds and CyberGlove to the virtual world. 

 
Figure 2.1  Flock of Birds. 

2.1.2 TrackSTAR 

Trackstar uses the same principle as Flock of Birds. However, the trackstar sensors are 

faster and smaller. Rates up to 420 times a second can be chosen for use on up to four 

sensors at once without daisy chains. They work with the midrange or short range 

transmitters used with Flock of Birds [25]. In the NJIT-RAVR system they are used to 

make measurements of the entire arm movements by placing sensors at the wrist, elbow, 

shoulder and chest.  
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Figure 2.2  trackSTAR tracking system. 

2.1.3 CyberGlove 

The CyberGlove motion capture data glove is a high accuracy device capable of 

measuring 22 joint angles, the total number on a human hand. It uses proprietary resistive 

bend sensing technology that transforms hand and finger motions into real time digital 

joint angle data to be used in the virtual environment [27]. The Cyberglove is used in all 

the NJIT-RAVR simulations that involve finger training.  
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Figure 2.3  CyberGlove from Ascension Technology Corporation. 

 

2.1.4 CyberGrasp 

The CyberGrasp also manufactured by Ascension Technology Corporation is an 

innovative force feedback system for fingers and hand. The CyberGrasp is a lightweight 

force –reflecting exoskeleton that fits over a CyberGlove data glove and adds resistive 

force feedback to each finger. The CyberGrasp is used to train subjects who need 

assistance with individual finger movement by resisting flexion of the adjacent 

fingers[27].  

 

Figure 2.4  CyberGrasp System from Ascension Technology Corporation. 
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2.1.5 Haptic Master 

The Haptic Master (Moog FCS Corporation, Ann Arbor, Michigan) is a 3 degrees of 

freedom, admittance controlled (force controlled) robot. Three more degrees of freedom 

(yaw, pitch and roll) can be added to the arm by using a gimbal with force feedback 

available for pronation/ supination (roll). A three- dimensional force sensor measures the 

external force exerted by the user on the robot. In addition, the velocity and position of 

the robot’s endpoint are measured. These variables are used in real time to generate 

reactive motion based on the properties of the virtual haptic environment in the vicinity 

of the current location of the robots endpoint [28, 29]. 

 

Figure 2.5  Haptic Master. 
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2.2 Simulations 

The NJIT-RAVR system is a unique real time adaptive exercise system that provides 

guidance for arm movement in three dimensional space using complex visual, auditory 

and haptic simulations. The following section explains the working of various existing  

simulations part of the NJIT RAVR library, it makes use of the hardware mentioned in 

section 2.1 to train the hand and arm separately or the hand and arm together (HAS vs 

HAT paradigm. [30]) 

2.2.1 Virtual Piano Trainer 

The piano trainer [13] is designed to help improve the ability of subjects to individually 

move each finger in isolation (fractionation). It consists of a complete virtual piano that 

plays the appropriate notes as they are pressed by the virtual fingers (Figure 2.6). The 

position and orientation of both hands as well as the flexion and abduction of the fingers 

are recorded in real time and translated into 3D movement of the virtual hands shown on 

the screen in a first person perspective using Cyberglove and the Flock of Birds. The 

simulation can be utilized for training the hand alone to improve individuated finger 

movement (fractionation), or the hand and the arm together to improve the arm trajectory 

as along with finger motion. This is achieved by manipulating the octaves on which the 

songs are played. These tasks can be done unilaterally or bilaterally. The subjects play 

short recognizable songs, scales, and random notes. Color-coding between the virtual 

fingers and piano keys serve as cues as to which notes are to be played. The activity can 

be made more challenging by changing the fractionation angles required for successful 

key pressing. When playing the songs bilaterally, the notes are key-matched. When 

playing the scales and the random notes bilaterally, the fingers of both hands are either 
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key matched or finger matched. Knowledge of results and knowledge of performance is 

provided with visual and auditory feedback. [28] 

 

Figure 2.6  Virtual Piano Trainer. 

 
2.2.2 Hummingbird Hunt 

This simulation depicts a hummingbird as it moves through an environment filled with 

trees, flowers and a river. Water and bird sounds provide a pleasant encouraging 

environment in which to practice repeated arm and hand movements (Figure 2.7). The 

game provides training in the integration of hand reach, hand-shaping and grasp using a 

pincer grip to catch and release the bird while it is perched on different objects located on 

different levels and sections of the workspace. The flight path of the bird is programmed 

into three different levels, low, medium and high allowing for progression in the range of 

motion required to successfully transport the arm to catch the bird. Adjusting the target 

position, as well as the size scales the difficulty of the task and the precision required for 

a successful grasp and release (Meriams 2008). 
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Figure 2.7  Hummingbird hunt. 

