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ABSTRACT 

MODELING NEXT GENERATION AIR TRAFFIC CONTROL SYSTEM 
WITH PETRI NET 

by 
Hang Wu 

The Federal Aviation Administration (FAA) is one of the largest Air Navigation Service 

Providers, managing air traffic for more than 15% of the world’s airspace. Today’s Air 

Traffic Control (ATC) system cannot meet the growth of the air traffic activities, which 

brings with more unprecedented delays. At the same time, Air Traffic Controllers are 

facing higher workload than ever before. The FAA has declared that the existing ATC 

system will transition to a new system known as “Free Flight”. “Free Flight” will change 

today’s ATC system by giving pilots increased flexibility to choose and modify their 

routes in real time, thereby reducing cost and increasing system capacity (Nordwall, 

1995). In this work, the modules and data flow of the next generation ATC system is 

designed, and their Petri net models are constructed for the control module to achieve 

“Free Flight”. 
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CHAPTER 1 

INTRODUCTION 

The safe, reliable and efficient management of our ever-increasing air traffic is one of 

the fundamental challenges today. On a typical day, over 40,000 commercial flights 

operate within US air space (Sridhar & Dohi & Sherth & Chatterji, 2006). The 

volume of air traffic is increasing at least as fast as the general economy. Today’s 

centralized control systems cannot meet the rapid growth of the air traffic. The FAA 

compares the ATC forecast activity levels for 2030 with the report’s estimates for 

2010. Table 1 provides the relevant activity levels, by type of users, for towers, 

TRACONs and Centers, where TRACON stands for Terminal Radar Approach 

Control. It shows the ratios of flight operations for 2030 vs. 2010. There will be 

significant growth in ATC activity over the next 20 years. 

Table 1.1 Ratios of Flight Operations for 2030 vs. 2010 

	
	
Source: Poole, Robert Air Traffic Control Reform (2010).  
From http://reason.org/news/show/air‐traffic‐control‐march‐2010	accessed	October	9,	2010.
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Tower operations in 2030 will be 35% higher than 2000, TRACON operations 

40% higher, and Center operations 63% higher. Airline operations in the system will 

grow by 50 to 90%, air taxi by 30%, while general aviation by 20 to 30% and military 

will be essentially at the same level. 

Today’s ATC system is a centralized control system. Air traffic controllers 

monitor and control the whole air traffic system.  They work within The National 

Airspace System (NAS) to coordinate the movement of air traffic. The growth rate of 

ATC activists is much higher than the growth of the capacity of the current ATC 

system. Increased air traffic activities lead to increase in the workload of air traffic 

controllers, which will cause congestion and resulting delays. 

In the near-term, FAA may suggest focusing implementation efforts on the tower 

control that represents the largest bottlenecks in the system. On an aggregate basis, 

however, the largest growth will be in the en-route portion of the system. In that case, 

“free flight” should be on implementation there to increase system capacity. 

The next generation ATC system must achieve a large increase in capacity and 

throughput while improving efficiency and safety. This paper presents a Petri net 

approach to modeling the control unit of next generation ATC systems to achieve 

“free flight”.  

The rest of the thesis is organized as follows; Chapter 2 describes the current air 

traffic control system. Chapter 3 discusses the basic definitions of Petri nets.  Chapter 

4 overviews the next generation ATC system. Chapter 5 discusses the Petri net 

models of the ATC system. Chapter 6 discusses simulation and analysis of Petri net 

models. Chapter 7 concludes the thesis. 
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CHAPTER 2 

DESCRIPTION OF CURRENT AIR TRAFFIC CONTROL SYSTEM 

 

An ATC system can be viewed as a vast network of people and equipment that ensure the 

safe operation of commercial and private aircraft. Air traffic controllers coordinate the 

movement of air traffic to make sure that planes stay at a safe distance apart. Their 

immediate concern is safety, but controllers must also direct planes efficiently to 

minimize delays (Transportation Research Board, 2003). 

Twenty-four hours a day, seven days a week, controllers are on the job separating 

aircraft at over 350 locations across the United States. On any given day, more than 

87,000 flights are in the skies in the country. On an average day, air traffic controllers 

handle 28,537 commercial flights (major and regional airlines), 27,178 general aviation 

flights (private planes), 24,548 air taxi flights (planes for hire), 5,260 military flights and 

2,148 air cargo flights (Federal Express, UPS, etc.). At any given moment, roughly 5,000 

planes are in the skies above the United States. In one year, controllers handle an average 

of 64 million takeoffs and landings. An ATC system is a service provided by ground-

based controllers who direct aircraft on the ground and in the air. The primary purpose of 

ATC systems worldwide is to separate aircraft to prevent collisions, to organize and 

expedite the flow of traffic, and to provide information and other support for pilots. 
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Figure 2.1 United States air space. 
 
Source:  Freudenrich, Craig How Air Traffic Control Works (2007).  
From http://science.howstuffworks.com/transport/flight/modern/air-traffic-control.htm accessed October 9, 
2010. 
 
 

United States airspace is divided into 21 zones (centers), and each zone is divided 

into sectors. Also within each zone are portions of airspace, about 50 miles in diameter, 

called TRACON airspaces. Within each TRACON air space are a number of airports, 

each of which has its own airspace with a 6-mile to 9-mile radius.  

An ATC system can be divided into several subsystems –Air Route Traffic 

Control Centers (ARTCC), TRACON, Air Traffic Control Tower (ATCT), and Flight 

Service Station (FSS), based on the airspace division. Every aircraft that flies follows a 
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similar flight pattern that begins before takeoff and ends after landing. This pattern is 

called a flight profile. A typical commercial flight profile has seven phases. Each phase 

of a typical flight profile is monitored by an ATC facility with its own group of 

controllers. Each of these controllers follows specific rules and procedures while 

directing flights through designated airways. They monitor the flight using special 

equipment and decision support tools (computers) that ensure a safe and efficient flight. 

