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ABSTRACT 

THE APPLICATION OF BAYESIAN ADAPTIVE DESIGN AND MARKOV 

MODEL IN CLINICAL TRIALS 

 

by 

Xiaoyu Lu 

In this research, two new designs in clinical trials are proposed. The first problem is a 

new Bayesian adaptive dose-finding design and its application in an oncology clinical 

trial. This design is used for phase IB studies with the biomarker as the endpoint and with 

the fewer patients. The second problem is another new Bayesian adaptive dose-finding 

design with longitudinal analysis and its application in phase II depression clinical trial. 

This design is best fit for phase II dosing-finding clinical trials with clinical endpoints. 

MTD information has been obtained before the trials. 

In adaptive dose-finding clinical trials, the strategy is to reduce the allocation of 

patients to non-informative doses and also save the trial cost. Bayesian adaptive dose 

finding design has the ability to utilize accumulating data obtained in real time to alter the 

course of the trial, thereby enabling dynamic allocation to different dosing groups and 

dropping of ineffective dosing group earlier. In this research, Bayesian adaptive method 

is used as a new and useful approach that applies to phase IB and phase II dose-finding 

clinical trials to evaluate safety and efficacy of the study treatment. Response model and 

Normal Dynamic Linear Models (NDLMs) are applied in stages 1-4. Conditional 

probability for each parameter in the model is derived using appropriate prior 

distributions. Markov Chain Monte Carlo (MCMC) method is used to do the simulation. 

Model parameters with meaningful prior distributions and the posterior quantities are 



 

 

obtained to evaluate the trial results and they help to determine the optimal dose level 

which can be used in later studies. Simulations are done for different scenarios in the two 

designs and used to validate the model. Five-thousand simulation trials are conducted to 

verify the repeatability of the results. The posterior probability of success for the trial is 

greater than 90% based on the simulation results. The results give clearer idea if one 

needs to go further to test new dose levels based on the thorough evaluation of the 

existing partial data. Compared with the other adaptive dose finding strategy, the 

proposed Bayesian adaptive designs are sensitive and robust to help the investigators 

draw conclusion as early as possible. The designs can also reduce sample size 

substantially which in turn leads to savings in cost and time. 

Continuous-time Markov model has the advantage over the traditional survival 

model and can be used to describe disease as a series of probable transitions between 

health states. This is an attractive feature since it provides the ability to describe the 

course of disease over time. It can also describe and estimate expected survival in clinical 

cohort. In this research, continuous-time Markov model is used in the time-to-event 

analysis in a phase II oncology trial. Six states are defined in the Markov chain which is 

used in time to progression analysis for 36 patients with neuroendocrine carcinoma. The 

transition probability matrix P is defined and used to iterate future transition and survival 

probabilities. The estimate from matrix analysis shows that the results are reliable and 

comparable with the Kaplan-Meier results. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

This research reports the new design, implementation, and outcome of the Bayesian 

adaptive, dose-ranging trials incorporating the innovative dose finding approach to 

flexibly address both efficacy and safety aspect of the drug. Two designs are described 

and simulated. The first one is a new Bayesian adaptive dose-finding design and its 

application in an oncology clinical trial. This design is applied to a phase IB study with 

the biomarker as the endpoint and with the fewer patients (Chapter 2, 3, 4). The second 

one is another Bayesian adaptive dose-finding design and its application in depression 

clinical trial (Chapter 5). This design is applied to a phase II dosing-finding clinical trial 

with clinical endpoints. The last problem in this research is the application of Markov 

models in time to event analysis (Chapter 6). 

1.2 Background Information of Bayesian Adaptive Design 

Clinical trials involving new drugs are commonly classified into four phases, phase I to 

IV. Sometimes phase 0 trials are conducted. Phase 0 trials are first-in-human trials. Single 

sub-therapeutic doses of the study drug are given to a small number of subjects (10 to 15) 

to gather preliminary data on the agent's pharmacodynamics (PD) and pharmacokinetics 

(PK). PD analysis shows what the drug does to the body PK analysis shows what the 

body does to the drugs. Phase I studies are usually conducted in healthy volunteers. The 

goal here is to determine what the drug's most frequent side effects are and, often, how
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the drug is metabolized and excreted. The number of subjects typically ranges from 20 to 

