
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Summer 8-31-2010

A haptic control system for functional electrical stimulation of A haptic control system for functional electrical stimulation of

paraplegic legs paraplegic legs

Mark R. Shaker
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
Shaker, Mark R., "A haptic control system for functional electrical stimulation of paraplegic legs" (2010).
Theses. 74.
https://digitalcommons.njit.edu/theses/74

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.njit.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/74?utm_source=digitalcommons.njit.edu%2Ftheses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A HAPTIC CONTROL SYSTEM FOR FUNCTIONAL

ELECTRICAL STIMULATION OF PARAPLEGIC LEGS

by

Mark R. Shaker

Functional electrical stimulation (FES) is a means by which paraplegic men and women

can use their natural legs for walking. In FES the impaired muscles are stimulated with

electricity in a proper cycle to cause the legs to move in a walking pattern. It can be

greatly beneficial for paraplegics however, current systems are not widely used because

they are difficult to control in a useful manner.

The system proposed here uses a haptic interface, one that utilizes the sense of

touch, attached to a user’s index and middle fingers. The haptic device allows the wearer

to feel with the fingers what would normally be felt by the feet. Movement of the fingers

is monitored and the positions of the two fingertips can be used to dictate the appropriate

positions for the feet to be moved to using FES. Therefore, by moving the fingers in a

cyclic pattern similar to that of walking, a stimulation pattern needed for activation of leg

muscles to allow walking can be generated. Further, by having the sense of feeling for the

feet translated to the fingers a person could have improved control over their legs.

To test the feasibility of this system a virtual simulation was developed. The

simulation navigated a virtual environment using the finger walking technique. The

trajectory and velocity of the movements of the subjects was compared to normal human

gait and it was found that finger walking greatly resembles natural human gait. Further, it

was determined that control was enhanced by haptic feedback. These results show that

FES walking can benefit from a controller that incorporates haptics.

A HAPTIC CONTROL SYSTEM FOR FUNCTIONAL

ELECTRICAL STIMULATION OF PARAPLEGIC LEGS

by

Mark R. Shaker

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

August 2010

APPROVAL PAGE

A HAPTIC CONTROL SYSTEM FOR FUNCTIONAL

ELECTRICAL STIMULATION OF PARAPLEGIC LEGS

Mark R. Shaker

Dr. Richard A. Foulds, Thesis Advisor Date

Associate Professor of Biomedical Engineering, NJIT

Dr. Sergei Adamovich, Committee Member Date

Associate Professor of Biomedical Engineering, NJIT

Dr. Mesut Sahin, Committee Member Date

Associate Professor of Biomedical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Mark R. Shaker

Degree:	 Master of Science

Date:	 May 2010

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering
New Jersey Institute of Technology, Newark, NJ, 2010

• Bachelor of Science in Biomedical Engineering
New Jersey Institute of Technology, Newark, NJ, 2009

Major:	 Biomedical Engineering

v

This work is dedicated to my family and friends who believed in me when I did not.

vi

ACKNOWLEDGMENT

I wish to acknowledge the assistance of my advisor Dr. Richard Foulds. I would like to

thank Dr. Sergei Adamovich and Dr. Mesut Sahin for serving on my thesis committee.

I wish to thank the Gustavus and Louise Pfeiffer Research Foundation for their

generous grant which helped to fund my research.

I also wish to acknowledge all the students working on their theses and

dissertations in Dr. Foulds’ and Dr. Adamovich’s labs who gave their input and advice

along the way. Without the technical assistance of Diego Ramirez and Qinyin Qiu I

would not have been able to complete this project. I would like to thank John Weimer,

Brook Odle and John Hoinowski for their generous computer donations.

Finally I wish to acknowledge my family and friends for their enduring support

throughout my education.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION…………………………………………………………… 1

1.1 Objective……………………………………………………………... 1

1.2 Spinal Cord Injury…………………………………………………… 2

1.3 Functional Electrical Stimulation..………………………………….. 4

 1.3.1 Introduction to FES..………………………………………… 4

 1.3.2 The Human Gait Cycle……………………………………… 6

 1.3.3 FES Walking……………..…………………………….....…. 8

1.4 Finger Walking..…………………………………………………….. 12

1.5 Haptics………………………………………………………………. 13

2 INSTRUMENTATION………………………….…………………………... 14

 2.1 System Overview…………………………………………………….. 14

 2.2 PHANToM Haptic Devices.…………………………………………. 15

 2.3 OpenGL………………………………………………………………. 18

 2.4 OpenHaptics.…………………………………………………………. 20

 2.5 Stereo Rendering……………………………………………………... 21

 2.6 Computer Specifications……………………………………………... 21

3 METHODS…………………………………………………………………… 23

 3.1 Experimental Design…………………………………………………. 23

 3.2 Data Analysis..……………………………………………………….. 24

4 RESULTS……………………………………………………………………. 26

 4.1 Double Stance Errors……………………………………………….... 26

viii

TABLE OF CONTENTS

(Continued)

Chapter Page

 4.2 Percentage of Time in Stance and Swing…………………………….. 27

 4.3 Step Errors……………………………………………………………. 28

 4.4 Position, Velocity, and Acceleration…………………………………. 28

 4.5 Questionnaire Results………………………………………………… 31

 4.6 Stride Length…………………………………………………………. 32

5 DISCUSSION OF RESULTS………………………………………………... 33

 5.1 Double Stance Errors………………………………………………… 33

 5.2 Percentage of Time in Stance and Swing……………………………. 33

 5.3 Step Errors…………………………………………………………… 35

 5.4 Position, Velocity, and Acceleration………………………………… 34

 5.5 Questionnaire Results………………………………………………... 38

 5.6 Stride Length………………………………………………………… 38

6 CONCLUSIONS……………………………………………………………. 41

APPENDIX A HAPTIC WALKING CODE………………………………………… 43

APPENDIX B MATLAB CODE FOR ANALYSIS………………………………… 59

APPENDIX C MATLAB CENTRAL DIFFERENCE FUNCTION……………… 65

REFERENCES…………………………………………………………………….. 66

ix

LIST OF TABLES

Table Page

4.1 Number of Double Stance Errors for Each Subject Under Each Condition… 26

4.2 Percentage Stance and Swing During Level Finger Walking………………. 27

4.3 Percentage Stance and Swing During Hill Walking………………………… 27

4.4 Number of Stair Walking Errors……………………………………………. 28

4.5 Questionnaire Results………………………………………………………. 32

4.6 Average Uphill Stride Length……………………………………………… 32

4.7 Average Downhill Stride Length…………………………………………... 32

x

LIST OF FIGURES

Figure Page

1.1 A diagram representing the different levels of the spine and what is

 controlled at each level………………………………………………………… 4

1.2 A diagram of the phases of the gait cycle……………………………………… 7

1.3 A picture of the phases of the gait cycle when finger walking………………… 7

1.4 A diagram of the gait cycle and breakdown of the phases…………………….. 8

1.5 A man walking with four channel FES and a walker and two canes………….. 10

1.6 Approximate stimulation points for eliciting the synergistic flexion

 response using FES……………………………………………………………... 11

1.7 Demonstration of finger walking………………………………………………... 12

2.1 A picture of how a subject operates the game…………………………………... 15

2.2 A picture of the phantoms in their appropriate configuration for game play……. 17

2.3 A picture of the proper positions for the PHANToM’s PCI cards in the

 computer’s motherboard………………………………………………………… 18

2.4 A screenshot of the virtual environment rendered in OpenGL…………………. 20

4.1 Position, velocity, and acceleration of index and middle finger of one subject

 during level finger walking……………………………………………………… 29

4.2 Position, velocity, and acceleration plots of a single subject during uphill finger

 walking…………………………………………………………………………… 29

4.3 Position, velocity, and acceleration plots of a single subject during downhill

 finger walking……………………………………………………………………. 30

4.4 Position, velocity, and acceleration of a single subject during finger walking up

 stairs……………………………………………………………………………… 30

4.5 Normalized data for a single gait cycle of the fingers while moving over level

 terrain…………………………………………………………………………….. 31

5.1 Example of distortion due to filtering…………………………………………… 35

xi

LIST OF FIGURES

(Continued)

Figure Page

5.2 Normalized finger movements compared to ankle walking data…………….. 37

1

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this research is to prove the theory that FES walking can be better

controlled by using the finger walking technique with haptic feedback. In current FES

systems locomotion is synthesized by iteratively modifying a basic time-varying

stimulation pattern to improve the gait of each subject. A single stimulation pattern can

not be implemented for every subject due in large part to the differences in the inertia of

limbs from person to person. This comes about as a result of the difference in the size and

shape of limb segments [1]. Stimulation patterns are adapted to each individual’s needs in

order to create a gait pattern similar to natural walking. Adaptive feed forward control

systems allow more accurately controlled movements by monitoring joint and limb

segment angles throughout the movement and changing the stimulation intensity and

timing appropriately to optimize the movement to the desired trajectory. One such system

of adaptive control developed by Ou, Riess, and Abbas produced movements with

minimal errors between the desired input limb segment movements and the observed

output movements [2]. Due to the necessity for synchronization of upper limb movement

to lower limb movement and the level of control required to walk across rough or uneven

terrain or to navigate obstacles, FES must be controlled largely under the patient’s

voluntary control [3]. Voluntary control systems include switches and joysticks however

no existing systems incorporate haptic feedback as this system does.

2

When proven thoroughly this technique can be applied to FES systems with the

purpose of enabling walking to people with paraplegia. Given the current technology in

FES which can produce a highly accurate movement given a desired limb trajectory, this

system can enhance control further in order to allow more versatility to FES systems. If

FES walking can be used by people with paraplegia throughout their day to day life

instead of a wheelchair, it can allow more mobility and better health [4]. This basic

science research is a preliminary step towards the final goal of an FES system for

paraplegic walking.

1.2 Spinal Cord Injury

The spinal cord is an extension of the central nervous system that runs down the back and

is surrounded by the vertebrae. The spinal cord transmits signals between the brain and

the rest of the body. The spine has four sections. The highest eight vertebrae are called

the cervical vertebrae. Moving down the spine, the next twelve vertebrae are called the

thoracic vertebrae. Below the thoracic region there are five lumbar vertebrae. The lowest

five vertebrae are fused together and form what is called the sacrum. Signals from the

brain move through the spinal column and nerve roots branch out to the different regions

of the body from the spine at different levels. Therefore, all the nerves of the spinal cord

pass through the first cervical vertebra (C1) and the fewest number of nerves pass

through the lowest sacral vertebra (S5) [5].

Approximately 259,000 persons are currently living in the United States with a

spinal cord injury (SCI). It is estimated that an additional 12,000 new SCI cases occur

each year [6]. Causes for SCI include but are not limited to; falls, acts of violence, sports

3

injuries, and automobile accidents. Automobile accidents are the most prevalent if the age

of the person is less than 45, after that age falls become the most prevalent cause for SCI.

Of these injuries slightly more than half result in quadriplegia [7].

 Injuries to the spinal cord have different effects based upon the level of the injury

and the completeness of the injury. An injury can be complete or incomplete. A complete

injury leads to no function below the level of the injury. An incomplete injury can still

retain some function below the level of the injury. The level of the injury can predict

what parts of the body may lose function. Injuries to the cervical vertebrae generally lead

to quadriplegia, complete paralysis of the body from the neck down, and injuries to the

thoracic vertebrae generally lead to paraplegia, paralysis of the lower part of the body

including the legs. If an injury is higher on the spine it can affect more parts of the body

than if the injury is lower on the spine. High level injuries can cause impairments to the

extent that a person would require a ventilator to breathe. Injuries to the lumbar region do

less harm, these can cause a person to be unable to move their legs but still have the

ability to sit upright and control their abdominal muscles, chest and arms. People with

lower level injuries can attain mobility with manual or powered wheelchairs but, higher

level injuries generally require a powered wheelchair [8].

