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ABSTRACT 

 

A HAPTIC CONTROL SYSTEM FOR FUNCTIONAL  

ELECTRICAL STIMULATION OF PARAPLEGIC LEGS 

 

by 

Mark R. Shaker 

Functional electrical stimulation (FES) is a means by which paraplegic men and women 

can use their natural legs for walking. In FES the impaired muscles are stimulated with 

electricity in a proper cycle to cause the legs to move in a walking pattern. It can be 

greatly beneficial for paraplegics however, current systems are not widely used because 

they are difficult to control in a useful manner. 

The system proposed here uses a haptic interface, one that utilizes the sense of 

touch, attached to a user’s index and middle fingers. The haptic device allows the wearer 

to feel with the fingers what would normally be felt by the feet. Movement of the fingers 

is monitored and the positions of the two fingertips can be used to dictate the appropriate 

positions for the feet to be moved to using FES. Therefore, by moving the fingers in a 

cyclic pattern similar to that of walking, a stimulation pattern needed for activation of leg 

muscles to allow walking can be generated. Further, by having the sense of feeling for the 

feet translated to the fingers a person could have improved control over their legs. 

To test the feasibility of this system a virtual simulation was developed. The 

simulation navigated a virtual environment using the finger walking technique. The 

trajectory and velocity of the movements of the subjects was compared to normal human 

gait and it was found that finger walking greatly resembles natural human gait. Further, it 

was determined that control was enhanced by haptic feedback. These results show that 

FES walking can benefit from a controller that incorporates haptics. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Objective 

 

The objective of this research is to prove the theory that FES walking can be better 

controlled by using the finger walking technique with haptic feedback. In current FES 

systems locomotion is synthesized by iteratively modifying a basic time-varying 

stimulation pattern to improve the gait of each subject. A single stimulation pattern can 

not be implemented for every subject due in large part to the differences in the inertia of 

limbs from person to person. This comes about as a result of the difference in the size and 

shape of limb segments [1]. Stimulation patterns are adapted to each individual’s needs in 

order to create a gait pattern similar to natural walking. Adaptive feed forward control 

systems allow more accurately controlled movements by monitoring joint and limb 

segment angles throughout the movement and changing the stimulation intensity and 

timing appropriately to optimize the movement to the desired trajectory. One such system 

of adaptive control developed by Ou, Riess, and Abbas produced movements with 

minimal errors between the desired input limb segment movements and the observed 

output movements [2]. Due to the necessity for synchronization of upper limb movement 

to lower limb movement and the level of control required to walk across rough or uneven 

terrain or to navigate obstacles, FES must be controlled largely under the patient’s 

voluntary control [3]. Voluntary control systems include switches and joysticks however 

no existing systems incorporate haptic feedback as this system does. 
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When proven thoroughly this technique can be applied to FES systems with the 

purpose of enabling walking to people with paraplegia. Given the current technology in 

FES which can produce a highly accurate movement given a desired limb trajectory, this 

system can enhance control further in order to allow more versatility to FES systems. If 

FES walking can be used by people with paraplegia throughout their day to day life 

instead of a wheelchair, it can allow more mobility and better health [4]. This basic 

science research is a preliminary step towards the final goal of an FES system for 

paraplegic walking. 

 

1.2 Spinal Cord Injury 

The spinal cord is an extension of the central nervous system that runs down the back and 

is surrounded by the vertebrae. The spinal cord transmits signals between the brain and 

the rest of the body. The spine has four sections. The highest eight vertebrae are called 

the cervical vertebrae. Moving down the spine, the next twelve vertebrae are called the 

thoracic vertebrae. Below the thoracic region there are five lumbar vertebrae. The lowest 

five vertebrae are fused together and form what is called the sacrum. Signals from the 

brain move through the spinal column and nerve roots branch out to the different regions 

of the body from the spine at different levels. Therefore, all the nerves of the spinal cord 

pass through the first cervical vertebra (C1) and the fewest number of nerves pass 

through the lowest sacral vertebra (S5) [5]. 

Approximately 259,000 persons are currently living in the United States with a 

spinal cord injury (SCI). It is estimated that an additional 12,000 new SCI cases occur 

each year [6]. Causes for SCI include but are not limited to; falls, acts of violence, sports 
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injuries, and automobile accidents. Automobile accidents are the most prevalent if the age 

of the person is less than 45, after that age falls become the most prevalent cause for SCI. 

Of these injuries slightly more than half result in quadriplegia [7].  

 Injuries to the spinal cord have different effects based upon the level of the injury 

and the completeness of the injury. An injury can be complete or incomplete. A complete 

injury leads to no function below the level of the injury. An incomplete injury can still 

retain some function below the level of the injury. The level of the injury can predict 

what parts of the body may lose function. Injuries to the cervical vertebrae generally lead 

to quadriplegia, complete paralysis of the body from the neck down, and injuries to the 

thoracic vertebrae generally lead to paraplegia, paralysis of the lower part of the body 

including the legs. If an injury is higher on the spine it can affect more parts of the body 

than if the injury is lower on the spine. High level injuries can cause impairments to the 

extent that a person would require a ventilator to breathe. Injuries to the lumbar region do 

less harm, these can cause a person to be unable to move their legs but still have the 

ability to sit upright and control their abdominal muscles, chest and arms. People with 

lower level injuries can attain mobility with manual or powered wheelchairs but, higher 

level injuries generally require a powered wheelchair [8]. 
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Figure 1.1 A diagram representing the different levels of the spine and what is controlled 

at each level [9]. 

 

1.3 Functional Electrical Stimulation 

1.3.1 Introduction to FES 

For people who have received a spinal cord injury and experienced paralysis FES is 

sometimes used as a treatment. FES is a method of restoring or improving body function 

by applying low level currents to the affected region [4]. Depending on the level of the 

injury and severity of the SCI, different methods of FES can be used to benefit the person 

with the injury. If an injury is above the C4 level of the spine, a person may need 

assistance to breathe, in which case FES can be used. If an injury is at the C5 level, a 



5 

 

person can retain control of their chest and biceps however, hand function and triceps 

control can be lost, in which case FES can be applied to assist with arm extension and 

some hand control. A lumbar level injury can lead to control of the upper body but loss of 

voluntary movement in the legs, in this situation FES may be applied for stimulation of 

the muscles to increase blood flow, for standing to prevent osteoporosis and for walking. 

Other uses for FES include; cardiovascular exercise, coughing assistance, improving 

bladder and bowel control, prevention and treatment of pressure sores, controlling 

spasticity or tremor, and in some cases it can be used to regain voluntary control [4, 8].  

Walking with the use of FES has many benefits for those who can use it. The 

paralyzed muscles do not receive the signals from the spinal cord that cause movement. 

Therefore, these do not get used. The lack of use causes the muscles to break down over 

time, this is called atrophy. Lack of use also causes poor circulation of blood in the region 

which can lead to blood clots. The lack of mechanical loading of the bones in the legs 

leads to their weakening, this is called osteoporosis. Paraplegics who use a system which 

can enable them to move and load their legs reduce their likelihood to experience blood 

clots and broken bones in their legs. This can also improve their general cardiovascular 

health [4]. 

In order to walk using FES, a minimum of four channels is required for 

stimulation [11]. These would stimulate the quadriceps and the common peroneal nerve 

of each leg. By stimulating the quadriceps a person could stand and lock their legs in 

place. By stimulating the peroneal nerve without stimulating the quadriceps a leg can be 

brought into flexion. Cyclic stimulation of the appropriate muscle groups can lead to 

walking. Systems are available with up to 48 channels [21]. The higher number of 
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channels leads to a greater extent of control over the legs; however, it requires a more 

complex system to control the greater number of channels. Usually the users control the 

FES with switches or a joystick. The users also generally require a walker or a cane to 

help maintain balance and support with their arms [4].  

 

1.3.2 The Human Gait Cycle 

The human gait cycle is composed of two main phases [10]. These are swing phase and 

stance phase. In stance phase the foot is in contact with the ground. In the swing phase 

the foot is progressing forward and is not in contact with the ground. The stance phase 

can be broken down into three subsets. These are: the first double support phase, the 

single support phase, and the second double support phase. The double support phase 

refers to the part of a walking cycle in which both feet are on the ground at the same time. 

The single support phase refers to when only one foot is in contact with the ground while 

the other foot is in swing phase. The gait cycle describes the motion of one leg. Each leg 

moves through its own gait cycle a half cycle out of sync from the other leg. Therefore, 

while one leg is in the swing phase the other leg is in the single support phase. In a 

normal healthy gait, approximately 60% of the cycle is spent in stance phase and the 

remaining 40% is in swing phase. For describing the gait cycle it is standard to start when 

one leg makes contact with the heel, in Figure 1.2 you can see that the cycle starts when 

the boy’s right heel makes contact with the ground. 
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Figure 1.2 A diagram of the phases of the gait cycle [10]. 

 

 
Figure 1.3 A picture of the phases of the gait cycle when finger walking. 

 



8 

 

 
Figure 1.4 A diagram of the gait cycle and breakdown of the phases [10]. 

 

 

1.3.3 FES Walking 

 

FES walking can be achieved with a minimum of four channels of stimulation. One such 

study of this was published by Badj et al. in 1983 [11]. In this study stimulation of the 

knee extensor muscles was performed first in order to prepare the muscles for standing 

and walking. This exercise was done until the knee joint torque generated by the 

electrical stimulation exceeded 30 – 50 Nm. When the subjects were able to generate the 

appropriate torque, they were trained to stand by stimulating the knee extensor muscles. 

In order to do this, a stimulation voltage of 100 V was applied to the knee extensor 

muscles, and the voltage was then lessened to the lowest level at which the subject could 
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maintain knee extension. Subjects were then trained to stand for an hour or more using 

this electrical stimulation system. 

 Once subjects were appropriately conditioned to FES, and their muscles could 

generate the required forces, the ambulation training was begun. In order to walk, a 

minimum of four channels of stimulation is required. Two of the channels are used to 

stimulate the knee extensor muscles of each leg. The remaining two channels are used to 

stimulate the knee flexor muscles of each leg. Simultaneous flexion of the hip and knee, 

and dorsiflexion of the ankle was achieved by stimulating one of four afferent nerves. 

These nerves were: superficial peroneal, common peroneal, sural, or saphenous. 

Appropriate electrode placement for each subject was determined by trial and error 

adjustment of the electrodes until the desired response was achieved upon stimulation. 

Double stance phase can be achieved by simultaneous stimulation of the knee 

extensors of both legs. In order to generate a swing phase, the extensor muscles of one 

leg are stimulated while the flexor muscles of the opposite leg are stimulated. By 

cyclically stimulating the extensors of one leg and the flexors of the other for alternating 

legs a gait cycle was developed. In order to control this, in the experiment, two switches 

were used. One switch would cause a swing phase of the right leg. The second switch 

would cause a swing phase of the left leg. If neither switch is pressed, the knee extensors 

for both legs would be stimulated and the subject would remain in stance phase. These 

switches are mounted on a walker, crutches or some other form of upper body support to 

maintain balance and for safety. 

