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ABSTRACT

A STUDY OF PROBABILITY DISTRIBUTIONS OF
DCT COEFFICIENTS IN JPEG COMPRESSION

Gopal Thirun:);;ai Narayénan

The Discrete Cosine Transform (DCT) used in JPEG compression has shown excellent
energy compaction properties that rival that of the ideal Karhunen-Loéve Transform.
Lossy compression in JPEG is achieved by distorting 8x8 block DCT coefficients
through quantization. It has been shown in literature that DC block DCT coefficients are
Gaussian probability distributed and AC block DCT coefficients are Generalized Normal
probability distributed.

In this investigation, three probability density models for individual modes of non-
quantized AC block DCT coefficients are evaluated and are used as basis for the
derivation of probability distributions for quantized block DCT coefficients. The
suitability of each of the three derived models is evaluated using the Kolmogorov-
Smirnov and y* goodness-of-fit tests, and the moments of the best-fit model are derived.
The best-fit model is applied to detect the presence and extent of JPEG compression
history in bitmap images. A model for all quantized AC block DCT coefficients is
derived using mixtures of individual quantized block DCT modes, and the model hence

developed is used to validate the Generalized Benford’s Law for leading digit

distributions of quantized AC block DCT coefficients.
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CHAPTER 1

INTRODUCTION

1.1 Objective
The objective of this thesis is to present new probability models for quantized and de-
quantized block Discrete Cosine Transform (DCT) coefficients in JPEG compression,
and to apply them to image forensic applications.

Three probability density functions (PDFs), i.e., Laplacian, Generalized Gaussian
and Generalized Gamma distributions, are used as the basis models of non-quantized
block DCT coefficients and the corresponding quantized DCT coefficient probability
mass functions (PMFs) are derived. It is shown via +* and Kolmogorov-Smirnov (KS)
tests that the PMFs based on the Generalized Normal PDF are the most suitable
distributions for both quantized and de-quantized DCT coefficients.

The most suitable PMF for de-quantized block DCT coefficients is then applied to
a bitmap image to detect the presence of JPEG compression history. Further, the PMF is
used to detect the level of any historical JPEG compression in the image. Finally, the
quantized block DCT PMF is used to derive an approximate model for the first digit
distributions of quantized block DCTs using finite mixtures and is used to validate the

Generalized Benford Law [27].

1.2 Motivation
The primary motivation for this study is the scarcity of literature regarding the statistical
properties of quantized and de-quantized block DCT coefficients in JPEG compression.

In contrast with the large body of work available for the statistics of non-quantized DCT

1




coefficients, there have been very few publications discussing the statistics of quantized
block DCTs, with the exception of [28], which models quantized block DCTs using a
Generalized Laplace distribution. This thesis is therefore an attempt to derive such a
model from the statistics of the process of quantization. The following questions will be

explored.

1. What are the different kinds probability models associated with 2D DCT coefficients
in JPEG compression?

2. What probability models are used for 2D block DCT coefficients in JPEG
compression?

3. What are the most suitable probability distributions of quantized and de-quantized 2D
block DCT coefficients in JPEG compression?

4. How may the probability distributions of quantized and de-quantized 2D block DCT
coefficients be applied to image forensics?

Thus, this thesis presents novel models for quantized and de-quantized 2D block
DCT distribution in JPEG compression. The latter model is shown to detect compression
history in bitmaps, and is shown to outperform a classical approach [22] for compression
history detection. The former model validates the Generalized Benford’s Law model [27]

from the perspective of quantized 2D block DCT distributions.

1.3 Thesis Structure

This thesis is structured as follows.

. CHAPTER 1 presents the background to this thesis, such as JPEG compression,
DCT and quantization.

« CHAPTER 2 presents a detailed literature survey of probability density functions
associated with 2D DCTs in JPEG.

« CHAPTER 3 derives three distinct probability mass functions for de-quantized
2D block DCTs and compares them. The same process is carried out for quantized
2D block DCTs. The most suitable probability mass functions are presented and
moments of those functions are derived.




« CHAPTER 4 details applications of the probability mass functions derived in
Chapter 3 and contrasts them against classical approaches.

| « CHAPTER 5 summarizes the results of the thesis and presents conclusions.
1.4 Background

JPEG compression has been the de-facto compression standard for image storage on
different digital media, such as computers, cameras, cellphones and handheld multimedia
players. JPEG is a lossy compression technique defined by ISO/IEC 10918-1 (1994) [9].
Owing to the relative simplicity of compression and decompression, JPEG images are
susceptible to third-party tampering. The results of such tampering are often not visually
evident, and research in the area of image forensics has sought to detect similar intrusions

using JPEG image statistics.

1.4.1 JPEG Compression

The JPEG still image compression standard was ratified in 1993 by the ISO/IEC in the
document ISO/IEC 10918-1. The standard specifies how a two-dimensional bitmap raster
image may be compressed into a one-dimensional stream of data, with a lower bit

allocation per pixel of the image, as compared to the original, uncompressed image. The

process of JPEG compression is shown in the following figure.




Bitmap
— Level Shift > Block DCT ——ﬁ
Quantization
JPEG
image
- Huffman coding o Zigzag scan 4—“—J

Figure 1.1 The JPEG Encoder Block Diagram.

Figure 1.1 shows the JPEG encoder block diagram. The input is a two-
dimensional bitmap raster image to the Level Shift block.

The Level Shift removes the DC bias from the image pixels. It shifts the image
pixels by 2" — 1, where # is the number of bits used to encode each pixel of the input
bitmap.

The Block DCT performs type-II DCT, as detailed subsequently, on 8x8 sized
non-overlapping sub-blocks of the image. The DCT is a unitary block transform that
compacts the energy of the block into a limited number of nearly completely uncorrelated
subbands [1] [2].

The Quantization block performs integer division on the 8x8 DCT block by a pre-
calculated quantization matrix. This process involves integer rounding, which is

irreversible and is the ‘lossy’ part of the compression process. To wit,

n= [—2] (1.1)

Where n is the integer-rounded DCT value, x is the floating point DCT coefficient, q is

the quantizer value and [... ] is the process of rounding.




The Zigzag scan block converts the quantized 8x8 DCT block into a vector, by
sorting it according to increasing frequency subbands. This process is needed to cluster
the non-zero coefficients.

The Huffman coding block performs lossless entropy compression on the vector

from the zigzag scan process.

The entire process outlined above is reversed on the decoder side. Huffman
decoding is followed by a DCT de-quantization. The process of de-quantization involves
multiplying the 2D block DCT coefficients by the same quantization matrix used during
encoding. Therefore,

X = nq. (1.2)
Where n is the integer-rounded DCT value, X is an estimate of x, the floating point DCT
coefficient and g is the quantizer value

Following the de-quantization, a 2D inverse DCT and a level shift is performed.
The level-shifted value is rounded to the nearest integer to give the magnitude of the
intensity of a pixel block.

JPEG compression leads to significant bit-per-pixel reduction. An uncompressed
full color RGB image contains 24 bits to a pixel. After JPEG compression, depending on
the image quality, the number of bits per pixel is reduced to a large extent, as shown in

the following table. For reference, the uncompressed image has a size of 219726 bytes.




Table 1.1 Effect of JPEG compression on bits-per-pixel (bpp) of a color image

Quality Factor Compressed File Size (Bytes) Bits Per Pixel
100 83261 8.25
50 15138 5.5
10 4787 0.75
1 1523 0.13

Source: JPEG on Wikipedia. http://en.wikipedia.org/JPEG, retrieved March 16, 2010

1.4.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a block transform’ used in JPEG compression.
The DCT was first proposed by Ahmed, Natarajan and Rao in [1]. It is a unitary
transform that is closest in performance to the Karhunen-Loéve Transform (KLT), in

context of the following criteria:

» Energy compaction.
« Transform coefficient decorrelation.
« Rate distortion function.

The KLT [2] is an optimal block transform, in that the transform coefficients are
completely decorrelated, and signal energy is compacted into the fewest subbands
possible. This optimality is possible because the KLT basis vectors are input signal
dependent. To elaborate, according to Mercer’s theorem for finite dimensions [53], a
square symmetric matrix can always be decomposed in the form,

S=UDU".
Where S is the square symmetric matrix, U is orthogonal and its columns are the

eigenvectors of S, U’ is U’s transpose and D, a diagonal matrix contains S’s eigenvalues.

! A block transform is a finite length mapping from an L*(R) space to an L(C) or L*(R) space. The mapping
is bijective, and hence completely invertible. [2] has more information.




Using Mercer’s theorem, Kari Karhunen and Michel Loéve showed that the
resulting transform coefficients are perfectly decorrelated for the case of centred
stochastic processes, i.e., processes with zero mean.

When used as a transform, the matrix S is the autocorrelation matrix of the input

signal and the matrix U is the KLT basis matrix. Consequently, the KLT 1s a signal
dependent transform.

The DCT has the advantage over the KLT in that it is a signal independent
transform [2]. As shall be seen subsequently, the DCT is an ideal transform for signals
that may be modeled as Auto-Regressive (AR) random processes with a single historical
coefficient, i.e., AR(1) random processes. Most natural images may be modeled as AR(1)
processes [2].

\ The primary motivation for the DCT is that its basis vectors form a close
approximation to the eigenvectors of the class of Toeplitz matrices shown below [2].

L p . p"?
P 1

p=|F . o b, o<p<l (1.3)
O |

This matrix is, in fact, the autocorrelation matrix of the AR(1) random process
given as [2],
X[n] = pX{n — 1] + W[n].
Where p is the correlation coefficient and W [n] is a white noise process.
The eigenvectors of the autocorrelation matrix of a signal are the columns of the
KLT forward transform block [2]. Thus, the forward DCT is a close approximation to the

KLT of the class of signals modeled as AR(1) random processes.



To draw a parallel to the KLT in terms of matrix decomposition, the DCT is

viewed as the eigenvectors of the following signal-independent tridiagonal matrix family

[40].
B1 B
1 0 1
1 1 0 1
B(,Bl' ﬁZ' .83' ﬁ4) = E
1 0 1
Bs B

The parameters 1, B2, Bs and B, are determined from the boundary conditions
imposed for the definition of the DCT. Piischel and Moura (2003) [40] explore DCT
definitions in detail. In the context of this thesis, however, the second form of the DCT,

known as type-II DCT, is of significance. For this specific case, the tridiagonal matrix is,

1
1

O
[uny

1
B(1,1,1,1) = (L4)

1

0 1
| 1 1
In signal processing literature, the tridiagonal form proposed by Strang (1999)
[41] is preferred. Explicitly,
G =21-2B(.)

Where I is the identity matrix.







10

The type-II DCT, which will henceforth be known simply as DCT, is analytically

expressed for a real sequence of size M as,

M-1
2
6.0 = 2 xem
m=0
M-1
2 (2m + Dkn
Gx(k) = MTHZOX(m)COST.

Where X (m)is the input data sequence, G, (k)is the kth DCT coefficient.

The corresponding inverse transform is defined as,

1 N (2m + Dkn
X(m) = ﬁGx(O) + ; Gx(k)COS_Z—]W—'.

By representing the forward and inverse DCTs in matrix form, it is seen that the
inverse transform is the transpose of the forward transform, thus proving that the DCT is

a real, unitary transform [2]. Therefore,
M
ATA = 7 [I ]

Where [/] is an identity matrix, A is the forward transform matrix and A” is its

transpose.