2.2.3 Plasma Pong 

This is a modified ping pong game. During simulation, a vertical invisible virtual 

cylinder was created by Haptic Master to allow participants freely move up and down to 

control the virtual paddle, while restrict the movement forward and backward at the same 

time. The stream of fluid shooting out of the paddle is controlled by finger extension. 

Each fluid shooting lasts 5 seconds, and the participants have to close the hand and 

reopen it to initiate another fluid shooting. How much the fingers have to extent to shoot 

the fluid is adjustable to each individual. [20] 

                       

Figure 2.8  Plasma Pong. 
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2.2.4 Placing Cups 

The goal of the “Placing Cups” task is to improve upper extremity range and smoothness 

of motion in the context of a functional reaching movement. The screen displays a three-

dimensional room with a haptically rendered table and shelves (Figure 2.9). The 

participants use their virtual hand (hemiparetic side) to lift the virtual cups and place 

them onto one of nine spots on one of three shelves. Target spots on the shelves 

(represented by red squares) are presented randomly for each trial. To accommodate 

patients with varying degrees of impairments, there are several haptic effects that can be 

applied to this simulation; gravity and antigravity forces can be applied to the cups, 

global damping can be provided for dynamic stability and to facilitate smoother 

movement patterns, and the three dimensions of the workspace can be calibrated to 

increase the range of motion required for successful completion of the task. The intensity 

of these effects can be modified to challenge the patients as they improve. [20] 

    

Figure 2.9  Placing Cups. 
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VRPN is used to simultaneously read data from 2 sets of Flock of Birds and 

Cyber Glove via serial ports. The position and orientation of both hands as well as the 

fractionation of the fingers are recorded in real time and translated into 3D movement of 

the virtual hand. 

2.3 Measurements 

Several kinematic measures are derived from the training simulations. Each task in a 

simulation consists of a series of movements e.g. pressing a series of piano keys to 

complete a song, or placing 9 cups on the virtual shelves. Time to complete a task, range 

of motion and peak velocity for each individual movement will be measured in each 

simulation. In the virtual piano trainer , accuracy, which denotes the proportion of correct 

key, presses, and fractionation are measures specific to the hand. Peak fractionation score 

quantifies the ability to isolate each finger’s motion and is calculated online by 

subtracting the mean of the metacarpophalangeal and proximal interphalangeal joint 

angles of the most flexed non-active finger from the mean angle of the active finger. 

 When the actual fractionation score becomes greater than the target score during 

the trial, a successful key press will take place (assuming the subject’s active finger was 

over the correct piano key). The target fractionation score starts at 0 at the beginning of 

each finger. After each trial, and for each finger, the algorithm averages the fractionation 

achieved when the piano key is pressed. If the average fractionation score is greater than 

90% of the target, the target fractionation will increase by 0.005 radians. If the average 

fractionation is less than 75% of the target, the target will decrease by the same amount. 

Otherwise, the target will remain the same. To calculate movement smoothness, the 

normalized integrated jerk is computed TNSRE [29] [30] . Finally, in training involving 
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the Haptic Master active force denotes the mean force applied by the subject to move the 

robot to the target during the movement. 
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CHAPTER 3    

TILT SIMULATION DESIGN   

 

Simulations explained in chapter 2 dealt with training individual components of the upper 

extremity. Research shows that neural control mechanisms of arm transport and hand 

object interaction are interdependent [33]. Recognizing the need for training using 

functionally complex movements the Tilt simulation has been designed to engage the 

upper extremity as a single unit. Initial findings with the NJIT RAVR system training 

hand and arm together has shown greater advantage for improving functional activities 

over training them separately [28, 35].  

This chapter explains the latest addition to the NJIT RAVR system, the Tilt 

simulation, which explores this paradigm through design and game play. It explains the 

objectives that are fulfilled in its design, designing the game through Virtools, and 

various algorithms that control and have been incorporated to arrive at a visually 

engaging and realistic training simulation designed to provide faster transfer of VR 

training into real world. 

3.1 Using Virtools   

The Tilt simulation was designed in Virtools. Before understanding the design objectives 

and working of the system its necessary to understand basics of the software package 

used to build the system. Some of the features more relevant to certain aspects of game 

design are explained in later sections where necessary.  
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Virtools is an extensive collection of technologies for 3D visualization and 

interactivity. The Virtools technologies can be broadly classified as a collection of the 

following components.  

1. An Authoring application  

2. A Behavioral Engine 

3. A Render Engine 

4. Web Player 

5. A Software Development Kit (SDK) 

 

Figure3.1  Virtools user interface. 
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The Virtools interface can be seen in Figure 3.1 The top left window of the screen 

represent the render engine. The render engine in Virtools is responsible for drawing 

different objects, characters and components in 3D layout as seen by the user during the 

running of the simulation.  

