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ABSTRACT

A STUDY OF PROBABILITY DISTRIBUTIONS OF
DCT COEFFICIENTS IN JPEG COMPRESSION

by
Gopal Thirumalai Narayanan

The Discrete Cosine Transform (DCT) used in JPEG compression has shown excellent

energy compaction properties that rival that of the ideal Karhunen-Loeve Transform.

Lossy compression in JPEG is achieved by distorting 8x8 block DCT coefficients

through quantization. It has been shown in literature that DC block DCT coefficients are

Gaussian probability distributed and AC block DCT coefficients are Generalized Normal

probability distributed.

In this investigation, three probability density models for individual modes of non-

quantized AC block DCT coefficients are evaluated and are used as basis for the

derivation of probability distributions for quantized block DCT coefficients. The

suitability of each of the three derived models is evaluated using the Kolmogorov-

Smimov and X2 goodness-of-fit tests, and the moments of the best-fit model are derived.

The best-fit model is applied to detect the presence and extent of JPEG compression

history in bitmap images. A model for all quantized AC block DCT coefficients is

derived using mixtures of individual quantized block DCT modes, and the model hence

developed is used to validate the Generalized Benford's Law for leading digit

distributions of quantized AC block DCT coeffiCients.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to present new probability models for quantized and de-

quantized block Discrete Cosine Transform (DCT) coefficients in JPEG compression,

and to apply them to image forensic applications.

Three probability density functions (PDFs), i.e., Laplacian, Generalized Gaussian

and Generalized Gamma distributions, are used as the basis models of non-quantized

block DCT coefficients and the corresponding quantized DCT coefficient probability

mass functions (PMFs) are derived. It is shown via x2 and Kolmogorov-Smirnov (KS)

tests that the PMFs based on the Generalized Normal PDF are the most suitable

distributions for both quantized and de-quantized DCT coefficients.

The most suitable PMF for de-quantized block DCT coefficients is then applied to

a bitmap image to detect the presence of JPEG compression history. Further, the PMF is

used to detect the level of any historical JPEG compression in the image. Finally, the

quantized block DCT PMF is used to derive an approximate model for the first digit

distributions of quantized block DCTs using finite mixtures and is used to validate the

Generalized Benford Law [27].

1.2 Motivation

The primary motivation for this study is the scarcity of literature regarding the statistical

properties of quantized and de-quantized block DCT coefficients in JPEG compression.

In contrast with the large body of work available for the statistics of non-quantized DCT

1
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coefficients, there have been very few publications discussing the statistics of quantized

block DCTs, with the exception of [28], which models quantized block DCTs using a

Generalized Laplace distribution. This thesis is therefore an attempt to derive such a

model from the statistics of the process of quantization. The following questions will be

explored.

1. What are the different kinds probability models associated with 2D DCT coefficients
in JPEG compression?

2. What probability models are used for 2D block DCT coefficients in JPEG
compression?

3. What are the most suitable probability distributions of quantized and de-quantized 2D
block DCT coefficients in JPEG compression?

4. How may the probability distributions of quantized and de-quantized 2D block DCT
coefficients be applied to image forensics?

Thus, this thesis presents novel models for quantized and de-quantized 2D block

DCT distribution in JPEG compression. The latter model is shown to detect compression

history in bitmaps, and is shown to outperform a classical approach [22] for compression

history detection. The former model validates the Generalized Benford's Law model [27]

from the perspective of quantized 2D block DCT distributions.

1.3 Thesis Structure

This thesis is structured as follows.

• CHAPTER 1 presents the background to this thesis, such as JPEG compression,
DCT and quantization.

• CHAPTER 2 presents a detailed literature survey of probability density functions
associated with 2D DCTs in JPEG.

• CHAPTER 3 derives three distinct probability mass functions for de-quantized
2D block DCTs and compares them. The same process is carried out for quantized
2D block DCTs. The most suitable probability mass functions are presented and
moments of those functions are derived.
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• CHAPTER 4 details applications of the probability mass functions derived in
Chapter 3 and contrasts them against classical approaches.

• CHAPTER 5 summarizes the results of the thesis and presents conclusions.

1.4 Background

JPEG compression has been the de-facto compression standard for image storage on

different digital media, such as computers, cameras, cellphones and handheld multimedia

players. JPEG is a lossy compression technique defined by ISO/IEC 10918-1 (1994) [9].

Owing to the relative simplicity of compression and decompression, JPEG images are

susceptible to third-party tampering. The results of such tampering are often not visually

evident, and research in the area of image forensics has sought to detect similar intrusions

using JPEG image statistics.

1.4.1 JPEG Compression

The JPEG still image compression standard was ratified in 1993 by the ISO/IEC in the

document ISO/IEC 10918-1. The standard specifies how a two-dimensional bitmap raster

image may be compressed into a one-dimensional stream of data, with a lower bit

allocation per pixel of the image, as compared to the original, uncompressed image. The

process of JPEG compression is shown in the following figure.



Quantization

Figure 1.1 The JPEG Encoder Block Diagram.

Figure 1.1 shows the JPEG encoder block diagram. The input is a two-

dimensional bitmap raster image to the Level Shift block.

The Level Shift removes the DC bias from the image pixels. It shifts the image

pixels by 2" — 1, where n is the number of bits used to encode each pixel of the input

bitmap.

The Block DCT performs type-II DCT, as detailed subsequently, on 8x8 sized

non-overlapping sub-blocks of the image. The DCT is a unitary block transform that

compacts the energy of the block into a limited number of nearly completely uncorrelated

subbands [1] [2].

The Quantization block performs integer division on the 8x8 DCT block by a pre-

calculated quantization matrix. This process involves integer rounding, which is

irreversible and is the ' lossy' part of the compression process. To wit,

x
n = H.

q

4

(1.1)

Where n is the integer-rounded DCT value, x is the floating point DCT coefficient, q is

the quantizer value and [... ] is the process of rounding.
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The Zigzag scan block converts the quantized 8x8 DCT block into a vector, by

sorting it according to increasing frequency subbands. This process is needed to cluster

the non-zero coefficients.

The Huffman coding block performs lossless entropy compression on the vector

from the zigzag scan process.

The entire process outlined above is reversed on the decoder side. Huffman

decoding is followed by a DCT de-quantization. The process of de-quantization involves

multiplying the 2D block DCT coefficients by the same quantization matrix used during

encoding. Therefore,

= nq. (1.2)

Where n is the integer-rounded DCT value, z is an estimate of x, the floating point DCT

coefficient and q is the quantizer value

Following the de-quantization, a 2D inverse DCT and a level shift is performed.

The level-shifted value is rounded to the nearest integer to give the magnitude of the

intensity of a pixel block.

JPEG compression leads to significant bit-per-pixel reduction. An uncompressed

full color RGB image contains 24 bits to a pixel. After JPEG compression, depending on

the image quality, the number of bits per pixel is reduced to a large extent, as shown in

the following table. For reference, the uncompressed image has a size of 219726 bytes.



Quality FactorQuality Factor Compressed File Size (Bytes)Compressed File Size (Bytes) Bits Per PixelBits Per Pixel

83261

15138

4787

1523

100

50

10

1

8.25

5.5

0.75

0.13

6

Table 1.1 Effect of JPEG compression on bits-per-pixel (bpp) of a color image

Source: JPEG on Wikipedia. http://en.wikipedia.org/JPEG,  retrieved March 16, 2010

1.4.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a block transform' used in JPEG compression.

The DCT was first proposed by Ahmed, Natarajan and Rao in [1]. It is a unitary

transform that is closest in performance to the Karhunen-Loève Transform (KLT), in

context of the following criteria:

• Energy compaction.
• Transform coefficient decorrelation.
• Rate distortion function.

The KLT [2] is an optimal block transform, in that the transform coefficients are

completely decorrelated, and signal energy is compacted into the fewest subbands

possible. This optimality is possible because the KLT basis vectors are input signal

dependent. To elaborate, according to Mercer's theorem for finite dimensions [53], a

square symmetric matrix can always be decomposed in the form,

S = UDU'.

Where S is the square symmetric matrix, U is orthogonal and its columns are the

eigenvectors of S, U' is U's transpose and D, a diagonal matrix contains S's eigenvalues.

1 A block transform is a finite length mapping from an L2(R) space to an L2(C) or L2(R) space. The mapping
is bijective, and hence completely invertible. [2] has more information.
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Using Mercer's theorem, Kari Karhunen and Michel Loève showed that the

resulting transform coefficients are perfectly decorrelated for the case of centred

stochastic processes, i.e., processes with zero mean.

When used as a transform, the matrix S is the autocorrelation matrix of the input

signal and the matrix U is the KLT basis matrix. Consequently, the KLT is a signal

dependent transform.

The DCT has the advantage over the KLT in that it is a signal independent

transform [2]. As shall be seen subsequently, the DCT is an ideal transform for signals

that may be modeled as Auto-Regressive (AR) random processes with a single historical

coefficient, i.e., AR(1) random processes. Most natural images may be modeled as AR(1)

processes [2].

The primary motivation for the DCT is that its basis vectors form a close

approximation to the eigenvectors of the class of Toeplitz matrices shown below [2].

(1.3)

This matrix is, in fact, the autocorrelation matrix of the AR(1) random process

given as [2],

X[n] = ρX[n — 1] + W [n].

Where p is the correlation coefficient and W[n] is a white noise process.

The eigenvectors of the autocorrelation matrix of a signal are the columns of the

KLT forward transform block [2]. Thus, the forward DCT is a close approximation to the

KLT of the class of signals modeled as AR(1) random processes.
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To draw a parallel to the KLT in terms of matrix decomposition, the DCT is

viewed as the eigenvectors of the following signal-independent tridiagonal matrix family

[40].

The parameters 162 , /33 and 164 are determined from the boundary conditions

imposed for the definition of the DCT. Püschel and Moura (2003) [40] explore DCT

definitions in detail. In the context of this thesis, however, the second form of the DCT,

known as type-II DCT, is of significance. For this specific case, the tridiagonal matrix is,

(1.4)

In signal processing literature, the tridiagonal form proposed by Strang (1999)

[41] is preferred. Explicitly,

G = 21 — 2B (. )

Where I is the identity matrix.
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Substituting from Equation (1.4),

(1.5)

The matrix G in Equation (1.5) is similar in magnitude to ψ  in Equation (1.3), if

the first and last diagonal terms are ignored, and if the value of p is close to 1. Therefore,

the type-II DCT is comparable to the KLT in terms of matrix decomposition.

KLT basis corresponding to an AR(1) random process and DCT basis waveforms

are shown in the following figure. The match between them is of note.

Figure 1.2 KLT basis vectors for the 8x8 Toeplitz matrix (with p = 0.9) and basis
vectors of the DCT.

Source: N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete Cosine Transform", IEEE Transactions on
Computers, 90-93, Jan 1974.
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The type-II DCT, which will henceforth be known simply as DCT, is analytically

expressed for a real sequence of size M as,

Where X(m)is the input data sequence, G, (k)is the kth DCT coefficient.

The corresponding inverse transform is defined as,

By representing the forward and inverse DCTs in matrix form, it is seen that the

inverse transform is the transpose of the forward transform, thus proving that the DCT is

a real, unitary transform [2]. Therefore,

Where [I] is an identity matrix, A is the forward transform matrix and AT is its

transpose.

Furthermore, [1], [3], [4], [5], [6] and [7] propose implementations of the DCT in

O(nlog2n) time complexity, with some of the implementations being based on the

Cooley-Tukey FFT algorithm. Therefore, the DCT is a fast, practical alternative to the

KLT for positively correlated signals.



The DCT definition is extended to two dimensions, and is defined in [8] as,

11

Where the symbols have their usual meanings and (M, N) is the size of the 2D block.

The inverse 2D DCT is defined as,

As noted in Section 1.4.1, in JPEG compression, every 8x8 block in the image is

transformed into an 8x8 transform block using the 2D DCT.
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1.4.3 DCT Quantization

DCT coefficients in JPEG compression undergo a process of integer division called

quantization. Quantization is an irreversible process where an 8x8 DCT sub-block is first

divided coefficient-by-coefficient, by a fixed or adaptive matrix determined by an

externally specified compression factor. The resultant matrix is then integer rounded. The

externally specified compression factor generally ranges from 10 to 100, with 10 being

the highest amount of compression and 100 being the lowest. This compression factor is

typically denoted as Q-factor.