4

Figure 1.1 A diagram representing the different levels of the spine and what is controlled

at each level [9].

1.3 Functional Electrical Stimulation

1.3.1 Introduction to FES

For people who have received a spinal cord injury and experienced paralysis FES is

sometimes used as a treatment. FES is a method of restoring or improving body function

by applying low level currents to the affected region [4]. Depending on the level of the

injury and severity of the SCI, different methods of FES can be used to benefit the person

with the injury. If an injury is above the C4 level of the spine, a person may need

assistance to breathe, in which case FES can be used. If an injury is at the C5 level, a

5

person can retain control of their chest and biceps however, hand function and triceps

control can be lost, in which case FES can be applied to assist with arm extension and

some hand control. A lumbar level injury can lead to control of the upper body but loss of

voluntary movement in the legs, in this situation FES may be applied for stimulation of

the muscles to increase blood flow, for standing to prevent osteoporosis and for walking.

Other uses for FES include; cardiovascular exercise, coughing assistance, improving

bladder and bowel control, prevention and treatment of pressure sores, controlling

spasticity or tremor, and in some cases it can be used to regain voluntary control [4, 8].

Walking with the use of FES has many benefits for those who can use it. The

paralyzed muscles do not receive the signals from the spinal cord that cause movement.

Therefore, these do not get used. The lack of use causes the muscles to break down over

time, this is called atrophy. Lack of use also causes poor circulation of blood in the region

which can lead to blood clots. The lack of mechanical loading of the bones in the legs

leads to their weakening, this is called osteoporosis. Paraplegics who use a system which

can enable them to move and load their legs reduce their likelihood to experience blood

clots and broken bones in their legs. This can also improve their general cardiovascular

health [4].

In order to walk using FES, a minimum of four channels is required for

stimulation [11]. These would stimulate the quadriceps and the common peroneal nerve

of each leg. By stimulating the quadriceps a person could stand and lock their legs in

place. By stimulating the peroneal nerve without stimulating the quadriceps a leg can be

brought into flexion. Cyclic stimulation of the appropriate muscle groups can lead to

walking. Systems are available with up to 48 channels [21]. The higher number of

6

channels leads to a greater extent of control over the legs; however, it requires a more

complex system to control the greater number of channels. Usually the users control the

FES with switches or a joystick. The users also generally require a walker or a cane to

help maintain balance and support with their arms [4].

1.3.2 The Human Gait Cycle

The human gait cycle is composed of two main phases [10]. These are swing phase and

stance phase. In stance phase the foot is in contact with the ground. In the swing phase

the foot is progressing forward and is not in contact with the ground. The stance phase

can be broken down into three subsets. These are: the first double support phase, the

single support phase, and the second double support phase. The double support phase

refers to the part of a walking cycle in which both feet are on the ground at the same time.

The single support phase refers to when only one foot is in contact with the ground while

the other foot is in swing phase. The gait cycle describes the motion of one leg. Each leg

moves through its own gait cycle a half cycle out of sync from the other leg. Therefore,

while one leg is in the swing phase the other leg is in the single support phase. In a

normal healthy gait, approximately 60% of the cycle is spent in stance phase and the

remaining 40% is in swing phase. For describing the gait cycle it is standard to start when

one leg makes contact with the heel, in Figure 1.2 you can see that the cycle starts when

the boy’s right heel makes contact with the ground.

7

Figure 1.2 A diagram of the phases of the gait cycle [10].

Figure 1.3 A picture of the phases of the gait cycle when finger walking.

8

Figure 1.4 A diagram of the gait cycle and breakdown of the phases [10].

1.3.3 FES Walking

FES walking can be achieved with a minimum of four channels of stimulation. One such

study of this was published by Badj et al. in 1983 [11]. In this study stimulation of the

knee extensor muscles was performed first in order to prepare the muscles for standing

and walking. This exercise was done until the knee joint torque generated by the

electrical stimulation exceeded 30 – 50 Nm. When the subjects were able to generate the

appropriate torque, they were trained to stand by stimulating the knee extensor muscles.

In order to do this, a stimulation voltage of 100 V was applied to the knee extensor

muscles, and the voltage was then lessened to the lowest level at which the subject could

9

maintain knee extension. Subjects were then trained to stand for an hour or more using

this electrical stimulation system.

 Once subjects were appropriately conditioned to FES, and their muscles could

generate the required forces, the ambulation training was begun. In order to walk, a

minimum of four channels of stimulation is required. Two of the channels are used to

stimulate the knee extensor muscles of each leg. The remaining two channels are used to

stimulate the knee flexor muscles of each leg. Simultaneous flexion of the hip and knee,

and dorsiflexion of the ankle was achieved by stimulating one of four afferent nerves.

These nerves were: superficial peroneal, common peroneal, sural, or saphenous.

Appropriate electrode placement for each subject was determined by trial and error

adjustment of the electrodes until the desired response was achieved upon stimulation.

Double stance phase can be achieved by simultaneous stimulation of the knee

extensors of both legs. In order to generate a swing phase, the extensor muscles of one

leg are stimulated while the flexor muscles of the opposite leg are stimulated. By

cyclically stimulating the extensors of one leg and the flexors of the other for alternating

legs a gait cycle was developed. In order to control this, in the experiment, two switches

were used. One switch would cause a swing phase of the right leg. The second switch

would cause a swing phase of the left leg. If neither switch is pressed, the knee extensors

for both legs would be stimulated and the subject would remain in stance phase. These

switches are mounted on a walker, crutches or some other form of upper body support to

maintain balance and for safety.

Using this system, one subject was able to walk distances of approximately one

kilometer each day in the area outside of his home. Other subjects were able to stand

10

without any assistance other than the FES device and walk short distances with a walker.

Some of the other benefits experienced by participants in the program were; enhanced

bladder and bowel control, regular bowel movements, increased strength in trunk

muscles, and in one patient there was a decrease in high blood pressure.

Figure 1.5 A man walking with four channel FES and a walker (left) and two canes

(right) [11].

11

Figure 1.6 Approximate stimulation points for eliciting the synergistic flexion

response using FES [11].

More control can be obtained with more channels of stimulation to additional

muscle groups. In some studies intramuscular electrodes are used instead of surface

electrodes to achieve a better signal and muscle response [12]. Other systems exist that

combine leg braces with FES, these are called hybrid systems [13]. Hybrid systems

provide more stability of the legs while stimulating fewer muscles which makes them less

energy consuming and more stable however, their use is dependent on the level and

extent of the injury.

12

1.4 Finger Walking

Finger walking refers to moving fingers in a reciprocating pattern similar to that of the

human gait cycle. If the index and middle fingers of the right hand are used, the index

finger would represent the left leg and the middle finger would represent the right leg. A

thesis was conducted by Matthew Noesner at The New Jersey Institute of Technology

which investigated finger walking [14]. There gait cycle timing, finger trajectories and

ground reaction forces were measured for subjects while they performed the finger

motions. These were compared to published data for normal walking and strong

similarities were seen. Through this work it was demonstrated that human walking can be

mimicked through finger movements.

 Figure 1.7 A demonstration of finger walking [14].

Additional work was done in which finger walking in place was used as a means to

navigate virtual environments. In a research study conducted by Kim, Gracanin,

Matkovic, and Quek, Subjects were able to navigate 2-D virtual environments by sliding

13

their bare fingers across a touch sensitive surface [15]. For this application, two touch

screen computer monitors were used in order to allow a subject to walk in a virtual

environment with one hand and turn with the other hand. This was only a study into 2-D

navigation however; the authors believe it can be extended into a 3-D environment.

1.5 Haptics

Haptics is the science of incorporating the sense of touch into computer programs by

providing kinesthetic or tactile feedback [16]. Haptic technology has a wide number of

uses which include but are not limited to; surgical simulations, medical training, painting,

computer aided design, video games, and rehabilitation therapy [16, 17]. In order to use

haptics in a computer program a special device is required to generate the forces, this is

called a haptic device. In this research the haptic device used was the Sensable

PHANToM Premium 1.0A. To use this haptic device a finger is inserted in the end

effector of the robot’s arm and by moving the hand or finger a computer can be

controlled. The sensation of feeling that makes this a haptic device is caused by motors.

This robot can generate forces in three degrees of freedom by using motors attached to its

three joints. By appropriately powering the motors, forces up to 1.9 lbf can be generated

by this device.

14

CHAPTER 2

INSTRUMENTATION

2.1 System Overview

The system developed to test finger walking with haptic feed back was a virtual

simulation. The simulation consists of a walkway on which test subjects would travel by

finger walking using the two haptic devices. The walkway has obstacles that need to be

navigated which include; a set of three stairs, an inclined slope and a declined slope. The

person playing the simulation can feel the virtual floor of the trail with their fingers. The

sensation of touch is generated by the two haptic devices. The haptic devices chosen for

this system were both the PHANToM Premium 1.0A by Sensable Technologies Inc. of

Cambridge Massachusetts. Stereo rendering techniques were implemented to make the

simulation 3-D. This was done to enhance the sense of depth and therefore, make the

walkway easier to navigate. The 3-D image was generated using Crystal Eyes

Workstation glasses by Stereographics. The simulation was developed in C++ using the

OpenHaptics 2.0 and OpenGL libraries. OpenHaptics is a set of C++ libraries used by

Sensable to control the haptic devices. OpenGL is a set of C++ libraries that are used for

creating computer images, usually for videogames or movie special effects.

15

Figure 2.1 A picture of how a subject operates the game.

2.2 PHANToM Haptic Devices

The haptic devices chosen for this system were the PHANToM Premium 1.0A by

Sensable Technologies Inc. of Cambridge Massachusetts. These devices were selected

because of the size of their operating space, their ability to render forces, and the gimbal

end effector that each has.

 The size of the workspace of the device is 5 inches by 7 inches by 10 inches.

Finger walking requires only a small volume to perform. Other devices manufactured by

Sensable have ranges of motion which can accommodate whole arm movements. Those

devices were not selected because their workspaces are superfluous to the needs of this

system. The PHANToM Premium 1.0A has a workspace volume which is large enough

16

to easily navigate the virtual trail using finger walking and not so large that there is

excess space in the workspace.

 The model chosen can render forces better than models of lower cost. The

device’s PCI interface and large external amplifiers allow it to render forces more

smoothly than other devices by the same manufacturer. Compared to lower cost models,

the Premium 1.0A can also generate greater forces. The Premium 1.0A can generate 1.9

lbf while the Omni can only generate 0.75 lbf. The ability to render forces smoothly and

generate greater forces enhanced the functionality of the system. The smoothness of the

force rendering allows the virtual environment to have a viscous damping effect. This

effect prevents the device from shaking when it makes contact with an object in the

virtual environment by slowing high velocity movements. The high force generation is

also necessary for proper game play. If the maximum force generated is too low, the

person playing the game will experience their finger falling through the virtual surface if

they were to apply a force in excess of the maximum. This would lead to difficulty in

navigation of the virtual environment.

 The end effector of this device is a thimble gimbal. The term thimble in the name

refers to the thimble shaped cup in which the subject places his or her finger. A gimbal is

a device that allows three degrees of freedom for rotations. With this thimble gimbal a

subject can place his or her fingertip in the thimble and move about the environment

without regard for the orientation of their finger. Other haptic devices use a pen style

control arm that a user holds in their hand. The thimble gimbal did not need any

instrumentation or adaptation to work for the application of finger walking.

17

 The devices were arranged so that they were facing each other. This was

necessary for two fingers of the same hand to be used. It this had not been done, the

devices would have collided with each other during use. To accommodate for this

rotation, the program was written to rotate the workspace of the devices so that what is

normally the Z axis for the device is now the X axis. Also, the device on the left side has

its end effector oriented into the positive X direction while the device on the right side is

oriented into the negative X direction.

Figure 2.2 A picture of the phantoms in their appropriate configuration for game play.

