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ABSTRACT 

A MICROFLUIDIC CULTURE FOR TWO POPULATIONS OF  

DROSAL ROOT GANGLIA FOR DIFFERENTIAL STAINING 

                                                                        

by 

Ishnoor Sidhu 

The goal of this study was to design and fabricate a microfluidic system that can be used 

to visibly distinguish the two populations of dorsal root ganglia (DRGs) by differential 

staining. Polydimethylsiloxane (PDMS) is the most widely used silicon-based organic 

polymer, and is particularly known for its wide spread use in microfluidics. Various 

methods have been employed to pump fluids in these channels for applications ranging 

from patterning of cells and biomolecules to control of local environment factors such as 

temperature, which requires external pumping or other applied forces. We demonstrated a 

pump-free device that exploits the surface energy stored in a liquid droplet to pump liquid 

in the channels. The fluid was pumped by using two droplets of unequal sizes connected 

via fluid filled channel. The flow was generated from smaller droplet to larger droplet. 

This passive pumping technique was used to simultaneously stain the two cultured DRGs 

in connected channels. 

The in vitro system can be further exploited to study the guided growth in axons. 

This study provides a cost effective method to detect the influence of the presence of 

pioneer neuron on the growth patterns of the new generation of neurons. It eliminates the 

need of using transgenic cells to study the guided growth in axons, thereby giving some 

insight for the repair of spinal cord injuries and the understanding of the early growth 

model.        
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CHAPTER 1   

 INTRODUCTION 

1.1 Human Nervous System 

Human nervous system exhibits bilateral symmetry. It is subdivided into central nervous 

system and peripheral nervous system, anatomically. Functionally it is divided into 

somatic nervous system and autonomic nervous system. The CNS comprises the brain 

and spinal cord, whereas PNS consist of the cranial nerves (nerves emerging from the 

brain) and spinal nerves (nerves emerging from the spinal cord). The PNS convey neural 

message from sensory organs to CNS and vice versa. The somatic nervous system is 

responsible for sensory information (afferent) and motor (efferent) control of voluntary 

muscles. The autonomic nervous system, also called as visceral nervous system is 

concerned with motor control of involuntary and cardiac muscles and of glands of 

viscera. 

1.1.1  The Neuron: Cell of Nervous System 

The neuron is the basic unit of the nervous system. There are billions of neurons in 

human body. Over 100 billion neurons along with many more glial cells are integrated 

together to form brain. They exhibit various forms and sizes. A typical neuron consists of 

four morphologically defined regions: 

1.1.1.1  Soma or Cell Body.      As any other, soma is the metabolic center of the neuron. 

It contains large nucleus, plasma membrane, cytosol, Nissl bodies and endoplasmic 

reticulum, mitochondria, lysosomes, neurotubules, and neurofilaments (Noback et al., 

1996). 
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1.1.1.2  Dendrites. Dendrites, or the nerve endings, are the variable number of small 

branching projections. These allow cell to talk to other neuron or perceive the 

environment. Dendrites contain same cytoplasmic organelles as the cell body (Noback et 

al., 1996). 

1.1.1.3  Axon.      Axons are long, cable-like projections. The axon is specialized for 

transmission of coded information (nerve impulse or action potential). The axons of CNS 

are very thin, of the order of 0.2 to 20 microns as compared to diameter of the cell body, 

about 50 microns (Kandel et al., 1991). It arises from axon hillock of cell body and 

extends from less than a millimeter to as long as 3 meter before diverging into fine 

terminal branches, telondria.  

Depending upon the type of neuron, axons can be covered with a thin layer 

of myelin, like an insulated electrical wire. Myelin is made of mostly fat (glycolipid 

called galactocerebroside), and it helps to speed transmission of a nerve impulse down a 

long axon. Myelinated neurons are typically found in the PNS, while non-myelinated 

neurons are found in the CNS. 

1.1.1.4  Synapse. A synapse is a junction where one neuron meets another neuron’s 

impulse. A synapse has a pre-synaptic component, usually an axon terminal, and a post-

synaptic component, part of dendrite, cell body or axonal initial segment (Kandel et al., 

1991). A pre-synaptic cell does not actually touch or communicate anatomically with the 

post-synaptic cell since the two cells are separated by a space, the synaptic cleft.    

The pre-synaptic cell releases the signal (chemical or electrical) into the synaptic 

cleft and is received by the post-synaptic cleft.  
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Figure 1.1  Structure of neuron (A) CNS neuron, (B) a lower motor neuron located both 

in CNS and PNS, (C) Axodendritic synapse between two neurons, (D) Motor end plate 

(synapse), and (X) border between CNS (above X) and PNS (below X).  The lower motor 

neuron synapses with a voluntary muscle cell to form a motor end plate.    
 

Source: (Noback et al., 1996) 

 

Figure 1.1 describes the basic morphology of neurons in central nervous system 

and peripheral nervous system and how the neurons communicate with each other i.e., 

how the signal is transported from CNS to PNS and vice versa.  
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1.1.2  The Spinal Cord 

The spinal cord is a cylinder that extends from the foramen magnum at the base of skull 

to a cone-shaped termination (conus medullaris), located at the caudal level of the first 

lumbar centrum. The nonneural filament continues from conus medullaris to its 

attachment in the coccyx.  

 

Figure 1.2  Anatomy of the spine. (A) The spinal column (front and back). The spinal 

column extends from skull to pelvis and is divided into five regions: Cervical, Thoracic, 

Lumbar, Sacrum and Coccyx. (B) Spinal nerves. Each spinal nerve controls a specific 

part of body. 

 

Source: (http://www.thewellingtonneurosurgeryunit.com/spine-anatomy.asp) 
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The spinal column is divided into five regions, as shown in Figure 1.2 (A). There 

are 33 bones which forms the spinal column. The first three regions, cervical, thoracic, 

and lumbar, are made of number of individual vertebrates; there are seven cervical 

vertebrate, 12 thoracic vertebrate and five lumbar vertebrate. The sacrum region consists 

of five fused bones and the coccyx (tail-bone) is a single bone.  

Figure 1.2 (B) shows the spinal nerves. The spinal cord receives its input and 

projects the output via spinal nerves. Each spinal nerve is two components, dorsal root 

and ventral root, see Figure 1.3. Dorsal root extends from the dorsal surface of the spinal 

cord to the formation of the spinal nerve. Dorsal root is entirely sensory in function; 

passes sensation from body to brain. On the other hand ventral root extends from the 

ventral horn of the spinal cord to the spinal nerve and is entirely motor in function. It 

carries motor signal from brain to muscles and glands. 