The aircraft, pilot and air traffic controllers interact during each phase of a typical 

commercial flight profile. Their interactions are described as follows (NASA Air Traffic 

Management, 2003). 

PREFLIGHT: 

The pilot receives the most recent weather information and files a flight plan with air 

traffic control, prior to takeoff, the pilot performs the flight check routine, pushes back 

the aircraft from the terminal’s gate, and is cleared by controllers to taxi out to the 

designated takeoff runways. 

TAKEOFF: 

The pilot receives permission from Local Control (the Tower) to takeoff. The aircraft 

powers up and begins its takeoff roll. 

DEPARTURE: 

Upon lift off, the pilot is instructed to change radio frequencies to receive new flight 

instructions from Departure Control in the TRACON. The pilot is instructed to follow a 

pre-determined, preferred routing that will take the aircraft up and away from the 

departure airport onto its route. The pilot is then issued further altitude and routing 

clearance. The controller monitors the target (the aircraft) and its track (flight path) on the 
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radarscope. As the aircraft reaches the edge of the TRACON airspace, the Departure 

Controller performs an electronic transfer of the flight to the controller in the next 

airspace. 

EN ROUTE: 

The pilot receives instructions as to what altitude and heading to maintain, as well as to 

which radio frequency to tune. This portion of the flight can be as short as a few minutes 

or as long as many hours. 

DESCENT: 

As the aircraft nears its destination airport, the pilot is instructed to change radio 

frequencies and contact Approach Control for instructions. The pilot is instructed to 

descend and change heading. After receiving these instructions, the aircraft descends and 

maneuvers to the destination airport. 

APPROACH: 

The pilot has received an approach clearance to the destination airport from the Approach 

Controller working in the TRACON. The flight has been placed in line with other aircraft 

preparing to land at the same airport. The pilot flies a specified flight procedure in order 

to get in line for the designated landing runway. The pilot receives instructions from the 

Approach Controller to change radio frequency and contact Local Control (in the 

airport’s control tower) for landing clearance. The aircraft is electronically handed off 

from TRACON to the Tower. 

LANDING: 

The pilot receives clearance from the Local Controller in the airport’s control tower to 

land on a designated runway. Upon touching down, the flight is then handed off to 
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Ground Control. The Ground Controller directs the pilot across the taxiways to its 

destination gate at the terminal. 

Today’s ATC system is a centralized control system. The Air traffic controllers 

are central decision makers and control the whole air traffic activities.  Before takeoff, air 

traffic controllers approve the aircraft flight plans which cover the entire flight. During 

the flight, air traffic controllers send additional instructions to aircraft depending on the 

actual traffic, in order to improve traffic flow and avoid dangerous encounters until 

arriving the gate of its destination airport.   

Ensuring the safety of aircraft is a controller’s main priority, but another part of 

FAA mission is to guarantee the efficient flow of traffic through the NAS. Provided that 

safety is not compromised, airline companies, pilots, and the traveling public have an 

interest in efficient traffic flow. Controllers must address the sometimes-conflicting goals 

of safety and efficiency through an intricate series of procedures, judgments, plans, 

decisions, communications, and coordinated activities, in an environment in which errors 

may have dramatic consequences.  

Air traffic controllers as decision makers working in complex environments make 

errors. In the context of ATC, Wickens et al. (1997) propose that there are two types of 

errors: operational errors and controller errors. An operational error is a formal 

designation and occurs when the reserved airspace of two aircraft overlap or when 

minimum separation criteria are not met between aircraft and terrain, obstacles, or 

obstructions (FAA, 1987). This type of error has more serious safety implications. 

Controller errors refer to a much wider range of inappropriate behaviors that result from 
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breakdowns in information processing (Diana & Giua, 2001). These errors may have 

minor safety implications or severe ones.  

Most operational errors are made under conditions of moderate to light levels of 

workload, traffic complexity, and traffic volume, and when controllers are working under 

the combined radar/radar associate (Diana & Giua, 2001). Redding and his colleagues 

(1991) suggest that deficient Situation Awareness (SA) due to a lack of vigilance in 

monitoring cause many errors. Redding and Seamster (1994) confirm the previous 

findings when observing that most operational errors occur with traffic levels of moderate 

complexity, with an average of only eight aircraft under control, and immediately 

following a shift break. They also propose that failure to maintain adequate SA is a major 

cause of operational errors. 
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CHAPTER 3 

GENERALITIES ON PETRI NET 

 

In this section, the formalism is recalled and used in this work. Petri nets were conceived 

by Carl Petri as a mathematical means of describing activities, resources, and states of a 

system. They have been used to model, analyze and evaluate control system behavior. 

Petri nets have been widely used to model discrete –event dynamic systems e.g., 

manufacturing systems, transportation networks, computer networks and web services 

(Hruz & Zhou, 2007).  

A marked Petri net Z = (P, T, I, O, m), where 

(1) P = {p1, p2,….., pn}; n > 0: 

(2) T = {tl, t2,..., ts}, s > 0 with PUT≠Ø and P∩T=Ø 

(3) I: PT → {0, 1}; 

(4) O: PT →{0, 1}; 

(5) m: P→{0,1,2, …}. 