The Virtools schematic editor below the render engine is part of the Virtools 

behavior engine. Its function is to define the behavior of one object with the other in the 

virtual environment. Virtools behavior engine provides an extensive collection of 

reusable behaviors (Building Blocks) in Virtools that allow creation of almost any type of 

content through the simple, graphical interface of the schematic editor. 

 Virtools Scripting Language (VSL) complements the Virtools schematic editor 

by providing script level access to the Virtools Software Development Kit (SDK). 

Virtools also has a number of managers that help the behavioral engine perform its 

duties. Some of these managers (such as the TimeManager) are an internal part of the 

behavioral engine while others (such as the SoundManager) are external to the behavioral 

engine. 

Virtools as an authoring application allows quick and easy creation of rich, 

interactive, 3D content. Standard media such as models, animations, images and sounds 

are brought to life by Virtools' behavior technologies. Models cannot be created in 

Virtools; Virtools is not a modeling application. However, simple media such as cameras, 

lights, curves, interface elements, and 3D frames (called dummies or helpers in most 3D 

modeling applications) can be created with ease. 

Virtools includes a Software Development Kit (SDK) that provides access to 

certain parts of the behavior and rendering processes. With the SDK, new behaviors can 
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be created (DLLs), modify the operation of existing behaviors, write new file importers 

or export plug-ins, to support the modeling file format of choice  

3.2 Objectives of Game Design 

The simulations currently used in the NJIT-RAVR system when considered, each of 

these simulations serves well to train one component of the upper extremity individually 

and used together train in the complete upper extremity. For example, virtual piano trains 

individual finger fractionation, humming bird hunt trains reach and grasp and cups trains 

shoulder articulations and arm extension. During training, it is important to train both the 

proximal and distal components of the upper extremity in conjunction with one another 

[35].  

The first goal of the Tilt simulation is to explore the benefits of training the upper 

extremity as a whole. This training would involve movement of elbow and shoulder 

including abduction, extension and pronation of the arm to reach objects placed on 

various tables across the virtual environment, and finger motion necessary for grasping 

objects of different sizes and shapes. This would also help in enhancing the active and 

passive range of motion and hand eye coordination, and might utilize bilateral 

movements guided by the less impaired upper extremity. 

The secondary objective of this design is to provide a training experience that 

could be more closely associated with everyday activities. For example, on a daily basis 

most of us are involved with manipulating various objects on a desk or a table. This 

similarity is brought about in the simulation by adding four tables with various objects 

scattered across each of the tables. The objects are also similar to the shapes and sizes 

that a person would be involved with, e.g., cylinders, cubes of varying dimensions and 
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varying shapes. The rehabilitation aspect of this design would be the task of reaching for 

objects (shoulder and arm movement), use of fingers to manipulate grasping and 

releasing objects of varying sizes and shapes while responding to the visual cue of where 

to place the objects. Interacting with objects at different heights and varying distances 

away from each other might help in recovering shoulder function. 

The ability to visualize a representation of one’s own hand moving through the 

virtual spaces may strengthen a participant’s feeling of being involved in an action and of 

attributing that action to themselves. This appears to be related to the degree of 

concordance between the intent of the movement, the participant’s kinesthetic experience 

and the sensory feedback provided by the virtual environment [34]. 

3.3 Tilt VS NJIT RAVR System 

The Tilt simulation is an addition to the current library of NJIT RAVR simulations. It 

henceforth utilizes components of the current system in interfacing with the real world. 

The Tilt simulation makes use of the CyberGlove to measure joint angles and finger 

fractanations and the Flock of Birds system is connected to the wrist of the user to 

determine the position of the hand and to move the virtual hand within the simulation. 

The current system when connected with the four sensors of the Trackstar is capable of 

measuring the movement of the entire upper extremity. 

The current system does not provide any haptic feedback. The user connects to 

the virtual world using the VRPN through the CyberGlove and Flock of Birds. It differs 

from the existing system in its training capabilities. It can train the shoulder movement 

and arm reach and grasp movements along with grasping task simultaneously. The NJIT 

system on the other hand is capable of similar training over the two week training period 
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by utilizing multiple simulations. Figure 3.2 explains the simulations and the 

corresponding hardware they use with the resulting training they produce. 

The Tilt simulation is capable of producing the same measurements as the 

combination of two or more of the current NJIT RAVR systems.  
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Figure 3.2  Differentiating the Tilt Simulation with the current NJIT RAVR system. 



26 
 

 
 

3.4 Having Fun: Playing the Tilt Simulation   

It is important to understand how Tilt Simulation works before getting into the design 

details of the virtual world, and various algorithms controlling them. . The main objective 

of the Tilt simulation is to manipulate the direction of the ball from its starting position 

and direct it toward the end goal position. This task is to be achieved by using objects 

from tables around the center table to direct or divert the direction of the ball.  