The choice of the quantization matrix set is determined by the designer of the

JPEG encoder. The JPEG standard is only informative in this regard, but does provide

example quantization tables. They are detailed in Annex K of [9] and may be used by an

encoder. Those empirical matrix coefficients are based on psychovisual thresholding and

luminance, chrominance and spatial image subsampling.

It is possible to derive quantization matrices using principles of rate distortion

[10]. The process involves minimizing the distortion in the DCT coefficients, subject to a

constrained data rate.

Quantization is a non-linear operation that modifies the probability distribution of

the data being operated on. It is a lossy operation as well, and the error introduced due to

this is a random variable with a statistical model that is generally approximated by a

Uniform distribution [20] .



CHAPTER 2

LITERATURE SURVEY

This chapter focuses on detailing existing research on the various Probability Density

Functions (PDFs) of DCT coefficients in JPEG compression. Different proposed models

from existing literature for the PDFs of block DCT coefficients are explored in detail,

while full-frame DCT and DCT quantization error probability distributions are explored

briefly.

2.1 Block DCT PDF Models

In Section 1.4.1, it was stated that the process of JPEG compression divides an image into

8x8 non-overlapping sub-blocks. After Discrete Cosine transformation of each sub-block,

an 8x8 block of coefficients is generated. Each of these 64 coefficients is treated as a

distinct random variable, across multiple blocks of the image. The term mode is used to

denote one of the 64 coefficients at a specific location in the block. For example, mode

(1, 1) in an 8x8 DCT block is shown in the following figure.

Figure 2 1 Mode (1, 1) in an 8x8 DCT coefficient block.

13
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The mode (0, 0) will be known as the DC coefficient from this point onwards.

This is because the DCT coefficient at (0, 0) is the average of the level shifted pixel

values in the block. It has empirically been proven that the DC coefficient has a PDF that

is different from the other modes of the DCT [12]. The AC coefficients, i.e., the

coefficients at modes other than (0, 0) have been shown to have PDFs that are very

similar to each other [12] [15] [17]. However, different papers have employed different

PDFs to model AC block DCT coefficients. Following subsections detail three of the

most commonly used PDF models for AC block DCT coefficients.

From this point on, block DCT model will denote the probability density model of

a specific mode (generally AC) of the block DCT.

2.1.1 The Laplacian Model

The Laplacian model for AC DCT distributions is based on the Laplacian PDF. The

Laplacian PDF [24] is given as,

(2.1)

Where it is the mean of the distribution and b is the shape control parameter,

related to the variance of the distribution.

This distribution is shown in the following plot.
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Figure 2.2 Laplace distributions for varying parameter b.

Early work on the distributions of 2D block DCT coefficients in images was

carried out by Pratt (1978) [42], who conjectured that the DC coefficients should be

Rayleigh distributed, since they are the sum of positive values (with the assumption of no

level-shift), and that the AC coefficients, in general, must be Gaussian distributed as per

the central limit theorem, with the assumption that each image pixel may be considered

as being statistically independent from another. Tescher (1979) [43] and Murakami,

Hatori and Yamamoto (1982) [44] indicated that the AC coefficients are best modeled as

Laplacian, and the DC coefficients are best modeled as Gaussian. Reininger and Gibson

(1983) summarized the findings in their seminal paper [12] and concluded that the DC

coefficient is best modeled by a Gaussian PDF, while AC coefficients are best modeled

by a Laplacian PDF. In concluding this, the paper evaluated Gaussian, Laplacian,

Rayleigh and Gamma distributions for the DC coefficient and Gaussian, Laplacian and

Gamma distributions for the AC coefficients.
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Reininger and Gibson used the Kolmogorov-Smirnov (KS) test [14] on standard

256x256 8-bit PCM encoded grayscale images over multiple modes, to determine the

goodness of fit of the different PMFs. The KS test detailed in Appendix A is summarized

as follows.

The KS test is a distance measure between the sample distribution function and

the given distribution function, with the distance given as follows.

Where t is the KS test statistic. F (x) is the input sample set with samples in [1, M].

Where x(70 is the nth order statistic of the data X.

The PDF with the lowest KS test statistic is the best fit distribution for the given

data set.

The KS test results obtained in [12] are shown in the following figures for mode

(0, 1) and (1, 0) AC coefficients.



17

Figure 2.3 KS test statistics for mode (0,1) AC coefficients, for three different probability
distributions, for five standard images.

Source: Reininger, R., and Gibson. J, 'Distribution of the two-dimensional DCT coefficients for images',
IEEE Transactions on Communications, 1983, 31, (6)

Figure 2.4 KS test statistics for mode (1,0) AC coefficients, for three different
probability distributions, for five standard images.

Source: Reininger, R., and Gibson. J, 'Distribution of the two-dimensional DCT coefficients for images',
IEEE Transactions on Communications, 1983, 31, (6)

From Figure 2.3 and Figure 2.4, it is seen that the Laplacian has the lowest KS

test statistic for a majority of the images in both AC modes. Therefore, from these results
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[12] concluded the Laplacian distribution was the most suitable PDF for AC block DCT

coefficients.

2.1.2 The Generalized Normal Model

A second commonly employed model for AC block DCT PDF is the model based on the

Generalized Normal distribution Nadarajah (2005) [15]. The Generalized Normal

distribution specifies a family of PDFs with varying kurtosis [45]. The family therefore

includes the entire range of well-known PDFs, from leptokurtic distributions such as the

Laplacian to platykurtic distributions such as the Uniform distribution. [15] defines the

Generalized Normal distribution as,

(2.2)

Where it is the mean of the distribution, a is the standard deviation of the distribution, 79

is the shape parameter of the distribution, related to its kurtosis, and, α() = j r(3/19)rum'

where F(... ) is the complete Gamma function defined as,

The Generalized Normal distribution for varying shape parameter 79 is shown in

the following plot. It is seen that for a high value of i9 such as 100, the plot is nearly that

of a Uniform distribution. Indeed, when 79 is co, the Generalized Normal distribution

defines a Uniform distribution. Similarly, when i9 = 1, it defines a Laplacian distribution

and when i9 = 2, it defines a Normal distribution.



19

Figure 2.5 Generalized Normal distributions for varying parameter i9.

The parameters of this distribution are estimated from the random samples by

maximizing the log-likelihood function with regard to each of the parameters. The

estimation is briefly explored here.

The likelihood function for N Independent and Identically Distributed (IID)

observations of the Generalized Normal is defined as,

The log-likelihood function thereof is,
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Substituting from Equation (2.2) above,

Maximizing this log-likelihood function with respect to the parameters of the PDF

implies,

(2.3)

(2.4)

Du (1991) proposed the following equations as solutions to Equations (2.3) and

(2.4).

(2.5)

Where,

is the Digamma function (y = 0.577 being the Euler constant). That is,



For a,

21

(2.6)

Where i9 is the estimate of the shape factor, derived above.

Muller [15] showed that the Generalized Normal distribution model fits the PDF

of AC block DCT coefficients better than the Laplacian distribution using the χ ²-Square

test. This goodness-of-fit test, detailed in Appendix A is summarized as follows.

The empirical frequencies of the given data set X are compared with

corresponding theoretical probabilities, to generate a test statistic x2 as follows.

Where p i is the probability of the i th class of the standard distribution, m l is the observed

frequency in the i th class of the input data set, k is the number of classes and N is the

number of samples in the input set.

The PDF with the lower test statistic best matches the histogram of the given data

set X.

The x 2 test statistic for the Laplacian and Generalized Normal distributions as

published in [15] is shown in the following table. Evidently, the Generalized Normal

distribution is a better match for the AC block DCT histogram than the Laplacian

distribution.
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Table 2.1 x2 test statistics for Laplacian (Laplace) and Generalized Normal (GN)
distributions.

Source: Muller, F.: Distribution Shape of Two-Dimensional DCT Coefficients of Natural Images,.
Electronics Letters, 29, Oct. 1993,1935-1936.

2.1.3 The Generalized Gamma Model

In 2005, Chang, Shin, Kim and Mitra proposed a model for block DCT coefficients based

on the Generalized Gamma distribution (GFF). The GFF was developed for positive real

values by E W Stacy (1962), and is given as,

Where y, 16',77 are model parameters.

Extending this to negative values [17],

(2.7)

A plot of the GFF is shown in the following figure for varying parameters. It is of

note that except in the case when the product of n and y is 1, the distribution tends to 0 as

x approaches 0.
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Figure 2.6 Generalized Gamma distributions for varying parameter y.

The Generalized Normal (when ηy = 1), Gaussian (when y = 2 and 7/ = 0.5) and

Laplacian (when y = 1 and 77 = 1) PDFs are special cases of the GFF.

In the case of AC block DCT distributions, the mean of the distribution,	 is

assumed zero. The remaining parameters are determined in a manner similar to the case

of the Generalized Normal distribution, i.e., by minimizing the log-likelihood function of

the PDF. From Equation (2.7),

Maximizing the log-likelihood for each of the parameters eventually leads to,
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(... )being the digamma function.

Numerically solving these three equations in sequence gives the parameters of the

model. [17] uses the χ²-square goodness-of-fit test to evaluate the performance of the

GFF PMF across multiple modes using four standard 512x512 images. The results are

summarized in the following table, where the term image method is used in lieu of the

term mode.

Table 2.2 x2 test statistics for Laplacian (Lap.), Generalized Normal (GGF) and
Generalized Gamma (GΓF) distributions.
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Source: Chang, J.-H. Shin, J. W. Kim, N. S. Mitra, "Image Probability Distribution Based on Generalized
Gamma Function", IEEE Signal Processing Letters, 2005.

The GΓF PDF is shown to outperform the Generalized Normal PDF by a small

amount and the Laplacian PDF by a large amount. This is expected, since the GΓF PDF

is more general than either of the distributions it is compared with.
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2.1.4 Analytical Reasoning for 2D Block DCT PDFs

An analytical reasoning for the choice of the Laplacian and Generalized Normal

distributions to model AC block DCT coefficients is briefly discussed in this subsection,

with a summary of the paper by Lam and Goodman (2000) [16].

Recalling the 2D DCT G,(...) on an 8x8 block X(... ),

The transform coefficient G, (1, m) is computed as a weighted sum of IID random

variables, i.e., the weighted sum of the pixels of the block. Applying the Central Limit

Theorem here, the transform coefficient can be approximated as a Gaussian random

variable, assuming that the variance of each random variable, i.e., pixel, is known a

priori. This is true even if the image pixels are slightly correlated, as noted in [16].

Therefore,

Where 62 is the variance.

It follows that the probability distribution of DCT coefficients may be evaluated

using conditional probability.

Where p (6 2) is the probability of the variance.
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[16] showed empirically that the variance across blocks follows either an

exponential distribution,

Where A is a distribution variance control parameter.

or a half Gaussian distribution,

Where s is a distribution variance control parameter.

With either distribution of the variance, the distribution of 2D block DCT

coefficients is Laplacian. However, this is valid only for coefficients with fairly low

values of kurtosis. When the kurtosis has a high value, the Generalized Normal is a better

model for DCT distributions [16]. Since the Laplacian distribution is a special case of the

Generalized Normal distribution, for a general kurtosis value, the Generalized Normal is

the more appropriate distribution of the two.

There has been no literature on quantitative analysis of the Generalized Gamma

distribution in the context of block DCT coefficients. This may perhaps be attributed to

the fact that the paper by Chang et al. [17] is a relatively recent publication.

