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ABSTRACT

COMPARISON BETWEEN DIFFERENT TECHNIQUES OF PREPROCESSING
FOR RESTING STATE fMRI ANALYSIS

by
Megha Girdhar

Resting state functional connectivity as the name suggests is defined as significant

temporal correlation between spatially distinct regions of the brain during rest. In this

thesis, fMRI resting state dataset was analyzed using different available processing

techniques with the same fMRI data to study differences between the various methods.

All the imaging data from each of the subjects was processed in an identical fashion. The

same method was used for detecting connectivity. The number of independent

components in the data was used as the base to differentiate the effect of each of these

methods. Independent component analysis was performed on each step after and before

converting each dataset into MNI space to see the effect of normalization. In resting state

fMRI study, different algorithms of motion correction showed no significant difference in

the results. Temporal filtering by rectangular filter for particular bands of frequency

showed no significant difference in the data analysis. Gaussian and Hamming windows

however, work well for the required purpose. In case of spatial smoothing, Unsharp and

Sobel filters which emphasize on the edges resulted in an abnormally high increase in

number of components which suggested low pass filters like Gaussian and Average are

more suitable for fMRI preprocessing.



COMPARISON BETWEEN DIFFERENT TECHNIQUES OF PREPROCESSING
FOR RESTING STATE fMRI ANALYSIS

by
Megha Girdhar

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2010



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

COMPARISON BETWEEN DIFFERENT TECHNIQUES OF PREPROCESSING
FOR RESTING STATE fMRI ANALYSIS

Megha Girdhar

Dr. Bharat B. Biswal, Thesis Co-Advisor 	 Date
Associate Professor of Radiology, UMDNJ-NJMS

Dr. Tara L. Alvarez, Thesis Co-Advisor 	 Date
Associate Professor of Biomedical Engineering, NJIT

Dr. Richard A. Foulds , Committee Member	 Date
Associate Professor of Biomedical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Megha Girdhar

Degree:	 Master of Science

Date:	 May 2010

Undergraduate and Graduate Education:

• Master of Science,
New Jersey Institute of Technology, Newark, NJ, 2009

• Bachelor of Engineering
Prabhu Dyal Memorial College, Bahadurgarh, Haryana, India, 2006

Major:	 Biomedical Engineering



"This thesis is dedicated to my fiancé, Pradeep Kumar, who encouraged me, and put his

academic profession on hold so I could achieve my dream. Thank you, Pradeep, for your

love, wisdom and support. To my parents, Harish and Asha Girdhar, your prayers have

been answered. Also to my sisters, Bhumika and Neha, and my brother Amar, not a day

did you complain about how busy I was. I thank you for your understanding and

patience. To my extended family: God has shown it again."



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my research supervisor, Dr Bharat B.

Biswal, for his enormous help and guidance towards this thesis. Thanks are also given to

Dr. Tara L. Alvarez, for being my co-advisor and supporting me through this thesis. I

deeply appreciate Dr. Richard A. Foulds for actively participating in my committee. I

would also like to acknowledge Dr Manjula Khubchandani, and my colleagues; Suril

Gohel, and Amit Kamble for making this opportunity at UMDNJ a great learning

experience and making every moment count memorable.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Objective  	 1

1.2 Background Information 	 2

2 BASIC FUNDAMENTALS OF FUNCTIONAL
MAGNETIC RESONANCE IMAGING 	 5

2.1 Nuclear Magnetic Resonance 	 5

2.2 Basics of MRI 	 6

2.3 Functional MRI 	 8

2.4 fMRI Analysis 	 10

2.4.1 Slice Time Correction 	 10

2.4.2 Motion Correction 	 11

2.4.3 Spatial Smoothing 	 11

2.4.4 Temporal Smoothing 	  11

2.4.5 Normalisation 	 12

2.5 Statistical Analysis 	 12

2.6 Resting State Connectivity 	 12

2.7 Independent Component Analysis  	 14

2.8 Probabilistic Independent Component Analysis 	 16

3 METHODS 	  18

3.1 fMRI Data Acquisition 	  18

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2 fMRI Data Analysis 	 18

3.2.1 De-oblique 	 19

3.2.2 Slice Time Correction 	  20

3.2.3 Motion Correction 	 20

3.2.4 Spatial Filtering 	 21

3.2.5 Temporal Filtering 	  24

3.2.6 Normalization 	 28

3.2.7 Independent Component Analysis 	 29

4 RESULTS AND DISCUSSIONS 	 32

4.1 Results 	 32

4.1.1 De-oblique 	 32

4.1.2 Slice Time Correction 	  33

4.1.3 Motion Correction 	 33

4.1.4 Temporal Filtering 	 33

4.1.5 Spatial Smoothing 	 36

4.1.6 Normalisation 	 38

4.2 Discussions  	 41

5 CONCLUSIONS 	  49

REFERENCES 	  50

viii



LIST OF FIGURES

Figure Page

2.1 T1 and T2 relaxation curves  7

2.2 Mechanism of BOLD signal  9

2.3 The five distinct region of resting state network 	 14

2.4 Flow chart of analysis steps involved in estimation of PICA model 	 17

3.1 The two different approachess of slice acquisition   19

3.2 3-D representation of Gaussian function 	 22

3.3 Frequency response of Gaussian and Average filter 	 23

3.4

	

Matrix representation of Gaussian function   23

3.5 Matrix for Average filter  24

3.6 Shape of the Rectangular window used for temporal filtering in time and

	

frequency domain  26

3.7 Shape of the Hamming window used for temporal filtering in time and
frequency domain 	 27

3.8 Shape of the Gaussian window used for temporal filtering in time and
frequency domain   27

3.9 Organizational chart of all the steps performed in the study 	 31

4.1 The number of ICA components for each subject before and after
De-oblique 	 32

4.2 Number of ICA components for each subject after motion correction 	 34

4.3 Number of independent components for each subject from temporal
filtering using Gaussian filter 	 35

4.4 Number of independent components for each subject from temporal
filtering using Hamming filter 	 ... 35

ix



LIST OF FIGURES
(Continued)

Figure	 Page

4.5	 Number of independent components for each subject from temporal
filtering using Rectangular filter 	 36

4.6	 Number of independent components for each subject from temporal
filtering using Average, Gaussian, Unsharp and Sobel filters  	 37

4.7	 Number of independent components for each subject from spatial
smoothing in AFNI using different value of FWHM  	 37