Using this system, one subject was able to walk distances of approximately one 

kilometer each day in the area outside of his home. Other subjects were able to stand 
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without any assistance other than the FES device and walk short distances with a walker. 

Some of the other benefits experienced by participants in the program were; enhanced 

bladder and bowel control, regular bowel movements, increased strength in trunk 

muscles, and in one patient there was a decrease in high blood pressure. 

 
Figure 1.5 A man walking with four channel FES and a walker (left) and two canes 

(right) [11]. 
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Figure 1.6 Approximate stimulation points for eliciting the synergistic flexion 

response using FES [11]. 

 

More control can be obtained with more channels of stimulation to additional 

muscle groups. In some studies intramuscular electrodes are used instead of surface 

electrodes to achieve a better signal and muscle response [12]. Other systems exist that 

combine leg braces with FES, these are called hybrid systems [13]. Hybrid systems 

provide more stability of the legs while stimulating fewer muscles which makes them less 

energy consuming and more stable however, their use is dependent on the level and 

extent of the injury.  
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1.4 Finger Walking 

Finger walking refers to moving fingers in a reciprocating pattern similar to that of the 

human gait cycle. If the index and middle fingers of the right hand are used, the index 

finger would represent the left leg and the middle finger would represent the right leg. A 

thesis was conducted by Matthew Noesner at The New Jersey Institute of Technology 

which investigated finger walking [14]. There gait cycle timing, finger trajectories and 

ground reaction forces were measured for subjects while they performed the finger 

motions. These were compared to published data for normal walking and strong 

similarities were seen. Through this work it was demonstrated that human walking can be 

mimicked through finger movements.  

 
 

      Figure 1.7 A demonstration of finger walking [14]. 

 

Additional work was done in which finger walking in place was used as a means to 

navigate virtual environments. In a research study conducted by Kim, Gracanin, 

Matkovic, and Quek, Subjects were able to navigate 2-D virtual environments by sliding 
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their bare fingers across a touch sensitive surface [15]. For this application, two touch 

screen computer monitors were used in order to allow a subject to walk in a virtual 

environment with one hand and turn with the other hand. This was only a study into 2-D 

navigation however; the authors believe it can be extended into a 3-D environment. 

 

1.5 Haptics 

Haptics is the science of incorporating the sense of touch into computer programs by 

providing kinesthetic or tactile feedback [16]. Haptic technology has a wide number of 

uses which include but are not limited to; surgical simulations, medical training, painting, 

computer aided design, video games, and rehabilitation therapy [16, 17]. In order to use 

haptics in a computer program a special device is required to generate the forces, this is 

called a haptic device. In this research the haptic device used was the Sensable 

PHANToM Premium 1.0A. To use this haptic device a finger is inserted in the end 

effector of the robot’s arm and by moving the hand or finger a computer can be 

controlled. The sensation of feeling that makes this a haptic device is caused by motors. 

This robot can generate forces in three degrees of freedom by using motors attached to its 

three joints. By appropriately powering the motors, forces up to 1.9 lbf can be generated 

by this device. 
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CHAPTER 2 

INSTRUMENTATION 

 

2.1 System Overview 

The system developed to test finger walking with haptic feed back was a virtual 

simulation. The simulation consists of a walkway on which test subjects would travel by 

finger walking using the two haptic devices. The walkway has obstacles that need to be 

navigated which include; a set of three stairs, an inclined slope and a declined slope. The 

person playing the simulation can feel the virtual floor of the trail with their fingers. The 

sensation of touch is generated by the two haptic devices. The haptic devices chosen for 

this system were both the PHANToM Premium 1.0A by Sensable Technologies Inc. of 

Cambridge Massachusetts. Stereo rendering techniques were implemented to make the 

simulation 3-D. This was done to enhance the sense of depth and therefore, make the 

walkway easier to navigate. The 3-D image was generated using Crystal Eyes 

Workstation glasses by Stereographics. The simulation was developed in C++ using the 

OpenHaptics 2.0 and OpenGL libraries. OpenHaptics is a set of C++ libraries used by 

Sensable to control the haptic devices. OpenGL is a set of C++ libraries that are used for 

creating computer images, usually for videogames or movie special effects.
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Figure 2.1 A picture of how a subject operates the game. 

 

2.2 PHANToM Haptic Devices 

The haptic devices chosen for this system were the PHANToM Premium 1.0A by 

Sensable Technologies Inc. of Cambridge Massachusetts. These devices were selected 

because of the size of their operating space, their ability to render forces, and the gimbal 

end effector that each has. 

 The size of the workspace of the device is 5 inches by 7 inches by 10 inches. 

Finger walking requires only a small volume to perform.  Other devices manufactured by 

Sensable have ranges of motion which can accommodate whole arm movements. Those 

devices were not selected because their workspaces are superfluous to the needs of this 

system. The PHANToM Premium 1.0A has a workspace volume which is large enough 
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to easily navigate the virtual trail using finger walking and not so large that there is 

excess space in the workspace. 

 The model chosen can render forces better than models of lower cost. The 

device’s PCI interface and large external amplifiers allow it to render forces more 

smoothly than other devices by the same manufacturer. Compared to lower cost models, 

the Premium 1.0A can also generate greater forces. The Premium 1.0A can generate 1.9 

lbf while the Omni can only generate 0.75 lbf. The ability to render forces smoothly and 

generate greater forces enhanced the functionality of the system. The smoothness of the 

force rendering allows the virtual environment to have a viscous damping effect. This 

effect prevents the device from shaking when it makes contact with an object in the 

virtual environment by slowing high velocity movements. The high force generation is 

also necessary for proper game play. If the maximum force generated is too low, the 

person playing the game will experience their finger falling through the virtual surface if 

they were to apply a force in excess of the maximum. This would lead to difficulty in 

navigation of the virtual environment.  

 The end effector of this device is a thimble gimbal. The term thimble in the name 

refers to the thimble shaped cup in which the subject places his or her finger. A gimbal is 

a device that allows three degrees of freedom for rotations. With this thimble gimbal a 

subject can place his or her fingertip in the thimble and move about the environment 

without regard for the orientation of their finger. Other haptic devices use a pen style 

control arm that a user holds in their hand. The thimble gimbal did not need any 

instrumentation or adaptation to work for the application of finger walking.  
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 The devices were arranged so that they were facing each other. This was 

necessary for two fingers of the same hand to be used. It this had not been done, the 

devices would have collided with each other during use. To accommodate for this 

rotation, the program was written to rotate the workspace of the devices so that what is 

normally the Z axis for the device is now the X axis. Also, the device on the left side has 

its end effector oriented into the positive X direction while the device on the right side is 

oriented into the negative X direction.  

 
Figure 2.2 A picture of the phantoms in their appropriate configuration for game play. 

 

 The two devices interface with the computer via PCI card. One of the PCI cards 

was inserted into the highest PCI slot on the computer’s motherboard and the remaining 

card was inserted into the lowest slot. This was essential to prevent computer errors. For 

the operating system and BIOS revision of the computer used, interrupt request settings 
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are automatically assigned to devices depending on their type and position on the 

motherboard. For use in this computer, if the PCI cards are in any position other than the 

one described, the computer can not function properly. The system will either crash 

unexpectedly, or the haptic devices will not be able to properly communicate with the 

scheduler and therefore, will not render forces correctly. 

 
Figure 2.3 A picture of the proper positions for the PHANToM’s PCI cards in the 

computer’s motherboard. The highest slot is an unoccupied PCI express slot, the second 

slot is occupied by the graphics card, the third slot contains the first PHANToM PCI 

card, the fourth slot is an unoccupied PCI express slot, the fifth slot contains the fire wire 

card, and the sixth slot contains the second PHANToM PCI card. 

 

2.3 OpenGL 

OpenGL is a set of libraries for use in C++ which enables the generation of computer 

images. By linking these libraries to a C++ application, a software developer can use a set 

of simple functions to render images. These images are generally rendered by providing 
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points in three dimensional space to a function which will link these points in an 

appropriate manner. OpenGL is the computer graphics industry’s most widely used and 

supported 3-D graphics application programming interface. 

 The virtual environment was rendered using OpenGL. The environment was 

simple and was made using three main functions. These were quads, triangles, and quad 

strips. These are three methods of drawing a shape. Quads accepts sets of four points in 

3-D space. The function then connects the four points appropriately to form a four sided 

shape. Quad strip accepts sets of two vertices for four sided faces of a shape. It then 

connects these faces together at common sides to create a strip of four sided shapes. 

Triangles accepts sets of three vertices and draws a triangle from each set. Using these 

three basic functions a trail was drawn and trees were placed beside the trail. The trees 

were included to provide a motion reference. This allowed users to recognize that 

forward progress was being made by seeing objects move closer relative to their motions. 

 The representation of the feet in the virtual environment was a pair of boots. This 

image was too difficult to generate, so it was acquired through the website 

TurboSquid.com, which is a site where 3-D graphics images can be purchased and 

downloaded. The file obtained from the website was of a form other than OpenGL code, 

so it was converted using the Okino Computer Graphics PolyTrans software. This 

software accepts 3-D images rendered with various formats and can convert them to 

various other formats. A piece of C++ code was written by PolyTrans, which was 

inserted into the application and rendered the boots in the game. Because the free 

evaluation version of PolyTrans was used, the boots have triangles missing from their 

mesh. 
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Figure 2.4 A screenshot of the virtual environment rendered in OpenGL. 

 

2.4 OpenHaptics 

OpenHaptics is the application programming interface utilized by Sensable for 

developing applications with their haptic devices. This interface builds off of OpenGL to 

render the haptics. In general, an image is drawn using OpenGL functions and it is sent to 

the haptic device with slight additions to the code. OpenHaptics was designed so that a 

programmer with experience in OpenGL can easily create high level graphical programs 

in OpenHaptics.  

OpenHaptics 2.0 was used instead of OpenHaptics 3.0, which is the most up to 

date version of the software. The reason for this was because the haptic devices used 

were not recently purchased and the newest version of the software no longer supports 

the device used. If a newer device is used OpenHaptics 3.0 may then be used. 
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2.5 Stereo Rendering 

Stereo rendering was used to create a three dimensional image. When rendering 3-D 

images, the image is drawn on the screen twice, once for the left eye and once for the 

right eye. Various systems exist to selectively allow the images to be viewed by only the 

appropriate eye. Special glasses, manufactured by Stereographics, were used to achieve 

this. The glasses can selectively prevent an image from entering either eye at a very high 

speed by shuttering the lenses open and closed. The glasses synchronize with the 

computer monitor’s refresh rate so that when an image is being projected for the left eye 

only the left eye can see that image and vice versa for the right eye. Using these glasses, 

and appropriately drawing the image for either eye, presents the user with the illusion that 

the images are coming out of the screen.  