80. Sometimes, phase I studies were conducted by two stages: phase IA and phase IB. 

Phase IA is mainly focused on safety analysis and phase IB is mainly focused on dose-

finding based on biomarker analysis. Phase II studies begin if Phase I studies don't reveal 

unacceptable toxicity. While the emphasis in Phase I is on safety and biomarker analysis, 

the emphasis in Phase II is on effectiveness. This phase aims to obtain preliminary data 

on whether the drug works in people who have a certain disease or condition. For 

controlled trials, patients receiving the drug are compared with similar patients receiving 

a different treatment--usually an inactive substance (placebo), or a different drug. Safety 

continues to be evaluated, and short-term side effects are studied. Typically, the number 

of subjects in Phase II studies ranges from a few dozen to about 300. Phase III studies 

begin if evidence of effectiveness is shown in Phase II. These studies gather more 

information about safety and effectiveness, studying different populations and different 

dosages and using the drug in combination with other drugs. The number of subjects 

usually ranges from several hundred to about 3,000 people. Phase IV trials are post-

marketing studies delineate additional information, including the treatment's risks, 

benefits, and optimal use [1].  

  Clinical trials are research studies to find better ways to treat patients with the 

selected product. Depending on the type of testing product and the stage of its clinical 

trial development, investigators initially enroll volunteers and/or patients into small pilot 

studies, and subsequently conduct larger scale studies applied to patients. The clinical 

trials compare the safety and efficacy of the new product with others that have already 
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been approved for the affliction of interest or sometimes compare the new product with 

the placebo, which is a simulated or otherwise medically ineffectual treatment for a 

disease.  A full series of clinical trials may incur sizable costs.  

 A dose-finding study is a clinical trial where different doses of an agent (e.g., a 

drug) are tested against each other to establish which dose works best and/or is least 

harmful. A correct dose-finding study is of the utmost importance during clinical 

development of a new drug. It must define the no-effect dose and the mean effective and 

maximal effective doses. Then taking tolerability into account, the optimal therapeutic 

dose range can be selected. The purpose of the dose finding trials is to find a dose of 

treatment that is optimal with respect to simple criteria: Toxicity, efficacy and low risk of 

side effects. There are many possible dose optima: Minimum effective dose, maximum 

non-toxic dose, maximum tolerated dose, ideal therapeutic dose. To define the dosage 

schedule the duration of action in human being must be tested, if possible together with 

blood concentration measurements. An adequate dose-finding study shows the optimal 

doses for trials in Phase I or II, thereby saving time and effort and reducing the number of 

patients required. 

 The main goal of a dose-finding study is to estimate the response versus dose 

given, so as to analyze the efficacy and safety of the drug. Although such a response will 

nevertheless be available from phase III or phase IV trials, it is important to carry out 

dose-finding studies in the earlier phase I or phase II stages. The main reason for this is to 

avoid trials in the later phases using doses that are significantly different from those that 

will subsequently be recommended for clinical use and also to avoid the need for 
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modification of dosing schedules at later stages where a large amount of data has already 

been accumulated for a different dose range [2]. 

 Typically, a dose finding study includes a placebo group of subjects (or a control 

group), and a few groups that receive different doses of the test drug. For instance, a 

typical dose-finding study may include four groups: a placebo group, low-dose group, 

medium-dose group and a high-dose group. The maximum tolerable dose (MTD) 

information is necessary to be able to design such groups and therefore dose-ranging 

studies are usually designed after the availability of MTD information. The tendency of 

clinical experts to try to demonstrate superiority of one drug over another by using doses 

higher than patients really need must be resisted. The price paid in poor tolerability 

exceeds any potential benefits [3].  

 Adaptive designs in clinical trials are schemes for patient assignment to treatment, 

the goal of which is to place more patients on the better treatment based on patient 

responses already accrued in the trial. In an adaptive dose-finding study, the dose 

assignment(s) to the next subject, or next cohort of subjects, is based on responses of 

previous subjects, and the dose assignment is chosen to maximize the information about 

the dose–response curve, according to some pre-defined objective metric (for example, 

minimum variability in parameter estimates). In a traditional dose-finding trial, selecting 

a few doses may not adequately represent the dose–response relationship and many 

patients will be allocated to 'non-informative' doses (wasted doses), as shown in Figure 

1.1 [4]. In adaptive dose-finding, the strategy is to initially include only a few patients on 

some doses to explore the dose–response, then to allocate the dose range of interest to 
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more patients. This reduces the allocation of patients to non-informative doses. 

Compared with fixed randomization, this approach has the ethical advantage that fewer 

subjects are assigned doses that are too high or too low. It can also avoid additional 

separate trials that might be necessary when fixed dose-finding trials do not adequately 

define the dose range.  