4.8	 Plot showing number of independent components for each subject
using different matrix size of Average filter 	 38

4.9	 Number of independent components for each subject from temporal
filtering using Gaussian filter after converting into MNI 	 39

4.10 Number of independent components for each subject from temporal
filtering using Hamming filter after converting into MNI 	 39

4.11 Number of independent components for each subject from temporal
filtering using Rectangular filter after converting into MNI 	 40

4.12 Number of independent components for each subject from temporal
filtering using Average, Gaussian, Unsharp and Sobel filters after
converting into MNI space 	 41

4.13 Number of independent components for subject#2 from temporal
filtering using Gaussian filter 	 42

4.14 Number of independent components for subject#2 and subject#34
from temporal filtering using Gaussian filter 	 43

4.15 Comparison between Gaussian, Hamming and Rectangular filter at
frequency bandwidth (0.009-0.08) Hz 	 44

4.16 Comparison between Gaussian, Hamming and Rectangular filter at
frequency bandwidth (0.009-0.08) Hz for data converted to MNI space 	 44

4.17 Time series obtained after different temporal filters 	 45



LIST OF FIGURES
(Continued)

Figure 	 Page

4.18 Comparison of preprocessed images obtained from smoothing using
different type of filters  	 46

4.19 Images obtained from Average smoothing using different matrix size 	  47

4.20 Number of components for Average type smoothing obtained by using

	

different matrix size   48

xi



CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this dissertation is to investigate various preprocessing techniques and

develop optimal methods for analyzing resting state functional Magnetic Resonance

Imaging (fMRI) data sets. In this study, different processing steps are performed on the

data to differentiate the effects of various processing techniques used on the resting state

fMRI data.

To facilitate the comparison of effects between voxels, regions, subjects, or groups

using fMRI, a standardized set of preprocessing steps are used for all the subjects. These

preprocessing steps include a number of algorithms to reduce noise effects, and to

transform the brain into a standardized brain to facilitate direct comparison between

corresponding voxels between different subjects (brains). The preprocessing steps further

remove variance arising from random physiological events or instrumentation problems

and increase signal to noise ratio (SNR) such that the resultant data is suitable for

statistical analysis. These preprocessing techniques vary highly according to the

requirements and interests of user. All of these requirements make it vital to have the

same processing pipeline for fMRI preprocessing.

Resting State Network (RSN) has become a useful tool in medical field to classify

various diseased and normal state of brain. Recent studies have suggested that the normal

functional connectivity changes in the state of the various brain disorders e.g. depression,

Schizophrenia, Alzheimer, multiple sclerosis. Continued research in this field has shown

1
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a potential to predict individualistic responses to specific anti-disease medications based

on the patterns of brain network activity as visualized by functional connectivity

analyses. The goal of this dissertation is to study the effect of post-processing methods,

its effect on connectivity analysis, and to develop an optimum way to process resting

state data sets.

1.2 Background Information

In the early 1990's, the development of fMRI equipped clinical research community with

a sophisticated tool to measure any activity in the various regions of brains. The regional

cerebral blood volume (CBV) was first utilized by Belliveau[1] in 1991 to construct

functional magnetic resonance maps of brain. Ogawa et al. [2] coined the term blood

oxygen level dependent (BOLD) to measure task induced functional changes in the brain.

Both of these techniques were first used to detect visual tasks in the primary visual

cortex. It is currently hypothesized that task activation leads to increased neuronal firing

which in turn leads to increase in cerebral blood flow in the activated regions in the brain.

Thus fMRI task induced signal changes is an indirect measure of neuronal activity. Over

the years, fMRI development and implementation has allowed researchers to study and

differentiate activated regions of brain.

Other than the above-mentioned task related networks, a low frequency (<0.1 Hz)

network was first described by Biswal et al in 1995 [3], in the region of sensorimotor

cortex as a state of brain when almost no stimuli are present or applied - better known as

resting state network or default network. Later, De Luca et. al.[10] described the resting

state connectivity as long distance interactions in various distinct regions of the brain
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including medial temporal lobe (memory), medial prefrontal cortex (mental stimulation),

posterior cingulated cortex (integration), adjacent precuneus and inferior parietal cortex.

Recently, Buckner et al.[4] have suggested that default network is a specific region of

brain which is active for individual subjects when they are not focused on external

environment. Samantha et. al. [5] proposed and described the mechanism for abnormality

in resting state network for some mental disorder cases.

While performing various experiments, different preprocessing techniques were

developed and applied. Preprocessing of fMRI data is essential to account for motion and

noise properties, and was required because number of parameters which were not useful

for the purpose, were needed to be suppressed or removed completely from the data for

further analysis and to achieve that a number of techniques have been developed and

implemented. Many different parameters need to be compared while making a choice to

achieve an image with appropriate attributes like signal to noise ratio (SNR), contrast and

other information. This information is dependent on the pulse being used for fMRI, the

organ being imaged as well as on field strength of the MRI machine. In 1995, Worsley

and Friston [6] developed a method for activation by analyzing time series based GLM

(general linear model) and a heuristic analysis for the effective degree of freedom. The

Importance of spatial smoothing is explained by Triantafyllou [7]. Some high resolution

and spatially smoothen images were compared in the study and it was suggested that not

all the studies required high resolution images. Similarly, temporal filtering is required to

increase the sensitivity and selectivity in event related designs [8]. Various filtering

methods have also been compared by Kruggel et.al. [9]. Identifying a proper
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preprocessing approach is still an ongoing topic of research as a preprocessing method

may be appropriate for one purpose and can be totally inappropriate for other purposes.

This thesis uses fMRI to investigate the extent of spatial and temporal inter-

subject synchronization during a complex stimulus using multiple analysis

methodologies. Following the background studies described previously in Chapter 1,

Chapter 2 presents the fundamentals of functional magnetic resonance imaging including

a description of the scientific principles behind the generation of the fMRI signal,

biological properties represented in the signal and a brief description of resting state

networks. Chapter 3 discusses various methods and approaches followed in this paper.

Chapter 4 provides a detailed outline of the investigational study performed for this thesis

and a discussion of the results obtained. Chapter 5 concludes the work presented.