 The two devices interface with the computer via PCI card. One of the PCI cards

was inserted into the highest PCI slot on the computer’s motherboard and the remaining

card was inserted into the lowest slot. This was essential to prevent computer errors. For

the operating system and BIOS revision of the computer used, interrupt request settings

18

are automatically assigned to devices depending on their type and position on the

motherboard. For use in this computer, if the PCI cards are in any position other than the

one described, the computer can not function properly. The system will either crash

unexpectedly, or the haptic devices will not be able to properly communicate with the

scheduler and therefore, will not render forces correctly.

Figure 2.3 A picture of the proper positions for the PHANToM’s PCI cards in the

computer’s motherboard. The highest slot is an unoccupied PCI express slot, the second

slot is occupied by the graphics card, the third slot contains the first PHANToM PCI

card, the fourth slot is an unoccupied PCI express slot, the fifth slot contains the fire wire

card, and the sixth slot contains the second PHANToM PCI card.

2.3 OpenGL

OpenGL is a set of libraries for use in C++ which enables the generation of computer

images. By linking these libraries to a C++ application, a software developer can use a set

of simple functions to render images. These images are generally rendered by providing

19

points in three dimensional space to a function which will link these points in an

appropriate manner. OpenGL is the computer graphics industry’s most widely used and

supported 3-D graphics application programming interface.

 The virtual environment was rendered using OpenGL. The environment was

simple and was made using three main functions. These were quads, triangles, and quad

strips. These are three methods of drawing a shape. Quads accepts sets of four points in

3-D space. The function then connects the four points appropriately to form a four sided

shape. Quad strip accepts sets of two vertices for four sided faces of a shape. It then

connects these faces together at common sides to create a strip of four sided shapes.

Triangles accepts sets of three vertices and draws a triangle from each set. Using these

three basic functions a trail was drawn and trees were placed beside the trail. The trees

were included to provide a motion reference. This allowed users to recognize that

forward progress was being made by seeing objects move closer relative to their motions.

 The representation of the feet in the virtual environment was a pair of boots. This

image was too difficult to generate, so it was acquired through the website

TurboSquid.com, which is a site where 3-D graphics images can be purchased and

downloaded. The file obtained from the website was of a form other than OpenGL code,

so it was converted using the Okino Computer Graphics PolyTrans software. This

software accepts 3-D images rendered with various formats and can convert them to

various other formats. A piece of C++ code was written by PolyTrans, which was

inserted into the application and rendered the boots in the game. Because the free

evaluation version of PolyTrans was used, the boots have triangles missing from their

mesh.

20

Figure 2.4 A screenshot of the virtual environment rendered in OpenGL.

2.4 OpenHaptics

OpenHaptics is the application programming interface utilized by Sensable for

developing applications with their haptic devices. This interface builds off of OpenGL to

render the haptics. In general, an image is drawn using OpenGL functions and it is sent to

the haptic device with slight additions to the code. OpenHaptics was designed so that a

programmer with experience in OpenGL can easily create high level graphical programs

in OpenHaptics.

OpenHaptics 2.0 was used instead of OpenHaptics 3.0, which is the most up to

date version of the software. The reason for this was because the haptic devices used

were not recently purchased and the newest version of the software no longer supports

the device used. If a newer device is used OpenHaptics 3.0 may then be used.

21

2.5 Stereo Rendering

Stereo rendering was used to create a three dimensional image. When rendering 3-D

images, the image is drawn on the screen twice, once for the left eye and once for the

right eye. Various systems exist to selectively allow the images to be viewed by only the

appropriate eye. Special glasses, manufactured by Stereographics, were used to achieve

this. The glasses can selectively prevent an image from entering either eye at a very high

speed by shuttering the lenses open and closed. The glasses synchronize with the

computer monitor’s refresh rate so that when an image is being projected for the left eye

only the left eye can see that image and vice versa for the right eye. Using these glasses,

and appropriately drawing the image for either eye, presents the user with the illusion that

the images are coming out of the screen.

 To appropriately render the images so that the 3-D affect can be achieved, the

view port was moved for each eye. When creating images in OpenGL, a viewpoint must

be chosen. The point from which each eye views the image was set up along the same

horizontal line and looked at the same point in space but, the two eye positions were

slightly separated in the X direction. The left eye was placed slightly to the left of the

point X = 0 and the right eye was placed the same distance to the right of X = 0. By doing

this, binocular vision can be simulated because, one image is being projected for the left

eye and a different image is projected for the right eye.

22

2.6 Computer Specifications

The computer used was a Dell Dimension 9100. In order to create images in 3-D using

the Stereographics shutter glasses, a graphics card capable of quad buffering was

necessary. The card used was an Nvidia Quadro FX-3500. Also, it was necessary to use a

monitor with a high refresh rate in order to project images for either eye without creating

discontinuities when the objects move. A Viewsonic Graphics series G225f was used for

this. Using this graphics card and monitor combination a refresh rate of 100Hz was

achieved.

23

CHAPTER 3

METHODS

3.1 Experimental Design

The first step of the experiment is the tutorial. This is an instruction period which lasts 5

to 10 minutes. During the tutorial, it is demonstrated to the subject how to perform finger

walking and subjects are allowed to try the simulation in a free play mode. The free play

mode is a continuous version of the simulation during which no data is collected. In

addition, if a subject fails to have at least one finger in contact with the surface at any

given time, the screen will turn red as a warning of a double stance error. This is because

slow walking is defined as having a period of double stance. For this experiment we are

only interested in slow walking.

 After the tutorial is concluded, three versions of the simulation are run. The first

simulation includes walking over flat terrain. The second simulation includes walking up

and down three hills which have a 9° slope. The third simulation has four sets of stairs

that the subject must navigate. When the end of the trail is reached the simulation ends

automatically and the program terminates. During the simulation, data are recorded and

stored for offline analysis. The data recorded are the positions of the fingers and the

forces being sent to the haptic devices. Additionally, a binary variable is recorded which

indicates if and when a double stance error has occurred.

 After the game is concluded, the subjects are asked to fill out a questionnaire. The

questionnaire asks; if any discomfort was felt, if the game was difficult to play, and if

they have any suggestions for improvements.

24

All experimental protocols were approved by the NJIT IRB committee.

3.2 Data Analysis

Five primary variables were analyzed. These were; number of double stance errors,

percentages of time spent in swing and stance phase during level and hill walking, the

number of errors which occurred during stair walking, the shapes of the velocity and

acceleration curves, and the results of the questionnaire. A double stance error refers to a

moment when both fingers leave the surface simultaneously. A stair walking error is

when a subject misses a step or slips off of a step.

 In order to analyze this data, it was imported to Matlab. A code was written for

analysis which determined the onset of each movement by analyzing the forces in the Y

direction which were acting on each finger. The moment the force went from an upward

value to a downward value, it marked the rise of the finger to initiate a movement. The

end of each movement was marked by a stopping of the movement in the Y direction as

observed from the position data. Once the onset and offset of each movement was

determined, the percentage of time spent in stance and swing was analyzed by observing

the time at which each movement began and ended.

 To determine the velocities and accelerations of the fingers during the

movements, the data were filtered and differentiated using a central difference function.

The data were sampled at a rate around 50Hz. In order to obtain velocity and acceleration

data that is meaningful, the position data must be filtered. The most effective filtering

technique for this data was found to be interpolating the data to bring the sample rate up

to 100Hz and then applying a second order low pass Butterworth filter with a cutoff

frequency of 3Hz.

25

 Additionally, stride length was analyzed for uphill and downhill finger walking.

In order to do this, a technique was taken from treadmill walking gait analysis [18]. To

determine stride length, the difference between the positions of one foot before and after

a step has been taken are analyzed. This difference is considered to be the step length.

The onset of movement and end of movement times have already been determined in

order to find step timing. The onset and offset times were then paired with the horizontal

position data in order to determine step length.

26

CHAPTER 4

RESULTS

4.1 Double Stance Errors

Double stance errors are defined as an instant during finger walking when neither finger

is in contact with the surface. During the training session, the subjects were given an

indication when a double stance error occurred however, during the testing period, no

such warning was given.

Table 4.1 Number of Double Stance Errors for Each Subject Under Each Condition

Subject Level Hills Stairs

AN 0 0 1

DS 5 5 0

GA 1 0 2

IL 2 3 14

KC 0 0 0

 The minimum number of errors for a subject was 0 and the maximum number of

errors for a subject was 14 in a single trial. The overall average number of errors for the

entire experiment was 2.2 errors in a single trial.

27

4.2 Percentage of Time in Stance and Swing

For normal healthy walking, it is usually expected to observe a 60% stance and 40%

swing distribution. In addition, the gait cycle of the left leg should be 180° out of phase

with the right leg. For the five subjects, this was analyzed during the level and hill

walking trials.

Table 4.2 Percentage Stance and Swing During Level Finger Walking

 Left Finger Right Finger

Subject Hand used Percent Stance Percent Swing Percent Stance Percent Swing

AN Left 63.0411 36.9589 57.737 42.263

DS Right 54.9744 45.0256 59.5641 40.4359

GA Right 67.1155 32.8845 72.7049 27.2951

IL Left 69.8964 30.1036 61.9966 38.0034

KC Right 63.8864 36.1136 58.8962 41.1038

Table 4.3 Percentage Stance and Swing During Hill Walking

 Left Finger Right Finger

Subject Hand used Percent Stance Percent Swing Percent Stance Percent Swing

AN Left 65.9287 34.0722 64.8696 35.1304

DS Right 52.174 47.8253 53.551 46.449

GA Right 66.8774 33.1226 67.5458 32.4542

IL Left 67.8175 32.1825 56.9619 43.0381

KC Right 57.1592 42.8408 50.8716 49.1284

 During finger walking, the subjects show a gait cycle similar to that of a subject

with an impaired limb. This is observed through the asymmetry in the percentage of time

spent during stance and swing. For all subjects during level walking, the distributions

were nearly 60:40 for one leg and a slightly longer time spent in stance for the other leg.

This is similar to what would be observed for a patient with damage to one leg [10]. This

is brought about because the index finger is shorter than the middle finger. In order to

help counteract this effect, during the experiment, a virtual lengthening of the index

finger was done by changing the end position of the index finger in the virtual

28

environment to effectively equalize the lengths of the two fingers. However, the

asymmetry was still observed even with this correction.

4.3 Step Errors

When walking on the stairs, all subjects were able to successfully navigate all four flights

of stairs. However, each subject performed missed step errors. A Missed step error was

defined as either landing on the wrong step or slipping off of a step.

Table 4.4 Number of Stair Walking Errors

 Number of errors

Subject Left finger Right finger

AN 7 2

DS 6 9

GA 4 5

IL 2 3

KC 2 1

4.4 Position, Velocity and Acceleration

For all subjects, the velocity and acceleration curves had similar trends. Movement was

similar to ankle data during walking except, there is no notch in the movement that would

be attributed to the roll from heel to toe. Presented here are the vertical Y position,

velocity and acceleration curves for level, hill, and stair walking.

29

Figure 4.1 Position, velocity and acceleration of index and middle finger of one subject

during level finger walking. The left finger is the index finger and the right finger is the

middle finger of the subject’s right hand.

Figure 4.2 Position, velocity and acceleration plots of a single subject during uphill

finger walking.

30

Figure 4.3 Position, velocity and acceleration plots of a single subject during downhill

walking

Figure 4.4 Position, velocity and acceleration of a single subject during finger walking

up stairs.

31

If the data is normalized, by using a 20:3 ratio, then the movements can be more

easily compared to normal human walking. The 20:3 ratio was a rough estimate of the

vertical displacement of the foot during walking versus that of the finger during finger

walking. The position data was therefore multiplied by 20/3 and then differentiated to

obtain normalized position, velocity, and accelerations in the Y direction.

Figure 4.5 Normalized data for a single gait cycle of the fingers while moving over level

terrain.