 

Figure 1.3  The spinal nerve. Each spinal nerve divided into roots, Dorsal (sensory) and 

Ventral (motor) roots.  

 

Source: (Noback et al., 1996) 
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The spinal cord consists of gray and white matter. The gray matter consists of 

neuronal cell bodies, dendrites, axon terminals, synapses, glial cells and is highly 

vascular. On the other hand the white matter consists of bundles of axons and 

oligodendrocytes. It lacks cell bodies and is less vascular.    

1.1.3  Dorsal Root Ganglion Neuron 

Dorsal root Ganglion (DRG) is a sensory ganglion located on the dorsal root. It serves as 

the location of cell bodies of somatic afferent neurons. The DRG neurons are about 10-

100μm in size. DRG neurons possess robust and regenerative nature of the PNS and 

potential for nervous system repair. 

The primary function of the spinal dorsal root ganglion and their cranial 

equivalent is to serve as afferent conduits to the CNS. Other than signaling, DRG neurons 

play other important functions, during development and in adult vertebrate body. The 

absence of DRG neurons, during development, may block the differentiation of certain 

features of peripheral tissue associated with nerve terminals. In adult body, loss of 

primary DRG neurons can lead to disappearance of cellular complexes of tissue 

associated with their peripheral terminals (Perl, 1992). 

1.2  Motivation for Using Microfluidics in Neuroscience Research 

Human feelings, cognition, emotion, thinking and behavior are all based on activities of 

the nervous system. The basic and urgent tasks for neuroscience are (Wang et al., 2009):  

 to analyze the structure and function of the nervous system,   

 to understand the basic rules of nervous system activities,  

 to elucidate mechanisms of learning and memory on different levels, and  

 to prevent, diagnose, and treat various neurobiological and mental diseases. 
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With traditional techniques there are still many challenges in studying nerve cell 

interactions, neural stem cell differentiation, mechanisms of cell attachment to various 

substrates, neurite growth, myelin formation and the mechanisms of ion channels. 

Microfluidic systems, with their excellent performance and easy availability of functional 

components, provide a new means to study these phenomena in a manner impossible on a 

conventional scale (Wang et al., 2009). 

In fact, since the first introduction of microfluidic devices into neuroscience in 

1998 (Heuschkel et al., 1998), they have been used to study nerve cell activity and 

growth on various substrates and, microenvironments, neuropharmacology, 

neuroelectrophysiology, neural stem cell differentiation, neuron biosensors. 

1.3  Microfluidics 

Microfluidics- the manipulation of fluids in channels with dimension of tens- emerged as 

a distinct new field in 1980s. It is the branch of physics that process or manipulate small 

(10
-9

 to 10
-18

 liters) amounts of fluids, using channels with dimensions of tens to 

hundreds of micrometers. Microfluidics is closely associated with the lab-on-chip, a 

termed coined by Harrison et al. in 1992 (Harrison et al., 1992).  

The behavior of fluids at microscale differ from their generic behavior in terms of 

surface tension, rheological properties etc. microfluidics has been applied in many 

disciplines, including chemistry, biology and medicine, and has shown the significant 

advantages of low reagent and sample volumes, highly sequential or parallel 

experimentation, better mimicry of the natural tissue environment, precise experimental 

control of the cellular microenvironment, and low cost disposable devices (Whitesides, 

2006).  
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Microfluidic-based cell studies present an advantage when compared to 

conventional in vitro techniques since they have the ability to precisely control the 

environment around individual cells. This is accomplished by using microfluidic 

architecture to deposit single cells in dedicated areas and by controlling the quantity of 

added reagents and factors distributed to these isolated cells via the microfluidic 

channels. Since the control offered by microfluidic platforms can avoid problems seen 

with standard in vitro techniques, such as unanticipated extraneous factors, diffusion 

constraints, and cell population variability, results derived from microfluidic experiments 

may reveal new details of cellular physiology. Cost savings are another benefit of 

microfluidic experiments since the volume of expensive media, hormones, and growth 

factors is orders of magnitude less than that used in conventional culture flasks. 

Microfluidic devices and their architectures gives a novel approach to studying 

the cellular physiology of the nervous system and the pathophysiology of many 

congenital and acquired neurodegenerative diseases by allowing isolation of cells derived 

from the nervous system, isolation of neurites and synapses, and analysis of single-cell 

responses to perturbations of their environment.  

1.3.1  Polydimethylsiloxane (PDMS) 

Materials employed for fabrication of microfluidic devices include silicon, glass, quartz, 

polystyrene, PDMS etc. Silicon, glass and quartz are known as hard materials. Although 

they are chemically robust and solvent resistant, they have disadvantage of being 

expensive and not flexible. Polystyrene is flammable and degrade easily when subjected 

to solvent and UV exposure. PDMS belongs to a group of polymeric organo-

silicone compounds that are commonly referred to as silicones. It is known for its 
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unusual rheological properties and widespread use in microfluidics. (CH3)2SiO is the 

repeating unit of PDMS and the polymeric form is shown in Figure 1.4. 

 

Figure 1.4  Chemical representation of PDMS. 

 

Poly(dimethylsiloxane) has a unique combination of properties resulting from the 

presence of an inorganic siloxane backbone and organic methyl groups attached to 

silicon. They have very low glass transition temperatures and hence are fluids at room 

temperature. These liquid materials can be readily converted into solid elastomers by 

cross-linking (Xia & Whitesides, 1998).  

PDMS is optically transparent down to 280 nm, allowing both optical and 

fluorescent/chemiluminescent microscopy of contained cells and fluids in the visible 

spectrum. Other major advantages of PDMS for in vitro cell studies are that it allows 

respiration of cells that are enclosed within it since it is also permeable to gases. It is 

nontoxic and autoclavable and, it inhibits cellular adhesion onto its surface if it is not 

pretreated for this purpose. A final advantage of this material for use on microfluidic 

chambers is that PDMS has been shown to be a superior protective coating for onboard 

electronic devices (like surface-emitting lasers) since it is optically transparent yet 

prevents the corrosive (Gross et al., 2007). 

The major drawbacks of PDMS are the limited compatibility with organic 

solvents and hydrophobic external surface. The PDMS tends to absorb the solvents and 

http://en.wikipedia.org/wiki/Rheology
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thus become swelled. The hydrophobicity can be compensated by plasma oxidation, 

adding silanol (SiOH) groups to the surface. 