 Adaptive dose-finding trials also require an infrastructure that allows the rapid 

communication of responses from trial sites to a central un-blinded analysis center and of 

adaptive dose assignments to the trial sites. Randomization software capable of rapidly 

computing dynamic allocation of doses to subjects is additionally mandated by adaptive 

trials because pre-specified randomization lists will not work. In addition, a flexible drug-

supply process is required because demand for doses is not fixed in advance, but rather 

evolves as information on responses at various doses is gathered as the trial progresses 

[3].  

There are several facts about the adaptive design that one needs to follow before 

the start of the adaptive dose-finding studies: 

 Thorough upfront planning 

 Decision rules for adaption are pre-specified. 

 Ensure more accurate and faster decision-making on dosing selection. 

 Emphasis on modeling/estimation as opposed to hypothesis testing. 

 

The following is a list of some existing adaptive dose-finding methods [5]: 

 ANOVA – Conventional method based on pairwise comparisons and multiplicity 

adjustment (Dunnett) of identify dose response (DR). This is a common approach 

used in dose finding studies  
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 MCP-Mod – Combination of multiple comparison procedure (MCP) to identify 

presence of dose response, and modeling to estimate target dose(s) and dose 

response profile [6] 

 MTT: novel method based on Multiple Trend Tests [5] 

 BMA: Bayesian Model Averaging [7] 

 LOCFIT: Nonparametric local regression fitting [8] 

 

Figure 1.1 Drug responses vs. dose level. [4] 

1.3 Background Information of Continuous-Time Markov Model 

The term Markov chain is used to describe a process observed at discrete intervals. A 

Markov process describes a process observed continuously. In the application of clinical 

trial, Markov process is really a continuously-time process, only it is observed at discrete 

intervals [9].  

In probability theory, a continuous-time Markov chain (CTMC) is a stochastic 

process {X(t) : t ≥ 0 } that satisfies the Markov property and takes values from a set 
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called the state space [10]; it is the continuous-time version of a Markov Chain. The 

Markov property states that at any times s > t > 0, the conditional probability distribution 

of the process at time s given the whole history of the process up to and including time t, 

depends only on the state of the process at time t. In effect, the state of the process at time 

s is conditionally independent of the history of the process before time t, given the state 

of the process at time t. In simple terms the process can be thought of as memory-less 

[11]. 

 Many clinical studies involve complex changes, for example, relapse, recurrence, 

remission, progress and death. The time-to-event analysis is usually done by using 

Kaplan-Meier methods. But there are some limitations of Kaplan-Meier method: 1) It is 

inadequate to describe the complexity of disease beyond two simple states: event or no 

event 2) it is not able to describe disease as a series of probable transition between health 

states. It is restricted by assumptions of non-informative censoring and limit the 

description of disease to permanent transition from one state (e.g., alive) to another (e.g., 

dead). 3) Kaplan-Meier estimator is sensitive to patient lost to follow-up, event happen 

due to other cause rather than disease. A CTMC is a stochastic process that has been used 

to describe disease treatment processes during the past. Marshall and Jones used Markov 

model to evaluate and describe diabetic retinopathy [12]. Schaubel used Markov model in 

renal disease analysis [13], Hendriks used Markov model in papilloma virus and human 

immunodeficiency virus [14]. In this research, continuous-time Markov chain model will 

be used to explore time-to-event data in oncology clinical trial. The model can be used to 

estimate expected median survival time and time to progression for the patients. It can 
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also be a potential powerful exploratory analysis method which can be applied to 

different disease treatments.  
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CHAPTER 2 

A NEW DOSE-FINDING DESING USING BAYESIAN STATISTICS AND 

MARKOV CHAIN MONTE CARLO (MCMC) 

2.1  Bayesian Statistical Method and its Application in Clinical Trials 

Statistical thinking has had a central role in raising the scientific standards of clinical 

research over the last two centuries, especially during the past 50 years. A major reason 

has been the appreciation of statistical inference by drug- and medical-device-regulatory 

agencies. Traditional frequentist statistics has had the dominant, and often exclusive, role 

in this scientific renaissance. The greatest virtue of the traditional approach maybe its 

extreme rigor and narrowness of focus to the experiment at hand, but a side effect of this 

virtue is inflexibility, which in turn limits innovation in the design and analysis of clinical 

trials. Because of this, clinical trials tend to be overly large, which increases the cost of 

developing new therapeutic approaches, and some patients are unnecessarily exposed to 

inferior experimental therapies. Owing to such issues, there is increasing interest in 

Bayesian methods in clinical trials. Advances in computational techniques and power are 

also facilitating the application of these methods [15].  