Furthermore, [1], [3], [4], [5], [6] and [7] propose implementations of the DCT in

O(nlogyn) time complexity, with some of the implementations being based on the

Cooley-Tukey FFT algorithm. Therefore, the DCT is a fast, practical alternative to the

KLT for positively correlated signals.
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The DCT definition is extended to two dimensions, and is defined in [8] as,

1 1 M-1N-1
Gx(0,0) = —=— X, ).
VMVN & &
M~1N-
G, (1, 0) _\/—E- N 1X(L j)cos(ZH_ 1)l1r
X ’
MVN & & 2N
1 VZ (2j + Dmr
G (0,m) =———Z X(i,j) cos————.
VMN &2 T 2N
6.0 )_ﬁﬁ'fmx(. s DI () + D
e T VMVN &y L Lj)eos oS —on—
i=0 j=

Where the symbols have their usual meanings and (M, N) is the size of the 2D block.

The inverse 2D DCT is defined as,

1 1 2i + Din
X(,j]) =——6,(0,0 +—-——ZG [,0)cos ———
( _]) \/M\/N x( ) \/M\/-N-mzl x( ) 2N
N-1
1 V2 (2j + D)mn
+ —— G,.(0,m)cos ————
VM VN £ =(0,m) 2N
VZVZRe o 1(;(1 oy ZLH DI (25 + ym
—'\/_'—_\/.__ »(l,M)COS N coS N .

=

[y

m=1

As noted in Section 1.4.1, in JPEG compression, every 8x8 block in the image is

transformed into an 8x8 transform block using the 2D DCT.
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1.4.3 DCT Quantization
DCT coefficients in JPEG compression undergo a process of integer division called
quantization. Quantization is an irreversible process where an 8x8 DCT sub-block 1s first
divided coefficient-by-coefficient, by a fixed or adaptive matrix determined by an
externally specified compression factor. The resultant matrix is then integer rounded. The
externally specified compression factor generally ranges from 10 to 100, with 10 being
the highest amount of compression and 100 being the lowest. This compression factor is
typically denoted as Q-factor.

The choice of the quantization matrix set is determined by the designer of the
JPEG encoder. The JPEG standard is only informative in this regard, but does provide
example quantization tables. They are detailed in Annex K of [9] and may be used by an
encoder. Those empirical matrix coefficients are based on psychovisual thresholding and
luminance, chrominance and spatial image subsampling.

It is possible to derive quantization matrices using principles of rate distortion
[10]. The process involves minimizing the distortion in the DCT coefficients, subject to a
constrained data rate.

Quantization is a non-linear operation that modifies the probability distribution of
the data being operated on. It is a lossy operation as well, and the error introduced due to

this is a random variable with a statistical model that is generally approximated by a

Uniform distribution [20] .
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The mode (0, 0) will be known as the DC coefficient from this point onwards.
This is because the DCT coefficient at (0, 0) is the average of the level shifted pixel
values in the block. It has empirically been proven that the DC coefficient has a PDF that
is different from the other modes of the DCT [12]. The AC coefficients, i.e., the
coefficients at modes other than (0, 0) have been shown to have PDFs that are very
similar to each other [12] [15] [17]. However, different papers have employed different
PDFs to model AC block DCT coefficients. Following subsections detail three of the
most commonly used PDF models for AC block DCT coefficients.

From this point on, block DCT model will denote the probability density model of

a specific mode (generally AC) of the block DCT.

2.1.1 The Laplacian Model
The Laplacian model for AC DCT distributions is based on the Laplacian PDF. The

Laplacian PDF [24] is given as,

fQx; b, ) =%6Xp {— |x;# } (2.1)

Where u is the mean of the distribution and b is the shape control parameter,

related to the variance of the distribution.

This distribution is shown in the following plot.
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Reininger and Gibson used the Kolmogorov-Smirnov (KS) test [14] on standard
256x256 8-bit PCM encoded grayscale images over multiple modes, to determine the
goodness of fit of the different PMFs. The KS test detailed in Appendix A is summarized
as follows.

The KS test is a distance measure between the sample distribution function and
the given distribution function, with the distance given as follows.

t = iﬂ}gleFx(xi) — F(x;)|.

gore

Where t is the KS test statistic. F(x) is the input sample set with samples in [1, M].

0, x < X(q1)
n

FX(X) = M' X(n) <X < Xn41).
1, x = X

Where x5 is the n™ order statistic of the data X.
The PDF with the lowest KS test statistic is the best fit distribution for the given
data set.

The KS test results obtained in [12] are shown in the following figures for mode

(0, 1) and (1, 0) AC coefficients.
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[12] concluded the Laplacian distribution was the most suitable PDF for AC block DCT

coefficients.

2.1.2 The Generalized Normal Model

A second commonly employed model for AC block DCT PDF is the model based on the
Generalized Normal distribution Nadarajah (2005) [15]. The Generalized Normal
distribution specifies a family of PDFs with varying kurtosis [45]. The family therefore
includes the entire range of well-known PDFs, from leptokurtic distributions such as the
Laplacian to platykurtic distributions such as the Uniform distribution. [15] defines the

Generalized Normal distribution as,

Ja (¥ —un?
f(x; o,9,u) = ma(—(l/lﬁjexp {—— [a(ﬁ) |¥] } (2.2)

Where u is the mean of the distribution, o is the standard deviation of the distribution, 9

is the shape parameter of the distribution, related to its kurtosis, and, a(9) = %,

where I'(...) is the complete Gamma function defined as,

I'(z) = J. t?"le~tdt

0

The Generalized Normal distribution for varying shape parameter ¥ is shown in
the following plot. It is seen that for a high value of ¥ such as 100, the plot is nearly that
of a Uniform distribution. Indeed, when ¥ is oo, the Generalized Normal distribution

defines a Uniform distribution. Similarly, when 9 = 1, it defines a Laplacian distribution

and when 9 = 2, it defines a Normal distribution.
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Substituting from Equation (2.2) above,

N
log(L(x; 0,9, 1)) = Z log <%% exp {-— [a(ﬁ) I_’_‘_l_;_/‘lr})
i=1

N
log(L(x; 0,9, ,u)) = Nlog (Z:f(—%) + Z {— [a(g) |xi ; 1«1”‘9}.

i=1

Maximizing this log-likelihood function with respect to the parameters of the PDF

implies,

dlog(L(x;0,9,1)) 0

9 (2.3)

alog(L(x; 0,9, u)) _ 0

— (2.4)

Du (1991) proposed the following equations as solutions to Equations (2.3) and

2.4).
For 0,
1 n
1/) (34_ 1) + log(ﬁ) +ilog lzlxlﬂ _ ?:1'961',‘9 log(lel) -0 (2 5)
92 92 P\ng ™ O Xilal? ' |
Where,

1
Y() =-y +f A-t"HA - ) de.
0
is the Digamma function (y = 0.577 being the Euler constant). That is,

d
P(e) = - logT'(®)
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For o,

k‘o?l [

52 = z9a(z9) E llxl . 26)

Where 9 is the estimate of the shape factor, derived above.

Muller [15] showed that the Generalized Normal distribution model fits the PDF
of AC block DCT coefficients better than the Laplacian distribution using the y*-Square
test. This goodness-of-fit test, detailed in Appendix A is summarized as follows.

The empirical frequencies of the given data set X are compared with

corresponding theoretical probabilities, to generate a test statistic y2 as follows.

i npl)z

Mw

i=1
Where p; is the probability of the i* class of the standard distribution, m; is the observed
frequency in the i™" class of the input data set, k is the number of classes and N is the
number of samples in the input set.

The PDF with the lower test statistic best matches the histogram of the given data

set X.

The x? test statistic for the Laplacian and Generalized Normal distributions as
published in [15] is shown in the following table. Evidently, the Generalized Normal

distribution is a better match for the AC block DCT histogram than the Laplacian

distribution.
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Table 2.1 2 test statistics for Laplacian (Laplace) and Generalized Normal (GN)
distributions.

Lena Boats
k k
(class (class
Mode count) 2 count) | y2
C10 GN 102 103
28 52
Laplace 1524 12450
Co01 GN 123 152
12 14
Laplace 1085 2143
Cl1 GN 70 25
12 10
Laplace 2043 1169

Source: Muller, F.: Distribution Shape of Two-Dimensional DCT Coefficients of Natural Images,.
Electronics Letters, 29, Oct. 1993, 1935-1936.

2.1.3 The Generalized Gamma Model
In 2005, Chang, Shin, Kim and Mitra proposed a model for block DCT coefficients based
on the Generalized Gamma distribution (GI'F). The GI'F was developed for positive real

values by E W Stacy (1962), and is given as,

yB"
2T'(n)

x™~1exp(—px¥),x € RT.

foy, B =

Where y, 8, are model parameters.

Extending this to negative values [17],

fCoy,Bmu) =

yB" 1
T X — sl exp(=Blx —ul), VX ER. (2.7)

2r(n)
A plot of the GI'F is shown in the following figure for varying parameters. It is of

note that except in the case when the product of 7 and y is 1, the distribution tends to 0 as

x approaches 0.
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1

=Xi=q lxl? 1w |oc;|Y 1%

n - 14
7 + log 2 |2; |¥ log| | = log |x;|Y.
X Xj i=1

nzz 12 _q | [Y logl | i=1j=1
Xj

P (... )being the digamma function.

Numerically solving these three equations in sequence gives the parameters of the
model. [17] uses the xz-square goodness-of-fit test to evaluate the performance of the
GI'F PMF across multiple modes using four standard 512x512 images. The results are
summarized in the following table, where the term image method is used in lieu of the
term mode.

Table 2.2 2 test statistics for Laplacian (Lap.), Generalized Normal (GGF) and
Generalized Gamma (GI'F) distributions.

e Lona Hout Babuoon
et Lap. . aGE | GIF it GLF T Lap, PGP D Lap | Gh | F
i WG T RuUD w3 551 bk 257 256 283 Zih 190
T H361 1296 RU2 671 2234 4(3‘3 Y 64 26ik 213
Oy I84% 835 B3 3730 T35 Fs F456 29 265 2% (501 j2:4
L 4258 | 1443 | 1257 | S680 | B300 1290 | 1947 0 30 352 414 360 Py
T 4102 0 1215 1 54 A0%n | B33 i 315 513 232 218 194
| e &6R0G L1636 1 IFFR 1 306 | 1T} I 3RS . 429 HiYF SUR 269 21R
| £ 208 1 1845 | OIEBR O 44800 1 90 ®a7 | 3R . 3G 553 38 23
i Stad | 113 ] R23 ) 3001 ) ER3Y 139G 2082 | 64Y B And 238
4250 A25% 1 1403 12U 0 TIR4 | 2084 0 2023 | 33RY dan) 474 373 247

Source: Chang, J.-H. Shin, J. W. Kim, N. S. Mitra, “Image Probability Distribution Based on Generalized
Gamma Function”, IEEE Signal Processing Letters, 2005.

The GI'F PDF is shown to outperform the Generalized Normal PDF by a small

amount and the Laplacian PDF by a large amount. This is expected, since the GI'F PDF

is more general than either of the distributions it is compared with.
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2.1.4 Analytical Reasoning for 2D Block DCT PDFs

An analytical reasoning for the choice of the Laplacian and Generalized Normal
distributions to model AC block DCT coefficients is briefly discussed in this subsection,
with a summary of the paper by Lam and Goodman (2000) [16].

Recalling the 2D DCT G,(...) on an 8x8 block X(...),

E
,,_\

N-1
G.(IL,m) = X(i,j) cos

i

i+ DIn @j+1)mn
SN oS N .

I
[=)

j=0
=2 forl #0,andc; =1 forl=0.
=V2 form #0,andc,, = 1 form = 0.