In this definition, pi is called a place, ti a transition. I an input function defining 

the set of directed arcs from P to T, O an output function defining the set of directed arcs 

from T to P, and m is an n-dimensional marking whose i-th component represents the 

number of tokens in the i-th place pi. Pictorially, places are represented by circles and 

transitions by bars. If I (p, t)=l, a directed arc is drawn from place p to transition t. If O(p, 

t)=l, a directed arc is drawn from t to p. A marking assigns to each place a nonnegative 

integer. If a marking assigns to place p a positive integer k, it is said that p is marked with 

k tokens. In that case, place k black dots (tokens) or number k (if k is big) in p.            
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The behavior of many systems can be described in terms of system states and 

their changes. In order to simulate the dynamic behavior of a system, a state or marking 

in a Petri net is changed according to the following transition enabling and firing rules: 

(1) A transition t is enabled if and only if m (p)>0 when I (p, t)=l, P; 

(2) An enabled transition t fires at marking m', yielding a new marking,  

 m(p)=m'(p)+O(p, t)-I(p, t), . 

A marking m is said to be reachable from m'. Given Z and its initial marking m0, 

the reachability set is the set of all markings reachable form m0 through various 

sequences of transition firings and is denoted by R(Z, m0). Reachability is a fundamental 

basis for studying the dynamic properties of any system. 

A Petri net is said to be B-bounded or simply bounded if the number of tokens in 

each place does not exceed a finite number B for any marking reachable from m0. It is 

said to be safe if it is 1-bounded. For a bounded Petri net, from the initial marking m0, we 

can obtain all reachable markings. 

A Petri net is said to be live if, no matter what marking has been reached from m0, 

it is possible to ultimately fire any transition of the net by progressing through some 

further firing sequence. The liveliness implies that the system is free from deadlock. 

A Petri net is said to be reversible if for each marking m in R (Z, m0), m0 is 

reachable from it. Thus, in a reversible net one can always get back to the initial marking. 

Some of the advantages of Petri nets as models for discrete event control include 

(Zhou and Dicesane, 1993), (Zhou and Venkatezh, 1998), (Li and Zhou, 2009), and (Wu 

and Zhou, 2010): graphical representation, solid foundations based on mathematics, the 
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existence of simulation and formal analysis techniques, and the existence of computer 

tools for simulation, analysis and control. 
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CHAPTER 4 

OVERVIEW OF NEXT GENERATION ATC SYSTEM  

 

In the current ATC system, air traffic controllers issue commands and pilots follow them. 

If pilots want to change their routes, they must make requests and receive an order from 

controllers. The controllers are responsible for safe operation. In contrast, Free Flight will 

let pilots change their routes with controller’s intervention only when necessary to ensure 

adequate separation. In some definitions of Free Flight, pilots are responsible for 

avoiding conflicts. Aircraft fly direct routes to their destinations whenever possible, 

ignoring existing jet ways. However, they must avoid flying through restricted airspace, 

such as zones around military bases.   

The next generation ATC system will be built on Global Positioning 

System (GPS) that provides reliable location and time information in all weather and at 

all times and anywhere on or near the Earth when and where there is an unobstructed line 

of sight to four or more GPS satellites. According to FAA, they are going to use the GPS 

in air traffic control systems by 2020, possibly as early as 2015. It requires that any 

aircraft flying within commercial airspace must have a GPS-equipped navigation system, 

which is able to beam information to ground control stations that will no longer have to 

rely exclusively on radar.  

All aircraft are tracked with an augmented GPS system, such as WAAS that 

stands for the Wide Area Augmentation System, and broadcast their positions and 

intended routes to other aircraft and ground stations via a data link such as ADS-B 

system where ADS-B stands for the Automated Dependent Surveillance Broadcast. 
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WAAS is an extremely accurate navigation system developed for civil aviation. 

The ADS-B database keeps track of status of whole air space. It could be a centralized 

database or distributed databases stored in different control centers. 

 

Figure 4.1 WAAS system. 
 
Source: Navigation Services (2010). Wide Area Augmentation System (WAAS).  
From http://www.faa.gov accessed October 9, 2010. 

WAAS provides service for all classes of aircraft in all phases of flight - including 

en route navigation, airport departures, and airport arrivals. This includes vertically-

guided landing approaches in instrument meteorological conditions at all qualified 

locations throughout the NAS (Navigation Service, 2010).  

For example, Figure 4.2 represents the Las Vegas airspace. The air space showed 

in blue is available for aircraft to enter. On the other hand, the air space showed in red is 

unavailable. The reason could be bad weather happening there or it is a restricted 
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airspace.  Las Vegas ADS-B database will store and update the status which air space 

controlled by Las Vegas ATC center. Any aircraft flying in the Las Vegas airspace can 

obtain airspace information from ADS-B database, in order to determine whether they 

can fly in certain air space or not.   

 

Figure 4.2 Las Vegas Air Space. 
 
Source: Las	Vegas	Airspace	(2005).		
From	http://www.flightgear.org/Projects/SynthVision/Link/las‐vegas‐airspace.html	accessed	
October	9,	2010. 
 

The next generation ATC system consists of several processes, which 

communicates with ADS-B database. Figure 4.3 shows the processes and communication 

flow. 

The ADS-B database holds the whole airspace resource information and all 

aircrafts’ flight data including altitude, latitude, speed, flight direction, etc. The control 
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and selection module requests air space resource information and flight data from the 

ADS-B system, and then calculates all available flight paths. It can make a decision by 

selecting a unit or processing the decision made by pilots. At the same time, it can send a 

selected flight path data to the flight path module.  

A GUI module shows air space resource information and flight data from the 

ADS-B database to flight pilots and air traffic controllers. It also shows all available 

flight paths and all potential conflicts from the Control and Selection module to pilots or 

air traffic controllers. In that case, pilots and air traffic controllers can choose and send 

the selected solution back to the Control and Selection module.  