 To appropriately render the images so that the 3-D affect can be achieved, the 

view port was moved for each eye. When creating images in OpenGL, a viewpoint must 

be chosen. The point from which each eye views the image was set up along the same 

horizontal line and looked at the same point in space but, the two eye positions were 

slightly separated in the X direction. The left eye was placed slightly to the left of the 

point X = 0 and the right eye was placed the same distance to the right of X = 0. By doing 

this, binocular vision can be simulated because, one image is being projected for the left 

eye and a different image is projected for the right eye. 
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2.6 Computer Specifications 

The computer used was a Dell Dimension 9100. In order to create images in 3-D using 

the Stereographics shutter glasses, a graphics card capable of quad buffering was 

necessary. The card used was an Nvidia Quadro FX-3500. Also, it was necessary to use a 

monitor with a high refresh rate in order to project images for either eye without creating 

discontinuities when the objects move. A Viewsonic Graphics series G225f was used for 

this. Using this graphics card and monitor combination a refresh rate of 100Hz was 

achieved. 
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CHAPTER 3 

METHODS 

 

3.1 Experimental Design 

The first step of the experiment is the tutorial. This is an instruction period which lasts 5 

to 10 minutes. During the tutorial, it is demonstrated to the subject how to perform finger 

walking and subjects are allowed to try the simulation in a free play mode. The free play 

mode is a continuous version of the simulation during which no data is collected. In 

addition, if a subject fails to have at least one finger in contact with the surface at any 

given time, the screen will turn red as a warning of a double stance error. This is because 

slow walking is defined as having a period of double stance. For this experiment we are 

only interested in slow walking.  

 After the tutorial is concluded, three versions of the simulation are run. The first 

simulation includes walking over flat terrain. The second simulation includes walking up 

and down three hills which have a 9° slope. The third simulation has four sets of stairs 

that the subject must navigate. When the end of the trail is reached the simulation ends 

automatically and the program terminates. During the simulation, data are recorded and 

stored for offline analysis. The data recorded are the positions of the fingers and the 

forces being sent to the haptic devices. Additionally, a binary variable is recorded which 

indicates if and when a double stance error has occurred. 

 After the game is concluded, the subjects are asked to fill out a questionnaire. The 

questionnaire asks; if any discomfort was felt, if the game was difficult to play, and if 

they have any suggestions for improvements.  
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All experimental protocols were approved by the NJIT IRB committee. 

3.2 Data Analysis 

Five primary variables were analyzed. These were; number of double stance errors, 

percentages of time spent in swing and stance phase during level and hill walking, the 

number of errors which occurred during stair walking, the shapes of the velocity and 

acceleration curves, and the results of the questionnaire. A double stance error refers to a 

moment when both fingers leave the surface simultaneously. A stair walking error is 

when a subject misses a step or slips off of a step.  

 In order to analyze this data, it was imported to Matlab. A code was written for 

analysis which determined the onset of each movement by analyzing the forces in the Y 

direction which were acting on each finger. The moment the force went from an upward 

value to a downward value, it marked the rise of the finger to initiate a movement. The 

end of each movement was marked by a stopping of the movement in the Y direction as 

observed from the position data. Once the onset and offset of each movement was 

determined, the percentage of time spent in stance and swing was analyzed by observing 

the time at which each movement began and ended.  

 To determine the velocities and accelerations of the fingers during the 

movements, the data were filtered and differentiated using a central difference function. 

The data were sampled at a rate around 50Hz. In order to obtain velocity and acceleration 

data that is meaningful, the position data must be filtered. The most effective filtering 

technique for this data was found to be interpolating the data to bring the sample rate up 

to 100Hz and then applying a second order low pass Butterworth filter with a cutoff 

frequency of 3Hz. 
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 Additionally, stride length was analyzed for uphill and downhill finger walking. 

In order to do this, a technique was taken from treadmill walking gait analysis [18]. To 

determine stride length, the difference between the positions of one foot before and after 

a step has been taken are analyzed. This difference is considered to be the step length. 

The onset of movement and end of movement times have already been determined in 

order to find step timing. The onset and offset times were then paired with the horizontal 

position data in order to determine step length. 
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CHAPTER 4 

RESULTS 

 

4.1 Double Stance Errors 

Double stance errors are defined as an instant during finger walking when neither finger 

is in contact with the surface. During the training session, the subjects were given an 

indication when a double stance error occurred however, during the testing period, no 

such warning was given. 

 

Table 4.1 Number of Double Stance Errors for Each Subject Under Each Condition  

Subject Level  Hills Stairs 

AN 0 0 1 

DS 5 5 0 

GA 1 0 2 

IL 2 3 14 

KC 0 0 0 

 

 The minimum number of errors for a subject was 0 and the maximum number of 

errors for a subject was 14 in a single trial. The overall average number of errors for the 

entire experiment was 2.2 errors in a single trial.  
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4.2 Percentage of Time in Stance and Swing 

For normal healthy walking, it is usually expected to observe a 60% stance and 40% 

swing distribution. In addition, the gait cycle of the left leg should be 180° out of phase 

with the right leg. For the five subjects, this was analyzed during the level and hill 

walking trials.  

Table 4.2 Percentage Stance and Swing During Level Finger Walking 

  Left Finger  Right Finger  

Subject Hand used Percent Stance Percent Swing Percent Stance Percent Swing 

AN Left 63.0411 36.9589 57.737 42.263 

DS Right 54.9744 45.0256 59.5641 40.4359 

GA Right 67.1155 32.8845 72.7049 27.2951 

IL Left 69.8964 30.1036 61.9966 38.0034 

KC Right 63.8864 36.1136 58.8962 41.1038 

 

Table 4.3 Percentage Stance and Swing During Hill Walking 

  Left Finger  Right Finger  

Subject Hand used Percent Stance Percent Swing Percent Stance Percent Swing 

AN Left 65.9287 34.0722 64.8696 35.1304 

DS Right 52.174 47.8253 53.551 46.449 

GA Right 66.8774 33.1226 67.5458 32.4542 

IL Left 67.8175 32.1825 56.9619 43.0381 

KC Right 57.1592 42.8408 50.8716 49.1284 

 

 During finger walking, the subjects show a gait cycle similar to that of a subject 

with an impaired limb. This is observed through the asymmetry in the percentage of time 

spent during stance and swing. For all subjects during level walking, the distributions 

were nearly 60:40 for one leg and a slightly longer time spent in stance for the other leg. 

This is similar to what would be observed for a patient with damage to one leg [10]. This 

is brought about because the index finger is shorter than the middle finger. In order to 

help counteract this effect, during the experiment, a virtual lengthening of the index 

finger was done by changing the end position of the index finger in the virtual 
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environment to effectively equalize the lengths of the two fingers. However, the 

asymmetry was still observed even with this correction.  

 

4.3 Step Errors 

When walking on the stairs, all subjects were able to successfully navigate all four flights 

of stairs. However, each subject performed missed step errors. A Missed step error was 

defined as either landing on the wrong step or slipping off of a step.  

 

Table 4.4 Number of Stair Walking Errors 

 Number of errors 

Subject Left finger Right finger 

AN 7 2 

DS 6 9 

GA 4 5 

IL 2 3 

KC 2 1 

 

 

4.4 Position, Velocity and Acceleration 

For all subjects, the velocity and acceleration curves had similar trends. Movement was 

similar to ankle data during walking except, there is no notch in the movement that would 

be attributed to the roll from heel to toe. Presented here are the vertical Y position, 

velocity and acceleration curves for level, hill, and stair walking.  
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Figure 4.1 Position, velocity and acceleration of index and middle finger of one subject 

during level finger walking. The left finger is the index finger and the right finger is the 

middle finger of the subject’s right hand. 

 

Figure 4.2 Position, velocity and acceleration plots of a single subject during uphill 

finger walking. 
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Figure 4.3 Position, velocity and acceleration plots of a single subject during downhill 

walking 

 

Figure 4.4 Position, velocity and acceleration of a single subject during finger walking 

up stairs. 
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If the data is normalized, by using a 20:3 ratio, then the movements can be more 

easily compared to normal human walking. The 20:3 ratio was a rough estimate of the 

vertical displacement of the foot during walking versus that of the finger during finger 

walking. The position data was therefore multiplied by 20/3 and then differentiated to 

obtain normalized position, velocity, and accelerations in the Y direction. 

 
Figure 4.5 Normalized data for a single gait cycle of the fingers while moving over level 

terrain. 

 

4.5 Questionnaire Results 

The questionnaire asked if any discomfort was experienced and if the simulation was 

difficult to operate. If either was responded to with a yes answer, subjects were asked to 

elaborate as to why.  
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Table 4.5 Questionnaire Results 

 Yes No 

Discomfort 0 5 

Difficult 1 4 

  

 Of the five subjects, none experienced any pain or discomfort. Four of the five 

subjects did not find the simulation difficult to play. The remaining subject, who 

experienced difficulty, cited trouble with the viewing perspective used in the simulation. 

 

4.6 Stride Length 

For three subjects, stride length was measured during both uphill and downhill finger 

walking. The data did not show statistical significance nor did it follow the expected 

trend for any of the subjects analyzed. 

Table 4.6 Average Uphill Stride Length Data 

Subject Left Finger Right Finger 

AN 0.512 0.962 

DS 0.431 0.987 

IL 1.352 0.599 

 

Table 4.7 Average Downhill Stride Length Data 

Subject Left Finger Right Finger 

AN 1.063 1.189 

DS 0.563 1.219 

IL 1.338 0.428 
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CHAPTER 5 

DISCUSSION OF RESULTS 

 

5.1 Double Stance Errors 

The number of double stance errors varied from subject to subject. The least number of 

errors for a single subject was 0 and the maximum number of errors observed in a single 

subject was 19. During walking, double stance is seen during the period between initial 

contact of one foot and toe off of the opposite foot. Movement without double stance can 

be observed if the subject is running. During finger walking, the weight of the hand is not 

supported by the fingers as the weight of the body is by the feet during normal walking. 

The weight of the hand is supported by the wrist; therefore, it is possible to move through 

the simulation without exhibiting double stance. This error was observed upon analysis of 

data from earlier trials. To help correct for this error, the addition of the warning indicator 

was made to the training program however, double stance errors were still seen in 4 of 

the 5 subjects. It can be seen from the results of subject KC that actively forcing double 

stance during walking can be done and walking can be performed without the errors. If 

more training is given to the subjects, with a specific emphasis on the double stance 

errors, subjects can learn to not make the errors. 

 

5.2 Percentage of Time in Stance and Swing 

All five subjects demonstrated dominance toward one side in their stride pattern. A 

healthy subject would exhibit 60% of their stride in stance and 40% in swing during 

normal walking. In general, all five subjects showed timing that tended toward 60:40 
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with a range from 53:47 to 73:27. However, none showed a precisely symmetrical gait 

pattern for both fingers. In general, one finger is established as the dominant finger and 

more time is spent in stance on that finger. This is a result of the difference in lengths of 

the two fingers. Subjects are exhibiting a gait pattern similar to that of a person with a 

shortened leg. In order to help correct for this, a virtual lift was added to the shortened 

finger; however, it does not perfectly correct the deficit. Most likely, the deficit is due 

more to the differences in the positions of the proximal interphalangeal joints of the index 

and middle fingers than to the total lengths of the fingers. 