The transform coefficient G, (I, m) is computed as a weighted sum of IID random
variables, i.e., the weighted sum of the pixels of the block. Applying the Central Limit
Theorem here, the transform coefficient can be approximated as a Gaussian random
variable, assuming that the variance of each random variable, i.e., pixel, is known a

priori. This is true even if the image pixels are slightly correlated, as noted in [16].

Therefore,

p(Gx (L m)|o?) =

1 { G, (1, m)}
ex _——.
\2mo P 20°

Where o2 is the variance.

It follows that the probability distribution of DCT coefficients may be evaluated

using conditional probability.

(G (Lm)) = f PG, (L, m)|o?)p(a?)do?.
4]

Where p(a?2) is the probability of the variance.
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[16] showed empirically that the variance across blocks follows either an
exponential distribution,
p(a?) = Aexp(=Ac?),6%2 > 0.
Where 4 is a distribution variance control parameter.

or a half Gaussian distribution,

p(a?) = - Aexp (—E-Z—>,02 > 0,
2rs 252
Where s is a distribution variance control parameter.

With either distribution of the variance, the distribution of 2D block DCT
coefficients is Laplacian. However, this is valid only for coefficients with fairly low
values of kurtosis. When the kurtosis has a high value, the Generalized Normal is a better
model for DCT distributions [16]. Since the Laplacian distribution is a special case of the
Generalized Normal distribution, for a general kurtosis value, the Generalized Normal is
the more appropriate distribution of the two.

There has been no literature on quantitative analysis of the Generalized Gamma
distribution in the context of block DCT coefficients. This may perhaps be attributed to

the fact that the paper by Chang et al. [17] is a relatively recent publication.

2.2 A Full-Frame DCT Model
The block DCT probability models explored in the previous section have been
investigated in detail owing to their significance to image compression. Full-frame DCTs,
on the other hand, have been investigated for their applications to image forensics as
presented in Barni, Bartolini, Cappellini, Piva and Rigacci (1998) [18] and in Cox,

Kilian, Leighton and Shamoon (1995) [47]. They will be briefly explored in this section.




In [18] a model for full-frame DCTs, based on previous models for block DCTs is
proposed. Specific DCT coefficients are selected from a full-frame DCT block and their
distributions are evaluated against Gaussian, Laplacian and Generalized Normal PDFs
using y2 test statistics, over multiple fixed sized images.

The DCT coefficients selected for this process from 170 256x256 images are
taken from five equiangular sets of the full-frame DCT block. The distributions for the
remaining coefficients are estimated via interpolation.

The coefficients are initially assumed to have a Generalized Normal distribution.
This is acceptable, since both Gaussian and Laplacian distribution are special cases of the
Generalized Normal distribution. The model parameters of the Generalized Normal
distribution can be determined from the DCT coefficient data.

[18] reports that the shape defining parameter of the Generalized Normal PDF, 4,
was found to be close to 1. This implies a leptokurtic distribution, such as a Laplacian
PDF. It was therefore concluded that the distribution of full-frame DCT coefficients is

Laplacian. The y” test results from [18] are shown in the following figure.







CHAPTER 3

DISTRIBUTIONS OF QUANTIZED DCT COEFFICIENTS

In this chapter, the probability distributions of JPEG block DCT coefficients after
quantization (known as QPMF henceforth) and the probability distributions of JPEG
block DCT coefficients after de-quantization (known as DQPMF henceforth) are
explored. The study of these coefficient distributions constitutes a large part of the

original work in this thesis.

3.1 Introduction
The Probability Density Functions discussed in Section 2.1 characterized JPEG block
DCT coefficients before the process of JPEG quantization. Those PDFs will be known as
Pre-Quantized PDF (PQPDF) henceforth. Relevant parts the JPEG encoder and decoder

in the following figure show where the QPMF, DQPMF and PQPDF fit in.

Image

— DCT A> Quantization —A—> Encoder
PQPDF QPMF

Quantized

DCTs

—» De-quantization 1% Inverse DCT |—» Decoder
DQPMF

Figure 3.1 JPEG Encoder (a) and Decoder (b) sections showing the locations of the
relevant PDFs and PMFs.
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A lemma is now established, relating the QPMF and the DQPMF.

Lemma 3.1: The QPMF and DQPMF differ only by a deterministic, scalar
multiplier. Intuitively, it may be concluded that while the QPMF exists, in theory, for all
n (n being an integer), the DQPMF exists for all ng, with ¢ being the scalar multiplier.
Indeed, it may be concluded that the QPMF at a point & is relocated to the point kg in the
DQPMF. The consequence thereof is that the QPMF and DQPMF are analytically
identical, and differ in their abscissa only.

Expressions for QPMFs and DQPMFs are derived starting from the three
PQPDFs detailed in Section 2.1. The derived PMFs take their names from the PQPDF on

which they are based. Therefore, the following abbreviations are used.

+ L-QPMF: The QPMF based on the Laplacian model for non-quantized block

DCT.

« GN-QPMF: The QPMF based on the Generalized Normal model for non-
quantized block DCT.

« GG-QPMF: The QPMF based on the Generalized Gamma model for non-
quantized block DCT.

« L-DQPMF: The DQPMF based on the Laplacian model for non-quantized block
DCT.

« GN-DQPMF: The DQPMF based on the Generalized Normal model for non-
quantized block DCT.

« GG-DQPMF: The DQPMF based on the Generalized Gamma model] for non-

\ quantized block DCT.

\ The developed L-QPMF, GN-QPMF and GG-QPMF are compared against each

other using goodness-of-fit tests. A similar comparison is made between the developed L-
DQPMF, GN-DQPMF and GG-DQPMF. Expressions are then derived for the first four
moments of the best fit QPMF and DQPMEF, i.e., the PMFs with the lowest goodness-of-

fit test statistics.
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The approach used here to develop a DQPMF model differs from the approach
used to model quantized JPEG DCT in Zou, Lu and Ling (2004) [28], in that the model
developed in this study is formally derived from statistical properties of quantization.
Furthermore, as shown in a subsequent section, the developed DQPMF and QPMF are
based on the Generalized Normal, rather than the Generalized Laplacian used in the case

of [28].

3.2 Analysis of the Statistics of Rounding and Quantization
A study of the effect of integer rounding and quantization on the statistics of a random
variable is necessary for the derivation of the QPMF and DQPMF. Both rounding and
quantization are non-linear operations, and have significant impact on the statistics of the
operands, as will be seen subsequently.

The process of integer rounding is defined as follows.
1 1
n=[x] | (n—E)Sx<(n+§) n € Zand x €R.

[...]is the rounding operator.
Integer rounding is merely a special case of the broader concept of quantization,

with the latter defined as,

n=Q(x) | (n—%)Sx<(n+%).

x € R. g € Zis the quantization parameter and » € Z is an integral multiple of g.
It must be mentioned at this point that the term quantization in the context of JPEG
compression is defined differently from the same term in the broader context of signal
processing. In the latter case, quantization is ultimately what is called de-quantization in

the context of JPEG compression.
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Titchmarsh (1986) [48] showed that the process of rounding and quantization may

analytically be expressed as,

oo}

Rounding: n = [x] = +125in2nkx
ounding: n = [x] = x s T

q ® sin (an g)
Quantization: n = Q(x) = x + —z _
T k!
k=1

Using the expressions above, it may be possible to determine the PDF of the
quantized random variable. Random variable transformations as detailed in Kay (2005)
[49] may be used to this effect. However, periodic, non-linear random variable
transformations are often mathematically involved, and a sinusoidal transformation is no
exception [19].

A significantly less mathematically involved, practical approach to deriving a
PDF for the quantized random variable, involving operating on the analytical form of the
PDF of the non-quantized random variable is presented in Widrow, Kollar and Liu (1996)

[20] and is detailed in the following sub-section.

3.2.1 Deriving the PDF of Quantized Random Variables as per Widrow et al.
Linear systems principles were used in the approach presented by Widrow et al., to
develop an analytic form for the distribution of quantized random variables. The process,

termed area sampling in [20], is detailed as follows.
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3.3 Quantized JPEG Block DCT PMFs
In this section, PMFs based on the Laplacian, Generalized Normal and Generalized
Gamma distributions are developed. From each base distribution, the DQPMF is first

derived, and the QPMF is deduced as per Lemma 3.12,

3.3.1 Quantized JPEG Block DCT PMFs Based on the Laplacian PDFs

The Laplacian PDF may be recalled from Equation (2.1) as,

(x)=iex _lx =4
bx b p b .

b is a parameter related to the variance of the PDF and u is the mean of the PDF.

In the case of JPEG AC block DCTs, the mean may reasonably be assumed to be zero
[16]. Therefore,

x|

1
px(x) = 25 &XP (—7>. (3.2)

To derive the expression for the Laplacian de-Quantized PMF (L-DQPMF), the
procedure outlined in Section 3.2.1 is followed. Therefore, convolving Equation (3.2)
with a Uniform PDF £, (x) in (—q/2, q/2] as per Equation (3.1), the resulting PDF fz(t)
is,

fr(®) = px(x) = f(x).

|x|

q
1 (2
fr(®) = 2qb ft_% exp (———b )dx. (3.33)

Solutions to this integral are considered in the following cases.

% The Lemma states, “The DQPMF and QPMF are analytically identical, and differ only in their abscissa.”




a. [t—%<t< t+%]<0:

In this case, |x| = —x. Therefore, Equation (3.3a) reduces to,

t+1

1 2 X
fr(t) = 2ab g exp (—5) dx.

Evaluating,

fal®) = 2219 [eXp (t +bq/2) T exp (t —bq/z)]_

Or,

e ]

Expressed more concisely,

o0 = e (5) oo () ~ oo (- )

Since the term is the square braces is a hyperbolic sine,
1 ty\ . q
fr(®) = 5exp (E) sinh (ﬁ)
q q].
b. 0< [t—'2-<t< t+;].

In this case, |x| = x. Equation (3.3a) reduces to,
q
1 (2 x

Evaluating the integral in a manner similar to the previous case,

fr(®) = %exp (— %) sinh (g—b)
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(3.3b)

(3.30)
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_1 4.
c. t 2<0< t+2.

The integral on either side of this interval centered at zero is split into two parts.
Therefore from Equation (3.3a),
t+1

fr(t) =§%[J;O;exp (%) dx+fo+ 2exp (—%) dx].
2

Evaluating,

fr(t) = %b [1 — exp (t _bq/2> +1—exp (— : +bq/2)].

And,

fal®) = '2'15 [2 ~ eXp <_ : +bq/2) +exp (t —bq/z)]_

fa() = % [2-ew(-gp) e (~5) +emw Gl

The term inside the braces is identified a hyperbolic cosine. Therefore,

o =5 [t~ o (55) o )] @3
Summarizing these results,
%exp(%)smh(gg), [-2<t< e <o
o=l R f-feo<
o (-5)son ). -gr<ed]>o

Or,

3[1—exp(—;—b)cosh(%)], [t—%<0< t+%].

fal®) = (34
i % exp (— ﬂ) sinh (—q—) , otherwise.
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Finally, Equation (3.4) is multiplied by an impulse train at ng, as per Equation

(3.1). Thus,
1 q t q q
q[l—exp( ﬁ—)cosh(z)]mﬁ(t) t——2-<0< t+§.
a[exp (— —b—> sinh (?5)] qé(t —lq) otherwise, —0 <1 < oo,l # 0.

The continuous abscissa impulse function, §(t) in the equation above may be

replaced with impulse function for a discrete axis, §[n]. Then,

%[1 — exp (-— Zq_b) cosh (g—)] qé[n] n=0.