Bayesian statistics is the subset of the entire field of statistics in which the 

evidence about the true state of the world is expressed in terms of degrees of belief or, 

more specifically, Bayesian probabilities [16]. Bayesian inference is an approach in 

statistical inference, which is distinct from the more traditional frequentist inference. It is 

specifically based on the use of Bayesian probabilities to summarize evidence [17]. The 

formulation of statistical models for use in Bayesian statistics has the additional feature, 

not present with other types of statistical techniques, of requiring the formulation of a set 
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of prior distributions for any unknown parameters. Such prior distributions are as much 

part of the statistical model as the part that expresses the probability distribution of 

observations given the model parameters. It is usually carried out in the following steps 

[18]: 

a) Choose a probability density function f(θ) as prior distribution that express our 

beliefs about a parameter θ before we see any data. 

b) Choose a statistical model f(x|θ) that reflects our beliefs about X given θ.  

c) After observing data X1, …. Xn, we update our beliefs and calculate the posterior 

distribution f(θ|X1, …Xn). 

The usual considerations in the design of clinical trials are extended in the case of 

Bayesian design of clinical trials to include the influence of prior beliefs. Importantly, the 

application of sequential analysis techniques allows the outcome of earlier stages in the 

trial to influence the design of the next stage of the trial, based on the updating of beliefs 

as expressed by the prior and posterior distribution. Part of the problem of the design of 

clinical trials is that they should make good use of resources of all types: Bayesian design 

of clinical trials is used to aim at such efficiency [19].  

In the design proposed, prior distributions of the clinical trial efficacy response 

mean f(θ), error term f(ε) are assumed. The statistical model f(x|θ) is derived based on 

our beliefs about X given θ. After observing efficacy response data X1, …. Xn, the sample 

mean of the efficacy response is obtained and posterior distribution of the efficacy 

response is observed. 
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2.2  Markov Chain Monte Carlo (MCMC) and its usage in Bayesian Statistics 

Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo 

methods) are a class of algorithms for sampling from probability distributions based on 

constructing a Markov chain that has the desired model as its equilibrium distribution. 

The state of the chain after a large number of steps is then used as a sample of the desired 

distribution. The quality of the sample improves as a function of the number of steps.  

MCMC method is a general simulation method for sampling from posterior 

distributions and computing posterior quantities of interest. The most common 

application of MCMC algorithms is numerically calculating multi-dimensional integrals. 

In these methods, an ensemble of "walkers" moves around randomly. At each point 

where the walker steps, the integrand value at that point is counted towards the integral. 

The walker then may make a number of tentative steps around the area, looking for a 

place with reasonably high contribution to the integral to move into next. Random walk 

methods are a kind of random simulation or Monte Carlo method. A Markov chain is 

constructed in such a way as to have the integrand as its equilibrium distribution [19]. 

A major limitation towards more widespread implementation of Bayesian 

approaches is that obtaining the posterior distribution often requires the integration of 

high-dimensional functions. This can be computationally very difficult. In this paper, 

MCMC methods, which attempt to simulate direct draws from some complex distribution 

of interest, is used. MCMC approaches are used because one uses the previous sample 

values to randomly generate the next sample value, generating a Markov chain (as the 
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transition probabilities between sample values; these probabilities are only a function of 

the most recent sample value)[19]. 

2.3 Gibbs Sampling 

Gibbs sampling, is a special case of the MCMC methods. It is particularly well-adapted 

to sampling the posterior distribution of a Bayesian network. The point of Gibbs 

sampling is that given a multivariate distribution it is simpler to sample from a 

conditional distribution than to marginalize by integrating over a joint distribution. 

Suppose one want to obtain k samples of X={X1, X2, …, Xn} from a joint distribution 

p(X1,X2, …, Xn). It can be achieved as follows: 

a) Begin with some initial value X
(0)

 for each variable. 

b) For each sample i   {1,…k}, sample each variable Xj
(i)

 from the conditional 

distribution p(Xj
(i)

| X1
(i)

,…, Xj-1
(i)

,Xj+1
(i-1)

 …, Xn
(i-1)

). That is, sample each variable 

from the distribution of that variable conditioned on all other variables, making 

use of the most recent values and updating the variable with its new value as soon 

as it has been sampled. 

 

The marginal distribution of any subset of variables can be approximated by 

simply examining the samples for that subset of variables, ignoring the rest. In addition, 

the expected value of any variable can be approximated by averaging over all the samples 

[20]. 

In this research, Bayesian statistical method is used in an adaptive dose-finding 

clinical trial and Gibbs sampling method are used for the simulation.  
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2.4  A New Proposed Bayesian Adaptive Dose-finding Design 

This research reports the new design, implementation, and outcome of a Bayesian 

adaptive, dose-ranging trial incorporating an innovative dose finding approach to flexibly 

address both efficacy and safety aspect of the drug.  A four-stage Bayesian adaptive 

design is proposed for a dose-finding study treating breast cancer patients.   