 

Figure 4.3 Next Generation ATC System Overview. 
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The flight path module implements the selected flight path data generated by the 

Control and Selection module and updates air space resource status and flight status in 

ADS-B database. 
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CHAPTER 5 

PETRI NET MODELS OF ATC SYSTEM 

 

5.1 Introduction 

In this section, the Petri nets models of an ATC system is presented to handle the whole 

flight process, including departure, en route, approach, and landing. 

Airports are end nodes in whole air space. In the ATC system, the airport towers 

control all aircraft flight in and out of airports. Figure 5.1 shows a FACET snapshot of air 

traffic over the United States on July 10, 2006. The air space around the airport has the 

highest flight density. In that case, the air traffic controllers who work in an airport tower 

have the highest workload. Airport air traffic controllers usually control several planes at 

a time. They have to make quick decisions about completely different activities. Aircraft 

have to be separated more than the minimum separation distance to avoid operational 

errors since the control signal is generated by human decisions under high workload. 

Most accidents or incidents happen in the air space near an airport. Airport towers 

become the bottle neck to improve the safety and efficiency of the whole air traffic 

system.  
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Figure 5.1 A FACET snapshot of air traffic over the United States on July 10, 2006 at 
2:45 p.m. EST/ 11:45 a.m. PDT. 
 
Source: Day In the Life of Air Traffic Over the United States (2006).  
From http://www.nasa.gov/vision/earth/improvingflight/FACETSOY.html	accessed	October	9,	2010. 

 

5.2 Departure and Arrival Subnets 

Petri net model is created for airport tower control to generate a control signal to handle a 

flight’s departure and arrival. The air space is three-Demension. Aircraft can choose any 

flight routes with different directions. But aircrafts have to follow the same flight path to 

fly in and out of the airport. The flight path for arrival and departure is fixed once it is 

designed at every airport. For example, Figures 5.2 and 5.3 show the arrival and 

departure flight paths for Hong Kong international airport. 
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Figure 5.2 Arrival flight paths of Hong Kong international airport. 
 
Source: Arrival Flight Paths of HK International Airport (2004). 
From http://www.cad.gov.hk/english/ac_path.html accessed October 9, 2010. 

 

Figure 5.3 Departure flight paths of Hong Kong international airport. 
 
Source: Departure Flight Paths of HK international Airport (2004). 
From http://www.cad.gov.hk/english/ac_path.html accessed October 9, 2010. 
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5.3 Combined Models 

5.3.1 A Departure Model 

	

 

 

Figure 5.4 Petri Net representation of a departure model. 

t0: airplane departs permission and enters 
taxi way 

t1: airplane enters runway, and starts 
departure process 

t2: airplane enters 3-6mile segments 

t3: airplane enters 6-9mile segments 

t4: airplane gets departure successfully         

t5: cancel departure due to emergency 

t6: inactivate departure flight path 

t7: activate departure flight path 

p0: airplane waits for departure 

p1: airplane enters runway and flies in 0-
3mile segments 

p2: airplane flies in 3-6mile segments 

p3: airplane flies in 6-9mile segments 

p4: taxi way buffer  

p5: -3-0mile departure flight path resource 

p6: runway resource 

p7: 0-3mile departure flight path resource 

p8: 3-6mile departure flight path resource 

p9: 6-9mile departure flight path resource 

p10: departure flight path resource 
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Use a bottom up approach to build an airport tower ATC model. First, build 

arrival and departure subnets separately, and then combine them to a one-direction subnet 

including arrival and departure control.  

Figure 5.4 shows a departure subnet model. Due to the safety requirement, the 

distance between any two aircraft is required to be at least three miles in terminal 

airspace at lower levels.  The flight path is divided into several three-mile places. Places 

p4, p6, p7, and p8 represent segments of a flight path. p5 presents the runway. A token in p4, 

p6, p7, p8 and p5 means that the resource is available for an aircraft to enter places p0, p1, 

p2 and p3 represent the status of an airplane that maintains in a certain segment of its 

flight path. Firing transitions t0, t1, t2, t3, and t4 and t5 represent that the airplane enters 

certain statues from original statues. Firing transactions t6 or t7 will inactivate or activate 

departure flight path. The departure model could fully simulate the real departure control 

in an airport. 
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5.3.2 An Arrival Model 

  

 

 
 

Figure 5.5 Petri net representation of an arrival model. 

t0: airplane approaches arrival flight path 

t1: airplane enters 6-9mile segments 

t2: airplane enters 3-6mile segments 

t3: airplane enters 0-3mile segments 

t4: airplane touches down on runway 

t5: airplane lands successfully 

t6: airplane takes buffer route 

t7: airplane bypasses airport 

t8: inactivate departure flight path 

t9: activate departure flight path 

p0: airplane approaches arrival flight path 

p1: airplane flies in 6-9mile segments 

p2: airplane flies in 3- 6mile segments 

p3: airplane flies in 0-3mile segments 

p4: airplane land on runway 

p5: airspace for entering arrival flight path 

p6: 6-9mile arrival flight path resource 

p7: 3-6mile arrival flight path resource 

p8: 0-3mile arrival flight path resource 

p9: airport runway resource 

p10: arrival flight path resource 
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    Figure 5.5 shows the arrival subnet model. It is similar to the departure one. 

There are two extra transitions (t6 and t7) that present the emergency handling process. 

Transition t6 fires when an airplane approaches the airport and the arrival flight path is 

unavailable. The aircraft has to fly away by taking a buffer route. Transition t7 fires when 

the aircraft has already entered an arrival flight path and the runway is unavailable for 

landing due to any emergency, and the aircraft has to cancel its landing operation and 

bypass the airport. 