1.3.2  Characteristics of Flow 

1.3.2.1  Laminar flow.    Laminar flow occurs when fluid flows in parallel layers without 

lateral mixing. This is also known as streamline flow. A dimensionless parameter, 

Reynolds number (Re) named after Osborne Reynold, describes the tendency of flowing 

fluids to develop turbulence.  

Equation 1.1 shows the relation of Re with the dimension of channel and the fluid 

parameters. 

 

   
   

 
 

(1.1) 

 

where, L is characteristic dimension of the channel (m), v is the velocity (m/s), ρ is the 

density of fluid (g.m
-3

), and µ is the viscosity (Pa.s). Flows with Re >1000 are turbulent 

i.e., the mixing happens quickly by convection. Re < 1 denotes the laminar flow (Jiang & 

Whitesides, 2003).  

1.3.2.2  Surface Tension and Capillary Action.   Capillary action is the tendency and 

ability of a material to draw another material into it. This is due to adhesive 

intermolecular forces being stronger in the interface between the liquid and the material 

than the cohesive intermolecular forces inside the liquid.  

Microfluidics is based on the theories of capillary action. When a fluid interacts 

with the interface of a hydrophilic microcapillary channel, the surface tension induces 
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advancement and the fluid is drawn into the channel. Specifically, capillary flow is 

achieved through surface tension equilibrium maintenance (Chakraborty, 2005). The 

length liquid will travel through a capillary is directly related to the liquid’s surface free 

energy and inversely related to the radius of the capillary. When microchannels with 

dimensions on the order of microns are used, the lengths liquids will travel based on capillary 

forces alone are significant. Surface tension is very important to study droplet-based 

microfluidics. Surface area is another factor that becomes important at the microscale. A 

very large surface area to volume ratio makes capillary action more efficient in 

microchannels.  

1.3.2.3  Diffusion. Diffusion is the process by which a concentrated group of particles 

in a volume will, by Brownian motion, spread out over time so that the average 

concentration of particles throughout the volume is constant. Diffusion is the only force 

of mass transfer in transverse direction of flow.  

 

       (1.2) 

 

where, X is diffusion distance, D is the diffusion coefficient (µm
2
/s) and t is time (s). 

1.3.2.4  Flow Resistance. The flow rate within a microchannel is given by:  

 

  
  

 
 

(1.3) 

 

where Q is the flow rate, ΔP is the pressure drop across the channel, and R is the channel 

resistance. For a rectangular microchannel with a high aspect ratio (w<<h):   
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(1.4) 

 

where µ is the fluid viscosity, l is the length of the channel, w is the channel width and h 

is the channel height. 

In the following study, a device is demonstrated for the culturing two dorsal root 

ganglion explants in connected channels and simultaneously staining them using the 

surface energy of liquid droplets and capillary flow.    
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CHAPTER 2  

BACKGROUND 

2.1  Neuroscience Study in Microchannels: Literature Review 

As described in the previous Chapter, the research in neuroscience aims at culturing the 

individual neurons and precisely controlling the environment. Various studies have 

connected microfluidic science to neuroscience for variety of in vitro studies. There exist 

many reviews on the application of microfluidics in neuroscience research. Pearce et al 

(Pearce & Williams, 2007), Gross et al (Gross et al., 2007), Wang et al (Wang et al., 

2009), and Taylor et al (Taylor & Jeon, 2010) has presented extensive review of the 

microfluidics in neuroscience.  

There are three main reasons for interest in use of microstructures in neuron 

culture. The first reason is the interactions of microstructures with cell-surface 

morphology provide more biocompatible surfaces for neuron culture.  Previous studies 

(Turner et al., 2000) showed that neuron culture prefers rough than smooth surfaces. 

Secondly, microstructures provides useful platforms for studying the responses of 

neurons and neural networks to physical cues in a controlled environment, since physical 

cues, including nano- and micrometer-sized ridges and pores formed by cell bodies and 

cell processes, govern the construction and function of neuronal networks as neural cells 

connect to one another. Lastly, microstructure can be employed to manipulate neurons, 

which is very important for research on isolated somata and axons in miniature (Wang et 

al., 2009). 

 



14 

 

 

 

Researchers in past have extensively studied the neuron culture in the 

microfluidic devices (Taylor et al., 2003; Taylor et al., 2005; Park et al., 2006; Taylor et 

al., 2006; Park et al., 2009; Taylor & Jeon, 2010). Taylor et al. (Taylor et al., 2003) 

demonstrated the culture of rat cortical neurons in microfluidic devices. The device 

fabricated had two compartments separated by a physical barrier in which a number of 

micron-size grooves were embedded to allow growth of neurites across the compartments 

while maintaining fluidic isolation. Cells were plated into the somal (cell body) 

compartment, and after 3-4 days, neurites extend into the neuritic compartment via the 

grooves. The viability of neurons was shown to be 50-70 % after 7 days in culture.  

In other paper, Taylor et al (Taylor et al., 2005) demonstrated a microfluidic 

culture platform for CNS axonal injury, regeneration and transport. The platform 

polarizes the growth of CNS axons into a fluidically isolated environment without the use 

of targeting neurotrophins. In addition to its compatibility with live cell imaging, the 

platform was use to isolate CNS axons without somata or dendrites, facilitating 

biochemical analyses of pure axonal fractions and localize physical and chemical 

treatments to axons or somata. The platform also served as a straightforward, 

reproducible method to model CNS axonal injury and regeneration. 

The above two studies exploited the less obvious trait of microfluidic devices i.e. 

laminar flow and capillary action. The microfluidic devices maintain the laminar flow of 

liquids. This property helps in the fluidic isolation and manipulation of neuron structures 

independent of the other part. 

Based on the previous work Park et al designed novel modified microfluidic 

platforms for performing biochemical analysis of the pure axonal fraction, culturing 
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tissue explants, and perform a high content assay on same group of cells. The device 

demonstrated in the study incorporated a number of microgrooves for isolating axons 

from the cell body. The design had an open cell culture area in the center and four 

enclosed channels around open area that made it suitable for multiple drug screening 

assays. (Park et al., 2009).  

A group of researchers in 2005 studied the axonal growth of mouse DRGs on the 

fabricated PDMS structures with different surface coatings (Kursumovic et al.). They 

studied the influence of surface topography and surface chemistry. They concluded that 

the influence of topological structures on the guidance of axons depends very much on 

whether the surface chemistry of the pattern enhances axonal growth or not. For non-

favored surface chemistries contact guidance seems to be very important whereas in the 

case of favored environment axons seem to not care about contact guidance that much. 

