
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-2013

High performance digital signal processing: Theory, design, and High performance digital signal processing: Theory, design, and

applications in finance applications in finance

Mustafa Ugur Torun
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Torun, Mustafa Ugur, "High performance digital signal processing: Theory, design, and applications in
finance" (2013). Dissertations. 383.
https://digitalcommons.njit.edu/dissertations/383

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232274349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/383?utm_source=digitalcommons.njit.edu%2Fdissertations%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

HIGH PERFORMANCE DIGITAL SIGNAL PROCESSING:
THEORY, DESIGN, AND APPLICATIONS IN FINANCE

by
Mustafa Ugur Torun

The way scientific research and business is conducted has drastically changed over the

last decade. Big data and data-intensive scientific discovery are two terms that have been

coined recently. They describe the tremendous amounts of noisy data, created extremely

rapidly by various sensing devices and methods that need to be explored for information

inference. Researchers and practitioners who can obtain meaningful information out of

big data in the shortest time gain a competitive advantage. Hence, there is more need

than ever for a variety of high performance computational tools for scientific and business

analytics. Interest in developing efficient data processing methods like compression and

noise filtering tools enabling real-time analytics of big data is increasing.

A common concern in digital signal processing applications has been the lack of fast

handling of observed data. This problem has been an active research topic being addressed

by the progress in analytical tools allowing fast processing of big data. One particular tool

is the Karhunen-Loève transform (KLT) (also known as the principal component analysis)

where covariance matrix of a stochastic process is decomposed into its eigenvectors and

eigenvalues as the optimal orthonormal transform. Specifically, eigenanalysis is utilized

to determine the KLT basis functions. KLT is a widely employed signal analysis method

used in applications including noise filtering of measured data and compression. However,

defining KLT basis for a given signal covariance matrix demands prohibitive computational

resources in many real-world scenarios.

In this dissertation, engineering implementation of KLT as well as the theory of

eigenanalysis for auto-regressive order one, AR(1), discrete stochastic processes are inves-

tigated and novel improvements are proposed. The new findings are applied to well-known

problems in quantitative finance (QF). First, an efficient method to derive the explicit KLT

kernel for AR(1) processes that utilizes a simple root finding method for the transcendental

equations is introduced. Performance improvement over a popular numerical eigenanalysis

algorithm, called divide and conquer, is shown. Second, implementation of parallel Jacobi

algorithm for eigenanalysis on graphics processing units is improved such that the access

to the dynamic random access memory is entirely coalesced. The speed is improved by

a factor of 68.5 by the proposed method compared to a CPU implementation for a square

matrix of size 1,024. Third, several tools developed and implemented in the dissertation are

applied to QF problems such as risk analysis and portfolio risk management. In addition,

several topics in QF, such as price models, Epps effect, and jump processes are investigated

and new insights are suggested from a multi-resolution (multi-rate) signal processing per-

spective. It is expected to see this dissertation to make contributions in better understanding

and bridging the analytical methods in digital signal processing and applied mathematics,

and their wider utilization in the finance sector. The emerging joint research and technology

development efforts in QF and financial engineering will benefit the investors, bankers, and

regulators to build and maintain more robust and fair financial markets in the future.

HIGH PERFORMANCE DIGITAL SIGNAL PROCESSING:
THEORY, DESIGN, AND APPLICATIONS IN FINANCE

by
Mustafa Ugur Torun

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

May 2013

Copyright © 2013 by Mustafa Ugur Torun

ALL RIGHTS RESERVED

APPROVAL PAGE

HIGH PERFORMANCE DIGITAL SIGNAL PROCESSING:
THEORY, DESIGN, AND APPLICATIONS IN FINANCE

Mustafa Ugur Torun

Dr. Ali N. Akansu, Dissertation Advisor Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Michael A. Ehrlich, Committee Member Date
Assistant Professor of Finance, NJIT

Dr. Richard A. Haddad, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Sanjeev R. Kulkarni, Committee Member Date
Professor of Electrical Engineering, Princeton University

Dr. Osvaldo Simeone, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	Mustafa Ugur Torun

Degree: 	Doctor of Philosophy

Date: 	May 2013

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ, 2013

• Master of Science in Electrical and Electronics Engineering,
Dokuz Eylul University, Izmir, Turkey, 2007

• Bachelor of Science in Electrical and Electronics Engineering,
Dokuz Eylul University, Izmir, Turkey, 2005

Major: 	Electrical Engineering

Presentations and Publications:

M. U. Torun and A. N. Akansu, “An Efficient Method to Derive Explicit KLT Kernel for
Discrete First Order Auto-Regressive Process,” submitted to IEEE Transactions on
Signal Processing .

A. N. Akansu and M. U. Torun, “Toeplitz approximation to empirical correlation matrix of
asset returns: A signal processing perspective,” IEEE Journal of Selected Topics in
Signal Processing , vol. 6, no. 4, pp. 319-326, Aug. 2012.

M. U. Torun, A. N. Akansu, and M. Avellaneda, “Portfolio risk in multiple frequen-
cies,” IEEE Signal Processing Magazine, Special Issue on Signal Processing for
Financial Applications, vol. 28, no. 5, pp. 61-71, Sept. 2011.

A. N. Akansu, H. Agirman-Tosun, and M. U. Torun, “Optimal design of phase function
in generalized DFT,” Physical Communication, Elsevier, vol. 3, no. 4, pp. 255-264,
Dec. 2010.

M. U. Torun and D. Kuntalp, “Complexity reduction of RBF multiuser detector for DS-
CDMA using genetic algorithm,” Turkish Journal of Electrical Engineering and
Computer Sciences, to appear, 2013.

iv

O. Yilmaz, M. U. Torun, and A. N. Akansu, “A Fast Derivation of Karhunen-Loève
Transform Kernel for First-Order Autoregressive Discrete Process,” Big Data
Analytics Workshop, ACM Sigmetrics 2013, Pittsburgh, PA, June 2013, accepted.

M. U. Torun and A. N. Akansu “A Novel Method to Derive Explicit KLT Kernel for AR(1)
Process,” IEEE ICASSP 2013, Vancouver, Canada, May 2013, accepted.

M. U. Torun, O. Yilmaz, and A. N. Akansu, “FPGA Based Eigenfiltering for real-time
portfolio risk analysis,” IEEE ICASSP 2013, Vancouver, Canada, May 2013,
accepted.

M. U. Torun and A. N. Akansu, “A novel GPU implementation of eigenanalysis for risk
management,” Proc. IEEE SPAWC 2012, Cesme, Turkey, June 2012.

M. U. Torun, O. Yilmaz, and A. N. Akansu, “Novel GPU implementation of Jacobi
algorithm for Karhunen-Loève transform of dense matrices,” Proc. IEEE CISS
2012, Princeton, New Jersey, March 2012.

A. N. Akansu and M. U. Torun, “On Toeplitz approximation to empirical correlation matrix
of financial asset returns,” Proc. IEEE CISS 2012, Princeton, New Jersey, March
2012.

W. P. Weydig, M. U. Torun, and A. N. Akansu, “Implementation of generalized DFT on
field programmable gate array,” Proc. IEEE ICASSP 2012, Kyoto, Japan, March
2012.

M. U. Torun and A. N. Akansu, “On Epps effect and rebalancing of hedged portfolio in
multiple frequencies,” Proc. IEEE CAMSAP 2011, San Juan, Puerto Rico, Dec.
2011.

M. U. Torun and A. N. Akansu, “On basic price model and volatility in multiple
frequencies,” Proc. IEEE SSPW 2011, Nice, France, June 2011.

M. U. Torun, A. N. Akansu, and M. Avellaneda, “Risk management for trading in multiple
frequencies,” Proc. IEEE ICASSP 2011, Prague, Czech Republic, May 2011.

M. U. Torun and D. Kuntalp, “Genetic algorithm assisted radial basis function multiuser
detector for DS-CDMA,” Proc. IEEE SIU 2007, Eskisehir, Turkey, June 2007.

M. U. Torun, Y. Isler, D. Kuntalp, and M. Kuntalp, “Classification of branch block beats
using higher order spectral analysis and neural networks,” Proc. IEEE SIU 2006,
Antalya, Turkey, April 2006.

M. U. Torun and A. Ozkurt, “Distance and speed measurement using stereo analysis,” Proc.
IEEE SIU 2006, Antalya, Turkey, April 2006.

v

Sevgili annem, babam, ağabeyim,
ve

Biricik Tuba’ma

To my dear mother, father, brother,
and

My one and only Tuba

vi

ACKNOWLEDGMENT

I express my sincere gratitude to my advisor, Prof. Ali N. Akansu, for his endless support,

guidance, and encouragement throughout my doctoral study. Words fall short to describe

the amount of effort he has put into this work which I deeply appreciate. He taught me how

to be innovative, entrepreneurial, thorough, detail- and, result-oriented. I am going to miss

our countless hours of discussions over a coffee on exciting research as well as anything

related to life in general.

I am also grateful to Prof. Richard A. Haddad and Prof. Osvaldo Simeone of the

ECE Department of New Jersey Institute of Technology (NJIT); Prof. Michael A. Ehrlich

of the School of Management of NJIT; and Prof. Sanjeev R. Kulkarni of the EE Department

of Princeton University for serving on my dissertation committee and for their continued

support. I am thankful to Prof. Marco Avellaneda of Courant Institute of Mathematical

Sciences of New York University, and his former PhD student, Dr. Stanley Zhang, for their

guidance and support at the early days of this interdisciplinary work.

I would like to thank Dokuz Eylül University (DEU) and NJIT for the financial

support that made this study possible. I also appreciate the encouragement of Prof. Cüneyt

Güzeliş, former dean of the Engineering Faculty of DEU, Prof. Damla Gürkan-Kuntalp,

and Prof. Yeşim Zoral of the EE Department of DEU to study at NJIT.

I have always appreciated the companionship of many friends including Dr. Handan

Ağırman, Onur Yılmaz, Burçak Özlüdil-Altın, and Ersin Altın that made my years at NJIT

far more enjoyable. I am lucky that I have met them and thankful for their support.

The last and the most, I would like to thank my parents, Servet Torun and Ahmet

Fikret Torun; my brother, Enver Mehmet Torun; my dear wife, Tuba Kırcı-Torun; and my

parents-in-law, Dilşad Kırcı and Mehmet Akif Kırcı; for their endless support, love, and

patience. I cannot stress enough how much grateful I am to my wife for always being

there, right next to me. Without them, this work would not have been possible.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Explicit Karhunen-Loève Transform Kernel for Discrete AR(1) Process . . 4

1.2 Parallel Implementation of Eigenanalysis 5

1.3 Application of KLT in Portfolio Risk Analysis and Management 6

1.4 Dissertation Outline . 8

2 MATHEMATICAL PRELIMINARIES . 11

2.1 Discrete AR(1) Stochastic Signal Model 11

2.2 Eigenanalysis . 13

2.3 Block Transforms . 14

2.3.1 Performance Metrics . 15

2.3.2 Karhunen-Loève Transform . 16

2.3.3 Karhunen-Loève Transform of Discrete AR(1) Process 18

2.3.4 Discrete Cosine Transform . 18

2.3.5 KLT and DCT of Discrete AR(1) Process in the Limit 19

2.4 Chapter Summary . 20

3 EXPLICIT KLT KERNEL FOR DISCRETE AR(1) PROCESS 22

3.1 Problem Definition . 23

3.2 Eigenanalysis of Continuous-Time Random Process with Exponential Auto-
Correlation . 24

3.3 Eigenanalysis of Discrete-Time AR(1) Process 28

3.4 A Simple Method for Explicit Solution of a Transcendental Equation . . . 32

3.5 A Simple and Fast Method for the Derivation of Explicit KLT Kernel . . . 34

3.5.1 Continuous-Time Random Process with Exponential Auto-Correlation 34

3.5.2 Discrete-Time AR(1) Process 35

3.6 Performance Comparison . 39

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.7 Chapter Summary . 41

4 IMPROVED NUMERICAL METHODS FOR EIGENANALYSIS 42

4.1 Jacobi Algorithm . 42

4.2 Notation . 45

4.3 Parallel Jacobi Algorithm . 46

4.4 Single- and Multi-Threaded CPU Implementation of Jacobi Algorithm . . 47

4.5 GPU Implementation of Parallel Jacobi Algorithm 48

4.5.1 GPU Computing and CUDA™ 48

4.5.2 Memory Access in GPU Computing 49

4.5.3 Implementation Overview . 50

4.5.4 Traditional and Modified Memory Access Methods 50

4.5.5 Symmetric Access Method . 51

4.5.6 Maximum-Coalesced Access Method 52

4.5.7 One Step Parallel Jacobi Algorithm 55

4.6 Comparison of CPU and GPU Implementations 56

4.7 Chapter Summary . 58

5 FUNDAMENTALS OF QUANTITATIVE FINANCE 59

5.1 Price Models . 59

5.1.1 Geometric Brownian Motion Model 60

5.1.2 Models with Local and Stochastic Volatilities 61

5.2 Discrete-Time Price Models . 62

5.2.1 Discrete-Time Geometric Brownian Motion Model 62

5.2.2 Effect of Sampling Frequency on Volatility 64

5.2.3 Discrete-Time Price Model with Jumps 64

5.3 Cross-Correlation of Asset Returns and its Applications 67

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

5.3.1 Portfolio Optimization and Modern Portfolio Theory 67

5.3.2 Relative Value Model, Pairs Trading, and Hedging 71

5.4 Epps Effect . 73

5.4.1 Cross-Correlation of Asset Returns as a Function of Sampling Period 73

5.4.2 Empirical Evidence on Epps Effect 74

5.4.3 Product of Returns and Problems with the Sample Estimator 77

5.5 Chapter Summary . 78

6 PORTFOLIO RISK ANALYSIS AND MANAGEMENT 80

6.1 Eigenfiltering of the Noise in the Empirical Financial Correlation Matrix . 81

6.1.1 Asymptotic Distribution of the Eigenvalues of a Random Matrix . 81

6.1.2 Noise in the Empirical Financial Correlation Matrix 81

6.1.3 Eigenfiltering of the Noise . 84

6.1.4 Eigenfiltering of the Noise for a Hedged Portfolio 88

6.2 Risk Estimation for Rebalancing in Multiple Frequencies 92

6.3 High Performance Eigenfiltering for Risk Estimation 94

6.3.1 Toeplitz Approximation to the Empirical Financial Correlation Matrix 95

6.3.2 Filtering the Noise with Discrete Cosine Transform 100

6.4 Risk Management . 102

6.4.1 Stay in the Ellipsoid Method . 103

6.4.2 Stay on the Ellipsoid Method . 104

6.4.3 Stay Around the Ellipsoid Method 105

6.4.4 Performance Comparison via Back-Testting 106

6.5 Chapter Summary . 110

7 CONCLUSIONS AND FUTURE WORK . 111

7.1 Contributions . 111

x

TABLE OF CONTENTS
(Continued)

Chapter Page

7.2 Future Work . 112

APPENDIX A TABLES FOR ROOTS OF TRANSCENDENTAL EQUATION . 114

APPENDIX B CODES FOR EXPLICIT KLT KERNEL OF AN AR(1) PROCESS 115

B.1 Codes for Determining the Roots of the Transcendental Equation 115

B.1.1 Continuous-Time . 115

B.1.2 Discrete-Time . 115

B.2 Codes for Explicitly Calculating Eigenvalues and Eigenvectors of an AR(1)
Process . 116

B.2.1 MATLAB™ Code . 116

B.2.2 C Source Code . 117

APPENDIX C DETAILS ON GEOMETRIC BROWNIAN MOTION MODEL
FOR STOCK PRICES . 119

REFERENCES . 122

xi

LIST OF TABLES

Table Page

4.1 Computation Time in Milliseconds for Single- and Multi-Threaded CPU (First
and Second Rows) and for GPU Implementations with Different Memory
Access Patterns (Third to Last Rows) Versus the Input Matrix Size, N . . . 57

A.1 The Values of {ωk} for ρ = 0.95 and N = 4, 8, 16 114

xii

LIST OF FIGURES

Figure Page

2.1 (a) ηE(L) Performance of KLT and DCT for various values of ρ and N = 31,
(b) GN

TC performance of KLT and DCT as a function of ρ for N = 31. . . . 20

3.1 Functions tan (b) and B/b for various values of B where B1 = 1, B2 = 2, and
B3 = 3. 34

3.2 Functions tan (ωN/2) and −γ tan (ω/2) for N = 8 and various values of ρ
where ρ1 = 0.9, ρ2 = 0.6, and ρ3 = 0.2 where γi = (1 + ρi) / (1− ρi),
i = 1, 2, 3. 36

3.3 The roots of the transcendental tangent equation, {ωk}, as a function of ρ for
N = 8. 39

3.4 (a) Computation time, in seconds, to calculate AKLT,DQ and AKLT,E (with
L = 256, 512, 1024) for ρ = 0.95 and 16 6 N ≤ 1024, (b) Corresponding
distances, dN , measured with (3.74) for different values of N and L. 40

4.1 Examples for (a) non-coalesced and (b) coalesced memory access patterns for
a kernel call with four threads accessing to eight memory locations in two
iterations. T and M stand for thread and memory, respectively. First and
second iterations are depicted with solid and dashed lines, respectively. . . 49

4.2 (a) Computation times of cyclic Jacobi algorithm in milliseconds on CPU; TA,
MA, SA, MCA, and OSPJ on GPU; (b) Speed-up of GPU implementations
over cyclic Jacobi algorithm on CPU, for various matrix sizes, N 57

5.1 (a) A realization of a white Gaussian random process and (b) Returns of Apple
Inc. (AAPL) stock on June 17, 2010. 65

5.2 Volatility estimation error ε versus sampling period k with m = 1 as defined
in (5.20) for real and artificial (jump-free) returns of (5.19) and (5.23), i.e.,
ε1 and ε2, respectively. 67

5.3 Markowitz bullet along with some of the attainable portfolios (black dots) and
the minimum risk portfolio. 70

5.4 (a) Cross-correlation between the log-returns of AAPL and QQQ as a function
of sampling period, (b) A typical snapshot of the first five levels of the
LOBs for AAPL and QQQ, Normalized last traded prices of both stocks
on March 17, 2011 (c) between 9:30am and 9:32am sampled with T = 1s,
(d) between 9:30am and 4:00pm sampled with T = 300s. 75

5.5 Cross-correlation between the QQQ and (a) its first five largest holdings as a
function of sampling period, T . 77

xiii

LIST OF FIGURES
(Continued)

Figure Page

5.6 Histogram of pairwise products for the log-returns of AAPL and QQQ with
sampling intervals (a) Ts = 1s, and (b) Ts = 24h (EOD) (c) Probabilities of
product terms being negligible as a function of Ts. 78

6.1 (a) Histogram of the eigenvalues of the empirical financial correlation matrix
(black) along with the limiting p.d.f. of the eigenvalues of a random matrix
(6.2) (red). (b) Histogram of the eigenvalues of an empirical random matrix
(6.1) along with the limiting p.d.f. 83

6.2 Predicted and realized risk functions versus target portfolio returns for the set
of efficient portfolios where noisy empirical financial correlation matrices
are used (a) without any filtering, (b) with filtering, prior to risk calculation. 87

6.3 Scree plot displaying the number of eigenvalues versus percentage of the rep-
resented total variance for different sampling intervals and for the P̂ = I
case, i.e., no correlation between assets. 94

6.4 Rows of P̂ matrix of DJIA & DIA EOD returns displayed in descending order. 95

6.5 Variations of optimal correlation coefficient and the resulting error of AR(1)
approximation, (6.43), as a function of time with 15 minute sliding intervals
with M = 60 business days for 24 hour returns of 31-asset portfolio (DJIA
& DIA) in the interval 9:30-16:00. 97

6.6 Variations of optimal correlation coefficients and the resulting errors of AR(1)
approximations as a function of time with 15 minute sliding intervals for 24
hour returns of 31-asset portfolio (DJIA & DIA) with M = 60 days in the
interval 9:30-16:00. 99

6.7 Portfolio risk calculated via (6.15) with empirical financial correlation matrix
P̂, and its Toeplitz approximations P̌ of (6.42), and P̌ of (6.44) as a function
of time with 15 minute sliding intervals for 24 hour returns and M = 60
business days of 31-asset portfolio (DJIA & DIA) in the interval 9:30-16:00. 100

6.8 Histogram of correlation coefficients displayed in Figure 6.6 101

6.9 KLT and DCT coefficient variances for P̂. 101

6.10 Portfolio risk calculated via (6.15) with filtered financial correlation matrix P̃
(6.14) as a function of time with 15 minute sliding intervals for 24 hour
returns and M = 60 business days of 31-asset portfolio (DJIA & DIA)
in the interval 9:30-16:00. Filtering is done using KLT basis functions
(eigenvectors) and DCT basis functions with L = 5 and L = 10 in (6.15),
respectively. 102

xiv

LIST OF FIGURES
(Continued)

Figure Page

6.11 Possible risk locations of a two-asset portfolio (circles) and the risk ellipsoid
(red and solid line) for (a) No risk management, risk management with (b)
Stay in the ellipsoid (SIE), (c) Stay on the ellipsoid (SOE), and (d) Stay
around the ellipsoid (SAE) with ∆ =

√
0.1 methods. 103

6.12 (a) P&Ls for no risk management case along with the SIE, SOE, and SAE risk
management methods, (b) Corresponding estimated daily risk (5.32) values
normalized to equity (6.59), i.e., σp/E, (c) Average daily return versus daily
risk threshold for SIE, SOE, SAE, and multiple frequency SIE methods
along with the average daily return of no risk management case, and (d)
Corresponding daily Sharpe ratios. 109

xv

CHAPTER 1

INTRODUCTION

Scientific community is on the verge of a new era in which research is powered by ex-

tensive and high performance computational tools required to manipulate and analyze vast

amounts of complex data generated or collected through highly complex simulators or ever

increasing types and numbers of sensors. This new type of science is a combination of

the experimental, theoretical, and computational sciences that have been around for about

two millennia, a couple of centuries, and approximately three decades, respectively. It

is called as the data-intensive science or the “fourth paradigm for scientific exploration”

[1, 2]. In a similar fashion, business world is transforming such that companies that are

able to analyze very large, usually unstructured, data and determine a business trend the

fastest have the competitive edge. According to a recent joint research by IBM and MIT

[3], number of organizations that use analytics to achieve a competitive advantage has risen

sixty percent over a year and they are over two times more likely to outperform their peers

within the same industry. There is more need than ever for a variety of high performance

computational tools for scientific and business analytics and it is expected that this demand

will be higher in the near future.

Big data is a term coined recently and used to describe digital data that has a

combination of features such as extremely large in volume, very fast in arrival-rate, un-

structured in context thus immensely complex to analyze, and highly noisy such that its

credibility is arguable without proper filtering. Those features are also referred to as “The

Four Vs”, corresponding to volume, velocity, variety, and veracity [4]. IBM estimates that

2.5 quintillion (2.5× 1018) bytes of data are created daily and the size of the collective data

on Earth increases by a rate of 80% every year. It had grown from 0.8 zettabytes (ZB), i.e.,

0.8×1021 bytes, to 1.8 ZB from 2009 to 2011 and is expected to be 35 ZB in four years [4].

Hence, demand for better data storage systems and compression algorithms will be much

1

2

higher in order to handle the high volume. Moreover, data hits the wire at an ever increasing

velocity, making it harder to realize systems that perform real-time analytics. For instance,

with the advent of the high frequency trading, today’s companies in the financial services

industry have to analyze and derive meaningful information out of millions of messages per

second with a latency measured in sub-microseconds [4]. Furthermore, data is distributed

and stored not only in a large variety of formats that are usually unstructured in context,

e.g., comments for a post in social-media, that has to be curated [2]; but also along with

very high noise, e.g., comments that are actually spam generated by robots, that reduces

the veracity and credibility of the information it contains. The latter makes it hard for

scientists and companies to obtain quality insight from the data. Big data is here and it

is expected to be bigger in the future. There is a high demand and interest in developing

efficient compression and noise filtering tools that would enable real-time analytics on big

data.

In digital signal processing (DSP), manipulation and analysis of discrete functions

that convey information, i.e., signals, either deterministic or random, are of interest [5, 6].

Signals are manipulated for purposes that include enhancement, denoising, or compression

and analyzed such that meaningful information is extracted. Big data is a DSP engineer’s

both dream and nightmare. The common problem in DSP applications used to be the lack of

observed data. Recently, problem has been transformed into creation of fast tools in order

to be able to process tremendous amount of data. One particular tool is the eigenanalysis in

which a square matrix is decomposed into its eigenvalues and eigenvectors. Eigenanalysis

has found its use in DSP as well as in in many other disciplines including but not limited to

quantum mechanics, astronomy, geology, marketing, medicine, mechanics, and forensics.

Specifically, eigenanalysis is used to determine the basis functions of the Karhunen-Loève

transform (KLT) [5], also known as the principal component analysis (PCA) [7]. Being a

signal dependent transform, KLT has been extensively used to filter out the noise as well

as to compress signals. Hence, it is a good candidate to solve the problems in the veracity

3

category of the big data challenge. However, defining KLT basis for a given signal demands

prohibitive computational resources in many cases where the volume is large and velocity

is high [5].

Main focus of this dissertation is on furthering the implementations of KLT as

well as eigenanalysis such that they operate much faster, by delving vertically into the

theory and design, and apply the findings in to common problems in finance. Specifically,

contributions of the dissertation include the following.

1. An efficient method to derive the explicit KLT kernel for auto-regressive order one,

i.e., AR(1), discrete stochastic processes is proposed by utilizing a relatively new and

simple root finding method for the transcendental equations [8].

2. Implementation of parallel Jacobi algorithm for eigenanalysis is improved such that

the access to the dynamic random access memory (DRAM) is entirely coalesced

providing 68.5 times better performance over traditional methods for a square ma-

trix of size 1,024. The parallel computational device of choice is general purpose

graphics processing unit (GPGPU or GPU) as it is the mainstream device for parallel

computing at the time of writing. However, the concepts proposed can be applied to

any computational device that uses DRAM or a similar type of medium for temporary

storage.

3. Tools developed in the dissertation are applied to common problems that arise in

finance which is by all means the locomotive industry in high performance computing

and big data analytics. Namely, applications of the proposed methods into some

common problems of quantitative finance, i.e., a field that deals with statistics and

stochastic calculus to explain and model the pricing of financial assets, and their ties

to DSP are discussed.

Further details on above three points are given next. Outline of the dissertation is discussed

at the end of the chapter.