The fluorodeoxyglucose positron emission tomography (FDG-PET) is a widely 

used biomarker which is most commonly known in cancer diagnosis and is used as the 

method to measure the efficacy response. 

PET is a non-invasive diagnostic tool that provides tomographic images and 

quantitative parameters of perfusion, cell viability, proliferation and/or metabolic activity 

of tissues. These images result from the use of different substances of biological interest 

(sugars, amino acids, metabolic precursors, hormones) labeled with positron emitting 

radioisotopes (PET radiopharmaceuticals). 

FDG is an analogue of glucose and is taken up by living cells via the first stages 

of normal glucose pathway. The rationale behind its use as a tracer for cancer diagnosis 

depends on an increased glycolytic activity in neoplastic cells. FDG is trapped into the 

cancer cells due to their high glycolytic activity and excreted from the body through the 

renal system, which is unable to reabsorb the tracer. A 50-60 minute interval between 

FDG administration and image scan is usually enough to obtain a good 

tumour/background ratio of the tracer. Figure 2.1 [21] shows the transport and 

metabolism of FDG in neoplastic cells. Following facilitated transport by Glut-1(k1), 

FDG is phosporylated by hexokinase(k3). FDG-6-phosphate can neither undergo further 
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metabolism nor diffuse out of cells. As the dephosphorylation(k4) reaction also occurs 

slowly, FDG-6-phosphate is trapped intracellularly and accumulates. 

 

 

Figure 2.1 Transport and metabolism of FDG. [21] 

 

The cell alterations related to neoplastic transformation are associated with 

functional impairments that are discernible before structural alterations occur. Therefore, 

FDG-PET can reveal the presence of a tumor when conventional morphological 

diagnostic modalities (i.e., X-ray, CT, MRI and ultrasound) do not yet detect any evident 

lesions. 

FDG uptake in tumors correlates with tumor growth and viability, so the PET scan 

and the possible metabolic quantification may provide useful information about tumor 

characterization, patient prognosis, and monitoring of the response to anticancer therapy. 

At present there is considerable evidence that the application of FDG-PET is becoming 

more and more widespread for the diagnostic assessment of patients with suspected 

malignancies, in tumor staging, and in therapy monitoring [22].  Moreover, a reduction in 

the FDG-PET signal within days or weeks of initiating therapy significantly correlates 

http://clincancerres.aacrjournals.org/content/11/8/2785/F1.large.jpg
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with prolonged survival and other clinical endpoints now used in drug approvals. These 

findings suggest that FDG-PET could facilitate drug development as an early surrogate of 

clinical benefit [21]. 

FDG accumulation was measured using the standardized uptake value (SUV) as 

follows [23]: 

 

 

 

Where ROI is Region of Interest, Radioactivity concentration in the ROI was determined 

as the maximum average radioactivity concentration in the tissue at 55 to 60 min post-

injection, corrected for calibration and decay. 

A clinical trial endpoint is defined as a measure that allows us to decide whether 

the null hypothesis of a clinical trial should be accepted or rejected. In this example, a 

successful efficacy endpoint/response is defined as a subject has ≥ 20% decrease on the 

sum of FDG-PET uptake SUVmean and SUVmax at 7 days post-dose compared to pre-

dose. A successful safety response is evaluated by adverse event and laboratory values.  

It is expensive to use FDG-PET scan comparing with CT/MRI in the clinical trial. 

The fundamental goal of the proposed adaptive design used in this trial is to reduce the 

sample size, to find the optimal dose efficiently, so as to save the cost and also avoid too 

many subjects to be exposed to wasted doses. The efficiency of this approach is increased 

by the use of frequent interim analysis of accumulating data. In the trial, subjects are 

assigned to 5 treatment groups (corresponding to 2.5 mg, 5 mg, 10 mg, 25 mg, 50 mg 

 

(2.1) 
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doses) and three interim analyses are performed during each stage. The use of Bayesian 

approach produces predictive probabilities for success in Phase III. It also yields a 

transparent analysis that supports quantitative decision making.  The design allows the 

range of doses to be adaptively expanded either up or down. 

Figure 2.2 shows the four-stage design with the maximum possible number of 

subjects assigned in each treatment group by stage.  

Stage 1: 

In stage 1, only 10 mg dose are evaluated. Eight subjects are assigned into 10 mg group 

in this stage. The reason of choosing eight subjects is to make the final maximum sample 

size for each group to be 12. Twelve subjects per arm are calculated by sample size 

calculation method using historical data.  