 

5.3 Step Errors 

A step error was defined as missing the target step or slipping off of the step once on it. 

All subjects made step errors, the most being 15 and the least being 3. The majority of 

these errors were from slipping off of the surface once on it. This is more a deficiency in 

the simulation than the subject, in order to prevent unexpected kicking, which can occur 

if the virtual representation of the foot becomes stuck on the stairs, a very low coefficient 

of friction was used. If a higher friction coefficient was used, it would have made the 

stairs more easily climbable however, it risked injury to the user and damage to the 

equipment.  

With the flaw of the slippery staircase, one subject was able to navigate a flight of 

six consecutive stairs flawlessly. This demonstrates that climbing stairs is achievable with 

finger walking. If subjects trained for a more extensive period of time, it is more likely 

that stair navigation could be more easily done.  
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5.4 Position, Velocity and Acceleration 

In order to obtain smooth acceleration curves, the position data had to be filtered with a 

3Hz cut off frequency. The motions of the fingers are less than 1 cycle per second, so 

none of the important motions are being filtered however, with any filtering data 

distortion can be expected. 

Figure 5.1 Example of distortion due to filtering. 

 

 

The filtering at the low frequency distorted the values however it allowed for 

determination of velocity and acceleration. Due to the method of differentiation, which 

measured the differences between the values before and after each point and divided by 

the time for the movement, any noise is amplified when velocity is calculated and it is 

further amplified in the acceleration. By filtering out any sharp changes in the position 

data, noise can be eliminated in the velocity and acceleration curves, however, the 

amplitudes are affected.  

The shapes of the vertical movement trajectory, the velocity, and the acceleration 

profile, show similarities to walking. The positions move in a manner similar to that of 
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the ankle during normal walking, with the exception of the peak at the end of the step 

which is attributed to the foot rolling from the heel to the toe. Since the finger has a 

rounded end, there is no increase in the elevation, like the ankle has during walking. The 

velocity profiles resemble those of normal walking in which a movement has a positive 

velocity for the first half of the movement and a negative velocity for the second half of 

the movement. The approximate symmetry of the positive velocity and the negative 

velocity demonstrates a planning in the movement. The subjects move their fingers to the 

point they are trying to reach and then slow down until impact. This type of motion is 

further demonstrated by the acceleration curves, in which the motion begins with a 

positive acceleration that climbs to a point a quarter of the way through the movement 

before it starts to slow the positive acceleration. At a point mid way through the 

movement the acceleration becomes negative as the finger moves downward, it reaches a 

peak negative acceleration and then the negative acceleration decreases until impact with 

the surface, at which time there is a large positive acceleration for a moment before the 

finger comes to rest.  
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Figure 5.2 Normalized finger movements compared to ankle walking data. 

 

 Figure 5.2 was created by multiplying the finger positions by a 20:3 scaling 

factor, this was determined to be an appropriate approximation to the scaling factor 

between finger movements and foot movements during walking. The movements were 

then differentiated to determine the velocities and accelerations. The right column of the 

figure comes from analysis of published ankle position data during walking from 

Winter’s text [20]. The ankle position data was filtered using the same filter as the finger 

positions, appropriately changed to accommodate for the different sampling frequency. It 

was then differentiated to obtain velocity and acceleration. Looking at this figure, you 

can see great similarity between normal walking and finger walking. When multiplied by 

the scaling factor, the values of peak velocity and acceleration come out to be very close 

to one another. In normal walking, the peak negative acceleration is almost double the 

peak positive acceleration, but this is not observed in finger walking. However, the finger 
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walking data did not filter and differentiate as smoothly as the normal walking data and it 

may be that the same peak values are met but noise has distorted them sufficiently. 

In stair climbing, the results that demonstrated control and planning are also 

evident. In order to effectively navigate the stairs a greater level of control is required. 

Generally a slowing of the finger can be seen just before impact with the stair. This 

results in a smaller value for the positive acceleration at the end of the movement because 

the movement is being brought to a stop over a greater period of time.  

In the first step of the left finger in Figure 4.4, a slight positive acceleration can be 

seen before a negative acceleration and the final positive acceleration that ends the 

movement. This movement was made as a last minute correction. The subject decided 

late in the movement to advance his finger more forward, so he slowed, made the 

adjustment, and then finished the movement. This demonstrates an ability to adapt with 

finger walking just as can be seen with normal walking. 

In addition, it should be noted that the subject was able to learn the positions of 

the stairs after the first step. There was an obvious error when approaching the first step 

that the subject was able to compensate for, but each step after the first showed more 

control and less hesitation. The fastest movement was the final step up, which shows that 

subjects were able to learn the height of the step quickly and adapt to that height by the 

sixth stair. 

The finger movements closely mimic ankle positions. Using these data, inverse 

kinematics can be used to determine virtual trajectories for the hip and knee joints. These 

virtual trajectories, and the timing obtained from the finger movements, can be used in 

order to enable FES walking. 
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5.5 Questionnaire Results 

The questionnaire asked two yes or no answer questions. Did you experience any 

discomfort during the simulation? Did you find the simulation difficult? If either of these 

questions were answered yes then the subject was asked to further elaborate. Of the five 

subjects only one answer of yes was recorded. The subject found it difficult to lift one 

foot higher than the other when moving uphill and became stuck momentarily. In 

addition, the subject had difficulty with the viewpoint. The subject’s difficulty in lifting 

up his fingers to navigate the hill could be attributed to fatigue. He had already 

successfully navigated two hills before that, so it was a feat that the subject had 

accomplished previously. The viewpoint issue comes about because the point through 

which the simulation is perceived is fixed, but the virtual representation of the feet can 

move out of the range of this fixed field of view. Four of the five subjects did not have a 

difficulty with this however, in future research, it would be beneficial to come up with a 

different viewpoint.  

 

5.6 Stride Length 

According to various papers, stride length should lengthen going uphill and shorten going 

downhill [19]. The data did not show statistical significance and they did not follow the 

expected trend. This can be attributed to the lack of weight supported by the finger tips. 

When walking up hill stride length increases while cadence decreases. This is done to 

accommodate for having to step higher to overcome an obstacle. When walking down hill 

stride length decreases while cadence increases. This is done because more control is 

needed to safely lower the center of gravity of the body. Because the hand is not actually 
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supporting any weight, the steps do not significantly change in length or cadence from 

flat finger walking. 
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CHAPTER 6 

CONCLUSIONS 

 

Of the five subjects tested, all were able to successfully navigate each of the three types 

of terrain. One subject in particular did exceptionally well in that he had no double stance 

errors and was able to navigate the stairs with only three miss steps. This demonstrates 

that finger walking with haptic feedback is a feasible means of navigating virtual 

environments. The level walking did closely resemble normal walking in the velocity and 

acceleration profiles. However, finger walking on hills did not resemble normal walking. 

Stair climbing was achieved and with practice can be improved. In order to extend finger 

walking to natural environments, certain conditions must be met. The fingers need to be 

in support of the mass they are moving. The hand can travel freely in space without the 

fingers because the weight of the hand is supported by the arm. Either the subject needs 

to train extensively in order to not misstep and fall or, some form of algorithm must be 

written which can restrict the movements of the fingers to those that can be achieved by 

the legs. Also, the stride timing resembles that of a person with unilateral leg damage. 

This is because one finger is shorter than the other which, effectively, makes the person 

walk as if one leg is shorter than the other. Lengthening of the finger in the virtual 

environment was not enough to correct this issue. In order to more thoroughly enable 

natural walking with fingers, the proximal interphalangeal joint of the index finger must 

be effectively brought to the same position as that of the middle finger. If motion sensors 

are placed at the interphalangeal joints of each finger, and the haptic devices remain at 
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the end of each finger, an algorithm can be written to determine the appropriate end 

position of the foot. This could improve the cadence to that of a healthy subject. 

 This research has demonstrated that significant work needs to be done in order to 

safely navigate hills and uneven terrain using the finger walking technique. However, this 

research has also supported the findings of both Mathew Noesner’s thesis and the work of 

Ji-Sun Kim and colleagues; it demonstrates that finger movements can mimic leg 

movements during walking and that this technique can be used to navigate virtual 

environments. This research also advances the navigation of virtual environments beyond 

what has been done previously because it allows for navigation of 3-D and not just 2-D 

environments. 



 

 

APPENDIX A 

HAPTIC WALKING CODE 

 

The code for the haptic walking game implemented in C++ is provided below. 

/********************************************************************* 

Mark Shaker's code for a haptic environment. with stereovision 

This was adapted from an openhaptics example called hellospheredual  

*********************************************************************/ 

 

// 2/23/2010 

 

#include <math.h> 

#include <assert.h> 

#include "C:\Documents and Settings\Mark\Desktop\PHANToM 

Codes\boots\Moving Stairs\boot.c" 

 

 

#if defined(WIN32) 

# include <windows.h> 

#endif 

 

#if defined(WIN32) || defined(linux) 

# include <GL/glut.h> 

#elif defined(__APPLE__) 

# include <GLUT/glut.h> 

#endif 

 

#include <HL/hl.h> 

#include <HDU/hduMatrix.h> 

#include <HDU/hduError.h> 

 

#include <HLU/hlu.h> 

 

#include <conio.h> 

#include <stdio.h> 

//#include <time.h> 

 

#define  EYESEP  0.30 

#define  FOCALLENGTH 3.0 

static HHD hHD1 = HD_INVALID_HANDLE; 

static HHD hHD2 = HD_INVALID_HANDLE; 

static HHLRC hHLRC1 = 0; 

static HHLRC hHLRC2 = 0; 

static double alf=0.90; 

 

FILE *pFile; 

 

 

// shape id for shape we will render haptically 

HLuint objectShapeId1; 

HLuint objectShapeId2; 
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HLuint effectId1; 

HLuint effectId2; 

HLdouble zTranslation; 

 

HLdouble device1ProxyPosition[3]; 

HLdouble device2ProxyPosition[3]; 

HLdouble device1Force[3]; 

HLdouble device2Force[3]; 

HLboolean device1Contact; 

HLboolean device2Contact; 

HLdouble ZProxy1; 

HLdouble ZProxy2; 

HLdouble lastProxy1; 

HLdouble lastProxy2; 

HLdouble defaultPhantomTransform = -90; 

HLdouble Phantom2Transform = 90; 

HLdouble defaultxtransform = -7; 

HLdouble secondxtransform = 7; 

long int initial_time; 

 

#define CURSOR_SIZE_PIXELS 20 

static double gCursorScale; 

static GLuint gCursorDisplayList = 0; 

bool stereo = true; 

 

/* Function prototypes. */ 

void glutDisplay(void); 

void glutReshape(int width, int height); 

void glutIdle(void);     

void glutMenu(int); 

 

void exitHandler(void); 

 

void initEffects(); 

void initGL(); 

void initHD(HDstring pConfigName, HHD &hHD); 

void initHL(HHD hHD, HHLRC &hHLRC, HLuint &shapeId); 

void initScene(); 

void drawObjectHaptics(HLuint shapeId); 

void drawSceneGraphics(); 

void ObjectGraphics(); 

void realativeMotionObjects(); 

void drawCursor(HLfloat angle); 

void drawSceneDamping(HHLRC &hHLRC, HLuint &effectId); 

void updateWorkspace(HLdouble transform,HLdouble xtransform); 

void MoveIt(); 

void Draw(); 

void DataCollection(); 