 

5.3.3 One-runway one-direction Petri Net Model 

 By combining the subnets of a departure and arrival model, a One-direction model is 

constructed as shown in Figure 5.6, which includes both departure and arrival control 

functions in the same direction. The subnets of departure and arrival are connected by 

shared resource places. 
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            As mentioned before, the runway is operated in bi-direction, which means that 

any direction could be used to land and depart for airplanes. Of course, only one direction 

can be used at a time. For one runway, the departure and arrival flight paths are along the 

same direction.  By using some extra controls, a Petri net model of bi-direction runway 

control can be constructed with two one-direction models to make sure only one direction 

is activated for departure and arrival by aircraft.   

The developed model may be used to construct a Petri Net model for any airport’s 

ATC system by using two one-direction models. It can also construct the model of an 

automatic air traffic control system for a one-runway airport. Using four one-direction 

Petri nets, it can construct a model of an automatic ATC system for a two-runway airport. 

Using six one-direction models, it can do so for a three-runway airport. 

For example, the Hong Kong International Airport has two runways. In that case, 

the model of its ATC system can be constructed by using four one-direction Petri. Figure 

5.7 shows such a Petri net model. 
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            When a flight finishes its departure process, the flight is going to face an open 

space in the air and enter the En route stage of its flight process. The flight can choose 

any direction when there is an air space available. In the real situation, the flight is facing 

a 3-D space. In order to simplify the problem, a set of assumptions should be made first. 

It is assumed that an airplane cruise climbs to its desired altitude, and then maintains that 

altitude until it descends into its destination airport. “Cruise climbing” means that an 

airplane climbs at an optimal rate to the target altitude without spending time in level 

flight at intermediate altitudes (Holloway et al, 1997).  The aircraft can change direction 

vertically to change altitude. At same time, it will keep the direction in a horizontal plane; 

or it can change its direction in a horizontal plane and has to keep itself in the same 

altitude. The 3-D flight can be converted to a two 2-D model (vertical and horizontal).  

 

Figure 5.8 2-D view for horizontal operations. 
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Figure 5.8 gives a 2-D view for horizontal operations.  The whole area is 30 miles 

 30 miles, and is divided into nine zones with 10 miles  10 miles, which presents the 

air space that the flight will encounter. Encode them as 00, 01, 02, 10, 11, 12, -10, -11, 

and -12.  In addition, to meet the requirement of air flight separations in an en route stage, 

it is assumed that the airplane flies through the center of each zone, which ensures that 

the airplane has at least 5 miles distance away from any other objects in the airspace 

around.  

 When an airplane is entering zone 00, the control unit request nine-zone airspace 

information from the ADS-B database. It determines all available flight routes based on 

the airspace status.  If each of the zones is available, in that case, the airplane has seven 

available flight routes in total. Those are route S1 - S7. For example, because other 

objects have already occupied zone 02 is bad, it is not available. In that case, the airplane 

has four flight routes only, which are route S4 - S7. The control unit sends available flight 

routes to the GUI module for a pilot to choose. 

 When the flight is leaving the 30 miles  30 miles area, the control unit will be 

reset and obtain the air space information for the new area from the ADS-B database and 

determines available flight routes again.  

 

Figure 5.9 2-D view for vertical operations 
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 Figure 5.9 gives a 2-D view for vertical operations. The concept is as same as 

Figure 5.8’s horizontal view. The only difference is the size of each zone. In Figure 5.9, 

the whole size of the area is 6000 feet 	 30 miles, and each zone is 2000 feet  10 miles 

when the aircraft operate between the surface and an altitude of 29,000 feet; or the whole 

size of the area is 12000 feet  30 miles, and each zone is 4000 feet  10 miles when the 

aircraft operate above 29,000 feet. According to the requirement for vertical separation, 

between the surface and an altitude of 29,000 feet (8,800 m), no aircraft should come 

closer vertically than 1,000 feet, and above 29,000 feet (8,800 m) no aircraft shall come 

closer than 2,000 feet. 

 The Petri net model is constructed for both vertical and horizontal operations as 

shown in Figure 5.9.
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Table 5.1 Description of en route Petri net Control Model.  

t0 Airplane chooses route 6 Airplane route request 

t1 Airplane enters airspace 10 and control unit reset p1 Airspace resource 10 according to 2-D view figure 

t2 Airplane chooses route 4 p2 Airspace resource 11 according to 2-D view figure 

t3 Airplane enters airspace 01 p3 Airspace resource 12 according to 2-D view figure 

t4 Airplane enters airspace 11 and control unit reset p4 Airspace resource 00 according to 2-D view figure 

t5 Airplane chooses route 2 p5 Airspace resource 01 according to 2-D view figure 

t6 Airplane enters airspace 01  p6 Airspace resource 02 according to 2-D view figure 

t7 Airplane enters airspace 02 p7 Airspace resource -10 according to 2-D view figure 

t8 Airplane enters airspace 12 and control unit reset p8 Airspace resource -11 according to 2-D view figure 

t9 Airplane chooses route 1 p9 Airspace resource -12 according to 2-D view figure 

t10 Airplane enters airspace 01 p10 Airplane flies within airspace 00 

t11 Airplane enters airspace 02 and control unit reset p11 Airplane flies within airspace 00 

t12 Airplane chooses route 3 p12 Airplane flies within airspace 01  

t13 Airplane enters airspace 01 p13 Airplane flies within airspace 00 

t14 Airplane enters airspace 02 p14 Airplane flies within airspace 01 

t15 Airplane enters airspace -12 and control unit reset p15 Airplane flies within airspace 02 

t16 Airplane chooses route 5 p16 Airplane flies within airspace 00 

t17 Airplane enters airspace 01 p17 Airplane flies within airspace 01 

t18 Airplane enters airspace  -11 and control unit reset p18 Airplane flies within airspace 00 

t19 Airplane chooses route 7 p19 Airplane flies within airspace 01 

t20 Airplane enters airspace -10 p20 Airplane flies within airspace 02 

  p21 Airplane flies within airspace 00 

  p22 Airplane flies within airspace 01 

  p23 Airplane flies within airspace 00 

 

In Figure 5.10, it is divided into two parts: the air space resource module (left 

side) and the control module (right side). 