Prn) = 1 exp _l Sinh(i) q§[n—1lq] n#0,—c0 <l< ool #0,l€Z
q b 2b ' ' ’

More compactly,

q
1—exp(—§5) n=0.
exp| ——— smh(—z—b—) n=+0,n€Z

The result in Equation (3.5) is visually verified below. Laplacian random

| variables are generated with a fixed shaping factor & = 3. The random variables are
quantized with the quantization steps, ¢ = 1, 2 and 3. The following graphs plot the

‘ normalized histogram of these quantized random variables and the corresponding L-

DQPMEF.
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As in the previous section, the mean of the data may reasonably be assumed to be

zero. Therefore, the PDF py (x),

o) = g senp - [a@) [} 37)

Now, the Gaussian Normal de-Quantized PMF (GN-DQPMF) and Gaussian
Normal Quantized QPMF (GN-QPMEF) are derived in a manner similar to the L-DQPMF

and L-QPMF.

For the GN-DQPMF, Section 3.2.1 is recalled. Convolving Equation (3.7) with a

Uniform PDF in (—3 q], fa(x), as per Equation (3.1), the following PDF fz(t) is

2’2

obtained.

31 9a(Y g
f® =m0 = 2o cep = e [ fax
2

q

1 da(®) [tz x7?
fR(t) = Em t_% exp {— [a'(19) ,;” }dx (3.8)

This is a generic exponential-power integral, which cannot easily be evaluated in
closed-form. For practical purposes, a numerical solution to this integral may be found
using the Simpson’s 1/3 rule for small and smooth intervals [21], stated here as follows.

A general function, f(x) is considered to be integrated in the interval [xg, x,].
X2
g=| feax
Xo
According to the Simpson’s 1/3 rule, the integral is approximated as,

X2 h
9= [ T@dr =000 + 47 ) + FG)
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Xo=—X X=X X2+X
Where h = = and x; = x + h = xp + = = —22—0 Therefore,

=Lﬁﬂ@dxgCa;%)k@ﬁ+4fcz;%)+f@g} (3.9)

Applying Equation (3.9) to the integral in Equation (3.8),

O o e e PR

o~ e |22

And,

£2(0) = %[ { [ @ lt +q/2 r} + 4 exp {— [a(ﬁ) Ig”ﬂ}

+ exp{ [a(ﬁ) It — q/ZH } . (3.10)

The analytic form of Equation (3.10) is evaluated for the following cases.

a. 0<h—%<t<t+ﬂ:

In this case, |-ti%/2| = — (ti_g_/g) Therefore,

0= o enf e (525 e ()

+ exp {— [—a(ﬂ) (t _0"/ z)r}]

b.0<h—§<t<t+ﬂ:

In this case, |tiZ/ ZI = (tig/ 2). Therefore,
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' i B 9
o (8) = 12;9:;?1)/19) (% +1tl) ©XP {_ () |t aq/ZH }

+ 4 exp {— [a(ﬁ) t=q/2 r} + 1].

g

In [t - %, 0“], all values of the independent variable ¢ are less than 0. Therefore,
_ da(9) q t—q/ 2) i
t) = ———————|=—— —
fr (® 1240T(1/9) (2 t) [exp{ [ a(ﬂ)( = ]

+ dexp {— [—a(ﬁ) (t —ZZ/ 2)]19} 4 1].

In a similar fashion, in[()*,t +%], all values of the independent variable ¢ are

greater than or equal to 0. Therefore,

9
f () = ———lzjj‘r(fl) (e +9) [exp {— [ecor (22)] }

+dexp {— [a(ﬁ) (t +ZZ/ 2)]0} + 1].

On careful examination, it becomes evident that f~(t) and fR " (t) are of equal

magnitude. Therefore, in the interval [t - %, t+ %],

oaff (52
+aexp {- la(ﬁ) (ﬂiz;q—/z)r} +1

_ Jda(9) q
fe® = 2T /9) (1e1+3)

: (3.11)
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Finally, Equations (3.10) and (3.11) are sampled by an impulse train. Thus the

resultant distribution pg (nq) is,

rr(ng)
da(9) v
flzqo_lfz(—-—l/ﬁ) exp {— [0{(19) (Eq;)] } +
4 exp {— [a(ﬁ) (—q—ﬂﬂ} + 1] n =0,
.y % exp{ [ ©®) |nq * q/ZH } + (3.12)
4 exp {—- [a(ﬁ) I-—” } +
\ exp{ [a(ﬁ) lnq q/2” }] n#0,n€Z

Equation (3.12) is visually verified as follows. Generalized Normal random
variables are generated with a fixed standard deviation o = 10 and shape factors
9 =0.5,1and 2. It must be noted that the latter two shape factors correspond to
Laplacian and Normal random variables, whose generation process is well-known [49]
i.e., hard-thresholding logarithms of Uniform random variables generates Laplacian
random variables, and the Box-Muller Transformation of Uniform random variables
generates Normal random variables. The process to generate ¥ = 0.5 random variables is
not as well known, and involves using Lambert W functions [38] and Uniform random
variables in a method developed in [31] and outlined in Appendix C. The random
variables thus generated are quantized by ¢ = 1, 2 and 3 respectively. The normalized
histogram of the quantized random variables and the corresponding GN-DQPMFs are

shown graphically in the following plots.
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Following the approach detailed in Section 3.2.1, convolving Equation (3.14) with
a Uniform PDF in (— 521-, %] as per Equation (3.1), the PDF of the quantized data, fz(t) is

obtained as follows.

t+31 g7
0 = e 7,00 = [T e exp(=pla)
2
Yﬂ" t+q
O = 1a0) 50 = s | T em gD an 69

As in the previous section, this integral is best evaluated using the Simpson’s 1/3

rule, recalled here from Equation (3.9).

[ reras = (0o +ar (B57) s
Therefore,
fr(t) = 2);[277) G “ + qlny_l exp (—ﬁ lt + %ly) + 4[t[" " exp(—=B[t|")
=g (-3
And,
fr) = 1;5(" ) [It + %lny_l exp (—ﬁ It + %Iy) + 4|t|™ " exp(—B|t]")

+ It - —lny - exp (—,B It - %Iy)]

This expression is evaluated for three cases as follows.

1 1 .
a. [t—2<t< t+2]<0.

In this case, lt + %I =—t— %. Therefore,
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fu® = (e = D" exp (< (=t - 2)') + a0t exp-p-0m)

121'(p) 2
+ (—t + %)m/_l exp (—ﬁ (—t + %)y)] (3.16)

b.0<h—%<t<t+ﬂ:

In this case, It + %' =t+ -‘21. Therefore,

0= 2+ o+ )+ s i)

(=" ew(-8(e-D)) (3.17)

On combining Equations (3.16) and (3.17),

-1

o = o (1614 2)"™ " exp (=5 (1e1+5) ) + 401 exp(-ACIy
1

(4-9"" oo -0 (0-3)) 20

q q.
c. t 2<0< t+2.

This case is identical to the corresponding case in the previous section. The two half-

intervals on either side of zero may be approximated by trapeziums. Therefore,

B" -1 B
q6)l:( )( + |t} [1+2 Z)ny exp(—i-(lti'%)y)

# (e )" e (<5 (e 3))] 619

f(@® =




In the interval [t - g, 0_],

1 ypY -1 B
@)= q;;,( )( t)[1+2(—t+g—) exp(—i( t+2))

And in the interval [0+, t+ %],

fR @) = 6};'/2”7) ( + t) [1 +2 (t +g_)m/—1 exp <—§(t + %)y)

On combining, in the interval (t — %, 0,t+ %],

o® =i G i) 1+ 2 (1 + 2"

-1

ool 4(00+2))

qQ\"T N4 ]
+ (el + E) exp (—ﬁ (It + E) ) : (3.20)
Finally, Equations (3.18) and (3.20) are sampled by a train of unit impulse

functions. Thus,

Sl @ e (50) -
Q" (2 Q))]
pr(ng) =4 1(;}1/1[2’;) [(nq N %)’W‘l exp (_ﬁ (ng + %)y) + (3.21)
4(ng)™" exp(—B(nqg)") +
L (a3)" e (s (ra—g))]

The analytic form in Equation (3.21) cannot be verified by using Generalized

Gamma random variables with arbitrary model parameters, since very little literature
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It is may be noted that on average, the GN-QPMF and the GG-QPMF have lower
test statistics than the L-QPMF. This is intuitive, since the former two specify distribution
families of which the Laplacian distribution is a special case. It is also seen that while the
GG-QPMF generally outperforms the GN-QPMF, the performance difference is not
significantly high.

In the case of DQPMFs, the KS test statistics indicate that on average, the GG-
DQPMF is the best fit distribution with the GN-DQPMF being a close second. This is
evident from the y” test results as well, for moderately high (> 40) Q-factors. As in the
case of QPMFs, the trend is that the GG-DQPMF outperforms the GN-DQPMF by a
small amount, while both of them outperform the L-DQPMF by a significant amount, for
most Q-factors.

Before proceeding further, it must be mentioned that the KS test statistic is
preferred over the y” test statistic, for the purposes of goodness-of-fit comparisons here.
This is because the KS test statistic, unlike the i’ test statistic, is more robust because it is
not affected by the size of the test sample set. With that being said, the following graphs
plot the average KS test statistic against JPEG Q-factors ranging from 10 to 100, for the
first 8 modes of the quantized and de-quantized block DCT. The quantized and de-
quantized block DCT histograms are compared against GN-, GG- and L- QPMFs and
DQPMFs respectively, and the KS test statistics are generated. The averaging is
performed across 44 test images from the miscellaneous image set of the USC SIPI

database [29].
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From the plots in Figures (3.28) and (3.29) the following observations are made.

«  For low values of the IJG* Q-factor (Q < 60), the KS test statistic is nearly equal
for all three QPMFs. This may be attributed to the large number of values
clustered at and around zero in the PMFs. For high values of the Q-factor (Q =
60), the L-QPMF has a higher value of test statistic than the other two. In general,
the test statistic is nearly equal for the GN-QPMF and the GG-QPMF, except for
the (1, 0) and (1, 1) modes, when the test statistic for the latter is lower. This
implies that the preferred PMF could be either Generalized Gamma based (GG-
QPMF) or Generalized Normal based (GN-QPMF).

« Despite the GG-QPMF fitting the empirical histogram better than the GN-QPMEF,
the difference is not significant across Q-factors and block DCT modes. Since the
GN-QPMF has only two parameters (assuming zero mean) and the GG-QPMF
has three (similarly, assuming zero mean), the former is the preferred distribution.

Similarly from the Figures (3.30) and (3.31), the following observations are made.

« It is seen that for low values of the IJG Q-factor (Q < 50), the KS test statistic is
nearly equal for all three DQPMFs. As in the case of QPMFs, this may be
attributed to the high percentage of values clustered around zero in the PMFs. For
high values of the Q-factor (Q = 50), the L-DQPMF has a higher value of test
statistic than the other two. In general, the test statistic for the GN-DQPMF is
nearly equal to that for the GG-DQPMF, with the GG-DQPMF outperforming the
GN-DQPMF slightly. This implies that the preferred PMF could be either
Generalized Gamma based (GG-DQPMF) or Generalized Normal based (GN-
DQPMF).

« Despite the GG-DQPMF fitting the empirical histogram better than the GN-
DQPMF, the difference is not significant across Q-factors and block DCT modes.
Since the GN-DQPMF has only two parameters (assuming zero mean) and the
GG-DQPMF has three (similarly, assuming zero mean), the former is the
preferred distribution, in a manner similar to the GN-QPMF.