To start playing the simulation the user first needs to calibrate the CyberGlove for 

the size of their hand. The CyberGlove is commercially available in standard sizes but the 

location of individual joints on the fingers vary from user to user and between healthy 

and stroke subjects.  The calibration program used is a standard calibration program part 

of the existing RAVR system. It is used for other RAVR systems that involve the use of 

CyberGlove. The standard procedure of calibration involves placing the hand in the 

following orientations. 1) All fingers flat on a surface, 2) make a fist with all joints at 90 

degrees, 3) extend fingers with 20 degree abductions between them, 4) touch the thumb 

to each of the other fingers, 5) make an angle of 45 degrees with wrist, 6) make 20 degree 

abduction with wrist, 7) place all fingers flat with thumb 90 degree to the other four 

fingers.  At the end of these steps a calibrated hand model is seen on the screen doing the 

same movements as the user. 

 To begin the game set initial conditions (in Virtools) and hit play. With the start 

of the game press “R” key on the keyboard to reset the position of the final position of the 

ball. Once the position is set the ball begins to move towards the final position frame (not 

visible to the user, say position C on Table A) the user now takes active part in the game 

by picking any of the object (E) from one of the side tables (Table B)(Figure 3.3). The 
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user needs to grasp one of these objects from the side table and place it on the Table A. 

The objects need to placed relative to the position of the ball such that ball would collide 

with the object. The collision between the ball and the object used would cause the 

direction and the force on the ball to change. The user now needs to use another or 

multiple objects from the side tables (B on Figure 3.3) to direct the ball towards the 

position D on the center table. When the ball reaches the goal (position D) one trial is 

said to be complete and the user scores one point.  

 

Figure 3.3  Tilt Simulation.  

At the end of one trial the objects and the ball positions are reset. Pressing “R” 

would begin a new trial. 
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CHAPTER 4  

UNDERSTANDING THE DESIGN 

 

All virtual simulations run on specific algorithms. The desired output of any virtual 

environment is encoded within its design and algorithm. Modern day video games and 

simulations also have set of algorithms working together to provide the user with the 

desired experience, these are known as game engines. On similar lines the design of the 

Tilt game engine can be explained as a part of two sets of algorithms/engines. 

First is the physics engine, that uses principles of physics in the objects and the virtual 

world to provide a more realistic experience to the interactions happening within the 

virtual world. Second is the set of algorithms that functions to integrate the physics 

components with other components that define game experience, namely audio, video, 

camera position and orientation, scores, time, game start and reset, etc. The following 

section helps in understanding the various components of the physics engine.  

4.1 Physics in Virtual Environment   

The Tilt simulation was programmed in Virtools. Virtools does not allow complete 

modeling of an object, but it allows design of basic shapes and modifications such as 

textures, colours and overall size and shape. The objects designed in Tilt simulation were 

either imported models (like soda cans, USB, etc) designed in 3DMax, Maya and other 

design softwares or were modelled over basic shapes and models available within the 

Virtools resource directory (like the table, cubes, ball, etc).  

Design using the inbuilt Virtools resource is fairly simple. For example the cubes 

were designed based on one of the standard designs called patch. A cube ‘patch’ was 
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chosen and imported into the render engine. The size, shape and location in the virtual 

world were then modified. The textures, colors required were then chosen and inserted to 

the patch. Any required lighting can be then provided. Now the cube is ready for scripts 

or algorithms that would decide on its behavior.  

4.1.1 Fixed Objects and Constant Objects  

A modern day virtual simulation can be defined as a complex assimilation of visual cues. 

For example, when a car racing game is considered, there are various aspects on the 

screen at any given point that keep changing. There is the car which keeps moving on a 

track, the world around the track, buildings and surroundings around them that keep 

changing simultaneously, a speedometer which responds to the user commands and a few 

other drastic changes in the event of a car crash or changes according to the story line. 

 When this complex virtual environment is broken down into various components, 

it can be seen that some do not change over time. The track in the above example is 

predesigned and does not change dynamically. These components can be considered as 

game constants. The Tilt simulation is a much simpler simulation compared to the above 

example. It is made of a floor with four tables of varying heights and dimensions 

arranged in a specific fashion. The tables and floor constitute the fixed objects/ game 

constants within the Tilt simulation. They have a fixed dimension and their position and 

properties are fixed during the run. Each of these tables and the floor has physics 

properties similar to the real world floor and tables. All the tables have the same amount 

of friction and elasticity but different textures for visual appeal. They vary in height as 

well.  
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In Figure 4.1 Table a is the farthest away from the user and also the highest 

amongst the four. The distance helps in reaching out for extension of the shoulder, while 

the height helps shoulder flexion. Table b and table d on either side of table c are taller 

and shorter respectively to the center table (table c). They encourage extension and 

abduction of the shoulders. At the center table c where most of the interaction takes 

place, it requires manipulation of objects picked from other surrounding tables. This 

encourages finger fractionation and practice of grasp and release. Hence a single run of 

the simulation would allow the training of complete upper extremity.  