4.5 Questionnaire Results

The questionnaire asked if any discomfort was experienced and if the simulation was

difficult to operate. If either was responded to with a yes answer, subjects were asked to

elaborate as to why.

32

Table 4.5 Questionnaire Results

 Yes No

Discomfort 0 5

Difficult 1 4

 Of the five subjects, none experienced any pain or discomfort. Four of the five

subjects did not find the simulation difficult to play. The remaining subject, who

experienced difficulty, cited trouble with the viewing perspective used in the simulation.

4.6 Stride Length

For three subjects, stride length was measured during both uphill and downhill finger

walking. The data did not show statistical significance nor did it follow the expected

trend for any of the subjects analyzed.

Table 4.6 Average Uphill Stride Length Data

Subject Left Finger Right Finger

AN 0.512 0.962

DS 0.431 0.987

IL 1.352 0.599

Table 4.7 Average Downhill Stride Length Data

Subject Left Finger Right Finger

AN 1.063 1.189

DS 0.563 1.219

IL 1.338 0.428

33

CHAPTER 5

DISCUSSION OF RESULTS

5.1 Double Stance Errors

The number of double stance errors varied from subject to subject. The least number of

errors for a single subject was 0 and the maximum number of errors observed in a single

subject was 19. During walking, double stance is seen during the period between initial

contact of one foot and toe off of the opposite foot. Movement without double stance can

be observed if the subject is running. During finger walking, the weight of the hand is not

supported by the fingers as the weight of the body is by the feet during normal walking.

The weight of the hand is supported by the wrist; therefore, it is possible to move through

the simulation without exhibiting double stance. This error was observed upon analysis of

data from earlier trials. To help correct for this error, the addition of the warning indicator

was made to the training program however, double stance errors were still seen in 4 of

the 5 subjects. It can be seen from the results of subject KC that actively forcing double

stance during walking can be done and walking can be performed without the errors. If

more training is given to the subjects, with a specific emphasis on the double stance

errors, subjects can learn to not make the errors.

5.2 Percentage of Time in Stance and Swing

All five subjects demonstrated dominance toward one side in their stride pattern. A

healthy subject would exhibit 60% of their stride in stance and 40% in swing during

normal walking. In general, all five subjects showed timing that tended toward 60:40

34

with a range from 53:47 to 73:27. However, none showed a precisely symmetrical gait

pattern for both fingers. In general, one finger is established as the dominant finger and

more time is spent in stance on that finger. This is a result of the difference in lengths of

the two fingers. Subjects are exhibiting a gait pattern similar to that of a person with a

shortened leg. In order to help correct for this, a virtual lift was added to the shortened

finger; however, it does not perfectly correct the deficit. Most likely, the deficit is due

more to the differences in the positions of the proximal interphalangeal joints of the index

and middle fingers than to the total lengths of the fingers.

5.3 Step Errors

A step error was defined as missing the target step or slipping off of the step once on it.

All subjects made step errors, the most being 15 and the least being 3. The majority of

these errors were from slipping off of the surface once on it. This is more a deficiency in

the simulation than the subject, in order to prevent unexpected kicking, which can occur

if the virtual representation of the foot becomes stuck on the stairs, a very low coefficient

of friction was used. If a higher friction coefficient was used, it would have made the

stairs more easily climbable however, it risked injury to the user and damage to the

equipment.

With the flaw of the slippery staircase, one subject was able to navigate a flight of

six consecutive stairs flawlessly. This demonstrates that climbing stairs is achievable with

finger walking. If subjects trained for a more extensive period of time, it is more likely

that stair navigation could be more easily done.

35

5.4 Position, Velocity and Acceleration

In order to obtain smooth acceleration curves, the position data had to be filtered with a

3Hz cut off frequency. The motions of the fingers are less than 1 cycle per second, so

none of the important motions are being filtered however, with any filtering data

distortion can be expected.

Figure 5.1 Example of distortion due to filtering.

The filtering at the low frequency distorted the values however it allowed for

determination of velocity and acceleration. Due to the method of differentiation, which

measured the differences between the values before and after each point and divided by

the time for the movement, any noise is amplified when velocity is calculated and it is

further amplified in the acceleration. By filtering out any sharp changes in the position

data, noise can be eliminated in the velocity and acceleration curves, however, the

amplitudes are affected.

The shapes of the vertical movement trajectory, the velocity, and the acceleration

profile, show similarities to walking. The positions move in a manner similar to that of

36

the ankle during normal walking, with the exception of the peak at the end of the step

which is attributed to the foot rolling from the heel to the toe. Since the finger has a

rounded end, there is no increase in the elevation, like the ankle has during walking. The

velocity profiles resemble those of normal walking in which a movement has a positive

velocity for the first half of the movement and a negative velocity for the second half of

the movement. The approximate symmetry of the positive velocity and the negative

velocity demonstrates a planning in the movement. The subjects move their fingers to the

point they are trying to reach and then slow down until impact. This type of motion is

further demonstrated by the acceleration curves, in which the motion begins with a

positive acceleration that climbs to a point a quarter of the way through the movement

before it starts to slow the positive acceleration. At a point mid way through the

movement the acceleration becomes negative as the finger moves downward, it reaches a

peak negative acceleration and then the negative acceleration decreases until impact with

the surface, at which time there is a large positive acceleration for a moment before the

finger comes to rest.

37

Figure 5.2 Normalized finger movements compared to ankle walking data.

 Figure 5.2 was created by multiplying the finger positions by a 20:3 scaling

factor, this was determined to be an appropriate approximation to the scaling factor

between finger movements and foot movements during walking. The movements were

then differentiated to determine the velocities and accelerations. The right column of the

figure comes from analysis of published ankle position data during walking from

Winter’s text [20]. The ankle position data was filtered using the same filter as the finger

positions, appropriately changed to accommodate for the different sampling frequency. It

was then differentiated to obtain velocity and acceleration. Looking at this figure, you

can see great similarity between normal walking and finger walking. When multiplied by

the scaling factor, the values of peak velocity and acceleration come out to be very close

to one another. In normal walking, the peak negative acceleration is almost double the

peak positive acceleration, but this is not observed in finger walking. However, the finger

38

walking data did not filter and differentiate as smoothly as the normal walking data and it

may be that the same peak values are met but noise has distorted them sufficiently.

In stair climbing, the results that demonstrated control and planning are also

evident. In order to effectively navigate the stairs a greater level of control is required.

Generally a slowing of the finger can be seen just before impact with the stair. This

results in a smaller value for the positive acceleration at the end of the movement because

the movement is being brought to a stop over a greater period of time.

In the first step of the left finger in Figure 4.4, a slight positive acceleration can be

seen before a negative acceleration and the final positive acceleration that ends the

movement. This movement was made as a last minute correction. The subject decided

late in the movement to advance his finger more forward, so he slowed, made the

adjustment, and then finished the movement. This demonstrates an ability to adapt with

finger walking just as can be seen with normal walking.

In addition, it should be noted that the subject was able to learn the positions of

the stairs after the first step. There was an obvious error when approaching the first step

that the subject was able to compensate for, but each step after the first showed more

control and less hesitation. The fastest movement was the final step up, which shows that

subjects were able to learn the height of the step quickly and adapt to that height by the

sixth stair.

The finger movements closely mimic ankle positions. Using these data, inverse

kinematics can be used to determine virtual trajectories for the hip and knee joints. These

virtual trajectories, and the timing obtained from the finger movements, can be used in

order to enable FES walking.

39

5.5 Questionnaire Results

The questionnaire asked two yes or no answer questions. Did you experience any

discomfort during the simulation? Did you find the simulation difficult? If either of these

questions were answered yes then the subject was asked to further elaborate. Of the five

subjects only one answer of yes was recorded. The subject found it difficult to lift one

foot higher than the other when moving uphill and became stuck momentarily. In

addition, the subject had difficulty with the viewpoint. The subject’s difficulty in lifting

up his fingers to navigate the hill could be attributed to fatigue. He had already

successfully navigated two hills before that, so it was a feat that the subject had

accomplished previously. The viewpoint issue comes about because the point through

which the simulation is perceived is fixed, but the virtual representation of the feet can

move out of the range of this fixed field of view. Four of the five subjects did not have a

difficulty with this however, in future research, it would be beneficial to come up with a

different viewpoint.

5.6 Stride Length

According to various papers, stride length should lengthen going uphill and shorten going

downhill [19]. The data did not show statistical significance and they did not follow the

expected trend. This can be attributed to the lack of weight supported by the finger tips.

When walking up hill stride length increases while cadence decreases. This is done to

accommodate for having to step higher to overcome an obstacle. When walking down hill

stride length decreases while cadence increases. This is done because more control is

needed to safely lower the center of gravity of the body. Because the hand is not actually

40

supporting any weight, the steps do not significantly change in length or cadence from

flat finger walking.

41

CHAPTER 6

CONCLUSIONS

Of the five subjects tested, all were able to successfully navigate each of the three types

of terrain. One subject in particular did exceptionally well in that he had no double stance

errors and was able to navigate the stairs with only three miss steps. This demonstrates

that finger walking with haptic feedback is a feasible means of navigating virtual

environments. The level walking did closely resemble normal walking in the velocity and

acceleration profiles. However, finger walking on hills did not resemble normal walking.

Stair climbing was achieved and with practice can be improved. In order to extend finger

walking to natural environments, certain conditions must be met. The fingers need to be

in support of the mass they are moving. The hand can travel freely in space without the

fingers because the weight of the hand is supported by the arm. Either the subject needs

to train extensively in order to not misstep and fall or, some form of algorithm must be

written which can restrict the movements of the fingers to those that can be achieved by

the legs. Also, the stride timing resembles that of a person with unilateral leg damage.

This is because one finger is shorter than the other which, effectively, makes the person

walk as if one leg is shorter than the other. Lengthening of the finger in the virtual

environment was not enough to correct this issue. In order to more thoroughly enable

natural walking with fingers, the proximal interphalangeal joint of the index finger must

be effectively brought to the same position as that of the middle finger. If motion sensors

are placed at the interphalangeal joints of each finger, and the haptic devices remain at

42

the end of each finger, an algorithm can be written to determine the appropriate end

position of the foot. This could improve the cadence to that of a healthy subject.

 This research has demonstrated that significant work needs to be done in order to

safely navigate hills and uneven terrain using the finger walking technique. However, this

research has also supported the findings of both Mathew Noesner’s thesis and the work of

Ji-Sun Kim and colleagues; it demonstrates that finger movements can mimic leg

movements during walking and that this technique can be used to navigate virtual

environments. This research also advances the navigation of virtual environments beyond

what has been done previously because it allows for navigation of 3-D and not just 2-D

environments.

APPENDIX A

HAPTIC WALKING CODE

The code for the haptic walking game implemented in C++ is provided below.