Three interim analyses are performed in each stage. For the first interim analysis, 

four subjects are assigned to 10 mg group. After the subjects taking the dose, the efficacy 

response, the sum of the SUVmean and SUVmax of FDG-PET uptake, are measured and 

the safety data are recorded. A successful response is defined as a subject has ≥ 20% 

decrease on the FDG-PET uptake at 7 days post-dose compared to pre-dose, is a clinical 

meaningful response in treated group.  

Pr (0.2 ≤ θd | Data), (2.2) 

 

θd refers to the percent of decrease on the sum of SUVmean and SUV max of FDG-PET 

uptake for dose d.              
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Figure 2.2 Maximum possible numbers of subjects in each treatment group by stage. 

 

Let θd be the mean response to dose d. d = 1 - 5 for each dose level in the 

ascending order. The probability of having 0.2 ≤ θd will be evaluated. The posterior 

quantities will be calculated and utilized. In the first stage, θ1 is used for the mean dose 

response.  

As the next step for the second interim analysis, two more subjects will be added 

into 10 mg group. The posterior quantities will be calculated again using expanded data. 

If Pr (0.2 ≤ θ1 | Data) < 0.2 for these two consecutive analyses, this dose level will be 

declared as futility and the study will move onto the next stage. Otherwise, two more 

subjects (the 7th to 8th subject for 10 mg arm) would be added. The posterior quantities 

will be calculated again. 
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Given the results of those three interim analyses on efficacy, the efficacy of 10 mg 

group would be evaluated using the following criteria: 

 If Pr (0.2 ≤ θ1| Data) < 0.2 for any of two consecutive analyses, this dose level 

will be declared as futility.  

 Otherwise, the dose level will be declared as non-futility. 

In any case, if the dose level has safety concern, the higher dose levels would not 

be tested in the next stage. Similarly, if the dose level is futile, the lower dose levels 

would not be tested in the next stage. 

If Pr (0.2 ≤ θ1 | Data) ≥ 0.8 for any of two consecutive analyses, this dose level 

will be declared as effective. In this case, stage 1 will be ended early and the trial will 

enter stage 2. 

Stage 2: 

One of the following four actions would be taken in stage 2 based on the results in stage 

1: 

1. If the safety is good and the efficacy is non-futile, then the next higher and 

the next lower dose groups (i.e., 5 mg and 25 mg) will be assessed in stage 

2. 

2. If the safety is not good and the efficacy is non-futile, then the next lower 

dose group (i.e., 5 mg) will be assessed in stage 2. 

3. If the safety is good and the efficacy is futile, then the next higher dose 

group (i.e., 25 mg) will be assessed in stage 2. 

4. If the safety is not good and the efficacy is futile, then four more subjects 

will be added into 10 mg group for re-evaluation. The efficacy and safety 

will be re-evaluated using expanded data with the criteria a) - c) above. If 

the safety is still not good and the efficacy is still futile, then the trial will 

be ended. Otherwise, the study will enter stage 2 without anyone to be 

randomized into 10 mg group in the next stage. 

Although there may still be some subjects to be assigned into 10 mg group in 

stage 2, 10 mg group will not be focused in this stage, since it has been tested previously. 
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If there were 12 subjects assigned into 10 mg group in stage 1 due to re-evaluation in 

case 4, there would be no subjects to be assigned into 10 mg in stage 2. 

If 5 mg and/or 25 mg will be tested, the randomization ratios between the new 

dose levels in stage 2 (i.e., 5 mg and/or 25 mg) and the old dose levels in stage 1 (i.e.,  10 

mg) would be 2:1. Totally eight subjects in each new dose level and four subjects in each 

old level will be randomized in stage 2. Similar to the procedures in stage 1, those eight 

subjects in the new dose levels will be randomized in three steps by 2:1:1. Three interim 

analyses would be done to evaluate the efficacy at the end of each step. 

Normal dynamic linear models (NDLMs) will be used in stage 2 and all later 

stages to borrow information across adjacent doses. 

Stage 3: 

Similar to stage 2, the other new dose levels (2.5 mg and 50 mg) may be tested according 

to the analyses in the previous stages. In stage 3, totally eight subjects in each new dose 

level and four subjects in each levels in the previous stage, will be assigned, see Figure 

2.2. 