 
Figure 4.1  Fixed objects: The virtual environment fixed objects is made up of four 
tables- tables a, b, c, d on the fixed floor(e). The varying heights and distances of the 
tables from the user can be observed.  

 

Other game constants of this simulation are objects that are present during the 

entire course of the game and have fixed physics properties, but unlike the fixed objects 

they can be moved around. These include objects that are used for playing the game, 
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objects of varying dimensions and shapes such as coke cans, a radio, clock, cubes and 

other cylindrical objects.  

Each of these objects have different elasticity, friction and mass but these 

properties are fixed during the run. The friction and elasticity of these objects is described 

in table 4.1. The friction and elasticity of various cubes and cans are determined by a 

factor of their size.  

       

 

Figure 4.2  Movable objects of different dimensions placed on one of the side tables.  
 

The friction and elasticity described in Table 4.1 gives the value of the smallest 

size, the base value. The values are assigned to the smallest cube or cylinder in the virtual 

world. The value of the other cube or cylinders can be calculated by multiplying it with a 

factor of their mass. 



32 
 

 
 

 

 

Table 4.1  Friction and Elasticity of Various Objects in the Virtual Environment 

Object Friction Elasticity 

Units Units Units 

Cube 1 2.20 2.9 

Coke Can 1 0.70 6.2 

Pen Stand 0.25 13.2 

Clock 0.11 28.5 

Radio 0.05 62.0 

   

 

4.1.2 Physics of the Ball 

The Tilt simulation is based on the control and manipulation of the ball on the center 

table. This control however is not achieved by manipulating the ball directly; the user 

controls the movement of the ball by using the objects mentioned in table 4.1. The user 

picks these objects from their current position and places it in the path of the ball, the 

physical properties of the ball then take over to define speed and direction of the ball 

movement.  

The ball has a mass of 10 units and a friction coefficient of 1.5 units and an 

elasticity coefficient of 2 units. These properties make the ball bounce off certain surfaces 

more than others. The choice of the object would determine the course of the ball based 

on the elasticity and mass of each of the objects selected. The deflection and direction of 

movement is based on the orientation of the object. 
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At the start of the game the ball end position can be reset by pressing “R” key on 

the keyboard. This would activate the randomization algorithm (section 4.2.1) and 

provide a new end position for the ball. The direction and motion of the ball towards this 

target is controlled by a Motion Controller Building Block (BB). This BB controls a 

physical object by making it home towards another 3D entity. In this case the ball is 

given force to home towards the dummy frame (end position frame) that determines the 

end position of the ball on the center table. This building block provides a constant force 

for the ball to move towards the end position frame. The maximum translation force and 

rotational force in individual axis can be set before the start of the trial. These determine 

the speed and spin on the ball. 

 
Figure 4.3  Motion Controller Building Block. 

 

When the ball comes in contact with any obstacle placed in its path the properties 

of physics acts upon the ball, hence changing its course towards the desired destination. 

The end position is a frame created to designate manually the end position for the ball on 

the table (Figure 3.5).  
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4.2 Game Algorithms   

The previous section explained the components of the physics engine. But for a game/ 

virtual simulation to be successful in its design or therapeutic goals, the experience 

provided by the physics engine, as well as other components like audio, visual, 

performance scores and time are important. This section gives an overview of some of 

the important algorithms used in Tilt simulation that help in creating the game 

experience. 

 

4.2.1 Randomization Proximity and Reset 

End position is a randomized position on the center table which is used by the motion 

controller BB to initiate a trial. The movement goal is a position on the lower left edge of 

the center table which is a fixed target for the user. The user has to direct the ball towards 

this target to end the trial. 

Randomization BB generates a random position vector within the area (Figure 

4.4) covering the lower half of the center table. This position vector is used to determine 

the location of the end position frame which is necessary to trigger the motion controller 

BB that sets the course of the ball at the start of the trial. 

The proximity algorithm calculates the distance of the center of the ball from the 

frame at the goal position. The distances are calculated between the volumetric centers of 

the objects. The value of the distances in the horizontal plane is compared to the 

threshold distance. When the distance is lower than the threshold the In Range output is 

activated triggering the reset algorithm. When the distances are greater than the threshold 

distance the Out Range is activated triggering the proximity BB in a loop. 
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Figure 4.4  End position frame VS Goal. (a) random position frames ; (b) Goal; (c) 
Frame that represents position of the goal; (d) Initial position of the ball. 

 
The accuracy of the ball reaching the goal can be controlled by the proximity BB. 