CHAPTER 2

BASIC FUNDAMENTALS OF FUNCTIONAL MAGNETIC
RESONANCE IMAGING

2.1 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is the principle on which MRI/fMRI techniques are

based. The nuclei of an atom contain unpaired charged electron/protons that spin around

their axis in the presence of external magnetic field and produce their own opposing

magnetic field. Hydrogen atom, which is most abundant in the human body, is commonly

used for this purpose because its nucleus is composed of single proton and spinning is

relatively uncomplicated. It behaves like a small magnet and produces the NMR signals.

The axis about which the protons spin is known as the longitudinal direction while the

plane in which precession occurs is known as the transverse plane.

The basic principle can be explained as: when a spinning particle is placed in a

magnetic field of strength B, it absorbs a photon of frequency v (containing energy - hv).

This frequency of photonic absorption is different for different molecules and depends

upon their gyro-magnetic ratio, y and is represented as:

For the hydrogen atom, the gyro-magnetic ratio, y is 42.58 MHz/T.

5



6

2.2 Basics of fMRI

Magnetic Resonance Imaging (MRI) measures the response of the hydrogen atom (or any

other MR visible atoms) present in a strong magnetic field. There are four basic steps

involved in obtaining MRI image of subjects. First, an external magnetic field is applied

around the subject and the spinning particles present inside the subject experience that

magnetic field and align themselves in either the same or exact opposite direction. In the

second step a radio frequency (RF) pulse is applied with the frequency same as is

resonance frequency of the hydrogen atom. Then, the atoms absorb energy from the

resonating field and jump into higher energy state which is anti parallel to the external

magnetic field. The third step involves the measurement of radio signal emitted by the

hydrogen nuclei while coming back to its lower energy state also called relaxation. The

fourth and final step transforms that radio signal into a spatial image using three different

gradient coils. The different coils separate the signal in terms of space, frequency and

phase results in high resolution anatomical image.

A main magnet is used in MRI which produces an external magnetic field and a

small number of the protons get aligned parallel to that external magnetic field, which is

lower energy state of protons, some of them align in the anti-parallel direction which is at

higher energy state. For fMRI, the strength of the magnetic field used is usually between

1.5 to 4.0 Tesla with greater strengths for research applications. The net magnetization

factor becomes M0 in the direction of external magnetic field i.e. the equilibrium

magnetization. Similarly, Mz represents the net magnetic field in Z (vertical) direction

after applying the RF signal.
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The signal received from MRI pulse sequence needs to be converted into

frequency domain for image reconstruction. The conversion is done by using pulse

sequences which is defined as set of RF pulses applied to produce specific form of NMR

signal. The dual spin echo is shown in the figure below. The pulse sequence timing can

be adjusted to give different type of image contrast e.g. T1-weighted and T2-weighted

proton density images.

Figure 2.1 T1 and T2 relaxation curves.

Proton density is the concentration of protons in the tissue in the form of water and

macromolecules (proteins, fat, etc). The T1 and T2 relaxation times define the way that

the protons revert back to their resting states after the initial RF pulse. In case of 90'

pulse, the T1 relaxation is time during which the longitudinal magnetization returns back

from zero to maximum amplitude. Whereas, T2 relaxation is the time which the

transverse magnetization returns back to zero from maximum. The both terms are

independent. T2 relaxation generally occurs faster than T1 relaxation. The rephasing of

the spins can be explained using the Equation 2.2.
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Where, At (t) is longitudinal magnetization at any time t and Ti is decay constant of

the magnet (time required to reach 63% of maximum Mz).

T1 relaxation varies with tissue properties. Very small molecules rotate very

quickly and thus they give very less potential of resonant frequencies while large

molecules rotate slowly and do not give any useful resonant frequency. Since studies

have shown that T2-weighted images are most sensitive for detecting brain pathology.

Therefore, T2-weighted images are used for fMRI imaging.

2.3 Functional MRI

Advancement in MRI has led us to the development of fMRI (functional Magnetic

Resonance Imagining). Unlike MRI, fMRI not only gives the high resolution anatomical

images of the brain it also provides high temporal resolution. fMRI measures the

confined changes in the cerebral blood flow in terms of its volume and oxygenation.

fMRI has made it feasible to localize different regions activated during particular tasks

performed at that specific time. The basis of most fMRI techniques uses BOLD (Blood

oxygen level dependent) principle. Figure 2.2 shows a schematic representation of the

BOLD mechanism. The increase in brain activity requires more oxygen intake which is

linked with more blood flow. The amount of oxyhemoglobin increases and

deoxyhemoglobin decreases. The paramagnetic properties of deoxygenated hemoglobin

produce the inhomogeneous magnetic field resulting in low intensity T2* weighted

image. Changes in BOLD signal measured against time, also known as hemodynamic
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response function (HRF), provide information on brain activity. The fMRI response when

compared with other cognitive techniques is found to be superior in terms of spatial

resolution. The temporal resolution however is not in the millisecond range but more in

the second range, but the combined results give very meaningful information which has

not been achieved by any other techniques developed so far.

Figure 2.2 Mechanism of BOLD signal.

During task related fMRI measurement, blood-oxygen levels change in the brain

in eloquent regions due to increased neural activity. This allows measurement of brain

activity that has a sensitivity of seconds in time and millimeters in space. Also, fMRI

being non-invasive can be quickly repeated multiple times if required. All of these

advantages have made it one of the most commonly used medical imaging tool to study

the brain activity for both clinical and research purposes.
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2.4 fMRI Analysis

Although the brain is continuously active implying that the blood oxygenation level

varies continuously in the brain irrespective of the absence or presence of any specified

task, it is currently believed that even during the presence of tasks, task induced signal

changes account for only about 7% of this variation, the rest 93% accounts for the

baseline (rest)- activity changes in the brain Therefore, it is important to maintain same

exact experimental conditions while conducting fMRI experiments. During an

experiment, MRI scanner usually covers the entire volume of brain in about 2-4 seconds

and 100s of such brain volumes are sequentially collected. Prior to generating activation

map representing functional regions corresponding to the stimulus presented, several

preprocessing steps are required to be performed.

• Slice time Correction: the time gap between different slices is kept uniform

• Motion Correction: minimizes the effects of motion in the data

• Spatial Smoothing: reduces effects of high frequency components

• Temporal Filtering: to remove variation due to heart beat and respiration

• Normalization: to convert images in standard MNI space

2.4.1 Slice Time Correction

fMRI technique is highly dependent on the sequence of images collected during each

volume acquisition.. Therefore, it is important for all time series to be synchronized. Slice

time correction makes an account of time difference between the slices. Slices are often

acquired in an interleaved manner, sometimes increasing the time-difference between two
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slices to TR/2. Slice time correction is achieved by interpolating time series of each voxel

with a fixed reference.