32 

 

The air space resource module communicates with the ADS-B database, reads and 

updates air space information. Places p0, p1, p2, p3, p4, p5, p6, p7 and p8 represent air 

zones in the 2-D view. It means that the air space is available when there is a token in it. 

Otherwise the air space is unavailable because it is occupied by other airplanes or 

prohibited by hazard weather and unauthorized air space.   

The control module determines all available flight routes based on the air space 

resource information from the air space resource module. Pilots can review flight routes 

and make a final decision. After they choose a certain flight route, the control module 

will pre-occupy certain air space for a selected flight route and update the air space status 

in ADS-B database at the same time. The air space resource is operated on the first-come, 

first-serve (FCFS) policy. In that case, if certain air space has been occupied by an 

airplane, it shows “occupied” or “unavailable” in the control units on any other airplanes 

that request for the same air space resource.  Moreover, the control unit monitors the 

whole process when that flight route is in use, and updates the air space information when 

the occupied air space is released as an airplane flies out of it. Transactions t0,	 t1,	 t2,	 t3,	 t4,	

t5	 and t6	 represent all possible flight routes. Firing any one of their respective transitions 

represents that an airplane enters a certain flight route selected by pilots and consumes 

tokens from the corresponding air space resources places. Places (p10 –	 p23) represent 

airplane flies in certain air zones corresponding to the 2-D view. An airplane can only 

enter certain air zones according to the selected flight route, and generate a token back to 

certain air space resource place when the airplane leaves that air zone. Transactions t7,	 t14,	

t19,	 t16,	 t20,	 t18	and t13	represent the control unit that will request new air space information 
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from ADS-B database and determine a flight route again when aircraft leave the air space 

area showed in 2-D view. 

In real situations, vertical and horizontal operations operate simultaneously to 

generate control signals for en route airplanes. They use the same en route Petri net 

control model, but work on different air space resources. When the airplane leaves the 

ninw-block air zone either in vertical or horizontal operation, both operators will reload 

air space information accordingly from ADS-B database and determine available flight 

routes again. 

By using the en route Petri net model, the pilot can choose the best flight route 

and appropriate flight speed with the best fuel efficiency. In addition, the pilot determines 

the time to enter the arrival flight path of destination airport according to the flight speed, 

distance to the destination, flight schedule and the arrival operation rate of the destination 

airport. The pilot requests and reserves a time slot for entering the arrival flight path of 

the destination airport. All arrival airplanes reserve their unique time slots for entering 

arrival flight path, which ensure that no potential conflicts occur. These advances will 

improve the flow of arrival traffic to maximize the use of existing airport facility. In that 

case, it will make it possible continue using those runways safely, by providing better-

defined path assignments and appropriate separation between aircraft (NextGen Descent 

and Approach, 2010). 
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CHAPTER 6 

SIMULATING AND ANALYSIS 

 

6.1 Simulation via VHDL 

In this section, Petri net models are used for simulating of airport control systems. Here 

we use airport tower control as an example. Petri net analysis software is used to analyze 

the Petri net model of airport tower control. Through analyzing its behavior, the Petri net 

module is found to be live, safe and deadlock-free, which means that using the Petri net 

model to construct the automatic airport traffic control system will achieve the safety 

requirement. We also use VHDL code to simulate the airport tower control and test the 

Petri net model. 

The airport tower control unit can enable and disable a flight path, showing its 

resource status to ATC system supervisors and pilots. It can also send out proper 

regulation command signals: Aapprove-Arrival	 approval	 signal	 for	 airplane	 to	 enter	

arrival	 flight	 path, Dapprove:-Departure	 approval	 signal	 for	 airplane	 to	 enter	

runway	 , and bypass to pilots based on the flight path resource status. The control unit 

includes 3 inputs and 8 outputs. The description of the input and output signals is shown 

in Table 6.1. 	
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Table 6.1 Description of input and output signals for a control unit 

Signal I/O Description 

Denable I Enable departure flight path 

Aenable I Enable arrival flight path 

Radarsignal(8) I Airplane waits to departure 

Radarsignal(7) I Departure flight path 6-9mile segment is occupied 

Radarsignal(6) I Departure flight path 3-6mile segment is occupied 

Radarsignal(5) I Departure flight path 0-3mile segment is occupied 

Radarsignal(4) I Runway is occupied 

Radarsignal(3) I Arrival flight path 0-3mile segment is occupied 

Radarsignal(2) I Arrival flight path 3-6mile segment is occupied 

Radarsignal(1) I Arrival flight path 6-9mile segment is occupied 

Radarsignal(0) I The airspace for entering arrival flight path is occupied 

D6to9resource O Departure flight path 6-9mile segment resource status 

D3to6resource O Departure flight path 3-6mile segment resource status 

D0to3resource O Departure flight path 0-3mile segment resource status 

runwayresource O Runway resource status 

A0to3resource O Arrival flight path 0-3mile segment resource status 

A3to6resource O Arrival flight path 3-6mile segment resource status 

A6to9resource  O Arrival flight path 6-9mile segment resource status 

Dapprove O Departure approval signal for airplane to enter runway  

Aapprove O Arrival approval signal for airplane to enter arrival flight path 

Bypass O  Signal for flight to bypass the airport due to any emergency 
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Figure 6.1 Simulation waveform for handling arrival flights. 