Lockery et al (Lockery et al., 2008) presented a new class of microfluidic devices 

for C. elegans neurobiology and behavior: agarose-free, micron-scale chambers and 

channels that allowed the animals to crawl as they would on agarose. One such device 

mimics a moist soil matrix and facilitates rapid delivery of fluid-borne stimuli. A second 

device consists of sinusoidal channels that can be used to regulate the waveform and 

trajectory of crawling worms. Both devices were thin and transparent, rendering them 

compatible with high-resolution microscope objectives for neuronal imaging and optical 

recording.  

A study done by Botzolakis and group (Botzolakis et al., 2009) demonstrated the 

microfluidic approach to precisely control the neurotransmitter transient. This study 

allowed the evaluation of effects of disease-causing mutations. When this system was 
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used to apply ultra-brief (∼400µs) GABA pulses to recombinant GABAA receptors, 

members of the cys-loop family of LGICs, the resulting currents resembled hippocampal 

inhibitory post-synaptic currents (IPSCs) and differed from currents evoked by longer, 

conventional pulses.  

Berdichevsky et al. (Berdichevsky et al., 2010) demonstrated the co-culture from 

cortex and hippocampus in two compartments connected by microchannels. The result 

showed that the cultures extended and formed functional connections. This research is 

useful for understanding the development, plasticity and pathologies of neural pathway. 

Recently, a group studied the effect of substrate stiffness on the cellular 

morphology of dorsal root ganglion (Cheng et al., 2011). They found the higher cell 

densities of DRG neurons and glial cells on semi-rigid PDMS substrate (35:1 base to 

curing agent ratio) than on more rigid (15:1) and more flexible (50:1) PDMS substrate, 

demonstrating a localized bimodal response within a very small difference of elasticity on 

PDMS.   

Most of the studies employed PDMS-based microfluidic devices due to their 

advantages of thermal stability, biocompatibility, low cost, practical scalability, optical 

transparency, gas permeability, and easy fabrication using standard soft-lithography. In 

addition, the elasticity of PDMS matrices enables the integration of pressure-driven 

valves and pumps within microfluidic channels, permitting execution and automation of 

complex chemical and/or biological processes within a single device. 
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2.2  Flow in Channels 

The flow of liquid in the channels is the key area of interest in microchannels. As said 

earlier, the microfluidic flow is used to control the microenvironment of the cells. 

Laminar flow was previously used to pattern different cells, manipulate different parts of 

a cell (Jiang & Whitesides, 2003), dynamic control of local temperature (Pearce et al., 

2004), etc. Various traditional and non-traditional methods have been applied to pump 

fluids in the channels. The methods to flow fluid in channels includes pressure-assisted 

and electrokinetic driven pumping (Sia & Whitesides, 2003), thermocapillary pumping 

(Burns et al., 1996) which is a surface-tension based pump and uses local heating of 

droplets, and pumping by using centrifugal forces (Duffy et al., 1999). The drawback of 

almost all the pumping method is the requirement of external equipment  

It was also reported in literature that fluid flow can be controlled, closed or switch 

using pneumatically actuated valve (Unger et al., 2000; Sia & Whitesides, 2003). The 

elastomeric property of PDMS can be exploited in making these mechanical valves. This 

is a multilayer system. When pressure is applied to upper channel, it deflects the thin 

PDMS membrane downwards, thereby closing the channels. This can stop the fluid flow 

(single layer fluid channel) or can move the fluid to the other channel (multilayer fluid 

channels). 

A simple pumping method had been reported by Beebe et al. The pumping 

method exploits the surface energy stored in a liquid droplet and requires a simple device, 

say a pipette, to flow liquid in the channels (Walker & Beebe, 2002).  

 



18 

 

 

 

The amount of pressure in a liquid droplet is given by Young-LaPlace equation, 

for a spherical droplet: 

     

   
  

 
 

(2.1) 

 

where,    is difference between atmospheric pressure and pressure inside a liquid 

droplet,   is surface free energy of a liquid and R is the radius of the liquid droplet. 

According to the equation the pressure is inversely proportional to radius; the smaller the 

radius higher is the pressure. Due to the hydrophobicity of the PDMS, liquid droplet 

tends to make a spherical droplet. The fluid is pumped exploiting the surface tension of 

the liquid. The two unequal droplets connected via a fluid filled channel have been used 

to pump fluid, where fluid will flow from smaller droplet towards bigger droplet. 

  This pumping method can be used to pump fluid in a laminar flow in two 

connected channels. Using this method of pumping and the knowledge of growing dorsal 

root ganglion in the PDMS channels from literature, the following study is based on the 

culturing of two populations of the DRG neurons and simultaneously stains the two 

explants. 
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CHAPTER 3  

RESEARCH OBJECTIVE 

 

The following study demonstrated simple PDMS devices for the culture of dorsal root 

ganglion neurons. The study presents a self-autonomous system using micropipette to 

generate laminar flow in connected chambers.    

The study is divided into two parts. The first part focuses on the device for 

culturing the neurons. The hypothesis tested was that rinsing the channels with fresh 

medium resulted in better growth of neurites in microchannels.  

The second part aims at simultaneously staining the two cultured DRG neurons 

with different stains. It is of interest to visibly distinguish the two neurons to study the 

effect of presence of pioneer neuron on the growth rate of the new generation neuron.  

The presented study also hypothesize that the flow generation by the liquids of unequal 

sizes (Walker & Beebe, 2002) can be exploited to simultaneously stain the two neurons 

growing in channels.  
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CHAPTER 4   

EXPERIMENTAL DESIGN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  Flow chart showing experimental design.

Objective 

To distinguish between two cultured DRG explants by simultaneously 

staining them with different stains. 

Hypothesis 

Flow generation by liquid droplets of unequal size can be exploited to 

simultaneously stain two DRGs. 

 Design and 

Fabrication of PDMS 

microchannels. 

 Culturing of two 

DRG explants in “H” 

microchannels of 

o 60 µm 

o 120 µm 

Passive Pumping and 

Fluidic Isolation 

exploiting the surface 

energy stored in a liquid 

droplet. 

 Design and 

Fabrication of PDMS 

open channels 

 Culturing of two 

DRG explants in open 

“H” channels. 