It is thus concluded that the GN-QPMF is the preferred distribution for quantized
block DCT data on the JPEG encoder end, while the GN-DQPMEF is the preferred

distribution for de-quantized block DCT data on the JPEG decoder end.

*1JG — Independent JPEG Group. The IJG Q-factor specifies a standard set of quality factors in JPEG
compression, with values ranging from 10 (lowest quality) to 100 (highest quality).
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In light of these conclusions, the problem of deriving the model parameters of the
GN-DQPMEF from de-quantized JPEG block DCT coefficients will have to be tackled.

Recalling the process of JPEG decoding, it is to be noted that the de-quantized
block DCT coefficients are modeled well by the GN-DQPMF. However, the parameters
of the GN-DQPMEF, i.e., ¥ and o are not known, and must be determined from the
corresponding mode of the de-quantized block DCT coefficients. In lieu of the commonly
employed method of maximizing the log-likelihood function of the distribution, analytic
expressions for the first few moments of the GN-DQPMF shall be derived and used to
determine these model parameters.

The moments of the GN-DQPMF can be derived using Sheppard’s corrections
[20]. Explicitly, if ¢ is the quantization parameter and x’ is the quantized version of x, the
first four moments of x’ are related to the first four moments of x as follows.

E{x} = E{x'} - 0.

E{x?} = E{x"*} - (il'z' qz).

E{x3} = E{x"*} - (% E{x’}qz).

Py = B} - (2B} - 50t

Where E{... } is the expectation operator.

Using these relations to obtain the moments of the GN-DQPMF,

E{x'} = E{x} = 0. (3.23)
E{x"*}=0% + (-ll—zqz). (3.24)

E{x”} = E{x’} = 0. (3.25)
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Elx*) = Ex) + PE(x?) 5= a*)

240
=B+ [2 {0 * (112 qz)} B 5_%‘#]
E{x"*} = E{x*} + [—0 + (810 q4)} (3.26)

From Equations (3.23) to (3.26) it is possible to deduce the following.

.+ The ‘power’ in the quantized random variable, is greater than the power in the

non-quantized random variable by a factor of ( ) This is clearly because of the

Uniform distributed quantization noise being added to the random variable, as
stated in Section 3.2.

« The skewness, defined as the ratio of the third moment to the cube of the standard
deviation [49], of the quantized random variable is equal to zero, since the third
moments of x and x” are the same, and the skewness of x is 0 as per Nadarajah
[45]. This is intuitive, since the skewness is a measure of the symmetry of the
distribution, and the symmetry of the distribution remains unchanged after
quantization.

« The kurtosis k' of x’ is derived as follows.
1
pet) B[S BT+ (gaY)]
2 = 2 .
E{x"? g L
[E{x*}] [E{x } + 12]
Expanding the denominator,
q> 1
4 2 14
E{x}+[ E{x}+(80q)]

(BGA? + A+ B L

—

14

K

Dividing the right hand side of this equation by [E{x?}]?,

S [ty (80[51{12}]2)}

4 qZ
1+ [144[3&2}]2 + 6E{x2}]
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Using Equation (3.24),

2
? . _q*
KA [202 T 8007
q* q°
1+ [14404 t 857 ]

Using Equations (3.27) and (3.24), it is now possible to derive the Kurtosis of x’,

(3.27)

given the Kurtosis of x, the quantization step ¢ and the second moment of x .
The Kurtosis of x is used to determine the shape factor 9 as per [45]. Equation

(3.27) in conjunction with,

_ T(1/9)r(5/9)
- TB/M)

(3.28)
may numerically be solved to estimate the value 9.
The second parameter o may be estimated from Equation (3.24).

The moments of the GN-QPMF may similarly be derived from Sheppard’s
corrections [20]. For the GN-QPMTF, ¢ is invariably equal to 1 (since it is rounded), but
there exists a division factor, k. It can empirically be verified that this division factor

divides the second moment by a factor &* and the fourth moment by a factor k*. Therefore

the moments of the GN-QPMF from Equations (3.23) to (3.26) are,

E{x'}=E{x}=0. (3.29)

2 1
E{x'?} = (%) + (ﬁ) (3.30)
E{x"*} = E{x’}=0. (3.31)

o E{x% 1
E{x""} = {’i [2 7 +<§6)]' (3.32)
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3.3.5 Summary

The Generalized Normal De-quantized PMF (GN-DQPMF) is the preferred distribution

for the PMF of de-quantized block DCT coefficients on the JPEG decoder end. It is given

as,

pr(ng) =

( q19a(z9)
120T(1/9) | { (‘9) } *

4 exp { a(19) }+1] n=0.

_qda(®) 2nq +q
120T(1/9) [ { ( ) l - ” } (3:33)
4 exp{ a(9) |-——| } +
\ exp{ a(ﬁ)lznq 1 ] }] n#0,n€CZ

Where ¢ is the square root of the variance of the distribution, ¥ is the shape

parameter of the distribution, related to its kurtosis, ¢ is the quantization step, and

a(®) = f 11:2;:;)’ where I'(...) is the complete Gamma function, defined as,

[o0]

I'(z) = f t7-1le=tdt,

0

The moments of the GN-DQPMEF are related to the moments of the Generalized

Normal pre-quantization PDF (GN-PQPDF), i.e., the PDF of the non-quantized AC block

DCT coefficients as follows.

E{x'} = E{x} = 0. (3.34)

E{x'*}= 0%+ (112 qz) (3.35)
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E{x”}=E{x3} = 0. (3.36)

4 q q*
! = 4 — 2 _—
E{x }=FE{x }+[2 o +<80>}' (3.37)
The Generalized Normal Quantized PMF (GN-QPMF) is the preferred

distribution for the PMF of quantized block DCT coefficients on the JPEG encoder end.

It is given as,

s oG]
4 exp {— [a(z?) (ch;)r} + 1} n =0,
pr(n) = J %% exp {— [ka(ﬂ) |2n2: 1|r} + (3.38)
n?
4 exp {— [ka(ﬁ) ,5” } +
k exp {— [koz(ﬁ) IZHZ; 1”0}] n#0,neZ

Where o is the square root of the variance of the distribution, 9 is the shape

parameter of the distribution, related to its kurtosis, £ is the quantization divisor for

encoding, and a(9) = (%8—;::—; where I'(...) is the complete Gamma function, defined as,

co

I'(z) = f t? le~tdt,

0

The moments of the Generalized Normal Quantized PMF (GN-QPMF) in relation
to the moments of the Generalized Normal pre-quantized PDF (GN-PQPDF) are

summarized as follows.




E{x'}=E{x}=0.
B} = () +(33)
E{x’3} =E{x3}=0.

) =S+ B @) )
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(3.39)

(3.40)

(3.41)

(3.42)




CHAPTER 4
APPLICATIONS OF THE QUANTIZED AND DE-QUANTIZED BLOCK DCT
MODELS
This chapter details potential applications of the models developed in Chapter 3. The
applications proposed in this chapter constitute the remaining part of the original body of

work in this thesis.

4.1 Introduction
In Chapter 3, it was concluded that the Generalized Normal Quantized PMF (GN-QPMF)
and the Generalized Normal de-Quantized PMF (GN-DQPMF) summarized in Equations
(3.33) and (3.38) respectively, are the preferred PMFs for quantized and de-quantized AC
block DCT coefficients, owing to a combination of sound goodness-of-fit and low model
parameter estimation complexity.
In this chapter, the GN-QPMF and GN-DQPMF are used in the following image

forensic applications.

+ Detection of compression history in bitmap images - It is shown that the GN-
DQPMF may be used to detect if a bitmap image was ever JPEG compressed in
the past.

« Detection of quality factor of historical JPEG compression in bitmap images - It is
shown that the GN-DQPMF may be used to detect the value of the IJG Q-factor’
in a bitmap image that contains compression history.

 Validating the Generalized Benford’s Law [27] for leading digit distributions of
quantized block DCTs — A detailed study of Benford’s Law and leading digit
distributions in the context of image processing is first performed. It is then
shown that the GN-QPMF may be used to derive a model for all quantized AC
block DCT coefficients, which is used to validate the Generalized Benford’s Law.

3 Refer to Section 1.4.3 for the definition of Q-factor.
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Each of these applications is detailed in subsequent sections. Existing research in
the area is first explored, and the results obtained from the proposed approach are

compared with the results of one of the existing approaches.

4.2 Detection of Compression History in Bitmap Images

4.2.1 Introduction

A bitmap image may defined as a two-dimensional image, with each pixel represented in
no more or no less than » bits per pixel, where » is the resolution of the image intensity.
Typically, n has a value of 8 for grayscale images, leading to 256 grayscale intensity
levels. Bitmap images are uncompressed in the sense that, their pixels do not have to
undergo any form of source decoding for the purposes of rendering. That, however, does
not obviate the likelihood of the image having been compressed and then decompressed
in a lossy fashion in the past. Thus, one image forensic application would be to determine
the presence of any compression history in the image. Approaches to determine
compression history have ranged from using statistical properties of transform
coefficients of the image as proposed in Fan and Queiroz (2003) [22], Neelamani,
Queiroz, Fan and Baraniuk (2003) [34], Fu, Shi and Su (2007) [27] to image texture
analysis proposed in He, Lin, Wang and Tang (2009) [33]. Since the approach to be
proposed subsequently deals with statistical properties of the transform coefficients,

previous research employing related approaches will be explored.
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. 4.2.2 The Approach Proposed by Fan and Queiroz

An early paper on detecting compression history in bitmaps was by Fan and Queiroz
(2003) [22]. This seminal paper presents an approach to detect the presence and extent of
JPEG compression history in bitmaps using block boundaries and DCT coefficient
statistics of the bitmap, respectively.

The process of compression history detection in this context involves estimating and
thresholding discontinuities across block boundaries. The following image is used as

reference.

GlH

Figure 4.1 For each block two numbers are computed, i.e., involving same pixel pattern
but spanning, or not, multiple blocks.

Source: Z. Fan and R. de Queiroz, “Identification of bitmap compression history: JPEG detection and
quantizer estimation,” IEEE Transactions on Image Processing, vol. 12, pp. 230235, Feb. 2003.

The grid in Figure 4.1 represents a bitmap image block of size 8x8 pixels. The
following absolute differences are computed from this block.
Z'=|lA—-B-C+D|
Z"=|E—-F -G+ H|

This process is repeated for all blocks in the image.
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The histograms of Z'and Z", i.e., H; and Hj; are computed. The sum of absolute

differences between the histograms is then computed.

K= ZIHI — Hyl.

By thresholding K, it is possible to determine if a bitmap was historically
compressed. This approach cannot detect bitmaps historically compressed with a Q-factor

greater than 90 [22].

4.2.3 The Proposed Approach

In the proposed approach to detecting the presence of compression history, the histogram
of a specific AC mode of the block DCT of the bitmap is compared with the GN-
DQPMF, generated with model parameters determined from the mode, using the
approach detailed in Section 3.3.4, for an IJG Q-factor of 100 (i.e., g = 1). The goodness-
of-fit test statistic obtained hence is hard-thresholded against an empirically determined
threshold value and the decision is made thereof.

It must be noted that the GN-DQPMF generated is not an exact match to the
normalized histogram of the mode, even in the case of a near-uncompressed bitmap (Q-
factor of 100). This is because the block DCT of a bitmap is an approximation to the de-
quantized DCT coefficients, the latter being an intermediate result of JPEG
decompression.

Before the algorithm for compression history detection is explored in depth

however, a few key approximations are investigated.
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4.2.3.1 Practical Estimations of the Parameters of the GN-DQPMF
Estimating the parameters of the GN-DQPMF, (9, ¢) specified in Equation (3.33)

and recalled here, is carried out on a specific AC mode of the block DCT.