/***

Mark Shaker's code for a haptic environment. with stereovision

This was adapted from an openhaptics example called hellospheredual

***/

// 2/23/2010

#include <math.h>

#include <assert.h>

#include "C:\Documents and Settings\Mark\Desktop\PHANToM

Codes\boots\Moving Stairs\boot.c"

#if defined(WIN32)

include <windows.h>

#endif

#if defined(WIN32) || defined(linux)

include <GL/glut.h>

#elif defined(__APPLE__)

include <GLUT/glut.h>

#endif

#include <HL/hl.h>

#include <HDU/hduMatrix.h>

#include <HDU/hduError.h>

#include <HLU/hlu.h>

#include <conio.h>

#include <stdio.h>

//#include <time.h>

#define EYESEP 0.30

#define FOCALLENGTH 3.0

static HHD hHD1 = HD_INVALID_HANDLE;

static HHD hHD2 = HD_INVALID_HANDLE;

static HHLRC hHLRC1 = 0;

static HHLRC hHLRC2 = 0;

static double alf=0.90;

FILE *pFile;

// shape id for shape we will render haptically

HLuint objectShapeId1;

HLuint objectShapeId2;

44

HLuint effectId1;

HLuint effectId2;

HLdouble zTranslation;

HLdouble device1ProxyPosition[3];

HLdouble device2ProxyPosition[3];

HLdouble device1Force[3];

HLdouble device2Force[3];

HLboolean device1Contact;

HLboolean device2Contact;

HLdouble ZProxy1;

HLdouble ZProxy2;

HLdouble lastProxy1;

HLdouble lastProxy2;

HLdouble defaultPhantomTransform = -90;

HLdouble Phantom2Transform = 90;

HLdouble defaultxtransform = -7;

HLdouble secondxtransform = 7;

long int initial_time;

#define CURSOR_SIZE_PIXELS 20

static double gCursorScale;

static GLuint gCursorDisplayList = 0;

bool stereo = true;

/* Function prototypes. */

void glutDisplay(void);

void glutReshape(int width, int height);

void glutIdle(void);

void glutMenu(int);

void exitHandler(void);

void initEffects();

void initGL();

void initHD(HDstring pConfigName, HHD &hHD);

void initHL(HHD hHD, HHLRC &hHLRC, HLuint &shapeId);

void initScene();

void drawObjectHaptics(HLuint shapeId);

void drawSceneGraphics();

void ObjectGraphics();

void realativeMotionObjects();

void drawCursor(HLfloat angle);

void drawSceneDamping(HHLRC &hHLRC, HLuint &effectId);

void updateWorkspace(HLdouble transform,HLdouble xtransform);

void MoveIt();

void Draw();

void DataCollection();

/**

Initializes GLUT for displaying a simple haptic scene

********/

int main(int argc, char *argv[])

{

 glutInit(&argc, argv);

45

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH |

GLUT_STEREO);

 glutInitWindowSize(500, 500);

 glutCreateWindow("Mark's Stairs");

 /* Set glut callback functions. */

 glutDisplayFunc(glutDisplay);

 glutReshapeFunc(glutReshape);

 glutIdleFunc(glutIdle);

 glutCreateMenu(glutMenu);

 glutAddMenuEntry("Quit", 0);

 glutAttachMenu(GLUT_RIGHT_BUTTON);

 /* Provide a cleanup routine for handling application exit. */

 atexit(exitHandler);

 initScene();

 //effect

 drawSceneDamping(hHLRC1, effectId1);

 drawSceneDamping(hHLRC2, effectId2);

 //open the file for data collection

 pFile = fopen("C:/Documents and Settings/Mark/Desktop/Data.txt",

"w");

 initial_time=GetTickCount();

 glutMainLoop();

 //close the data file

 fclose(pFile);

 return 0;

}

/**

GLUT callback for redrawing the view

********/

void glutDisplay()

{

 MoveIt();

 DataCollection();

 hlMakeCurrent(hHLRC1);

 drawObjectHaptics(objectShapeId1);

 hlMakeCurrent(hHLRC2);

 drawObjectHaptics(objectShapeId2);

 //drawSceneGraphics();

46

 Draw();

 glutSwapBuffers();

}

/**

GLUT callback for reshaping the window. This is the main place where

the

viewing and workspace transforms get initialized.

********/

void glutReshape(int width, int height)

{

 static const double kPI = 3.1415926535897932384626433832795;

 static const double kFovY = 100;

 double nearDist, farDist, aspect;

 glViewport(0, 0, width, height);

 /* Compute the viewing parameters based on a fixed fov and

viewing

 * a canonical box centered at the origin */

 nearDist = 1.0 / tan((kFovY / 2.0) * kPI / 180.0);

 farDist = nearDist + 6;

 aspect = (double) width / height;

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluPerspective(kFovY, aspect, nearDist, farDist);

 //gluPerspective(50, aspect, 10, 1700);

 /* Place the camera down the Z axis looking at the origin */

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();

 gluLookAt(0.0, 2.0, farDist, //places camera

 0.0, 0.5, 0.0, //aims camera lens towards this point

 0.0, 1.0, 0.0); //defines which way is up

 hlMakeCurrent(hHLRC1);

 updateWorkspace(defaultPhantomTransform, defaultxtransform);

 hlMakeCurrent(hHLRC2);

 updateWorkspace(Phantom2Transform, secondxtransform);

}

/**

 Draw stereo

****/

void Draw()

 // Draw Our Scene

{

 static const double kPI = 3.1415926535897932384626433832795;

47

 static const double kFovY = 100;

 double nearDist, farDist;

 nearDist = 1.0 / tan((kFovY / 2.0) * kPI / 180.0);

 farDist = nearDist + 6;

 /* Compute the viewing parameters based on a fixed fov and

viewing

 * a canonical box centered at the origin */

 glFlush();

 glMatrixMode(GL_MODELVIEW);

 glDrawBuffer(GL_BACK_LEFT);

 glPushMatrix();

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //

Clear Screen And Depth Buffer

 glLoadIdentity();

 // Reset The Modelview Matrix

 gluLookAt(-EYESEP/2, 2.0, farDist,

 0.0, 0.5, 0.0,

 0.0, 1.0, 0.0);

 glEnable (GL_BLEND); glBlendFunc (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);

 drawSceneGraphics();

 glPopMatrix();

 // Draw the right eye view

 glFlush();

 glDrawBuffer(GL_BACK_RIGHT);

 glPushMatrix();

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //

Clear Screen And Depth Buffer

 glLoadIdentity();

 // Reset The Modelview Matrix

 gluLookAt(EYESEP/2, 2.0, farDist,

 0.0, 0.5, 0.0,

 0.0, 1.0, 0.0);

 glEnable (GL_BLEND); glBlendFunc (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);

 drawSceneGraphics();

 glPopMatrix();

 // Restore The Old Projection Matrix

48

 //glFlush();

 // Flush The GL Rendering Pipeline

 glutSwapBuffers();

}

/**

GLUT callback for idle state. Use this as an opportunity to request a

redraw.

********/

void glutIdle()

{

 glutPostRedisplay();

}

/**

Popup menu handler

*******/

void glutMenu(int ID)

{

 switch(ID) {

 case 0:

 exit(0);

 break;

 }

}

/**

Initialize the scene. Handle initializing both OpenGL and HL

********/

void initScene()

{

 initGL();

 // Initialize HDAPI first, so that the device instances exist in

the system

 // All device instances need to exist before starting the

scheduler,

 // which gets started automatically by the first created context

 initHD("Default PHANToM", hHD1);

 initHD("PHANToM 2", hHD2);

 // Initialize the contexts and give each one a handle to a device

instance

 initHL(hHD1, hHLRC1, objectShapeId1);

 initHL(hHD2, hHLRC2, objectShapeId2);

}

/**

Setup general OpenGL rendering properties, like lights, depth

buffering, etc.

49

********/

void initGL()

{

 static const GLfloat light_model_ambient[] = {0.3f, 0.3f, 0.3f,

1.0f};

 static const GLfloat light0_diffuse[] = {0.9f, 0.9f, 0.9f, 0.9f};

 static const GLfloat light0_direction[] = {0.0f, -0.4f, 1.0f,

0.0f};

 /* Enable depth buffering for hidden surface removal. */

 glDepthFunc(GL_LEQUAL);

 glEnable(GL_DEPTH_TEST);

 /* Cull back faces. */

 glCullFace(GL_BACK);

 glEnable(GL_CULL_FACE);

 /* Other misc features. */

 glEnable(GL_LIGHTING);

 glEnable(GL_NORMALIZE);

 glShadeModel(GL_SMOOTH);

 glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_FALSE);

 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, light_model_ambient);

 glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse);

 glLightfv(GL_LIGHT0, GL_POSITION, light0_direction);

 glEnable(GL_LIGHT0);

}

/**

Initialize an HD device instance

********/

void initHD(HDstring pConfigName, HHD &hHD)

{

 HDErrorInfo error;

 hHD = hdInitDevice(pConfigName);

 if (HD_DEVICE_ERROR(error = hdGetError()))

 {

 hduPrintError(stderr, &error, "Failed to initialize haptic

device");

 fprintf(stderr, "Press any key to exit");

 getchar();

 exit(-1);

 }

 printf("Found device model: %s / serial number: %s.\n\n",

 hdGetString(HD_DEVICE_MODEL_TYPE),

hdGetString(HD_DEVICE_SERIAL_NUMBER));

}

/**

50

Initialize an HL rendering context for a particular device instance

********/

void initHL(HHD hHD, HHLRC &hHLRC, HLuint &shapeId)

{

 hHLRC = hlCreateContext(hHD);

 hlMakeCurrent(hHLRC);

 // Enable optimization of the viewing parameters when rendering

 // geometry for OpenHaptics

 hlEnable(HL_HAPTIC_CAMERA_VIEW);

 // Specify front face touchability only

 hlTouchableFace(HL_FRONT);

 // generate id's for the three shapes

 shapeId = hlGenShapes(1);

}

/**

This handler will get called when the application is exiting.

Deallocates any state and cleans up.

********/

void exitHandler()

{

 // deallocate the shape id we reserved in in initHL

 hlDeleteShapes(objectShapeId1, 1);

 hlDeleteShapes(objectShapeId2, 1);

 // free up the haptic rendering context

 hlMakeCurrent(NULL);

 if (hHLRC1 != NULL)

 {

 hlDeleteContext(hHLRC1);

 }

 if (hHLRC2 != NULL)

 {

 hlDeleteContext(hHLRC2);

 }

 // free up the haptic device

 if (hHD1 != HD_INVALID_HANDLE)

 {

 hdDisableDevice(hHD1);

 }

 if (hHD2 != HD_INVALID_HANDLE)

 {

 hdDisableDevice(hHD2);

 }

}

51

/**

Use the current OpenGL viewing transforms to initialize a transform for

the

haptic device workspace so that it's properly mapped to world

coordinates.

********/

void updateWorkspace(HLdouble transform,HLdouble xtransform)

{

 GLdouble modelview[16];

 GLdouble projection[16];

 GLint viewport[4];

 glGetDoublev(GL_MODELVIEW_MATRIX, modelview);

 glGetDoublev(GL_PROJECTION_MATRIX, projection);

 glGetIntegerv(GL_VIEWPORT, viewport);

 hlMatrixMode(HL_TOUCHWORKSPACE);

 hlLoadIdentity();

 hlRotated(transform,0,1,0);

 hlTranslated(xtransform,200,0);

 /* fit haptic workspace to view volume */

 hluFitWorkspace(projection);

 /* compute cursor scale */

 gCursorScale = hluScreenToModelScale(modelview, projection,

viewport);

 gCursorScale *= CURSOR_SIZE_PIXELS;

}

/**

The main routine for displaying the scene. Get the latest snapshot of

state

from the haptic thread and use it for displaying a 3D cursor.