4

1.1 Explicit Karhunen-Loève Transform Kernel for Discrete AR(1) Process

KLT is the optimal block transform in a sense that correlated observations of stationary

stochastic signals are transformed into nonstationary and perfectly uncorrelated compo-

nents (transform coefficients). The coefficient with the highest variance corresponds to

the most covariability within the observations, hence the most meaningful information

[5]. Therefore, in denoising and compression applications, the coefficients with large

variances are kept and the ones with low variances corresponding to noise are discarded

[7]. KLT basis functions are the eigenvectors of the covariance matrix of the signal. Hence,

it is a signal dependent transform as opposed to other popular transforms like discrete

Fourier transform (DFT) and discrete cosine transform (DCT). The fact that DFT and DCT

have their explicit kernel that define an orthogonal set regardless of signal statistics and

efficient implementations has made them the only feasible option for various engineering

applications [5]. Fast implementation of KLT is of great interest to several disciplines, and

there were prior attempts reported in the literature to derive closed-form kernel expressions

for certain classes of stochastic processes. In particular, such kernels in their implicit forms

for continuous-time stochastic processes with exponential auto-correlation function [9, 10,

11, 12] and AR(1) discrete-time stochastic processes [13] are reported in the literature. The

one for the discrete AR(1) process is of interest in this dissertation. It is a function of {ωk}

and ρ where {ωk} k ≥ 0 are the positive roots of the transcendental equation as given

tan(Nω) = − (1− ρ2) sin(ω)

cos(ω)− 2ρ+ ρ2 cos(ω)
, (1.1)

N is the transform size, and ρ is the first-order correlation coefficient of the AR(1) source.

Traditionally, roots of (1.1), {ωk}, are found using numerical techniques which in general

come with convergence problems. In this dissertation, a simple yet powerful root finding

method for the transcendental equations [8] is revisited and an efficient method to derive

explicit KLT kernel for AR(1) process is proposed. Moreover, derivation of explicit KLT

kernel for an AR(1) process, introduced first in its implicit form in [13] as well as the steps

5

leading to (1.1) are also presented in detail. Furthermore, implementation procedure for

the proposed technique is provided in order to highlight its merit.

1.2 Parallel Implementation of Eigenanalysis

Parallel Jacobi algorithm (JA) is one of the numerical methods used to approximate the

eigenvectors and eigenvalues of a matrix. Although it was introduced in 1846 [14], it

did not generate much interest until the last few decades due to its computational load

and implementation cost. However, it has an inherent parallelism. Moreover, it was

shown that it is a more stable numerical algorithm than the popular QR [15]. Recently,

Jacobi algorithm has become more feasible to implement with the dramatic advances in

computational hardware. Those advances have not been in the clocking speed but in

building massively parallel computational devices with economies of scale. One particular

example is the general purpose graphics processing units (GPGPU or GPU) which is

considered as a disruptive technology that changed the way researchers and practitioners

think about software. At the time of writing, a GPU with computational power in the

teraflop (1012 of floating point operations) per second range is affordable by many end-users

[16]. Parallel devices including GPUs are expected to to get more affordable and powerful

in near future.

The limiting factor in parallel devices is the input/output (I/O), specifically the I/O

between the on-board memory and the processor. Current commonly used type of memory

is DRAM. It is expected to be the mainstream type of memory in the near future due to its

cost-effectiveness, i.e., only one capacitor and transistor is enough for one bit. However,

DRAM provides its peak performance when neighboring blocks of data is written to or

read from it. Therefore, unstructured, i.e., noncoalesced, memory access patterns reduce

the performance of parallel applications drastically. In each iteration of JA, a square matrix

is updated as

A(k+1) = JT(p, q)A(k)J(p, q), (1.2)

6

where T is the matrix transpose operator, A(k) is the approximated eigenvalue matrix at

the kth iteration with A(0) being the input matrix, J(p, q, θ) is the Jacobi rotation matrix

which is different from an identity matrix of same size by only four elements located on

the pth and qth rows and columns with 1 ≤ p < q ≤ N , and N is the matrix size.

When a traditional data structure, e.g., row-major array, is used for the matrices in the

update operation given in (1.2), degradation in DRAM performance significantly affects

the entire design. In this dissertation, innovative data-structures specifically designed to

improve the performance of the implementation of (1.2) on a symmetric matrix are pro-

vided. Improvement over traditional data structures is drastic and evaluated to be 68.5

times faster for a square matrix of size 1,024.

1.3 Application of KLT in Portfolio Risk Analysis and Management

Tools developed in the first two parts of the dissertation are applied to common problems

that arise in finance, specifically analysis and management of the portfolio risk. A portfolio

is comprised of multiple financial assets. The standard deviation of portfolio return is a

widely used risk metric in finance as given

σp =
(
qTCq

)1/2
=
(
qTΣTPΣq

)1/2
, (1.3)

where q is N ×1 capital allocation vector, C is the N ×N covariance matrix of the returns

of the assets in the portfolio, Σ is the N ×N diagonal matrix comprised of the volatilities

(standard deviation of returns) of each asset, and P is the N × N correlation matrix. P

is also referred to as the financial correlation matrix as it contains the cross-correlation of

returns of the financial assets. A desirable portfolio delivers maximum return on investment

with minimum risk [17]. Therefore, the return of each asset is individually assessed,

and also compared against competing assets in the portfolio. Pair-wise correlations of

asset returns populate the empirical financial correlation matrix P̂, that reveals significant

information on portfolio risk and its variations in time. A portfolio manager analyzes

7

these variations and rebalances the portfolio in order to manage the risk and keep it within

allowed range for the desired return. However, severe nonstationarity with high level of

intrinsic noise is common in asset returns. Hence, empirical financial correlation matrix

needs to be tamed accordingly. It is a common practice to employ KLT to filter out

this undesirable noise component from the measured correlations [18, 19, 20]. Since

eigenanalysis is an inherent part of the KLT, in some references this practice is also called

as eigenfiltering.

In the last part of the dissertation, intrinsic noise in the empirical financial corre-

lation matrix and its eigenfiltering are studied in detail. Moreover, approximation to the

empirical financial correlation matrix by a Toeplitz matrix structure and use of DCT as an

approximation to KLT are proposed and also their effects on speed and error of the risk

analysis are discussed. The motivations include the availability of the explicit kernel for

the former and closeness of the DCT and KLT kernels for highly correlated processes for

the latter. Finally, a simple and common method to manage the risk is presented and two

novel improvements on it are discussed.

It is worth to note that, in the pursuit, several fundamental topics in quantitative

finance, such as price models, Epps effect, jump processes are reviewed, explained, and

quantified from a DSP engineer’s perspective. Moreover, a novel risk analysis metric for

an investment strategy in which capital allocation in each asset in the porftolio is rebalanced

at different speeds (frequencies) is introduced. Furthermore, risk analysis via eigenfiltering

of noise is extended to the case of a hedged portfolio. It is expected that this dissertation

will contribute to the efforts in increasing the collaboration of researchers in DSP and

quantitative finance fields [21, 22]. It is noted that both have strong ties that are mostly

unexplored and different names are often used for the same concepts which has rendered

interdisciplinary communication inefficient.

8

1.4 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, mathematical preliminaries required

for the discussions in the later chapters are given. Topics discussed in this chapter include

stochastic processes and measurements; commonly used models for stochastic processes,

i.e., AR, MA, and ARMA models; eigenanalysis to decompose a square matrix in its

eigenvalues and corresponding eigenvectors; definition of orthonormal block transforms

and their performance metrics; Karhunen-Loève Transform (KLT) as well as its closed-

form kernel for the AR(1) discrete-time stochastic processes, and discrete cosine transform

(DCT) along with its relation to KLT for highly correlated signals.

In Chapter 3, an efficient method to derive the explicit KLT kernel for AR(1)

processes is proposed. The mathematical treatment to arrive at the transcendental tangent

equation of concern by analyzing the characteristic values and functions of a continuous-

time stochastic process with exponential auto-correlation is presented in Section 3.2. Then,

steps that lead to the closed-form expression for the KLT kernel as well as to (1.1) for

AR(1) process (initially introduced in [13] without detailed discussion on the derivation)

are provided in Section 3.3. An explicit root finding method for transcendental equations

introduced by Luck and Stevens [8] in order to address the problem at hand is revisited in

in Section 3.4. Next, the proposed method to derive the explicit KLT kernel for an AR(1)

process in an efficient way is discussed in detail in Section 3.5. Finally, in Section 3.6,

implementation advantages of the proposed method are highlighted. Roots of (1.1) for

various matrix sizes, N , are provided in Appendix A. MATLAB™ and C codes for the

method proposed in the chapter are given in Appendix B.

In Chapter 4, better data structures proposed to improve the access patterns to the

DRAM hence the performance of the Jacobi algorithm on parallel devices, namely GPUs,

are discussed. Classical Jacobi algorithm (JA), the notation employed in the chapter, and

parallel version of the JA are discussed in detail in Sections 4.1, 4.2, and 4.3, respec-

tively. Single- and multi-threaded central processing unit (CPU) implementations of the

9

JA are briefly discussed in Section 4.4. Next, GPU implementation of JA is discussed

in Section 4.5. Compute unified device architecture (CUDA™) language developed and

maintained by NVIDIA®, importance of coalesced memory access in GPU applications,

implementation of JA using traditional data structures, and proposed data-structures to

improve the performance are discussed in the same section. Chapter is concluded with

the comparison in speed between different GPU implementations as well as between CPU

and GPU implementations that are reported in Section 4.6.

In Chapter 5, fundamentals of quantitative finance (QF) are given from the per-

spective of a DSP engineer in order to pave the way for the discussions of Chapter 6.

Chapter 5 briefly revisits the basic continuous- and discrete-time price models for stocks,

the return process, jumps observed in the return process, cross-correlations of return pro-

cesses and their use in applications such as portfolio optimization, pairs trading, and hedg-

ing. In the last section of the chapter, Section 5.4, Epps effect [23] which states that the

cross-correlations of return processes decrease as the sampling frequency is increased, is

discussed in detail. Solution to the stochastic differential equation to obtain the price in the

continuous-time geometric Brownian price model is discussed in Appendix C.

In Chapter 6, portfolio risk analysis and management is discussed. The main

objective in the chapter is to apply the tools developed in the previous chapters into portfolio

risk problems. The intrinsic noise in the empirical financial correlation matrix and its

filtering via KLT for both traditional and hedged portfolios are discussed in Section 6.1.

Then, in Section 6.2, a modification to the risk metric given in (1.3) is proposed in order

to be able to assess the risk of a portfolio in where rebalancing in the assets are performed

at different frequencies. Next, in Section 6.3, approximation to the empirical financial

correlation matrix via Toeplitz matrices and using DCT as an approximation to KLT are

proposed in order to speed up the eigenfiltering of the noise in the empirical financial

correlation matrix. Effects of those approximations in terms of error are also studied in

the same section. Chapter is concluded by discussing a straightforward risk management

10

method and two proposed novel modifications to it in Section 6.4. Performance evaluations

via back-testing of the risk management methods discussed are given at the end of the same

section.

It is noted that there is no specific chapter for computer simulations or experiments

as those are embedded in the discussion whenever it is necessary. The summary of the

contributions of the dissertation and future work are discussed in the last chapter.

CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, necessary preliminary mathematical background for the discussions of

the later chapters is provided. Fundamentals of discrete auto-regressive one, i.e., AR(1),

stochastic process, block transforms, performance metrics of block transforms, kernels of

Karhunen-Loève Transform (KLT) and discrete cosine transform (DCT), and their similar-

ity for discrete AR(1) processes for highly correlated signals are discussed. More detail on

the discussion can be found in the literature including [5, 6, 24].

2.1 Discrete AR(1) Stochastic Signal Model

Random processes and information sources are mathematically described by a variety of

signal models including auto-regressive (AR), moving average (MA), and auto-regressive

moving average (ARMA). AR source models, also called all-pole models, have been suc-

cessfully used in applications including speech processing for decades. First-order AR

model, AR(1), is a first approximation to many natural signals like images, and it has been

widely employed in various disciplines. AR(1) signal is generated through the first-order

regression formula written as [5, 25]

x(n) = ρx(n− 1) + ξ(n), (2.1)

where ξ(n) is a zero-mean white noise sequence, i.e.,

E{ξ(n)} = 0

E {ξ(n)ξ(n+ k)} = σ2
ξδk, (2.2)

E {·} is the expectation operator, and δk is the Kronecker delta function. First-order

correlation coefficient, ρ, is real in the range of −1 < ρ < 1, and the variance of x(n)

11

12

is given as follows

σ2
x =

1

(1− ρ2)
σ2
ξ . (2.3)

Auto-correlation sequence of x(n) is expressed as

Rxx(k) = E {x(n)x(n+ k)} = σ2
xρ
|k|; k = 0,±1,±2, (2.4)

The resulting Toeplitz auto-correlation matrix of size N ×N of an AR(1) process is shown

as

Rx = σ2
x

1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...

ρN−1 ρN−2 ρN−3 · · · 1

. (2.5)

It is possible to model any ARMA and MA process by an AR process of infinite order

[25]. Hence, approximation can be done with an AR process of sufficiently high order. An

example for an ARMA(1,1) process is given on page 112 of [25] which is repeated here for

convenience. Transfer function of an ARMA(1,1) process is given as

H (z) =
1 + bz−1

1 + az−1
. (2.6)

Transfer function given in (2.6) can be modeled as follows

H (z) =

(
1 +

∞∑
k=1

ckz
−k

)−1

, (2.7)

where ck is the kth coefficient of the AR(∞). It follows from (2.6) and (2.7) that

1 + az−1

1 + bz−1
= 1 +

∞∑
k=1

ckz
−k. (2.8)

13

Inverse z-transform of (2.8) is given as [25]

ck =

1 k = 0

(a− b) (−b)k−1 k ≥ 1.

(2.9)

Approximation can be done by choosing the number of coefficients finite, say L, where

coefficient cL is negligible, i.e., cL ∼= 0.

2.2 Eigenanalysis

An eigenvalue λ and an eigenvector φ of size N × 1 of a matrix A of size N × N must

satisfy the eigenvalue equation as given [5, 12, 26]

Aφ = λφ. (2.10)

Equality given in (2.10) can be rewritten as

Aφ− λIφ = (A− λI)φ = 0, (2.11)

such that (A− λI) is singular where 0 is an N × 1 vector with its elements all equal to

zero as given

0 =

[
0 0 · · · 0

]T

,

and I is the N ×N identity matrix. Namely,

|A− λI| = 0, (2.12)

where |·| is the matrix determinant operator. It is noted that if A is a real and symmetric

matrix, its eigenvectors with different eigenvalues are linearly independent. Hence, deter-

minant given in (2.12) is a polynomial in λ of degree N with N roots and (2.11) has N

solutions for φ that result in the eigenpair set {λk,φk} where 0 ≤ k ≤ N − 1 and {·}

denotes a set.

14

2.3 Block Transforms

A family of linearly independent N orthonormal real discrete-time sequences, {φk(n)}, on

the interval 0 ≤ n ≤ N − 1 satisfies the inner product relationship [5]

N−1∑
n=0

φk(n)φl(n) = δk−l =

1 k = l

0 k 6= l

. (2.13)

Equivalently, the orthonormality can also be expressed on the unit circle of the complex

plane, z = ejω;−π ≤ ω ≤ π, as follows

N−1∑
n=0

φk(n)φl(n) =
1

2π

ˆ π

−π
Φk(e

jω)Φl(e
jω)dω = δk−l, (2.14)

where Φk(e
jω) is the discrete time Fourier transform (DTFT) of φk(n). In matrix form,

{φk(n)} are the rows of the transform matrix, and also called basis functions

Φ = [φk(n)] : k, n = 0, 1, ..., N − 1, (2.15)

with the orthonormality property stated as

ΦΦ−1 = ΦΦT = I, (2.16)

where T indicates transposed version of a matrix or a vector. A stochastic signal vector

x =

[
x(0) x(1) · · · x(N − 1)

]T

, (2.17)

is mapped into the orthonormal space through forward transform operator

θ = Φx, (2.18)

where θ is transform coefficients vector as given

θ =

[
θ0 θ1 · · · θN−1

]T

. (2.19)

15

Similarly, the inverse transform yields the signal vector

x = Φ−1θ = ΦTθ. (2.20)

Hence, one can derive the correlation matrix of transform coefficients as follows

Rθ = E
{
θθT

}
= E

{
ΦxxTΦT

}
= ΦE

{
xxT

}
ΦT = ΦRxΦ

T. (2.21)

Furthermore, total energy of the transform coefficients is written as

E
{
θTθ

}
=

N−1∑
k=0

E
{
θ2
k

}
=

N−1∑
k=0

σ2
k. (2.22)

It follows from (2.16) and (2.18) that

E
{
θTθ

}
= E

{
xTΦTΦx

}
= E

{
xTx

}
=

N−1∑
n=0

σ2
x(n) = Nσ2, (2.23)

where σ2
x(n) is the variance of the nth element of the signal vector given in 2.17 that is

equal to σ2. It follows (2.22) and (2.23) that

σ2 =
1

N

N−1∑
k=0

σ2
k. (2.24)

Energy preserving property of an orthonormal transform, i.e., the equality between signal

variance and the average of transform coefficient variances, is evident from (2.24). It is

also noted that the linear transformation of the stationary random vector process x via

(2.18) results in a non-stationary random vector process θ, i.e., σ2
k 6= σ2

l for k 6= l [5].

2.3.1 Performance Metrics

In practice, it is desired that variances of the transform coefficients decrease as the coeffi-

cient index k increases so that the energy is consolidated into as less number of transform

coefficients as possible [5]. In other words, it is desired to minimize the energy of the

16

approximation error as defined

eL = x− x̂L =
N−1∑
k=0

θkφk −
L−1∑
k=0

θkφk =
N−1∑
k=L

θkφk, (2.25)

where 0 < L ≤ N−1. There are three commonly used metrics to measure the performance

of a given orthonormal transform [5]. The compaction efficiency of a transform, i.e., the

ratio of the energy in the first L transform coefficients to the total energy, is defined as

ηE(L) = 1−
E
{
eT
LeL

}
E {eT

0 e0}
=

∑L−1
k=0 σ

2
k

Nσ2
x

. (2.26)

This is an important metric to assess the efficiency of a transform for the given signal type.

The gain of transform coding (TC) over pulse code modulation (PCM) performance of an

N ×N unitary transform for a given input correlation is particularly significant and widely

utilized in transform coding applications as defined

GN
TC =

1
N

∑N−1
k=0 σ

2
k(∏N−1

k=0 σ
2
k

)1/N
. (2.27)

Similarly, decorrelation efficiency of a transform is defined as

ηc = 1−
∑N−1

k=0

∑N−1
l=1;l 6=k |Rθ(k, l)|∑N−1

k=0

∑N−1
l=1;l 6=k |Rx(k, l)|

. (2.28)

It is desired to have high compaction efficiency, ηE(L), high gain of TC over PCM, GN
TC ,

and high decorrelation efficiency, ηc, for a given N × N orthonormal transform. Detailed

discussion on the performance metrics for the orthonormal transforms can be found in [5].

2.3.2 Karhunen-Loève Transform

KLT provides optimal geometric mean of coefficient variances with a diagonal correlation

matrix, Rθ given in (2.21), with best possible repacking of signal vector energy into as

few transform coefficients as possible. It is noted that ηc = 1 for KLT where transform

coefficients are perfectly decorrelated (pairwise), and signal energy is optimally packed as

17

measured in (2.26) and (2.27) for the given Rx of (2.21) and transform size N . KLT min-

imizes the energy of the approximation error given in (2.25) subject to the orthonormality

constraint given in (2.16). Hence, the cost function is defined as [5]

J =
N−1∑
k=L

Jk = E
{
eT
LeL

}
−

N−1∑
k=L

λk
(
φT
kφk − 1

)
, (2.29)

where λk is the kth Lagrangian multiplier. It follows from (2.18) and (2.25) that (2.29) can

be rewritten as

J =
N−1∑
k=L

Jk =
N−1∑
k=L

φT
kRxφk −

N−1∑
k=L

λk
(
φT
kφk − 1

)
, (2.30)

Taking gradient of one of the components of the error J , i.e., Jk, with respect to φk and

setting it to zero as follows [5]

∇Jk =
∂Jk
∂φk

= 2Rxφk − 2λkφk = 0, (2.31)

yields

Rxφk = λkφk, (2.32)

which implies that φk is one of the eigenvectors of Rx and λk is the corresponding eigen-

value. It is evident from (2.32) that basis set for KLT comprises of the eigenvectors of

the auto-correlation matrix of the input, i.e., Rx, and it needs to be recalculated whenever

signal statistics change. It follows from (2.32) that

RxA
T
KLT = AT

KLTΛ,

Rx = AT
KLTΛAKLT =

N−1∑
k=0

λkφkφ
T
k ,

(2.33)

where Λ = diag (λk) ; k = 0, 1, . . . , N − 1, and kth column of AT
KLT matrix is the kth

eigenvector φk of Rx with the corresponding eigenvalue λk. It is noted that {λk = σ2
k} ∀k,

for the given Rx where σ2
k is the variance of the kth transform coefficient, θk [5].

18

2.3.3 Karhunen-Loève Transform of Discrete AR(1) Process

The eigenvalues of the auto-correlation matrix for an AR(1) process given in (2.5), Rx, are

derived to be in the closed-form [13]

σ2
k = λk =

1− ρ2

1− 2ρ cos(ωk) + ρ2
; 0 ≤ k ≤ N − 1, (2.34)

where {ωk} are the positive roots of the following equation

tan(Nω) = − (1− ρ2) sin(ω)

cos(ω)− 2ρ+ ρ2 cos(ω)
, (2.35)

and the resulting KLT matrix of size N ×N is expressed in the closed-form kernel as [13]

AKLT = [A(k, n)] =

(
2

N + λk

)1/2

sin

[
ωk

(
n− N − 1

2

)
+

(k + 1)π

2

]
(2.36)

where 0 ≤ k, n ≤ N − 1.

2.3.4 Discrete Cosine Transform

Computing the KLT transform matrix is difficult in practice. Therefore, fixed transforms

are preferred in many applications that are concerned with the implementation cost of KLT.

In contrast to input dependent KLT, discrete cosine transform (DCT) is a fixed transform

that offers efficient implementation algorithms. DCT with efficient implementation is an

attractive alternative to KLT particularly for highly correlated processes. DCT matrix of

size N is defined as [27]

ADCT = [A(k, n)] =
1

ck
cos

[
kπ(2n+ 1)

2N

]
, (2.37)

where 0 ≤ k, n ≤ N − 1 and

19

ck =

√
N k = 0√
N/2 k 6= 0

. (2.38)

2.3.5 KLT and DCT of Discrete AR(1) Process in the Limit

It is known that performances of DCT and KLT for highly correlated signals are very close

to each other [5]. As ρ→ 1, right hand side of (2.35) approaches to zero as its denominator

is always non-zero. Therefore,

tan (Nω)→ 0; ρ→ 1, (2.39)

or

ωk = kπ/N ; ρ→ 1, (2.40)

with the exception of ω0 which is shown to be approaching to zero as ρ→ 0 via small-angle

substitution in [28]. Hence (2.40) holds for all k. Substituting (2.40) into (2.36) yields

[A(k, n)] =

(
2

N + λk

)1/2

sin

[
kπ

N

(
n− N − 1

2

)
+

(k + 1)π

2

]
=

(
2

N + λk

)1/2

cos

[
kπ

2N
(2n+ 1)

]
; ρ→ 1. (2.41)

Moreover, as ρ → 1, according to (2.34), all eigenvalues except λ0 approaches to zero. It

is shown that as ρ → 1, λ0 → N again via small-angle substitution in [28]. Substituting

those into (2.41) provides the KLT kernel for an AR(1) source when ρ→ 1 as given

[A(k, n)] =

(

1
N

)1/2
k = 0(

2
N

)1/2
cos
[
kπ
2N

(2n+ 1)
]

k 6= 0

; ρ→ 1. (2.42)

It is noted that (2.42) is identical to (2.37) in the limit ρ → 1. This very nature of DCT

has made it a popular transform that is successfully employed for decomposition of highly

20

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

η E
(L

)
L

(a)

ρ=0.5 (KLT)
ρ=0.5 (DCT)
ρ=0.75 (KLT)
ρ=0.75 (DCT)
ρ=0.9 (KLT)
ρ=0.9 (DCT)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

ρ
(b)

G
T

C

KLT
DCT

Figure 2.1 (a) ηE(L) Performance of KLT and DCT for various values of ρ and N = 31,
(b) GN

TC performance of KLT and DCT as a function of ρ for N = 31.

correlated signal sources. In particular, image and video compression standards like JPEG

and MPEG use DCT based 2-D transform coding [5]. In Figure 2.1.a, ηE(L) of KLT and

DCT as defined in (2.26) are displayed for various values of correlation coefficient ρ and

transform size N = 31. Similarly, Figure 2.1.b depicts relative GN
TC performance of (2.27)

for KLT and DCT as a function of ρ for N = 31. This figure verifies the use of DCT as

a replacement to KLT in applications where signals are highly correlated. Moreover, it is

noted that the energy packing performance of both transforms degrade for lower values of

correlation coefficient.

2.4 Chapter Summary

Discrete auto-regressive one stochastic process, i.e., AR(1), is widely used in many en-

gineering applications. Innovations of the process are the samples of a white noise, and

process regresses onto itself with a correlation coefficient ρ. It is possible to consolidate

21

the energy of a random process through block transforms into less number of random

variables. Orthonormal block transforms preserve the energy, therefore it is possible to

generate the original signal back without any loss. Karhunen-Loève Transform (KLT) is

the optimal block transform as it perfectly decorrelates the input signal and repacks the

energy into as few transform coefficients as possible. Discrete cosine transform (DCT) is a

good alternative for KLT for highly correlated signals. DCT provides fast implementations

due to its fixed transform matrix whereas in KLT transform matrix has to be calculated

through eigenanalysis of the input auto-correlation matrix. Closed-form expression of the

KLT kernel for an AR(1) process is known [13]. Moreover, it is shown that as ρ→ 1, KLT

kernel approaches to DCT kernel.

CHAPTER 3

EXPLICIT KLT KERNEL FOR DISCRETE AR(1) PROCESS

Fast execution of Karhunen-Loève transform (KLT) is desirable as it is the optimal block

transform where its basis functions are generated based on a given signal covariance matrix

as discussed in Section 2.3. Kernels in their implicit forms for a continuous-time stochastic

process with exponential auto-correlation [9, 10, 11, 12] and a discrete-time auto-regressive

order one, i.e., AR(1) process [13] are reported in the literature. However, both forms

require one to solve transcendental tangent equations. Finding solutions of a transcendental

equation has always been of a great interest in various fields [29, 30, 31]. There are a

number of numerical methods reported in the literature offering approximate solutions

to such equations. Although these techniques are sufficient for many cases, it is quite

desirable to have exact explicit solutions for this class of equations leading to analytical

treatment of problems at hand as reported in [32, 33]. Most of them are based on the

approach of formulating a Riemann problem and finding the solution for the resulting

transcendental equation by utilizing a canonical solution of the problem. It was shown

that the implementation of this method may easily become quite difficult [33, 34, 35, 36].

Therefore, the topic has been active and several researchers proposed new techniques to

improve the efficiency in finding solutions for a transcendental equation.

In this chapter, a simple yet powerful root finding method for transcendental equa-

tions [8] is revisited and an efficient method to derive explicit KLT kernel for AR(1) process

is proposed. The mathematical steps required for the derivation of explicit KLT kernel for

an AR(1) process and the corresponding transcendental equation (introduced first in its im-

plicit form in [13] without detailed derivation) is also presented in the chapter. Furthermore,

implementation procedure is detailed and performance evaluations are provided in order to

highlight the merit of the method.