 

/**********************************************************************

********* 

Initializes GLUT for displaying a simple haptic scene 

***********************************************************************

********/ 

int main(int argc, char *argv[]) 

{ 

 glutInit(&argc, argv); 
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 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH | 

GLUT_STEREO); 

 

 glutInitWindowSize(500, 500); 

 glutCreateWindow("Mark's Stairs"); 

 

 /* Set glut callback functions. */ 

 glutDisplayFunc(glutDisplay); 

 glutReshapeFunc(glutReshape); 

 glutIdleFunc(glutIdle); 

 

 glutCreateMenu(glutMenu); 

 glutAddMenuEntry("Quit", 0); 

 glutAttachMenu(GLUT_RIGHT_BUTTON);     

 

 /* Provide a cleanup routine for handling application exit. */ 

 atexit(exitHandler);  

 

 initScene(); 

 

 //effect 

 drawSceneDamping(hHLRC1, effectId1); 

 drawSceneDamping(hHLRC2, effectId2); 

 

 //open the file for data collection 

 pFile = fopen("C:/Documents and Settings/Mark/Desktop/Data.txt", 

"w"); 

 

 initial_time=GetTickCount(); 

 

 glutMainLoop(); 

 

 //close the data file 

 fclose(pFile); 

 

 return 0; 

} 

 

/**********************************************************************

********* 

GLUT callback for redrawing the view  

***********************************************************************

********/ 

void glutDisplay() 

{    

 MoveIt(); 

 

 DataCollection(); 

 

 hlMakeCurrent(hHLRC1); 

 drawObjectHaptics(objectShapeId1); 

 

 hlMakeCurrent(hHLRC2); 

 drawObjectHaptics(objectShapeId2); 

 

 //drawSceneGraphics(); 
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 Draw(); 

 

 glutSwapBuffers(); 

} 

 

/**********************************************************************

********* 

GLUT callback for reshaping the window. This is the main place where 

the  

viewing and workspace transforms get initialized. 

***********************************************************************

********/ 

void glutReshape(int width, int height) 

{ 

 static const double kPI = 3.1415926535897932384626433832795; 

 static const double kFovY = 100; 

 

 double nearDist, farDist, aspect; 

 

 glViewport(0, 0, width, height); 

 

 /* Compute the viewing parameters based on a fixed fov and 

viewing 

 * a canonical box centered at the origin */ 

 

 nearDist = 1.0 / tan((kFovY / 2.0) * kPI / 180.0); 

 farDist = nearDist + 6; 

 aspect = (double) width / height; 

 

 glMatrixMode(GL_PROJECTION); 

 glLoadIdentity(); 

 gluPerspective(kFovY, aspect, nearDist, farDist); 

 //gluPerspective(50, aspect, 10, 1700); 

 

 /* Place the camera down the Z axis looking at the origin */ 

 glMatrixMode(GL_MODELVIEW); 

 glLoadIdentity();      

  

 gluLookAt(0.0, 2.0, farDist,    //places camera 

        0.0, 0.5, 0.0,  //aims camera lens towards this point 

        0.0, 1.0, 0.0); //defines which way is up    

 

 hlMakeCurrent(hHLRC1); 

 updateWorkspace(defaultPhantomTransform, defaultxtransform); 

 hlMakeCurrent(hHLRC2); 

 updateWorkspace(Phantom2Transform, secondxtransform); 

} 

/**********************************************************************

******* 

 Draw stereo 

 

***********************************************************************

****/ 

void Draw()           

  // Draw Our Scene 

{ 

 static const double kPI = 3.1415926535897932384626433832795; 
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 static const double kFovY = 100; 

 

 double nearDist, farDist; 

 nearDist = 1.0 / tan((kFovY / 2.0) * kPI / 180.0); 

 farDist = nearDist + 6; 

   

 /* Compute the viewing parameters based on a fixed fov and 

viewing 

 * a canonical box centered at the origin */ 

 

 glFlush(); 

 glMatrixMode(GL_MODELVIEW); 

 

 glDrawBuffer(GL_BACK_LEFT); 

 

 glPushMatrix(); 

  

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  // 

Clear Screen And Depth Buffer 

 glLoadIdentity();         

  // Reset The Modelview Matrix 

 

 

 gluLookAt(-EYESEP/2, 2.0, farDist, 

        0.0, 0.5, 0.0, 

        0.0, 1.0, 0.0); 

 

 glEnable (GL_BLEND); glBlendFunc (GL_SRC_ALPHA, 

GL_ONE_MINUS_SRC_ALPHA); 

 

 drawSceneGraphics();  

 glPopMatrix(); 

 

 

    // Draw the right eye view 

    glFlush(); 

 

 glDrawBuffer(GL_BACK_RIGHT); 

  

 glPushMatrix(); 

   

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  // 

Clear Screen And Depth Buffer 

 glLoadIdentity();         

  // Reset The Modelview Matrix 

 

 gluLookAt(EYESEP/2, 2.0, farDist, 

        0.0, 0.5, 0.0, 

        0.0, 1.0, 0.0); 

 

 glEnable (GL_BLEND); glBlendFunc (GL_SRC_ALPHA, 

GL_ONE_MINUS_SRC_ALPHA); 

 

 drawSceneGraphics();  

  

 glPopMatrix();         

  // Restore The Old Projection Matrix 
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  //glFlush();          

   // Flush The GL Rendering Pipeline 

 glutSwapBuffers(); 

 

} 

/**********************************************************************

********* 

GLUT callback for idle state. Use this as an opportunity to request a 

redraw. 

***********************************************************************

********/ 

void glutIdle() 

{ 

 glutPostRedisplay(); 

} 

 

/**********************************************************************

******** 

Popup menu handler 

***********************************************************************

*******/ 

void glutMenu(int ID) 

{ 

 switch(ID) { 

  case 0: 

   exit(0); 

   break; 

 } 

} 

 

/**********************************************************************

********* 

Initialize the scene. Handle initializing both OpenGL and HL 

***********************************************************************

********/ 

void initScene() 

{ 

 initGL(); 

 

 // Initialize HDAPI first, so that the device instances exist in 

the system 

 // All device instances need to exist before starting the 

scheduler, 

 // which gets started automatically by the first created context 

 initHD("Default PHANToM", hHD1); 

 initHD("PHANToM 2", hHD2); 

 

 // Initialize the contexts and give each one a handle to a device 

instance 

 initHL(hHD1, hHLRC1, objectShapeId1); 

 initHL(hHD2, hHLRC2, objectShapeId2); 

} 

 

/**********************************************************************

********* 

Setup general OpenGL rendering properties, like lights, depth 

buffering, etc. 
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***********************************************************************

********/ 

void initGL() 

{ 

 static const GLfloat light_model_ambient[] = {0.3f, 0.3f, 0.3f, 

1.0f}; 

 static const GLfloat light0_diffuse[] = {0.9f, 0.9f, 0.9f, 0.9f};    

 static const GLfloat light0_direction[] = {0.0f, -0.4f, 1.0f, 

0.0f};     

 

 /* Enable depth buffering for hidden surface removal. */ 

 glDepthFunc(GL_LEQUAL); 

 glEnable(GL_DEPTH_TEST); 

 

 /* Cull back faces. */ 

 glCullFace(GL_BACK); 

 glEnable(GL_CULL_FACE); 

 

 /* Other misc features. */ 

 glEnable(GL_LIGHTING); 

 glEnable(GL_NORMALIZE); 

 glShadeModel(GL_SMOOTH); 

 

 glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_FALSE); 

 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);     

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, light_model_ambient); 

 glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse); 

 glLightfv(GL_LIGHT0, GL_POSITION, light0_direction); 

 glEnable(GL_LIGHT0);    

} 

 

/**********************************************************************

********* 

Initialize an HD device instance 

***********************************************************************

********/ 

void initHD(HDstring pConfigName, HHD &hHD) 

{ 

 HDErrorInfo error; 

 

 hHD = hdInitDevice(pConfigName); 

 if (HD_DEVICE_ERROR(error = hdGetError())) 

 { 

  hduPrintError(stderr, &error, "Failed to initialize haptic 

device"); 

  fprintf(stderr, "Press any key to exit"); 

  getchar(); 

  exit(-1); 

 }    

 

 printf("Found device model: %s / serial number: %s.\n\n",  

  hdGetString(HD_DEVICE_MODEL_TYPE), 

hdGetString(HD_DEVICE_SERIAL_NUMBER));     

} 

 

 

/**********************************************************************
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********* 

Initialize an HL rendering context for a particular device instance 

***********************************************************************

********/ 

void initHL(HHD hHD, HHLRC &hHLRC, HLuint &shapeId) 

{     

 hHLRC = hlCreateContext(hHD); 

 hlMakeCurrent(hHLRC); 

 

 // Enable optimization of the viewing parameters when rendering 

 // geometry for OpenHaptics 

 hlEnable(HL_HAPTIC_CAMERA_VIEW); 

 

 // Specify front face touchability only 

 hlTouchableFace(HL_FRONT); 

 

 // generate id's for the three shapes 

 shapeId = hlGenShapes(1); 

} 

 

/**********************************************************************

********* 

This handler will get called when the application is exiting. 

Deallocates any state and cleans up. 

***********************************************************************

********/ 

void exitHandler() 

{ 

 // deallocate the shape id we reserved in in initHL 

 hlDeleteShapes(objectShapeId1, 1); 

 hlDeleteShapes(objectShapeId2, 1); 

 

 // free up the haptic rendering context 

 hlMakeCurrent(NULL); 

 

 if (hHLRC1 != NULL) 

 { 

  hlDeleteContext(hHLRC1); 

 } 

 

 if (hHLRC2 != NULL) 

 { 

  hlDeleteContext(hHLRC2); 

 } 

 

 // free up the haptic device 

 if (hHD1 != HD_INVALID_HANDLE) 

 { 

  hdDisableDevice(hHD1); 

 } 

 

 if (hHD2 != HD_INVALID_HANDLE) 

 { 

  hdDisableDevice(hHD2); 

 } 

} 
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/**********************************************************************

********* 

Use the current OpenGL viewing transforms to initialize a transform for 

the 

haptic device workspace so that it's properly mapped to world 

coordinates. 

***********************************************************************

********/ 

void updateWorkspace(HLdouble transform,HLdouble xtransform) 

{ 

 GLdouble modelview[16]; 

 GLdouble projection[16]; 

 GLint viewport[4]; 

 

 glGetDoublev(GL_MODELVIEW_MATRIX, modelview); 

 glGetDoublev(GL_PROJECTION_MATRIX, projection); 

 glGetIntegerv(GL_VIEWPORT, viewport); 

 

 hlMatrixMode(HL_TOUCHWORKSPACE); 

 hlLoadIdentity(); 

 hlRotated(transform,0,1,0); 

 hlTranslated(xtransform,200,0); 

 

 /* fit haptic workspace to view volume */ 

 hluFitWorkspace(projection); 

 

 /* compute cursor scale */ 

 gCursorScale = hluScreenToModelScale(modelview, projection, 

viewport); 

 gCursorScale *= CURSOR_SIZE_PIXELS; 

} 

/**********************************************************************

********* 

The main routine for displaying the scene. Get the latest snapshot of 

state 

from the haptic thread and use it for displaying a 3D cursor. 