Simultaneous 
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cultured DRGs 

Culture in PLL-

Collagen coated 

dish to determine 
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volume of 
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CHAPTER 5  

EXPERIMENTAL SETUP 

5.1  General Plating of DRGs  

5.1.1  Explant Isolation 

The sensory neurons, present in the dorsal root ganglion, were embryonic in nature. 

Timed pregnant female rat (E15-E17) is generally used for isolation of sensory neurons. 

Younger embryos are poorly formed, therefore makes it difficult to remove the DRGs. 

On the other hand, older embryos have more completely formed vertebrae, increasing the 

difficulty of DRG isolation. Both situations lead to reduced cell yields (Burkey et al., 

2004).  E15 embryos were found to be optimal for isolation of DRGs from the female rat; 

the DRGs were matured enough to start extending their axons yet soft enough to be easily 

isolated. 

To obtain the cells, pregnant female rat was sacrificed by exposing to 100% CO2 

for 3-5 minutes or until the ceases breathing. The rat was killed by cervical dislocation. 

The ventral surface of the rat was sterilized with 70% ethanol. Using scissors and forceps 

the abdomen was cut open by making an incision from the tail to the thorax. 

Thoracotomy was performed to ensure death by puncturing the diaphragm with scissors. 

The uterus was dissected out and placed in sterile 100mm dish in dissection hood. 

Embryos were removed, and placed in Lebovitz L-15 medium. 

To extract the DRGs, the head of embryo was pinched off using a forceps 

between the skull and the first vertebra. Using a micro knife, the caudal side of the 

pronounced bump on the back of the head, under the ear and under the snout, was cut and 
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the cord was dislodged. With the embryo on its side, the anterior portion of the abdomen 

and limbs were removed with a microknife. The embryo was then placed on its back 

while the remaining viscera are removed with fine forceps (Dumont #5) until there is a 

clear view of the vertebral column. Beginning at the dorsal end, a pinch was performed 

through the vertebral column with fine forceps (Dumont #5). Using #4-#5 forceps, the 

brainstem was grasped and the ménages were pulled straight up. It was then placed in 

35mm dish with L-15 balanced medium. With a fresh pair of #5 Dumont biologine tip 

forceps, the DRGs were plucked off from the isolated spinal cords. The ganglia were then 

placed in a 1.5mL centrifuge tube with L-15 medium.  

5.1.2  Pre-plating Procedure 

The cell culture dishes (35 mm x 10 mm) was treated with 1 ml of 100 µg/ml Poly L-

Lysine for 4 hours and then rinsed with autoclaved water three times. The dishes were 

left in the culture hood for drying overnight. The PLL coated dishes were then coated 

with collagen 1 hour before plating of DRG neurons. 10 µg of 5 mg/ml Type I rat tail 

collagen was spread with the back of pipette tip to coat the culture dish completely. The 

collagen was polymerized using ammonium hydroxide (NaOH) vapors for 2-3 minutes 

which neutralizes the collagen solubilizing acid. 
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5.1.3  Medium Preparation   

The DRG growth medium contains the reagents listed in Table 5.1  

Table 5.1  Reagents for Growth Medium for DRGs (50 ml) 

Reagent Amount (ml) 

1. Neurobasal with B-27 and 0.4-0.5 mM L-Glutamine 48.00 

2. 1% FBS 0.50 

3. 20% Glucose 0.50 

4. 10ng/ml Mitotic Inhibitor (MI) 0.10 

5. 100µg/ml Nerve growth factor (NGF) 0.01 

 

All the reagents were thawed to 37
◦
C and mixed in a 50ml centrifuge tube. The 

tube was wrapped with parafilm and stored at 4
◦
C.  

5.1.4  Plating Procedure 

The cells were isolated in L-15 medium. L-15 medium was removed and 100 µl of fresh 

medium was added and gently pipetted. 5 µl of medium with 1-2 explants was plated in 

the coated dish using a micropipette.  Alternatively, 1 µl of medium with 1-2 explants 

was also plated to determine the minimum amount of medium appropriate for cell plating 

without cell death. The dish was kept in the incubator for 1-2 hours for the cells to attach 

to the dish. To avoid explant dying due to small volume of medium and evaporation, kim 

wipe balls soaked in phosphate buffered saline (PBS) were kept at the periphery of the 

dish and dish was wrapped in parafilm. After the cells adhered to the dish, kim wipes 

were removed and 1ml of fresh medium was added to the dish. The dish was wrapped in 

parafilm and kept in the incubator. The medium was changed after 24-48 hours and cells 

were monitored periodically.  
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5.2  Fabrication of PDMS Microchannels 

Poly(dimethylsiloxane) (PDMS) was used to make the device for the experiment. PDMS 

offers various advantages for in vitro cell culture. It is permeable to gases, is nontoxic, 

autoclavable, inhibits cell adhesion on the surface (unless otherwise pretreated) and is 

optically transparent. 

The PDMS microchannel devices were fabricated by replica molding. The master 

for soft lithography was prepared using scotch tape (3M Scotch
®
 Transparent Tape 600) 

yielding microfluidic devices with uniform height of approximately 60 µm (or multiple 

of 60, depending on the layers of scotch tape used) (Shrirao & Perez-Castillejos, 2010). 

5.2.1  Fabrication of Scotch Tape Master 

Using Microsoft Visio Professional 2007, the design of channels was fabricated (Figure 

5.1). 

 

Figure 5.1  Layout of the microchannel. The microchannel is in shape of H. Each arm 

has length of 15 mm and width of 3 mm. The separation between two arms is 5 mm. 
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The layout was printed on a paper. Scotch tape was used to fabricate the master. 

The procedure was adopted from the work of Shrirao et al (Shrirao & Perez-Castillejos, 

2010). The thickness of scotch tape used was 60 µm. The glass slide was cleaned using a 

scotch tape. A strip of scotch tape was attached to the glass slide. To increase the height 

of microchannel, an additional layer of scotch tape was attached. Two type of 

microchannels were produced; one with 60 µm and other with 120 µm height. The glass 

slide was placed on the layout with scotch tape side up. The glass slide was aligned and 

fixed to the printout using a scotch tape. A sharp scalpel and another glass slide were 

used to pattern the scotch tape according to the layout. The un-patterned scotch tape was 

removed from the glass slide. The glass slide with patterned scotch tape was washed with 

isopropanol to remove any extra adhesive sticking to the glass slide except for the 

patterned area. The glass slide was then place in oven at 65
◦
C for 2-3 minutes to improve 

the adhesion of the edges of the patterned scotch tape to the glass slide. The master 

required no further treatment. The master was kept in a petri dish with patterned side up. 