********/

void drawSceneGraphics()

{

 glClearColor(0.0,0.0,1.0,0.0);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // draw 3D cursor at haptic device position

 hlMakeCurrent(hHLRC1);

 drawCursor(-90);

 hlMakeCurrent(hHLRC2);

 drawCursor(90);

 //draws the non haptic scene

 glPushMatrix();

 glTranslated(0,0,zTranslation);

 realativeMotionObjects();

 glPopMatrix();

 glEnable(GL_COLOR_MATERIAL);

 //draws the object specified in draw object graphics

52

 glColor4d(1.0,0.255,0.0,alf);

 glPushMatrix();

 glTranslated(0,0,zTranslation);

 ObjectGraphics();

 glPopMatrix();

 glEnable(GL_COLOR_MATERIAL);

}

/**

A function to draw an object graphically that can be plugged into

the draw object haptics function to save space rewriting it

********/

void ObjectGraphics()

{

 glBegin(GL_QUAD_STRIP);

 //opening stretch

 glVertex3f(-1,0.0,15);

 glVertex3f(1,0.0,15);

 glVertex3f(-1,0,-10);

 glVertex3f(1,0,-10);

 //stairs with sloped backside

 glVertex3f(-1,0.25,-10.15);

 glVertex3f(1,0.25,-10.15);

 glVertex3f(-1,0.25,-10.5);

 glVertex3f(1,0.25,-10.5);

 glVertex3f(-1,0.5,-10.65);

 glVertex3f(1,0.5,-10.65);

 glVertex3f(-1,0.5,-11);

 glVertex3f(1,0.5,-11);

 glVertex3f(-1,0.75,-11.15);

 glVertex3f(1,0.75,-11.15);

 glVertex3f(-1,0.75,-12.5);

 glVertex3f(1,0.75,-12.5);

 //second stretch

 glVertex3f(-1,0,-14.5);

 glVertex3f(1,0,-14.5);

 //hill

 glVertex3f(-1,0,-20);

 glVertex3f(1,0,-20);

 glVertex3f(-1,0.25,-25);

 glVertex3f(1,0.25,-25);

 glVertex3f(-1,0.25,-27);

 glVertex3f(1,0.25,-27);

 glVertex3f(-1,0,-29);

 glVertex3f(1,0,-29);

 //third stretch

 glVertex3f(-1,0,-35.0);

 glVertex3f(1,0,-35.0);

 //chasm

 glVertex3f(-1,-0.2,-40);

 glVertex3f(1,-0.2,-40);

 glVertex3f(-1,-0.2,-42);

 glVertex3f(1,-0.2,-42);

 glVertex3f(-1,0,-47);

 glVertex3f(1,0,-47);

 //fourth stretch

53

 glVertex3f(-1,0,-67);

 glVertex3f(1,0,-67);

 glEnd();

}

void realativeMotionObjects()

{

 //green trianlges for the tops of trees

 glColor4d(0.034,0.139,0.034,alf);

 glBegin(GL_TRIANGLES);

 glVertex3f(-1.1,.05,1.0);glVertex3f(-0.9,0.05,1.0);glVertex3f(-

1,0.5,1.0);

 glVertex3f(0.9,0.05,-1.0);glVertex3f(1.1,0.05,-

1.0);glVertex3f(1.0,0.5,-1.0);

 glVertex3f(-1.1,0.05,-3.0);glVertex3f(-0.9,0.05,-

3.0);glVertex3f(-1,0.5,-3.0);

 glVertex3f(0.9,0.05,-5.0);glVertex3f(1.1,0.05,-

5.0);glVertex3f(1.0,0.5,-5.0);

 glVertex3f(-1.1,0.05,-7.0);glVertex3f(-0.9,0.05,-

7.0);glVertex3f(-1,0.5,-7.0);

 glVertex3f(0.9,0.05,-9.0);glVertex3f(1.1,0.05,-

9.0);glVertex3f(1.0,0.5,-9.0);

 glVertex3f(-1.1,0.05,-11.0);glVertex3f(-0.9,0.05,-

11.0);glVertex3f(-1,0.5,-11.0);

 glVertex3f(0.9,0.05,-13.0);glVertex3f(1.1,0.05,-

13.0);glVertex3f(1.0,0.5,-13.0);

 glVertex3f(-1.1,0.05,-15);glVertex3f(-0.9,0.05,-15);glVertex3f(-

1,0.5,-15);

 glVertex3f(0.9,0.05,-17);glVertex3f(1.1,0.05,-

17);glVertex3f(1.0,0.5,-17);

 glVertex3f(-1.1,0.05,-19);glVertex3f(-0.9,0.05,-19);glVertex3f(-

1,0.5,-19);

 glVertex3f(0.9,0.05,-21);glVertex3f(1.1,0.05,-

21);glVertex3f(1.0,0.5,-21);

 glVertex3f(-1.1,0.05,-23);glVertex3f(-0.9,0.05,-23);glVertex3f(-

1,0.5,-23);

 glVertex3f(0.9,0.05,-25);glVertex3f(1.1,0.05,-

25);glVertex3f(1.0,0.5,-25);

 glVertex3f(-1.1,0.05,-27);glVertex3f(-0.9,0.05,-27);glVertex3f(-

1,0.5,-27);

 glVertex3f(0.9,0.05,-29);glVertex3f(1.1,0.05,-

29);glVertex3f(1.0,0.5,-29);

 glVertex3f(-1.1,0.05,-31);glVertex3f(-0.9,0.05,-31);glVertex3f(-

1,0.5,-31);

 glVertex3f(0.9,0.05,-33);glVertex3f(1.1,0.05,-

33);glVertex3f(1.0,0.5,-33);

 glVertex3f(-1.1,0.05,-35);glVertex3f(-0.9,0.05,-35);glVertex3f(-

1,0.5,-35);

 glVertex3f(0.9,0.05,-37);glVertex3f(1.1,0.05,-

37);glVertex3f(1.0,0.5,-37);

 glVertex3f(-1.1,0.05,-39);glVertex3f(-0.9,0.05,-39);glVertex3f(-

1,0.5,-39);

 glVertex3f(0.9,0.05,-41);glVertex3f(1.1,0.05,-

41);glVertex3f(1.0,0.5,-41);

 glVertex3f(-1.1,0.05,-43);glVertex3f(-0.9,0.05,-43);glVertex3f(-

1,0.5,-43);

 glVertex3f(0.9,0.05,-45);glVertex3f(1.1,0.05,-

45);glVertex3f(1.0,0.5,-45);

54

 glVertex3f(-1.1,0.05,-47);glVertex3f(-0.9,0.05,-47);glVertex3f(-

1,0.5,-47);

 glVertex3f(0.9,0.05,-49);glVertex3f(1.1,0.05,-

49);glVertex3f(1.0,0.5,-49);

 glVertex3f(-1.1,0.05,-51);glVertex3f(-0.9,0.05,-51);glVertex3f(-

1,0.5,-51);

 glVertex3f(0.9,0.05,-53);glVertex3f(1.1,0.05,-

53);glVertex3f(1.0,0.5,-53);

 glVertex3f(-1.1,0.05,-55);glVertex3f(-0.9,0.05,-55);glVertex3f(-

1,0.5,-55);

 glVertex3f(0.9,0.05,-57);glVertex3f(1.1,0.05,-

57);glVertex3f(1.0,0.5,-57);

 glVertex3f(-1.1,0.05,-59);glVertex3f(-0.9,0.05,-59);glVertex3f(-

1,0.5,-59);

 glVertex3f(0.9,0.05,-61);glVertex3f(1.1,0.05,-

61);glVertex3f(1.0,0.5,-61);

 glVertex3f(-1.1,0.05,-63);glVertex3f(-0.9,0.05,-63);glVertex3f(-

1,0.5,-63);

 glVertex3f(0.9,0.05,-65);glVertex3f(1.1,0.05,-

65);glVertex3f(1.0,0.5,-65);

 glEnd();

 //brown rectangles for the tree trunks

 glColor4d(0.39,0.069,0.019,alf);

 glBegin(GL_QUADS);

 glVertex3f(-1.05,0,1.0);glVertex3f(-0.95,0,1.0);glVertex3f(-

0.95,0.05,1.0);glVertex3f(-1.05,0.05,1.0);

 glVertex3f(0.95,0,-1.0);glVertex3f(1.05,0,-

1.0);glVertex3f(1.05,0.05,-1.0);glVertex3f(0.95,0.05,-1.0);

 glVertex3f(-1.05,0,-3);glVertex3f(-0.95,0,-3);glVertex3f(-

0.95,0.05,-3);glVertex3f(-1.05,0.05,-3);

 glVertex3f(0.95,0,-5);glVertex3f(1.05,0,-

5);glVertex3f(1.05,0.05,-5);glVertex3f(0.95,0.05,-5);

 glVertex3f(-1.05,0,-7);glVertex3f(-0.95,0,-7);glVertex3f(-

0.95,0.05,-7);glVertex3f(-1.05,0.05,-7);

 glVertex3f(0.95,0,-9);glVertex3f(1.05,0,-

9);glVertex3f(1.05,0.05,-9);glVertex3f(0.95,0.05,-9);

 glVertex3f(-1.05,0,-11);glVertex3f(-0.95,0,-11);glVertex3f(-

0.95,0.05,-11);glVertex3f(-1.05,0.05,-11);

 glVertex3f(0.95,0,-13);glVertex3f(1.05,0,-

13);glVertex3f(1.05,0.05,-13);glVertex3f(0.95,0.05,-13);

 glVertex3f(-1.05,0,-15);glVertex3f(-0.95,0,-15);glVertex3f(-

0.95,0.05,-15);glVertex3f(-1.05,0.05,-15);

 glVertex3f(0.95,0,-17);glVertex3f(1.05,0,-

17);glVertex3f(1.05,0.05,-17);glVertex3f(0.95,0.05,-17);

 glVertex3f(-1.05,0,-19);glVertex3f(-0.95,0,-19);glVertex3f(-

0.95,0.05,-19);glVertex3f(-1.05,0.05,-19);

 glVertex3f(0.95,0,-21);glVertex3f(1.05,0,-

21);glVertex3f(1.05,0.05,-21);glVertex3f(0.95,0.05,-21);

 glVertex3f(-1.05,0,-23);glVertex3f(-0.95,0,-23);glVertex3f(-

0.95,0.05,-23);glVertex3f(-1.05,0.05,-23);

 glVertex3f(0.95,0,-25);glVertex3f(1.05,0,-

25);glVertex3f(1.05,0.05,-25);glVertex3f(0.95,0.05,-25);

 glVertex3f(-1.05,0,-27);glVertex3f(-0.95,0,-27);glVertex3f(-

0.95,0.05,-27);glVertex3f(-1.05,0.05,-27);

 glVertex3f(0.95,0,-29);glVertex3f(1.05,0,-

29);glVertex3f(1.05,0.05,-29);glVertex3f(0.95,0.05,-29);

55

 glVertex3f(-1.05,0,-31);glVertex3f(-0.95,0,-31);glVertex3f(-

0.95,0.05,-31);glVertex3f(-1.05,0.05,-31);

 glVertex3f(0.95,0,-33);glVertex3f(1.05,0,-

33);glVertex3f(1.05,0.05,-33);glVertex3f(0.95,0.05,-33);

 glVertex3f(-1.05,0,-35);glVertex3f(-0.95,0,-35);glVertex3f(-

0.95,0.05,-35);glVertex3f(-1.05,0.05,-35);

 glVertex3f(0.95,0,-37);glVertex3f(1.05,0,-

37);glVertex3f(1.05,0.05,-37);glVertex3f(0.95,0.05,-37);

 glVertex3f(-1.05,0,-39);glVertex3f(-0.95,0,-39);glVertex3f(-

0.95,0.05,-39);glVertex3f(-1.05,0.05,-39);

 glVertex3f(0.95,0,-41);glVertex3f(1.05,0,-

41);glVertex3f(1.05,0.05,-41);glVertex3f(0.95,0.05,-41);

 glVertex3f(-1.05,0,-43);glVertex3f(-0.95,0,-43);glVertex3f(-

0.95,0.05,-43);glVertex3f(-1.05,0.05,-43);

 glVertex3f(0.95,0,-45);glVertex3f(1.05,0,-

45);glVertex3f(1.05,0.05,-45);glVertex3f(0.95,0.05,-45);

 glVertex3f(-1.05,0,-47);glVertex3f(-0.95,0,-47);glVertex3f(-

0.95,0.05,-47);glVertex3f(-1.05,0.05,-47);

 glVertex3f(0.95,0,-49);glVertex3f(1.05,0,-

49);glVertex3f(1.05,0.05,-49);glVertex3f(0.95,0.05,-49);

 glVertex3f(-1.05,0,-51);glVertex3f(-0.95,0,-51);glVertex3f(-

0.95,0.05,-51);glVertex3f(-1.05,0.05,-51);

 glVertex3f(0.95,0,-53);glVertex3f(1.05,0,-

53);glVertex3f(1.05,0.05,-53);glVertex3f(0.95,0.05,-53);

 glVertex3f(-1.05,0,-55);glVertex3f(-0.95,0,-55);glVertex3f(-

0.95,0.05,-55);glVertex3f(-1.05,0.05,-55);

 glVertex3f(0.95,0,-57);glVertex3f(1.05,0,-

57);glVertex3f(1.05,0.05,-57);glVertex3f(0.95,0.05,-57);

 glVertex3f(-1.05,0,-59);glVertex3f(-0.95,0,-59);glVertex3f(-

0.95,0.05,-59);glVertex3f(-1.05,0.05,-59);

 glVertex3f(0.95,0,-61);glVertex3f(1.05,0,-

61);glVertex3f(1.05,0.05,-61);glVertex3f(0.95,0.05,-61);

 glVertex3f(-1.05,0,-63);glVertex3f(-0.95,0,-63);glVertex3f(-

0.95,0.05,-63);glVertex3f(-1.05,0.05,-63);

 glVertex3f(0.95,0,-65);glVertex3f(1.05,0,-

65);glVertex3f(1.05,0.05,-65);glVertex3f(0.95,0.05,-65);

 glEnd();