Stage 4: 

If a dose level in stage 4, either 2.5 mg group or 50 mg group, is good in safety and non-

futile in efficacy, four more subjects will be assigned into that dose group to make the 

total number of subjects to be twelve in each of these dose groups. The final tested dose 

level will have twelve subjects in order to be considered adequate to evaluate both 

efficacy and safety assessments. 
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During the course of the trial, the dose response curve should be monitored. In 

case no significant response changes between the two doses have been observed or the 

posterior quantity of the higher dose is less than that of the lower dose, the trial should 

not go to the higher dose and the threshold of the response curve is assumed. The non-

significant response changes can be defined as: 

 Posterior probabilities > 0.75 

 Difference of two posterior means for two adjacent doses is less than 0.05 or 

posterior mean of the higher dose is less than the lower dose. 

 

Figure 2.2 shows the maximum possible number of subjects assigned in each 

treatment group by stage. This happens when safety is good and efficacy is acceptable in 

all stages. Total sixty patients are exposed to the treatment and the acceptable dose ranges 

are from 2.5 mg - 50 mg.  

Figures 2.3 - 2.5 shows some other scenarios of the design. Figure 2.3 shows the 

scenario that the efficacy is not acceptable but safety is good in stage 1. So the dose goes 

up to 25 mg in the stage 2. The efficacy is acceptable and safety is good in stage 2 and 3. 

Total forty-eight patients are exposed to the treatment and the optimal dose range is 10 

mg - 50 mg.  

Figure 2.4 shows the scenario that the safety is not good, but the efficacy is 

acceptable in stage 1. Dose goes down to 5 mg in stage 2. The efficacy is acceptable and 

safety is good in stages 2 and 3. A total of forty-eight patients are exposed to the 

treatment and the optimal dose range is 2.5 mg – 10 mg.  

Figure 2.5 shows the scenario that both safety and efficacy are not acceptable in 

stage 1. The trial ended in stage 1. Eight subjects are tested in stage 1, since Pr (0.2 ≤ θ1| 
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Data) < 0.2, so four additional subjects in 10 mg arm and are added. If the safety is still 

not good and the efficacy is still futile, then the trial will be ended. Sixteen patients are 

exposure to the treatment. From Figures 2.3 - 2.5, one can see that less patients are put 

into trial when the safety issues or efficacy futility are identified earlier and sample size 

are adjusted due to the early detection.  

 

Figure 2.3 Example scenario of the design – efficacy is not acceptable and safety is good 

in stage 1. 
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Figure 2.4 Example scenario of the design – safety is not acceptable but the efficacy is 

good in stage 1. 
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Figure 2.5 Example scenario of the design – both safety and efficacies are not acceptable 

in stage 1. 
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2.5 Statistical Models Used in the Proposed Design 

2.5.1 Response Model Used in Stage 1 

Predictive probability from response model is used to guide the decisions to terminate the 

trial for futility or move onto the next stage. 

Let θd be the mean response to dose d for response variable Y. 

Here, 

       Y ~ θd + ε              (2.3) 

                          θd ~ N(μ0, σ0
2
),                                  (2.4)     

       ε ~ N (0, σε
2
)                                         (2.5) 

where the prior distribution of θd follows normal distribution for the different values of d. 

2.5.2 Normal Dynamic Linear Models (NDLMs) in Stage 2-4 

A dose-response model based on a Normal Linear Dynamic Model (NDLMs) described 

by West and Harrison (1997) [24] are used in this paper. NDLM is essentially a piecewise 

linear model and has been used in clinical trials before. It provides the necessary 

flexibility to encompass both monotonic and non-monotonic dose-response relationships. 

It can be also easily implemented in a Bayesian updating frame work. Within this 

framework it provides direct probabilistic statements about many features of the dose-

response. An additional advantage of NDLM is the existence of analytical results for the 

determination of the posterior distribution of the dose-response curve. NDLMs are also 

used to borrow information across adjacent doses [25].  
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Let Yi be a generic outcome response variable and let θdi=EYi be the mean 

response for dose d. The following error structure is assumed for Yi, 

 

Yi ~ 
id  + 

id ,    i = 2, 3, 4, 5, (2.6) 

  

where di is the dose given to the i-th stage. It is assumed that εdi are an iid sample from N 

(0, σε
2
) and the θdi is an independent iid sample from θdi ~ N(θ, σθ

2
). An NDLM is used to 

defined with the following assumptions 

 

id ~ N(μ, σθ
2
),  i=2, 3, 4, 5, (2.7) 

ε ~ N(0, σε
2
). (2.8) 

 

The parameter σθ
2 

represent the borrowing from one dose to the neighboring 

doses. The drift parameter is the variance between responses at neighboring doses. The 

larger the value of σθ
2
, the less borrowing from neighboring doses. The prior distribution 

for the parameter σθ
 2

 in the NDLM is  

 

σθ
2
 ~ IG (a1, b1) 

                                                                            

(2.9) 

 

The prior distribution for the error variance is  

σε
2
 ~ IG (a2, b2) (2.10) 
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Inverse Gamma was specified in Berry model and it is typical in Bayesian 

statistics. It serves as conjugate prior of the variance of the normal distribution. Under the 

prior specification p(σε
2
, σθ

2
, µ)=p(σε

2
)p(σθ

2
)p(μ) [18,26]. 