2.4.2 Motion Correction

While mapping the brain activity using fMRI one of the most common factors adversely

affecting the processing is the motion of the subject during the data-acquisition process.

As the time of scanning varies from 4-5 minutes it is difficult to stay steady even

motivational subject move substantially. As a result of this, time series obtained would be

affected with loss of signal or the signal mixing up with other regions and hence resulting

into errors. Therefore, it is very important to identify if there is any motion and rectify it

before proceeding with any further step in data analyses.

2.4.3 Spatial Smoothing

The noise present in each image is minimized using spatial smoothing. In fMRI, Spatial

smoothing improves the ability statically interpolations to detect activation by increasing

the signal-to-noise ratio (SNR) but at the same time it reduces the spatial resolution.

Therefore, it is important to maintain the balance between SNR and image spatial

resolution while performing spatial smoothing. The spatial smoothing is typically

accomplished using various filtering kernels including Gaussian, Average and Hamming.

2.4.4 Temporal Filtering

The purpose of fMRI data is to identify the changes in the temporal brain signal intensity

changes. The time series contains all important information of brain activity. But usually

the time series are contaminated by the noise present during the experiment which could

be due to the other tasks being performed by the subject simultaneously or because of
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some technical problem. To get rid of this unwanted signal temporal filtering is required.

For this purpose, usually a band pass filter is used which attenuates the unwanted

frequency contents of signal.

2.4.5 Normalization

To account for variation in the brain structures among different subjects, each individual

brain is typically transformed into a standardized brain template. Technical

interpretations of results are facilitated by comparing fMRI images of the brain visually

or by some statistical analysis for different data sets obtained from different facilities

across the globe. Quantitative analysis requires the alignment of images before making

any interpretations. So it is required to convert all the brain images into a standard space,

Montreal Neurological Institute (MNI) approach is most commonly used for that purpose.

2.5 Statistical Analysis

The statistical analysis is performed on the pre-processed data to interpret data and obtain

robust results. Several ways to interpolate the results have been proposed which allow

identifying the region of interest in brain. These regions usually show significant

correlation with the task performed — giving a meaning to the whole process.

2.6 Resting State Connectivity

The brain during rest activates a number networks including the default mode network.

This is the activation recorded when the subject is doing nothing but resting. It is

presumed to be described by coherent neuronal oscillations of frequency range less than
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0.1 Hz. It has been observed that during the task related networks, the resting state

network is usually deactivated and it is activated during day dreaming, retrieving

memories, and gauging others' perspective. The medial temporal lobe for the memory,

part of the medial prefrontal cortex, the posterior cingulated cortex with adjacent

precuneus and media, and the lateral and inferior cortex are the regions of the brain that

are supposed to cover the resting state network [10]. As shown in figure 2.3, De Luca et.

al.[10] described the resting state connectivity as long distance interactions in various

distinct regions of brain including medial temporal lobe (memory), medial prefrontal

cortex (mental stimulation), posterior cingulated cortex (integration), adjacent precuneus

and inferior parietal cortex.

The increasing interest in resting state network in both clinical and basic science

research community is due to its capability to indicate distinct changes in inter-regional

functional connection strength in case of any dysfunction in the brain activity. Few of the

examples where the resting state networks have been applied to diagnose "illness" in

clinical sciences are:

• In multiple sclerosis low frequency BOLD fluctuations were observed in bilateral

primary motor cortices.

• In identifying, early Alzheimer's disease to the hippocampus and between

posterior cingulate cortex and hippocampus.

• Within the cortico-limbic network in depression. Also increased contributions

from subgenual cingulated cortex and thalamus in depressive patients.
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which was related to neural network modeling. After that, in 90s its improved version

with successful algorithm was demonstrated on problems like cocktail-party effect, where

individual speech waveforms were separated from their mixed-up signal.

ICA helps in solving the problems with linear and nonlinear mixture of unknown

variables. The latent variables are assumed to be independent and non-Gaussian.

ICA is also commonly known as blind source separation technique. Typical

examples of ICA problem are where, a mixture of simultaneous speech signals has been

picked up by several microphones, brain waves recorded by multiple sensors, interfering

radio signals arriving at a mobile phone, or parallel time series obtained from some

industrial process. Now ICA is known as a popular tool in the field of neural networks,

especially unsupervised learning, and more generally in advanced statistics and signal.

To rigorously define ICA, we can use a statistical "latent variables" model. The n

random variables x1, x2, x3 	 x,„ are observed which are modeled as linear

distribution of n random variables s1,s2,s3,s4 	 sn•

For all i=1, 	 ,n Where the aij,i,j = 1, 	 ,n are some real coefficients.

By definition, the s, are statistically mutually independent.

This is the basic ICA model in which observed data are generated by mixing the

components sj, therefore it is known as generative model. The independent component sj

are latent variable which cannot be observed directly. Also the coefficients is assumed
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to be unknown. All we observe are random variables xi, and we estimate both aid and

si(ICs) using only xi. For that we must make some general assumptions, like:

• The independent components are assumed to be statistically independent.

• The independent components must have non-Gaussian distributions.

• For simplicity we assume that the unknown mixing matrix is square.

2.8 	 Probabilistic ICA Model

There are number of techniques available to calculate Independent Components for

fMRI. The PICA (probabilistic independent component analysis) is one of them. This

technique was optimized for the analysis of fMRI data by Beckman and Smith [16] and

later the role PICA for investing resting state networks was implemented by Beckmen et

al. [15] to characterize the spatiotemporal structure of resting state data. A probabilistic

ICA extends the ICA model by assuming that the p-dimensional vectors of observations

(time series in the case of FMRI data) are generated from a set of q(< p) statistically

independent non-Gaussian sources (spatial maps) via a linear and instantaneous 'mixing'

process corrupted by additive Gaussian noise

Here, x i denote the individual measurements at voxel location i, s i denotes the

non-Gaussian source signals contained in the data and Ili denotes Gaussian noise ηi ~

G(0,σ2Σi). Following Figure 2.4 captures all the individual steps applied for PICA.