2.2 A Full-Frame DCT Model

The block DCT probability models explored in the previous section have been

investigated in detail owing to their significance to image compression. Full-frame DCTs,

on the other hand, have been investigated for their applications to image forensics as

presented in Barni, Bartolini, Cappellini, Piva and Rigacci (1998) [18] and in Cox,

Kilian, Leighton and Shamoon (1995) [47]. They will be briefly explored in this section.
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In [18] a model for full-frame DCTs, based on previous models for block DCTs is

proposed. Specific DCT coefficients are selected from a full-frame DCT block and their

distributions are evaluated against Gaussian, Laplacian and Generalized Normal PDFs

using x2 test statistics, over multiple fixed sized images.

The DCT coefficients selected for this process from 170 256x256 images are

taken from five equiangular sets of the full-frame DCT block. The distributions for the

remaining coefficients are estimated via interpolation.

The coefficients are initially assumed to have a Generalized Normal distribution.

This is acceptable, since both Gaussian and Laplacian distribution are special cases of the

Generalized Normal distribution. The model parameters of the Generalized Normal

distribution can be determined from the DCT coefficient data.

[18] reports that the shape defining parameter of the Generalized Normal PDF, d,

was found to be close to 1. This implies a leptokurtic distribution, such as a Laplacian

PDF. It was therefore concluded that the distribution of full-frame DCT coefficients is

Laplacian. The χ² test results from [18] are shown in the following figure.
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Figure 2.7 Results of x2 test under different PDF approximations.

Source: M. Barni, F. Bartolini, A. Piva, and F. Rigacci, "Statistical modeling of full frame DCT
coefficients," in Proceedings of EUSIPC0'98, Rhodes, Greece, 1998

Thus, for full-frame DCTs the standard Laplacian PDF is found to have the

lowest x2 test statistic amongst Laplacian, Gaussian and Generalized Normal

distributions.

2.3 JPEG DCT Quantization Error Models

JPEG compression involves integer rounding of block DCT coefficients. Robertson and

Stevenson (2001) [11] show that while the Uniform distribution is a convenient model for

DCT quantization noise, it is not entirely accurate. This is due to the fact that in the case

of DCT coefficients that are quantized to zero, such as high frequency coefficients in

smooth areas of the image, the quantization error is better modeled with the Laplacian

distribution. In the case of coefficients that are not quantized to zero, the Uniform

distribution is the better model. This conclusion is of significance in Chapter 3.



DCT Quantization Encoder

PQPDF QPMF

CHAPTER 3

DISTRIBUTIONS OF QUANTIZED DCT COEFFICIENTS

In this chapter, the probability distributions of JPEG block DCT coefficients aftei

quantization (known as QPMF henceforth) and the probability distributions of JPEC

block DCT coefficients after de-quantization (known as DQP1VIF henceforth) arc

explored. The study of these coefficient distributions constitutes a large part of thc

original work in this thesis.

3.1 Introduction

The Probability Density Functions discussed in Section 2.1 characterized JPEG block

DCT coefficients before the process of JPEG quantization. Those PDFs will be known w

Pre-Quantized PDF (PQPDF) henceforth. Relevant parts the JPEG encoder and decode]

in the following figure show where the QPMF, DQPMF and PQPDF fit in.

Image

Quantized
DCTs

I De-quantization Inverse DCT Decoder

DQPMF

Figure 3.1 JPEG Encoder (a) and Decoder (b) sections showing the locations of the
relevant PDFs and PMFs.

29
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A lemma is now established, relating the QPMF and the DQPMF.

Lemma 3.1: The QPMF and DQPMF differ only by a deterministic, scalar

multiplier. Intuitively, it may be concluded that while the QPMF exists, in theory, for all

n (n being an integer), the DQPMF exists for all nq, with q being the scalar multiplier.

Indeed, it may be concluded that the QPMF at a point k is relocated to the point kq in the

DQPMF. The consequence thereof is that the QPMF and DQPMF are analytically

identical, and differ in their abscissa only.

Expressions for QPMFs and DQPMFs are derived starting from the three

PQPDFs detailed in Section 2.1. The derived PMFs take their names from the PQPDF on

which they are based. Therefore, the following abbreviations are used.

• L-QPMF: The QPMF based on the Laplacian model for non-quantized block
DCT.

• GN-QPMF: The QPMF based on the Generalized Normal model for non-
quantized block DCT.

• GG-QPMF: The QPMF based on the Generalized Gamma model for non-
quantized block DCT.

• L-DQPMF: The DQPMF based on the Laplacian model for non-quantized block
DCT.

• GN-DQPMF: The DQPMF based on the Generalized Normal model for non-
quantized block DCT.

• GG-DQPMF: The DQPMF based on the Generalized Gamma model for non-
quantized block DCT.

The developed L-QPMF, GN-QPMF and GG-QPMF are compared against each

other using goodness-of-fit tests. A similar comparison is made between the developed L-

DQPMF, GN-DQPMF and GG-DQPMF. Expressions are then derived for the first four

moments of the best fit QPMF and DQPMF, i.e., the PMFs with the lowest goodness-of-

fit test statistics.
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The approach used here to develop a DQPMF model differs from the approach

used to model quantized JPEG DCT in Zou, Lu and Ling (2004) [28], in that the model

developed in this study is formally derived from statistical properties of quantization.

Furthermore, as shown in a subsequent section, the developed DQPMF and QPMF are

based on the Generalized Normal, rather than the Generalized Laplacian used in the case

of [28].

3.2 Analysis of the Statistics of Rounding and Quantization

A study of the effect of integer rounding and quantization on the statistics of a random

variable is necessary for the derivation of the QPMF and DQPMF. Both rounding and

quantization are non-linear operations, and have significant impact on the statistics of the

operands, as will be seen subsequently.

The process of integer rounding is defined as follows.

[... ] is the rounding operator.

Integer rounding is merely a special case of the broader concept of quantization,

with the latter defined as,

x E R. q E Z is the quantization parameter and n E Z is an integral multiple of q.

It must be mentioned at this point that the term quantization in the context of JPEG

compression is defined differently from the same term in the broader context of signal

processing. In the latter case, quantization is ultimately what is called de-quantization in

the context of JPEG compression.
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Titchmarsh (1986) [48] showed that the process of rounding and quantization may

analytically be expressed as,

Using the expressions above, it may be possible to determine the PDF of the

quantized random variable. Random variable transformations as detailed in Kay (2005)

[49] may be used to this effect. However, periodic, non-linear random variable

transformations are often mathematically involved, and a sinusoidal transformation is no

exception [19].

A significantly less mathematically involved, practical approach to deriving a

PDF for the quantized random variable, involving operating on the analytical form of the

PDF of the non-quantized random variable is presented in Widrow, Kollar and Liu (1996)

[20] and is detailed in the following sub-section.

3.2.1 Deriving the PDF of Quantized Random Variables as per Widrow et al.

Linear systems principles were used in the approach presented by Widrow et al., to

develop an analytic form for the distribution of quantized random variables. The process,

termed area sampling in [20], is detailed as follows.
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1. The non-quantized random variable is considered as having a general bell-shaped
probability distribution (PDF) as shown in Figure 3.2.

Figure 3.2 A General Bell-Shaped PDF.

Source: B. Widrow, I. Kollar, and M.C. Liu. Statistical theory of quantization. IEEE Transactions on
Instrumentation and Measurement. 45(2):353-361, April 1996

•

2. This PDF is convolved with a Uniform distribution in the half-open interval,
(—q/2, q/2], where q is the quantization box size, as shown in Figure 3.4. The
justification for performing this convolution is shown in the following systemic
model, where the process of quantization is interpreted as adding Uniform distributed
noise n to the non-quantized random variable x. [20] uses a Uniform noise PDF since
it assumes a uniform quantizer.

Indeed, as seen in Section 2.3, JPEG block DCT quantization error (or noise) is
either Uniform distributed or Laplace distributed, depending on whether the
magnitude of the error is close to a non-zero value or otherwise, respectively.

Figure 3.3 Systemic Model of Quantization.

Source: B. Widrow, I. Kollar, and M.C. Liu. Statistical theory of quantization. IEEE Transactions
Instrumentation and Measurement.,45(2):353-361, April 1996
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Figure 3.4 A Uniform Distribution in (-q/2, q/2].

Source: B. Widrow, I. Kollar, and M.C. Liu. Statistical theory of quantization. IEEE Transactions
Instrumentation and Measurement.,45(2):353-361, April 1996

The result of the convolution operation is shown in the following figure, in the

case of the interval (—q/ 2, q/2] being significantly narrower than the width of the bell-

shaped distribution. The procedure outlined here, however, imposes no such restriction

on the size of the interval.

Figure 3.5 Result of Convolution.

Source: B. Widrow, L Kollar, and M.C. Liu. Statistical theory of quantization. IEEE Transactions
Instrumentation and Measurement.,45(2):353-361, April 1996

3. The result of the convolution is now sampled by an impulse train at multiples of q.
This process, similar to sampling, results in a distribution function which exists only
at integer multiples of g. The impulse train and the result of the sampling process are
shown in the following figures.
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Figure 3.6 Impulse Train.

Source: B. Widrow, I. Kollar, and M.C. Liu. Statistical theory of quantization. IEEE Transactions
Instrumentation and Measurement.,45(2):353-361, April 1996

The sampling leads to the following PDF.

A

Figure 3.7 Result of Sampling.

Source: B. Widrow, I. Kollar, and M.C. Liu. Statistical theory of quantization. IEEE Transactions
Instrumentation and Measurement.,45(2):353-361, April 1996

4. This sampled PDF can be converted to a discrete probability distribution function if
unit impulse functions are used. The corresponding equation is as follows.

(3.1)

Where fx, (x) is the PDF of the quantized random variable, fri(x) is the Uniform

PDF, f, (x) is the PDF of the non-quantized data and c(x) is the impulse train.

In the context of JPEG block DCT distributions, fx(x) in Equation (3.1) is the

PQPDF, and therefore could either be a Laplacian, a Generalized Normal or a

Generalized Gamma distribution. The quantization noise is considered Uniform

distributed, implying from Section 2.3 that the models will be better suited to coefficients

that quantize to non-zero values. These basics will be used in the following section to

develop expressions for the QPMFs corresponding to each PQPDF.
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3.3 Quantized JPEG Block DCT PMFs

In this section, PMFs based on the Laplacian, Generalized Normal and Generalized

Gamma distributions are developed. From each base distribution, the DQPMF is first

derived, and the QPMF is deduced as per Lemma 3.12.

3.3.1 Quantized JPEG Block DCT PMFs Based on the Laplacian PDFs

The Laplacian PDF may be recalled from Equation (2.1) as,

b is a parameter related to the variance of the PDF and p. is the mean of the PDF.

In the case of JPEG AC block DCTs, the mean may reasonably be assumed to be zero

[16] . Therefore,

(3.2)

To derive the expression for the Laplacian de-Quantized PMF (L-DQPMF), the

procedure outlined in Section 3.2.1 is followed. Therefore, convolving Equation (3.2)

with a Uniform PDF fn(x) in (—q/ 2, q/2] as per Equation (3.1), the resulting PDF fR (t)

is,

(3.3a)

Solutions to this integral are considered in the following cases.

2 The Lemma states, "The DQPMF and QPMF are analytically identical, and differ only in their abscissa."



In this case, lx I = —x. Therefore, Equation (3.3a) reduces to,
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Evaluating,

1 i 	 (t + q/2)
exp

fR (t) = 2q [exp 	 b

it — q/2)]
b )1

Expressed more concisely,

Since the term is the square braces is a hyperbolic sine,

(3.3b)

In this case, lx I = x. Equation (3.3a) reduces to,

Evaluating the integral in a manner similar to the previous case,

(3.3c)
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The integral on either side of this interval centered at zero is split into two parts.

Therefore from Equation (3.3a),

Evaluating,

And,

The term inside the braces is identified a hyperbolic cosine. Therefore,

(3.3d)

Summarizing these results,

otherwise.
(3.4)
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Finally, Equation (3.4) is multiplied by an impulse train at nq, as per Equation

(3.1). Thus,

The continuous abscissa impulse function, (t) in the equation above may be

replaced with impulse function for a discrete axis, δ[n]. Then,

More compactly,

(3.5)

The result in Equation (3.5) is visually verified below. Laplacian random

variables are generated with a fixed shaping factor b = 3. The random variables are

quantized with the quantization steps, q = 1, 2 and 3. The following graphs plot the

normalized histogram of these quantized random variables and the corresponding L-

DQPMF.