The simulation reports are discussed as follows. Figure 6.1 shows how the control 

unit handles arrival flights. Radarsignal (0) indicates that there is a flight approaching the 

arrival flight path and requesting to land. Without enabling the arrival path, the flight 

cannot receive approved signal (Approve) to enter the arrival flight path, or it has to fly 

away. When the arrival flight path is enabled, the flight can receive approved signal and 

enter the path until it touches down. There are three arrival flights that are successfully 

landed on this waveform. The signal (0 – 6) in this waveform represents the flight path 

segments status. Signals 2 and 4 are zero when the arrival and departure flight paths are 

disabled. A flight path segment is available for an airplane to enter only if its value is ‘1’. 
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Otherwise, it is disabled or occupied by other airplanes. The flight path resource 

information can be shared between an ATC supervisor and flight pilot.  

	

Figure 6.2 Simulation waveform for handling departure flights. 

 Figure 6.2 shows how the control unit handles the departure flights. It is very 

similar to Figure 6.1. Radarsignal (8) indicates that there is a flight waiting to depart.  

Without enabling the departure flights, the flight cannot receive the approved signal to 

enter runway to take off. It has to wait until the Departure flight path enabled by Denable 

signal, and then the flight can enter runway to take off and fly away. There are three 

flights departing successfully based on this waveform. 
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Figure 6.3 Simulation waveforms for handling bypass case due to emergency. 

 Figure 6.3 shows a special case – bypass the airport runway. There are total four 

flights that receive the approved signal to enter arrival flight path. The second flight stops 

on the runway due to emergency. At the same time, flights still have the approval to enter 

the arrival flight path, but they cannot enter runway to touch down. The third flight 

receives bypass signal when it enters arrival flight path 0-3mile segment to bypass the 

airport runway and fly away using the departure flight path because the runway resource 

is held by the other flights. The runway resource is available again when the emergency 

problem is solved. It shows on the waveform that the fourth flight arrives successfully 

after the second flight leaves the runway.   
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Figure 6.4 Simulation waveform for handling departure and arrival flights 
simultaneously. 
  

Figure 6.4 shows how the control unit handles the departure and arrival flights at 

the same time. The control unit handles two departure flights and four arrival flights 

successfully based on the waveform. 

 The simulation result shows that the Petri nets model can work properly to handle 

the arrival and departure aircraft for the normal airport operation and some emergency 

cases.  
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6.2 Analysis via INA 

In this section, INA is used to analyze of the properties of Petri net models including the 

boundedness, liveness and safeness. INA is a software tool supporting the analysis of 

Petri nets. In terms of Petri nets, liveness means that a Petri net can always 

evolve starting from any state to allow a modeled event/activity to be performed. The 

physical meaning of this property is that no deadend can occur for the entire physical 

system. Such a property is a prerequisite; otherwise, the system may come to a state 

under which no airplane can move. Safeness means the token in each place cannot be 

greater than one. Physically, this means that no two airplanes can run on the same way 

or occupy the same segment of space at the same time. Obviously, this property is 

crucial; otherwise, collision may occur. Boundness means that the number of tokens in 

each place is limited by a finite number. This property physically ensures that overflow is 

avoided at any stage.  
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Arrival Petri net model: 

The INA analysis results show that the Arrival Petri net model is ordinary, 

homogenous and bounded.  In addition, it has no dead transitions and no dead reachable 

states. The net is live and safe as shown in Fig. 6.5. 

 

Figure 6.5 INA analysis result for an arrival model. 

 

 

 

 

 



42 

 

Departure Petri net model: 

The INA analysis shows that the departure Petri net model is bounded and live as 

shown in Fig. 6.6. The net is not safe because the total number of tokens in place p4 is 

five. The taxi way buffer can support up to five airplanes that are waiting for taking off. 

 

Figure 6.6 INA analysis result for a departure model. 
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One-direction Petri net model: 

The INA analysis shows that the one-direction Petri net model is bounded and 

live as shown in Fig. 6.7. One-direction Petri net model is integrated models. Since it is 

reachability-base analysis, one may face computational challenges due to state explosion 

problems. Hence, more efficient methods, e.g., reduction (Li, 2008), need to be pursued. 

 

Figure 6.7 INA analysis result for one-direction model. 
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En route Petri net model: 

The INA analysis shows that en route Petri net model is bounded, live and safe as 

shown in Fig. 6.8. It has no dead transitions at the initial marking and has no dead 

reachable states. 

 

Figure 6.8 INA analysis result for en route model. 
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CHAPTER 7 

CONCULSION 

 

Dealing with air traffic control is so time consuming and complex that large planes 

require multiple crewmen, and single-pilot planes have many restrictions and where and 

when they can fly. The new air traffic control system, the distribution of controller 

workload will shift away from monitoring the separations of all aircraft in a sector and 

toward the management of traffic flow and handling those exceptional problems that only 

humans have the knowledge and skill to solve (Rocco, 2001). 

In this Thesis, it explains the current air traffic control system and the problem it 

is facing. Petri net models are used to construct the discrete event models at airport tower 

control systems and En route control systems. The airport tower control system can 

provide automatic air flow control for arrival and departure flights. The En route control 

system works on any airplane that operates in En route stage to generate air flow control 

signals.  