5.2.2  Replica Molding 

The PDMS base was mixed with the Sylgard184 Silicone Elastomer curing agent in ratio 

of 10:1in plastic cup using a fork. The cup was then placed in a degassing chamber for 

about an hour to remove the bubbles. Once the bubbles had disappeared, the PDMS was 

poured over the master kept in the petri dish. The PDMS was poured gently to avoid the 

bubble formation. In case of bubble introduction, the dish was kept in degassing chamber 

again to remove the bubbles. Once the PDMS is bubble free, the petri dish was kept in 

the oven at 65
◦
C to cure PDMS. PDMS was cured for at least 24h to avoid the toxicity of 

the curing agent. This time frame allows the complete polymerization and crosslinking 
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producing solid PDMS device. Once the PDMS was cured, the scalpel was used to cut 

the slab of PDMS containing microchannels and was gently peeled off using tweezers. To 

punch out the reservoirs (Figure 5.2), the PDMS was placed on a clean slab with channels 

facing up and holes were punched using a sharp punch (diameter = 4 mm).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2  “H” microchannels with 4 mm reservoirs punched. 

5.3  Cell Culture in PDMS Microchannels  

5.3.1  Pre-plating Procedure 

The procedure for treatment of cell culture dishes was similar as discussed in section 

5.1.2. The cell culture dishes (60 mm x 15 mm) was treated with 2 ml of 100 µg/ml Poly 

L-Lysine for 4 hours and then rinsed with autoclaved water three times. The dishes were 

left in the culture hood for drying overnight. The PLL coated dishes were then coated 

with collagen 1 hour before plating of DRG neurons. 15 µg of 5 mg/ml Type I rat tail 

collagen was spread with the back of pipette tip to coat the culture dish completely. The 

collagen was polymerized using ammonium hydroxide (NaOH) vapors for 2-3 minutes 

which neutralizes the collagen solubilizing acid. 
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The PDMS device was cleaned using a scotch tape to remove any dust particle 

sticking to it. The side containing microchannels should be kept dust free, as these 

particles affect the sticking of PDMS to the substrate and can cause leakage in the 

channels. The PDMS device should be treated with 70% Ethanol and autoclaved at 121
◦
C 

for 15 minutes. 

The autoclaved PDMS was dried using filter paper in the culture hood. The 

PDMS device was placed on PLL and collagen treated dishes with microchannels facing 

the dish. 

5.3.2  Plating Procedure 

L-15 medium was removed and 100 µl of fresh medium was added and gently pipetted. 5 

µl of medium with one explant was plated in the reservoir 1 using a micropipette (Figure 

5.3). Similarly the other explant was plated in reservoir 4. The plating was done under the 

microscope to place the explants properly in the well. 10 µl of medium was added to 

reservoir 2 and 3. The kim wipe balls soaked in phosphate buffered saline (PBS) were 

kept at the periphery of the dish and dish was wrapped with parafilm, to minimize 

evaporation. The dish was kept in the incubator for 1-2 hours for the cells to attach to the 

dish. After the cells adhered to the dish, 100 µl of medium was added to each reservoir. 

The dish was wrapped in parafilm and kept in the incubator. The medium was changed 

after 24-48 hours and cells were monitored periodically.  
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Figure 5.3  Schematics of plating. PDMS device is shown by grey and blue color shows 

the microchannels facing the plate. 1, 2, 3, and 4 shows the reservoirs of 4 mm diameter 

each. DRG explants are plated in reservoir 1 and 4.  

5.4  Fabrication of PDMS Open Channels 

 

PDMS open channels were also fabricated by soft lithography. The layout of the closed 

and open channels was same. The open system do not have ceiling to cover the channels 

as compared to the closed system. The master was designed using ProE and then 

patterned on Acrylonitrile butadiene styrene (ABS) plastic, which has good impact 

resistance and toughness, using 3D printer. The master was washed with Sparkleen 

solution and then rinsed with RO water thrice. This was followed by washing with 

isopropanol and drying in atmospheric conditions.  

Figure 5.4 shows the sketched design of master. The master was 3mm in height 

and in shape of “H”.  
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Figure 5.4  3D Master. (a) Layout of the 3D master, and (b) ABS master printed on 3D 

printer. 

a 

b 
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The PDMS base was mixed with the Sylgard184 Silicone Elastomer curing agent 

in ratio of 10:1in plastic cup using a fork and bubbles were removed. A clean glass slide 

is kept in a petri dish. The master was kept on the glass slide and another glass slide was 

placed on the top of the master. A glass beaker was kept above the glass slide, and 

degassed PDMS was poured from the sides. The glass slides and beaker was used to put 

weight on the H master, so that after curing we get open H channels. The petri dish was 

placed in degassing chamber to remove any bubble. Once the bubbles were removed, the 

petri dish was kept in the oven at 65
◦
C for PDMS to cure. After curing (at least 24h), 

using a scalpel cut the PDMS slab containing the channels. The PDMS channels, thus, 

resulted were 3mm in height.   

5.5  Cell Culture in PDMS Open Channels 

5.5.1  Pre-plating Procedure 

The PDMS device was cleaned as discussed in Section 5.3.1. The autoclaved PDMS was 

placed in a cell culture dish (60mm x 15mm). 300 µl of 100µg/ml Poly L-Lysine was 

filled in the channels and kept for 4h. The PLL was then rinsed with autoclaved water 

three times. The dishes were left in the culture hood for drying overnight. The PLL 

coated channels were then coated with collagen 1 hour before plating of DRG neurons. 8-

10µg of 5mg/ml Type I rat tail collagen was spread with the back of pipette tip to coat the 

culture dish completely. The collagen was polymerized using ammonium hydroxide 

(NaOH) vapors for 2-3 minutes which neutralizes the collagen solubilizing acid. 
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5.5.2  Plating Procedure 

The plating procedure in the PDMS channels was similar as general plating. The 

schematic of plating is shown in Figure 5.5.  

 

Figure 5.5  Schematics of plating in open channels. 