Figure 3.8 Normalized histogram and L-DQPMF with b = 7 and q = 1
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Figure 3.9 Normalized histogram and L-DQPMF with b = 7 and q = 2.
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Figure 3.10 Normalized histogram and L-DQPMF with b = 7 and q = 3

Visual evidence suggests that the L-DQPMF fits the empirical histogram well.

This goodness of fit may be quantified with the KS and the X2 test statistic3, as shown in

a subsequent section.

An expression for the Laplacian Quantized PMF (L-QPMF) may be derived using

Lemma 3.1 and Equation (3.5). Retaining the analytic form of Equation (3.5) for all

integral n, the following relation describes the L-QPMF.

(3.6)

Equation (3.6) is visually verified below. Laplacian random variables are

generated with a fixed shaping factor b = 3. The random variables are integer-divided by

k = 1, 2 and 3. Normalized histograms of integer divided random variables and the

corresponding L-QPMFs are plotted in the following graphs.

3 Refer to Appendix A.



Figure 3.11 Normalized histogram and L-QPMF with b = 7 and k = 1
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Figure 3.12 Normalized histogram and L-QPMF with b = 7 and k = 2.



Figure 3.13 Normalized histogram and L-QPMF with b = 7 and k = 3.

Visual confirmation of the above fit is quantified with the KS and the x2 test

statistics in a subsequent section.

3.3.2 Quantized JPEG Block DCT PMFs Based on the Generalized Normal PDFs

Models for GN-DQPMF and GN-QPMF may be derived starting from the Generalized

Normal distribution, in a manner similar to the one outlined in the previous section.

The Generalized Normal distribution is recalled from Equation (2.2) as follows.

Where μ is the mean of the distribution, o- is the standard deviation of the distribution, 19

is the shape parameter of the distribution, related to its kurtosis, and, a(D) = \IF(3/19)
F(1/DY

where F(... ) is the complete Gamma function defined as,
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As in the previous section, the mean of the data may reasonably be assumed to be

zero. Therefore, the PDF px (x),

(3.7)

Now, the Gaussian Normal de-Quantized PMF (GN-DQPMF) and Gaussian

Normal Quantized QPMF (GN-QPMF) are derived in a manner similar to the L-DQPMF

and L-QPMF.

For the GN-DQPMF, Section 3.2.1 is recalled. Convolving Equation (3.7) with a

Uniform PDF in (—	 (x) as per Equation (3.1), the following PDF fR (t) is2 2 	 -

obtained.

(3.8)

This is a generic exponential-power integral, which cannot easily be evaluated in

closed-form. For practical purposes, a numerical solution to this integral may be found

using the Simpson's 1/3 rule for small and smooth intervals [21], stated here as follows.

A general function, f (x) is considered to be integrated in the interval rx0, x21.

According to the Simpson's 1/3 rule, the integral is approximated as,
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(3.9)

Applying Equation (3.9) to the integral in Equation (3.8),

(3.10)

The analytic form of Equation (3.10) is evaluated for the following cases.
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In this case, the general form derived in Equation (3.10) cannot be used, because the

interval(t — t +11 is not infinitely differentiable [50]. Indeed, since the Simpson's 1/3
2 	 2

rule is derived from the midpoint and trapezoidal integral approximations [21], the area in

the integration interval must at the very least be trapezoidal in nature. In this scenario,

there are two trapeziums, i.e., one before zero and one after zero, as shown in the figure

on the following page. The areas of the trapeziums are approximations to the integrals.

Figure 3.14 Trapezoidal approximation to the integral.

The integral for this interval may therefore be derived by dividing it into two half

intervals. To wit,



In [t — q/2 0-] all values of the independent variable t are less than 0. Therefore,2 

In a similar fashion, in[0+, t + 1 all values of the independent variable t are
2

greater than or equal to 0. Therefore,

On careful examination, it becomes evident that fR - (t) and fR+ (t) are of equal

q 	 qlmagnitude. Therefore, in the interval [t — -2 , t + -2 ,

47
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Finally, Equations (3.10) and (3.11) are sampled by an impulse train. Thus the

resultant distribution pR(ng) is,

P R(nq)

(3.12)

Equation (3.12) is visually verified as follows. Generalized Normal random

variables are generated with a fixed standard deviation o- = 10 and shape factors

= 0.5, 1 and 2. It must be noted that the latter two shape factors correspond to

Laplacian and Normal random variables, whose generation process is well-known [49]

i.e., hard-thresholding logarithms of Uniform random variables generates Laplacian

random variables, and the Box-Muller Transformation of Uniform random variables

generates Normal random variables. The process to generate 19 = 0.5 random variables is

not as well known, and involves using Lambert W functions [38] and Uniform random

variables in a method developed in [31] and outlined in Appendix C. The random

variables thus generated are quantized by q = 1, 2 and 3 respectively. The normalized

histogram of the quantized random variables and the corresponding GN-DQPMFs are

shown graphically in the following plots.



Figure 3.15 Normalized histogram and GN-DQPMF with d = 0.5 and q = 1.
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Figure 3.16 Normalized histogram and GN-DQPMF with = 1 and q = 2.
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Figure 3.17 Normalized histogram and GN-DQPMF with tY = 2 and q = 3.

An expression for the Generalized Normal Quantized PMF (GN-QPMF) may be

derived by recalling Lemma 3.1. From Equation (3.12),

(3.13)

Equation (3.13) is visually verified as follows. Generalized Normal random

variables are generated with a fixed standard deviation a = 5 A.rf and shape factors  = 0.5,

1 and 2. The random variables thus generated are integer divided by k = 1, 2 and 3
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respectively. The histogram and the corresponding GN-QPMF are plotted in the

following graphs.

Figure 3.18 Normalized histogram and GN-QPMF with d = 0.5 and k = 1

Figure 3.19 Normalized histogram and GN-QPMF with /9= 1 and k = 2.
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Figure 3.20 Normalized histogram and GN-QPMF with d = 2 and k = 3

Visual confirmation of the above fits is quantified with the KS and the x2 te

statistics in a subsequent section.

3.3.3 Quantized JPEG Block DCT PMFs Based on the Generalized Gamma PDFs

The Generalized Gamma PDF, f (x; y, ,β, 17, pt), is recalled from Equation (2.6) to be,

As with earlier models, a zero mean is assumed for the current context. Therefore,

(3.14)

The Generalized Gamma Quantized and de-Quantized PMFs (GG-QPMF and

GG-DQPMF respectively) are derived in a manner similar to corresponding derivations

in previous sections.



53

Following the approach detailed in Section 3.2.1, convolving Equation (3.14) with

q qa Uniform PDF in (— — q/2 , -21 as per Equation (3.1), the PDF of the quantized data, fR (t) is

obtained as follows.

As in the previous section, this integral is best evaluated using the Simpson's 1/3

rule, recalled here from Equation (3.9).

And,

This expression is evaluated for three cases as follows.
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(3.16)

(3.17)

On combining Equations (3.16) and (3.17),

(3.18)

This case is identical to the corresponding case in the previous section. The two half-

intervals on either side of zero may be approximated by trapeziums. Therefore,

(3.19)
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In the interval [t — 2 0-
2

And in the interval [0+, t +

On combining, in the interval (t — 0, t + -
2 	 2

(3.20)

Finally, Equations (3.18) and (3.20) are sampled by a train of unit impulse

functions. Thus,

(3.21)

The analytic form in Equation (3.21) cannot be verified by using Generalized

Gamma random variables with arbitrary model parameters, since very little literature



56

exists regarding the generation of such random variables. It may instead be visually

verified using Laplacian, Gaussian and Generalized Normal random variables, since their

PDFs are special cases of the Generalized Gamma distribution.

Thus, Laplacian, Gaussian and Generalized Normal (d = 0.5) random variables

are generated with a standard deviation of 10. They are quantized with q = 1, 2 and 3

respectively. The normalized histogram of the quantized random variables and the

corresponding GG-DQPMF are shown in the plots on the following pages.

Figure 3.21 Normalized histogram and GG-DQPMF for Laplacian random variables
quantized with q = 1,
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Figure 3.22 Normalized histogram and GG-DQPMF for Generalized Normal random
variables with 19 = 0.5 and quantized with q = 2,

Figure 3.23 Normalized histogram and GG-DQPMF for Gaussian random variables
quantized with q = 3.

Using Lemma 3.1 in conjunction with Equation (3.21), the following expression

for the Generalized Gamma QPMF (GG-QPMF) is obtained.
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(3.22)

As in the case of Equation (3.21), the analytic form in Equation (3.22) is visually

verified using Laplacian, Gaussian and Generalized Normal random variables.

Laplacian, Gaussian and Generalized Normal (0 = 0.5) random variables are

generated with a standard deviation of 10. They are integer-divided with k = 1, 2 and 3

respectively. The normalized histogram of the rounded random variables and the

corresponding GG-QPMFs are shown in the following plots.

Figure 3.24 Normalized histogram and GG-QPMF for Laplacian random variables with
integer division factor k = 1.



Figure 3.25 Normalized histogram and GG-QPMF for Generalized Normal random
variables with t9 = 0.5 and integer division factor k = 2.

Figure 3.26 Normalized histogram and GG-QPMF for Gaussian random variables with
integer division factor k = 3 .

It is of note that in all cases, the GG-DQPMFs and the GG-QPMFs have a value

at zero that is significantly lower than that of the normalized histogram of the random

variable. This is attributed to the Generalized Gamma distribution tending to zero at



60

abscissa values close to zero, as shown graphically in Section 2.1.3. This is in contrast to

the cases of the Laplacian and Generalized Normal distributions, whose values tend to a

maximum at abscissa values close to zero.

3.3.4 Results

The results of running KS and x2 goodness-of-fit tests for the (1, 1), (1, 0) and (0, 1)

modes of image block DCTs are shown in the following tables, for the following PMFs.

1. Laplacian Quantized PMF (L-QPMF), Generalized Normal Quantized PMF (GN-
QPMF) and Generalized Gamma Quantized PMF (GG-QPMF).

2. Laplacian de-Quantized PMF (L-DQPMF), Generalized Normal de-Quantized PMF
(GN-DQPMF) and Generalized Gamma de-Quantized PMF (GG-DQPMF).

The tests have been carried out for JPEG Q-factors ranging from 10 to 100. Four

typical images chosen from the USC-SIPI database [29] for testing are shown below.

Figure 3.27 Standard Images For KS and x2-Squared Test.

Source: USC SIPI Image Database. http://sipi.usc.edu/database/database.cgi?volume —misc, retrieved
March 30, 2010
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It is may be noted that on average, the GN-QPMF and the GG-QPMF have lower

test statistics than the L-QPMF. This is intuitive, since the former two specify distribution

families of which the Laplacian distribution is a special case. It is also seen that while the

GG-QPMF generally outperforms the GN-QPMF, the performance difference is not

significantly high.

In the case of DQPMFs, the KS test statistics indicate that on average, the GG-

DQPMF is the best fit distribution with the GN-DQPMF being a close second. This is

evident from the x2 test results as well, for moderately high (> 40) Q-factors. As in the

case of QPMFs, the trend is that the GG-DQPMF outperforms the GN-DQPMF by a

small amount, while both of them outperform the L-DQPMF by a significant amount, for

most Q-factors.

Before proceeding further, it must be mentioned that the KS test statistic is

preferred over the x2 test statistic, for the purposes of goodness-of-fit comparisons here.

This is because the KS test statistic, unlike the f test statistic, is more robust because it is

not affected by the size of the test sample set. With that being said, the following graphs

plot the average KS test statistic against JPEG Q-factors ranging from 10 to 100, for the

first 8 modes of the quantized and de-quantized block DCT. The quantized and de-

quantized block DCT histograms are compared against GN-, GG- and L- QPMFs and

DQPMFs respectively, and the KS test statistics are generated. The averaging is

performed across 44 test images from the miscellaneous image set of the USC S1PI

database [29].
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From the plots in Figures (3.28) and (3.29) the following observations are made.