[ qoa(®) 0
maram o @G+
4 exp {— [a(ﬂ) (i)]ﬁ} + 1] n = 0.

| qva(¥) 2nq +q
m(nq)—%lm(w)[ p{ [« |5 I]} (41

4exp{ a(9) |-—l } +

\ exp{ [a(ﬂ)|2nq q] }] n+0,nez

The relation in Equation (3.35) is recalled as follows.

Ba}=a®+ (112 )

Alternately,

- - (i)

In this application, x’ is a specific block DCT mode. Indeed, here g is unknown,

since the bitmap image has no quantization table. However, it may not be necessary,
since the effect g has on the value of ¢ is diminished by the large value of E {x’?‘}.
To confirm the veracity of this assertion, a set of four typical images were JPEG

compressed with Q-factors ranging from 100 to 10. The E {x’z} of the (1, 1) mode was

found in each case, and compared against the value of ( 2) The results are tabulated as

follows.




Table 4.1 Second Moment versus ¢°/12

Q-factor Images
Lena Boat Peppers

£ e | sl | )
100 0 1367 1121 2002
90 1 1368 1121 2003
80 2 1368 1125 2002 .
70 5 1370 1123 2008
60 8 1373 1126. 2016
50 12 1374 1130 2014
40 19 1377 1134 2007
30 33 1378 1143 2041
20 70 1388 1124 2074
10 252 1407 1160 2198

All numerical values are rounded to the nearest integer.

2
Except perhaps in the case of a Q-factor of 10, the value of Z—z- is significantly

lower than the value of E {x’z}. The following approximation may therefore be made.

o= |E{x"*}. (4.2)

To estimate ¥, Equations (3.27) and (3.28) recalled here, are used.

T _6_1_2_]'
1+ [14404 t 60°

And,
1..,5
I'zr' s
@I

(4.3)
2y
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If the following substitutions are considered,
2 4

7 . _q
, K+[202+8004] _k+[A+B]
_1+[ q* g1 1+ [C+D]

K

1440* * 602

then it may empirically be shown that the powers of ¢ have a diminishing effect
on the values of 4, B, C and D. Their values have been tabulated as follows for the (1, 1)

mode of the image Lena, for Q~factors‘ranging from 100 to 10.

Table 4.2 4, B, C and D for varying Q-factors - Lena

Q-factor Lena
A B C D

100 0.0004 0.0000 0.0000 0.0001
90 0.0033 0.0000 0.0000 0.0011
80 0.0091 0.0000 0.0000 0.0030
70 0.0234 0.0000 0.0000 0.0078
60 0.0364 0.0001 0.0000 0.0121
50 0.0524 0.0001 0.0001 0.0175
40 0.0817 0.0003 0.0002 0.0272
30 0.1451 0.0011 0.0006 0.0484
20 0.3029 0.0046 0.0025 0.1010
10 1.0755 0.0578 0.0321 0.3585

Indeed, even at a Q-factor of 10, while the expected kurtosis x is 14.162, the value

of k' is 13.265, which is a fair approximation.

Therefore, the following approximation is valid for most Q-factors.

K=k (4.4)
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The pattern of diminished values of 4, B, C and D is seen in other images as well,

as shown in the following tables.

Table 4.3 A4, B, C and D for varying Q-factors - Peppers

Q-factor Peppers
A B C D

100 0.0004 0.0000 0.0000 0.0001
90 0.0040 0.0000 0.0000 0.0013
80 0.0111 0.0000 0.0000 0.0037
70 0.0285 0.0000 0.0000 0.0095
60 0.0444 0.0001 0.0001 0.0148
50 0.0637 0.0002 0.0001 0.0212
40 0.0992 0.0005 0.0003 0.0331
30 0.1750 0.0015 0.0009 0.0583
20 0.3743 0.0070 0.0039 0.1248
10 1.3033 0.0849 0.0472 0.4344

Table 4.4 4, B, C and D for varying Q-factors - Boat

Q-factor Boat
A B C D

100 0.0004 0.0000 0.0000 0.0001
90 0.0033 0.0000 0.0000 0.0011
80 0.0091 0.0000 0.0000 0.0030
70 0.0231 0.0000 0.0000 0.0077
60 0.0362 0.0001 0.0000 0.0121
50 | 0.0518 0.0001 0.0001 0.0173
40 0.0813 0.0003 0.0002 0.0271
30 0.1429 0.0010 0.0006 0.0476
20 0.2946 0.0043 0.0024 0.0982
10 1.0067 0.0507 0.0282 0.3356
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Finally, to summarize from Equations (4.2), (4.3) and (4.4), the parameters of the

o= /E{x’z}. (4.5)

, TA/IG/9)
©TTTr@Ee)

GN-DQPMEF are estimated as,

(4.6)
4.2.3.2 Algorithm and Results
With the approximations from the previous section considered, the algorithm for the

proposed approach to detecting compression history is shown in the following figure.

DCT Mode (x, y) Chi-squared
Bit — 2D DCT g Histogram | goodness-of-fit > Decision —
itmap Normalized test
image (Normalized) es Uncompressed
L or Compressed
Model
Parameters
i Threshold
Theoretical PMF

with Q = 100

Figure 4.2 Proposed algorithm for compression history detection.

The steps of this algorithm are as follows.

1. The 2D block DCT of the bitmap image is performed, and the (1, 1) mode is
extracted. Alternately, the DCT may be performed such that only the (1, 1) mode is
generated. This would allow for significant computational savings.

2. The normalized histogram of the (1, 1) mode is computed and the parameters of the
GN-DQPMF for this mode are estimated using Equations (4.5) and (4.6). Setting g to
1, samples of the PMF are generated.

3. A y* goodness-of-fit test is performed between the normalized histogram and the
generated PMF samples.

4. The statistic from step 3 is compared against an empirical threshold (explained
subsequently) to determine if the image has been compressed or not.

5. Optionally, the decision may be confirmed by performing steps 1 to 5 for modes (0,
1) and (1, 0), at the cost of increased computation.
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5. Optionally, the decision may be confirmed by performing steps 1 to 5 for modes (0,
1) and (1, 0), at the cost of increased computation.

To validate this algorithm, a general empirical threshold for the decision process
must be determined first. For this purpose, a few standard bitmap files (for instance from
[29]) are chosen and subjected to a 2D block DCT operation with a Q-factor of 100. The
(1, 1) mode is extracted from this DCT and the GN-DQPMF parameters are derived from
it, as detailed above. The (1, 1) mode is then quantized for Q-factors ranging from 100 to
10 and the y’ test statistic between the normalized histogram of the (1, 1) mode and
samples of the GN-DQPMF (with g = 1) is calculated. Clearly, the test statistic for a Q-
factor of 100 will be the lowest (since for a Q-factor of 100, ¢ will equal 1) and a general
threshold may be calculated from the magnitude of this particular statistic across different
images.

To illustrate this point, a few results are tabulated as follows.

Table 4.5 Q-factors and 5 test statistics for compression detection

Q-factor

x2 test statistic (Sample set size = 1000)

Lena Baboon | Peppers | Bridge
100 777 342 667 317
90 7117 6590 7265 6398
80 14167 13042 13755 12756
70 23217 23806 22791 22633
60 28604 30352 27663 28645
50 33522 36973 32100 35268
40 39685 47081 37726 45825
30 50083 64744 47592 60605
20 64122 93703 58135 87097
10 97868 170263 74466 149044
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From these results, it is seen that the y* test statistic is lowest at a Q-factor of 100,
as expected. Of note is the fact that the x2 test statistic for a Q-factor of 100 has a
numerical value of less than 1000, while the test statistics for lower Q-factors are
significantly higher than 1000. Thus, factoring in a potential error of 500, 1500 may be
considered as a general, empirical threshold for detection of compression. Therefore, if
the normalized (1, 1) mode histogram of a bitmap’s DCT leads to a y” test statistic of
value greater than 1500 when compared against a generated GN-DQPMEF, it may with
some degree of certainty, be concluded that the image had undergone compression in the
past. With this as reference, the following experiments have been carried out.

Table 4.6 ¥’ test statistics for compression detection with arbitrary Q-factors

Decision
(Statistical
Image threshold =
Q-factor| y2 test statistic 1500)
Splash 95 6996 Compressed
Tiffany 100 340 Uncompressed
F-16 70 21359 Compressed
j Aerial 20 90434 Compressed
| Stream and Bridge| 100 570 Uncompressed
i Boat 100 574 Uncompressed
\
‘ Elaine 50 32376 Compressed
House 40 45459 Compressed

JPEG compression history detection tests were run across 44 images from [29],
and the results are tabulated in the following page. The ¥2 test statistic threshold used is

1500, as noted above, for 1000 samples of the normalized mode histogram.
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Table 4.7 Q-factors and Detection Success Rate for compression history detection

Compression Q-factor Detection Success
Rate

95 98%
90 100%
85 100%
80 100%
75 100%
70 100%
65 100%
60 100%
55 100%
50 100%
45 100%
40 100%
35 100%
30 100%
25 100%
20 100%
15 100%
10 100%

Compared against the Fan and Queiroz approach, the proposed technique has the
advantage that a compression factor of 95 is estimated with 98 % confidence. As per Fan
and Queiroz’s results shown in the following table, their approach detailed in Section

4.2.2 can detect compression up to a Q-factor of 90, with reasonable confidence bounds.
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The a-priori estimate of g is the location of the first peak following the peak at
zero, The final estimate of ¢ is mapped back to obtain the JPEG Q-factor.

This approach was refined by Neelamani et al (2003) [34] to cater to color
images. The refinement is in the modeling of DCT coefficients by a Laplacian PDF and

the addition of explicit normalization.

4.3.2 Proposed Approach
The proposed approach employs the GN-DQPMEF in a manner that is very similar

to the compression history detection approach proposed in Section 4.2.3.

4.3.2.1 Algorithm

GN-DQPMFs are generated for Q-factors ranging from 10 to 100 in uniform steps
with model parameters determined from the (1, 1) mode of the bitmap’s block DCT using
Equations (4.5) and (4.6). The +* test statistic is then used as a distance measure between
the PMFs and the normalized histogram of the (1, 1) mode. The Q-factor corresponding
to the PMF with the lowest ¥’ test statistic is declared the Q-factor with which the bitmap

image had been historically compressed. The process is shown in the following figure.

DCT Mode (x, y) Chi-squared
o P 2D DCT > Histogram » goodness-of-fit > Minimum —»
Bitmap (Normalized) test Q-factor
Image corresponding
\ to minimum
Model Chi-square
statistic

Parameters

h J

Theoretical PMF
withQ=10to
100 in steps of 5.

-

Figure 4.4 Proposed algorithm for Q-factor detection.
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It may be recalled from Section 4.2.3 that the model parameters detected from the
block DCT mode are approximations only. However they are sufficiently accurate to

detect Q-factors of as low as 30 with a high rate of success.

4.3.2.2 Results
This detection process was carried out for a few arbitrary images from [29], with

arbitrary Q-factors, as listed in the following table:.

Table 4.9 Q-factors and y* test statistics for Q-factor detection

Image
Compression Q-factor xz statistic Detected Q-factor

Splash 95 1013 95

Tiffany 100 340 100

F-16 70 1233 70

Aerial 20 186 20

Boat 100 574 100

Elaine 50 359 50

House 40 326 40

The proposed Q-factor detection approach was run across 44 standard grayscale
test images from the USC-SIPI database [29]. Every image was JPEG compressed with
Q-factors ranging from 10 to 100 in steps of 5. The average success rate for each Q-factor
was then calculated as a percentage. The obtained results are shown in the following

table.