 

 

5 µl of medium with one explant was plated in the arm 1 using a micropipette 

(Figure 5.5). Similarly the other explant was plated in arm 2. The kim wipe balls soaked 

in phosphate buffered saline (PBS) were kept at the periphery of the dish and dish was 

wrapped with parafilm, to minimize evaporation. The dish was kept in the incubator for 

1-2 hours for the cells to attach to the dish. After the cells adhered to the dish, the 

channels were filled with 500 µl of fresh medium. The dish was wrapped in parafilm and 

kept in the incubator. The medium was changed after 24-48 hours and cells were 

monitored periodically.  
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5.6  Passive Pumping and Fluidic Isolation 

Pumping fluid in the channels, micro or open, is a ubiquitous requirement. The aim was 

to flow two different liquids in two arms and avoid mixing. This could be achieved by 

flowing liquid in laminar flow. Walker et al (Walker & Beebe, 2002) suggested semi-

autonomous method for pumping fluid in laminar flow in microchannel. The surface 

energy present in the liquid droplet was used to pump two different liquids in the two 

arms of the “H”. 

5.6.1  Fluidic Isolation in Microchannels 

The PDMS microchannel device was prepared and cell culture dish was coated with PLL 

and collagen using procedure described in Sections 5.2.2 and 5.3.1. The cleaned PDMS 

device was placed on the coated dish with channels facing the dish. The microchannels 

were filled with water. A larger droplet (100 µl) of water was placed over reservoirs 2 

and 3 (Figure 5.3). Smaller droplet (5 µl) of green ink was placed on reservoir 1 and a 5 

µl of red ink droplet was placed on reservoir 4. The device was left undisturbed for 

30minutes. 

The same procedure was repeated using larger droplets of 100 µl of water and 

smaller droplets of 1µl of green and red ink. Photographs were taken using Nikon 

camera.   

5.6.2  Fluidic Isolation in Open Channels 

The PDMS open channels were fabricated as described in Section 5.4. The channels were 

coated with PLL and Collagen (Section 5.5.1). Additionally, the PDMS base was mixed 

with the Sylgard184 Silicone Elastomer curing agent in ratio of 10:1in plastic cup using a 
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fork and bubbles were removed. A thin layer of PDMS was poured in to the petri dish, 

taking care that no bubbles are formed. The PDMS was cured at 65
º
C. After PDMS is 

cured, a rectangular slab of PDMS is cut with scalpel and gently peeled off using 

tweezers. Four holes were punched of 1.50 mm diameter each using a sharp punch. The 

holes were punched such that when this slab was used as a ceiling to cover the channels, 

the holes are on the ends of the two arms. 

 

Figure 5.6  Schematics of open channels with ceiling. (a) Top view, grey shows the 

PDMS slab with channels and blue shows the ceiling on top of channels with four holes 

of 1.5 mm diameter each, and (b) 3D view. 

 

The open channels were filled with water. The ceiling was placed over the fluid 

filled channels, as shown in Figure 5.6. 100 µl of water droplets were placed over holes 3 

and 4. 5 µl droplet of red ink was placed on hole1 and a 5 µl of green ink droplet was 

placed on hole4. The device was left undisturbed for 10 minutes. The same procedure 

was repeated using larger droplets of 100 µl of water and smaller droplets of 1µl of green 

and red ink. Photographs were taken using Nikon camera.   

a b 
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5.7  Staining of Two DRGs 

The research aims at staining the two DRGs with two different stains so that the growth 

of DRGs can be followed with respect to each other. The concept of passive pumping and 

fluidic isolation described in Section 5.6 was applied to stain the two DRGs. The stains 

used were CellTrace
TM

 calcein green AM (Invitrogen) and CellTracker
TM

 Orange CMRA 

(Invitrogen). Calcein green AM is a cell-permeant dye. In live cells the nonfluorescent 

CellTrace calcein green AM is converted to a green-fluorescent calcein after intracellular 

esterases remove the acetoxymethyl (AM) esters. CellTracker Orange CMRA is a rhodol-

based fluorophore and remains primarily in the cytoplasm instead of being sequestered 

inside actively respiring mitochondria. Once inside the cell, these mildly thiol-reactive 

probes react with intracellular components to produce cells that are fluorescent. The two 

dyes are light sensitive, so the staining was done in dark.   

5.7.1  Calcein AM Stock Solution 

The frozen calcein aliquot (50 µg) was thawed at room temperature for 20-30 minutes in 

dark. The stock solution was prepared by adding 10 µl of dimethyl sulfoxide (DMSO). 

The mixture was gently pipetted in and out for proper mixing.  

5.7.2  Cell Tracker Orange CMRA Stock Solution 

The aliquot (50 µg) of orange cell tracker was thawed at room temperature for 20-30 

minutes in dark. The stock solution of orange cell tracker was prepared by adding 900 µl 

of DMSO. The mixture was gently pipetted in and out for proper mixing. 
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5.7.3 Staining in Open Channels 

After the DRGs had grown for about 5-10 days, the neurons in the channels were stained 

using calcein and orange tracker. The medium was removed from the top of the PDMS 

slab and the surface is dried using vacuum pump. A thin PDMS ceiling as described in 

Section 5.6.2 was cleaned and sterilized. 

To stain cells, the channels were filled with approximately 300 µl of PBS with 

calcium and magnesium. The sterile ceiling was placed over the channels. 100 µl droplets 

of PBS were placed over holes 2 and 3. 1 µl of calcein stock solution and 1 µl of orange 

cell tracker stock solution were placed over holes 1 and 4 respectively. The dish was 

placed in incubator at 37
º
C for 10-15 minutes. The channels were washed with PBS three 

to four times to wash away any unabsorbed dye. The channels were filled with fresh PBS 

and kept inside the incubator for 30 minutes. The cells were imaged using fluorescence 

microscope.
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CHAPTER 6   

RESULTS AND DISCUSSION 

 

This chapter focuses on the neuron growth in microchannel and open channel PDMS 

devices, the fluidic isolation results and staining results. 

6.1  General Plating 

The neurite growth in PLL and collagen coated cell culture was considered as control. 

This was to determine that the plating medium and the quality of medium are appropriate 

for the neuron growth. The minimum amount of plating medium that doesn’t cause any 

cell death was 5 µl. The cells adhere to the collagen in one and a half hour at 37ºC. The 

cells plated with 1 µl mostly die. If the cell was alive, it showed minimal growth. Figure 

6.1 shows the neurite growth in control plates with 5 µl and 1 µl plating medium on 

Day3.  

  

 

 

      

 

 

 

 

Figure 6.1  Day 3 images of DRGs grown in control plates with (a) 5 µl, and (b) 1 µl of 

plating medium. 

a b 
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The controls were also kept to test the medium. There was no contamination seen 

in the plate. The results suggested that 5 µl of plating medium was at least required for 

avoiding cell death while the cells were adhering to collagen, provided evaporation is 

minimized by keeping PBS soaked kim wipes at the periphery and wrapping the dishes 

with parafilm. 