• For low values of the IJG4 Q-factor (Q <60), the KS test statistic is nearly equal
for all three QPMFs. This may be attributed to the large number of values
clustered at and around zero in the PMFs. For high values of the Q-factor (Q ?_
60), the L-QPMF has a higher value of test statistic than the other two. In general,
the test statistic is nearly equal for the GN-QPMF and the GG-QPMF, except for
the (1, 0) and (1, 1) modes, when the test statistic for the latter is lower. This
implies that the preferred PMF could be either Generalized Gamma based (GG-
QPMF) or Generalized Normal based (GN-QPMF).

• Despite the GG-QPMF fitting the empirical histogram better than the GN-QPMF,
the difference is not significant across Q-factors and block DCT modes. Since the
GN-QPMF has only two parameters (assuming zero mean) and the GG-QPMF
has three (similarly, assuming zero mean), the former is the preferred distribution.

Similarly from the Figures (3.30) and (3.31), the following observations are made.

• It is seen that for low values of the IJG Q-factor (Q < 50), the KS test statistic is
nearly equal for all three DQPMFs. As in the case of QPMFs, this may be
attributed to the high percentage of values clustered around zero in the PMFs. For
high values of the Q-factor (Q 50), the L-DQPMF has a higher value of test
statistic than the other two. In general, the test statistic for the GN-DQPMF is
nearly equal to that for the GG-DQPMF, with the GG-DQPMF outperforming the
GN-DQPMF slightly. This implies that the preferred PMF could be either
Generalized Gamma based (GG-DQPMF) or Generalized Normal based (GN-
DQPMF).

• Despite the GG-DQPMF fitting the empirical histogram better than the GN-
DQPMF, the difference is not significant across Q-factors and block DCT modes.
Since the GN-DQPMF has only two parameters (assuming zero mean) and the
GG-DQPMF has three (similarly, assuming zero mean), the former is the
preferred distribution, in a manner similar to the GN-QPMF.

It is thus concluded that the GN-QPMF is the preferred distribution for quantized

block DCT data on the JPEG encoder end, while the GN-DQPMF is the preferred

distribution for de-quantized block DCT data on the JPEG decoder end.

4 IJG — Independent JPEG Group. The IJG Q-factor specifies a standard set of quality factors in JPEG
compression, with values ranging from 10 (lowest quality) to 100 (highest quality).
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In light of these conclusions, the problem of deriving the model parameters of the

GN-DQPMF from de-quantized JPEG block DCT coefficients will have to be tackled.

Recalling the process of JPEG decoding, it is to be noted that the de-quantized

block DCT coefficients are modeled well by the GN-DQPMF. However, the parameters

of the GN-DQPMF, i.e., 19 and δ are not known, and must be determined from the

corresponding mode of the de-quantized block DCT coefficients. In lieu of the commonly

employed method of maximizing the log-likelihood function of the distribution, analytic

expressions for the first few moments of the GN-DQPMF shall be derived and used to

determine these model parameters.

The moments of the GN-DQPMF can be derived using Sheppard's corrections

[20]. Explicitly, if q is the quantization parameter and x' is the quantized version of x, the

first four moments of x' are related to the first four moments of x as follows.

Where E t...) is the expectation operator.

Using these relations to obtain the moments of the GN-DQPMF,

(3.23)

(3.24)

(3.25)
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(3.26)

From Equations (3.23) to (3.26) it is possible to deduce the following.

. The 'power' in the quantized random variable, is greater than the power in theq²
non-quantized random variable by a factor of (q²/12). This is clearly because of the
Uniform distributed quantization noise being added to the random variable, as
stated in Section 3.2.

. The skewness, defined as the ratio of the third moment to the cube of the standard
deviation [49], of the quantized random variable is equal to zero, since the third
moments of x and x ' are the same, and the skewness of x is 0 as per Nadarajah
[45]. This is intuitive, since the skewness is a measure of the symmetry of the
distribution, and the symmetry of the distribution remains unchanged after
quantization.

• The kurtosis le of x ' is derived as follows.

Expanding the denominator,

Dividing the right hand side of this equation by [E(x²}] ²,
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Using Equation (3.24),

(3.27)

Using Equations (3.27) and (3.24), it is now possible to derive the Kurtosis of x',

given the Kurtosis of x, the quantization step q and the second moment of x'.

The Kurtosis of x is used to determine the shape factor -0 as per [45]. Equation

(3.27) in conjunction with,

(3.28)

may numerically be solved to estimate the value D.

The second parameter a may be estimated from Equation (3.24).

The moments of the GN-QPMF may similarly be derived from Sheppard's

corrections [20]. For the GN-QPMF, q is invariably equal to 1 (since it is rounded), but

there exists a division factor, k. It can empirically be verified that this division factor

divides the second moment by a factor k2 and the fourth moment by a factor k4. Therefore

the -moments of the GN-QPMF from Equations (3.23) to (3.26) are,

(3.29)

(3.30)

(3.31)

(3.32)
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3.3.5 Summary

The Generalized Normal De-quantized PMF (GN-DQPMF) is the preferred distribution

for the PMF of de-quantized block DCT coefficients on the JPEG decoder end. It is given

as,

(3.33)

Where a is the square root of the variance of the distribution, -0 is the shape

parameter of the distribution, related to its kurtosis, q is the quantization step, and

rom α() = ,where Γ(...) is the complete Gamma function, defined as,
A Γ(1/  )'

The moments of the GN-DQPMF are related to the moments of the Generalized

Normal pre-quantization PDF (GN-PQPDF), i.e., the PDF of the non-quantized AC block

DCT coefficients as follows.

(3.34)

(3.35)
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(3.36)

(3.37)

The Generalized Normal Quantized PMF (GN-QPMF) is the preferred

distribution for the PMF of quantized block DCT coefficients on the JPEG encoder end.

It is given as,

(3.38)

Where a is the square root of the variance of the distribution, .19 is the shape

parameter of the distribution, related to its kurtosis, k is the quantization divisor for

Γ(3/ )
encoding, and α() =Γ(1/  )' where F(... ) is the complete Gamma function, defined as,

The moments of the Generalized Normal Quantized PMF (GN-QPMF) in relation

to the moments of the Generalized Normal pre-quantized PDF (GN-PQPDF) are

summarized as follows.
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(3.39)

(3.40)

(3.41)

(3.42)



CHAPTER 4

APPLICATIONS OF THE QUANTIZED AND DE-QUANTIZED BLOCK DCT

MODELS

This chapter details potential applications of the models developed in Chapter 3. The

applications proposed in this chapter constitute the remaining part of the original body of

work in this thesis.

4.1 Introduction

In Chapter 3, it was concluded that the Generalized Normal Quantized PMF (GN-QPMF)

and the Generalized Normal de-Quantized PMF (GN-DQPMF) summarized in Equations

(3.33) and (3.38) respectively, are the preferred PMFs for quantized and de-quantized AC

block DCT coefficients, owing to a combination of sound goodness-of-fit and low model

parameter estimation complexity.

In this chapter, the GN-QPMF and GN-DQPMF are used in the following image

forensic applications.

• Detection of compression history in bitmap images - It is shown that the GN-
DQPMF may be used to detect if a bitmap image was ever JPEG compressed in
the past.

• Detection of quality factor of historical JPEG compression in bitmap images - It is
shown that the GN-DQPMF may be used to detect the value of the IJG Q-factor5
in a bitmap image that contains compression history.

• Validating the Generalized Benford's Law [27] for leading digit distributions of
quantized block DCTs — A detailed study of Benford's Law and leading digit
distributions in the context of image processing is first performed. It is then
shown that the GN-QPMF may be used to derive a model for all quantized AC
block DCT coefficients, which is used to validate the Generalized Benford's Law.

5 Refer to Section 1.4.3 for the definition of Q-factor.

89
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Each of these applications is detailed in subsequent sections. Existing research in

the area is first explored, and the results obtained from the proposed approach are

compared with the results of one of the existing approaches.

4.2 Detection of Compression History in Bitmap Images

4.2.1 Introduction

A bitmap image may defined as a two-dimensional image, with each pixel represented in

no more or no less than n bits per pixel, where n is the resolution of the image intensity.

Typically, n has a value of 8 for grayscale images, leading to 256 grayscale intensity

levels. Bitmap images are uncompressed in the sense that, their pixels do not have to

undergo any form of source decoding for the purposes of rendering. That, however, does

not obviate the likelihood of the image having been compressed and then decompressed

in a lossy fashion in the past. Thus, one image forensic application would be to determine

the presence of any compression history in the image. Approaches to determine

compression history have ranged from using statistical properties of transform

coefficients of the image as proposed in Fan and Queiroz (2003) [22], Neelamani,

Queiroz, Fan and Baraniuk (2003) [34], Fu, Shi and Su (2007) [27] to image texture

analysis proposed in He, Lin, Wang and Tang (2009) [33]. Since the approach to be

proposed subsequently deals with statistical properties of the transform coefficients,

previous research employing related approaches will be explored.
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4.2.2 The Approach Proposed by Fan and Queiroz

An early paper on detecting compression history in bitmaps was by Fan and Queiroz

(2003) [22]. This seminal paper presents an approach to detect the presence and extent of

JPEG compression history in bitmaps using block boundaries and DCT coefficient

statistics of the bitmap, respectively.

The process of compression history detection in this context involves estimating and

thresholding discontinuities across block boundaries. The following image is used as

reference.

Figure 4.1 For each block two numbers are computed, i.e., involving same pixel pattern
but spanning, or not, multiple blocks.

Source: Z. Fan and R. de Queiroz, "Identification of bitmap compression history: JPEG detection and
quantizer estimation," IEEE Transactions on Image Processing, vol. 12, pp. 230-235, Feb. 2003.

The grid in Figure 4.1 represents a bitmap image block of size 8x8 pixels. The

following absolute differences are computed from this block.

This process is repeated for all blocks in the image.
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The histograms of Z'and Z", i.e., H1 and Hll are computed. The sum of absolute

differences between the histograms is then computed.

By thresholding K, it is possible to determine if a bitmap was historically

compressed. This approach cannot detect bitmaps historically compressed with a Q-factor

greater than 90 [22].

4.2.3 The Proposed Approach

In the proposed approach to detecting the presence of compression history, the histogram

of a specific AC mode of the block DCT of the bitmap is compared with the GN-

DQPMF, generated with model parameters determined from the mode, using the

approach detailed in Section 3.3.4, for an IJG Q-factor of 100 (i.e., q = 1). The goodness-

of-fit test statistic obtained hence is hard-thresholded against an empirically determined

threshold value and the decision is made thereof.

It must be noted that the GN-DQPMF generated is not an exact match to the

normalized histogram of the mode, even in the case of a near-uncompressed bitmap (Q-

factor of 100). This is because the block DCT of a bitmap is an approximation to the de-

quantized DCT coefficients, the latter being an intermediate result of JPEG

decompression.

Before the algorithm for compression history detection is explored in depth

however, a few key approximations are investigated.
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4.2.3.1 Practical Estimations of the Parameters of the GN-DQPMF

Estimating the parameters of the GN-DQPMF, (, a-) specified in Equation (3.33)

and recalled here, is carried out on a specific AC mode of the block DCT.

(4.1)

The relation in Equation (3.35) is recalled as follows.

Alternately,

In this application, x' is a specific block DCT mode. Indeed, here q is unknown,

since the bitmap image has no quantization table. However, it may not be necessary,

since the effect q has on the value of a- is diminished by the large value of E tx'²).

To confirm the veracity of this assertion, a set of four typical images were JPEG

compressed with Q-factors ranging from 100 to 10. The Elx'²1 of the (1, 1) mode was
q²/12

founds in each case, and compared against the value of (q²/12). The results are tabulated as

follows.