22

23

3.1 Problem Definition

As it is discussed in detail in Section 2.1, for an AR(1) process with auto-correlation

function defined as

Rxx(k) = E {x(n)x(n+ k)} = ρ|k|, (3.1)

where k ∈ Z and ρ is the first-order auto-correlation coefficient, corresponding KLT matrix

AKLT of size N ×N is expressed with the closed-form kernel as [13]

AKLT = [A(k, n)] =

(
2

N + λk

)1/2

sin

[
ωk

(
n− N − 1

2

)
+

(k + 1)π

2

]
, (3.2)

where 0 ≤ k, n ≤ N − 1. Corresponding transform coefficient variances, i.e., the eigen-

values of the auto-correlation matrix given in (2.5), λk, are derived to be in the closed-form

[13]

σ2
k = λk =

1− ρ2

1− 2ρ cos(ωk) + ρ2
, (3.3)

where {ωk} are the positive roots of the following transcendental equation [13]

tan(Nω) = − (1− ρ2) sin(ω)

cos(ω)− 2ρ+ ρ2 cos(ω)
. (3.4)

Steps leading to the equations given in (3.2), (3.3), and (3.4) are not immediately obvious

and they need to be clarified. Moreover, there is a need to derive an explicit expression

for the roots of the transcendental equation given in (3.4) so that, the kernel and the

corresponding variances can also be derived explicitly. Sections in the rest of the chapter

deal with these two problems in the same order.

24

3.2 Eigenanalysis of Continuous-Time Random Process with Exponential

Auto-Correlation

In this section, the classic problem of deriving explicit solutions for characteristic values

and functions of a continuous random process with exponential auto-correlation function is

revisited since it provides the necessary background for the problem at hand, i.e., deriving

the explicit KLT kernel for a discrete-time AR(1) process discussed in the next section.

This problem is discussed in detail on pages 99-101 of [9], pages 187-190 of [37], and

references therein. Similar discussions can also be found in [10, 11].

Characteristic values λ and corresponding characteristic functions φ(t) of a wide-

sense stationary [24] continuous-time random process x(t) with zero mean, i.e.,E {x(t)} =

0, and exponential auto-correlation function as given

Rxx(t, s) = E {x(t)x(s)} = e−α|t−s|, (3.5)

where α ∈ R and −∞ < t, s <∞ satisfy the following integral equation

ˆ T/2

−T/2
e−α|t−s|φ(s)ds = λφ(t). (3.6)

Integral equation in (3.6) can be solved by finding a linear differential equation that φ(t)

must satisfy, and then substituting the general solution of the differential equation back in

(3.6) to determine the value of λ [9]. In order to drop the magnitude operator, (3.6) can be

rewritten as [9]

λφ(t) =

ˆ t

−T/2
e−α(t−s)φ(s)ds+

ˆ T/2

t

e−α(s−t)φ(s)ds. (3.7)

Then, both sides of the equality are differentiated to obtain

λφ′(t) = −α
ˆ t

−T/2
e−α(t−s)φ(s)ds+ α

ˆ T/2

t

e−α(s−t)φ(s)ds, (3.8)

25

where f ′(t) is the first-order derivative of f(t). Differentiating one more time and using

the Leibniz integral rule given as

∂

∂t

ˆ b(t)

a(t)

f (s, t) ds =

ˆ b(t)

a(t)

∂f (s, t)

∂t
ds+ f [b (t) , t]

∂b (t)

∂t
− f [a (t) , t]

∂a (t)

∂t
, (3.9)

results in the following

λφ′′(t) = α2

ˆ T/2

−T/2
e−α|t−s|φ(s)ds− 2αφ(t). (3.10)

It follows from (3.6) and (3.10) that

φ′′(t) +
α (2− αλ)

λ
φ(t) = 0. (3.11)

The characteristic function, φ(t) must satisfy the linear homogeneous differential equation

of (3.11) in order to satisfy the integral equation given in (3.6). It is shown on pages 99-101

of [9] that (3.11) has solution only in the range of 0 < λ < 2
α

. Expression given in (3.11)

is rewritten as

φ′′(t) + b2φ(t) = 0, (3.12)

where

b2 =
α (2− αλ)

λ
, 0 < b2 <∞. (3.13)

General solution to (3.12) is given as

φ(t) = c1e
jbt + c2e

−jbt, (3.14)

where c1 and c2 are arbitrary constants. Substituting (3.14) into (3.7) and solving the

integral yields [9, 37]

eαt
(
c1
e(−α+jb)T/2

α− jb
+ c2

e(−α−jb)T/2

α + jb

)
+ e−αt

(
c1
e(−α−jb)T/2

α + jb
+ c2

e(−α+jb)T/2

α− jb

)
= 0.

(3.15)

26

For the equality given in (3.15) to hold, following two equalities must hold

c1
e(−α+jb)T/2

α− jb
= −c2

e(−α−jb)T/2

α + jb

−c2
e(−α+jb)T/2

α− jb
= c1

e(−α−jb)T/2

α + jb
. (3.16)

Therefore, solution is possible only when c1 = c2 or c1 = −c2. For c1 = c2, it follows from

(3.16) that
−α + jb

α + jb
= e(−α+jb)T/2e−(−α−jb)T/2 = ejbT . (3.17)

It follows from (3.17) and the trigonometric identity given as (See (4.4.28) on page 80 of

[38])

arctanx =
j

2
ln

(
j + x

j − x

)
, (3.18)

one of the unknowns in the general solution given in (3.14), b, satisfies the following

equation

b tan b
T

2
= α. (3.19)

It follows from (3.14) that for every positive bk that satisfies the transcendental equation in

(3.19), there is a characteristic function that satisfies (3.6) as given [9]

φk(t) = ck cos bkt, (3.20)

where integer k ≥ 0. Similarly, for c1 = −c2, b satisfies the following equation

b cot b
T

2
= −α. (3.21)

Again, for every positive bk that satisfies the transcendental equation in (3.21), there is a

characteristic function that satisfies (3.6) as given [9]

φk(t) = ck sin bkt. (3.22)

27

It follows from (3.13) that for both cases, corresponding eigenvalues are expressed as [9]

λk =
2α

α2 + b2
k

. (3.23)

The roots of transcendental equations given in (3.19) and (3.21) provide the even and

odd indexed characteristic values and functions, respectively. These two equations can

be combined as a product(
b tan b

T

2
− α

)(
b cot b

T

2
+ α

)
= 0. (3.24)

Similarly, for every positive bk that satisfies the transcendental equation in (3.24), there is

a characteristic function that satisfies (3.6) as given

φk(t) = ck sin

(
bkt+

(k + 1) π

2

)
. (3.25)

It is noted that (3.23), (3.24), and (3.25) are the continuous analogs of (3.3), (3.4), and

(3.2), respectively. Moreover, it is worth noting that the constant, ck, in (3.25) can be found

by normalizing the characteristic functions such that

‖φk(t)‖2 =

ˆ T/2

−T/2
φk(t)φ

∗
k(t) = 1, (3.26)

leading to

ck =

(
2

T + λk

)1/2

. (3.27)

Substituting (3.27) into (3.25) yields

φk(t) =

(
2

T + λk

)1/2

sin

(
bkt+

(k + 1) π

2

)
. (3.28)

It is noted that expressions given in (3.2) and (3.28) are analogs of each other.

28

3.3 Eigenanalysis of Discrete-Time AR(1) Process

In this section, proofs of (3.2), (3.3), and (3.4), that were first reported in [13] without

detailed derivations, are given using a similar approach detailed in the previous section

for the continuous-time case. For a discrete-time random signal, x(n), discrete Karhunen-

Loève (K-L) series expansion is given as

N−1∑
m=0

Rxx(n,m)φk(m) = λkφk(n), (3.29)

where m and n are the independent discrete variables,

Rxx(n,m) = E {x(n)x(m)} , m, n = 0, 1, . . . , N − 1, (3.30)

is the auto-correlation function of the random signal, λk is the kth eigenvalue, and φk(n)

is the corresponding kth eigenfunction. Auto-correlation function of the discrete AR(1)

process is given as [24]

Rx(n,m) = Rx(n−m) = ρ|n−m|. (3.31)

Hence, the discrete K-L series expansion for an AR(1) process from (3.29) and (3.31) is

stated as follows

N−1∑
m=0

ρ|n−m|φk(m) = λkφk(n). (3.32)

In order to eliminate the magnitude operator, (3.32) can be rewritten in the form

n∑
m=0

ρn−mφk(m) +
N−1∑

m=n+1

ρm−nφk(m) = λkφk(n). (3.33)

It follows from the continuous-time case, general solution for the kth eigenvector is given

as [9, 37]

φk(t) = c1e
jωkt + c2e

−jωkt, (3.34)

29

where c1 and c2 are arbitrary constants, t is the independent continuous-time variable,

−T/2 ≤ t ≤ T/2, and ωk = bk. Eigenfunction given in (3.34) is shifted by T/2 and

sampled at tn = nTs, 0 ≤ n ≤ N − 1 where Ts = T/ (N − 1). Accordingly, sampled

eigenfunction is written as

φk(n) = c1e
jωk(n−N−1

2
) + c2e

−jωk(n−N−1
2

). (3.35)

As it is noted in the previous section, solution to (3.32) exists only when c1 = ±c2. In the

following discussions, c1 = c2 case is considered noting that case for c1 = −c2 is similar.

For c1 = c2, it follows from (3.35) that

φk(n) = c1 cos

[
ωk

(
n− N − 1

2

)]
. (3.36)

By substituting (3.36) in (3.33) and defining a new independent discrete variable p = m−

(N − 1)/2, (3.32) can be rewritten as follows

n−N−1
2∑

p=−N−1
2

ρn−p−
N−1

2 cos (ωkp)+

N−1
2∑

p=n+1−N−1
2

ρp+
N−1

2
−n cos (ωkp) = λk cos

[
ωk

(
n− N − 1

2

)]
.

(3.37)

The first summation on the left in (3.37) is rewritten as

1

2
ρn−

N−1
2

 n−N−1
2∑

p=−N−1
2

(
ρ−1ejωk

)p
+

n−N−1
2∑

p=−N−1
2

(
ρ−1e−jωk

)p . (3.38)

Using the fact that
N2∑

n=N1

βn =
βN1 − βN2+1

1− β
, (3.39)

and following simple steps, it can be shown that (3.38), hence the first summation on the

left in (3.37), is equal to

ρn+2 cosω1 − ρ cosω2 − ρn+1 cosω3 + cosω4

1− 2ρ cosωk + ρ2
. (3.40)

30

Similarly, the second summation on the left in (3.37) is equal to

ρN−n+1 cosω1 + ρ cosω2 − ρN−n cosω3 − ρ2 cosω4

1− 2ρ cosωk + ρ2
, (3.41)

where

ω1 = ωk [(N − 1) /2]

ω2 = ωk [n− (N − 1) /2 + 1]

ω3 = ωk [(N − 1) /2 + 1]

ω4 = ωk [n− (N − 1) /2] (3.42)

for both (3.40) and (3.41). It is possible to express λk on the right hand side of (3.37) in

terms of ρ and ωk by taking the discrete K-L expansion given in (3.32) into the frequency

domain via Fourier transform as follows

Sx(e
jω)Φk(e

jω) = λkΦk(e
jω), (3.43)

where Sx(ejω) is the power spectral density of a discrete AR(1) process and expressed as

Sx(e
jω) = F

{
ρ|n−m|

}
=

1− ρ2

1− 2ρ cosω + ρ2
, (3.44)

F {·} is the Fourier transform operator [5]. Fourier transform of the eigenfunction in (3.36)

is calculated as

Φk(e
jω) = F {φk(n)}

= c1e
−jωk N−1

2 [δ(ω − ωk) + δ(ω + ωk)] , (3.45)

where δ(ω − ω0) is an impulse function of frequency located at ω0. By substituting (3.44)

and (3.45) into (3.43), λk is derived as

λk =
1− ρ2

1− 2ρ cosωk + ρ2
. (3.46)

31

It is noted that (3.46) reads that the eigenvalues are the samples of the power spectral

density. Moreover, (3.3) and (3.46) are identical. By substituting (3.40), (3.41), and (3.46)

in (3.33), one can show that

ρ =
cos (ωkN/2 + ωk/2)

cos (ωkN/2− ωk/2)
. (3.47)

Using trigonometric identities, the relationship between ωk and ρ in (3.47) is rewritten as

follows

tan

(
ωk
N

2

)
=

(
1− ρ
1 + ρ

)
cot
(ωk

2

)
. (3.48)

Similarly, for the case of c1 = −c2, following the same procedure, the relationship between

ωk and ρ can be shown to be

tan

(
ωk
N

2

)
= −

(
1 + ρ

1− ρ

)
tan
(ωk

2

)
. (3.49)

Finally, from (3.48) and (3.49), it is observed that ωk are the positive roots of the equation[
tan

(
ω
N

2

)
+

1 + ρ

1− ρ
tan
(ω

2

)] [
tan

(
ω
N

2

)
− 1− ρ

1 + ρ
cot
(ω

2

)]
= 0. (3.50)

Using trigonometric identities (3.50) can be rewritten as

tan(Nω) = − (1− ρ2) sin(ω)

cos(ω)− 2ρ+ ρ2 cos(ω)
, (3.51)

that is the same transcendental equation expressed in (3.4). The roots of the transcendental

tangent equation in (3.51), {ωk}, are required in the KLT kernel expressed in (3.2). There

are well-known numerical methods like secant method [39] to approximate roots of the

equation given in (3.51) in order to solve it implicitly rather than explicitly. A method to

find explicit solutions to the roots of transcendental equations, including (3.51), is revisited

next. That method leads to an explicit definition of KLT kernel given in (3.2) for an AR(1)

process.

32

3.4 A Simple Method for Explicit Solution of a Transcendental Equation

In this section, a simple method of formulating explicit solution for the roots of transcen-

dental equations using Cauchy’s integral theorem from complex analysis [40] that was

introduced by Luck and Stevens in [8] is revisited. The method determines the roots of

a transcendental function by locating the singularities of a reciprocal function. Although

derivation steps are detailed in [8], a summary is given here for the sake of completeness.

Cauchy’s theorem states that if a function is analytic in a simple connected region

containing the closed curve C, the path integral of the function around the curve C is zero.

On the other hand, if a function, f(z), contains a single singularity at z0 somewhere inside

C but analytic elsewhere in the region, then the singularity can be removed by multiplying

f(z) with (z − z0), i.e., by a pole-zero cancellation. Cauchy’s theorem implies that the

path integral of the new function (z − z0) f(z) around C must be zero

‰

C

(z − z0) f(z)dz = 0. (3.52)

Evaluation of the integral given in (3.52) yields a first-order polynomial in z0 with constant

coefficients, and its solution for z0 provides the location of the singularity as given [8]

z0 =

�
C
zf(z)dz�

C
f(z)dz

. (3.53)

This is an explicit expression for the singularity of the function f(z). A root finding

problem is restated as a singularity at the root. It is noted that (3.53) gives the location

of the desired root and it can be evaluated for any closed path by employing either an

analytical or a numerical technique. Luck and Stevens in [8] suggested to use a circle in

the complex plane with its center h and radius R as the closed curve C, expressed as

z = h+Rejθ,

dz = jRejθdθ, (3.54)

33

where 0 ≤ θ ≤ 2π, h ∈ R, and R ∈ R. Values of h and R do not matter as long as the

circle circumscribes the root z0. Cauchy’s argument principle [41] or graphical methods

may be used to determine the number of roots enclosed by the path C. A function in θ is

defined as

w(θ) = f(z)|z=h+Rejθ = f(h+Rejθ). (3.55)

Then (3.53) becomes [8]

z0 = h+R

[´ 2π

0
w(θ)ej2θdθ´ 2π

0
w(θ)ejθdθ

]
. (3.56)

One can easily evaluate (3.56) by employing Fourier analysis since the nth Fourier series

coefficient for any x(t) is calculated as

An =
1

2π

ˆ 2π

0

x(t)ejntdt. (3.57)

It is observed that the term in brackets in (3.56) is equal to the ratio of the second Fourier

series coefficient over the first one for the function w(θ). Fourier series coefficients can be

easily calculated numerically by using discrete Fourier transform (DFT) or by using its fast

implementation, i.e., fast Fourier transform (FFT) as it is suggested in [8]. However, it is

observed from (3.56) that one does not need all DFT (FFT) coefficients to solve the problem

since it requires only two Fourier series coefficients. Therefore, it is possible to further

improve the computational cost by employing a discrete summation operator to implement

(3.56) numerically. Hence, the algorithm would have a computational complexity of O(N)

instead of O (NlogN) required for FFT algorithms.

It is also noted that given f(z) is analytic at h, multiplying f(z) by a factor (z−h) =

Rejθ does not change the location of the singularities of f(z). It means that for a given

singularity the term in brackets is also equal to any ratio of the (m + 1)th to the mth

Fourier series coefficients of w(θ) for m ≥ 1 [8].

34

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

b/π

tan(b)
B

1
/b

B
2
/b

B
3
/b

Figure 3.1 Functions tan (b) and B/b for various values of B where B1 = 1, B2 = 2, and
B3 = 3.

3.5 A Simple and Fast Method for the Derivation of Explicit KLT Kernel

In this section, the theory behind the proposed KLT kernel derivation method for discrete

AR(1) is highlighted by utilizing prior research on continuous random process with expo-

nential auto-correlation. Moreover, a step-by-step implementation of the novel technique

reported herein for the explicit expression of the kernel presented.

3.5.1 Continuous-Time Random Process with Exponential Auto-Correlation

Steps required to determine the roots of (3.19) are studied in this section. It is noted that

the discussion is similar for (3.21). It follows from (3.19) that for α = B and T = 2 it is

possible to write

b tan b = B. (3.58)

Positive roots of (3.58), bm > 0, must be calculated in order to determine the even indexed

characteristic values and functions given in (3.23) and (3.25), respectively. Figure 3.1

displays functions tan (b) and B/b for various values of B. It is apparent from the figure

that for the mth root, a suitable choice for the closed path C is a circle of radius R = π/4

35

centered at hm = (m− 3/4) π as they are suggested in [8]. A straightforward way to

configure the equation given in (3.58) to introduce singularities is to simply use the inverse

of rearranged (3.58) as follows [8]

f(b) =
1

b sin (b)−B cos (b)
. (3.59)

Applying (3.56) to (3.59) results in an explicit expression for the mth root. This expression

can be evaluated by calculating a pair of adjacently indexed FFT coefficients (coefficients

of two adjacent harmonics) as described in Section 3.4 or by using a numerical integration

method. Therefore, by setting b = h+Rejθ, wm(θ) of (3.55) for this case is defined as

wm(θ) = f
(
hm +Rejθ

)
=

1

(hm +Rejθ) sin (hm +Rejθ)−B cos (hm +Rejθ)
, (3.60)

where 0 ≤ θ ≤ 2π. Hence, the mth root is located at

bm = hm +R

[´ 2π

0
wm(θ)ej2θdθ´ 2π

0
wm(θ)ejθdθ

]
. (3.61)

The MATLAB™ code given in Appendix B.1.1 for calculating the roots of (3.58) shows

the simplicity of this method to solve transcendental equations.

3.5.2 Discrete-Time AR(1) Process

In order to derive an explicit expression for the roots of the transcendental equation that are

required in the definition of the discrete KLT kernel given in (3.2), first N/2 positive roots

of two transcendental equations as given

tan

(
ω
N

2

)
=

1

γ
cot
(ω

2

)
(3.62)

tan

(
ω
N

2

)
= −γ tan

(ω
2

)
, (3.63)

36

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

ω/π

tan(ωN/2)
−γ

1
tan(ω/2)

−γ
2
tan(ω/2)

−γ
3
tan(ω/2)

Figure 3.2 Functions tan (ωN/2) and −γ tan (ω/2) for N = 8 and various values of ρ
where ρ1 = 0.9, ρ2 = 0.6, and ρ3 = 0.2 where γi = (1 + ρi) / (1− ρi), i = 1, 2, 3.

must be calculated as discussed in Section 3.3. In both equations, N is the transform size,

γ = (1 + ρ) / (1− ρ) , (3.64)

and ρ is the first order correlation coefficient for AR(1) process. Roots of (3.62) and (3.63)

correspond to the even and odd indexed eigenvalues and eigenvectors, respectively. Figure

3.2 displays functions tan (ωN/2) and −γ tan (ω/2) for N = 8 and various values of ρ. It

is apparent from the figure that for the mth root of (3.63), a suitable choice for the closed

path C in (3.53) is a circle of radius

Rm =

π/2N m ≤ 2

π/N m > 2

, (3.65)

centered at hm = (m− 1/4) (2π/N) where 1 ≤ m ≤ N/2. It is worth to note that for

positively correlated signals, i.e., 0 < ρ < 1, ratio given in (3.64) is always greater than 1,

i.e., γ > 1. However, for negatively correlated signals, i.e., −1 < ρ < 0, ratio is between 0

and 1, i.e., 0 < γ < 1. Therefore, for ρ < 0 case, last two roots must be smaller than the

37

rest, i.e.,

Rm =

π/N m < N/2− 1

π/2N m ≥ N/2− 1

. (3.66)

Similar to the continuous-time case, (3.63) is reconfigured and poles of the following

inverse function are rather looked for

g(ω) =
1

tan (ωN/2) + γ tan (ω/2)
. (3.67)

By setting ω = h+Rejθ, the function w(θ) of (3.55) for this case is defined as

wm(θ) = g
(
hm +Rme

jθ
)

=
1

tan
[
(hm +Rmejθ)

N
2

]
+ γ tan

[
(hm +Rmejθ)

1
2

] , (3.68)

where 0 ≤ θ ≤ 2π. Hence, the mth root is located at

ωm = hm +Rm

[´ 2π

0
wm(θ)ej2θdθ´ 2π

0
wm(θ)ejθdθ

]
. (3.69)

The procedure is the same for deriving the roots of (3.62) with the exceptions that (3.68)

must be modified as follows

wm (θ) =
1

tan
[
(hm +Rmejθ)

N
2

]
− 1

γ
cot
[
(hm +Rmejθ)

1
2

] , (3.70)

and a suitable choice for the closed path C is a circle of radius Rm = π/N centered at

hm =

(m− 1/2) (2π/N) m ≤ 2

(m− 1) (2π/N) m > 2

, (3.71)

that can be determined by generating a plot similar to the ones in Figures 3.1 and 3.2.

MATLAB™ code for calculating the roots of (3.62) is given in Appendix B.1.2.

38

Finally, steps of the proposed novel method to derive an explicit KLT kernel of

dimension N expressed in (2.36) for an arbitrary discrete data set by employing an AR(1)

approximation are summarized as follows:

1. Estimate the first order correlation coefficient of AR(1) model for the given data set

{x(n)} as given

ρ =
Rxx(1)

Rxx(0)
=
E {x(n)x(n+ 1)}
E {x(n)x(n)}

, (3.72)

where n is the index of random variables (or discrete-time) and −1 < ρ < 1.

2. Calculate the positive roots {ωk} of the polynomial given in (3.4) by substituting

(3.68) and (3.70) into (3.69) for odd and even values of k, respectively, and use the

following indexing

m =

k/2 + 1 k even

(k + 1) /2 k odd
. (3.73)

3. Plug in the values of ρ and {ωk} in (3.3) and (3.2) to calculate the eigenvalues λk and

eigenvectors defining the KLT matrix AKLT , respectively.

MATLAB™ and C codes for steps 2 and 3 with FFT and DFT used in solving (3.69) are

provided in Appendix B.2.1 and Appendix B.2.2, respectively.

Remark 1: The computational cost of the proposed method to derive KLT matrix of size

N ×N for an arbitrary signal source has two distinct components. Namely, the calculation

of the first order correlation coefficient ρ for the given signal set, and the calculation of

the roots {ωk} of (3.4) that are plugged in (3.2) to generate the resulting transform matrix

AKLT . The roots {ωk} of the transcendental tangent equation, calculated by using (3.69),

as a function of ρ and for N = 8 are displayed in Figure 3.3. Similarly, the values of {ωk}

for ρ = 0.95 and various N are provided in Appendix A.

Remark 2: As it is discussed in Section 2.1, other processes like higher order AR, auto-

regressive moving average (ARMA), and moving average (MA) can also be approximated

39

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω
/π

ρ

Figure 3.3 The roots of the transcendental tangent equation, {ωk}, as a function of ρ for
N = 8.

by using an AR process of sufficiently high order [25]. Therefore, the proposed method

to drive explicit KLT kernel may also be beneficial for other random processes of interest

utilized in various applications.

3.6 Performance Comparison

Herein, the computational cost of generating KLT kernel for the given statistics is studied

by employing a widely used numerical algorithm called divide and conquer (D&Q) [26]

and the proposed explicit method expressed in (3.2). Moreover, the discrepancy between

the kernels generated by the two competing derivation methods is measured. A distance

metric between the two kernels is defined as follows

dN =
∥∥AT

KLT,DQAKLT,DQ −AT
KLT,EAKLT,E

∥∥
2
, (3.74)

where ‖·‖2 is the 2-norm, AKLT,DQ and AKLT,E are the N × N KLT kernels obtained by

using D&Q and the proposed explicit derivation method (3.2), respectively. Performance of

the proposed method in terms of precision and derivation speed highly depends on the FFT

40

200 400 600 800 1000

0.5

1

1.5

2

s

N
(a)

D&Q
L=256
L=512
L=1024

200 400 600 800 1000
10

−13

10
−12

10
−11

10
−10

10
−9

N
(b)

d N

L=256
L=512
L=1024

Figure 3.4 (a) Computation time, in seconds, to calculate AKLT,DQ and AKLT,E (with
L = 256, 512, 1024) for ρ = 0.95 and 16 6 N ≤ 1024, (b) Corresponding distances, dN ,
measured with (3.74) for different values of N and L.

size used in evaluating (3.69). Therefore, the distance metric, dN , of (3.74) and the time it

takes to calculate the kernel by using (3.2) are affected by the FFT size. Computation times

(in seconds) to generate AKLT,DQ and AKLT,E (FFT sizes of L = 256, 512, 1024) for the

case of ρ = 0.95 and 16 6 N 6 1024 are displayed in Figure 3.4.a. Both computations are

performed by using one thread on a single processor. The machine used for the simulations

has an Intel® Core™ i5-520M CPU and 8 GB of RAM. It is observed from Figure 3.4.a

that the proposed method significantly outperforms the D&Q algorithm for larger values of

N . Moreover, corresponding distances, dN , measured with (3.74) for different N and FFT

sizes are displayed in Figure 3.4.b. They show that the proposed method is significantly

faster than the currently used numerical methods with negligible discrepancy between the

two kernels. Furthermore, the proposed KLT kernel derivation algorithm has a so-called

embarrassingly parallel nature. Hence, it can be easily computed on multiple threads and

processors for any k. Therefore, by implementing it on a parallel device such as GPU and

FPGA, its speed can be significantly improved.