***********************************************************************

********/ 

void drawSceneGraphics() 

{ 

 glClearColor(0.0,0.0,1.0,0.0); 

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);            

 

 // draw 3D cursor at haptic device position 

 hlMakeCurrent(hHLRC1); 

 drawCursor(-90); 

 hlMakeCurrent(hHLRC2); 

 drawCursor(90); 

 

 //draws the non haptic scene 

 glPushMatrix(); 

 glTranslated(0,0,zTranslation); 

 realativeMotionObjects(); 

 glPopMatrix(); 

 glEnable(GL_COLOR_MATERIAL); 

 

 //draws the object specified in draw object graphics 
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 glColor4d(1.0,0.255,0.0,alf); 

 glPushMatrix(); 

 glTranslated(0,0,zTranslation); 

 ObjectGraphics(); 

 glPopMatrix(); 

 glEnable(GL_COLOR_MATERIAL);  

} 

/**********************************************************************

********* 

A function to draw an object graphically that can be plugged into  

the draw object haptics function to save space rewriting it 

***********************************************************************

********/ 

void ObjectGraphics() 

{ 

 glBegin(GL_QUAD_STRIP); 

 //opening stretch 

 glVertex3f(-1,0.0,15); 

 glVertex3f(1,0.0,15); 

 glVertex3f(-1,0,-10); 

 glVertex3f(1,0,-10); 

 //stairs with sloped backside 

 glVertex3f(-1,0.25,-10.15); 

 glVertex3f(1,0.25,-10.15); 

 glVertex3f(-1,0.25,-10.5); 

 glVertex3f(1,0.25,-10.5); 

 glVertex3f(-1,0.5,-10.65); 

 glVertex3f(1,0.5,-10.65); 

 glVertex3f(-1,0.5,-11); 

 glVertex3f(1,0.5,-11); 

 glVertex3f(-1,0.75,-11.15); 

 glVertex3f(1,0.75,-11.15); 

 glVertex3f(-1,0.75,-12.5); 

 glVertex3f(1,0.75,-12.5); 

 //second stretch 

 glVertex3f(-1,0,-14.5); 

 glVertex3f(1,0,-14.5); 

 //hill 

 glVertex3f(-1,0,-20); 

 glVertex3f(1,0,-20); 

 glVertex3f(-1,0.25,-25); 

 glVertex3f(1,0.25,-25); 

 glVertex3f(-1,0.25,-27); 

 glVertex3f(1,0.25,-27); 

 glVertex3f(-1,0,-29); 

 glVertex3f(1,0,-29); 

 //third stretch 

 glVertex3f(-1,0,-35.0); 

 glVertex3f(1,0,-35.0); 

 //chasm 

 glVertex3f(-1,-0.2,-40); 

 glVertex3f(1,-0.2,-40); 

 glVertex3f(-1,-0.2,-42); 

 glVertex3f(1,-0.2,-42); 

 glVertex3f(-1,0,-47); 

 glVertex3f(1,0,-47); 

 //fourth stretch 
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 glVertex3f(-1,0,-67); 

 glVertex3f(1,0,-67); 

 glEnd(); 

} 

void realativeMotionObjects() 

{ 

 //green trianlges for the tops of trees 

 glColor4d(0.034,0.139,0.034,alf); 

 glBegin(GL_TRIANGLES); 

 glVertex3f(-1.1,.05,1.0);glVertex3f(-0.9,0.05,1.0);glVertex3f(-

1,0.5,1.0); 

 glVertex3f(0.9,0.05,-1.0);glVertex3f(1.1,0.05,-

1.0);glVertex3f(1.0,0.5,-1.0); 

 glVertex3f(-1.1,0.05,-3.0);glVertex3f(-0.9,0.05,-

3.0);glVertex3f(-1,0.5,-3.0); 

 glVertex3f(0.9,0.05,-5.0);glVertex3f(1.1,0.05,-

5.0);glVertex3f(1.0,0.5,-5.0); 

 glVertex3f(-1.1,0.05,-7.0);glVertex3f(-0.9,0.05,-

7.0);glVertex3f(-1,0.5,-7.0); 

 glVertex3f(0.9,0.05,-9.0);glVertex3f(1.1,0.05,-

9.0);glVertex3f(1.0,0.5,-9.0); 

 glVertex3f(-1.1,0.05,-11.0);glVertex3f(-0.9,0.05,-

11.0);glVertex3f(-1,0.5,-11.0); 

 glVertex3f(0.9,0.05,-13.0);glVertex3f(1.1,0.05,-

13.0);glVertex3f(1.0,0.5,-13.0); 

 glVertex3f(-1.1,0.05,-15);glVertex3f(-0.9,0.05,-15);glVertex3f(-

1,0.5,-15); 

 glVertex3f(0.9,0.05,-17);glVertex3f(1.1,0.05,-

17);glVertex3f(1.0,0.5,-17); 

 glVertex3f(-1.1,0.05,-19);glVertex3f(-0.9,0.05,-19);glVertex3f(-

1,0.5,-19); 

 glVertex3f(0.9,0.05,-21);glVertex3f(1.1,0.05,-

21);glVertex3f(1.0,0.5,-21); 

 glVertex3f(-1.1,0.05,-23);glVertex3f(-0.9,0.05,-23);glVertex3f(-

1,0.5,-23); 

 glVertex3f(0.9,0.05,-25);glVertex3f(1.1,0.05,-

25);glVertex3f(1.0,0.5,-25); 

 glVertex3f(-1.1,0.05,-27);glVertex3f(-0.9,0.05,-27);glVertex3f(-

1,0.5,-27); 

 glVertex3f(0.9,0.05,-29);glVertex3f(1.1,0.05,-

29);glVertex3f(1.0,0.5,-29); 

 glVertex3f(-1.1,0.05,-31);glVertex3f(-0.9,0.05,-31);glVertex3f(-

1,0.5,-31); 

 glVertex3f(0.9,0.05,-33);glVertex3f(1.1,0.05,-

33);glVertex3f(1.0,0.5,-33); 

 glVertex3f(-1.1,0.05,-35);glVertex3f(-0.9,0.05,-35);glVertex3f(-

1,0.5,-35); 

 glVertex3f(0.9,0.05,-37);glVertex3f(1.1,0.05,-

37);glVertex3f(1.0,0.5,-37); 

 glVertex3f(-1.1,0.05,-39);glVertex3f(-0.9,0.05,-39);glVertex3f(-

1,0.5,-39); 

 glVertex3f(0.9,0.05,-41);glVertex3f(1.1,0.05,-

41);glVertex3f(1.0,0.5,-41); 

 glVertex3f(-1.1,0.05,-43);glVertex3f(-0.9,0.05,-43);glVertex3f(-

1,0.5,-43); 

 glVertex3f(0.9,0.05,-45);glVertex3f(1.1,0.05,-

45);glVertex3f(1.0,0.5,-45); 
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 glVertex3f(-1.1,0.05,-47);glVertex3f(-0.9,0.05,-47);glVertex3f(-

1,0.5,-47); 

 glVertex3f(0.9,0.05,-49);glVertex3f(1.1,0.05,-

49);glVertex3f(1.0,0.5,-49); 

 glVertex3f(-1.1,0.05,-51);glVertex3f(-0.9,0.05,-51);glVertex3f(-

1,0.5,-51); 

 glVertex3f(0.9,0.05,-53);glVertex3f(1.1,0.05,-

53);glVertex3f(1.0,0.5,-53); 

 glVertex3f(-1.1,0.05,-55);glVertex3f(-0.9,0.05,-55);glVertex3f(-

1,0.5,-55); 

 glVertex3f(0.9,0.05,-57);glVertex3f(1.1,0.05,-

57);glVertex3f(1.0,0.5,-57); 

 glVertex3f(-1.1,0.05,-59);glVertex3f(-0.9,0.05,-59);glVertex3f(-

1,0.5,-59); 

 glVertex3f(0.9,0.05,-61);glVertex3f(1.1,0.05,-

61);glVertex3f(1.0,0.5,-61); 

 glVertex3f(-1.1,0.05,-63);glVertex3f(-0.9,0.05,-63);glVertex3f(-

1,0.5,-63); 

 glVertex3f(0.9,0.05,-65);glVertex3f(1.1,0.05,-

65);glVertex3f(1.0,0.5,-65); 

 glEnd(); 

 

 //brown rectangles for the tree trunks 

 glColor4d(0.39,0.069,0.019,alf); 

 glBegin(GL_QUADS); 

 glVertex3f(-1.05,0,1.0);glVertex3f(-0.95,0,1.0);glVertex3f(-

0.95,0.05,1.0);glVertex3f(-1.05,0.05,1.0); 

 glVertex3f(0.95,0,-1.0);glVertex3f(1.05,0,-

1.0);glVertex3f(1.05,0.05,-1.0);glVertex3f(0.95,0.05,-1.0); 

 glVertex3f(-1.05,0,-3);glVertex3f(-0.95,0,-3);glVertex3f(-

0.95,0.05,-3);glVertex3f(-1.05,0.05,-3); 

 glVertex3f(0.95,0,-5);glVertex3f(1.05,0,-

5);glVertex3f(1.05,0.05,-5);glVertex3f(0.95,0.05,-5); 

 glVertex3f(-1.05,0,-7);glVertex3f(-0.95,0,-7);glVertex3f(-

0.95,0.05,-7);glVertex3f(-1.05,0.05,-7); 

 glVertex3f(0.95,0,-9);glVertex3f(1.05,0,-

9);glVertex3f(1.05,0.05,-9);glVertex3f(0.95,0.05,-9); 

 glVertex3f(-1.05,0,-11);glVertex3f(-0.95,0,-11);glVertex3f(-

0.95,0.05,-11);glVertex3f(-1.05,0.05,-11); 

 glVertex3f(0.95,0,-13);glVertex3f(1.05,0,-

13);glVertex3f(1.05,0.05,-13);glVertex3f(0.95,0.05,-13); 

 glVertex3f(-1.05,0,-15);glVertex3f(-0.95,0,-15);glVertex3f(-

0.95,0.05,-15);glVertex3f(-1.05,0.05,-15); 

 glVertex3f(0.95,0,-17);glVertex3f(1.05,0,-

17);glVertex3f(1.05,0.05,-17);glVertex3f(0.95,0.05,-17); 

 glVertex3f(-1.05,0,-19);glVertex3f(-0.95,0,-19);glVertex3f(-

0.95,0.05,-19);glVertex3f(-1.05,0.05,-19); 

 glVertex3f(0.95,0,-21);glVertex3f(1.05,0,-

21);glVertex3f(1.05,0.05,-21);glVertex3f(0.95,0.05,-21); 

 glVertex3f(-1.05,0,-23);glVertex3f(-0.95,0,-23);glVertex3f(-

0.95,0.05,-23);glVertex3f(-1.05,0.05,-23); 

 glVertex3f(0.95,0,-25);glVertex3f(1.05,0,-

25);glVertex3f(1.05,0.05,-25);glVertex3f(0.95,0.05,-25); 

 glVertex3f(-1.05,0,-27);glVertex3f(-0.95,0,-27);glVertex3f(-

0.95,0.05,-27);glVertex3f(-1.05,0.05,-27); 

 glVertex3f(0.95,0,-29);glVertex3f(1.05,0,-

29);glVertex3f(1.05,0.05,-29);glVertex3f(0.95,0.05,-29); 
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 glVertex3f(-1.05,0,-31);glVertex3f(-0.95,0,-31);glVertex3f(-