94

Table 4.1 Second Moment versus q2112

Q-factor
Images

Lena Boat Peppers Boat
q2

12 E x'²1 Efx'²1 Efx'²1 E fx'²1

100 0 1367 1121 2002 1374

90 1 1368 1121 2003 1374

80 2 1368 1125 2002 	 _ 1377

70 5 1370 1123 2008 1383

60 8 1373 1126 2016 1379

50 12 1374 1130 2014 1390

40 19 1377 1134 2007 1383

30 33 1378 1143 2041 1401

20 70 1388 1124 2074 1427

10 _ 	 252 1407 1160 2198 1502
All numerical values are rounded to the nearest integer.

Except perhaps in the case of a Q-factor of 10, the value of -1- is significantly
12

lower than the value of Etx'²1. The following approximation may therefore be made.

(4.2)

To estimate D, Equations (3.27) and (3.28) recalled here, are used.

And,

(4.3)
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If the following substitutions are considered,

then it may empirically be shown that the powers of o- have a diminishing effect

on the values of A, B, C and D. Their values have been tabulated as follows for the (1, 1)

mode of the image Lena, for Q-factors-ranging from 100 to 10.

Table 4.2 A, B, C and D for varying Q-factors - Lena

Q-factor Lena

A B C D

100 0.0004 0.0000 0.0000 0.0001

90 0.0033 0.0000 0.0000 0.0011

80 0.0091 0.0000 0.0000 0.0030

70 0.0234 0.0000 0.0000 0.0078

60 0.0364 0.0001 0.0000 0.0121

50 0.0524 0.0001 0.0001 0.0175

40 0.0817 0.0003 0.0002 0.0272

30 0.1451 0.0011 0.0006 0.0484

20 0.3029 0.0046 0.0025 0.1010

10 1.0755 0.0578 0.0321 0.3585

Indeed, even at a Q-factor of 10, while the expected kurtosis K is 14.162, the value

of is 13.265, which is a fair approximation.

Therefore, the following approximation is valid for most Q-factors.

(4.4)
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The pattern of diminished values of A, B, C and D is seen in other images as well,

as shown in the following tables.

Table 4.3 A, B, C and D for varying Q-factors - Peppers

Q-factor Peppers

A B C D

100 0.0004 0.0000 0.0000 0.0001

90 0.0040 0.0000 0.0000 0.0013

80 0.0111 0.0000 0.0000 0.0037

70 0.0285 0.0000 0.0000 0.0095

60 0.0444 0.0001 0.0001 0.0148

50 0.0637 0.0002 0.0001 0.0212

40 0.0992 0.0005 0.0003 0.0331

30 0.1750 0.0015 0.0009 0.0583

20 0.3743 0.0070 0.0039 0.1248

10 1.3033 0.0849 0.0472 0.4344

Table 4.4 A, B, C and D for varying Q-factors - Boat

Q-factor Boat

A B C D

100 0.0004 0.0000 0.0000 0.0001

90 0.0033 0.0000 0.0000 0.0011

80 0.0091 0.0000 0.0000 0.0030

70 0.0231 0.0000 0.0000 0.0077

60 0.0362 0.0001 0.0000 0.0121

50 0.0518 0.0001 0.0001 0.0173

40 0.0813 0.0003 0.0002 0.0271

30 0.1429 0.0010 0.0006 0.0476

20 0.2946 0.0043 0.0024 0.0982

10 1.0067 0.0507 0.0282 0.3356
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Finally, to summarize from Equations (4.2), (4.3) and (4.4), the parameters of the

GN-DQPMF are estimated as,

(4.5)

(4.6)

4.2.3.2 Algorithm and Results

With the approximations from the previous section considered, the algorithm for the

proposed approach to detecting compression history is shown in the following figure.

Figure 4.2 Proposed algorithm for compression history detection.

The steps of this algorithm are as follows.

1. The 2D block DCT of the bitmap image is performed, and the (1, 1) mode is
extracted. Alternately, the DCT may be performed such that only the (1, 1) mode is
generated. This would allow for significant computational savings.

2. The normalized histogram of the (1, 1) mode is computed and the parameters of the
GN-DQPMF for this mode are estimated using Equations (4.5) and (4.6). Setting q to
1, samples of the PMF are generated.

3. A x² goodness-of-fit test is performed between the normalized histogram and the
generated PMF samples.

4. The statistic from step 3 is compared against an empirical threshold (explained
subsequently) to determine if the image has been compressed or not.

5. Optionally, the decision may be confirmed by performing steps 1 to 5 for modes (0,
1) and (1, 0), at the cost of increased computation.
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5. Optionally, the decision may be confirmed by performing steps 1 to 5 for modes (0,
1) and (1, 0), at the cost of increased computation.

To validate this algorithm, a general empirical threshold for the decision process

must be determined first. For this purpose, a few standard bitmap files (for instance from

[29]) are chosen and subjected to a 2D block DCT operation with a Q-factor of 100. The

(1, 1) mode is extracted from this DCT and the GN-DQPMF parameters are derived from

it, as detailed above. The (1, 1) mode is then quantized for Q-factors ranging from 100 to

10 and the χ² test statistic between the normalized histogram of the (1, 1) mode and

samples of the GN-DQPMF (with q = 1) is calculated. Clearly, the test statistic for a Q-

factor of 100 will be the lowest (since for a Q-factor of 100, q will equal 1) and a general

threshold may be calculated from the magnitude of this particular statistic across different

images.

To illustrate this point, a few results are tabulated as follows.

Table 4.5 Q-factors and x2 test statistics for compression detection

Q-factor
x2 test statistic (Sample set size = 1000)

Lena Baboon Peppers Bridge

100 777 342 667 317

90 7117 6590 7265 6398

80 14167 13042 13755 12756

70 23217 23806 22791 22633

60 28604 30352 27663 28645

50 33522 36973 32100 35268

40 39685 47081 37726 45825

30 50083 64744 47592 60605

20 64122 93703 58135 87097

10 97868 170263 74466 149044
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From these results, it is seen that the χ² test statistic is lowest at a Q-factor of 100,

as expected. Of note is the fact that the χ² test statistic for a Q-factor of 100 has a

numerical value of less than 1000, while the test statistics for lower Q-factors are

significantly higher than 1000. Thus, factoring in a potential error of 500, 1500 may be

considered as a general, empirical threshold for detection of compression. Therefore, if

the normalized (1, 1) mode histogram of a bitmap's DCT leads to a χ² test statistic of

value greater than 1500 when compared against a generated GN-DQPMF, it may with

some degree of certainty, be concluded that the image had undergone compression in the

past. With this as reference, the following experiments have been carried out.

Table 4.6 χ² test statistics for compression detection with arbitrary Q-factors

Image
Q-factor z2 test statistic

Decision
(Statistical
threshold =

1500)

Splash 95 6996 Compressed

Tiffany 100 340 Uncompressed

F-16 70 21359 Compressed

Aerial 20 90434 Compressed

Stream and Bridge 100 570 Uncompressed
Boat 100 574 Uncompressed

Elaine 50 32376 Compressed

House 40 45459 Compressed

JPEG compression history detection tests were run across 44 images from [29],

and the results are tabulated in the following page. The x2 test statistic threshold used is

1500, as noted above, for 1000 samples of the normalized mode histogram.
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Table 4.7 Q-factors and Detection Success Rate for compression history detection

Compression Q-factor Detection Success
Rate

95 98%

90 100%

85 100%

80 100%

75 100%

70 100%

65 100%

60 100%

55 100%

50 100%

45 100%

40 100%

35 100%

30 100%

25 100%

20 100%

15 100%

10 100%

Compared against the Fan and Queiroz approach, the proposed technique has the

advantage that a compression factor of 95 is estimated with 98 % confidence. As per Fan

and Queiroz's results shown in the following table, their approach detailed in Section

4.2.2 can detect compression up to a Q-factor of 90, with reasonable confidence bounds.



Table 4.8 Thresholds for the Fan and Queiroz approach, across images and Q-factors
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Source: Z. Fan and R. de Queiroz, "Identification of bitmap compression history: JPEG
detection and quantizer estimation," IEEE Transactions on Image Processing, vol. 12, pp.
230-235, Feb. 2003.

The proposed approach, as in the Fan and Queiroz approach, suffers from the

drawback that a bitmap image previously compressed with a Q-factor of 100 would be

reported as having no compression history.

4.3 Detection of Historical JPEG Q-factor in a Bitmap Image

JPEG Q-factor detection is an important image forensics application. Often,

uncompressed images received from unknown media may have undergone JPEG

compression in the past, and it is instructive to know the extent of that compression.

4.3.1 The Approach Proposed by Fan and Queiroz

Fan and Queiroz (2003) [22] proposed a method to detect the extent of historical J PEG

compression in a bitmap image, i.e., the JPEG Q-factor, using 2D block DCT statistics. In

this approach, a likelihood function to determine the quantization step is derived and is

used to estimate the Q-factor.
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The approach first develops an analytic expression for the histogram of a single

AC mode of the block DCT of the bitmap by convolving an impulse train located at a-

priori estimates of the quantization step q, with a bounded Gaussian pulse. This

effectively describes the bumps6 shown in the following figure (ignoring the envelope).

Figure 4.3 Histogram of the (0, 1) mode of a decompressed bitmap (Lena) DCT.

Source: Z. Fan and R. de Queiroz, "Identification of bitmap compression history: JPEG detection and
quantizer estimation," IEEE Transactions on Image Processing, vol. 12, pp. 230-235, Feb. 2003.

Then, the approach attempts to locate the true locations of the peaks of the bumps

using a Maximum Likelihood Estimator (MLE), shown below.

(4.7)

Here, q(m,n) is the estimated quantization step for mode (m, n), Ys' is the block

DCT coefficient corresponding to the mode (m, n) for block s, G(...) is the bounded

Gaussian pulse describing each bump, r and k are integral indices into the image, N is a

count of the blocks in the image, q is an a-priori estimate of the quantization step.

6 Each 'bump' is an impulse - like pulse in the figure.
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The a-priori estimate of q is the location of the first peak following the peak at

zero. The final estimate of q is mapped back to obtain the JPEG Q-factor.

This approach was refined by Neelamani et al (2003) [34] to cater to color

images. The refinement is in the modeling of DCT coefficients by a Laplacian PDF and

the addition of explicit normalization.

4.3.2 Proposed Approach

The proposed approach employs the GN-DQPMF in a manner that is very similar

to the compression history detection approach proposed in Section 4.2.3.

4.3.2.1 Algorithm

GN-DQPMFs are generated for Q-factors ranging from 10 to 100 in uniform steps

with model parameters determined from the (1, 1) mode of the bitmap's block DCT using

Equations (4.5) and (4.6). The x2 test statistic is then used as a distance measure between

the PMFs and the normalized histogram of the (1, 1) mode. The Q-factor corresponding

to the PMF with the lowest χ² test statistic is declared the Q-factor with which the bitmap

image had been historically compressed. The process is shown in the following figure.

Figure 4.4 Proposed algorithm for Q-factor detection.
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It may be recalled from Section 4.2.3 that the model parameters detected from the

block DCT mode are approximations only. However they are sufficiently accurate to

detect Q-factors of as low as 30 with a high rate of success.

4.3.2.2 Results

This detection process was carried out for a few arbitrary images from [29], with

arbitrary Q-factors, as listed in the following table:

Table 4.9 Q-factors and χ² test statistics for Q-factor detection

Image
Compression Q-factor 2 statistic Detected Q-factor

Splash 95 1013 95
Tiffany 100 340 100
F-16 70 1233 70
Aerial 20 186 20
Boat 100 574 100
Elaine 50 359 50
House 40 326 40

The proposed Q-factor detection approach was run across 44 standard grayscale

test images from the USC-SIPI database [29]. Every image was JPEG compressed with

Q-factors ranging from 10 to 100 in steps of 5. The average success rate for each Q-factor

was then calculated as a percentage. The obtained results are shown in the following

table.
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Table 4.10 Q-factors and Q-factor detection success rates

Compression Q-factor Detection Success
Rate

100 65%

95 83%

90 87%

85 83%

80 87%

75 87%

70 87%

65 90%

60 90%

55 90%

50 84%

45 81%

40 84%

35 84%

30 84%

25 75%

20 65%

15 49%

10 30%

This detection method works best for values of Q-factor in the range [30, 95]. At

lower values of Q, the model parameters are significantly inexact, leading to low

detection success rate for low values of Q-factor. At a Q-factor value of 100, the detected

Q-factors were found to be in the range [96, 100], leading to lowered success rates. It has

been observed in general that the error in detection is no greater than a Q-factor of 5 with

the proposed approach.
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The results from Table 4.10 are plotted as a graph, and compared against the

results from the Fan and Queiroz approach.