41

3.7 Chapter Summary

Closed-form expressions for the N × N KLT kernel and corresponding transform coeffi-

cient variances of the auto-correlation matrix of an AR(1) process with first-order cross-

correlation coefficient ρ are reported in the literature [13]. However, they require one to

solve a transcendental tangent equation (3.4). Mathematical steps leading to the equations

given in (3.2), (3.3), and (3.4) are discussed in detail, following the methodology used

for a continuous-time stochastic process with exponential auto-correlation function [9, 10,

11, 12]. Then, a simple and fast method to find the roots of the transcendental equations

is employed to derive the roots of (3.4) explicitly. That derivation made it possible to

express theN×N KLT kernel and corresponding transform coefficient variances in explicit

form leading to extremely fast KLT implementations for processes that can me modeled

with AR(1) process. The merit of the proposed technique is highlighted by performance

comparisons with the numerical D&Q algorithm [26]. It is concluded that, since other

processes like higher order AR, auto-regressive moving average (ARMA), and moving

average (MA) can also be approximated by using AR(1) [25], discussion in this chapter

may also be beneficial for other random processes of interest.

CHAPTER 4

IMPROVED NUMERICAL METHODS FOR EIGENANALYSIS

Jacobi algorithm is one of the numerical algorithms used to perform eigenanalysis. It is

known that Jacobi is a more stable algorithm then the popularly used QR [15]. However,

it approximates to the eigenvalues an eigenvectors iteratively by rotating a pair of rows

and columns of the data matrix in each step. Therefore, its implementation on a serial

device, e.g., central processing unit (CPU), is not attractive as its time complexity is very

high. However, it has inherent parallelism, i.e., the rotations can be done on a parallel grid

of processors. Therefore, its implementation on parallel computational devices such as a

general purpose graphics processing unit (GPU) [42, 43, 44, 45] has recently gained the

interest of many researchers.

In this chapter, GPU implementations of the parallel Jacobi algorithm for the eigen-

analysis of real, dense, and symmetric matrices reported in the literature are furthered by

improving the data structures and memory access patters for higher performance in terms

of speed of the calculation. Significance of memory access patterns on the performance

of the implementation of the algorithm on GPUs are emphasized and three novel memory

access methods exploiting the symmetry of the input matrix, and availability of the shared

memory among GPU threads are proposed. Chapter is concluded with a fair comparison

between CPU and GPU implementations in terms of speed.

4.1 Jacobi Algorithm

As it is already discussed in Section 2.2, eigenanalysis of symmetric matrix A of size

N ×N is given as [5]

A = ΦΛΦT, (4.1)

42

43

where Λ is a diagonal matrix comprising of the eigenvalues of A, λ1, λ2, . . . , λN , Φ is an

N ×N matrix defined as

Φ =

[
φ1 φ2 · · · φN

]
, (4.2)

and φi is an N × 1 eigenvector corresponding to the ith eigenvalue, λi. Jacobi algorithm

provides an approximated numerical solution to (4.1) by iteratively reducing the metric

[26]

off(A) =

√√√√√ N∑
i=1

N∑
j=1
i 6=j

a2
ij, (4.3)

by multiplying matrix A from the left and right with Jacobi rotation matrix, J(p, q, θ), and

overwriting onto itself as expressed

A(k+1) = JT(p, q, θ)A(k)J(p, q, θ), (4.4)

where 1 ≤ p < q ≤ N and k > 0 is the iteration number. Matrix J(p, q, θ) is sparse as

defined

[J(p, q, θ)ij] =

cos θ i = p, j = p

sin θ i = p, j = q

− sin θ i = q, j = p

cos θ i = q, j = q

1 i = j, i, j 6= p, q

0 otherwise

. (4.5)

It is noted that the only difference between the identity matrix I and J(p, q, θ) of the

same size is that the elements Jpp, Jpq, Jqp, and Jqq. Matrix multiplications in (4.4) are

repeated until off(A) < ε where ε is a predefined threshold. After sufficient number of

44

rotations, matrix A gets closer to matrix Λ, and the successive multiplications leads to an

approximation of the eigenvector matrix Φ expressed as [26]

Φ ∼= J(p1, q1, θ1)J(p2, q2, θ2)· · ·J(pL, qL, θL), (4.6)

where L is a large integer number. Elements of J(p, q, θ), i.e., c = cos θ and s = sin θ,

are chosen such a way that the following multiplication yields a diagonal matrix at the kth

iteration

 A
(k+1)
pp A

(k+1)
pq

A
(k+1)
qp A

(k+1)
qq

 =

 c −s

s c

 A

(k)
pp A

(k)
pq

A
(k)
qp A

(k)
qq

 c s

−s c

 , (4.7)

where A(k)
ij and A

(k+1)
ij are elements of A(k) and A(k+1) located on the ith row and jth

column, respectively. It follows from (4.7) that

A(k+1)
qp = c

(
sA(k)

pp + cA(k)
qp

)
− s

(
sA(k)

pq + cA(k)
qq

)
. (4.8)

Rotation angle θ is found by setting A(k+1)
pq = A

(k+1)
qp = 0 in (4.8). Since matrix A is

symmetric, i.e., Apq = Aqp , it follows from (4.8) that

cs
(
A(k)
pp − A(k)

qq

)
+ A(k)

pq

(
c2 − s2

)
= 0. (4.9)

Using trivial trigonometric identities (4.9) can be rewritten as follows

θ =
1

2
tan−1

(
2A

(k)
pq

A
(k)
qq − A(k)

pp

)
. (4.10)

It is noted that since p and q define the rotation matrix J(p, q, θ) through (4.7), angle can be

dropped and the rotation matrix can be referred to as J(p, q). Originally, p and q in (4.4) are

chosen such that |Apq| = maxi 6=j |Aij| [26]. However, searching for the maximum value

at each iteration is not preferred due to computational performance considerations. The

45

most straightforward modification to the classical method is the cyclic Jacobi algorithm

that serially cycles through the data matrix in an ordered fashion, i.e., (p(m), q(m)) =

{(1, 2), (1, 3), (1, 4), . . . , (2, 3), . . .} where m = 1, 2, . . . N/2. It is straightforward to

implement the algorithm on a computing system with N/2 parallel processing units due

to the sparsity of the rotation matrix J(p, q) which is discussed in Section 4.3 after the

notation employed in the chapter is discussed next.

4.2 Notation

In this section, notation employed in the chapter is discussed in order to make the following

discussion clear. For a column vector z of size N × 1 and a row vector z of size 1×N , it

is possible to define matrix Z of size N ×N as

Z =

[
z1 · · · zN

]
=

[
zT

1 · · · zT
N

]T

, (4.11)

where zi and zi are the ith column and row of Z, respectively. Matrices Z(m) and Z
(m)

of

sizes N × 2 and 2×N , respectively, are defined as follows

Z(m) =

[
zp(m) zq(m)

]

Z
(m)

=

 zT
p(m)

zT
q(m)

 =

 Zp(m)1 Zp(m)2 · · · Zp(m)N

Zq(m)1 Zq(m)2 · · · Zq(m)N

 (4.12)

where p(m) and q(m) are the integers that define the sub-matrix of the data matrix to be

rotated in the Jacobi algorithm assigned to the mth processing unit. It is noted that when

Z is a symmetric matrix, then zi = zT
i and Z

(m)
=
[
Z(m)

]T. Next, the 2 × 2 Jacobi

sub-rotation matrix used in the mth processing unit is defined as shown

J(m) =

 Jp(m)p(m) Jp(m)q(m)

Jq(m)p(m) Jq(m)q(m)

 =

 cm sm

−sm cm

 , (4.13)

46

where Jij is the element located at the ith row and jth column of the original Jacobi matrix

defined in (4.5). Since this is an iterative algorithm, one needs to state the iteration index,

k, explicitly as expressed in (4.4). However, in order to keep the text clean, assignment

operator,←, is used instead of the iteration index in the rest of the discussion.

4.3 Parallel Jacobi Algorithm

Jacobi rotation matrix given in (4.5) is sparse. Thus, it is possible to perform rotations

expressed in (4.4) by a parallel implementation using N/2 processing units provided that

p and q pairs are unique for each processing unit. For example, two rotations may be

implemented in parallel, with
(
p(1), q(1)

)
= (1, 2) and

(
p(2), q(2)

)
= (3, 4), for N = 4. In

the next step, pairs might be selected as
(
p(1), q(1)

)
= (1, 4) and

(
p(2), q(2)

)
= (2, 3). It is

noted that a scenario with
(
p(1), q(1)

)
= (1, 2) and

(
p(2), q(2)

)
= (2, 4) would violate the

non-overlap rule since q(1) = p(2), and they must not be run in parallel. There are many

possible methods for effectively choosing the pairs for each step [43, 46]. One of the most

popular algorithms is called the chess tournament (CT). In CT, for N players, there are

N/2 pairs and N − 1 matches that have to be held such that each player matches against

any other player in the group. Once a match set is completed, the first player stands still

and every other player moves one seat in clockwise direction. For N = 4, the pairs for

N − 1 = 3 steps are defined as p(1) p(2)

q(1) q(2)

 :

 1 3

2 4

 −→
 1 2

4 3

 −→
 1 2

3 4

 , (4.14)

It is noted that p(2) and q(2) are interchanged in the last step since the condition p < q must

hold [26]. Moreover, interchanging is necessary after the step N/2 + 1. Since N − 1 =

N/2 + 1 = 3 for N = 4, interchange needs to be done only in the last step.

Ensuring that p and q pairs are unique for each processing unit, handles only one

of the two problems that arise in the parallel implementation. The second problem cor-

47

responds to the overlapping of matrix elements in the operations shown in (4.4). Since

the multiplication J(p, q)TA in (4.4) would update the pth and qth rows of matrix A, and

multiplication AJ(p, q) in (4.4) would update the pth and qth columns of matrix A, it would

be problematic to implement (4.4) in parallel without proper synchronization. Introducing

an intermediary matrix X of size N × N [42] in the computational process is a popular

solution. First operation is performed by the mth processing unit by multiplying the p(m)th

and q(m)th rows of A with the transpose of Jacobi sub-rotation matrix, (4.13), as written

X
(m) ←

[
J(m)

]T
A

(m)
. (4.15)

Waiting for all of the processing units to complete their assigned tasks (a blocking synchro-

nization) is required before proceeding to the next operation that is the multiplication of the

p(m)th and q(m)th columns of X by the Jacobi sub-rotation matrix (4.13), as expressed

A(m) ← X(m)J(m). (4.16)

It is noted that, the eigenvectors may be updated according to the procedure

Φ(m) ← Φ(m)J(m), (4.17)

at the same time with (4.16) since J(m) is already available.

4.4 Single- and Multi-Threaded CPU Implementation of Jacobi Algorithm

Cyclic and parallel Jacobi algorithm with chess tournament are implemented in standard C

language and coded to perform on a single thread and multiple threads, respectively. For the

multi-threaded implementation POSIX threads library [47] is used. For the multi-threaded

implementation, proper synchronization via condition variables is done so that there is no

racing condition in the calculation of (4.15), (4.16), and (4.17). At each sweep there two

phases: In the first phase, N/2 threads are spawned which calculate (4.15) individually.

After all the threads are finished, second phase starts. In this phase, another group of

48

N/2 threads are spawned that calculate (4.16) and (4.17). Any calculation that is done in

the first phase and can be re-used in the second is kept in the system memory to increase

performance.

4.5 GPU Implementation of Parallel Jacobi Algorithm

In this section, graphics processing unit (GPU) implementation of the parallel Jacobi al-

gorithm is detailed. Section starts with a brief discussion about the state-of-the-art GPU

computing and CUDA™ programming language. Then, importance of memory coalescing

when accessing the global memory of the GPU in the context of parallel Jacobi algorithm

is stressed with the help of two methods that are referred to as “traditional access (TA)” and

“modified access (MA).” TA is basically the form used in the designs detailed in [42, 43].

Next, three novel access methods are introduced to improve the memory coalescing in the

Jacobi algorithm. These methods are named as “symmetrical access (SA),” “maximum coa-

lesced access (MCA),” and “one step parallel Jacobi algorithm (OSPJ).” In OSPJ, discussed

last in the section, the need for interim matrix X used in (4.15) and (4.16) disappears. This

feature makes it the best method proposed in terms of speed. Performance evaluations and

comparison to CPU implementation are provided in the next section.

4.5.1 GPU Computing and CUDA™

Compute device uniform architecture (CUDA™) introduced by NVIDIA® is the main-

stream programing language for GPU computing. From a computing system perspective,

a CUDA™ programmer has the option to define a three dimensional parallel thread block

on a three dimensional block grid. A routine to be run on a thread on GPU is called a

kernel. A kernel call runs a kernel on a predefined grid of blocks [48]. Synchronization

among kernel calls is orchestrated by the CPU. In the low level, the computing hardware

has multiple processors. In each processor, multiple threads execute the same instruction

sequence on (usually different) data. Threads are grouped together in warps. Each warp

49

M0 M1 M2 M3 M4 M5 M6 M7

T1 T2 T3 T4

M0 M1 M2 M3 M4 M5 M6 M7

T1 T2 T3 T4

(a) (b)

Figure 4.1 Examples for (a) non-coalesced and (b) coalesced memory access patterns for
a kernel call with four threads accessing to eight memory locations in two iterations. T and
M stand for thread and memory, respectively. First and second iterations are depicted with
solid and dashed lines, respectively.

consists of 32 threads in the Fermi™ architecture [49]. A shared memory can be defined

for each block that is only visible to itself. On the other hand, global memory (usually a

DRAM) is visible to every other processor and to CPU as well. However, accessing the

global memory is much slower than accessing the shared memory [16, 50, 51].

4.5.2 Memory Access in GPU Computing

Memory access (reaching out to a memory location for reading or writing data) time is

an important limiting factor of state-of-the-art GPU computing technologies. Even the

GPUs providing L1 and L2 caches for the GPU main memory, suffer from performance

degradations when the memory access patterns by different threads are unstructured and/or

non-coalesced [16, 48]. Memory coalescing, i.e., refining the memory access pattern

such that the hardware can make combined requests from DRAM, should be employed

whenever applicable. Examples of non-coalesced and coalesced access patterns are shown

in Figures 4.1.a and 4.1.b, respectively, for an application with four threads and eight

memory locations. It can be observed from the figure that the coalesced access pattern

reaches to the adjacent locations in DRAM which provides maximum efficiency [16].

50

4.5.3 Implementation Overview

In all GPU implementations discussed in this chapter except OSPJ, two kernel calls; one

for (4.15), and one for (4.16) and (4.17), are used for a step in a sweep of the parallel

Jacobi algorithm [26]. Second kernel call must wait for the first one to complete its task via

global synchronization. In the implementation of parallel Jacobi algorithm discussed, two

GPU kernels running with N/2 blocks (processing units) and N threads (one thread for

each vector element) are used. The global synchronization is realized through CPU (host

synchronization).

4.5.4 Traditional and Modified Memory Access Methods

A linear array is the most common data structure used to store dense matrices in a computer

memory. Programmers, in general, design an array as row-major or column-major where

the elements are linearized based on their rows and columns, respectively. For instance, let

Z be a 2× 2 matrix as given

Z =

 Z11 Z12

Z21 Z22

 . (4.18)

Then, row-major and column-major arrays for storing the matrix Z become

zR ,

[
Z11 Z12 Z21 Z22

]
zC ,

[
Z11 Z21 Z12 Z22

]
, (4.19)

respectively. Parallel Jacobi algorithm in GPU is implemented using row-major arrays to

store A, X, and Φ in (4.15), (4.16), and (4.17) in memory. This access method is named

as “the Traditional Access (TA)” as it is the most common and easiest way of representing

matrix in the linear computer memory. It is noted that TA leads to a natural coalesced

access in both reading from A and writing to X in (4.15) that corresponds to the access

scheme given in Figure 4.1.b. However, both reading and writing operations lead to a

51

non-coalesced access in (4.16) and (4.17) that corresponds to the access scheme given in

Figure 4.1.a.

A straightforward way to handle this concern is to employ a row-major array to

store matrix A, and column-major arrays to store matrices X and Φ. This access method

is named as “the Modified Access (MA).” MA leads to a non-coalesced access only when

writing to matrix X in (4.15), and when writing to matrix A in (4.16). Other than those

two, all access patterns in MA become coalesced that helps the GPU to access its DRAM

more efficiently and provide results faster. In Section 4.6, it is shown that the computational

performance improves significantly in MA method compared to TA. In the next subsection,

a novel modification to MA method is introduced which ensures full coalesced access in

performing the tasks of (4.16).

4.5.5 Symmetric Access Method

Since A is symmetric, its ith row is identical to its ith column at all times. Therefore, a

processing unit can update the pth and qth rows of A in (4.16) instead of updating the pth

and qth columns as given (4.16). In other words, modifying (4.16) as

A
(m) ←

[
X(m)J(m)

]T
, (4.20)

leads one to the same solution. Explicitly, after every processing unit completes the update

given in (4.20), matrix A is updated in the same way as it would be updated with (4.16)

since A = AT. However, this modification ensures the coalesced access when writing into

matrix A that improves the computational efficiency. This access method is named as “the

Symmetric Access (SA)” and it is shown that its performance is superior compared to MA

in Section 4.6. It is noted that even with SA, there is still one non-coalesced access in (4.15)

when writing into matrix X. The trick used in SA for matrix A can not be applied directly

52

to X since it is not symmetrical. Nevertheless, a new method that also provides coalesced

access to the memory locations reserved for X is introduced in the next subsection.

4.5.6 Maximum-Coalesced Access Method

By changing the nature of the update procedure in implementing (4.15) it is possible to

ensure all memory access of reading and writing operations in the parallel Jacobi algorithm

are coalesced. Proposed modification makes use of the predetermined nature of the chess

tournament algorithm (4.14). This method is named as “the Maximum-Coalesced Access

(MCA).” In MCA, the update given in (4.15) is modified as follows

X(m) ← K
[
A

(m)
]T

, (4.21)

where K is an N ×N matrix defined as

[Kij] =

J
(m)
11 i = p(m), j = p(m)

J
(m)
21 i = p(m), j = q(m)

J
(m)
12 i = q(m), j = p(m)

J
(m)
22 i = q(m), j = q(m)

0 otherwise

, (4.22)

J
(m)
ij is the element of Jacobi sub-rotation matrix, (4.13), and m = 1, 2, . . . , N/2. It is

noted that K is constant for all processing units in a sweep. In MCA, mth processing unit

updates the p(m)th and q(m)th columns of X as follows

Xip(m) = Aip(m)Kii + Af(i)p(m)Kif(i)

Xiq(m) = Aiq(m)Kii + Af(i)q(m)Kif(i), (4.23)

where i = 1, 2, . . . , N and f (·) is a mapping defined as

f(x) , g(x) ∪ g−1(x), (4.24)

53

g(x) is a mapping from set
{
p(m)

}
to set

{
q(m)

}
expressed as

g : p(m) → q(m). (4.25)

It is noted that g is one-to-one. Hence, its inverse g−1 exists. Since sets
{
p(m)

}
and

{
q(m)

}
are known in advance in the algorithm, it is feasible to realize the update equation given in

(4.23) . Moreover, since (4.23) accesses only to 2N elements of K, it is more efficient (in

terms of memory requirements) to define two N × 1 vectors [ui] = Kii and [wi] = Kif(i)

instead of N ×N sized K. Then, one may modify (4.23) accordingly, as expressed

Xip(m) = Aip(m)ui + Af(i)p(m)wi

Xiq(m) = Aiq(m)ui + Af(i)q(m)wi. (4.26)

It is worth noting that the inherent symmetry of matrix A is implicitly exploited again

in MCA,
[
A

(m)
]T

in (4.21) accounts for accessing the p(m)th and q(m)th rows of A (in

accordance with its row-major array data structure) and using its transpose such that a

matrix of N × 2 is used. Also, update given in (4.26) might still lead to non-coalesced

access when reading from the global memory if the algorithm is not coded carefully.

Therefore, in the GPU implementation of MCA, whenever applicable, reading from global

memory is done in a coalesced way first and the values are stored in the shared memory

before performing any rotation on them. Shared memory is faster and almost prune to

non-coalesced access [16, 48].

The complexity of the algorithm is significantly increased in MCA compared to

the other methods considered earlier. Moreover, all processing units need to calculate (or

share) the rotation matrix for every pair (matrix K) in the algorithm resulting in higher

computational load or memory usage per processing unit. However, it is shown in the

Section 4.6 that this overload is highly negligible, and it is well justified by the significance

of improvements provided by MCA.

54

In order to fix the ideas, a simple example of MCA for N = 4, hence, for a matrix

of size 4×4 is given next. It is noted that N/2 = 2 processing units are needed in this case.

It is assumed that the algorithm is at its second step in the sweep where p(1) = 1, p(2) = 2,

q(1) = 4, and q(2) = 3 according to (4.14). At this step, matrix K of (4.22) is written as

K =

J
(1)
11 0 0 J

(1)
21

0 J
(2)
11 J

(2)
21 0

0 J
(2)
12 J

(2)
22 0

J
(1)
12 0 0 J

(1)
22

, (4.27)

where J (m)
ij is given in (4.13). It is noted that for the case at hand, the two arrays in (4.26)

can be expressed as

u =

[
J

(1)
11 J

(2)
11 J

(2)
22 J

(1)
22

]
w =

[
J

(1)
21 J

(2)
21 J

(2)
12 J

(1)
12

]
, (4.28)

since the following is true

g : {1→ 4} ∪ {2→ 3}

f : {1→ 4} ∪ {2→ 3} ∪ {4→ 1} ∪ {3→ 2} . (4.29)

It is clear from (4.27) and (4.28) that storing arrays u and w instead of matrix K saves

memory space by the elimination of unnecessary storage of the zeros in matrix K. Finally,

using (4.26), (4.28), and (4.29) operations that are performed in the first update of the first

processing unit are written as

X11 = A11K11 + A41K14

X21 = A21K22 + A31K23

X31 = A31K33 + A21K32 (4.30)

X41 = A41K44 + A11K41,

55

where Xij is located at the ith row and jth column of matrix X. Operations for the second

step, and for the both steps of the second processing unit are straightforward. Example is

finished by providing the expanded version of (4.21) within this context in order to stress

that MCA method accesses the columns of matrix X and rows of matrix A for the update

given in (4.15) as follows

X11 X14

X21 X24

X31 X34

X41 X44

= K

 A11 A12 A13 A14

A41 A42 A43 A44

T

, (4.31)

where matrix K is defined in (4.27).

4.5.7 One Step Parallel Jacobi Algorithm

It was discussed in Section 4.3 that multiplying the data matrix with JT(p, q) from left,

and with J(p, q) from right, and overwriting the result onto itself, updates the rows and

columns of data matrix, respectively. Therefore, in any parallel implementation of the

Jacobi algorithm, these two multiplications must be performed in two kernels as given

in (4.15) and (4.16) with proper synchronization among the assigned processing units.

However, thanks to MCA discussed earlier, it is possible to perform these two updates

in only one kernel. By substituting (4.21) into (4.20) following update equation is obtained

A
(m) ←

[
K
[
A

(m)
]T

J(m)

]T

. (4.32)

It is noted that (4.32) updates only the p(m)th row and q(m)th column of A, and it does not

need intermediary matrix X. The algorithm implementing (4.32) is named as “One Step

Parallel Jacobi Algorithm (OSPJ).” OSPJ delivers the best performance among other GPU

implementations as reported in the next section.

56

4.6 Comparison of CPU and GPU Implementations

CPU and GPU implementations discussed earlier are tested on a six core (a total of twelve

cores with hyper-threading) Intel® Core™ i7-3960X CPU @ 3.30GHz with 32 GB RAM

personal computer running on Linux. The GPU used in the tests is an NVIDIA® GeForce™

GTX 580 built with Fermi™ architecture [49] with 512 CUDA™ Cores and 1536 MB

global memory. Source codes are compiled with CUDA™ Compiler Driver v5.0. All

floating point operations are performed with single-precision. Timing results are averaged

over 20 runs. Number of sweeps in all tests is fixed to 6 in order to make a fair comparison.

Data matrix used in the tests is chosen to be the auto-correlation matrix of an AR(1)

source with a correlation coefficient ρ, defined as [5]

Rx = σ2
x

1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...

ρN−1 ρN−2 ρN−3 · · · 1

, (4.33)

where σ2
x is the variance of the input and −1 < ρ < 1. Parameters are chosen to be σ2

x = 1

and ρ = 0.9 in the tests.

Computation time in milliseconds for single- and multi-threaded CPU as well as

various GPU implementations with different memory access patterns (TA, MA, SA, MCA,

and OSPJ) as a function of input matrix size are tabulated in Table 4.1, and also dis-

played in Figure 4.2.a. For GPU experiments, time needed to copy data from and to

the system memory is taken into account. Multi-threaded CPU implementation can reach

the performance of the single-threaded implementation when N = 1, 024. Computation

time for N = 2, 048 are 2,882.2 and 729.3 seconds for single- and multi-threaded CPU

implementations, respectively. These results are inline with the findings reported in [42]

and clearly shows that overhead of thread creation and synchronization disqualifies CPU

from being a feasible environment for large matrices.

57

Table 4.1 Computation Time in Milliseconds for Single- and Multi-Threaded CPU (First
and Second Rows) and for GPU Implementations with Different Memory Access Patterns
(Third to Last Rows) Versus the Input Matrix Size, N

N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1, 024

CPU (ST) 0.05 0.97 2.30 17.25 136.10 1,326.88 11,570.31 110,761.36

CPU (MT) 6.34 15.83 64.48 342.07 1,252.13 7,407.67 22,845.91 112,226.61

GPU (TA) 1.68 3.45 7.72 15.85 40.40 176.45 980.70 8,771.24

GPU (MA) 1.69 3.47 7.46 15.18 35.01 116.51 581.91 6,037.52

GPU (SA) 1.70 3.40 7.28 14.51 32.92 100.21 449.65 3,735.22

GPU (MCA) 1.72 3.45 7.15 14.44 31.63 89.29 388.88 2,338.69

GPU (OSPJ) 1.41 2.61 5.42 11.14 24.27 65.47 249.83 1,616.85

100 200 300 400 500

10
1

10
2

10
3

10
4

N
(a)

C
om

pu
ta

tio
n

T
im

e
(m

s)

CPU
GPU (TA)
GPU (MA)
GPU (SA)
GPU (MCA)
GPU (OSPJ)

100 200 300 400 500

5

10

15

20

25

30

35

40

45

S
pe

ed
−

U
p

O
ve

r
C

P
U

 (
X

)

N
(b)

TA
MA
SA
MCA
OSPJ

Figure 4.2 (a) Computation times of cyclic Jacobi algorithm in milliseconds on CPU;
TA, MA, SA, MCA, and OSPJ on GPU; (b) Speed-up of GPU implementations over cyclic
Jacobi algorithm on CPU, for various matrix sizes, N .