When the threshold distance is large, the In Range is activated when the distance between 

the objects is large implying the ball has not reached the goal. Likewise, when the 

distance is small it implies the ball has almost reached the goal. Hence the accuracy 

required from the user can be controlled during training by varying the threshold 

distance. 
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Figure 4.5  Proximity Building Block. 

 
The Reset algorithm controls the initial conditions of the trial. When activated, it 

resets the position of the ball and all the objects to the position at the start of the trial. 

This signifies the end of the trial triggering the scorecard and time algorithm to measure 

the time and record the score to be displayed on the screen. It also resets the camera back 

to its position at the start of the trial.  

 

4.2.2 Scorecard and Time 

The scorecard and time algorithms measure the total time from the start of the trial until 

the ball reaches the goal. The total number of times the goal is reached is measured as a 

score. Both the score and the time are measured and displayed on a two dimensional 

frame on the top right side of the display. The score and time are meant to bring a sense 

of time and help in motivating the user to get a higher score in less time. The time 

displayed could be the total time taken to finish a trial or can also be modified to show 

the total time left in the current trial, based on the requirements of the therapist. The 
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scorecard algorithm is triggered by the proximity algorithm when the object reaches the 

goal. 

 

4.2.3 Grasping and Picking Objects  

This simulation requires its users to pick objects and place it at different locations. The 

individual fingers and hand movement data is collected simultaneously and transferred to 

the virtual world. A pair of CyberGloves is used for finger tracking and Flock of Birds 

gives the position and orientation of the wrist. While the position and orientation of the 

hand and fingers can be determined in the virtual world, the actual grasping of objects in 

the virtual world is possible only when forces are applied opposing those already present 

(for instance, gravity). The CyberGlove or the Flock of Birds does not measure the actual 

force applied by the user. Since the forces are not transferred to the virtual world, 

alternate methods to apply forces are required to pick objects.  

The grasping and picking algorithm along with the ‘Object Picker’ VSL script 

helps in applying forces in the virtual world to grasp and pick objects. Refer to Appendix 

A and B for the VSL script and algorithm, respectively. This algorithm makes use of 

multiple Collision detection BB’s to detect the collision between two 3D objects. Every 

finger is assigned an ‘END object’. The collision between the END object and any 3D 

object in the virtual world is detected by the collision detection BB. The collision 

detection BB’s connected in series activates the object picker VSL script. This script 

checks the objects colliding with individual fingers/ finger ‘END objects’. When all the 

fingers collide with the same object the output of the ‘Object Picker’ block is activated 
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triggering the subsequent object to be picked. This triggers the object as ‘pickable’ and 

the object is connected to the END object of the hand. 

 
Figure 4.6  Collision Detection. 

 
When any one of the finger stops touching an object, the collision between the 

END object of the finger and the object is deactivated and hence the input to the script is 

discontinuous hence deactivating the object from a ‘pickable’ state causing the object to 

be dropped due to gravity. The object can be picked from its current position if required 

by the above principle with all fingers grasping the same object.  

4.3 Tilt Game Adaptability 

The adaptability of any virtual reality simulation determines its successful use with stroke 

patients with varied needs. The control of difficulty is necessary to make the training 

challenging but not too frustrating, because the goal is to make stroke subjects work 
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consistently and successfully over the training period. The Tilt simulation is highly 

adaptable in the following ways. A change in various physics properties could make a 

meaningful difference in the game play. 

 The amount of friction, elasticity and force acting upon the ball would make it 

move faster or slower, hence increasing or reducing the speed of the ball and the game. A 

faster ball gives lesser time for making decisions and also difficult to control its direction. 

Depending on the need of the user, the amount of friction and elasticity of both the table 

and the ball can be either increased or decreased causing a major change in speed. 

Finally, a change in the elasticity of the game constants (objects) would change the 

amount of deflection of the ball off its surface and hence the amount of dynamics within 

the game; a surface with much less elasticity would cause only a very small deflection off 

its surface, setting the ball marginally off its path towards the end position frame and vice 

versa for a surface with high elasticity. This would affect the number of objects required 

to change the direction of the ball.  

 A change in the force factor in the motion controller BB would also change the 

initial force available for the ball and the speed at which the ball approaches the end 

position frame. An increase in the time to reach means, more time for the user to 

manipulate the path of the ball. This flexibility in the physical parameters allows the Tilt 

simulation to be used by a group of stroke patients with varying motor abilities, from 

very limited to less impaired, or those with slow or fast motor movements.  

The accuracy required by the user during training can also be modified by 

changing parameters in the proximity BB. A higher range would allow the reset 

algorithm to be triggered sooner, with the actual position of the ball much farther from 
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the goal compared to a very low range, which would require the user to concentrate more 

on the fine motor movements and accurate placement of objects. 
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CHAPTER 5  

TESTING AND VALIDATION 

To show the effectiveness of the system, two independent tests were performed. The first 

test was to understand whether the design goals were achieved and whether the subjects 

could perform the game. Volunteers with impaired movements were asked to use the 

system for a period of 15 minutes and were asked to answer a questionnaire relating to 

their training. The second study was to compare the subject’s behavior to established 

training measures and movements in the real world. Healthy volunteers were asked to 

perform upper extremity tasks in the virtual world as well as in the real world and 

kinematic data were analyzed to prove the efficiency of the game design to elicit real 

world movements in the virtual world.  