Figure 4.5 Q-factor detection success rate for the Fan and Queiroz approach and the
proposed approach.

On average, the performance of the proposed method is better than that of the Fan

and Queiroz approach. The performance of both approaches is fairly poor at very low Q-

factors, i.e., [10, 20], but the performance of the proposed approach is better for the Q-

factors in the range [30, 80]. The performance of the proposed approach is slightly worse

than the Fan and Queiroz approach for Q-factor values close to 100, but as noted earlier,

this error is only by a maximum Q-factor value of about 5.

The approach may be optimized to be computationally less intensive by using a

divide-and-conquer algorithm, similar to Binary Search [35].
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4.4 Leading Digit Distributions — Validating the Generalized Benford Law

In this application, the GN-QPMF will be shown to validate the Generalized Benford's

Law for quantized AC Block DCT coefficients [27].

Leading digit probability distributions of block DCT data have been used in

image forensics in the past decade [36][27][39]. Here, previous research pertaining to

leading digit distributions in the context of block DCT coefficients is summarized, and an

attempt is made to develop a model for the leading digit distribution of quantized AC

block DCT coefficients using finite Generalized Normal mixtures.

4.4.1 Background Information

This subsection explores the theory of leading digit distribution and its relevance to block

DCT data.

4.4.1.1 Leading Digits and Benford's Law

The leading digit distribution of a real data set is the PMF of the first digits of the

numbers in the set. Certain naturally-occurring data sets which span multiple decimal

scales, have been shown to display unique statistical properties in their leading digits

[23]. These numbers have a leading digit distribution that follows a decimal-base

logarithmic characteristic given as,

(4.8)

The implication is that the digit 1 has the highest probability of occurrence as a

leading digit, and subsequent digits have progressively lower probabilities. The following

table lists the probability values.
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Table 4.11 Probability values of leading digits for scale invariant natural data

d 1 2 3 4 5 6 7 8 9

PD(d) 0.301 0.176 0.125 0.0969 0.0791 0.0669 0.057 0.051 0.046

This property of naturally occurring data was discovered by in 1881 by Simon

Newcomb and was formalized by Frank Benford in 1932. For over sixty years, this law

remained unproven, until it was analytically justified in Hill (1996) [51].

4.4.1.2 Benford's Law and Exponential Random Variables

The law is of relevance in this context owing to the fact that the floating point AC

block DCT coefficients, i.e., block DCT coefficients before quantization, follow

Benford's law in a weak fashion [36]. The implication of the term weak is that the AC

block DCT coefficients, on average, follow Benford's law. This will become clearer

subsequently.

The reason for AC block DCT to be weakly Benford is twofold.

• Each mode of 2D DCT, assumed Laplace distributed, may be modeled as an
infinite Gaussian mixture, with individual variance controlled by an exponential
distribution [25].

• Exponential random variables are weakly Benford [26].

These two conditions are both necessary and sufficient for AC block DCT

coefficients to be Benford since Property 3 in [36] states that a random variable whose

PDF is modeled as an infinite Gaussian mixture with exponentially distributed variance

control can be expressed as a product of the Gaussian random variable and the square-

root of the variance control random variable. As noted earlier, according to [26],

7 When a data set is said to be `Benford', it implies that the set follows Benford's Law in either a weak or
strong fashion.
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caution (since the property is mostly valid for strongly Benford random variables), it may

be asserted that random variables that are Laplace distributed could be considered weakly

B enford.

A proof for the first assertion is available in Hjorunges, Lervik and Ramstad

(1996) [25], where it is shown that if a stochastic process X has a probability defined as,

then the integral can be shown to evaluate to,

which is a Laplacian distribution [24].

The weak Benford nature of exponential random variable is explored in Engel and

Leuenberger (2003) [26]. It is shown that for an exponential distribution f (t) with shape

parameter A,

The probability of the leading digit being d is given as,

Evidently, this probability is a function of A. Furthermore,



In general,

Thus, gd(2) is periodic in powers of 10. Considering then a new function,

It is easily seen that hd (x) is 1-periodic. [26] considers the Fourier series

expansion of hd (x) and shows that it is sinusoidal with a single harmonic. hd(x) is

plotted for d E [1, 9] in the following figure.
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Figure 4.6 A plot of the leading digit probabilities, on a log-scale. The topmost sinusoid
is for the digit 1, and subsequent sinusoids are for digits from 2 to 9. The mean value of
the sinusoid is the strong Benford probability value.

Source: H. Engel and C. Leuenberger, "Benford's law for exponential random variables", Statistics &
Probability Letters, vol. 63, no. 4, pp. 361-365, July 2003.

An important observation from Figure 4.6 is that the average value of each

sinusoid is the corresponding digit probability according to Benford's Law (Table 4.11).

That is, the average value of hi (x) is 0.301, the average value of h2(x) is 0.176, and so

on.
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the sinusoids would be replaced by flat lines positioned at the average value of each

sinusoid. Ergo, exponential random variables are weakly Benford.

4.4.1.3 Benford's Law and AC Block DCTs

Perez-Gonzalez, Heileman and Abdallah (2007) [36] show that the 2D AC DCT

coefficients, modeled with the Generalized Normal distribution are weakly Benford as

well. Their paper employs the following property of random variables that follow

Benford's law.

If X is a random variable that follows Benford's law strongly, the transformation,

Y = (lo g 10X) mod 1.

leads to a random variable Y that is Uniformly distributed [37].

The histogram of the DCT of Lena in (logioX) mod 1 is shown in the following

figure.

Figure 4.7 A plot of floating-point DCT coefficient histogram in (logio A') mod 1 space.
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Evidently, the histogram appears to be sinusoidal with diminishing harmonic

amplitudes, and with some 'DC' component. This is proof that the 2D DCT is weakly

Benford in a manner similar to the plots in Figure 4.6.

This property does not hold for the case of a quantized AC block DCT histogram, as

shown in the following plot.

4
x 10

Figure 4.8 Plots of quantized DCT coefficients' histograms in (logio X) mod 1 space.

It is of note that the peaks in the above plots exist only at the logarithms of

integers in [1, 9]. This is a consequence of quantization.

It follows from the above plots that quantized block DCTs do not follow

Benford's law. This is true of individual modes of the quantized block DCT as well, as

shown for the mode (1, 1) histogram in the following plot.
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Figure 4.9 Plots of the (1, 1) mode histogram of quantized DCT coefficients in (logio X)
mod 1 space.

4.4.1.4 The Generalized Benford's Law as per Fu et al.

Quantized block DCTs follow the Generalized Benford's Law, proposed by Fu,

Shi and Su (2007) [27]. This model is shown in the following equation.

(4.9)

The parameters N, s and q are empirically determined, and are listed in the

following table for varying Q-factors.
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Table 4.12 Model parameters for varying Q-factors, for the Generalized Benford model.

Q- actor Model Parameters

100 1.456 1.47 0.03 72

90 1.255 1.563 -0.3784
SO 1.324 1.653 -0.3739
70 1,412 1. 	 3 -0337
60 1.501 1.813 -0.3025
50 1,579 1.882 -0.2725

Source: D. Fu, Y.Q. Shi, and W. Su, "A generalized Benford's law for JPEG coefficients and its
applications in image forensics," in Proc. SPIE, Security, Steganography and Watermarking of Multimedia
Contents IX, San Jose, USA, January 2007.

This distribution is for the first digits of all quantized AC DCT coefficients. To

formally derive an equivalent model from the GN-QPMF8, the concept of mixture

distributions will first have to be used to develop a composite model for all quantized AC

coefficients.

4.4.2 A Complete Model for all Quantized AC block DCT Coefficients

Considering that the quantized block DCT distributions derived in Chapter 3

models each mode of the DCT block as a distinct random variable, a complete quantized

DCT distribution encompassing all AC modes must be derived from a combination of

individual mode distributions.

4.4.2.1 Finite Mixtures

It is known that Discrete Cosine Transform coefficients have minimum cross-

correlation for most natural images [2]. This form of linear independence may be

exploited, to estimate a composite model for all quantized AC block DCT coefficients.

8 Refer to Equation (3.38)
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The aggregate quantized AC block DCT coefficient set may be seen as a mixture

of 63 (AC) linearly independent variables. The PDF of a finite mixture of random

variables is generally given as a convex combination of the PDFs of those individual

random variables, as shown in Titterington, Smith and Makov (1985) [52]. In general, if

X is a mixture of n component discrete random variables Y„ the PDF of X, fx (x) is given

as,

(4.10)

Here,

fy (X) is the PDF of the ith random variable. ai is the mixture proportion for the ith

random variable.

Furthermore, the following convex sum requirement has to be satisfied by the

mixture proportions.

(4.11)

In the specific case of AC DCT coefficients, the mixture proportions are equal.

Therefore,

(4.12)

4.4.2.2 Finite Mixtures and Quantized AC Block DCT Coefficients

While a composite model for non-quantized AC block DCT coefficients is

empirically shown to be a Cauchy distribution by Eggerton and Srinath (1986) [32], there

has been no model proposed for quantized AC block DCT coefficients. The remaining

part of this section will attempt to develop such a model.
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Recalling the Generalized Normal Quantized PMF (GN-QPMF) for the quantized

AC block DCT coefficients from Equation (3.38) with the parameters of the PMF

assumed to be known a-priori,

pR((n I K,N,E)

(4.13)

From Equations (4.10), (4.11) and (4.12),

Where, PM (n) is the mixture distribution, p i (n) is the ith mode's PMF. Using Equation

(4.13),
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PnAn | K, N, E)

(4.14)

Di, at and ki are the model parameters of the GN-QPMF of the ith DCT mode.

Analytic computation of this summation is mathematically rigorous and is not of

significant value in this context. Instead, the sum is solved numerically, and the fit of this

model is visually and objectively measured as follows.

The Lena image is subjected to a 2D block DCT, followed by quantization with a

range of Q-factors. KS tests are performed to measure the goodness of fit of the model in

Equation (4.14) with the probability distribution of all quantized AC DCT coefficients.

This is repeated for a select set of standard images from [29]. The plots for Lena with Q-

factors of 100, 90 and 85 are shown.
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Figure 4.10 Plot of AC DCT PDF and Mixture PMF of Lena modeled as above, for Q —
100.

Figure 4.11 Plot of AC DCT PDF and Mixture PMF of Lena modeled as above, for Q
90.
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Figure 4.12 Plot of AC DCT PDF and Mixture PMF of Lena modeled as above, for Q =
85.

The conesponding KS test results are shown in the following table.

Table 4.13 KS test results for AC DCT coefficient histograms and the Mixture PMF.

Considering that all values of the KS test statistic in the table are significantly

lower than 1, the model is a fairly close match to the empirical data sets.
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4.4.3 A Model for First Digit Distribution — Validating the Generalized Benford's

Law

The composite model for all quantized AC block DCT coefficients developed in

Equation (4.14) may be used to derive the first digit distribution of quantized AC block

DCT coefficients, by summing in decimal ranges, i.e., {[1, 9]}, {[10, 19], [20, 29], [30,

39], ..., [90, 99]}, {[100, 199], [200, 299], ..., [900, 999]} and so on.

Analytically therefore, the first digit distribution PD (n) is expressed as,

(4.15)

Where pm (n) is there mixture PMF.

While computing the first digit probabilities using Equation (4.15) is

mathematically rigorous, for practical purposes, a useful approximation to use the

mixture probabilities in the range [1, 9] (t = 1 in Equation (4.15)) since a majority of

values in the normalized histogram of the data lie in that range. Therefore,

Where p D , (n) is an approximation to the first digit PMF and pm (n) is the mixture PMF.