58

For the GPU implementations, as expected, speed is best for the OSPJ. Performance

improvement of MA method over TA calculated as (tTA − tMA) /tTA× 100% is 31.2% for

N = 1, 024. Similarly, for N = 1, 024, performance improvement of SA over TA and

MA are 57.4% and 38.1%, respectively; MCA over TA, MA, and SA are 73.3%, 61.3%,

and 37.4% respectively; OSPJ over TA, MA, SA, and MCA are 81.6%, 73.2%, 56.7%, and

30.9%, respectively. Speed-up of TA, MA, SA, MCA, and OSPJ on GPU implementations

over cyclic Jacobi algorithm on single-threaded CPU versus the input matrix size are shown

in Figure 4.2.b. For N = 1, 024, the speed-up of TA, MA, SA, MCA, and OSPJ on GPU

over single-threaded CPU are 12.6×, 18.3×, 29.7×, 47.4×, and 68.5× respectively.

4.7 Chapter Summary

Celebrated Jacobi algorithm for eigenanalysis and its parallel implementation using the

chess tournament algorithm on graphics processing units (GPU) are revisited. It was shown

that even with the multi-threaded implementations, CPU is a poor environment for the prob-

lem at hand. Moreover, overhead of thread creation and synchronization is non-negligible

for matrix sizes smaller than 1,024. For the GPU implementations, it is highlighted that

memory is a limiting performance factor. Three novel implementations with better memory

access patterns leading to drastic performance improvements are introduced. The best

GPU design proposed, OSPJ, is quantified to achieve 81.6% computational performance

improvement over the traditional GPU methods, and 68.5 times faster implementation over

single-threaded CPU for a dense symmetric matrix of size N = 1, 024 under the same test

conditions.

CHAPTER 5

FUNDAMENTALS OF QUANTITATIVE FINANCE

Techniques proposed in this dissertation are applicable to any problem in which Karhunen-

Loève transform is used including the ones in quantitative finance. One of the pioneering

industries in high performance computing and analytics on big data is finance. Methods

proposed in the earlier chapters are directly applicable to some problems that commonly

arise in quantitative finance. Although digital signal processing and quantitative finance has

their ties, relationship between these two is mostly unexplored. In both fields, one of the

main objectives is to extract information out of signals otherwise seem random. Although

there has been increasing activity in the signal processing community on applications in

finance over the last five years [21, 22], ties are still loose and more work has to be done.

In this chapter, fundamental topics in quantitative finance including continuous- and

discrete-time price models for stocks, jumps, volatility, cross-correlation of assets and their

widely-used applications such as portfolio optimization, pairs trading, hedging, and Epps

effect are briefly discussed from a signal processing perspective. Goal of the chapter is to

provide the framework for the problems discussed in the next chapter.

5.1 Price Models

A financial asset is a legal document that carries ownership. An equity or a stock is a

share in a company. Bond conveys the ownership of credit. Derivatives are financial assets

with their values depend on an underlying asset. For example, options are derivatives that

conveys right to buy or sell another asset. Value of a financial asset is measured by price

in the unit of a currency. There are a vast number of financial assets and a great deal

of models for each. In this dissertation, discussion is limited to stocks. In this section,

59

60

some basic continuous-time models for the price of a stock are discussed. More detailed

discussion can be found in many textbooks including [52].

5.1.1 Geometric Brownian Motion Model

Brownian motion, first discussed by Brown in 1827 in the context of motion of pollens,

later explained by Einstein in 1905, and formulated by Wiener in 1918 has strong ties with

the financial modeling. Bachelier in 1900 modeled the price of a stock as a Brownian

motion as given [53]

p(t) = p(0) + µt+ σw(t), (5.1)

where t ≥ 0 is the independent time variable, p(t) is the price of the stock with an initial

value p(0), σ is the volatility, µ is the drift, and w(t) is a Wiener process or standard

Brownian motion such that dw(t) is a zero-mean and unit-variance Gaussian process, i.e.,

dw(t) ∼ N (0, 1). However, this model is problematic since it is possible for p(t) defined

in (5.1) to go below zero where as a stock price is always positive. Moreover, according

to the model given in (5.1), change in price over a period is not a function of the initial

price, p(0). It suggests that stocks with different initial prices can have similar gains or

losses in the same time interval which is not the case in reality (For example, probability

of observing a $1 change in price over a day is less for a stock priced at $10 than it is for

a stock that is worth $100). A better model for the stock price is the geometric Brownian

motion which resolves the two issues discussed. It is also referred to as Black-Scholes

model [54] in which the rate of return of a stock is defined as

dp(t)

p(t)
= µdt+ σdw(t). (5.2)

This stochastic differential equation has its analytic solution obtained by using Itō’s Lemma

[55] and expressed as

p(t) = p(0) exp

[(
µ− σ2

2

)
t+ σw(t)

]
. (5.3)

61

The expected value and variance of p(t) are expressed as, respectively,

E {p(t)} = p(0)e(µ+σ2/2)t

var {p(t)} = p2(0)e(2µ+σ2)t
(
eσ

2t − 1
)
, (5.4)

Proofs of (5.3) and (5.4) can be found in Appendix C. It is noted that the price is distributed

as log-normal and the log-price defined as

s(t) = ln p(t)

= ln p(0) +

(
µ− σ2

2

)
t+ σW (t), (5.5)

is distributed as normal.

5.1.2 Models with Local and Stochastic Volatilities

Geometric Brownian motion price model has constant deviation in its returns, i.e., constant

volatility, σ. Assuming that the volatility of a stock is constant is not always realistic since

the markets and prices of stocks are affected by various events that occur randomly that may

last for a long time in some cases, e.g., an economical crisis, or appear and vanish within

minutes, e.g., the flash crash of 2010 [56]. Improved price models with local [57, 58] and

stochastic [59, 60] volatilities take into account that the volatility itself is a function of time.

In models with local volatility, the price model given in (5.2) is updated as

dp(t)

p(t)
= µdt+ σ [p(t), t] dw(t), (5.6)

where σ [p(t), t] is the local volatility that depends on both time, t, and the price at time t,

p(t). On the other hand, models with stochastic volatility has the following form for the

return
dp(t)

p(t)
= µdt+ σ (t) dw1(t), (5.7)

62

where σ(t), i.e., volatility as a function of time, is a random process. One of the popular

stochastic volatility models is the Heston [60] model in where volatility is a random process

that satisfies the stochastic differential as given

dσ(t) = κ [θ − σ(t)] dt+ γ
√
σ(t)dw2(t), (5.8)

where κ is the mean-reversion speed, θ is the volatility in the long-term,γ is the volatility

of the volatility, σ(t), and dw2(t) is a normal process correlated with dw1(t) given in

(5.7). According to the Heston model, volatility is a mean-reverting process with a constant

volatility and its infinitesimal changes are related to the ones of the price. It is noted that

the model given in (5.8) is related to the celebrated Cox-Ingersoll-Ross process [61] used

to model the short-term interest rates. Further details on the topic are out of scope of this

dissertation and can be found in various texts [52].

5.2 Discrete-Time Price Models

Although price models described in the previous section are defined in continuous-time,

in reality, price changes happen at discrete time points. It is a common practice to sample

the price and to refer the stock returns with respect to their sampling periods, e.g., 30-min

returns, 1-hour returns, end of day (EOD) returns. In this section, the most basic discrete-

time price model, i.e., the geometric Brownian motion model is revisited. Then, a brief

discussion on jumps in the returns of stocks is given.

5.2.1 Discrete-Time Geometric Brownian Motion Model

Discrete-time analog of geometric Brownian motion model is obtained by sampling as

given

s(n) = s(n− 1) + µ+ σξ(n), (5.9)

63

where s(n) = ln p(n) is the log-price of a stock at discrete-time n with price p(n), µ, and

σ are the the drift and volatility of the stock, respectively, and ξ(n) is the white Gaussian

noise with ξ(n) ∼ N (0, 1). The log-return at discrete-time n is defined as

g(n) = µ+ σξ(n). (5.10)

It follows from (5.9) and (5.10) that log-return is a Gaussian process with mean µ and

variance σ2, i.e., g(n) ∼ N (µ, σ2). Moreover, it is a stationary noise process and white,

i.e.,

E {g(n− k)g(n− l)} − µ2 = σ2δk−l. (5.11)

Log-price given in (5.9) is equal to

s(n) = s(n− 1) + g(n). (5.12)

Rate of return or simply the return of a stock, is defined as the ratio of the difference in

its price between the current and the previous samples over the price associated with the

previous sample as given

r(n) =
p(n)− p(n− 1)

p(n− 1)
=

p(n)

p(n− 1)
− 1. (5.13)

For small values, return r(n) is an approximation to the log-return g(n) due to the Taylor

series expansion of the logarithm, i.e.,

g(n) = s(n)− s(n− 1) = ln

[
p(n)

p(n− 1)

]
∼=

p(n)

p(n− 1)
− 1 = r(n). (5.14)

It is noted that since the value of return might get very small, it is customary in finance

to use basis points (bps) instead of percent. One bps is the one percent of a percent, i.e.,

1 bps = 0.01%.

64

5.2.2 Effect of Sampling Frequency on Volatility

It follows from (5.12) that one can write the log-price at discrete time n as a sum of initial

log-price and all log-returns up to n as follows

s(n) = s(0) +
n∑
i=1

g(i). (5.15)

If sT1(n) and sT2(n) are two discrete-time log-prices of the same stock, sampled with

sampling periods Ts = T1 and Ts = T2, respectively, with T2 = kT1, sT2(n) = sT1(kn),

k ∈ Z, and k > 0, then it follows from (5.12) and (5.15) that

gT2(n) = sT2(n)− sT2(n− 1)

= sT1(kn)− sT2(kn− k)

= sT1(0) +
kn∑
i=1

gT1(i)− sT1(0)−
kn−k∑
i=1

gT1(i)

=
k−1∑
i=0

gT1(kn− i), (5.16)

where gT1(n) and gT2(n) are the log-returns associated with sT1(n) and sT2(n), respectively,

via (5.15). Since the summation of Gaussian random variables is also a Gaussian random

variable, if gT1(n) ∼ N (µ, σ2) then gT2(n) ∼ N (kµ, kσ2), and

σT2 =
√
kσT1 , (5.17)

where σT1 and σT2 are the standard deviation of gT1(n) and gT2(n), respectively. Equality

given in (5.17) reads that volatilities at different sampling frequencies differ by a scale in

square root of their ratio.

5.2.3 Discrete-Time Price Model with Jumps

Geometric Brownian motion model and its improved versions with local and stochastic

volatilities discussed in Section 5.1 all have the continuity property. However, price of

a stock is impacted by many reasons including stock specific and stock related business

65

12:00 15:00
−10

−5

0

5

10

(a)

bp
s

12:00 15:00
−10

−5

0

5

10

(b)

bp
s

Figure 5.1 (a) A realization of a white Gaussian random process and (b) Returns of Apple
Inc. (AAPL) stock on June 17, 2010.

developments and financial news. Although some of those news are anticipated, there are

many instances that these higher impact events happen quite randomly. One may observe

upward and downward abrupt price changes on any stock. These abrupt changes are called

as jumps in finance literature [62]. One of the simplest discrete-time price models with

jumps is given as

s(n) = s(n− 1) + j(n) + ξ(n), (5.18)

where j(n)∈ R is the abrupt price change, up or down, that happens at discrete-time n,

and ξ(n) ∼ N (µ, σ) is a Gaussian random process. It is noted that in (5.18), the random

log-return g(n) of (5.12) is modeled as the summation of two processes. Namely, a jump

process j(n), and a pure Gaussian noise process ξ(n),

g(n) = j(n) + ξ(n) (5.19)

In Figure 5.1.a realization of a Gaussian random process N (µ, σ2) with µ = 0.01 bps and

σ = 2.11 bps is shown. In Figure 5.1.b, log-return of Apple Inc. (AAPL) stock on day

June 17, 2010 with a sampling period of Ts = 5s is displayed. For this case, estimated

mean (drift) and standard deviation (volatility) of the returns are 0.01 bps and 2.11 bps,

respectively. It is observed from Figures 5.1.a and 5.1.b that one needs to consider the

jump process in the price model in order to employ the basic price model more properly.

66

Any jump of high significance is the main reason for the so-called regime change in a stock

price. In order to highlight the importance of jump processes in price modeling a simple

experiment is designed as follows. The volatility estimation error is defined as

ε =
∣∣∣σ̂(m)

√
k/m− σ̂(k)

∣∣∣ , (5.20)

where σ̂(m) and σ̂(k) are the volatilities estimated at Ts = m and Ts = k, respectively, via

σ̂ (Ts) =

(
1

N − 1

N−1∑
i=0

[gTs(n− i)− µ̂ (Ts)]
2

)1/2

, (5.21)

gTs(n) is the log-return of associated log-price sampled with the period Ts, µ̂ (Ts) is the

estimated mean of the log-return as given

µ̂ (Ts) =
1

N

N−1∑
i=0

gTs(n− i), (5.22)

and N is the estimation window length in samples. If the return process g(n) in (5.19)

were pure Gaussian, than the error term ε would be zero in accordance with (5.17). A

histogram based price jump detector is employed where a return is labeled as a jump if its

absolute value is larger than four times the estimated volatility, i.e., 4σ̂. Next, an artificial

“jump-free” return process is defined as

ĝ(n) = ξ̂(n) = g(n)− ĵ(n). (5.23)

Then, volatility estimation error (5.20) is calculated for various frequencies spanning from

k = 1s to 300swithm = 1 in for both log-return and jump-free log-return of AAPL on day

June 17, 2010, i.e., g(n) and ĝ(n) defined in (5.19) and (5.23), respectively. Error defined

in (5.20) is calculated as a function of frequency k, ε(k), and is displayed in Figure 5.2. It

is observed from the figure that removing jumps reduces the volatility estimation error and

jump is an important phenomenon. One needs to take these abrupt changes into account in

order to better model the price process. Further details are out of scope of this dissertation

and can be found in the literature including [62].

67

0 50 100 150 200 250 300
0

2

4

6

8

k

bp
s

ε

1

ε
2

Figure 5.2 Volatility estimation error ε versus sampling period k with m = 1 as defined
in (5.20) for real and artificial (jump-free) returns of (5.19) and (5.23), i.e., ε1 and ε2,
respectively.

5.3 Cross-Correlation of Asset Returns and its Applications

Cross-correlation of asset returns in an investment portfolio is an important aspect of

modern portfolio theory [17]. It also plays a key role in relative value models, hence

in trading strategies such as pairs trading, hedging, and arbitrage. The cross-correlation

coefficient of the returns of two assets, r1(n) and r2(n), is defined as

ρ =
E {r1(n)r2(n)} − µ1µ2

σ1σ2

, (5.24)

where µi = E {ri(n)} is the mean and σ2
i = E {r2

i (n)} − µ2
i is the variance of a return

process. In this section, significance of cross-correlation of assets in some most common

financial applications such as modern portfolio theory, hedging, and pairs trading, is studied

in detail.

5.3.1 Portfolio Optimization and Modern Portfolio Theory

Portfolio return is the weighted average of the returns of the assets associated with it.

Return of a two-asset portfolio is expressed as

rp(n) = q1(n)r1(n) + q2(n)r2(n), (5.25)

68

where n is the discrete time variable, qi(n) is the amount of capital invested in the ith asset,

and ri(n) is the return of the ith asset defined in (5.13). The investment amount, qi(n) in

(5.25), can be dimensionless or its unit may be a currency. This choice reflects itself into

the unit of portfolio risk which is defined later in the section. The time index n is omitted in

further discussions noting that each variable in an equation is a function of time. Expected

return of the two-asset portfolio is calculated as

µp = E {rp} = q1E {r1}+ q2E {r2} . (5.26)

Standard deviation of the portfolio return, i.e., the risk of the portfolio is given as

σp =
(
E
{
r2
p

}
− E2 {rp}

)1/2
=
(
q2

1σ
2
1 + 2q1q2σ1σ2ρ12 + q2

2σ
2
2

)1/2
, (5.27)

where σi is the volatility, i.e., standard deviation of the returns of the ith asset, and ρij is the

cross-correlation coefficient between the returns of ith and jth assets. It is straightforward

to generalize this concept to a portfolio consisting of N assets. Return of the N -asset

portfolio is expressed as

rp = qTr =
N∑
i=1

qiri, (5.28)

where superscript T is the matrix transpose operator, q is N × 1 capital allocation vector

defined as

q =

[
q1 q2 · · · qN

]T

, (5.29)

and r is an N × 1 vector comprised of the returns of assets in the portfolio expressed as

r =

[
r1 r2 · · · rN

]T

. (5.30)

69

Hence, from (5.28), expected return of the portfolio is calculated as

µp = E {rp} = qTE {r} = qTµ, (5.31)

where elements of theN×1 vector µ are the expected returns of individual assets. Similarly,

risk of an N -asset portfolio is obtained as

σp =
(
E
{
r2
p

}
− µ2

p

)1/2
=
(
qTCq

)1/2
=
(
qTΣTPΣq

)1/2
=

(
N∑
i=1

N∑
j=1

qiqjρijσiσj

)1/2

,

(5.32)

where Σ is an N ×N diagonal matrix with elements corresponding to volatilities of assets

σi, C is N ×N covariance matrix of asset returns as defined

C = E
{
rrT
}
− µµT, (5.33)

and P is N ×N correlation matrix where

P = [Pij] = ρij =
E {rirj} − µiµj

σiσj
. (5.34)

It is noted that all elements on the main diagonal of P are equal to one. Furthermore, P is

a symmetric and positive definite matrix.

Modern portfolio theory (MPT) [17] suggests a method to create efficient portfolios

with the minimized risk for a given expected return by optimally allocating the amount of

capital invested in each asset of the portfolio. More formally, in MPT, portfolio optimiza-

tion is achieved by minimizing the portfolio risk, σp, given in (5.32) with the constraint that

the expected portfolio return, µp, of (5.31) is equal to a constant, i.e.,

µp = qTµ =
N∑
i=1

qiµi = µ. (5.35)

There might be additional constraints such as constant investment capital of portfolio, i.e.,

qT1 =
N∑
i=1

qi = 1, (5.36)

70

0.75 0.8 0.85 0.9 0.95 1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

µ

σ

Attainable Portfolios
Markowitz Bullet
Min. Risk Portfolio

Figure 5.3 Markowitz bullet along with some of the attainable portfolios (black dots) and
the minimum risk portfolio.

where 1 is an N × 1 vector with all its elements equal to 1. The risk minimization problem

to create an efficient portfolio subject to the constraints given in (5.35) and (5.36) can

be solved by introducing two Lagrangian multipliers. Hence, the optimum investment

allocation vector providing the minimum risk for a given expected return subject to the

constraint of a constant portfolio investment is the solution to the minimization problem

stated as

q∗ = argmin
q

1

2
qTCq + λ1

(
µ− qTµ

)
+ λ2

(
1− qT1

)
, (5.37)

where C is the covariance matrix defined in (5.33). Solution to (5.37) is given as

q∗ =

∣∣∣∣∣∣∣
µ 1TC−1µ

1 1TC−11

∣∣∣∣∣∣∣C−1µ +

∣∣∣∣∣∣∣
µTC−1µ µ

µTC−11 1

∣∣∣∣∣∣∣C−11

∣∣∣∣∣∣∣
µTC−1µ 1TC−1µ

µTC−11 1TC−11

∣∣∣∣∣∣∣
, (5.38)

where |·| is the matrix determinant operator, and C−1 is the inverse of C. Set of optimum

portfolios each satisfying the constraints of (5.35) and (5.36) for −∞ < µ < ∞, form a

curve in the (σ, µ) plane. This curve is called the Markowitz bullet and depicted in Figure

71

5.3 for the case of a three-asset portfolio with ρ12 = 0.6, ρ13 = 0.2, ρ23 = 0.3, µ1 = 0.07,

µ2 = 0.03, and µ3 = 0.02. All of the (σp, µp) pairs for attainable portfolios, i.e., portfolios

that satisfy the constraint of (5.36) are on or to-the-right of the bullet. Some of the attainable

portfolios are illustrated as black dots in Figure 5.3 where investment vectors of those

portfolios are drawn from a Gaussian joint-probability density function, i.e., q ∼ N (0, I),

and only the ones that satisfy the constraint given in (5.36) are kept. Portfolios that lie on the

upper-half of the Markowitz bullet are called efficient and they form the efficient frontier.

Furthermore, only one of the efficient portfolios has the minimum risk, and therefore, it is

called as the minimum risk portfolio. The investment vector for the minimum risk portfolio

is calculated by solving the following quadratic programming equation

qmin = argmin
q

1

2
qTCq +

(
1− qT1

)
. (5.39)

The trivial solution is found as

qmin =
C−11

1TC−11
, (5.40)

It is noted that (σmin, µmin) pair corresponding to qmin is located at the far left tip of the

Markowitz bullet as highlighted by an asterisk in Figure 5.3. The minimum risk portfolio

is unique. It has the minimum attainable risk, σp; however, its expected return, µp, is not

the best possible one.

5.3.2 Relative Value Model, Pairs Trading, and Hedging

Another application that the cross-correlation of asset returns comes into play is pairs

trading. In this type of trading, return of an asset in time is modeled such that it is composed

of a constant random variable, weighted return of another asset (usually an asset within the

same industry or an exchange traded fund (ETF) that tracks the index of the corresponding

industry [63]), and white noise as given

r1(n) = α + βr2(n) + ξ(n), (5.41)

72

where α, β, and ξ are commonly referred to as drift, systematic component, and idiosyn-

cratic component, respectively. Model given in (5.41) is also referred to as relative value

model. The idea in pairs trading is to invest 1 units of currency in the first asset and −β

units of currency in the second asset (hedge) such that the return on investment becomes

rI(n) = r1(n)− βr2(n) = α + ξ(n), (5.42)

and the expected return on investment is calculated as

µI = E {rI(n)} = E {α}+ E {ξ(n)} . (5.43)

According to (5.43), this strategy is expected to profit if E {α} > 0 with E {ξ(n)} = 0

which means that the first asset outperforms the second for a prolonged time. Second

scenario is that E {α} = 0 and the last sample of the cumulative sum of the idiosyncratic

component, X(n) =
∑

i ξ(n − i), is far less than its mean, i.e., X(n0) � E {X(n)} . In

this case, an investor expects to profit since X(n) is expected to return to its mean with

more positive samples than negative samples of ξ(n) in the short term. In this case, first

asset is under-priced compared to the second due to an inefficiency in the market. If the

first asset is over-priced, i.e., X(n0)� E {X(n)} , the logical move is not to get in a long

but a short position in the pair, i.e., to invest −1 units of currency in the first asset and β

units of currency in the second asset. With pairs trading, investors try to isolate the return

on investment from the market (industry) and bet against the excess returns of a specific

asset. Assuming that the returns of the second asset is uncorrelated with the idiosyncratic

component, i.e., E {r2(n)ξ(n)} = 0, substitution of (5.41) into (5.24) yields

β = ρ12
σ1

σ2

. (5.44)

It is seen from (5.42) and (5.44) that the performance of a pairs trading strategy is related to

the cross-correlation coefficient of two assets, ρ12. Therefore, better correlation estimation

of asset returns is an important factor of good performance.

73

5.4 Epps Effect

As it is discussed in the earlier sections, a good estimation of correlation is crucial for good

performance in all trading and risk management systems [64]. However, a good correlation

estimation, especially in intra-day and high-frequency trading where sampling periods are

typically below a minute, is of a major challenge [65, 66, 67]. It is known in finance that

the correlations among financial asset returns decrease as the sampling period of prices

decreases. This phenomenon called Epps effect [23] is revisited in this section.

5.4.1 Cross-Correlation of Asset Returns as a Function of Sampling Period

Using (5.14) and assuming that the mean of log-returns is zero, i.e., µT1 = µT2 = 0,

cross-correlation between the log-returns of two assets given in (5.24) can be written as a

function of the sampling period as follows

ρ12 (Ts) =
E {g1,Ts(n)g2,Ts(n)}

σ1,Tsσ2,Ts

, (5.45)

where g1,Ts(n) and g2,Ts(n) are the log-returns of the first and second assets sampled with

Ts, respectively, with corresponding standard deviations, i.e., σ1,Ts and σ2,Ts . Similarly,

cross-correlation between the log-returns of two assets both sampled with Ts = T2 is equal

to

ρ12 (T2) =
E {g1,T2(n)g2,T2(n)}

σ1,T2σ2,T2

. (5.46)

For T2 = kT1, it follows from (5.16) and (5.46) that

ρ12 (T2) =
1

σ1,T2σ2,T2

E

{
k−1∑
i=0

g1,T1(kn− i)
k−1∑
j=0

g2,T1(kn− j)

}
. (5.47)

It is assumed that the cross-correlation between the samples of different asset log-returns

sampled at different times is zero, i.e.,

E {g1,Ts(n− k)g2,Ts(n− l)} = ρ12 (Ts)σ1,Tsσ2,Tsδk−l. (5.48)

74

From (5.11), (5.17), (5.47), and (5.48) it is concluded that

ρ12 (T2) =
k

σ1,T2σ2,T2

E {g1,T1(n)g2,T1(n)}

=
k√

kσ1,T1

√
kσ2,T1

E {g1,T1(n)g2,T1(n)}

= ρ12 (T1) . (5.49)

It is shown in (5.49) that the cross-correlation coefficient, ρ12, between the returns of two

assets that follow geometric Brownian motion paths with pure Gaussian increments is not

related to the sampling period. However, Epps [23] was the first to show that the empirical

data does not comply with (5.49). Moreover, Epps stated that the cross-correlation between

two financial assets decreases as the sampling period gets smaller, i.e.,

ρ12(Ts)→ 0 as Ts → 0. (5.50)

5.4.2 Empirical Evidence on Epps Effect

Cross-correlation coefficient between the log-returns of Apple Inc. stock (AAPL) and

PowerShares QQQ Trust ETF (QQQ) estimated using 60 days of historical data between

April 1, 2010 and June 30, 2010 as a function of sampling period is displayed in Figure

5.4.a. The sample correlation estimator employed for Figure 5.4 is written as

ρ̂ (Ts) =
1

N − 1

N∑
i=0

ḡ1,Ts(n− i)ḡ2,Ts(n− i), (5.51)

where ḡk,Ts(n) is the normalized log-return of the kth asset with zero mean and unit vari-

ance as calculated

ḡk,Ts(n) =
gk,TS(n)− µ̂k (Ts)

σ̂k (Ts)
, (5.52)

µ̂k (Ts) and σ̂k (Ts) are the estimated mean and standard deviation of gk,TS(n) defined in

(5.22) and (5.21), respectively. Since AAPL is a significant member of NASDAQ100 index

and QQQ mimics the behavior of NASDAQ100 index, one expects to have a significant

75

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

T (Seconds)
(a)

ρ(
T

s)

0 1 2 3 4 5 6

x 10
4

B4
B3
B2
B1
B0
A0
A1
A2
A3
A4

Shares
(b)

QQQ
AAPL

09:31 09:32

0.997

0.998

0.999

1

1.001

(c)

P
N
(n

)

AAPL
QQQ

12:00 15:00

0.995

1

1.005

(d)

P
N
(n

)

AAPL
QQQ

Figure 5.4 (a) Cross-correlation between the log-returns of AAPL and QQQ as a function
of sampling period, (b) A typical snapshot of the first five levels of the LOBs for AAPL
and QQQ, Normalized last traded prices of both stocks on March 17, 2011 (c) between
9:30am and 9:32am sampled with T = 1s, (d) between 9:30am and 4:00pm sampled with
T = 300s.

correlation between the returns of these two relevant assets. However, Figure 5.4.a suggests

a more complicated information. It is observed from the figure that assumption of (5.49)

does not always hold, and the geometric Brownian motion for the log-price of the assets of

(5.12) needs to be improved. This concern has been an active research topic where several

authors proposed improved models (see [65, 66] and references therein.)