Figure 2.4 Flow chart of the analysis steps involved in estimating the PICA model
(Beckmann and Smith (2004)

17



CHAPTER 3

METHODS

3.1 	 Data Acquisition

For the purpose of this resting state fMRI preprocessing study, the data was collected

from the multisite human connectivity study, freely available at www.nitrc.org . All the

data used for this study was collected at the Massachusetts Institute of Technology

(MIT). In this experiment, 39 healthy subjects with no prior history of any neurological

and psychological diseases were involved. All subjects were healthy adult between the

ages of 21 to 50 years. Two scans of each subject were taken. One of these was high

resolution anatomical image called MPRAGE image and other scan was taken when the

subjects were resting. At the time of rest-scans, the subjects were instructed to keep their

eyes closed and they were asked to refrain from performing any cognitive or motor

activity.

3.2 	 Data Analysis

A number of methods have been used to provide functional connectivity estimates for an

fMRI dataset. Choosing appropriate preprocessing parameters is very important from the

perspective of functional connectivity estimation, since it determines the significance of

the fMRI signals. Different software were used for preprocessing this study including

AFNI, FSL and MATLAB. A Perl script incorporating the various command lines using

AFNI and FSL was also developed for this purpose.

18
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Different methods of doing motion correction, temporal and spatial smoothing

involving a number of steps were performed to see the effect of each step independently

on processing the data, and then the results from these methods were compared. The

preprocessing methods investigated in this study are described below.

3.2.1 De-oblique

The functional scan consists of a number of slices in sequence through the entire volume

of brain. In this experiment, data were acquired in oblique/angled manner as shown in the

figure below. The advantage of the oblique scan is that it avoids the air-filled sinuses

present in front of the head otherwise this air interferes with MR signal, resulting in poor

quality of image. Because any form of signal loss will adversely affect the data, oblique

slice are used to minimize these effects. In this study, the dataset is first de-obliqued to

proceed further.

Figure 3.1 Two different ways of slice acquisition (in the left image (a) the slices are
obtained in an axial manner parallel to transverse plane and (b) the slices are acquired in
an oblique manner with an angle of around 30 degrees with transverse plane).
(source: http://ccnlab.myweb.uga.edu/afniwiki/fmri.html)
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3.2.2 Slice Time Correction

While scanning different slices of the brain usually a time lag occurs between scanning of

different slices. This time lag depends on the acquisition setup. Slices are acquired in a

straight or interleaved sequence i.e. even number slices are acquired first and then the odd

numbered slices. In interleaved sequence the probability of the time lag between

acquiring data for each slice will cause the difference in the signal which can be

substantial mainly in the studies related to even number slices. Although it doesn't affect

the individual voxel analysis but future processing steps like spatial smoothing, motion

correction, temporal filtering and normalization may be affected. Therefore, it is

important to correct for this time lag and 3dTshift function in AFNI is used for such slice

time correction. 3dTshift can also be used during motion correction with 3dvolreg.

3.2.3 Motion Correction

Motion correction was performed to remove the effect of subject movement during the

experiment, which is considered as one of the main source of data loss in fMRI. 3dvolreg

in AFNI was used for the purpose of correcting data for any such motion. Many different

options are available in AFNI for motion alignment apart from 3dvolreg. 3dvolreg has

been proved to be accurate and more computationally efficient [17]. 3dvolreg, based on

least square objective function, is a very fast method for rotating and aligning images.

Different options available for 3dvolreg are Fourier, Cubic, Quintic, Heptic and Clipit.

These are the different algorithms for motion interpolations where Cubic refers as

polynomial fit of third degree, Quintic refers to polynomial fit of fifth degree and Heptic

refers to polynomial fit of seventh degree. Fourier as proposed by Eddy et al. [18], is a
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special method where the data points are equally distributed and then correction is done

by discrete Fourier transform. In the Clipit method, as the input volumes might produce

values outside the input range, the program clips the value in each out-brick into the same

range. The example of command line used for Motion Correction.

3dvolreg —fourier (cubic, heptic, quintic, clipit) —base dataset[5] -prefix outputname

Here, 3dvolreg is the AFNI command, Fourier is the type of interpolation opted where

Cubic, Heptic, Quintic, Clipit can also be used. Base is the reference point where

interpolation is done and then prefix specifies the output name.

3.2.4 Spatial Smoothing

Spatial Smoothing is required to increase the signal to noise ratio by removing unwanted

information from the signal. Spatial smoothing on the images is performed in the image

space. Attenuating high frequency results in a smoother image where low frequencies

emphasize on the contrast and result in enhanced edges for images. A number of different

frequency filters can be used for spatial filtering. In AFNI, spatial smoothing is done by

using 3dmerge command opting from many available parameters. The different values of

full width at half maximum (FWHM) of 4, 6 and 8mm were applied and results obtained

were compared. MATLAB also provides ability to spatially smoothen the data. Four

different types of MATLAB filters were tried for spatial smoothing using 2D filter

(filter2) by changing the type in FSPECIAL (type) between Gaussian, Average, Unsharp

and Sobel.
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3.2.4.1 Gaussian Filter Gaussian is a 2D smoothing filter operator which blurs the image

and minimizes the noise. Although the operation is similar to that of Average filter but

the shape of Gaussian kernel is different and in 2D, it is represented by

Where G is standard deviation, and it is assumed that the mean of function is zero for the

equation above i.e. center lies at zero. 3D representation of this function is shown in

figure below.

Figure 3.2 3-D representation of gausian function

This 2D distribution as point spread function is used by convolution in Gaussian

smoothing. Image is stored in a matrix with distinct values for all pixels. In the similar

way a matrix of Gaussian function is generated using convolution matrix as shown in

figure 3.3. In MATLAB, FSPECIAL(`gaussian', N, σ) returns a rotationally symmetric

Gaussian lowpass filter output with standard deviation σ, where σ is measured in pixels.
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N is a vector specifying the number of rows and columns. The default parameters for N

and G are [3 3] and 0.5.

Figure 3.3 Frequency responses of Gaussian and Average filters
(source: http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm)

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

Figure 3.4 Matrix representation of a Gaussian function

3.2.4.2 Average Filter This filter is simple and can be efficiently implemented. It

reduces noise in the images by reducing the intensity variation between adjacent pixels.

It replaces intensity of each of the pixels with the mean value of its adjacent neighboring

pixels. FSPECIAL (`average', N) returns an averaging filter applied to the signal where

default value of N is [3 3]. Matrix sizes [5 5] and [7 7] were also tried for this study. The

[3 3] matrix used for Average filter looks as shown in the table below.