This approximation is not a very good match for Q-factor of 100, since there are a

significant number of values of quantized AC-DCT coefficients outside the range [1, 9].

This is evident in the following plot.
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Figure 4.13 Plot of Generalized Benford's Law versus Mixture PDF in [1, 9], for Q =-
100.

The fit may be improved by using t values of 2 or greater in Equation (4.15). The

improved fit for a t value of 2 is shown in the following plot.

Figure 4.14 Plot of Generalized Benford's Law versus Mixture PDF in [1, 9], for Q =
100. (Additional samples of the PMF considered).
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The plot in Figure 4.14 fits the Generalized Benford's Law better than the plot in

Figure 4.13. This is especially visible at x = 1. For more aggressive quantization, i.e.,

with lower values of Q-factor, the approximation is more valid, since a higher percentage

of values in the quantized AC block DCT histogram lie in the range [1, 9]. This is seen in

the plots on the following page.

Figure 4.15 Plot of Generalized Benford's Law versus Mixture PDF in [1, 9], for Q
90.

Figure 4.16 Plot of Generalized Benford's Law versus Mixture PDF in [1, 9], for Q =
80.
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These results are valid across multiple images, as evidenced by the KS test results

shown below. The KS tests compares the Generalized Benford's law PMF and the first

digit distribution approximation, p (n) , derived above.

Table 4.14 KS test results for AC DCT coefficients' first digit distribution.

Image

Splash
Tiffany

F-16
Aerial
Elaine

Factor
90
80
70
60
70

KS Test
Statistic
0.2222
0.2112
0.2077
0.2037
0.2022

It is of note that the KS test statistics are uniformly low across all images,

implying a very close fit between the distributions. Furtheimore, the statistics are

progressively lower for lower values of Q-factor, implying increasingly better fits.

Thus, the Generalized Benford's Law based model as suggested by Fu et al

(2007) is validated in an approximate manner from the point of view of quantized

distributions. The accuracy of the validation may be improved with a more compact

expression for the mixture distribution. This would aid in evaluating the limit in Equation

(4.15) in a considerably simpler and more accurate fashion. Indeed, this may be seen as

follow-up work to this research.



CHAPTER 5

CONCLUSIONS AND SUMMARY

5.1 Summary

This thesis studies the various probability distributions of type-II 2D DCT coefficients in

the context of JPEG compression. Block DCT distributions, full frame DCT distributions

and DCT quantization error distributions have been studied from existing literature.

Literature survey shows that DC coefficients of block DCT are Gaussian

distributed, while AC coefficients are Laplacian, Generalized Normal or Generalized

Gamma distributed. The literature survey also shows that full-frame DCT coefficients are

best modeled as Laplacian distributed and DCT quantization error distributions are either

Laplacian or Uniform distributed depending on whether the DCT coefficient is quantized

to a zero or a non-zero value respectively.

Models have been derived for the probability mass functions of quantized block

DCT coefficients and de-quantized block DCT coefficients (QPMF and DQPMF

respectively), starting from Laplacian, Generalized Normal and Generalized Gamma

distributions. The corresponding PMFs are named,

• L-QPMF: The QPMF based on the Laplacian model for AC block DCT.

• GN-QPMF: The QPMF based on the Generalized Normal model for AC block
DCT.

• GG-QPMF: The QPMF based on the Generalized Gamma model for AC block
DCT.

• L-DQPMF: The DQPMF based on the Laplacian model for AC block DCT.

• GN-DQPMF: The DQPMF based on the Generalized Normal model for AC block
DCT.

• GG-DQPMF: The DQPMF based on the Generalized Gamma model for AC
block DCT.
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The suitability of each QPMF and DQPMF has been evaluated across multiple

images for specific, non-DC low-frequency subbands (modes) of the block DCT, using

the x² -squared and Kolmogorov-Smirnov goodness-of-fit tests. It has been concluded that

the GN-QPMF and GN-DQPMF are the most suitable distributions, since they have

relatively low goodness-of-fit statistics when compared to L-QPMF and L-DQPMF

respectively and only two model parameters as compared to three in the case of GG-

QPMF and GG-DQPMF respectively. The expressions for GN-DQPMF and GN-QPMF

and their corresponding first four moments are given in the following set of equations.

(5.1)

Where a is the square root of the variance of the distribution, D is the shape

parameter of the distribution, related to its kurtosis, q is the quantization step, and

α( ) = 	 -9)r	 where Γ(...) is the complete Gamma function, defined as,ram'
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The moments of a GN-DQPMF random variable x', with Et...} being the

expectation operator, are summarized as follows.

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Where δ is the square root of the variance of the distribution, 19 is the shape

parameter of the distribution, related to its kurtosis, k is the quantization divisor for

Γ(3, )
encoding, and α ( ) = Γ (1 / Dr where F(...) is the complete Gamma function, defined as,
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The moments of a GN-DPMF random variable x', with Et... } being the

expectation operator, are summarized as follows.

(5.7)

(5.8)

(5.9)

(5.10)

The GN-QPMF and GN-DQPMF have been applied to,

1. Detecting the presence of JPEG compression history in a bitmap image. The approach
and empirical thresholds for detection have been proposed. The approach has been
compared against an established method proposed by Fan and Queiroz (2003), and
has been found to outperform it.

2. Detecting the level of JPEG compression history in a bitmap image. The approach
and algorithmic optimizations have been proposed. The approach has been compared
against an established method proposed by Fan and Queiroz (2003), and is found to
outperform it.

3. Developing a closed form summation for all quantized AC block DCT coefficients'
distribution using finite Generalized Normal mixtures. The expression has been
empirically tested for fit against quantized AC block DCT data from a set of images.

4. Validating the Generalized Benford's Law proposed by Fu, Shi and Su (2007) for
leading digit distribution of quantized AC block DCT coefficients. An approximate
expression for leading digit distributions of quantized AC block DCT coefficients has
been compared against the Generalized Benford's Law model and has been found to
validate it in an approximate sense.



128

5.2 Conclusions

The PMF models summarized in Equations (5.1) and (5.6) most suitably model quantized

and de-quantized DCT coefficients respectively. Goodness-of-fit tests indicate that both

the Generalized Normal de-quantized PMF and Generalized Normal quantized PMF are

better than the Laplacian de-quantized PMF and Laplacian quantized PMF respectively.

The Generalized Normal based PMFs have been preferred over the Generalized Gamma

de-quantized PMF and Generalized Gamma quantized PMF respectively, since they offer

comparable performance and have the advantage of requiring fewer model parameters.

The Generalized Normal de-Quantized PMF has been employed to detect compression

history in bitmap images to good effect. It is shown to outperform a classical

compression history detection approach [22]. The Generalized Normal quantized PMF

has finally served to validate the Generalized Benford's Law for first digit distributions

[27].



APPENDIX A

CHI-SQUARED AND KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TESTS

A goodness-of-fit test is a statistical tool to determine how well an empirical data set fits

a specified distribution. Pearson's X2 test and Kolmogorov-Smimov test are two such

tests which are popular due to their simplicity and general applicability.

Chi-Squared Goodness-of-Fit Test

The Chi-squared goodness-of-fit test establishes a X2 test statistic as follows:

Where pi is the probability of the ith class of the standard distribution, mi is the observed

frequency in the ith class of the input data set, k is the number of classes and N is the

number of samples in the input set.

The limiting distribution of the x2 statistic is a Chi-squared distribution, as

proved by Pearson [30]. The value of the x2 statistic is evidently lower for data that fits

the theoretical distribution better.

A null-hypothesis in a goodness-of-fit test is a binary decision mechanism, by

which the fit is either rejected or accepted. If the null-hypothesis is to be accepted, a

derived statistic must be lower than a pre-designated threshold, and vice-versa. In the

case of the Chi-squared goodness-of-fit test, the derived statistic is computed from the

x2 statistic as follows.
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The derived statistic is called the p-value. It is computed by comparing the

x2 statistic to a x2 distribution. The number of degrees of freedom is given as,

f= k — 1.

The value of the x2 statistic is looked up in a Chi-squared distribution table for a

specific degree of freedom. The value in the table closest to the x2 statistic is the p-value.

If p-value is above a pre-determined threshold, such as 0.05, then the null-hypothesis is

accepted. If not, it is rejected.

In the context of this thesis, the p-value is not computed, since x2 statistic is used

more for comparison purposes, and less for fitting purposes.

Although MATLAB does not implement a Chi-squared test, open-source

implementations of it are freely available [55].

Kolmogorov-Smirnov (KS) Goodness-of-Fit Test

The Kolmogorov-Smimov goodness-of-fit described here is the two-sample KS test,

since this thesis describes both the empirical distribution and the distribution against

which to compare.

The 2-sample KS test compares a sample distribution function to a given

distribution function. Analytically, the 2-sample KS test statistic is computed as follows.

A data set X = fxi, x², ... , xm} is considered and the sample distribution is

derived,

Where %), n = 1,2, ... , M are the order statistics of X.
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The KS test statistic is defined as,

The KS test statistic, like the Chi-square test statistic implies a better match when

it has a low magnitude.

The null-hypothesis is rejected at level a if,

Where N is the sample set size and Ka is determined from the specified threshold α.

MATLAB implements the 2-sample Kolmogorov-Smirnov test using the

kstest2 (...) function. It outputs the null-hypothesis, the asymptotic bound and the test

statistic [56].



APPENDIX B

MATLAB CODE FOR ESTIMATION OF SHAPE PARAMETER OF

GENERALIZED NORMAL USING DU'S EQUATION

The Generalized Normal distribution is guided by a shaping parameter, 19.

Muller (1993) used Du's (1991) equation to estimate this parameter

Du's equation:

Where the symbols have their usual meaning, as defined in Section 2.1.2.

A MATLAB implementation of Du's equation is provided below.
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end

em = em + (power(abs(incoming_data(i)), moment));

end

idx = 0;
solutiofl 	 ns

for shape_factor = 0.1:0.01:5

factor_l = (psi(1 + (1 / shape_factor)) + log(shape_factor))
(shape_factor A 2);

v_th_moment = 0;

for j = 1:N
v_th_moment = v_th_moment + abs(incoming_data(j))

shape_factor;
end

v_th_moment = v_th_moment / N;

factor_2 = (1 / shape_factor A 2) * log(v_th_moment);

numerator = 0;

for j = 1:N
if (incoming_data(j) -= 0)

numerator = numerator + (abs(incoming_data(j)) A
shape_factor) * log(abs(incoming_data(j)));

end
end

factor_3 = numerator / (v_th_moment * N * shape_factor);
should_be_zero(idx + 1) = factor_l + factor_2 - factor_3;
idx = idx + 1;

end

Find the smallest of the lot,
set = 0.1:0.01:5;
nu = set(1); % Error
minimum = min(abs(should_be_zero));
for i = 1:numel(should_be_zero)

if (minimum == abs(should_be_zero(i)))
nu = set(i);
break;

end
end
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APPENDIX C

GENERATION OF GENERALIZED NORMAL RANDOM VARIABLES WITH

SHAPE PARAMETER OF 1/2 USING THE LAMBERT-W FUNCTION

Generalized Normal random variables with shape parameters other than 1, 2 and oo need

to be generated using specialized functions. This is because neither linear, nor non-linear

transformations of Uniform random variables can be used to generate them. A specific

random variable with a shape factor of 0.5 can be generated using Lambert W functions

as derived in Chapeau-Blondeau and Monir (2002) [31].

A Uniform random variable, U(0, 1), is transformed into a Generalized Normal

random variable using the following transformation.

Where W-1 (x) is the branch of the Lambert W function defined for — < x < 0.

The following plot shows the Lambert W function.

Figure C.1 Lambert W function

Source: F. Chapeau-Blondeau, A. Monir, "Numerical evaluation of the Lambert W function and application
to generation of generalized Gaussian noise with exponent 1/2"; IEEE Transactions on Signal
Processing 50, 2160-2165 (2002).
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An implementation of the Lambert W function is available for MATLAB [57]

where the branch to the function must explicitly be specified as -1.

The MATLAB code implementing this generation is fairly simple, as listed

below.
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