The most widely accepted cause of the Epps effect in finance is the nature of

asynchronous trading. Although prices of the assets within the same industry tend to behave

similarly, and they respond to various intra-day economical, social, and political news in

the same way, they are not traded at the same time points or at the same side of the limit

order book (LOB) that is a structure specific to each asset and venue. When a trader places

a limit order to buy/sell an asset at some specific price, shares associated with the order

are placed in the corresponding price level in the bid/ask side of LOB. The shares waiting

to be bought/sold at the highest/cheapest price rest in the best bid (B0) and best ask (A0)

76

levels of the LOB. Traders who place market orders to buy/sell an asset are matched with

the shares waiting longest in the ask/bid side starting from the best ask/best bid levels.

Moreover, even though two different assets were traded at the same time, their

market structures, i.e., LOBs, volume, and liquidity, are different and they play a significant

role in price formation. As an example, a typical snapshot of the first five levels (on

both bid and ask sides) of the LOBs for AAPL and QQQ are displayed in Figure 5.4.b.

It can be observed that the levels of the LOB for AAPL do not offer too many shares

available for selling or buying. However, there are many QQQ shares resting at best bid

(B0) and best ask (A0) prices. Therefore it is less likely for QQQ to have the resting shares

depleted on one side and provide a different last-traded price print in short term than it

is for AAPL. Moreover, even if there were only two players in the market, who buy and

sell same number of shares of AAPL and QQQ, there is no guarantee that they execute the

trades synchronously, i.e., first buy AAPL and then sell QQQ or vice-versa. If both players

completes the trade in T seconds, then for an observer sampling the last-traded prices with

Ts > T , the asynchronous trades would not be visible, and the price prints of AAPL and

QQQ would seem to happen together.

Normalized last-traded prices, i.e., pN(n) = p(n)/p(0), of both stocks on March 17,

2011 between 9:30am and 9:32am with Ts = 1s, and between 9:30am and 4:00pm with

Ts = 300s are shown in Figures 5.4.c and 5.4.d, respectively. It is observed from these

figures that the good proxy between the prices of two stocks that exists at lower sampling

rates disappears as the sampling rate increases. This is a very important phenomenon

and a serious concern in particular for high-frequency trading since the traditional risk

management framework does not hold to provide practical solutions in order to maintain

an investment portfolio at high speeds.

Holdings of QQQ are comprised of NASDAQ 100 technology stocks with their

relevant investment factors. Hence, QQQ and those stocks are expected to be correlated.

Correlation coefficients between the log-returns of QQQ and its largest five holdings (AAPL:

77

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

T
s
 (Seconds)

ρ(
T

s)

AAPL
MSFT
ORCL
GOOG
INTC

Figure 5.5 Cross-correlation between the QQQ and (a) its first five largest holdings as a
function of sampling period, T .

Apple Inc., MSFT: Microsoft Corp., ORCL: Oracle Corp., GOOG: Google Inc., INTC:

Intel Corp.) estimated using 60 days of historical data between April 1, 2010 and June 30,

2010 are displayed in Figure 5.5 as a function of the sampling period. It is observed from

these figures that the correlation pattern and Epps effect observed in Figure 5.4.a. are not

specific to AAPL and QQQ pair.

5.4.3 Product of Returns and Problems with the Sample Estimator

The built-in asynchronicity affects correlation estimation given in (5.51) since even the

price of one asset of the pair does not change, the product of returns becomes zero, and that

term is considered in the averaging operator. Similarly, a scenario in where the constant

prices of both assets traded synchronously are also considered as perfectly uncorrelated pair

of returns within this framework. Although these two zero-product cases for correlation

calculations are distinct, it is more likely not to have price change at smaller time inter-

vals. It is reasonable to expect higher correlation if correlation calculation only considers

nonzero products with irregular sampling grid where price variations occur for both assets.

Figure 5.6.a displays histogram of pairwise product operations in log-returns in

the correlation calculation of AAPL and QQQ pair with (5.51) at 1s sampling period.

Similarly, Figure 5.6.b displays histogram for the case of end-of-day (EOD) correlation.

Figure 5.6.c depicts probabilities of product terms used in the correlation calculations being

78

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−7

0

0.5

1

(a)

0 5 10 15

x 10
−4

0

0.1

0.2

(b)

500 1000 1500 2000 2500 3000 3500

0.4

0.6

0.8

T (Seconds)
(c)

Figure 5.6 Histogram of pairwise products for the log-returns of AAPL and QQQ with
sampling intervals (a) Ts = 1s, and (b) Ts = 24h (EOD) (c) Probabilities of product terms
being negligible as a function of Ts.

negligible (between −ε and ε) as a function of sampling period for ε = 3 · 10−6. It is

noted that the probability of having negligible product term in correlation calculation drops

when sampling interval increases as depicted in this figure. This fact has direct impact on

the values of pairwise correlations calculated through averaging that includes negligible

ones. Hence, they drop significantly at higher sampling frequencies. Some researches have

proposed improved versions of estimators given in (5.51) and (5.52) [67]. However, this

point deserves further study.

5.5 Chapter Summary

Geometric Brownian motion is a widely used and most basic model used for the pricing

of assets. Correlations of asset returns in an investment portfolio is an important aspect

of the modern portfolio theory [17]. They also play a key role in relative value models,

79

hence in investment strategies such as pairs trading, hedging, and arbitrage. According

to discrete-time geometric Brownian motion model, cross-correlation between the returns

of different assets is independent of the sampling interval. However, due to Epps effect,

cross-correlation is significantly reduced when the sampling interval is less than a minute.

Moreover, certain abrupt changes, i.e., jumps are observed in asset prices. Therefore

estimators that take Epps effect and jumps into account work better.

CHAPTER 6

PORTFOLIO RISK ANALYSIS AND MANAGEMENT

Portfolio is a collection of investments in various financial assets. Two important aspects

of a portfolio are its return and risk. The main goal of a portfolio manager is to keep the

ratio of portfolio return over portfolio risk as high as possible. In order to estimate the risk

of a portfolio with N assets, N(N − 1)/2 unknown cross-correlations of asset returns need

to be estimated to create the N × N empirical financial correlation matrix, P̂. However,

P̂ contains significant amount of inherent noise that needs to be removed. Karhunen-

Loève transform (KLT) has been successfully employed to filter out this undesirable noise

component from the measured correlations [18, 19, 20, 64]. The caveat is the computational

cost of KLT operations.

In this chapter, KLT based noise filtering of P̂ for better risk analysis, followed

by risk estimation for the case of hedged portfolios is studied in detail. Next, it is argued

that in contrast to the traditional view, an investor may rebalance the portfolio (change the

investment amount in each asset), measure and manage the risk at different sampling time

intervals or time resolutions. Therefore, a novel extension of the traditional risk metric

for trading in multiple frequencies is introduced. Then, high performance filtering of P̂

via KLT is discussed. Performance improvement is achieved by approximating P̂ with

a Toeplitz matrix structure such that efficient kernel discussed in Chapter 3 can be used.

Moreover, discrete cosine transform (DCT) as an approximation to KLT is discussed.

Corresponding approximation errors are discussed. Finally, a straightforward risk manage-

ment method and two novel modifications to it are presented. Performance improvement of

the modifications as well as the multiple frequency rebalancing and risk analysis concept

are reported via back-testing at the end of the chapter.

80

81

6.1 Eigenfiltering of the Noise in the Empirical Financial Correlation Matrix

In this section, intrinsic noise in the empirical financial correlation matrix and its eigenfil-

tering via KLT is discussed. The concept of eigenfiltering is coupled with random matrix

theory which is discussed first. After discussing the merit of KLT in this specific problem,

a novel extension to the case of a hedged portfolio is discussed.

6.1.1 Asymptotic Distribution of the Eigenvalues of a Random Matrix

A random matrix K of size N ×N is constructed as

K =
1

M
WTW, (6.1)

where W is an M ×N matrix comprised of uncorrelated elements drawn from a Gaussian

distribution with zero mean and variance σ2, i.e., [Wmn] ∼ N (0, σ2), for m = 1, 2, . . . ,M

and n = 1, 2, . . . , N . It is noted that K belongs to the family of Wishart matrices as referred

in the multivariate statistical theory. Statistics of random matrices such as K are extensively

studied in the literature [20]. It was shown that the distribution of the eigenvalues of the

random matrix K in the limit is formulated as [68]

f(λ) =
M

2πσ2N

√
(λmax − λ) (λ− λmin)

λ
, (6.2)

where f(·) is the probability density function, N → ∞, M → ∞ with the ratio M/N

fixed, and λmax and λmin are the maximum and minimum eigenvalues of K, respectively

in the same limiting case, with the values defined as[68]

λmax,min = σ2

(
1 +

N

M
± 2

√
N

M

)
. (6.3)

6.1.2 Noise in the Empirical Financial Correlation Matrix

Financial correlation matrix P as defined in (5.34) is estimated by using historical data.

Sample correlation matrix can be used as an estimate of P given as

P̂ =
1

M
R̄TR̄, (6.4)

82

where R̄ is the M ×N asset return matrix, N is the number of assets in the portfolio, and

M is the number of available return samples per asset. Each element of R̄, i.e., R̄mn, is the

normalized return of the nth asset at the mth discrete-time instance. Normalization is done

such that the return time series of each asset, i.e., each column of R̄, is zero mean and unit

variance. The element located on the ith row and jth column of P̂ is equal to

P̂ij =
1

M

M−1∑
m=0

r̄i(m)r̄j(m), (6.5)

where r̄i(m) = R̄mi is the normalized return of the ith asset at the mth discrete-time

instance as defined

r̄i(m) = R̄mi =
ri(m)− µ̂i

σ̂i
, (6.6)

where ri(m) is the return of the ith asset at the mth discrete-time, µ̂i is the estimated mean

of ri(m) as defined

µ̂i =
1

M

M−1∑
m=0

ri(m), (6.7)

and σ̂i is the estimated standard deviation of ri(m) as defined

σ̂i =

(
1

M

M−1∑
m=0

[ri(m)− µ̂i]2
)1/2

. (6.8)

If the return processes were stationary, choosing M as large as possible would be the best

approach to improve the estimation. However, in financial processes, anything is hardly

stationary. Second, some assets may not have long history. For example, centuries-long

historical data for cotton price might be available whereas Internet-based investment in-

struments have been around for only about fifteen years. Third, an investor might want to

exploit the short-term impacts of certain crisis periods where choosing a long estimation

time window may wipe out time local events. Therefore, choosing the observation time

window, M , is not a trivial task, and its value depends on the application scenario under

consideration.

83

0 0.5 1 1.5 2
0

1

2

3

f(
λ)

λ
(a)

0 0.5 1 1.5 2
0

1

2

3
f(

λ)

λ
(b)

0 50 100 150 200
0

0.1

0.2

f(
λ)

λ

Histogram
f(λ)

Figure 6.1 (a) Histogram of the eigenvalues of the empirical financial correlation matrix
(black) along with the limiting p.d.f. of the eigenvalues of a random matrix (6.2) (red). (b)
Histogram of the eigenvalues of an empirical random matrix (6.1) along with the limiting
p.d.f.

If P̂ were a random matrix, its eigenvalues would be samples drawn from the

distribution given in (6.2). In order to be able to check whether P̂ is consistent with this

distribution or not, a financial correlation matrix P̂ is estimated using (6.4). In this example,

the time interval of return data is chosen to be 15 minutes, and the time window for the

estimation is defined between January 4, 2010 and May 18, 2010. Hence, M = 2, 444

(94 business days and 26 data samples per day). Assets in the portfolio are the 494 of

500 stocks listed in S&P 500 index. Thus, N = 494 and M/N = 4.95. Matrix P̂ is

decomposed into its eigenvectors with the corresponding eigenvalues and the histogram of

its eigenvalues is calculated [18, 19]. The histogram of the eigenvalues of the estimated

financial correlation matrix is displayed in Figure 6.1.a along with the probability density

function of the eigenvalues of a random matrix expressed in (6.2), and calculated with

M/N = 4.95, σ2 = 0.3, µ = 0, λmax = 0.63, and λmin = 0.091 according to (6.3). It is

inferred from the figure, by setting the parameter σ2 = 0.3 in (6.2), that a reasonable fit to

84

the empirical data for eigenvalues smaller than 0.63 is achievable. This suggests that about

30% of the energy in matrix P̂ is random. Hence, eigenvalues smaller than 0.63 can be

considered as noise. The largest 60 of the 494 eigenvalues, 13%, represent about 70% of

the total variance in P̂. Moreover, only the largest four eigenvalues represent 50% of the

total energy. The maximum and minimum eigenvalues, λPmax and λPmin, are equal to 203.24

and 0.044, respectively. The largest eigenvalue is approximately 322 times larger than its

counterpart in a random matrix.

The histogram of the eigenvalues for the empirical financial correlation matrix, P̂,

has two major clusters as displayed in Figure 6.1.a. Namely, there is a bulk of eigenval-

ues that are strongly related to the noise, and the remaining relatively small number of

eigenvalues deviating from the bulk representing the valuable information. Since 95% of

the eigenvalues are less than 2, the region bounded by 0 ≤ λ ≤ 2 is zoomed and the

full histogram is shown on the top right corner in in Figure 6.1.a. The largest eigenvalue,

203.24, is marked with an arrow.

For the purpose of validation, a random matrix K of (6.1) is generated with the

parameters M/N = 4.95, σ2 = 0.3, and µ = 0. The histogram of the eigenvalues of

K along with the probability density function of the eigenvalues for a random matrix as

defined in (6.2) using the same parameters is displayed in Figure 6.1.b. It is observed from

the figure that empirical histogram fits quite nicely to the theoretical limiting distribution.

6.1.3 Eigenfiltering of the Noise

In this section, KLT is employed to filter out the noise component of the empirical financial

correlation matrix. Then, filtered correlation matrix is utilized in the calculation of portfolio

risk, (5.32), and its effects on portfolio optimization and performance are emphasized. The

empirical financial correlation matrix given in (6.4) is decomposed into its eigenvalues and

eigenvectors as follows

P̂ = ΦΛΦT, (6.9)

85

where Λ = diag(λk) is a diagonal matrix with the eigenvalues as its elements, λk is the kth

eigenvalue with the order λk ≥ λk+1, Φ is an N ×N matrix comprised of N eigenvectors

as its columns as given

Φ =

[
φ1 φ2 · · · φN

]
, (6.10)

and φk is the N × 1 eigenvector corresponding to the kth eigenvalue, λk with λk ≥ 0 ∀k,∑
k λk = N . Moreover, ΦΦT = I due to orthonormality property of the eigenvectors. By

substituting (6.9) into (5.32) estimated risk of the portfolio can be formulated as

σ̂p =
(
qTΣTΦΛΦTΣq

)1/2
. (6.11)

Following the approach proposed in [19], eigenfiltered financial correlation matrix is de-

fined as

P̃ =
L∑
k=1

λkφkφ
T
k + E, (6.12)

where L is the number of selected factors (eigenvalues) satisfying λk ≥ λmax (6.3), and

L � N . Identifying L is not a trivial task. Although (6.3) offers a framework to calculate

it, in practice, investors might use back-testing to determine the L that provides the best

performance. The diagonal noise matrix E is introduced in (6.12) in order to preserve the

total variance in the calculations. Matrix E is defined as

E = [Eij] = εij =

1−

∑L
k=1 λkφ

(k)
i φ

(k)
j i = j

0 i 6= j

, (6.13)

where φ(k)
i is the ith element of the kth eigenvector. The addition of matrix E is equivalent

to setting the diagonal elements to 1, i.e.,
[
P̃ii

]
= 1, and it is required to keep the trace

of P̃ (6.12) equal to the one of P̂ (6.9). From (6.12) and (6.13) noise filtered financial

correlation matrix can be rewritten as follows

86

P̃ =
[
P̃ij

]
= ρ̃ij =

L∑
k=1

λkφ
(k)
i φ

(k)
j + εij. (6.14)

By substituting the filtered version of ρij , (6.14), into (5.32), estimated risk via filtered

empirical correlation matrix is obtained as given

σ̃p =

 L∑
k=1

λk

(
N∑
i=1

qiφ
(k)
i σi

)2

+
N∑
i=1

εiiq
2
i σ

2
i

1/2

. (6.15)

Following similar steps provided in [18, 19], impact of using noise filtered estimated risk

(6.15) rather than noisy estimated risk (5.32) is studied next with an example. The data

set consists of return time series for 494 stocks listed in S&P 500 index, and there are

two time periods. First and second time periods include the business days from January 4,

2010 to May 18, 2010, and from May 19, 2010 to September 30, 2010, respectively. In

the example, it is assumed that on the morning of May 19, 2010, i.e., the first day of the

second time period, a risk manager has the perfect prediction of the future returns; i.e., the

expected return vector of the second period, µ2 of (5.31), is known. On that morning, the

risk manager is asked to create a portfolio for a given target portfolio return, µ. First, the

risk manager calculates the sample correlation matrix for the first time period, P̂1, using

(6.4). Then, the manager obtains the investment vector, q∗, using using (5.38) with P̂1, µ2,

and µ. Next, estimation of the predicted risk of the portfolio for the second time period,

σ̂p2 , using (5.32) with q∗ and P̂1 is calculated. Finally, on September 30, 2010, i.e., the

last day of the second time period, the empirical correlation matrix for the second time

period, P̂2, and estimation of the realized risk of the portfolio for the second time period,

σ̂r2, using (5.32) with q∗ and P̂2 are found. Obviously, in this setup, the investment vector

calculated via (5.38) is a function of the target portfolio return, µ, and the covariance matrix,

C = ΣTPΣ. Moreover, portfolio risk calculated via (5.32) is a function of the investment

vector, q∗, and the covariance matrix, C. Hence, estimated portfolio risk is a function of

the target portfolio return, µ, and the correlation matrix, P. It is formalized as follows

87

0 5 10 15 20

20
40
60
80

100
120

µ (%)
(a)

σ
(%

)

Predicted
Realized

0 5 10 15 20

20
40
60
80

100
120

µ (%)
(b)

σ
(%

)

Predicted
Realized

Figure 6.2 Predicted and realized risk functions versus target portfolio returns for the
set of efficient portfolios where noisy empirical financial correlation matrices are used (a)
without any filtering, (b) with filtering, prior to risk calculation.

σ̂p2 (µ) = f
(
P̂1, µ

)
σ̂r2 (µ) = f

(
P̂2, µ

)
, (6.16)

where f(·) defines a function that involves the calculation of the optimum investment vector

defined in (5.38), and using it in (5.32) in order to obtain the portfolio risk. Plots of σ̂p2 (µ)

and σ̂r2 (µ) as a function of µ are given in Figure 6.2.a with black-solid and red-dashed

lines, respectively. It is also possible for the risk manager to check how large the risk was

under- or over-estimated by defining an error function as given

ε (µ) =

(
σ̂p2 (µ)

σ̂r2 (µ)
− 1

)
× 100%. (6.17)

Root mean square (RMS) value of this error function is ~16.8% for the case displayed

in Figure 6.2.a. In the second part of the example, risk manager does everything same

but this time, the filtered empirical correlation matrices, P̃1 and P̃2, calculated via (6.12)

88

with L = 4 are used, prior to creating the portfolio and calculating the corresponding risk

functions, σ̂p2 (µ) and σ̂r2 (µ). The results for this case are given in Figure 6.2.b. The RMS

value of the error defined in (6.17) is ~2.3%. It is observed that noise-free correlation matrix

is more stable and it lets the risk manager predict the portfolio risk better. Although the

example given in this section compares only two time periods and it is not 100% realistic

due to the assumption that the future expected return vector, µ2, is known, it is sufficient to

emphasize the significance of built-in noise in the correlation matrix and the importance of

filtering it out. In practice, the parameters of the system, such as the number of eigenvalues,

L, must be back-tested over several time periods to build a level of confidence.

6.1.4 Eigenfiltering of the Noise for a Hedged Portfolio

In a hedged portfolio, every asset is associated with a hedging asset such that every in-

vestment decision is made for a pair. Hedging asset may not necessarily be from the same

porftolio. The simplest method to determine the hedge amount is to use the regression

defined in (5.41). Return of a hedged portfolio comprised of N assets and H hedging

assets is given as

rp = ra + rh =
N∑
i=1

qiri +
H∑
j=1

gjyj, (6.18)

where ra and rh are the total returns on the investment for assets and hedging assets,

respectively; ri and yj are the returns of the ith asset and the jth hedging asset, respectively;

and qi and gj are the amounts of capital invested in the ith asset and the jth hedging asset,

respectively. In the rest of the section, for the clarity of the discussion, it is assumed that the

returns of the assets have zero mean noting that extension to non-zero mean case is trivial.

89

The risk of the hedged portfolio is expressed as

σp = E
{
r2
p

}1/2

=
(
σ2
a + 2σaσh + σ2

h

)1/2
=
(
E
{
r2
a

}
+ 2E {rarh}+ E

{
r2
h

})1/2
. (6.19)

It follows from (6.18) and (6.19) that one needs to estimate cross-correlations of asset

returns in order to measure the risk as follows

σ2
a = E

{
r2
a

}
=

N∑
i=1

N∑
j=1

qiqjE {rirj} , (6.20)

and the cross-correlations between returns of assets and hedging assets written as

σaσh = E {rarh} =
N∑
i=1

H∑
j=1

qigjE {riyj} . (6.21)

Similarly, cross-correlations of hedging asset returns defined as

σ2
h = E

{
r2
h

}
=

H∑
i=1

H∑
j=1

gigjE {yiyj} . (6.22)

Steps involved in deriving the eigenfiltered version of (6.20) are similar to the ones in

(6.15). Hence, eigenfiltered version of (6.20) is expressed as

σ̃2
a =

L∑
k=1

λk

(
N∑
i=1

qiφ
(k)
i σi

)2

+
N∑
i=1

εiiq
2
i σ

2
i , (6.23)

where λk is the kth eigenvalue, L is the number of selected factors (eigenvalues), φ(k)
i is

the ith element of the eigenvector corresponding to the kth eigenvalue, σi is the volatility

of the ith asset, and εii is the error term defined in (6.13). Return of the jth hedging asset

can be modeled as a weighted sum of the assets in the portfolio as follows

yj =
N∑
i=1

γj,iri + ξj. (6.24)

90

In practice, the number of observations is limited to M . Then, (6.24) can be written in

matrix from as given

yj = Rγj + ξj, (6.25)

where yj is theM×1 return vector for the jth hedging asset, R is theM×N matrix of asset

returns, ξj is the M × 1 error vector, and γj is the N × 1 vector of regression coefficients.

By using the eigenanalysis of the empirical financial correlation matrix given in (6.9), the

fact that ΦΦT = I, and Σ−1Σ = I, (6.25) can be rewritten as

yj = RΣ−1ΦΦTΣγj + ξj

= Fβj + ξj, (6.26)

where F = RΣ−1Φ is the M ×N principal components matrix [7] with its elements Fnk

being the nth sample value of the kth principal component which is given as

Fk =
N∑
i=1

1

σi
riφ

(k)
i . (6.27)

It is noted that the correlation between two different principal components is zero, and the

variance of a particular principal component is equal to its corresponding eigenvalue, i.e.,

E {FiFj} =

λi i = j

0 i 6= j

. (6.28)

Regression coefficient vector βj given in (6.26) can be estimated via least-squares algo-

rithm as follows

β̂j =
(
FTF

)−1
FTyj. (6.29)

It follows from (6.26) that one can regress the return of a hedging-asset asset yj over L

principal components as follows

yj =
L∑
k=1

βj,kFk + ζj, (6.30)

91

where βj,k is the regression coefficient for the jth hedging asset and kth principal compo-

nent, and ζj is the residual term. From (6.26) and (6.30) it follows that

ζj =
N∑

k=L+1

βj,kFk + ξj. (6.31)

By assuming that the residual term, ζj , is orthogonal to all principal components and

substituting (6.30) in (6.22), eigenfiltered version of (6.22) is written as

σ̃2
h =

H∑
i=1

H∑
j=1

gigj

(
L∑
k=1

L∑
l=1

βi,kβj,lE {FkFl}+ E {ζiζj}

)
. (6.32)

It follows from (6.28) that

σ̃2
h =

H∑
i=1

H∑
j=1

gigj

(
L∑
k=1

λkβi,kβj,k + E {ζiζj}

)
. (6.33)

Assuming the cross-correlation between residual terms is zero, i.e., E {ζiζj} = 0 for i 6= j,

(6.33) can be rewritten as

σ̃2
h =

L∑
k=1

λk

(
H∑
j=1

gjβj,k

)2

+
H∑
i=1

g2
i ν

2
i , (6.34)

where ν2
i = var {ζi}.

In a similar fashion, assuming that there is no correlation between asset returns and

residual terms, i.e., E {riζj} = 0, the eigenfiltered version of the cross-correlation between

the ith asset and the jth hedging asset of (6.21) is expressed using (6.30) as follows

σ̃aσ̃h =
L∑
k=1

βj,kE {riFk} . (6.35)

Substituting (6.27) in (6.35), yields

σ̃aσ̃h =
L∑
k=1

N∑
l=1

βj,k
φ

(k)
l

σl
E {rirl} . (6.36)

92

By substituting (6.14) in (6.36), due to the orthogonality of the eigenvectors, (6.36) be-

comes

σ̃aσ̃h =
L∑
k=1

λkφ
(k)
i βj,kσi. (6.37)

Hence, the eigenfiltered version of (6.21) is equal to

σ̃aσ̃h =
L∑
k=1

λk

N∑
i=1

H∑
j=1

qigjφ
(k)
i βj,kσi. (6.38)

Finally, the substitution of (6.23), (6.34), and (6.38) in (6.19), and re-arranging components

yields the risk of a hedged portfolio with return given in (6.18) by using filtered version of

the empirical correlation matrix as follows

σ̃p =

 L∑
k=1

λk

(
N∑
i=1

qiφ
(k)
i σi +

H∑
j=1

gjβj,k

)2

+
N∑
i=1

εiiq
2
i σ

2
i +

H∑
j=1

ν2
j g

2
j

1/2

, (6.39)

where λk is the kth eigenvalue, φ(k)
i is the ith element of the kth eigenvector, σi is the

volatility of the asset, βj,k is the hedging factor for the jth hedging asset and kth principal

component, and ν2
j is the variance of the idiosyncratic component of the returns for the jth

hedging asset regressed on L principal components defined in (6.31).