1 
273



1/9 1/9 1/91/9 1/9 1/91/9 1/9 1/9

Figure 3.5 Matrix for Average function

3.2.4.3 Unsharp Filter Unsharp filter is also simple and works as high pass filter. It

enhances the edges and other high frequency components in the image by subtracting the

Unsharp or smoothen components from the image.

FSPECIAL('unsharp', α ) returns a 3-by-3 Unsharp contrast enhancement filter

applied to the signal. The Unsharp filter is created from the negative of the Laplacian

filter with parameter a where a controls the shape of the filter and ranges between 0 to1.

Default value of a in MATLAB is 0.2.

3.2.4.4 Sobel Filter FSPECIAL(`Sober) returns a 3-by-3 filter that emphasizes on

horizontal edge. The smoothing is done by approximating vertical gradient. The vector

matrix is [1 2 1; 0 0 0; -1 -2 -1;[.

3.2.5 Temporal filtering

fMRI measures the activity of the brain by scanning the regions of brain for a particular

period of time with a specific sampling rate which is represented by its time series.

Sampling rate or TR (repetition time) of the data was once per two seconds. Each pixel

on the scanned image has an independent time series which eventually predicts the

changes in intensity of the signal due to hemodynamic response of that region during that

24
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specific period of time. This time series not only contains the required information of

brain activity but also captures noise of the system.

A band-pass filter for filtering different frequency ranges was used and then

compared to optimize range for filtering the data. The background and history of the

Resting State Networks suggests that the low frequency components present in the

networks are around 0.01 -0.1Hz. In this study, different bandwidths were chosen for this

optimization, which were bandwidths of 0.009-0.08Hz, 0.009-0.10 Hz, 0.009-0.12 Hz,

0.009-0.14 Hz and 0.009-0.16 Hz. The filtering is done in MATLAB using band-pass

filters of above frequency ranges. The data is of finite length with 150 time samples.

Therefore finite impulse response function is applied (FIR). The MATLAB filtfilt

function is used for filtering the data. Also, the effect of different windows has been

compared by experiment with three those are Gaussian, Rectangular and Hamming.

3.2.5.1 Rectangular Rectangular window is also known as Block window or Dirichlet

window. Its shape is like a rectangle which possesses unity gain, i.e. W(n) = 1. Figure 3.6

shown below describes the window used in the MATLAB with order 10. The side-lobe

attenuation is given by -13dB and leakage is estimated to be 9.23%.

3.2.5.2 Hamming The Hamming window was initially developed and proposed by

Richard W. Hamming. It is the default window for MATLAB function and looks similar

to a cosine function. The height of the side lobe is about one- fifth that of the Hanning

window and the gain is given by
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The MATLAB implementation of Hamming window used in this study is shown below

in figure 3.7. It is 10th order window with side-lobe attenuation of -36.7 dB and leakage

0.04 %.

Figure 3.6 shape of the Rectangular window used for temporal filtering in time and
frequency domain

3.2.5.3 Gaussian The gain of Gaussian window is given by

W (n) 	 e -1 /2((n-(N- 1 )/2)/2)/σ (N- 1 )/2)2

where σ is the standard deviation. The advantage of using Gaussian window for

time-frequency analysis is that Fourier transform and the derivative of Gaussian function

both are Gaussian functions. For the purpose of this study, a Gaussian window of order

10 was considered. Figure 3.8 below shows the time and frequency domain of the
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Gaussian window implemented in MATLAB where sidelobe attenuation is -48 dB and

Figure 3.7 shape of the Hamming window used tor temporal tittering in time and
frequency domain

Figure 3.8 shape of the Gaussian window used for temporal filtering in time and
frequency domain
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3.2.6 Normalization/Standardization

Normalization in fMRI preprocessing refers to converting the data into standard MNI

standard space. Since the data was collected from different subjects in the experiment and

the size and the shape of the brain of each subject are different. Therefore, it was required

to convert all the information into one standard space before making any crucial

interpretations. Normalization was done with the help of flirt command in FSL software.

The normalization preprocessing was a four step process. In the first step, high resolution

anatomical images (mprage) are used to obtain a transformation matrix for given

reference image avg12Tl_brain.nii.gz. The line below is an example of command used

for this purpose where mprage is the anatomical image and input_mnil is obtained from

mprage.

'flirt -in mprage.nii.gz -ref avg152Tl_brain.nii.gz -omat linpur_mnil.mat ';

In the second step, another transformation matrix is obtained using a reference of

mprage in the command line. In the third step, both of these transformation matrices were

concatenated and used as input for the last and final step where actual input is converted

into MNI space using standard reference image. Here input.nii.gz is the resting state data

set, converted into NIFTI format and input_mni2 is another matrix from functional data-

set when mprage is used as reference. Following is an example code for this process

'flirt -in "$input".nii.gz -ref mprage.nii.gz -omat "$input"_mni2.mat ';

convert_xfm	 -concat	 "$input"_mnil.mat	 -omat	 "Sinputto"_mni.mat

"$input"_mni2.mat';

'flirt -in "$input".nii.gz -ref avg152Tl_brain.nii.gz -out "$input"_mni -applyxfm -init

"$input"_mni.mat -interp trilinear';
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3.2.7 ICA ( Independent Component Analysis)

Independent Component Analysis (ICA) is an important method used to decompose large

fMRI data sets into a set of robust connectivity maps. To perform ICA for normalized

data, data was first re-sampled into 3mm resolution using 3dresample. The re-sampling

was required as the original data had a resolution of 2mm. It takes less processing time

for the images with resolution of 3mm than for the images with resolution of 2mm. ICA

was performed in FSL using Melodic command where the input type should be in NIFTI.

Therefore it was required that data be first converted into NIFTI from AFNI, which was

done using command-line 3dAFNItoNIFTI. Also some of the subjects were realigned in

RPI using 3dresample.

FSL Melodic ICA is based on PICA (Probabilistic Independent Component

Analysis) approach. The data is sent to Independent Component module (called

MELODIC, version 3.05) of FMRIB's Software Library (FSL, www.fmrib.ox.a.c.uk ./fsl)

for PICA analysis. For which, the assumption is made that fMRI signal(x) is generated

from linear mixing process of the independent non-Gaussian source (s) and a matrix A.