5.1 Questionnaire Results   

The Tilt simulation was tested by three volunteers who were undergoing rehabilitation 

after stroke. Their mean age was 53 years and they had suffered a stroke between 5- 7 

years ago. Two of the volunteers were male and one was female. All volunteers received 

verbal instructions about the working of the system and the objective of the game and 

how to work the system. They were asked to test the system for its design, efficiency and 

level of difficulty to use.  Each of them used the system for up to 15 minutes. They were 

asked to perform the motions that would be necessary during the course of the actual 

rehabilitative training but they were not timed or given a score based on their 

performance. The size of the virtual world and of the fixed objects was also tested; this 

would determine if a separate calibration and resizing algorithm would be necessary. 
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Although the subjects had varied range of motion, they all were able to reach all the 

necessary parts of the simulation.  

Subjects were presented with a questionnaire (Appendix C) at the end of their 

trial. The questionnaire included 6 multiple choice questions and 2 user experience 

related inputs for future changes in game design. The questionnaire was designed with 

the help of a physiotherapist and gauges qualitatively the effect of training on the user’s 

upper extremity function. 

 

1. The game exercised my Elbow  

1   2  3  4  5 
Strongly Disagree Disagree  Neutral  Agree  Strongly Agree 
 

Figure 5.1  Sample question from the questionnaire. 

 
The three users’ responses are shown in Figure 5.2. The average game experience 

for the object manipulation activities in the Tilt simulation was rated at “Neutral”. 

 

    Figure 5.2  Questionnaire results. 
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 The stroke subjects rated the overall difficulty as five on a scale of one to five. 

The users commented on this saying it was tiring to perform both the shoulder 

movements and grasping task simultaneously. Technically this determines the efficiency 

of the design in being able to exercise the upper extremity effectively. The difficult level 

of the simulation during the training can be changed to suit the level of training required 

by the stroke subject (refer to Section 4.3).  

5.2 Qualitative Analysis   

The results from the questionnaire give the qualitative proof of design for working with a 

stroke subject. Quantitative measurements on stroke subjects would require recruitment 

of subjects specifically for this study. The change due to training can be determined only 

if the subjects are not subject to any other training paradigms. Due to logistical 

difficulties, this study was not carried out as part of this thesis. Instead, a study to prove 

the similarity in movements in both the virtual world and real world training was 

compared.  

One subject 25 years old was asked to use the simulation while their kinematic 

data was measured. Each of these healthy subjects was asked to perform a real world 

reach and grasp test similar to the task performed during the Tilt simulation. Figure 5.3 

and Figure 5.4 show the real world and virtual world setup. The real world setup was 

designed based on the virtual world. The initial position of the hand was determined in 

the real world while the user was using the virtual world setup. A scale measured the 

distances moved in the X-Y plane in the real world while the user was making the 

required movements in the virtual world. Once the measurements were made an initial 

position was determined and the values were used to replicate the virtual world setup.  
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In Figure 5.3, the subjects are required to move their hands from initial position I, 

reach and grasp objects from positions B and place at target position T and return to 

initial position I. The objects were reset to position B after each trial by a volunteer. The 

subject performs the above mentioned task with objects of varying shapes and 

dimensions. This was followed with the subjects performing similar movement tasks with 

virtual objects in the Tilt simulation. The initial setup in the virtual world, used to make 

the measurements for the real world setup was used during the test in the virtual world. 

The distances between objects in the virtual world including the variation in height was 

measured and replicated in the real world setting. The trial lasted less than ten minutes 

with 5 trials each for 3 objects.   

 

Figure 5.3  Real world reach and grasp setup. 
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Figure 5.4  Virtual world reach and grasp setup. 

Data is collected using the CyberGlove systems. The Flock of Birds system was used to 

simulate the movement of the arms position in the virtual world. The Flock of Birds 

measured the overall movement of the arm from a starting position to the target position 

while the CyberGlove system measured the finger movements during the reaching and 

grasping task. 

The 3D trajectory of the arm movement generated using the x, y and z position of 

the Flock of Birds was visually compared. The similarities in movement between the real 

and virtual world was observed. 
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5.3 Conclusions and Future Directions 

The preliminary results from the tests and validation show that the Tilt simulation was an 

efficient design for upper extremity training. The qualitative results show proof that the 

design is capable of training both the fingers as well as rest of the upper extremity in 

unison. The level of difficulty as faced by the stroke users was due to their inability to 

able to feel the object being grasped; the problem stated was lack of visual, haptic or 

auditory cues. Since the current system uses CyberGlove, there is no hardware based 

haptic feedback possible. But modifications have been made to the current system 

providing the users with a visual cue when an object is picked or released. 