0.95,0.05,-31);glVertex3f(-1.05,0.05,-31); 

 glVertex3f(0.95,0,-33);glVertex3f(1.05,0,-

33);glVertex3f(1.05,0.05,-33);glVertex3f(0.95,0.05,-33); 

 glVertex3f(-1.05,0,-35);glVertex3f(-0.95,0,-35);glVertex3f(-

0.95,0.05,-35);glVertex3f(-1.05,0.05,-35); 

 glVertex3f(0.95,0,-37);glVertex3f(1.05,0,-

37);glVertex3f(1.05,0.05,-37);glVertex3f(0.95,0.05,-37); 

 glVertex3f(-1.05,0,-39);glVertex3f(-0.95,0,-39);glVertex3f(-

0.95,0.05,-39);glVertex3f(-1.05,0.05,-39); 

 glVertex3f(0.95,0,-41);glVertex3f(1.05,0,-

41);glVertex3f(1.05,0.05,-41);glVertex3f(0.95,0.05,-41); 

 glVertex3f(-1.05,0,-43);glVertex3f(-0.95,0,-43);glVertex3f(-

0.95,0.05,-43);glVertex3f(-1.05,0.05,-43); 

 glVertex3f(0.95,0,-45);glVertex3f(1.05,0,-

45);glVertex3f(1.05,0.05,-45);glVertex3f(0.95,0.05,-45); 

 glVertex3f(-1.05,0,-47);glVertex3f(-0.95,0,-47);glVertex3f(-

0.95,0.05,-47);glVertex3f(-1.05,0.05,-47); 

 glVertex3f(0.95,0,-49);glVertex3f(1.05,0,-

49);glVertex3f(1.05,0.05,-49);glVertex3f(0.95,0.05,-49); 

 glVertex3f(-1.05,0,-51);glVertex3f(-0.95,0,-51);glVertex3f(-

0.95,0.05,-51);glVertex3f(-1.05,0.05,-51); 

 glVertex3f(0.95,0,-53);glVertex3f(1.05,0,-

53);glVertex3f(1.05,0.05,-53);glVertex3f(0.95,0.05,-53); 

 glVertex3f(-1.05,0,-55);glVertex3f(-0.95,0,-55);glVertex3f(-

0.95,0.05,-55);glVertex3f(-1.05,0.05,-55); 

 glVertex3f(0.95,0,-57);glVertex3f(1.05,0,-

57);glVertex3f(1.05,0.05,-57);glVertex3f(0.95,0.05,-57); 

 glVertex3f(-1.05,0,-59);glVertex3f(-0.95,0,-59);glVertex3f(-

0.95,0.05,-59);glVertex3f(-1.05,0.05,-59); 

 glVertex3f(0.95,0,-61);glVertex3f(1.05,0,-

61);glVertex3f(1.05,0.05,-61);glVertex3f(0.95,0.05,-61); 

 glVertex3f(-1.05,0,-63);glVertex3f(-0.95,0,-63);glVertex3f(-

0.95,0.05,-63);glVertex3f(-1.05,0.05,-63); 

 glVertex3f(0.95,0,-65);glVertex3f(1.05,0,-

65);glVertex3f(1.05,0.05,-65);glVertex3f(0.95,0.05,-65); 

 glEnd(); 

 

 //green lawn 

 glColor4d(0.124,0.252,0,alf); 

 glBegin(GL_QUADS); 

 glVertex3f(-6,0,15);glVertex3f(-1,0,15);glVertex3f(-1,0,-

67);glVertex3f(-6,0,-67); 

 glVertex3f(1,0,15);glVertex3f(6,0,15);glVertex3f(6,0,-

67);glVertex3f(1,0,-67); 

 glEnd(); 

 

 //sides in chasm and vertical stair faces 

 glColor4d(0,0,0,alf); 

 glBegin(GL_QUADS); 

 glVertex3f(-1,0,-35);glVertex3f(-1,-0.2,-35);glVertex3f(-1,-0.2,-

47);glVertex3f(-1,0,-47); 

 glVertex3f(1,0,-47);glVertex3f(1,-0.2,-47);glVertex3f(1,-0.2,-

35);glVertex3f(1,0,-35); 

 glVertex3f(-1,0,-9.999);glVertex3f(1,0,-

9.999);glVertex3f(1,0.25,-9.999);glVertex3f(-1,0.25,-9.999); 

 glVertex3f(-1,0.25,-10.499);glVertex3f(1,0.25,-
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10.499);glVertex3f(1,0.5,-10.499);glVertex3f(-1,0.5,-10.499); 

 glVertex3f(-1,0.75,-10.999);glVertex3f(-1,0.5,-

10.999);glVertex3f(1,0.5,-10.999);glVertex3f(1,0.75,-10.999); 

 glEnd(); 

} 

/**********************************************************************

********* 

The main routine for rendering scene haptics.  

Renders the plane haptically. 

draw object haptics for the shape defined in draw object graphics 

***********************************************************************

********/ 

void drawObjectHaptics(HLuint shapeId) 

{ 

 // Clear the depth buffer when using a depth buffer shape 

 glClear(GL_DEPTH_BUFFER_BIT);   

 

 // start haptic frame - must do this before rendering any haptic 

shapes 

 hlBeginFrame(); 

 

 glPushMatrix(); 

 glTranslated(0,0,zTranslation); 

 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, shapeId); 

 

 //assigning haptic properties to the shape 

 hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.4); 

 hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.25); 

 hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.15); 

 

 ObjectGraphics(); 

 //haptic rendering of the lawn 

 glBegin(GL_QUADS); 

 glVertex3f(-6,0,15);glVertex3f(-1,0,15);glVertex3f(-1,0,-

67);glVertex3f(-6,0,-67); 

 glVertex3f(1,0,15);glVertex3f(6,0,15);glVertex3f(6,0,-

67);glVertex3f(1,0,-67); 

 glEnd(); 

 

 glPopMatrix(); 

 

 hlEndShape(); 

 

 hlEndFrame(); 

} 

/**********************************************************************

********* 

Draw a 3D cursor for the haptic device using the current local 

transform, 

the workspace to world transform and the screen coordinate scale. 

***********************************************************************

********/ 

void drawCursor(HLfloat angle) 

{ 

 static const double kCursorRadius = 1; 

 static const double kCursorHeight = 2; 

 static const int kCursorTess = 15; 



57 

 

 HLdouble proxyxform[16]; 

   

 GLUquadricObj *qobj = 0; 

 

 

 glPushAttrib(GL_CURRENT_BIT | GL_ENABLE_BIT | GL_LIGHTING_BIT); 

 glPushMatrix(); 

 

 if (!gCursorDisplayList) 

 { 

  gCursorDisplayList = glGenLists(1); 

  glNewList(gCursorDisplayList, GL_COMPILE); 

  glTranslated(0,54,30); 

  Box02(); 

  gluDeleteQuadric(qobj); 

   

  glEndList(); 

 } 

 

 /* Get the proxy transform in world coordinates */ 

 hlGetDoublev(HL_PROXY_TRANSFORM, proxyxform); 

 glMultMatrixd(proxyxform); 

 

 /* Apply the local cursor scale factor. */ 

 glScaled(gCursorScale, gCursorScale, gCursorScale); 

 

 glEnable(GL_COLOR_MATERIAL); 

 glColor4d(1, 0.75, 0.5,alf); 

 glRotatef(angle,0,1,0); 

 glCallList(gCursorDisplayList); 

 glPopMatrix();  

 glPopAttrib(); 

} 

/********************************************************** 

Ambient viscous damping. 

Sets the current haptic rendering context and generates an effect ID  

for the instance then starts the damping force 

**********************************************************/ 

void drawSceneDamping(HHLRC &hHLRC,HLuint &effectId) 

{ 

 hlMakeCurrent(hHLRC); 

 effectId = hlGenEffects(1); 

 hlBeginFrame(); 

 hlEffectd(HL_EFFECT_PROPERTY_GAIN, 0.75); 

 hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, 1); 

 hlStartEffect(HL_EFFECT_VISCOUS, effectId); 

 hlEndFrame(); 

} 

/******************************************************************* 

the routine for moving the object. 

********************************************************************/ 

void MoveIt() 

{ 

 hlMakeCurrent(hHLRC1); 

 hlGetDoublev(HL_PROXY_POSITION, device1ProxyPosition); 

 hlGetBooleanv(HL_PROXY_IS_TOUCHING, &device1Contact); 

 hlGetDoublev(HL_DEVICE_FORCE, device1Force); 
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 hlMakeCurrent(hHLRC2); 

 hlGetDoublev(HL_PROXY_POSITION, device2ProxyPosition); 

 hlGetBooleanv(HL_PROXY_IS_TOUCHING, &device2Contact); 

 hlGetDoublev(HL_DEVICE_FORCE, device2Force); 

 ZProxy1 = device1ProxyPosition[2]; 

 ZProxy2 = device2ProxyPosition[2]; 

 if (device1Contact == 1 && device2Contact == 0) 

 { 

  zTranslation = zTranslation + (ZProxy1 - lastProxy1); 

 

 } 

 if (device2Contact == 1 && device1Contact == 0) 

 { 

  zTranslation = zTranslation + (ZProxy2 - lastProxy2); 

 

 } 

 if (zTranslation >= 65) 

 { 

  zTranslation = 5; 

 } 

 lastProxy1 = ZProxy1; 

 lastProxy2 = ZProxy2; 

} 

 

// this is the section of the code that takes the data for position 

// and forces which were collected in the MoveIt function 

//and writes it to a file for offline analysis 

//the format of the file is a thirteen column data sheet 

//time pos1X pos1Y pos1Z F1X F1Y F1Z pos2X pos2Y pos2Z F2X F2Y F2Z 

void DataCollection() 

{ 

 long int Time; 

 

 Time=GetTickCount() - initial_time; 

 fprintf(pFile, "%i %g %g %g %g %g %g %g %g %g %g %g %g\n", 

  /*time is in ms units of force are newtons units of 

position are mm*/ 

  Time, 

  device1ProxyPosition[0], 

  device1ProxyPosition[1], 

  device1ProxyPosition[2], 

  device1Force[0], 

  device1Force[1], 

  device1Force[2], 

  device2ProxyPosition[0], 

  device2ProxyPosition[1], 

  device2ProxyPosition[2], 

  device2Force[0], 

  device2Force[1], 

  device2Force[2]); 

} 



 

 

APPENDIX B 

MATLAB CODE FOR ANALYSIS 

 

The following is the Matlab code used to analyze the position and force data collected 

from the haptic devices during game play. 