6.2  Neurite Growth in Microchannels 

Two types of microchannels were used to plate cells: one with 60 µm and other with 120 

µm of channel height. The neurites in the microchannel with 60 µm were growing only in 

the reservoir and not in the channels. The neurites follow the wall of the reservoir.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  Day 20 image of DRG of reservoir 1 in 60 µm high microchannel device. 
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To test whether the channel height was the reason for no neurite growth in the 

channels, DRGs were cultured in microchannels with 120 µm height. Figures 6.3, 6.4 and 

6.5 show the DRG1 and DRG2 in reservoir 1 and 4 on day 3 and day 12. Few neurites 

were seen in the channels on day 12.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3  DRG in microchannels with 120 µm height. (a) DRG1 in reservoir 1 on day 

3, (b) DRG2 in reservoir 4 on day 3. 
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Figure 6.4  DRG 1 in reservoir 1 in microchannels with 120 µm height on day 12. 
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Figure 6.5  DRG 2 in reservoir 4 in microchannels with 120 µm height on day 12. 

 

The neurite growth was not seen in the channels may be due to less amount of 

medium or the restriction to grow. Additional research is required to determine the 

reason. To enhance the growth of neurites, the culturing was done in open H channels. 
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6.3  Neurite Growth in Open Channels 

The DRGs were grown in opposite arms as discussed in Section 5.2.2. Figure 6.6 show 

the day 5 culture of two DRGs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6  Day 5 culture of DRGs in open channels. 
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The neurites in open channels grow faster than the neurites in microchannels. The 

reason may be the amount of medium is more and the neurites have no physical barrier 

such as wall of reservoir in microchannels.  

6.4  Fluidic Isolation 

 The surface energy present in liquid droplet was exploited to flow the liquids in the 

channels without mixing. This was done in microchannels as well as the open channels. 

The aim for fluidic exploitation was to determine the volume of liquid droplets and time 

required for liquid to flow without mixing. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7  Fluidic isolation in microchannels with 100 µl of water droplets and 5 µl of 

green and red inks. (a) after 10 minutes and (b) after 30 minutes. 

 

The droplet of 5 µl flows through the channels. The ink start mixing after 10 

minutes and there was complete mixing around 30 minutes. The same experiment was 

repeated with larger droplet of 100 µl and smaller droplets of 1µl. Figure 6.8 

demonstrates the flow of two liquid without mixing.  

 

a b 
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Figure 6.8  Fluidic isolation in microchannels with 100 µl of water droplets and 1µl of 

green and red inks after 30 minutes. 

 

The flow was successfully driven by unequal droplets. The pressure presented in 

liquid droplet is inversely proportional to the radius of the droplet. The liquid with 

smaller radius exert more pressure whereas the pressure exerted by bigger droplet is 

negligible. The resulted pressure gradient causes the flow of smaller droplets toward 

bigger droplet (Walker & Beebe, 2002). 

Similarly the concept of unequal droplets was applied to the open channels with 

ceiling place separately.  

 

 

 

 

 

 

 

Figure 6.9  Fluidic isolation in open channels with 100 µl of water droplets and 5 µl of 

green and red inks after 10 minutes.  
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Figure 6.10  Fluidic isolation in open channels with 100 µl of water droplets and 1µl of 

green and red inks after 20 minutes. 

 

The results of fluidic isolation experiments in microchannel suggested that the 

smaller droplets of 1 µl can drive the flow towards bigger droplets without mixing for 10-

20 minutes. This experiment demonstrates a simple autonomous method of pumping 

liquid in laminar flow without using any external pumping apparatuses. 

6.5  Staining of Two DRGs 

The results of fluidic isolation were used as a base to stain the two DRGs with two 

different dyes (calcein AM and orange cell tracker). Calcein AM is a non-fluorescent dye 

that is hydrolyzed by cell intracellular esterases and produce calcein which has 

absorbance maxima at 490 nm (blue filter) and maximum emission at 520 nm (green 

filter). The orange-fluorescent CellTracker Orange CMRA is a rhodol-based fluorophore 

with absorbance and emission maxima at 548 nm (green filter) and 576 nm (orange 

filter). 
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The fluorescence microscopy images of two DRGs in open channels are shown in 

Figures 6.11 and 6.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11  DRG1 stained with calcein in open channel arm1. 
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Figure 6.12  DRG2 stained with orange tracker  in open channel arm2. 
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The successful staining of the two DRGs was achieved without mixing of stains 

both in microchannels and open channels. Calcein stained neurons and neurites images 

are sharper than those of orange cell tracker stained neurons. There is much background 

seen around the neurons stained with orange cell tracker even after three-four washings. 

The fluorescence microscopy images show that the neurons when culture in open 

PDMS channels show much faster neurite growth than the microchannels. The neurites in 

the microchannels follow the trajectory of the reservoir’s wall. Due to medium volume 

difference in reservoir and microchannels, the neurites preferably grow in the reservoirs. 

Although the neurites in open channels also follow the trajectory of the “H” walls, the 

neurites can be much better seen as growing in all directions.  
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CHAPTER 7        

CONCLUSIONS 

 

The presented study demonstrated a simple PDMS device to grow dorsal root ganglion 

neurons. Single explants were successfully grown in microchannels and open channels. 

However, the growth rate of the neurites differs in the two types of channels due to 

difference in volume of maintenance medium and physical barrier for the growth of 

neurites in case of closed channels. Although the closed system was not very successful 

for the presented study, it could be used to culture the other types of cells that can be 

grown in the channels and not in the reservoirs only. Device optimization could be 

achieved by growing other type of cells (dissociated DRGs or other smaller cells) in the 

channels; thereby the reason for slow and confined growth rate in closed channels could 

be identified. 

The study also reported a simple self-autonomous method of isolating fluids 

exploiting the surface tension of a liquid droplet, as suggested by Walker et al. (Walker & 

Beebe, 2002). The method requires no expensive apparatus. This method can be further 

exploited to provide the two cells with different environments, as required by any 

research.  

The simultaneous staining of two DRGs in culture was successfully achieved. 

This method is cost effective as compared to the use of transgenic animals. The 

simultaneous staining of two DRGs can be further used in distinguishing the two 

populations and studying the effect of presence of pioneer neuron on the growth pattern 

of the new generation. 
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