 //green lawn

 glColor4d(0.124,0.252,0,alf);

 glBegin(GL_QUADS);

 glVertex3f(-6,0,15);glVertex3f(-1,0,15);glVertex3f(-1,0,-

67);glVertex3f(-6,0,-67);

 glVertex3f(1,0,15);glVertex3f(6,0,15);glVertex3f(6,0,-

67);glVertex3f(1,0,-67);

 glEnd();

 //sides in chasm and vertical stair faces

 glColor4d(0,0,0,alf);

 glBegin(GL_QUADS);

 glVertex3f(-1,0,-35);glVertex3f(-1,-0.2,-35);glVertex3f(-1,-0.2,-

47);glVertex3f(-1,0,-47);

 glVertex3f(1,0,-47);glVertex3f(1,-0.2,-47);glVertex3f(1,-0.2,-

35);glVertex3f(1,0,-35);

 glVertex3f(-1,0,-9.999);glVertex3f(1,0,-

9.999);glVertex3f(1,0.25,-9.999);glVertex3f(-1,0.25,-9.999);

 glVertex3f(-1,0.25,-10.499);glVertex3f(1,0.25,-

56

10.499);glVertex3f(1,0.5,-10.499);glVertex3f(-1,0.5,-10.499);

 glVertex3f(-1,0.75,-10.999);glVertex3f(-1,0.5,-

10.999);glVertex3f(1,0.5,-10.999);glVertex3f(1,0.75,-10.999);

 glEnd();

}

/**

The main routine for rendering scene haptics.

Renders the plane haptically.

draw object haptics for the shape defined in draw object graphics

********/

void drawObjectHaptics(HLuint shapeId)

{

 // Clear the depth buffer when using a depth buffer shape

 glClear(GL_DEPTH_BUFFER_BIT);

 // start haptic frame - must do this before rendering any haptic

shapes

 hlBeginFrame();

 glPushMatrix();

 glTranslated(0,0,zTranslation);

 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, shapeId);

 //assigning haptic properties to the shape

 hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.4);

 hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.25);

 hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.15);

 ObjectGraphics();

 //haptic rendering of the lawn

 glBegin(GL_QUADS);

 glVertex3f(-6,0,15);glVertex3f(-1,0,15);glVertex3f(-1,0,-

67);glVertex3f(-6,0,-67);

 glVertex3f(1,0,15);glVertex3f(6,0,15);glVertex3f(6,0,-

67);glVertex3f(1,0,-67);

 glEnd();

 glPopMatrix();

 hlEndShape();

 hlEndFrame();

}

/**

Draw a 3D cursor for the haptic device using the current local

transform,

the workspace to world transform and the screen coordinate scale.

********/

void drawCursor(HLfloat angle)

{

 static const double kCursorRadius = 1;

 static const double kCursorHeight = 2;

 static const int kCursorTess = 15;

57

 HLdouble proxyxform[16];

 GLUquadricObj *qobj = 0;

 glPushAttrib(GL_CURRENT_BIT | GL_ENABLE_BIT | GL_LIGHTING_BIT);

 glPushMatrix();

 if (!gCursorDisplayList)

 {

 gCursorDisplayList = glGenLists(1);

 glNewList(gCursorDisplayList, GL_COMPILE);

 glTranslated(0,54,30);

 Box02();

 gluDeleteQuadric(qobj);

 glEndList();

 }

 /* Get the proxy transform in world coordinates */

 hlGetDoublev(HL_PROXY_TRANSFORM, proxyxform);

 glMultMatrixd(proxyxform);

 /* Apply the local cursor scale factor. */

 glScaled(gCursorScale, gCursorScale, gCursorScale);

 glEnable(GL_COLOR_MATERIAL);

 glColor4d(1, 0.75, 0.5,alf);

 glRotatef(angle,0,1,0);

 glCallList(gCursorDisplayList);

 glPopMatrix();

 glPopAttrib();

}

/**

Ambient viscous damping.

Sets the current haptic rendering context and generates an effect ID

for the instance then starts the damping force

**/

void drawSceneDamping(HHLRC &hHLRC,HLuint &effectId)

{

 hlMakeCurrent(hHLRC);

 effectId = hlGenEffects(1);

 hlBeginFrame();

 hlEffectd(HL_EFFECT_PROPERTY_GAIN, 0.75);

 hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, 1);

 hlStartEffect(HL_EFFECT_VISCOUS, effectId);

 hlEndFrame();

}

/***

the routine for moving the object.

**/

void MoveIt()

{

 hlMakeCurrent(hHLRC1);

 hlGetDoublev(HL_PROXY_POSITION, device1ProxyPosition);

 hlGetBooleanv(HL_PROXY_IS_TOUCHING, &device1Contact);

 hlGetDoublev(HL_DEVICE_FORCE, device1Force);

58

 hlMakeCurrent(hHLRC2);

 hlGetDoublev(HL_PROXY_POSITION, device2ProxyPosition);

 hlGetBooleanv(HL_PROXY_IS_TOUCHING, &device2Contact);

 hlGetDoublev(HL_DEVICE_FORCE, device2Force);

 ZProxy1 = device1ProxyPosition[2];

 ZProxy2 = device2ProxyPosition[2];

 if (device1Contact == 1 && device2Contact == 0)

 {

 zTranslation = zTranslation + (ZProxy1 - lastProxy1);

 }

 if (device2Contact == 1 && device1Contact == 0)

 {

 zTranslation = zTranslation + (ZProxy2 - lastProxy2);

 }

 if (zTranslation >= 65)

 {

 zTranslation = 5;

 }

 lastProxy1 = ZProxy1;

 lastProxy2 = ZProxy2;

}

// this is the section of the code that takes the data for position

// and forces which were collected in the MoveIt function

//and writes it to a file for offline analysis

//the format of the file is a thirteen column data sheet

//time pos1X pos1Y pos1Z F1X F1Y F1Z pos2X pos2Y pos2Z F2X F2Y F2Z

void DataCollection()

{

 long int Time;

 Time=GetTickCount() - initial_time;

 fprintf(pFile, "%i %g %g %g %g %g %g %g %g %g %g %g %g\n",

 /*time is in ms units of force are newtons units of

position are mm*/

 Time,

 device1ProxyPosition[0],

 device1ProxyPosition[1],

 device1ProxyPosition[2],

 device1Force[0],

 device1Force[1],

 device1Force[2],

 device2ProxyPosition[0],

 device2ProxyPosition[1],

 device2ProxyPosition[2],

 device2Force[0],

 device2Force[1],

 device2Force[2]);

}

APPENDIX B

MATLAB CODE FOR ANALYSIS

The following is the Matlab code used to analyze the position and force data collected

from the haptic devices during game play.

%Haptic Walking Data Analyzer

Time=Data(:,1); %in milliseconds

FirstXpos=Data(:,2)*25.4; %converted to mm

FirstYpos=Data(:,3)*25.4;

FirstZpos=Data(:,4)*25.4;

FirstXforce=Data(:,5); % in Newtons

FirstYforce=Data(:,6);

FirstZforce=Data(:,7);

SecondXpos=Data(:,8)*25.4;

SecondYpos=Data(:,9)*25.4;

SecondZpos=Data(:,10)*25.4;

SecondXforce=Data(:,11);

SecondYforce=Data(:,12);

SecondZforce=Data(:,13);

doublestance=Data(:,14);

%apply an interpolation and filter

desiredrate=100; %desired sample rate in hz

TI=(Time(1):1000/desiredrate:Time(end))';

Y1I=interp1(Time,FirstYpos,TI,'cubic');

Y2I=interp1(Time,SecondYpos,TI,'cubic');

Z1I=interp1(Time,FirstZpos,TI,'cubic');

Z2I=interp1(Time,SecondZpos,TI,'cubic');

cutoff=3;

[b,a]=butter(1,(2*cutoff)/desiredrate);

Y1IF=filtfilt(b,a,Y1I);

Y2IF=filtfilt(b,a,Y2I);

Z1IF=filtfilt(b,a,Z1I);

Z2IF=filtfilt(b,a,Z2I);

%calculate velocities

[VY1,VT]=CDF(Y1IF,TI);

[VY2,VT]=CDF(Y2IF,TI);

[VZ1,VT]=CDF(Z1IF,TI);

[VZ2,VT]=CDF(Z2IF,TI);

%calculate accelerations

[AY1,AT]=CDF(VY1,VT);

[AY2,AT]=CDF(VY2,VT);

[AZ1,AT]=CDF(VZ1,VT);

60

[AZ2,AT]=CDF(VZ2,VT);

%all accelerations are in m/s/ms so multiply by 1000 to

make m/s/s

AY1=1000*AY1;

AY2=1000*AY2;

AZ1=1000*AZ1;

AZ2=1000*AZ2;

%determine stride lengths

%from unfiltered data

%plot vertical positions

plot(FirstYpos);

hold on

plot(SecondYpos,'r');

plot(doublestance,'k--');

%make the selection of the data

point1=input('start:');

point2=input('finish:');

%assign new variables to the appropriate selection

newTime=Time(point1:point2);

Y1=FirstYpos(point1:point2,:);

Z1=FirstZpos(point1:point2,:);

FY1=FirstYforce(point1:point2,:);

Y2=SecondYpos(point1:point2,:);

Z2=SecondZpos(point1:point2,:);

FY2=SecondYforce(point1:point2,:);

%determination of step beginnings

n=2;

Y1Starts=[];

while n<=length(FY1)-1

 if FY1(n)<=0 && FY1(n-1)>=0 && FY1(n+1)<=0;

 Y1Starts=[Y1Starts; n];

 end

 n=n+1;

end

n=2;

Y2Starts=[];

while n<=length(FY2)-1

 if FY2(n)<=0 && FY2(n-1)>=0 && FY2(n+1)<=0;

 Y2Starts=[Y2Starts; n];

 end

 n=n+1;

end

%determination of step ends

Y1Ends=[];

61

n=3;

while n<=length(Y1)-2

 if Y1(n-1)<Y1(n-2)...

 && Y1(n)<Y1(n-1)...

 && Y1(n)<=Y1(n+1)+0.001...

 && Y1(n+1)<=Y1(n+2)+0.001;

 Y1Ends=[Y1Ends; n];

 end

 n=n+1;

end

Y2Ends=[];

n=3;

while n<=length(Y2)-2

 if Y2(n-1)<Y2(n-2)...

 && Y2(n)<Y2(n-1)...

 && Y2(n)<=Y2(n+1)+0.001...

 && Y2(n+1)<=Y2(n+2)+0.001;

 Y2Ends=[Y2Ends; n];

 end

 n=n+1;

end

%pairing beginings and ends

StartsAndEndsLeft=[1 1];

j=1;

k=1;

l=1;

onset=1;

offset=1;

while l<=length(Y1Starts)-1 && l<=length(Y1Ends)-1

 j=1;

 while onset==StartsAndEndsLeft(l,1)...