%Haptic Walking Data Analyzer 

Time=Data(:,1); %in milliseconds 

FirstXpos=Data(:,2)*25.4; %converted to mm 

FirstYpos=Data(:,3)*25.4; 

FirstZpos=Data(:,4)*25.4; 

FirstXforce=Data(:,5); % in Newtons 

FirstYforce=Data(:,6); 

FirstZforce=Data(:,7); 

SecondXpos=Data(:,8)*25.4; 

SecondYpos=Data(:,9)*25.4; 

SecondZpos=Data(:,10)*25.4; 

SecondXforce=Data(:,11); 

SecondYforce=Data(:,12); 

SecondZforce=Data(:,13); 

doublestance=Data(:,14); 

%apply an interpolation and filter 

desiredrate=100; %desired sample rate in hz 

TI=(Time(1):1000/desiredrate:Time(end))'; 

Y1I=interp1(Time,FirstYpos,TI,'cubic'); 

Y2I=interp1(Time,SecondYpos,TI,'cubic'); 

Z1I=interp1(Time,FirstZpos,TI,'cubic'); 

Z2I=interp1(Time,SecondZpos,TI,'cubic'); 

cutoff=3; 

[b,a]=butter(1,(2*cutoff)/desiredrate); 

Y1IF=filtfilt(b,a,Y1I); 

Y2IF=filtfilt(b,a,Y2I); 

Z1IF=filtfilt(b,a,Z1I); 

Z2IF=filtfilt(b,a,Z2I); 

%calculate velocities 

[VY1,VT]=CDF(Y1IF,TI); 

[VY2,VT]=CDF(Y2IF,TI); 

[VZ1,VT]=CDF(Z1IF,TI); 

[VZ2,VT]=CDF(Z2IF,TI); 

%calculate accelerations 

[AY1,AT]=CDF(VY1,VT); 

[AY2,AT]=CDF(VY2,VT); 

[AZ1,AT]=CDF(VZ1,VT); 
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[AZ2,AT]=CDF(VZ2,VT); 

%all accelerations are in m/s/ms so multiply by 1000 to 

make m/s/s 

AY1=1000*AY1; 

AY2=1000*AY2; 

AZ1=1000*AZ1; 

AZ2=1000*AZ2; 

  

%determine stride lengths 

%from unfiltered data 

  

%plot vertical positions 

plot(FirstYpos);  

hold on 

plot(SecondYpos,'r'); 

plot(doublestance,'k--'); 

%make the selection of the data 

point1=input('start:'); 

point2=input('finish:'); 

%assign new variables to the appropriate selection 

newTime=Time(point1:point2); 

Y1=FirstYpos(point1:point2,:); 

Z1=FirstZpos(point1:point2,:); 

FY1=FirstYforce(point1:point2,:); 

Y2=SecondYpos(point1:point2,:); 

Z2=SecondZpos(point1:point2,:); 

FY2=SecondYforce(point1:point2,:); 

%determination of step beginnings 

n=2; 

Y1Starts=[]; 

while n<=length(FY1)-1 

    if FY1(n)<=0 && FY1(n-1)>=0 && FY1(n+1)<=0; 

        Y1Starts=[Y1Starts; n]; 

    end 

    n=n+1; 

end 

  

n=2; 

Y2Starts=[]; 

while n<=length(FY2)-1 

    if FY2(n)<=0 && FY2(n-1)>=0 && FY2(n+1)<=0; 

        Y2Starts=[Y2Starts; n]; 

    end 

    n=n+1; 

end 

%determination of step ends 

Y1Ends=[]; 
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n=3; 

while n<=length(Y1)-2 

    if Y1(n-1)<Y1(n-2)... 

            && Y1(n)<Y1(n-1)... 

            && Y1(n)<=Y1(n+1)+0.001... 

            && Y1(n+1)<=Y1(n+2)+0.001; 

        Y1Ends=[Y1Ends; n]; 

    end 

    n=n+1; 

end 

  

Y2Ends=[]; 

n=3; 

while n<=length(Y2)-2 

    if Y2(n-1)<Y2(n-2)... 

            && Y2(n)<Y2(n-1)... 

            && Y2(n)<=Y2(n+1)+0.001... 

            && Y2(n+1)<=Y2(n+2)+0.001; 

        Y2Ends=[Y2Ends; n]; 

    end 

    n=n+1; 

end 

%pairing beginings and ends 

StartsAndEndsLeft=[1 1]; 

j=1; 

k=1; 

l=1; 

onset=1; 

offset=1; 

while l<=length(Y1Starts)-1 && l<=length(Y1Ends)-1 

   j=1; 

    while onset==StartsAndEndsLeft(l,1)... 

            && j<=length(Y1Starts)... 

            && k<=length(Y1Ends) 

        if Y1Starts(j)>StartsAndEndsLeft(l,2)... 

                && 

Y1(Y1Starts(j))>=(Y1(StartsAndEndsLeft(l,2))-0.25)... 

                && 

Y1(Y1Starts(j))<=(Y1(StartsAndEndsLeft(l,2))+0.25) 

            onset=Y1Starts(j); 

        else 

            j=j+1; 

        end 

    end 

    k=1; 

    while offset==StartsAndEndsLeft(l,2)... 

            && j<=length(Y1Starts)... 
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            && k<=length(Y1Ends) 

        if Y1Ends(k)>onset... 

                && Y1(Y1Ends(k))<=(Y1(onset)+0.75)... 

                && Y1(Y1Ends(k))>=(Y1(onset)-0.75)... 

                && Y1Ends(k)<onset+75 

            offset=Y1Ends(k); 

        else 

            k=k+1; 

        end 

        if Y1Ends(k)>=onset+75 

            onset=Y1Starts(j+1); 

        end 

    end 

    StartsAndEndsLeft=[StartsAndEndsLeft; onset offset]; 

    l=l+1; 

end 

  

StartsAndEndsRight=[1 1]; 

j=1; 

k=1; 

l=1; 

onset=1; 

offset=1; 

while l<=length(Y2Starts)-1 && l<=length(Y2Ends)-1 

   j=1; 

    while onset==StartsAndEndsRight(l,1)... 

            && j<=length(Y2Starts)... 

            && k<=length(Y2Ends) 

        if Y2Starts(j)>StartsAndEndsRight(l,2)... 

                && 

Y2(Y2Starts(j))>=(Y2(StartsAndEndsRight(l,2))-0.25)... 

                && 

Y2(Y2Starts(j))<=(Y2(StartsAndEndsRight(l,2))+0.25) 

            onset=Y2Starts(j); 

        else 

            j=j+1; 

        end 

    end 

    k=1; 

    while offset==StartsAndEndsRight(l,2)... 

            && j<=length(Y2Starts)... 

            && k<=length(Y2Ends) 

        if Y2Ends(k)>onset... 

                && Y2(Y2Ends(k))<=(Y2(onset)+0.75)... 

                && Y2(Y2Ends(k))>=(Y2(onset)-0.75)... 

                && Y2Ends(k)<onset+75 

            offset=Y2Ends(k); 



63 

 

        else 

            k=k+1; 

        end 

        if Y2Ends(k)>=onset+75 

            onset=Y2Starts(j+1); 

        end 

    end 

    StartsAndEndsRight=[StartsAndEndsRight; onset offset]; 

    l=l+1; 

end 

%stride length calculations 

FirstStrideLengths=-1*(Z1(StartsAndEndsLeft(:,2))-

Z1(StartsAndEndsLeft(:,1))); 

SecondStrideLengths=-1*(Z2(StartsAndEndsRight(:,2))-

Z2(StartsAndEndsRight(:,1))); 

%percent stride and swing calculations 

LeftTimes=[newTime(StartsAndEndsLeft(:,1)), 

newTime(StartsAndEndsLeft(:,2))]; 

LeftSwing=LeftTimes(:,2)-LeftTimes(:,1); 

percentLeftSwing=(sum(LeftSwing(1:end-

1))/(LeftTimes(end,1)-LeftTimes(1,1)))*100; 

percentLeftStance=100-percentLeftSwing; 

RightTimes=[newTime(StartsAndEndsRight(:,1)), 

newTime(StartsAndEndsRight(:,2))]; 

RightSwing=RightTimes(:,2)-RightTimes(:,1); 

percentRightSwing=(sum(RightSwing(1:end-

1))/(RightTimes(end,1)-RightTimes(1,1)))*100; 

percentRightStance=100-percentRightSwing; 

%visualizations 

clf 

plot(Y1) 

hold on 

plot(Y1Starts,Y1(Y1Starts),'kx') 

plot(Y1Ends,Y1(Y1Ends),'gx') 

plot(StartsAndEndsLeft(:,1),Y1(StartsAndEndsLeft(:,1)),'ok'

) 

plot(StartsAndEndsLeft(:,2),Y1(StartsAndEndsLeft(:,2)),'og'

) 

figure() 

plot(Y2,'r') 

hold on 

plot(Y2Starts,Y2(Y2Starts),'kx') 

plot(Y2Ends,Y2(Y2Ends),'gx') 

plot(StartsAndEndsRight(:,1),Y2(StartsAndEndsRight(:,1)),'o

k') 

plot(StartsAndEndsRight(:,2),Y2(StartsAndEndsRight(:,2)),'o

g') 
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figure() 

plot(Time,FirstYpos) 

hold on 

plot(TI,Y1IF,'c') 

plot(Time,SecondYpos,'r') 

plot(TI,Y2IF,'m') 

figure() 

subplot(3,2,1) 

plot(TI,Y1IF) 

subplot(3,2,2) 

plot(TI,Y2IF,'r') 

subplot(3,2,3) 

plot(VT,VY1) 

subplot(3,2,4) 

plot(VT,VY2,'r') 

subplot(3,3,5) 

plot(AT,AY2) 

subplot(3,2,3) 

plot(VT,VY1) 

subplot(3,2,4) 

plot(VT,VY2,'r') 

subplot(3,2,5) 

plot(AT,AY1) 

subplot(3,2,6) 

plot(AT,AY2,'r') 



 

 

APPENDIX C 

MATLAB CENTRAL DIFFERENCE FUNCTION 

 

The following is the central difference function that was written to perform calculations 

of derivatives so that velocity and acceleration could be obtained from position data. This 

function was implemented in the Matlab code in Appendix B. 

%a central diference function for derivative calculations 
function [diff, difftime] = CDF(undiff, undifftime) 
X=length(undiff)-1; 
N=2; 
diff=zeros(length(undiff)-2,1); 
while N<X 
    diff(N)=(undiff(N+1)-undiff(N-1))/(undifftime(N+1)-undifftime(N-

1)); 
    N=N+1; 
end 
difftime=undifftime(2:end-1); 
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