6.2 Risk Estimation for Rebalancing in Multiple Frequencies

In finance, frequency in general means the speed of re-balancing a portfolio, i.e., changing

the investment amounts invested in each asset in the portfolio. In most of the literature, it is

assumed that the frequency of rebalancing for each asset is the same. However, rebalancing

in multiple frequencies, i.e., rebalancing different assets at different times, may be desirable

for the investors due to several reasons including the following:

93

1. Liquidity, i.e., the availability of the asset in the market, may not be the same for

all the assets in the portfolio. Therefore, the investor may want to rebalance certain

assets faster or slower than others.

2. Different assets may reveal certain aspects of the market the investor is looking for

such as a trend, a relative-value etc., at different sampling frequencies.

3. A high frequency investor may want to keep the portfolio diverse and balanced in

terms of risk, and the traditional methods for measuring and managing risk require

relatively high correlations between the assets.

However, cross-correlation of asset returns is reduced as the sampling frequency increases

due to the well-known phenomenon in finance called the Epps effect [23] as discussed

in Section 5.4. In accordance with the Epps effect, correlations between the financial

assets vary at different sampling frequencies. The number of eigenvalues, L, versus the

percentage of the total variance represented is displayed in Figure 6.3 for different sam-

pling intervals. It can be seen from the figure that, as the sampling interval decreases,

eigenspectrum of the correlation matrix becomes more spread. Thus, more eigenvalues are

required to represent a certain percentage of the total variance. EOD stands for end of day

sampling rate, i.e., price data is sampled at the market closing of each day.

In order to accommodate the novel concept of rebalancing in multiple frequencies,

the risk definition of (5.32) must be properly modified. Assuming that the prices follow

a geometric Brownian motion, it follows from the discussions given in Section 5.2.2 that

volatilities estimated at different sampling frequencies have the following relationship

σ1 =
√
k1/k2σ2 = mσ2, (6.40)

where σ1 and σ2 are the volatilities estimated at sampling intervals k1Ts and k2Ts, respec-

tively, and Ts is the base sampling interval. Hence, it is possible to measure portfolio risk at

a certain time interval, and manage risk of assets by re-balancing the individual investment

94

0 100 200 300 400 500

40

60

80

100

%
 V

ar
ia

nc
e

Number of Eigenvalues (L)

1 min
5 min
15 min
30 min
EOD
Identity

Figure 6.3 Scree plot displaying the number of eigenvalues versus percentage of the
represented total variance for different sampling intervals and for the P̂ = I case, i.e.,
no correlation between assets.

allocations at different time intervals, by expanding the original risk formula of (5.32) as

follows

σp =
(
qTΣTMTPMΣq

)1/2
, (6.41)

where M = diag(m1,m2, . . . ,mN) and mi is the scaling factor of (6.40) provided that Σ

and P matrices are estimated at k2Ts time intervals. It is noted that, similar modification is

applicable to the eigenfiltered risk formula given in (6.15). Performance improvement in

using (6.41) instead of (5.32) is studied in Section 6.4.4.

6.3 High Performance Eigenfiltering for Risk Estimation

Implementation of KLT is costly. Therefore, in every engineering application, including

the eigenfiltering discussed earlier in the chapter, fast implementation of KLT is desirable.

In this section, a Toeplitz approximation to the empirical financial correlation matrix is

proposed in order to be able to apply the explicit KLT kernel discussed in Chapter 3.

Moreover, DCT as an approximation to the KLT is proposed in the same context since it is

known that their kernels are very close for AR(1) signals with high first order correlation

coefficient as it is discussed in Section 2.3.5.

95

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Asset Index

ρ

Figure 6.4 Rows of P̂ matrix of DJIA & DIA EOD returns displayed in descending order.

6.3.1 Toeplitz Approximation to the Empirical Financial Correlation Matrix

In this section, it is attempted to approximate empirical correlations of asset returns by

utilizing AR(1) signal source model discussed in Section 2.1. Main motivation here is to

incorporate the closed-form expressions of eigenvalues and eigenvectors of AR(1) sources

as expressed in (3.3) and (3.2) that are utilized for eigenfiltering of empirical correlation

matrix as described in the previous section accordingly.

For motivational purposes, a portfolio comprised of all 30 stocks of the index Dow

Jones Industrial Average (DJIA) along with the exchange traded fund DIA that mimics

DJIA (total of N = 31 assets) is considered. Empirical financial correlation matrix P̂

defined in (6.4) for this specific portfolio is calculated using the end of day returns (EOD)

for 60 business days, i.e., M = 60. Time span considered is from March 17 to June 10,

2011.

Figure 6.4 displays the elements of P̂ for each row in a descending order for the

31 assets. The kth sequence represents pairwise correlations of the kth asset with all

assets in the portfolio. It can be observed from the figure that an AR(1) source is a good

candidate to approximate the sequences given in Figure 6.4. In this section, two cases

where AR(1) signal model with Toeplitz correlation matrix is employed to approximate

symmetric matrix are considered. Effects of approximations proposed in the section in the

calculation of the eigenfiltered risk (6.15) are discussed at the end of the section.

96

6.3.1.1 AR(1) Approximation to Financial Correlation Matrix. Empirical correla-

tion matrix defined in (6.4) is symmetric. It is approximated by a Toeplitz matrix as follows

P̌ =

1 ρopt · · · ρN−1
opt

ρopt 1 · · · ρN−2
opt

...
...

ρN−1
opt ρN−2

opt · · · 1

, (6.42)

where N is the number of assets in the portfolio and ρopt is the optimal correlation co-

efficient of AR(1) source which is found by minimizing the approximation error defined

as

ε =
1

N2

N∑
i=1

N∑
j=1

(
P̂ij − ρ|i−j|opt

)2

, (6.43)

where P̂ij is the element of the empirical financial correlation matrix located on the ith

row and jth column. One can calculate the resulting eigenvalues and eigenvectors of AR(1)

model according to (3.3) and (3.2) as approximations to their measured values, respectively,

in order to speed up the eigenfiltered estimation of the risk defined in (6.15) and (6.39).

Figure 6.5 displays variations of correlation coefficient ρopt for 31 assets of DJIA

& DIA under consideration along with approximation errors of (6.43). The returns are

calculated for 24 hour intervals with sliding time intervals of 15 minutes and measurement

window of M = 60 business days for a trading day of 6.5 hours. Specifically, a total of 27

return series of length 60 are created. Each return series is calculated by sampling the price

series at a specific time on every business day. For example, the first and last return series

are calculated by sampling the price at 9:30 and 16:00, respectively, everyday. Therefore,

the last sample on Figure 6.5 corresponds to end of day (EOD) return of an asset. Figure

6.5 shows highly correlated nature of EOD and 24 hour returns.

97

10:00 11:00 12:00 13:00 14:00 15:00 16:00
0.86

0.88

0.9

0.92

0.94

ρ

10:00 11:00 12:00 13:00 14:00 15:00 16:00
0.08

0.085

0.09

0.095
ε m

in

Figure 6.5 Variations of optimal correlation coefficient and the resulting error of AR(1)
approximation, (6.43), as a function of time with 15 minute sliding intervals with M =
60 business days for 24 hour returns of 31-asset portfolio (DJIA & DIA) in the interval
9:30-16:00.

6.3.1.2 AR(1) Approximation to Each Row of Financial Correlation Matrix. Each

row of empirical correlation matrix is approximated by the optimal correlation sequence

of AR(1) signal model with the correlation coefficients {ρk,opt}. Hence, the rows are

approximated as

P̌ =

1 ρ1,opt · · · ρN−1
1,opt

ρ2,opt 1 · · · ρN−2
2,opt

...
...

ρN−1
N,opt ρN−2

N,opt · · · 1

, (6.44)

where the optimum ρk,opt for the kth row of P̌ is obtained by minimizing the approximation

error as defined

εk =
1

N

N∑
i=1

(
P̂ki − P̌ki

)2

, (6.45)

and, P̌ki is the element of matrix P̌ located at the kth row and ith column. Then, each row

is AR(1) approximated independently and (6.44) is rewritten as

98

P̌ =
N∑
k=1

SkP̌k, (6.46)

where the selection matrix Sk is defined as

Sk ,

sk,k = 1 for k

0 otherwise

; k = 1, 2, . . . , N, (6.47)

and, the P̌k matrix is a Toeplitz matrix as expressed

P̌k =

1 ρk,opt · · · ρN−1
k,opt

ρk,opt 1 · · · ρN−2
k,opt

...
...

ρN−1
k,opt ρN−2

k,opt · · · 1

, (6.48)

for k = 1, 2, . . . , N . It is possible to decompose P̌k into its eigenvalues and eigenvectors

via eigenanalysis as follows

P̌k = AT
KLT,kΛkAKLT,k; k = 1, 2, . . . , N. (6.49)

Therefore, the Toeplitz approximation of (6.46) can be rewritten as

P̌ =
N∑
k=1

SkA
T
KLT,kΛkAKLT,k, (6.50)

where AKLT,k and Λk are comprised of the kth set of eigenvectors and eigenvalues, respec-

tively, which can be calculated with the closed-form expressions of (3.3) and (3.2) for the

given set of AR(1) correlation coefficients {ρk,opt} using the method described in Chapter 3.

Figure 6.6 displays variations of correlation coefficients and resulting approximation errors

of this method for the 31 assets under consideration. Similar to the previous case, returns

are measured for 24 hour intervals with sliding time intervals of 15 minutes. It is noted

99

10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

0.2

0.4

0.6

0.8

1

ρ

10:00 11:00 12:00 13:00 14:00 15:00 16:00
0.02

0.04

0.06

0.08

0.1

0.12

ε k,
m

in

Figure 6.6 Variations of optimal correlation coefficients and the resulting errors of AR(1)
approximations as a function of time with 15 minute sliding intervals for 24 hour returns
of 31-asset portfolio (DJIA & DIA) with M = 60 days in the interval 9:30-16:00.

that the approximation error of this method is lower than the one for the previous case. The

trade-off is the increased computational cost of the multiple Toeplitz approximations.

6.3.1.3 Effects of Toeplitz Approximations on Risk Estimation. In order to test the

effects of approximation to the eigenfiltered risk measurement given in (6.15), a portfolio

comprised of all 30 stocks of the DJIA index along with the DIA ETF is formed. The

capital allocation vector q (5.29) is formed in accordance with the market cap of the assets

in the portfolio as of June 10, 2011. The elements of q sum to 1 and the highest element

corresponds to the asset with the highest market cap. Empirical financial correlation matrix

P̂ defined in (6.4), and its approximations defined in (6.42) and (6.44) are calculated as

a function of time with 15 minute sliding intervals and a measurement window of M =

60 business days for 24 hour returns. Time span considered is from March 17 to June

10, 2011. For each case, factors that correspond to the first largest five eigenvalues are

kept, i.e., L = 5 in (6.15). For the cases where Toeplitz approximations are used, fast

techniques discussed in Chapter 3 are used. Estimation of the eigenfiltered portfolio risk

100

10:00 11:00 12:00 13:00 14:00 15:00 16:00
55

60

65

70

75

80

bp
s

Empirical
Approximation with ρ

opt

Approximation with ρ
k,opt

Figure 6.7 Portfolio risk calculated via (6.15) with empirical financial correlation matrix
P̂, and its Toeplitz approximations P̌ of (6.42), and P̌ of (6.44) as a function of time with
15 minute sliding intervals for 24 hour returns and M = 60 business days of 31-asset
portfolio (DJIA & DIA) in the interval 9:30-16:00.

for each case is displayed in Figure 6.7. The maximum distance in risk estimation from

the case where empirical correlation matrix is used is negligible and is equal to +3.67 bps.

It can be observed from Figure 6.7 that the risk estimations calculated using the Toeplitz

approximated correlation matrices have the same proxy to the one in which the estimated

correlation matrix itself is used.

6.3.2 Filtering the Noise with Discrete Cosine Transform

Due to the reasons discussed in Section 2.3.5, DCT as an approximation to KLT is pre-

ferred in most applications in which the correlation is significantly high. In this section,

performances of fixed transform DCT and input dependent KLT for empirical correlation

matrices of various portfolios are compared in order to justify the use of the former as an

efficient replacement to the latter in filtering of the noise in the empirical correlation matrix

as given in (6.14).

The histogram for correlation coefficients of Figure 6.6 is shown in Figure 6.8.

The resulting mean and variance values are 0.8756 and 0.0125, respectively. These results

coupled with the KLT and DCT performance comparisons displayed in Figure 2.1 and

closeness of eigenvalues with the DCT coefficients for the empirical correlation matrix

101

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

f(
ρ)

ρ

Figure 6.8 Histogram of correlation coefficients displayed in Figure 6.6

5 10 15 20 25 30
0

2

4

6

8

10

12

14

k

σ θ k2

KLT
DCT

Figure 6.9 KLT and DCT coefficient variances for P̂.

displayed in Figure 6.9 suggest the use of DCT as a fast KLT approximation in calculating

the filtered risk according to (6.15) and (6.39).

Same approach discussed in the previous section is employed to test the effects of

using DCT as an approximation to KLT in risk estimation. Figure 6.10 compares portfolio

risks of 24 hour returns of 31-asset portfolio (DJIA & DIA) calculated via (6.15) employing

KLT and DCT filtering methods with five and ten factors, i.e., L = 5 and L = 10,

respectively, as a function of time for 15 minute sliding intervals in a given 6.5 hours

long trading day. Time span considered is 60 business days from March 17 to June 10,

2011. It is observed from the figure that KLT and DCT perform similarly for the filtering

of empirical correlation matrices of asset returns experimented.

102

10:00 11:00 12:00 13:00 14:00 15:00 16:00
62

64

66

68

70

72

74

76

bp
s

KLT
DCT

Figure 6.10 Portfolio risk calculated via (6.15) with filtered financial correlation matrix P̃
(6.14) as a function of time with 15 minute sliding intervals for 24 hour returns andM = 60
business days of 31-asset portfolio (DJIA & DIA) in the interval 9:30-16:00. Filtering is
done using KLT basis functions (eigenvectors) and DCT basis functions with L = 5 and
L = 10 in (6.15), respectively.

6.4 Risk Management

Once the risk of a portfolio is estimated using the methods discussed so far in the chapter,

it needs to be managed. As in the case of modern portfolio theory discussed in Section

5.3.1, in some applications, risk management is embedded in the investment strategy itself.

However, in a real world scenario, an independent investment strategy constantly rebal-

ances a given portfolio and its details are not necessarily known by the risk manager. The

trivial method for risk management is to manage the portfolio risk by filtering the decisions

of the underlying investment strategy based on a pre-determined risk limit.

The locus of qi, 1 ≤ i ≤ N satisfying (5.32) for a fixed value of risk σp is

an ellipsoid centered at the origin. The ellipsoids are nested since as σp increases, the

ellipsoids become larger. The shape of the ellipsoid is defined by the asset return correlation

matrix P. The risk ellipsoid for the case of two-asset portfolio is displayed in Figure 6.11.a

with σp =
√

0.5, ρ12 = 0.6, σ1 = σ2 = 1, and q ∼ N (0, I). Depending on the investment

vector q, the risk of a non-managed portfolio, depicted by black circles in Figure 6.11, may

be in, out of, or on the risk ellipsoid. The trivial method for risk management discussed

earlier is named as “stay in the ellipsoid (SIE)” and it is detailed next. Then, two novel

103

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

q
1

(a)

q 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

q 2

q
1

(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

q 2

q
1

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

q 2

q
1

(d)

Figure 6.11 Possible risk locations of a two-asset portfolio (circles) and the risk ellipsoid
(red and solid line) for (a) No risk management, risk management with (b) Stay in the
ellipsoid (SIE), (c) Stay on the ellipsoid (SOE), and (d) Stay around the ellipsoid (SAE)
with ∆ =

√
0.1 methods.

modifications on SIE, namely “stay on the ellipsoid (SOE)” and “stay around the ellipsoid

(SAE)” methods are discussed. Although SIE method is the simplest one to implement,

performances of the second and third ones are better. In all methods, it is assumed that once

a signal to enter a new position (flags generated by the underlying decision mechanism) is

rejected by the risk manager, the underlying strategy does not create another signal until a

signal to exit is generated.

6.4.1 Stay in the Ellipsoid Method

Goal in stay in the ellipsoid (SIE) method is to keep the portfolio risk anywhere inside

the predefined risk ellipsoid by checking the risk of the target portfolio, and rejecting any

new investment position that violates this requirement. SIE risk management method is

104

expressed as

qt+∆t ←

qt+∆t σt+∆t < σMAX

q′t+∆t σt+∆t ≥ σMAX

, (6.51)

where ∆t is the time interval between the two consecutive rebalances of the portfolio,

σMAX is a predetermined maximum allowable risk level, and q′t+∆t is the modified capital

investment vector achieved according to the new investment allocation rules

[
q′t+∆t

]
i

=

0 qt,i = 0 and |qt+∆t,i| > 0

qt+∆t,i otherwise

, (6.52)

where qt,i is the investment amount in the ith asset at time t. It is noted that (6.52) employs

an all-or-none approach in order to expose the portfolio to each asset in approximately

equivalent amounts. It is observed from (6.51) and (6.52) that the proposed method rejects

any new investment position in the target portfolio whenever it generates a target risk

higher than the maximum allowable risk. Risk locations of possible two-asset portfolios

are displayed in Figure 6.11.b along with the limiting risk ellipsoid. Any re-balancing act

of the portfolio taking the risk beyond any target risk point outside of the risk ellipsoid

is not permitted in the SIE risk management method. However, it is still possible for the

portfolio to move out of the risk ellipsoid due to the abrupt, unavoidable changes in the

returns of the assets that are invested in.

6.4.2 Stay on the Ellipsoid Method

Goal in stay on the ellipsoid (SOE) risk management method is to keep the portfolio risk

not only inside the risk ellipsoid but also as close to it as possible. The difference between

the SIE and SOE methods is observed from Figures 6.11.b and 6.11.c for the case of a

two-asset portfolio. The latter maximizes the utilization of the allowable risk limits, and it

105

is formulated as follows

qt+∆t ←

qt+∆t σt+∆t < σTHR

q′t+∆t σt+∆t ≥ σTHR

, (6.53)

where σTHR is the desired risk threshold, and q′t+∆t may be obtained by employing various

optimization algorithms to minimize the risk distance as expressed

q′t+∆t = argmin
q
|σTHR − σ(q)|, (6.54)

σ(q) is the calculated risk for the investment allocation vector q given that its elements are

limited to

qi ∈

{0, qt+∆t,i} qt,i = 0 and |qt+∆t,i| > 0

{qt+∆t,i} otherwise

, (6.55)

where the notation {·} defines a set of numbers. It is noted that (6.53), (6.54), and (6.55)

suggest to search for a specific combination of signals to open new investment positions

targeting the portfolio risk level as close to its limits as possible. The intuition here is to

maintain a relatively diverse portfolio while keeping the risk within a desired limit. For

the two-asset portfolio case, the solution for the optimization problem is trivial. However,

the optimization problem of an N-asset portfolio might become computationally intensive,

particularly when N is large.

6.4.3 Stay Around the Ellipsoid Method

The idea behind the stay around the ellipsoid (SAE) risk management method is similar to

the one for SOE. However, SAE introduces more flexibility by defining a risk ring with the

help of the two risk ellipsoids located at a fixed distance around the target risk ellipsoid. The

difference between SOE and SAE methods is observed from Figures 6.11.c and 6.11.d for

the two-asset portfolio case. In SAE, it is less likely for a candidate portfolio to be rejected

106

due to the increased flexibility. SAE allows new positions only if the target portfolio risk

stays inside the ring. It is expressed as

qt+∆t ←

qt+∆t σMIN < σt+∆t < σMAX

q′t+∆t otherwise

, (6.56)

where σMIN = σTHR − ∆ and σMAX = σTHR + ∆ are the minimum and maximum

allowable risk levels defining the risk ring, and ∆ is the distance to the target risk. The

modified investment vector q′t+∆t in (6.56) may be obtained by solving the multi-objective

minimization problem defined as

q′t+∆t = argmin
q

[f(q), g(q)]T , (6.57)

where objective functions f and g are defined as

f(q) = σ(q)− σMIN

g(q) = σMAX − σ(q), (6.58)

and σ(q) is the calculated risk for investment allocation vector q. Its elements are defined in

(6.55). The optimization given in (6.57) may be obtained by creating an aggregate objective

function or via various multi-objective optimization algorithms such as successive Pareto

optimization [69] or evolutionary algorithms [70].

6.4.4 Performance Comparison via Back-Testting

In finance, an experimental performance result for a proposed investment method or algo-

rithm is commonly obtained via back-testing. The most common figure of merit used in

back-testing is the performance of a profit and loss (P&L) curve. Instantaneous P&L of an

investment strategy is defined as [64]

107

E(n) = E(n− 1) + γ(n)E(n− 1) +
N∑
i=1

qi(n− 1)ri(n)

−
N∑
i=1

qi(n− 1)γ(n)−
N∑
i=1

|qi(n)− qi(n− 1)| Ii(n)ε, (6.59)

where E(n) is the equity at discrete-time index n with E(0) = $100, γ(n) is the interest

rate at n, qi(n) is the dollar amount invested in the ith asset at n with qi(0) = 0 ∀i, ri(n)

is the return of ith asset at n, ε is the friction parameter that includes the transaction cost

and slippage, and Ii(n) → {0, 1} is the indicator function with the value of 1 if there is a

transaction (buying or selling) on the ith asset at time n, and 0 otherwise. Investment in the

ith asset evolves in time as

qi(n) =

δE(n) Ii(n) = 1 and qi(n− 1) = 0

0 Ii(n) = 1 and |qi(n− 1)| > 0

qi(n− 1) [1 + ri(n)] otherwise

, (6.60)

where −1 ≤ δ ≤ 1 is a real number that determines the percentage of capital invested in

each asset with each enter signal. Its sign is determined by the type of the signal, i.e., for

buying and short-selling δ is positive and negative, respectively. Performance of the P&L

expressed in (6.59) is calculated with the average return and the volatility (risk) of the P&L,

defined as µE = E {rE(n)} and σE = (E {r2
E(n)} − µ2

E)
1/2, respectively, where rE(n) is

the return over investment calculated as

rE(n) =
E(n)

E(n− 1)
− 1. (6.61)

A P&L with high average return and low volatility is desired for any investment strategy.

Therefore, risk-adjusted return, also known as the Sharpe ratio, is defined as

SR =
µE − γ
σE

. (6.62)

108

Sharpe ratio is commonly used to quantify the performance of P&Ls for various competing

investment strategies.

In order to compare the performance of the risk management methods discussed

in this section, a back-testing is performed on a portfolio comprised of stocks listed in

NASDAQ 100 index as of May 28, 2010. The time span considered is from April 1, 2010

to May 28, 2010 with the time interval of 5 minutes. The data used is the reported price

of the stocks for trades that are done through the NBBO, i.e., national best bid and offer.

Financial correlation matrix is estimated at each sample by using the returns of the past

three days, i.e., M = 78 × 3 = 234 in (6.4). A simple investment strategy generating

about 50% long signals and 50% short signals in the course of a day is employed. At

each entering point 4% of the capital is invested in a particular stock, i.e., δ = ±0.04 in

(6.60). The interest rate, γ, and friction, ε, given in (6.59) are considered as 0 and 1.5 bps

(0.015%), respectively.

P&L for the test strategy without any risk management method is displayed in

Figure 6.12.a (black line). Similarly, P&L curves for the risk managed cases are displayed

in Figure 6.12.a with blue, red, and magenta colored lines for SIE, SOE, and SAE methods,

respectively. In all methods, risk threshold is set to 3 bps / sample (~25 bps / day). Average

daily returns are of 9.4 bps (0.094%), 5.2 bps, 5.9 bps, and 7.4 bps; daily volatilities are

of 33.4 bps, 17.8 bps, 18.7 bps, and 20.1 bps; daily Sharpe ratios are of 0.28, 0.29, 0.32,

and 0.37; and average numbers of transactions per day are of 25.3, 16.8, 17.8, and 19.7;

for no risk management, SIE, SOE, and SAE methods, respectively. The day after the flash

crash of May 6, 2010 [56] is of special interest since the risk managed strategies avoid the

1.8% draw-down the strategy without any risk management suffered. The estimated risk

values are displayed in Figure 6.12.b for all the scenarios considered in this example. It is

observed from the figures that SAE method outperforms SIE and SOE methods in terms of

average return while keeping the volatility at a desired level. All of the methods considered

perform well in terms of keeping the portfolio risk bounded with the trade-off of reduced

109

20 30 40 50 60 70 80

6

8

10

µ
(b

ps
)

Daily Risk Threshold (bps)
(c)

No RM
SIE
SOE
SAE
SIE(MF)

20 30 40 50 60 70 80

0.3

0.35

0.4

0.45

µ/
σ

(b
ps

)

Daily Risk Threshold (bps)
(d)

No RM
SIE
SOE
SAE
SIE(MF)

04/14/10 04/26/10 05/06/10 05/18/10
100

101

102

103

104

(a)

P
N

L
($

)

No RM
SIE
SOE
SAE

04/14/10 04/26/10 05/06/10 05/18/10

10
1

10
2

10
3

(b)

R
is

k
(b

ps
)

No RM
SIE
SOE
SAE
Threshold

Figure 6.12 (a) P&Ls for no risk management case along with the SIE, SOE, and SAE risk
management methods, (b) Corresponding estimated daily risk (5.32) values normalized to
equity (6.59), i.e., σp/E, (c) Average daily return versus daily risk threshold for SIE, SOE,
SAE, and multiple frequency SIE methods along with the average daily return of no risk
management case, and (d) Corresponding daily Sharpe ratios.

return. However, a less risk-averse investor may easily set the risk threshold to a higher

level to increase the level of desired return.

This experiment is repeated by changing the risk threshold from 2 to 10 bps / sample

(from ~17 bps / day to ~88 bps / day). Average daily return and daily Sharpe ratio of the

P&Ls for non-managed risk case and for all managed cases are displayed in Figure 6.12.c

and Figure 6.12.d, respectively. It is observed from the figures that the SAE and SOE

methods yield significantly higher returns with a negligible increase in the volatility than

the others for a given risk level. The P&L performance of the SIE method with the multiple

frequency risk estimation formulated in (6.40) and (6.41) with the sampling rates of k1 = 1,

k2 = 3, and Ts = 5 min is displayed in Figure 6.12.c and Figure 6.12.d. with green

colored lines. In this scenario, all the assets in the portfolio are rebalanced at the same

frequency although the framework introduced in this paper allows investors to rebalance

different assets at different frequencies. The trivial multiple frequency rebalancing results

110

are presented to highlight the flexibility of the proposed framework. It is also evident

from this study that the portfolio risk management and re-balancing may be performed at

multiple frequencies by utilizing the novel framework discussed in Section 6.2.

6.5 Chapter Summary

One of the common definitions of the portfolio risk is the standard deviation of its return.