Gaussian noise function 0-0 is also added to the signal, i.e.

Where, x is a matrix of p x n dimensions, p is one for this study as ICA is done on

individual subjects, n is the number of voxels for fMRI-database and s is q x n matrix

where q is the number of independent components (ICs) which is assumed to be

originated from non-Gaussian sources. A is a p x q mixing matrix and η is simulated
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Gaussian noise. Laplace approximation estimation is used to estimate q (ICs). Next, the

data-set is reduced to q dimensions and converted into independent components by

fastlCA algorithm. The matrix W was found to generate a good approximation to the

sources,



Figure 3.9 Organizational chart of all the steps performed in this study



CHAPTER 4

RESULTS AND DISCUSSIONS

All of the above mentioned methods of preprocessing were tried on the resting state

subject-datasets, to find the effect of different preprocessing methods on the resting state fMRI data

sets. Also, the same data was converted into MNI space (normalized), preprocessed using

same preprocessing methods and then the results were compared with those from previous

non-normalized preprocessing.

4.1 Results

4.1.1 De-oblique

Number of components from ICA after de-oblique process were found to be less than those

in the original oblique rest data as shown in the figure 4.1 below. Here, the blue curve

represents number of ICA components for each subject in original oblique rest data and red

curve represents for de-oblique data after using 3dwarp —deoblique.

Figure 4.1 The number of ICA components for each subject before and after de-oblique.
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4.1.2 Slice Time Correction

No time shift was noticed in the given data-set because the data was pre-aligned which was

confirmed by application of 3dTshift in AFNI, as it did not suggest any changes to our data-

set.

4.1.3 Motion Correction

In each of the studies for motion correction, no significant difference in the number of

estimated ICA components was found. Number of ICA components using different motion

correction algorithms was observed to be almost same. Also when compared the dataset

without any motion correction, the number of components were nearly identical. It can be

seen from the curve in figure 4.1 that different algorithms of motion correction using

3dvolreg i.e. Fourier, Cubic, Heptic, Quintic and Clipit, did not have any significant effect

Figure 4.2 Number of ICA components for each subject after motion correction
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as the images did not have to be smoothed and realigned because the motion during the

scanning was minimal.

4.1.4 Temporal Filtering

As described in methodology section, the data set was filtered temporally using different

band pass frequency ranges, to determine the optimal frequency cut off range for resting state

connectivity. Temporal filtering was performed using different types of window functions,

i.e., Gaussian, Average, Rectangular and Hamming. The results from these windows shown

in figures 4.2 and 4.3 indicate that the number of ICA components increase with increase in

band width from 0.009- 0.08 Hz to 0.009-0.16 Hz for both Gaussian and Hamming functions.

Black curve in the figures shows the number of ICA components from unfiltered raw dataset.

The number of ICA components in raw data was found to be much less than that derived

from temporally filtered dataset, demonstrating the purpose of temporal filtering.

As with Gaussian function, Hamming function also shows increasing number of ICA

components with increase in band width from 0.009- 0.08 Hz to 0.009-0.16 Hz. However,

three subjects show relatively less number of ICA components (pink curve) for frequency

range 0.009-0.16 Hz in Hamming function. On further analysis, it was concluded that this

phenomenon was due to respiration. This is discussed later in discussion section. Also, the

number of ICA components for the raw data set is lesser than the filtered data
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Figure 4.3 Number of independent components for each subject from temporal filtering
using Gaussian filter. Each curve represents a different frequency range used for band pass
filter design.

Figure 4.4 Number of independent components for each subject from temporal filtering
using Hamming filter. Each curve represents a different frequency range used for band pass
filter design.
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Figure 4.5 below shows graph for Rectangular window function. However, the trend

of increase in number of components with increasing bandwidth was not observed as much

as for Gaussian and Hamming functions. This is further discussed later in discussion section

4.2.

Figure 4.5 Number of independent components for each subject from temporal filtering
using Rectangular filter. Each curve represents a different frequency range used for band pass
filter design (data-preprocessing was done without converting data into MNI space).

4.1.5 Spatial Smoothing

The dataset was compared for different spatial smoothing methods like Gaussian, Average,

Unsharp and Sobel options in MATLAB. Average smoothing method was further tested for

different matrix sizes. The results for Gaussian and Average type smoothing are very similar

as shown in figure 4.6. Number of ICA components is plotted for individual subjects to

compare the type of filters used for spatial smoothing. Here, the Unsharp filter shows slightly

higher number of components.
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Figure 4.6 Number of independent components for each subject from temporal filtering
using Average, Gaussian, Unsharp and Sobel filters. Each curve represents a different
frequency range used for band pass filter design (data-preprocessing was done without
converting data into MNI space).

Figure 4.7 Number of independent components for each subject from spatial smoothing in
AFNI using different values for FWHM.
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In comparison, Sobel filter showed very high number of components for all the

subjects. Figure 4.6 shows the spatial smoothing using Gaussian blur filter in AFNI for

different FWHM parameters, i.e., 4, 6 and 8 mm. Here, FWHM value of 8mm shows a

drastic increase in number of components as compared to 4 and 6 mm. Figure 4.7 shows the

graph for number of components for spatial smoothing using Average type filter with

different matrix sizes, i.e. [3 3], [5 5] and [7 7].

Figure 4.8 Number of independent components for each subject using different matrix size
of Average filter.

4.1.6 Normalization

The data-set for which plots and results are presented above, was then normalized to MNI

standard brain space before deriving ICA. Numbers of ICA components from this normalized

data are plotted in figures 4.8, 4.9, 4.10 using different temporal filtering window functions,

i.e., Gaussian, Hamming and Rectangular filters respectively.



39

Figure 4.9 Number of independent components for each subject from temporal filtering
using Gaussian filter. Each curve represents a different frequency range used for band pass
filter design (ICA data-preprocessing was done after converting data into MNI space).

Figure 4.10 Number of independent components for each subject from temporal filtering
using Hamming filter. Each curve represents a different frequency range used for band pass
filter design (ICA data-preprocessing was done after converting data into MNI space).

The pattern of ICA components for different filter bandwidth observed with non-

normalized data as described previously was different for data converted in the standard
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brain MNI space. In the case where dataset was normalized to standard brain space, the

number of ICA components increased until the bandwidth of (0.009-0.12) Hz and then

started decreasing instead of continuously increasing for all bandwidths of (0.009-0.08) to

(0.009-0.16) Hz (as observed in case of non- normalized data).