 && j<=length(Y1Starts)...

 && k<=length(Y1Ends)

 if Y1Starts(j)>StartsAndEndsLeft(l,2)...

 &&

Y1(Y1Starts(j))>=(Y1(StartsAndEndsLeft(l,2))-0.25)...

 &&

Y1(Y1Starts(j))<=(Y1(StartsAndEndsLeft(l,2))+0.25)

 onset=Y1Starts(j);

 else

 j=j+1;

 end

 end

 k=1;

 while offset==StartsAndEndsLeft(l,2)...

 && j<=length(Y1Starts)...

62

 && k<=length(Y1Ends)

 if Y1Ends(k)>onset...

 && Y1(Y1Ends(k))<=(Y1(onset)+0.75)...

 && Y1(Y1Ends(k))>=(Y1(onset)-0.75)...

 && Y1Ends(k)<onset+75

 offset=Y1Ends(k);

 else

 k=k+1;

 end

 if Y1Ends(k)>=onset+75

 onset=Y1Starts(j+1);

 end

 end

 StartsAndEndsLeft=[StartsAndEndsLeft; onset offset];

 l=l+1;

end

StartsAndEndsRight=[1 1];

j=1;

k=1;

l=1;

onset=1;

offset=1;

while l<=length(Y2Starts)-1 && l<=length(Y2Ends)-1

 j=1;

 while onset==StartsAndEndsRight(l,1)...

 && j<=length(Y2Starts)...

 && k<=length(Y2Ends)

 if Y2Starts(j)>StartsAndEndsRight(l,2)...

 &&

Y2(Y2Starts(j))>=(Y2(StartsAndEndsRight(l,2))-0.25)...

 &&

Y2(Y2Starts(j))<=(Y2(StartsAndEndsRight(l,2))+0.25)

 onset=Y2Starts(j);

 else

 j=j+1;

 end

 end

 k=1;

 while offset==StartsAndEndsRight(l,2)...

 && j<=length(Y2Starts)...

 && k<=length(Y2Ends)

 if Y2Ends(k)>onset...

 && Y2(Y2Ends(k))<=(Y2(onset)+0.75)...

 && Y2(Y2Ends(k))>=(Y2(onset)-0.75)...

 && Y2Ends(k)<onset+75

 offset=Y2Ends(k);

63

 else

 k=k+1;

 end

 if Y2Ends(k)>=onset+75

 onset=Y2Starts(j+1);

 end

 end

 StartsAndEndsRight=[StartsAndEndsRight; onset offset];

 l=l+1;

end

%stride length calculations

FirstStrideLengths=-1*(Z1(StartsAndEndsLeft(:,2))-

Z1(StartsAndEndsLeft(:,1)));

SecondStrideLengths=-1*(Z2(StartsAndEndsRight(:,2))-

Z2(StartsAndEndsRight(:,1)));

%percent stride and swing calculations

LeftTimes=[newTime(StartsAndEndsLeft(:,1)),

newTime(StartsAndEndsLeft(:,2))];

LeftSwing=LeftTimes(:,2)-LeftTimes(:,1);

percentLeftSwing=(sum(LeftSwing(1:end-

1))/(LeftTimes(end,1)-LeftTimes(1,1)))*100;

percentLeftStance=100-percentLeftSwing;

RightTimes=[newTime(StartsAndEndsRight(:,1)),

newTime(StartsAndEndsRight(:,2))];

RightSwing=RightTimes(:,2)-RightTimes(:,1);

percentRightSwing=(sum(RightSwing(1:end-

1))/(RightTimes(end,1)-RightTimes(1,1)))*100;

percentRightStance=100-percentRightSwing;

%visualizations

clf

plot(Y1)

hold on

plot(Y1Starts,Y1(Y1Starts),'kx')

plot(Y1Ends,Y1(Y1Ends),'gx')

plot(StartsAndEndsLeft(:,1),Y1(StartsAndEndsLeft(:,1)),'ok'

)

plot(StartsAndEndsLeft(:,2),Y1(StartsAndEndsLeft(:,2)),'og'

)

figure()

plot(Y2,'r')

hold on

plot(Y2Starts,Y2(Y2Starts),'kx')

plot(Y2Ends,Y2(Y2Ends),'gx')

plot(StartsAndEndsRight(:,1),Y2(StartsAndEndsRight(:,1)),'o

k')

plot(StartsAndEndsRight(:,2),Y2(StartsAndEndsRight(:,2)),'o

g')

64

figure()

plot(Time,FirstYpos)

hold on

plot(TI,Y1IF,'c')

plot(Time,SecondYpos,'r')

plot(TI,Y2IF,'m')

figure()

subplot(3,2,1)

plot(TI,Y1IF)

subplot(3,2,2)

plot(TI,Y2IF,'r')

subplot(3,2,3)

plot(VT,VY1)

subplot(3,2,4)

plot(VT,VY2,'r')

subplot(3,3,5)

plot(AT,AY2)

subplot(3,2,3)

plot(VT,VY1)

subplot(3,2,4)

plot(VT,VY2,'r')

subplot(3,2,5)

plot(AT,AY1)

subplot(3,2,6)

plot(AT,AY2,'r')

APPENDIX C

MATLAB CENTRAL DIFFERENCE FUNCTION

The following is the central difference function that was written to perform calculations

of derivatives so that velocity and acceleration could be obtained from position data. This

function was implemented in the Matlab code in Appendix B.

%a central diference function for derivative calculations
function [diff, difftime] = CDF(undiff, undifftime)
X=length(undiff)-1;
N=2;
diff=zeros(length(undiff)-2,1);
while N<X
 diff(N)=(undiff(N+1)-undiff(N-1))/(undifftime(N+1)-undifftime(N-

1));
 N=N+1;
end
difftime=undifftime(2:end-1);

REFERENCES

[1] Crago, Patrick E. et al. “New control strategies for neuroprosthetic systems.” Journal

of Rehabilitation Research and Development. 33.2 (1996): 158-172.

[2] Ou, Junli et al. “Adaptive control of cyclic movements in a multi-segment system.”

ifess.org. 15 April 2010. < http://www.ifess.org/ifess01/oral5/ouJ.pdf>.

[3] Badj, T. et al. “Voluntary commands for FES assisted walking in incomplete SCI

subjects.” Medical and Biological Engineering and Computing. 33 (1995): 334-

337.

[4] O’Malley Teeter, Jeanne et.al. Functional Electrical Stimulation Resource Guide for

Persons with Spinal Cord Injury or Multiple Sclerosis. Cleveland: FES

Information Center, 1995. 23 March. 2010.

<http://www.thestim.org/FESG/FESRG.pdf>.

[5] “Spinal Cord 101.” spinalinjury.net. 15 April 2010.

<http://www.spinalinjury.net/html/_spinal_cord_101.html>.

[6] “Facts and Figures at a Glance 2009.” nscisc.uab.edu. January 2010. 15 April 2010.

<https://www.nscisc.uab.edu/public_content/facts_figures_2009.aspx>.

[7] “Facts and Figures about Spinal Cord Injury.” spinalcord.org. 29 July 2007. 15 April

2010. <http://www.spinalcord.org/news.php?dep=17&page=94&list=1191>.

[8] “Common Questions about Spinal Cord Injury.” spinalcord.org. 29 July 2007. 15

April 2010.

<http://www.spinalcord.org/news.php?dep=17&page=94&list=1190>.

[9] Home page. 15 April 2010. <http://www.spinalinjury.net/index.html>.

[10] Vaughan, Christopher L. et al. Dynamics of Human Gait 2nd Edition. Cape Town:

Kiboho Publishers, 1992.

[11] Badj, Tadej et al. “The use of a four-channel electrical stimulator as an ambulatory

aid for paraplegic patients” Physical Therapy 63.7 (1983): 1116-1120.

[12] Marsolais, E.B. and Rudi Kobetic. “Functional electrical stimulation for walking in

paraplegia” The Journal of Bone and Joint Surgery 69 (1987): 728-733.

[13] Shimada, Yoichi et al. “Hybrid functional electrical stimulation with medial linkage

knee-ankle-foot orthoses in complete paraplegics” Tohoku Journal of

Experimental Medicine 209 (2006): 117-123.

67

[14] Noesner, Mathew Stephen. An Investigation of Position and Force During Gait-

Mimicking Finger Motions. M.S. thesis, Dept. of Biomedical Engineering. New

Jersey Institute of Technology, Newark, NJ, May 2004.

[15] Kim, Ji-Sun et al. “Finger Walking In Place (FWIP): A Traveling Technique in

Virtual Environments” Lecture Notes in Computer Science 5166 (2008): 58-69.

[16] Sensable Technologies Inc. OpenHaptics Toolkit version 2.0 Programmer’s Guide.

Woburn: Sensable Technologies Inc., 2005.

[17] Qiu, Qinyin et al. “The New Jersey Institute of Technology Robot-Assisted Virtual

Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility

study” Journal of NeuroEngineering and Rehabilitation 6.40 (2009).

[18] Zeni, JA Jr. et al. “Two simple methods for determining gait events during treadmill

and overground walking using kinematic data” Gait Posture 27(4): 710-714.

[19] Kawamura, Kenji et al. “Gait analysis of slope walking: a study on step length, stride

width, time factors, and deviation in the center of pressure.” Acta Medica

Okayama 45(3) article 8.

[20] Winter, David A. Biomechanics and Motor Control of Human Movement Third

Edition. Hoboken: John Wiley and Sons, Inc., 2005.

[21] Kralj, Alojz and Tadej Bajd. Functional Electrical Stimulation: Standing and

Walking After Spinal Cord Injury. Boca Raton: CRC Press, 1989.

[22] Xue, Zhaojun et al. “New gait recognition technique used in functional electrical

stimulation system control” Proceedings of the 6
th

 World Congress on Intelligent

Control and Automation. June 21-23, Dalian, China: 9421-9424.

[23] Sensable Technologies Inc. OpenHaptics Toolkit version 2.0 API Reference.

Woburn: Sensable Technologies Inc., 2005.

[24] Sensable Technologies Inc. PHANToM Premium User Guide. Woburn: Sensable

Technologies Inc., 2004.

[25] Everaert, Dirk G. et al. “Does functional electrical stimulation for foot drop

strengthen corticospinal connections?” Neurorehabilitation and Neural Repair

24.2 (2010): 168-177.

[26] Popovic, Dejan et al. “Optimal control of walking with functional electrical

stimulation: a computer simulation study” IEEE Transactions on Rehabilitation

Engineering 7.1 (1999): 69-80.

68

[27] Ming, Dong et al. “A gait stability investigation into FES-assited paraplegic walking

based on the walker tipping index” Journal of Neural Engineering 6 (2009).

[28] Thrasher, T. Adam and Milos R. Popovic. “FES-assisted walking for rehabilitation

of incomplete spinal cord injury.” ifess.org. 15 April 2010.

<http://www.ifess.org/ifess03/Oral%20Session%205%20-

%20FES%20for%20Gait%20and%20FES%20for%20Respiratory%20Control/T

%20Adam%20Thrasher.pdf>.

[29] Kostov, Aleksandar et al. “Integrated control system for FES assisted locomotion

after spinal cord injury.” 1995 IEEE-EMBC and CMBEC. Theme 5:

Neuromuscular SystemsBiomechanics. 1147-1148.

	A haptic control system for functional electrical stimulation of paraplegic legs
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Instrumentation
	Chapter 3: Methods
	Chapter 4: Results
	Chapter 5: Discussion of Results
	Chapter 6: Conclusions
	Appendix A: Haptic Walking Code
	Appendix B: MatLab Code for Analysis
	Appendix C: MatLab Central Difference Fucntion
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