Therefore, portfolio risk is a function of the pair-wise correlation between the returns of

the assets that populate the financial correlation matrix, P. Empirical financial correlation

matrix, P̂, has intrinsic noise that needs to be filtered for robust risk analysis. KLT is

commonly used to filter out the noise in P̂. However, KLT is costly which reduces the

efficiency of the risk analysis and management. By approximating P via a Toeplitz matrix

structure, the efficient method to derive explicit KLT kernel discussed in Chapter 3 can be

used to speed up the risk analysis. Moreover, it is observed that DCT as an approximation

to KLT is a good candidate for faster filtering for robust risk analysis due to the availability

of its kernel in closed-form. Approximation error in both cases are shown to be negligible.

In addition, extension of the application of KLT into noise filtering is extended to the case

of a hedged portfolio. Furthermore, risk analysis for a portfolio in which each asset is

rebalanced at different frequencies is forwarded. Chapter is concluded by presenting a

straightforward risk management method and two novel modifications to it. Merit of the

proposed methods are presented via back-testing.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Contributions

There is an ever increasing need for high performance digital signal processing (DSP)

tools in order to analyze and extract useful information out of vast amounts of noisy

data being created at very high speed. Karhunen-Loève transform (KLT), also known

as principal component analysis, is a powerful tool for denoising of measurement data

[5]. It is the optimal block transform that perfectly decorrelates the input signal in the

subspace. However, KLT is commonly avoided in many applications due to its prohibitive

computational load, especially when the matrix size is large.

In this dissertation, the theory and implementation of KLT is studied and improve-

ments are achieved. Contributions of the thesis are summarized as follows:

1. A novel and efficient method to derive explicit KLT kernel for the auto-regressive or-

der one discrete process, AR(1), is proposed. A procedure to implement the proposed

technique is provided. The merit of the new method is shown.

2. An efficient method for numerical implementation of the parallel Jacobi algorithm

to derive KLT kernel using graphics processing units (GPU) is proposed. Proposed

method utilizes novel data structures and algorithms for the solution of the problem.

Traditional methods to store matrices in computer memory are improved such that

processing units on GPU access the dynamic random access memory in a fully

coalesced fashion. Performance improvements over traditional methods as well as

single- and multi-threaded central processing unit (CPU) implementations are re-

ported in the thesis.

111

112

3. The methods investigated and developed in the dissertation are applied to prob-

lems in quantitative finance (QF) such as portfolio risk analysis and management.

Eigenfiltering of intrinsic noise in the empirical financial correlation matrix for ro-

bust risk management of an investment portfolio is studied in detail. In addition,

approximation methods to the empirical financial correlation matrix by a Toeplitz

matrix structure, and use of discrete cosine transform as an efficient replacement to

KLT are proposed.

4. Several fundamental topics in QF, such as continuous- and discrete-time price mod-

els, jump processes, Epps effect, modern portfolio theory, pairs trading, risk anal-

ysis and management, and hedging are investigated and interpreted from a DSP

perspective. A common method to manage the portfolio risk is revisited and two

adaptive modifications to it are proposed. Moreover, the concept of multi-rate (multi-

frequency) portfolio rebalancing is introduced and its merit is shown for an invest-

ment strategy.

7.2 Future Work

As discussed in Section 2.1 and Chapter 3, other stochastic processes like higher order

AR, auto-regressive moving average (ARMA), and moving average (MA) can also be

approximated by using an AR model [25]. Therefore, the proposed method to drive explicit

KLT kernel may also be beneficial for other random processes of interest utilized in various

applications.

Efficient explicit KLT kernel derivation method proposed in this dissertation is

only implemented on a single processor. However, the proposed method has inherent

parallelism, hence it is expected that its parallel implementations on devices like GPUs

and field-programmable gate arrays (FPGA) will work extremely fast. A performance

113

comparison between implementations of parallel Jacobi algorithm for eigenanalysis on

different computing devices such as CPU, GPU, and FPGA can also be done.

Finally, QF is a vast and fertile discipline with many problems still waiting to be

solved and new ones are continuously being recognized. QF and DSP have very strong ties

as many tools used in both fields are the same or quite similar. However, due to the fact

that researchers in these two disciplines tend to use different words for the same concepts,

inter-disciplinary contributions are still at their infancy. More efforts required to bring them

closer for high impact contributions in financial engineering in the future.

APPENDIX A

TABLES FOR ROOTS OF TRANSCENDENTAL EQUATION

In this appendix, roots {ωk} of the transcendental tangent equation discussed in Section

3.5.2, calculated by using (3.69), for ρ = 0.95 and various N are provided.

Table A.1 The Values of {ωk} for ρ = 0.95 and N = 4, 8, 16

k N = 4 N = 8 N = 16

0 0.157 0.109 0.075

1 0.815 0.423 0.224

2 1.584 0.801 0.408

3 2.362 1.188 0.599

4 1.577 0.793

5 1.968 0.988

6 2.359 1.183

7 2.750 1.378

8 1.574

9 1.770

10 1.966

11 2.162

12 2.358

13 2.554

14 2.750

15 2.946

114

APPENDIX B

CODES FOR EXPLICIT KLT KERNEL OF AN AR(1) PROCESS

B.1 Codes for Determining the Roots of the Transcendental Equation

B.1.1 Continuous-Time

MATLAB™ code of the method to calculate roots of transcendental equation given in

(3.58) is provided here. For B = 2, first root is calculated as 1.076873986311804.

B = 2 ;
L = 128 ; % FFT s i z e
m = 1 ; % Root i n d e x
h = (m − 3 / 4) * pi ;
R = pi / 4 ;
t = l i n s p a c e (0 , 2 * pi * (1 − 1 / L) , L) ; % The ta
b = h + R * exp (1 i * t) ; % 1 i i s t h e i m a g i n a r y u n i t
w = 1 . / (b . * s i n (b) − B * cos (b)) ;
W = f f t (conj (w) , L) ;
b_m = h + R * W(3) / W(2) ; % mth r o o t

B.1.2 Discrete-Time

MATLAB™ code of the method to calculate roots of transcendental equation given in

(3.62) is provided here. For ρ = 0.95, first root is calculated as 0.109447778298128.

rho = 0 . 9 5 ; % C o r r e l a t i o n C o e f f i c i e n t
N = 8 ; % Trans form S i z e
L = 1024 ; % FFT S i z e
m = 1 ; % Root I n d e x
i f m <= 2

h = 2 * pi / N * (m − 1 / 2) ;
e l s e

h = 2 * pi / N * (m − 1) ;
end
R = pi / N;
t = l i n s p a c e (0 , 2 * pi * (1 − 1 / L) , L) ; % The ta
omega = h + R * exp (1 i * t) ; % 1 i i s t h e i m a g i n a r y u n i t

115

116

g = (1 + rho) / (1− rho) ; % gamma
w = 1 . / (tan (omega * N / 2) − 1 / g * c o t (omega / 2)) ;
W = f f t (conj (w) , L) ;
omega_m = h + R * W(3) / W(2) ;

B.2 Codes for Explicitly Calculating Eigenvalues and Eigenvectors of an AR(1)

Process

MATLAB™ and C codes for steps 2 and 3 given in Section 3.5.2 with FFT and DFT used in

solving (3.69), respectively, are provided here. It is noted that codes given here are remark-

free as it is straightforward to follow them through the naming of the variables and calls.

Moreover, any improvement in the code for better time and/or space complexity is avoided

for better clarity and consistency with the text. For ρ = 0.95, largest eigenvalue calculated

from (3.3) using both of the codes listed here is 7.030310314016490. The numerical D&Q

algorithm [26] calculates it as 7.030310314016507.

B.2.1 MATLAB™ Code

f u n c t i o n [phi , lambda , omega_m] = eig_AR1 (rho , N, L , k)
g = (1 + rho) / (1 − rho) ;
t h e t a = l i n s p a c e (0 , 2 * pi − 2 * pi / L , L) ;
i f mod (k , 2) == 0

m = k / 2 + 1 ;
R = pi / N;
i f m <= 2

h = 2 * pi / N * (m − 1 / 2) ;
e l s e

h = 2 * pi / N * (m − 1) ;
end

e l s e
m = (k + 1) / 2 ;
i f (rho > 0 && m <= 2) | | (rho < 0 && m >= N / 2 − 1)

R = pi / N / 2 ;
e l s e

R = pi / N;
end
h = 2 * pi / N * (m − 1 / 4) ;

end

117

omega = h + R * exp (1 i * t h e t a) ;
i f mod (k , 2) == 0

w = 1 . / (tan (omega * N / 2) − 1 / g * c o t (omega / 2)) ;
e l s e

w = 1 . / (tan (omega * N / 2) + g * tan (omega / 2)) ;
end
W = f f t (conj (w) , L) ;
omega_m = r e a l (h + R * W(3) / W(2)) ;
lambda = (1 − rho ^ 2) / (1 − 2 * rho * cos (omega_m) + rho ^ 2) ;
c = s q r t (2 / (N + lambda)) ;
n = 0 : N−1;
p h i = c * s i n (omega_m * (n − (N − 1) / 2) + (k + 1) * pi / 2) ;

B.2.2 C Source Code

i n c l u d e < s t d i o . h>
i n c l u d e <math . h>
i n c l u d e <complex . h>

s t r u c t e i g e n p a i r {
double lambda , * p h i ;

} ;

t y p e d e f s t r u c t e i g e n p a i r e i g e n p a i r ;
t y p e d e f double _Complex c d o u b l e ;

e i g e n p a i r * eig_AR1 (double , i n t , i n t , i n t) ;
double get_omega_m (double , i n t , i n t , i n t) ;
c d o u b l e * get_w (double , double , double , i n t , i n t , i n t) ;
c d o u b l e DFT(c d o u b l e * , i n t , i n t) ;

e i g e n p a i r * eig_AR1 (double rho , i n t N, i n t L , i n t k) {
e i g e n p a i r * ep = (e i g e n p a i r *) ma l l oc (s i z e o f (e i g e n p a i r)) ;
double wm = get_omega_m (rho , N, L , k) ;
ep−>lambda = (1 − rho * rho) / (1 − 2 * rho * cos (wm) + rho *

rho) ;
ep−>p h i = (double *) ma l lo c (N * s i z e o f (double)) ;
i n t n ;
double c = s q r t (2 / (N + ep−>lambda)) ;
f o r (n = 0 ; n < N; n ++)

* (ep−>p h i + n) = c * s i n (wm * (n − ((double) N − 1) / 2)
+ ((double) k + 1) * M_PI / 2) ;

re turn ep ;
}

118

double get_omega_m (double rho , i n t N, i n t L , i n t k) {
i n t m;
double h , R ;
i f (k % 2 == 0) {

m = k / 2 + 1 ;
R = M_PI / N;
h = m <= 2 ? 2 * M_PI / N * (m − 0 . 5) : 2 * M_PI / N * (m

− 1) ;
} e l s e {

m = (k + 1) / 2 ;
R = ((rho > 0 && m <= 2) | | (rho < 0 && m >= N / 2 − 1))

? M_PI / N / 2 : M_PI / N;
h = 2 * M_PI / N * (m − 0 . 2 5) ;

}
c d o u b l e *w = get_w (h , R , rho , N, L , k) ;
double omega_m = h + R * c r e a l (DFT(w, L , 2) / DFT(w, L , 1)) ;
f r e e (w) ;
re turn omega_m ;

}

c d o u b l e * get_w (double h , double R , double rho , i n t N, i n t L , i n t
k) {

c d o u b l e * w = (c d o u b l e *) ma l l oc (L * s i z e o f (c d o u b l e)) ;
double gamma = (1 + rho) / (1 − rho) ;
i n t t ;
f o r (t = 0 ; t < L ; t ++) {

double t h e t a = 2 * M_PI / L * t ;
c d o u b l e omega = h + R * cexp (I * t h e t a) ;
i f (k % 2 == 0)

* (w + t) = 1 / (c t a n (omega * N / 2) − 1 / gamma * (1
/ c t a n (omega / 2))) ;

e l s e
*(w + t) = 1 / (c t a n (omega * N / 2) + gamma * c t a n (

omega / 2)) ;
}
re turn w;

}

c d o u b l e DFT(c d o u b l e *x , i n t L , i n t b i n) {
i n t n ;
c d o u b l e X = 0 ;
f o r (n = 0 ; n < L ; n ++)

X += *(x + n) * cexp (I * 2 * M_PI * b i n / L * n) ;
re turn X;

}

APPENDIX C

DETAILS ON GEOMETRIC BROWNIAN MOTION MODEL FOR STOCK

PRICES

In this Appendix, it is shown that (5.2) leads to (5.3) via Itō’s lemma [55]. Moreover

expected value and variance of the process given in (5.3) is calculated. Detailed discussion

on the topic can be found in many textbooks such as [52]. From (5.2) it follows that

dS(t) = µS(t)dt+ σS(t)dW (t). (C.1)

Itō’s lemma states that if an Itō process X(t) satisfies

dX(t) = α [X(t), t] dt+ β [X(t), t] dW (t), (C.2)

where α [X(t), t] and β [X(t), t] are two dimensional functions ofX(t) and t, then infinites-

imal increment df for any function f [X(t), t] differentiable in t and twice differentiable in

X(t) is given as

df =

(
∂f

∂t
+

∂f

∂X(t)
α +

1

2

∂2f

∂X(t)2
β2

)
dt+

∂f

∂X(t)
βdW (t). (C.3)

Independent variables X(t) and t of functions α [X(t), t], β [X(t), t], and f [X(t), t] are

not displayed in (C.3) for ease of notation. Let

f [X(t), t] = lnX(t)

α [X(t), t] = µX(t)

β [X(t), t] = σX(t)

X(t) = S(t). (C.4)

It follows from (C.3) and (C.4) that

d [lnS(t)] =

(
µ− σ2

2

)
dt+ σdW (t). (C.5)

119

120

It is noted that since dW (t) ∼ N (0, 1), an infinitesimal increment in the log price (C.5)

is a Gaussian with mean (µ− σ2/2) dt and variance σ2. Since summation of the Gaussian

random variables are also Gaussian it follows from (C.5) that lnS(t)−lnS(0) is distributed

as Gaussian with mean (µ− σ2/2) t and variance σ2t. Therefore, it is possible to write

lnS(t)− lnS(0) =

(
µ− σ2

2

)
t+ σW (t). (C.6)

Equivalently,

S(t) = S(0) exp

[(
µ− σ2

2

)
t+ σW (t)

]
. (C.7)

It is noted that (C.7) is identical to (5.3). Moments of the process given in (C.7) can be

calculated using the characteristic function [24] of a Gaussian random variable as given

Φ(ω) = E
{
ejωX

}
=

ˆ ∞
−∞

fX(x)ejωxdx = ejµω−σ
2ω2/2, (C.8)

where fX(x) is the probability density function of the Gaussian random variable X ∼

N (µ, σ2) and j =
√
−1 is the imaginary unit. From (C.7) and (C.8), it is possible to write

E {S(t)} = S(0)E

{
e

(
µ−σ

2

2

)
t+σW (t)

}
, (C.9)

which is nothing else but a multiplication of S(0) with a special case of (C.8) with X ∼

N (µt− σ2t/2, σ2t), jω = 1, and ω2 = 1. Therefore, expected value of S(t) is expressed

as

E {S(t)} = S(0)eµt−σ
2t/2−σ2t(−1)/2

= S(0)e(µ+σ2/2)t. (C.10)

Similarly,

E
{
S2(t)

}
= S2(0)e2µt+2σ2t. (C.11)

121

From (C.10) and (C.11), variance of S(t) is equal to

var {S(t)} = E
{
S2(t)

}
− E2 {S(t)}

= S2(0)e(2µ+σ2)t
(
eσ

2t − 1
)
. (C.12)

It is noted that (C.10) and (C.12) are identical to the ones given in (5.4).

REFERENCES

[1] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science, vol. 323, no. 5919,
pp. 1297–1298, 2009.

[2] T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, Redmond, WA, 2009.

[3] D. Kiron, R. Shockley, N. Kruschwitz, G. Finch, and D. M. Haydock, “Analytics: The
widening divide,” tech. rep., MIT Sloan Management Review, North Hollywood,
CA, 2011.

[4] P. C. Zikopoulos, D. deRoos, K. Parasuraman, T. Deutsch, D. Corrigan, and J. Giles,
Harness the Power of Big Data: The IBM Big Data Platform. McGraw-Hill
Professional, 2012.

[5] A. N. Akansu and R. A. Haddad, Multiresolution Signal Decomposition: Transforms,
Subbands, and Wavelets. Academic Press, Inc., San Diego, CA, 1992.

[6] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice Hall,
Upper Saddle River, NJ, 2010.

[7] I. T. Jolliffe, Principal Component Analysis. Springer-Verlag, New York, NY, 2002.

[8] R. Luck and J. Stevens, “Explicit solutions for transcendental equations,” SIAM Review,
vol. 44, pp. 227–233, 2002.

[9] W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and
Noise. McGraw-Hill, New York, NY, 1958.

[10] V. Pugachev, “A method for the determination of the eigenvalues and eigenfunctions
of a certain class of linear integral equations,” Journal of Applied Mathematics
and Mechanics (Translation of the Russian Journal Prikladnaya Matematika i
Mekhanika), vol. 23, no. 3, pp. 527–533, 1959.

[11] V. Pugachev, “A method of solving the basic integral equation of statistical theory of
optimum systems in finite form,” Journal of Applied Mathematics and Mechanics
(Translation of the Russian Journal Prikladnaya Matematika i Mekhanika), vol. 23,
no. 1, pp. 3–14, 1959.

[12] J. Wilkinson, The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, UK,
1965.

[13] W. Ray and R. Driver, “Further decomposition of the Karhunen-Loève series representation
of a stationary random process,” IEEE Transactions on Information Theory, vol. 16,
pp. 663 – 668, Nov. 1970.

122

123

[14] C. G. J. Jacobi, “Über ein leichtes verfahren, die in der theorie der säkularstörungen
vorkommenden gleichungen numerisch aufzulösen,” Crelle’s Journal, vol. 30,
pp. 51 – 94, 1846.

[15] J. Demmel and K. Veselic, “Jacobi’s method is more accurate than QR,” SIAM J. Matrix
Anal. Appl., vol. 13, pp. 1204 – 1245, 1992.

[16] R. Farber, CUDA Application Design and Development. Elsevier, Waltham, MA, 2011.

[17] H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments. Wiley, New
York, NY, 1959.

[18] L. Laloux, P. Cizeau, M. Potters, and J.-P. Bouchaud, “Random matrix theory and financial
correlations,” International Journal of Theoretical and Applied Finance, vol. 3,
pp. 391–397, Jan. 2000.

[19] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr, and H. E. Stanley,
“Random matrix approach to cross correlations in financial data,” Phys. Rev. E,
vol. 65, pp. 066126–1–066126–18, Jun. 2002.

[20] J. P. Bouchaud and M. Potters, “Financial applications of random matrix theory: a
short review,” Quantitative Finance Papers, no. 0910.1205, arXiv.org, Oct. 2009,
accessed on 4/30/2013.

[21] “Special issue on signal processing for financial applications, IEEE Signal Processing
Magazine,” Sep. 2011.

[22] “Special issue on signal processing methods in finance and electronic trading, IEEE Journal
of Selected Topics in Signal Processing,” Aug. 2012.

[23] T. W. Epps, “Comovements in stock prices in the very short run,” Journal of the American
Statistical Association, vol. 74, no. 366, pp. 291–298, 1979.

[24] A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New
York, NY, 1991.

[25] S. Kay, Modern Spectral Estimation: Theory and Application. Prentice Hall, Upper Saddle
River, NJ, 1988.

[26] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, 1996.

[27] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transfom,” IEEE Transactions on
Computers, vol. C-23, pp. 90 – 93, Jan. 1974.

[28] R. J. Clarke, “Relation between the Karhunen Loève and cosine transforms,” IEE
Proceedings F, vol. 128, pp. 359 – 360, Nov. 1981.

[29] H. Fettis, “Complex roots of sin(z)=az, cos(z)=az, and cosh(z)=az,” Math. Comp., vol. 30
(135), pp. 541–545, 1976.

124

[30] C. Siewert and E. Burniston, “An exact analytical solution of Kepler’s equation,” Celestial
Mechanics, vol. 6, pp. 294–304, 1972.

[31] C. Siewert and J. Phelps, “On solutions of transcendental equation basic to the theory of
vibrant plates,” J. Comput. Appl. Math., vol. 4, pp. 37–39, 1978.

[32] R. L. Burden and J. D. Faires, Numerical Analysis. Prindle, Weber, and Schmidt, Inc.,
Boston, MA, 1985.

[33] R. Leathers and N. McCormick, “Closed-form solutions for transcendental equations of
heat transfer,” ASME J. Heat Transfer, vol. 118, pp. 970–973, 1996.

[34] N. Muskhelishvili, Singular Integral Equations. P. Noordhoff, Groningen, The
Netherlands, 1953.

[35] E. E. Burniston and C. E. Siewert, “The use of Riemann problems in solving a class of
transcendental equations,” Proc. Cambridge Philos. Soc., vol. 73, pp. 111–118,
1973.

[36] E. G. Anastasselou, “A formal comparison of the Delves-Lyness and Burniston-Siewert
methods for locating the zeros of analytic functions,” IMA Journal of Numerical
Analysis, vol. 6 (3), pp. 337–341, 1986.

[37] H. L. Van Trees, Detection, Estimation, and Modulation Theory. No. 1, John Wiley &
Sons, New York, NY, 2001.

[38] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables. Dover Publications, Mineola, NY, 1965.

[39] M. Allen and E. Isaacson, Numerical Analysis for Applied Science. John Wiley & Sons,
Inc., New York, NY, 1997.

[40] G. Strang, Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley,
MA, 1986.

[41] J. Brown and R. Churchill, Complex Variables and Applications. McGraw-Hill, New York,
NY, 2009.

[42] G. S. Sachdev, V. Vanjani, and M. W. Hall, “Takagi factorization on GPU using CUDA,”
in Proc. Symposium on Application Accelerators in High Performance Computing,
Knoxville, Tennessee, Jul. 2010.

[43] V. Novakovic and S. Singer, “A GPU-based hyperbolic SVD algorithm,” BIT Numerical
Mathematics, vol. 51, pp. 1009 – 1030, 2011.

[44] M. U. Torun, O. Yilmaz, and A. N. Akansu, “Novel GPU implementation of Jacobi
algorithm for Karhunen-Loève transform of dense matrices,” in Proc. IEEE 46th
Annual Conference on Information Sciences and Systems (CISS), pp. 1 – 6, Mar
2012.

125

[45] M. U. Torun and A. N. Akansu, “A novel GPU implementation of eigenanalysis for risk
management,” in Proc. IEEE 13th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 490 – 494, Jun 2012.

[46] F. T. Luk and H. Park, “A proof of convergence for two parallel Jacobi SVD algorithms,”
IEEE Transactions on Computers, vol. 38, pp. 806 – 811, Jun 1989.

[47] D. Butenhof, Programming With POSIX Threads. Addison-Wesley Professional
Computing Series, Prentice Hall, Upper Saddle River, NJ, 1997.

[48] NVIDIA, CUDA Programming Guide Version 4.0, May 2011.

[49] NVIDIA, Tuning CUDA Applications for Fermi Version 1.0, Feb. 2010.

[50] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley Professional, 2010.

[51] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2010.

[52] M. Baxter and A. Rennie, Financial Calculus: An Introduction to Derivative Pricing.
Cambridge University Press, Cambridge, UK, 1996.

[53] L. Bachelier, “Théorie de la spéculation,” Annales scientifiques de l’École Normale
Supérieure, vol. 3, pp. 21–86, 1900.

[54] F. Black and M. S. Scholes, “The pricing of options and corporate liabilities,” Journal of
Political Economy, vol. 81, pp. 637–54, Jun 1973.

[55] K. Itô, “On a stochastic integral equation,” Proc. Japan Acad., vol. 22, no. 2, pp. 32–35,
1946.

[56] A. A. Kirilenko, A. S. Kyle, M. Samadi, and T. Tuzun, “The flash crash: The impact of
high frequency trading on an electronic market,” SSRN eLibrary, Oct 2010.

[57] B. Dupire, “Pricing with a smile,” RISK, vol. 7, pp. 18–20, 1994.

[58] E. Derman and I. Kani, “Riding on a smile,” RISK, vol. 7, pp. 32–39, 1994.

[59] J. Hull and A. White, “The pricing of options on assets with stochastic volatilities,” The
Journal of Finance, vol. 42, no. 2, pp. 281–300, 1987.

[60] S. L. Heston, “A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options,” The Review of Financial Studies, vol. 6, no. 2,
pp. 327–343, 1993.

[61] J. C. Cox, J. E. Ingersoll, Jr., and S. A. Ross, “A theory of the term structure of interest
rates,” Econometrica, vol. 53, no. 2, pp. 385–407, 1985.

[62] R. Cont and P. Tankov, Financial Modelling with Jump Processes. CRC Press LLC, Boca
Raton, FL, 2003.

126

[63] M. Avellaneda and J.-H. Lee, “Statistical arbitrage in the US equities market,” Quantitative
Finance, vol. 10, pp. 761–782, Aug 2010.

[64] M. U. Torun, A. N. Akansu, and M. Avellaneda, “Portfolio risk in multiple frequen-
cies,” IEEE Signal Processing Magazine, Special Issue on Signal Processing for
Financial Applications, vol. 28, pp. 61–71, Sep. 2011.

[65] M. U. Torun and A. N. Akansu, “On basic price model and volatility in multiple
frequencies,” in IEEE Statistical Signal Processing Workshop (SSP), pp. 45 – 48,
June 2011.

[66] E. Bacry, S. Delattre, M. Hoffmann, and J. Muzy, “Modeling microstructure noise using
Hawkes processes,” in Proc. IEEE International Conference on Acoustics Speech
and Signal Processing, May 2011.

[67] L. Zhang, “Estimating covariation: Epps effect, microstructure noise,” Journal of
Econometrics, vol. 160, no. 1, pp. 33 – 47, 2011.

[68] A. M. Sengupta and P. P. Mitra, “Distributions of singular values for some random
matrices,” Phys. Rev. E, vol. 60, pp. 3389–3392, Sep 1999.

[69] D. Mueller-Gritschneder, H. Graeb, and U. Schlichtmann, “A successive approach to com-
pute the bounded Pareto front of practical multiobjective optimization problems,”
SIAM Journal on Optimization, vol. 20, no. 2, pp. 915–934, 2009.

[70] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,
West Sussex, UK, 2001.

	High performance digital signal processing: Theory, design, and applications in finance
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Mathematical Preliminaries
	Chapter 3: Explicit Klt Kernel for Discrete Ar(1) Process
	Chapter 4: Improved Numerical Methods for Eigenanalysis
	Chapter 5: Fundamentals of Quantitative Finance
	Chapter 6: Portfolio Risk Analysis and Management
	Chapter 7: Conclusions and Future Work
	Appendix A: Tables for Roots of Transcendental Equation
	Appendix B: Codes for Explicit Klt Kernel of An Ar(1) Process
	Appendix C: Details on Geometric Brownian Motion Model for Stock Prices
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