Table 4.10 Q-factors and Q-factor detection success rates

Compression Q-factor Detection Success
Rate
100 65%
95 83%
90 87%
85 83%
80 87%
75 87%
70 87%
65 90%
60 90%
55 90%
50 84%
45 81%
40 84%
35 84%
30 84%
25 75%
20 65%
15 49%
10 30%

This detection method works best for values of Q-factor in the range [30, 95]. At
lower values of Q, the model parameters are significantly inexact, leading to low
detection success rate for low values of Q-factor. At a Q-factor value of 100, the detected
Q-factors were found to be in the range [96, 100], leading to lowered success rates. It has
been observed in general that the error in detection is no greater than a Q-factor of 5 with

the proposed approach.
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4.4 Leading Digit Distributions — Validating the Generalized Benford Law
In this application, the GN-QPMF will be shown to validate the Generalized Benford’s
Law for quantized AC Block DCT coefficients [27].

Leading digit probability distributions of block DCT data have been used in
image forensics in the past decade [36][27][39]. Here, previous research pertaining to
leading digit distributions in the context of block DCT coefficients is summarized, and an
attempt is made to develop a model for the leading digit distribution of quantized AC

block DCT coefficients using finite Generalized Normal mixtures.

4.4.1 Background Information
This subsection explores the theory of leading digit distribution and its relevance to block

DCT data.

4.4.1.1 Leading Digits and Benford’s Law

The leading digit distribution of a real data set is the PMF of the first digits of the
numbers in the set. Certain naturally-occurring data sets which span multiple decimal
scales, have been shown to display unique statistical properties in their leading digits
[23]. These numbers have a leading digit distribution that follows a decimal-base

logarithmic characteristic given as,
1 +
pD(d)=log10(1+a),1gds9,dEZ . (4.8)

The implication is that the digit 1 has the highest probability of occurrence as a

leading digit, and subsequent digits have progressively lower probabilities. The following

table lists the probability values.
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Table 4.11 Probability values of leading digits for scale invariant natural data

d | 2 3 4 5 6 7 8 9

pp(d) [ 0.301 | 0.176 | 0.125 | 0.0969 | 0.0791 | 0.0669 | 0.057 | 0.051 | 0.046

This property of naturally occurring data was discovered by in 18§81 by Simon
Newcomb and was formalized by Frank Benford in 1932. For over sixty years, this law

remained unptoven, until it was analytically justified in Hill (1996) [51].

4.4.1.2 Benford’s Law and Exponential Random Variables

The law is of relevance in this context owing to the fact that the floating point AC
block DCT coefficients, i.e., block DCT coefficients before quantization, follow
Benford’s law in a weak fashion [36]. The implication of the term weak is that the AC
block DCT coefficients, on average, follow Benford’s law. This will become clearer
subsequently.

The reason for AC block DCT to be weakly Benford' is twofold.

» Each mode of 2D DCT, assumed Laplace distributed, may be modeled as an
infinite Gaussian mixture, with individual variance controlled by an exponential
distribution [25].

+ Exponential random variables are weakly Benford [26].

These two conditions are both necessary and sufficient for AC block DCT
coefficients to be Benford-since Property 3 in [36] states that a random variable whose
PDF is modeled as an infinite Gaussian mixture with exponentially distributed variance
control can be expressed as a product of the Gaussian random variable and the square-

root of the variance control random variable. As noted earlier, according to [26],

7' When a data set is said to be ‘Benford’, it implies that the set follows Benford’s Law in either a weak or
strong fashion.
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caution (since the property is mostly valid for strongly Benford random variables), it may
be asserted that random variables that are Laplace distributed could be considered weakly
Benford.

A proof for the first assertion is available in Hjorunges, Lervik and Ramstad

(1996) [25], where it is shown that if a stochastic process X has a probability defined as,

® 1 x?
= -— |4 —Ao? 2,
px(x) fo Wexp( 202) exp(—Ac4)do

then the integral can be shown to evaluate to,

px(®) = (/372) exp(—V22lx]).
which is a Laplacian distribution [24].

The weak Benford nature of exponential random variable is explored in Engel and
Leuenberger (2003) [26]. It is shown that for an exponential distribution f(t) with shape
parameter A,

f(t) =2Aexp(—=At) t>0.

The probability of the leading digit being d is given as,

[oe)

ga(A) = z exp(—Ad10%) (1 — exp(=110%)).

k=—c0

Evidently, this probability is a function of A. Furthermore,

[0

ga(102) = z exp(—10Ad10%) (1 — exp(—10A10%)).

k=—c0

oo

= z exp(—Ad10%*1) (1 — exp(—A10%+1)),

k=—c0

co

= z exp(—Ad10%) (1 — exp(—A10%)) = g,(A).

K=—00
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Table 4.12 Model parameters for varying Q-factors, for the Generalized Benford model.

Q-factor Model Parameters
N g §
100 1.456 1.47 0.0372
90 1.255 1.563 -0.3784
&0 1.324 1.653 -0.3739
70 1.412 1,732 -0.337
&0 1.501 1.813 -0.3025
50 1.579 1,882 -0.2725

Source: D. Fu, Y.Q. Shi, and W. Su, “A generalized Benford's law for JPEG coefficients and its
applications in image forensics,” in Proc. SPIE, Security, Steganography and Watermarking of Multimedia
Contents IX, San Jose, USA, January 2007.

This distribution is for the first digits of all quantized AC DCT coefficients. To
formally derive an equivalent model from the GN-QPMF®, the concept of mixture
distributions will first have to be used to develop a composite model for all quantized AC

coefficients.

4.4.2 A Complete Model for all Quantized AC block DCT Coefficients

Considering that the quantized block DCT distributions derived in Chapter 3
models each mode of the DCT block as a distinct random variable, a complete quantized
DCT distribution encompassing all AC modes must be derived from a combination of

individual mode distributions.

4.4.2.1 Finite Mixtures
It is known that Discrete Cosine Transform coefficients have minimum cross-
correlation for most natural images [2]. This form of linear independence may be

exploited, to estimate a composite model for all quantized AC block DCT coefficients.

8 Refer to Equation (3.38)




115

The aggregate quantized AC block DCT coefficient set may be seen as a mixture
of 63 (AC) linearly independent variables. The PDF of a finite mixture of random
variables is generally given as a convex combination of the PDFs of those individual
random variables, as shown in Titterington, Smith and Makov (1985) [52]. In general, if
X is a mixture of » component discrete random variables Y;, the PDF of X, fy(x) is given

as,

RO =) afy, (4.10)

Here,

fr,(x) is the PDF of the i*" random variable. a; is the mixture proportion for the i

random variable.
Furthermore, the following convex sum requirement has to be satisfied by the

mixture proportions.

n
z a = 1. (4.11)
i=1

In the specific case of AC DCT coefficients, the mixture proportions are equal.

Therefore,

1
a, =a, =---=an=;,n=63. (4.12)

4.4.2.2 Finite Mixtures and Quantized AC Block DCT Coefficients

While a composite model for non-quantized AC block DCT coefficients is
empirically shown to be a Cauchy distribution by Eggerton and Srinath (1986) [32], there
has been no model proposed for quantized AC block DCT coefficients. The remaining

part of this section will attempt to develop such a model.
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Recalling the Generalized Normal Quantized PMF (GN-QPMF) for the quantized
AC block DCT coefficients from Equation (3.38) with the parameters of the PMF

assumed to be known a-priori,

pr(n|K,N,Z2)
ol o]
sexp - [ao) (ﬁ)]"}ﬂ} n=o
= { %"%[exp{ [eaco) |2” b 1” } + (4.13)
sl [}
exp{ ) IZ" _ 1” }] n%0,neZ

\

From Equations (4.10), (4.11) and (4.12),

1 <63
pM(anﬁN:Z)=_"Z pi(an,N,Z).
63 Lui=g

Where, py(n) is the mixture distribution, p;(n) is the i mode's PMF. Using Equation

(4.13),
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pu(m | K,N,Z)
(18 kad;) &
63 L 1120J(1/ﬁ9[ Xp{ (ﬁJ } +
4exp{ [a(z?)( )] }+1j n=0.

O e I
4 exp {— [kia(ﬁi) |_” } +
e@{ Vaw)r_lﬂﬂ}] n % 0.

9;,0; and k; are the model parameters of the GN-QPMF of the i** DCT mode.

\

Analytic computation of this summation is mathematically rigorous and is not of
significant value in this context. Instead, the sum is solved numerically, and the fit of this
model is visually and objectively measured as follows.

The Lena image is subjected to a 2D block DCT, followed by quantization with a
range of Q-factors. KS tests are performed to measure the goodness of fit of the model in
Equation (4.14) with the probability distribution of all quantized AC DCT coefficients.
This is repeated for a select set of standard images from [29]. The plots for Lena with Q-

factors of 100, 90 and 85 are shown.
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4.4.3 A Model for First Digit Distribution — Validating the Generalized Benford’s
Law

The composite model for all quantized AC block DCT coefficients developed in
Equation (4.14) may be used to derive the first digit distribution of quantized AC block
DCT coefficients, by summing in decimal ranges, i.e., {[1, 9]}, {[10, 19], [20, 29], [30,

39], ..., [90, 991}, {[100, 199], [200, 2991, ..., [900, 999]} and so on.

Analytically therefore, the first digit distribution pp (1) is expressed as,

t—1 10%k—1
pp(n) = gim [Z pu(n10* + 1) 1<n <09. (4.15)
-0 k=0 1=0

Where py(n) is there mixture PMF.

While computing the first digit probabilities using Equation (4.15) is
mathematically rigorous, for practical purposes, a useful approximation to use the
mixture probabilities in the range [1, 9] ( = 1 in Equation (4.15)) since a majority of
values in the normalized histogram of the data lie in that range. Therefore,

n
pD,(n)Eﬂ—(—)— 1<n <09.

e om(@ T
Where pp,(n) is an approximation to the first digit PMF and py, (n) is the mixture PMF.
This approximation is not a very good match for Q-factor of 100, since there are a
significant number of values of quantized AC-DCT coefficients outside the range [1, 9].

This is evident in the following plot.
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These results are valid across multiple images, as evidenced by the KS test results

shown below. The KS tests compares the Generalized Benford’s law PMF and the first

digit distribution approximation, pp (n), derived above.

Table 4.14 KS test results for AC DCT coefficients’ first digit distribution.

Image Q- KS Test
Factor Statistic -
Splash 90 0.2222
Tiffany 80 0.2112
F-16 70 0.2077
Aerial 60 0.2037
Elaine 70 0.2022

It is of note that the KS test statistics are uniformly low across all images,

implying a very close fit between the distributions. Furthermore, the statistics are

progressively lower for lower values of Q-factor, implying increasingly better fits.

Thus, the Generalized Benford’s Law based model as suggested by Fu et al

(2007) is validated in an approximate manner from the point of view of quantized

distributions. The accuracy of the validation may be improved with a more compact

expression for the mixture distribution. This would aid in evaluating the limit in Equation

(4.15) in a considerably simpler and more accurate fashion. Indeed, this may be seen as

follow-up work to this research.




CHAPTER §

CONCLUSIONS AND SUMMARY

5.1 Summary

This thesis studies the various probability distributions of type-II 2D DCT coefficients in
the context of JPEG compression. Block DCT distributions, full frame DCT distributions
and DCT quantization error distributions have been studied from existing literature.