Figure 4.11 Number of independent components for each subject from temporal filtering
using Rectangular filter. Each curve represents a different frequency range used for band pass
filter design (ICA data-preprocessing was done after converting data into MNI space).

Following Figure 4.12 shows the plot of number of ICA components for spatial

smoothing using different filters and figure 4.13 shows the plot for ICA components for

spatial smoothing using Gaussian blur with different FWHM for the data set normalized to

standard brain MNI space.



41

Figure 4.12 Plot of number of independent components for each subject for spatial
smoothing using Average, Gaussian, Unsharp and Sobel filters after converting into MNI
space.

4.2 Discussions

The results obtained for motion correction show no significant difference for different types

of interpolations - Fourier, Quintic, Cubic, Heptic or Clipit. The number of ICA components

was found to be same for various motion correction algorithms. However it was suggested by

Cox et al that Fourier is the most accurate and Cubic was the fastest though least accurate but

none of these algorithms methods showed any difference for our dataset. Also, we did not

observe much motion in any of the subjects either. So it can be inferred that any of these

methods maybe used for motion correction for resting state dataset in the study. A pattern

was observed in case of temporal filtering of non-normalized data using either Hamming or

Gaussian filter. The number of ICA components follows an increasing trend with increasing

limit of low pass cut off frequency bandwidth. However, when compared with the raw data,

number of components in raw data of each subject was much less in comparison to any of the
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filtering band width (0.001-0.16) Hz. Then, the same analysis method was performed for

single subjects increasing the bandwidth further than (0.009-0.16) Hz in small steps. It was

observed that after a definite cutoff frequency at around 0.2Hz, number of components

started decreasing sharply and then it came to saturation as shown in figures 4.13. A similar

figure 4.14 confirms that this was indeed the case for other subjects as well. Recognizing that

the frequency of respiration is around 0.20 Hz for normal human being, that causes an

increase in the variability and thus the number of independent components decreases. The

effect of increasing bandwidth tested on one subject is shown in following figure 4.13 and

was then compared with another subject in figure 4.14. Filtered results were seen to be

similar for both subjects considered for this comparison.

Figure 4.13 Number of independent components for subject # 02 from temporal filtering
using Gaussian filter.
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Figure 4.14 Number of independent components from temporal filtering using Gaussian
filters shown for subject#02 and subject#34.

The respiration effect can also be seen at frequencies around .15 Hz in data converted

into normalized MNI space which was earlier than for the case of non-normalized data.

Therefore it is suggested, to be on a safer side, not to use a cutoff frequency above .12 Hz for

resting state data.On comparing the response of different type of filters used for temporal

filters, no systematic changes pattern was observed for Rectangular filter. This could be due

to the large side lobes in frequency response of the Rectangular filter. It can also be inferred

that Hamming filter was more sensitive to the respiratory effect as change in the pattern is

visible at .14 Hz but for Gaussian it is more prominent at frequency of .16 Hz (refer figures

4.2 and 4.3). Figures 4.15 and 4.16 compare the response of all three Hamming, Gaussian

and Rectangular filter for a fixed frequency bandwidth (0.009-0.08) Hz. Figure 4.17 show

the time series obtained by each of these filters.
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Figure 4.15 Comparison between Gaussian, Hamming and Rectangular filter at frequency
bandwidth (0.009-0.08) Hz

Figure 4.16 Comparison between Gaussian, Hamming and Rectangular filter at frequency
bandwidth (0.009-0.08) Hz for data converted to MNI space



45

Figure 4.17 Time series obtained after different temporal filters

Also, spatial smoothing was performed using different types of filters along with

changing their parameters. Figure 4.5 under results section, shows that the resultant number

of ICA components doesn't reflect significant difference when Average or Gaussian filters

are used. For Unsharp filtering however there is slight increase in number of components but

for Sobel it increases drastically. This could be because both Sobel and Unsharp fileter are

highpass filters, where Sobel filter emphasizes more on edge smoothing and is less sensitive

to noise whereas Unsharp smoothing sharpens the edges. Figure 4.18 shows preprocessed

data output for each of these smoothing methods.

Also the effect of smoothing can be compared for smoothing parameters as shown in

the figure 4.19. It can be seen that with increasing matrix size, the resolution is affected
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Figure 4.18 Comparison of preprocessed images obtained from smoothing using different 

types of filters 
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So although there isn't significant difference between the number of components 

obtained by using matrix size [3 3] and [5 5] but for matrix size [7 7] it looked significantly 

different. Just by looking at images it can be believed that using a bigger size matrix like [7 

7] (similar to using higher value for FWHM, say 8) is definitely not a good idea. Whereas it 

doesn't make much difference between using [3 3] or [5 5] however some information is 

certainly lost in [5 5]. Therefore, matrix size of [3 3] should be an optimal solution for 

smoothing. 
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Figure 4.19 Images obtained from Average smoothing using different matrix size 
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Figure 4.20 Number of components for Average type smoothing obtained by using different
matrix size

From our discussion above it appears that using Sobel or Unsharp filters for spatial

smoothing should not be advisable. At the same time, it can also be seen that both Average

and Gaussian filters results in similar connectivity maps. However, by closely observing at

their frequency response, both Average and Gaussian, one can see that both filters attenuate

higher frequency contents of the signal more as compared to low frequency contents. But

Average filter exhibits oscillations in its frequency response whereas Gaussian shows no side

lobes. We should be careful to avoid such oscillating behavior and to ensure about the

frequency range present in the images and attenuated from the images. Therefore, Gaussian

filter should be preferred over Average filter for resting state data smoothing.



CHAPTER 5

CONCLUSIONS

ICA is reliable technique as long as we have sufficient data for probability based

analysis. When the problems and conditions get specific to a small set of data, we cannot

use ICA for making any intelligent decisions, but in all other cases ICA provides very

good estimate of effects of each step of preprocessing.

While preprocessing the resting state fMRI data, it is found that motion correction

is insignificant in this case and it doesn't matter which motion correction technique is

used. For spatial smoothing of the resting state fMRI data, a low pass filter would be

required. For temporal filtering, a band-pass filter with higher cut-off frequency less than

0.12Hz is desirable. Gaussian or Hamming filters, both work effectively for temporal

filtering. However a high order filter should be avoided.
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