In addition, The Petri nets models that are constructed for airport tower control 

and en route control ensure the safeness, liveness, and deadlock freeness of the air traffic 

control system. They can provide the safe air traffic without causing any collision. Petri 

net control models could be used to construct the next generation ATC system to meet 

the requirement for Free Flight which gives pilots increased flexibility to choose and 

modify their routes in real time, in order to reduce costs and increase system capacity. 

Moreover, the Petri net models that are constructed can to some extend replace ATC 
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controllers and also decrease their workload. In that case, the new Petri net models can 

guarantee more efficient flow of traffic. 

However, there is some work need to be done in the future, including define 

certain algorithm on En route control to find the best flight route automatically, which 

makes the automatic air traffic control true.  
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APPENDIX A 

VHDL CODE FOR AIRPORT TOWER ATC CONTROL UNIT 

The VHDL code for airport tower ATC control unit is provided as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

library	ieee;	

use	ieee.std_logic_1164.all;	

	

entity	ATC2	is	

port	(	Denable,	Aenable	:in	bit;	

	 	 radarsignal	:	in	bit_vector	(	8	downto	0);	

	 	 	

	 	 D6to9resource:	out	bit;	

	 	 D3to6resource:	out	bit;	

	 	 D0to3resource:	out	bit;	

	 	 runwayresource:	out	bit;	

	 	 A0to3resource:	out	bit;	

	 	 A3to6resource:	out	bit;	

	 	 A6to9resource:	out	bit;	

	 	 	

	 	 Dapprove:	out	bit;	

	 	 Aapprove:	out	bit;	

	 	 bypass:	out	bit);	

	 	 end	ATC2;	

	 	 	

architecture	behaviral	of	ATC2	is	

	 	 	

	 	 shared	variable	D6to9	:	bit	:=	'1';	

	 	 shared	variable	D3to6	:	bit		:=	'1';	

	 	 shared	variable	D0to3	:	bit	:=	'0';	

	 	 shared	variable	runway	:	bit	:=	'1'	;	

	 	 shared	variable	A0to3	:	bit	:=	'1';	

	 	 shared	variable	A3to6	:	bit	:=	'1';	
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shared	variable	DA:	bit	:=	'0'	;

	 	 shared	variable	AA	:	bit	:=	'0';	

	 	 shared	variable	bp	:	bit	:='0';	

	 	

	 begin	

	 D6to9resource	<=	D6to9;	

	 D3to6resource	<=	D3to6;	

	 D0to3resource	<=	D0to3;	

	 runwayresource	<=	runway;	

	 A0to3resource	<=	A0to3;	

	 A3to6resource	<=	A3to6;	

	 A6to9resource	<=	A6to9;	

	 	

	 Dapprove	<=	DA;	

	 Aapprove	<=	AA;	

	 bypass	<=	bp;	 	 	

p1	:	process	(Denable)	

	 begin	

if	Denable	=	'1'	then	

	 D0to3	:=	'1';	

	 else	

	 D0to3	:=	'0';	

	 end	if;	

	 if	Aenable	=	'1'	then	

	 A6to9	:=	'1';	

	 else	

	 A6to9	:=	'0';	

	 end	if;	

if	radarsignal(8)	=	'1'	and	runway	=	'1'	and	D0to3	=	'1'	and		A0to3	=	'1'	then	

	 DA	:=	'1';	

	 else	

	 DA	:=	'0';	

	 end	if;	
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	 if	radarsignal(0)	=	'1'	and		A6to9	=	'1'	then

	 AA	:=	'1';	

	 else	

	 AA	:=	'0';	

	 end	if;	

	 	

if	radarsignal(3)	=	'1'	and	runway	=	'0'	then	

	 bp	:=	'1';	

	 else	

	 bp	:=	'0';	

	 end	if;	

	 	

	 if	radarsignal(1)	=	'0'	and	Aenable	=	'1'	then	

	 A6to9	:='1';	

	 else	

	 A6to9	:='0';	

	 end	if;	

	 	

	 if	radarsignal(2)	='1'	then	

	 A3to6	:=	'0';	

	 else	

	 A3to6	:=	'1';	

	 end	if;	

	 	

	 if	radarsignal(3)	=	'1'	then	

	 A0to3	:=	'0';	

	 else	

	 A0to3	:=	'1';	

	 end	if;	
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	 if	radarsignal(4)	=	'1'	then	

	 runway	:=	'0';	

	 else	

	 runway	:=	'1';	

	 end	if;	

	 	

	 if	radarsignal(7)	='1'	then	

	 D6to9	:=	'0';	

	 else	

	 D6to9	:=	'1';	

	 end	if;	

	 	

	 if	radarsignal(6)	=	'1'	then	

	 D3to6	:=	'0';	

	 else	

	 D3to6	:='1';	

	 end	if;	

	 	

	 if	radarsignal(5)='0'	and	Denable	=	'1'	then	

	 D0to3	:=	'1';	

	 else	

	 D0to3	:='0';	

	 end	if;	

	 	

	 	

	 	

	 	

	 end	process;	 	

	 end		behaviral;	 	
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APPENDIX B 

INA SOURCE CODE FOR AN ARRIVAL PETRI NET MODEL 

The following shows INA source code for an arrival Petri net model. 
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APPENDIX C 

INA SOURCE CODE FOR A DEPARTURE PETRI NET MODEL 

The following shows INA source code for a departure Petri net model. 
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APPENDIX D 

INA SOURCE CODE FOR A ONE-DIRECTION PETRI NET MODEL 

The following show INA source code for a one-direction Petri net model. 
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APPENDIX E 

INA SOURCE CODE MODEL FOR EN ROUTE PETRI NET MODEL 

The following show INA source code for en route Petri net model. 
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