Literature survey shows that DC coefficients of block DCT are Gaussian
distributed, while AC coefficients are Laplacian, Generalized Normal or Generalized
Gamma distributed. The literature survey also shows that full-frame DCT coefficients are
best modeled as Laplacian distributed and DCT quantization error distributions are either
Laplacian or Uniform distributed depending on whether the DCT coefficient is quantized
to a zero or a non-zero value respectively.

Models have been derived for the probability mass functions of quantized block
DCT coefficients and de-quantized block DCT coefficients (QPMF and DQPMF
respectively), starting from Laplacian, Generalized Normal and Generalized Gamma

distributions. The corresponding PMFs are named,

« L-QPMF: The QPMF based on the Laplacian model for AC block DCT.

« GN-QPMF: The QPMF based on the Generalized Normal model for AC block
DCT.

« GG-QPMF: The QPMF based on the Generalized Gamma model for AC block
DCT.

« L-DQPMF: The DQPMEF based on the Laplacian model for AC block DCT.

« GN-DQPMF: The DQPMF based on the Generalized Normal model for AC block
DCT.

« GG-DQPMF: The DQPMF based on the Generalized Gamma model for AC
block DCT.
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The suitability of each QPMF and DQPMF has been evaluated across multiple
images for specific, non-DC low-frequency subbands (modes) of the block DCT, using
the y*-squared and Kolmogorov-Smirnov goodness-of-fit tests. It has been concluded that
the GN-QPMF and GN-DQPMF are the most suitable distributions, since they have
relatively low goodness-of-fit statistics when compared to L-QPMF and L-DQPMF
respectively and only two model parameters as compared to three in the case of GG-
QPMF and GG-DQPMF respectively. The expressions for GN-DQPMF and GN-QPMF

and their corresponding first four moments are given in the following set of equations.

1. GN-DQPMF:
Ja(9) J
rlzqo_lfr(_l/ﬁ) exp {— [a(ﬁ) (%)] } +
4 exp {— [a(ﬁ) (i>]19} + 1] n=0.
ptna) = { Tt [exp{ o 2292 } ¥ (5.0
4 exp {— [a(ﬁ) I— ] } +
exp{ [a(ﬁ) Inq q/2” }} n+0,n€Z.
\

Where o is the square root of the variance of the distribution, J is the shape

parameter of the distribution, related to its kurtosis, g is the quantization step, and

a(9) = ’ 11:8%)’ where I'(...) is the complete Gamma function, defined as,

[o0]

I'(z) =[ t?le~tdt.

0
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The moments of a GN-DQPMF random variable x’, with E{...} being the

expectation operator, are summarized as follows.

E{x'} = 0. (5.2)

E{x'*} = o2 + (1—12q2). (5.3)

E{x"}=0. (5.4)

E{x'"} = [mr/f ()3F/E95)/ 19)] ot + [%Z-az + (516 q‘*)}. (5.5)

2. GN-QPMF:
B R Rl F

sexp - [a) (1)) }+1] w0

9
pr(n) = 1 u—kjl% exp {— [ka(z?) ln +01/2” } + (5.6)
4 exp {— [ka(ﬂ) E”ﬂ} +
\ exp {— [ka(ﬁ) ln _01/2”19}] n#0,n€Zz

Where ¢ is the square root of the variance of the distribution, 9 is the shape

parameter of the distribution, related to its kurtosis, £ is the quantization divisor for

encoding, and a(9) = Egg, where I'(...) is the complete Gamma function, defined as,

co

I'(z) = j t?"le~tdt,

0
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The moments of a GN-DPMF random variable x', with E{...} being the

expectation operator, are summarized as follows.

E{x'} = 0. (5.7)

E{x'?) = (%)2 + (%) (5.8)
E{x*}=0. (5.9)

)= [ e b @ @) e

The GN-QPMF and GN-DQPMEF have been applied to,

1.

Detecting the presence of JPEG compression history in a bitmap image. The approach
and empirical thresholds for detection have been proposed. The approach has been
compared against an established method proposed by Fan and Queiroz (2003), and
has been found to outperform it.

Detecting the level of JPEG compression history in a bitmap image. The approach
and algorithmic optimizations have been proposed. The approach has been compared
against an established method proposed by Fan and Queiroz (2003), and is found to
outperform it.

Developing a closed form summation for all quantized AC block DCT coefficients’
distribution using finite Generalized Normal mixtures. The expression has been
empirically tested for fit against quantized AC block DCT data from a set of images.

Validating the Generalized Benford’s Law proposed by Fu, Shi and Su (2007) for
leading digit distribution of quantized AC block DCT coefficients. An approximate
expression for leading digit distributions of quantized AC block DCT coefficients has
been compared against the Generalized Benford’s Law model and has been found to
validate it in an approximate sense.
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5.2 Conclusions
The PMF models summarized in Equations (5.1) and (5.6) most suitably model quantized
and de-quantized DCT coefficients respectively. Goodness-of-fit tests indicate that both
the Generalized Normal de-quantized PMF and Generalized Normal quantized PMF are
better than the Laplacian de-quantized PMF and Laplacian quantized PMF respectively.
The Generalized Normal based PMFs have been preferred over the Generalized Gamma
de-quantized PMF and Generalized Gamma quantized PMF respectively, since they offer
comparable performance and have the advantage of requiring fewer model parameters.
The Generalized Normal de-Quantized PMF has been employed to detect compression
history in bitmap images to good effect. It is shown to outperform a classical
compression history detection approach [22]. The Generalized Normal quantized PMF
has finally served to validate the Generalized Benford’s Law for first digit distributions

[27].




APPENDIX A
CHI-SQUARED AND KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TESTS

A goodness-of-fit test is a statistical tool to determine how well an empirical data set fits
a specified distribution. Pearson’s y’ test and Kolmogorov-Smirnov test are two such

tests which are popular due to their simplicity and general applicability.

Chi-Squared Goodness-of-Fit Test

The Chi-squared goodness-of-fit test establishes a y* test statistic as follows:

Zk (m; — Np;)*
¥2 = i TP
i=1 Np;

Where p; is the probability of the i™® class of the standard distribution, m; is the observed
frequency in the i*® class of the input data set, k is the number of classes and N is the
number of samples in the input set.

The limiting distribution of the y2 statistic is a Chi-squared distribution, as
proved by Pearson [30]. The value of the 2 statistic is evidently lower for data that fits
the theoretical distribution better.

A null-hypothesis in a goodness-of-fit test is a binary decision mechanism, by
which the fit is either rejected or accepted. If the null-hypothesis is to be accepted, a
derived statistic must be lower than a pre-designated threshold, and vice-versa. In the
case of the Chi-squared goodness-of-fit test, the derived statistic is computed from the

x2 statistic as follows.
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The derived statistic is called the p-value. It is computed by comparing the

X2 statistic to a y2 distribution. The number of degrees of freedom is given as,
f=k—1

The value of the y2 statistic is looked up in a Chi-squared distribution table for a
specific degree of freedom. The value in the table closest to the x2 statistic is the p-value.
If p-value is above a pre-determined threshold, such as 0.05, then the null-hypothesis is
accepted. If not, it is rejected.

In the context of this thesis, the p-value is not computed, since y2 statistic is used
more for comparison purposes, and less for fitting purposes.

Although MATLAB does not implement a Chi-squared test, open-source

implementations of it are freely available [55].

Kolmogorov-Smirnov (KS) Goodness-of-Fit Test

The Kolmogorov-Smirnov goodness-of-fit described here is the two-sample KS test,
since this thesis describes both the empirical distribution and the distribution against
which to compare.

The 2-sample KS test compares a sample distribution function to a given
distribution function. Analytically, the 2-sample KS test statistic is computed as follows.

A data set X = {x;,x,..,xy} is considered and the sample distribution is
derived,

0,z < x(q).

n
Fx(z) = TG <z<Xmyry n=L12.,M-1

1,z =2 xqpy).

Where x(n), 1 = 1,2, ..., M are the order statistics of X.




The KS test statistic is defined as,
t = max |Fy(x;) —F(Qx)l
max [Fy () = Fx)|
The KS test statistic, like the Chi-square test statistic implies a better match when

it has a low magnitude.

The null-hypothesis is rejected at level a if,

N
—Z-t > K,.

Where N is the sample set size and K, is determined from the specified threshold a.

MATLAB implements the 2-sample Kolmogorov-Smirnov test using the
kstest2 (..) function. It outputs the null-hypothesis, the asymptotic bound and the test

statistic [56].




APPENDIX B

MATLAB CODE FOR ESTIMATION OF SHAPE PARAMETER OF

GENERALIZED NORMAL USING DU’S EQUATION

The Generalized Normal distribution is guided by a shaping parameter, 9.

Sa ()
20;(1/19)6"1’{ [“(‘9)| ] }

Muller (1993) used Du’s (1991) equation to estimate this parameter.

flo,9,u) =

Du’s equation:

=0.

1
lp(§+ 1) +10g(19) 1 og( 2' l|19> 1|x1|19 log(fx;|)

92 S xl?

Where the symbols have their usual meaning, as defined in Section 2.1.2.

A MATLAB implementation of Du’s equation is provided below.

fived wmoment paranebey

FooLAA LI S o N Y

incoming data = data _vector;
moment = 3;
N = numel (incoming_data) ;

sum_x_log_x = 0;

em= 0;
% Estimate parvameters - 1.
for i = 1:N
if (incoming_data(i) ~= 0)

sum_x_log x = sum_x_log_x + (power (abs(incoming data(i)),
moment) * log{abs(incoming data(i))));
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end

e m=e m+ (power(abs(incoming data(i)), moment)) ;

&

for shape_ factor

factor_1 = (psi(i + (1 / shape factor)) + log(shape_factor)) /
(shape_factor * 2);

v_th moment = 0;

for j = 1:N
v_th _moment = v_th_moment + abs(incoming data(j))
shape factor;
end

A

v_th moment = v_th moment / N;
factor_2 = (1 / shape_factor ” 2) * log(v_th_moment);
numerator = 0;

for j = 1:N
if (incoming data(j) ~= 0)
numerator = numerator + (abs{incoming data(j))
shape_factor) * log(abs(incoming data(j)));
: end

A

end

factor_3 = numerator / (v_th _moment * N * shape factor);
should be zeroc(idx + 1) = factor_1 + factor_2 - factor_3;
idx = idx + 1;

set = 0.1:0.01:5
nu = set(l); % .
minimum = min(abs(should_be_zero))};

for i = l:numel (should_be_zero)

if (minimum == abs(should be_zero(i)))
nu = set(i);
brealk;

end

end







135

An implementation of the Lambert W function is available for MATLAB [57]
where the branch to the function must explicitly be specified as -1.

The MATLAB code implementing this generation is fairly simple, as listed

below.

O @@

&L LS S
u_rand = rand(1l, n_el);

& R ST
GOt a (rray

gg rand_05 = zeros(l, n_el);

Ge TS

if (u_rand(i; < 0.5)
gg_rand_05(i) = -(1 / (1 * lambda)) *
(1 + lambertw(-1, -2 * u rand(i) / exp(1)))”"2;

(u_rand (i) == 0.5)
gg _rand_05(i) = -(1 / (1 * lambda)) *

(1 + lambertw(-1, -2 * u_rand(i) / exp(1)))™2;
gg_rand_05(i) = gg_rand 05(i) + (1 / (1 * lambda)) *
(1 + lambertw(-1, -2 * (1 - u_rand(i)) / exp(1)))”"2;
ki nch

'gg_rand_OS(i) = (1 / (1 * lambda)) *
(1 + lambertw(-1, -2 * (1 - u rand(i)) / exp(1l)))”*2;

aend
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