The qualitative results show the similarity in the 3D trajectory of the upper arm 

both in the real world as well as the virtual world. This suggests that practicing activities 

when using the system may be similar to real world activities of the upper extremity. 

Further study comparing activities using this system to comparable real world activities is 

required. 

Training in this interactive virtual environment may provide some distinct 

advantages over traditional training activities with real world objects. In particular, the 

system allows for easy scaling of the working space. This flexibility will allow for 

customization of the activities to the level of abilities of the user with a disability. 

Moreover, the system can easily adjust the accuracy requirements for interacting with the 

virtual objects. In addition, speed of the arm movement required for successful trial 

completion can be modulated as needed by the therapist. Unlike a real world training 

setup, in which the size and shape of the objects to be manipulated are fixed, our system 
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allows for wide variety of objects that would train various hand preshaping and grasping 

patterns. 

In the future, this system flexibility can be incorporated into a user-friendly 

graphic-user interface. In addition, many of these parameters can be controlled by online 

algorithms that would be able to shape motor behaviors based on the current performance 

of the subject. 

The platform for this system is capable of extensive real time data collection and 

the systematic application of activities will allow for the study of motor learning 

processes as they occur during task performance. Insight into this process may have 

important applications on the development of rehabilitation science. 
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APPENDIX A 

OBJECT PICKER SCRIPT 

This appendix shows the VSL script used for calculating the measurements and 
the movement of the fingers during the course of the grasping task.  

 
void main() 
{ 
 /*Assign 5 points as the end points of each of the fingers. Use physics properties and 

determine the collision of each of the end points. When the collision of each of the 5 points is same then 
count that as grasping the same object.  

If the condition is true then make the physical entity as pickable. checking the collision group of 
each of the end points on the left finger if the end points are touching the same object(it means they belong 
to the same collision group) then set the object as pickable.  

//once the object  is set as pickable, set its position equal to the position of the index finger. */ 
  
bool trigger =0; 
String target; 
 
  // cube 1                   
// if (index == "cube1") (index== "cube1"); 

if (index== "cube1") 
{ 
  if (middle== "cube1") 
  if (ring== "cube1") 
  if (little== "cube1") 
 { trigger = 1; 
   target= "cube1";   
 }} 
 
         //cube 5 
else if (index== "cube5") 
{ if (middle== "cube5") 
  if (ring== "cube5") 
  if (little== "cube5") 
 { trigger = 1; 
   target= "cube5";   
 } 
} 
 
//cube 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
if (index== "cube3") 
{ 
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if (middle=="cube3") 
if (ring=="cube3") 
if(little== "cube3") 
 
 { trigger = 1; 
   target= "cube3";   
 } 
 else 
 {trigger = 0; 
 target = "NULL";} 
} 
// else (index== middle==ring==little != "cube3") 
 
// getposition 
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APPENDIX B 

PICKING AND GRASPING ALGORITHM 

This appendix shows a snapshot of the schematic editor in Virtools. The schematic shows 

the ‘Picking and grasping algorithm’ and the ‘Object Picker ’ block. 

 

Figure B.1  Schematic representing the grasping and the reaching algorithms.
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APPENDIX C 

GAME EXPERIENCE QUESTIONNAIRE 

Appendix C shows the questions presented to the impaired subjects after their use of the 

Tilt simulation. The questions mentioned below help in understanding the effect of the 

virtual simulation on the stroke patients. 

 

Name:  Subject                         Date: xx/xx/10 

1. My game experience was positive. 
1   2  3  4  5 
Strongly Disagree Disagree  Neutral  Agree  Strongly Agree 
Comments:  
 

2. The game exercised my fingers  
1   2  3  4  5 
Strongly Disagree Disagree  Neutral  Agree  Strongly Agree 
Comments: 
 

3. The game exercised my elbow  
1   2  3  4  5 
Strongly Disagree Disagree  Neutral  Agree  Strongly Agree 
Comments:  
 

4. The game exercised my shoulder 
1   2  3  4  5 
Strongly Disagree Disagree  Neutral  Agree  Strongly Agree 
Comments:  
 

5. I could tell how big or small the objects were when I tried to grasp them. 
1   2  3  4  5 
Strongly Disagree Disagree  Neutral  Agree  Strongly Agree 
Comments:  
 

6. Was the game:          Easy              OK           Difficult : 
If easy: What changes would you suggest? 
 

7. If difficult, which task did you find difficult? / Why do you find the game 
difficult?  
 

8. What changes would you like to see to make the game more interactive/ 
interesting? 
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