Based on the above description, one can conclude that the response model in stage 

1 can be represented as the following: 

 

                     
1dY  =  

1d   +  ε                                                                                        

                          N(µ0, σ0
2
)       ε ~ N (0, σε

2
) 

                                  IG (a2, b2) 

(2.11) 

 

θd1  is the first stage mean response which follows the normal distribution N(µ0, σ0
2
). The 

error term ε follows normal distribution N (0, σε
2
) and σε

2
 follows inverse gamma 

distribution IG (a2, b2). 

In stage 2-4, NDLM dose response model is:  

                                        Y = 
id    +   ε,      i=2, 3, 4, 5,                                                                 

                   N(
1


id , σθ

2
)      ε ~ N (0, σε

2
) 

                  IG (a1, b1)          IG (a2, b2)             

 

(2.12) 
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θdi is the stage 2-4 response which follows the normal distribution N(µdi-1, σθ
2
) and σθ

2
 

follows inverse gamma distribution IG (a1, b1). The error term ε follows the normal 

distribution of N (0, σε
2
) and σε

2
 follows inverse gamma distribution IG (a2, b2). 

2.6  Implementation of the Proposed Design 

The implementation of the proposed design can be done by two steps. 

1. Derive the Formula of Conditional Probability for Each Parameter.  

2. Find Posterior Distribution of θ (The efficacy response) based on simulation, which 

will be discussed in Chapter 3. 

 

2.6.1 Derive the Formula of Conditional Probability for Each Parameter 

As the first step, the conditional probability of each parameter can be derived using 

formula derivation methods in mathematical statistics, based on the three steps in the 

introduction of this chapter.  
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1) The conditional probability of µdi can be derived: 
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Hence, the probability of µdi followed a normal distribution. Based on normal distribution 

probability density function, one can get the following: 
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2) The conditional probability of θdi can be derived as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, the probability of θdi followed a normal distribution. Based on normal distribution 

probability density function, one can get the following: 
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Hence, one can see that the posterior distribution for σθ
2
 is a inverse gamma distribution. 
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Hence, one can see that the posterior distribution for σε
2
 is inverse gamma distribution. 
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2.6.2  Find Posterior Distribution from Simulation  

The Gibbs Sampler, a Markov Chain Monte Carlo (MCMC) method would be used in the 

simulation to find the posterior distribution of each parameter. This method starts with a 

set of initial values, described in the next chapter, then updating the estimator 
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successively from the full conditional distributions. After the estimator converges, the 

stationary or equilibrium distribution would be posterior distribution. In order to get the 

results without any bias, the burn-in sets would be discarded. Burn-in sets is defined as 

the first 1000 sample values of θ created from simulation, which are not stable. 
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CHAPTER 3 

SIMULATIONS 

 

When developing an adaptive design, a critical step is to simulate its performance across 

a variety of hypothesis response pattern scenarios. In order to simulate the design, 

assumptions have to be made to generate data representative of each response pattern. 

These assumptions do not affect the design or the analysis, but they are necessary to 

simulate the trial results. The SAS programs are used to do the simulation in this 

research. Appendix A shows the SAS codes for the first part of the model setup. 

3.1  Estimator 

The point estimator ̂ is defined as the mean of sample values of θ. As defined in the 

previous chapter, θ refers to the percent increasing of the sum of SUVmean and SUVmax  

of FDG-PET uptake at Day 7 in the trial. The point estimation of ̂ calculation starts with 

a set of initial values: μ0, σ0, a1, a2, b1, b2, and the sample values of θ can be obtained from 

full conditional distributions derived in chapter 2. 

3.2  Test of the Convergence of the Markov Chain 

Simulation-based Bayesian inference requires using simulated draws to summarize the 

posterior distribution or calculate any relevant quantities of interest. In MCMC method, 

there are several ways to decide whether the Markov Chain has reached its stationary or  
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the desired posterior, distribution. Table 3.1 [28] shows the convergence diagnostic tests 

available. The convergence of all the parameters, not just those of interest, should be 

checked.  

 In this research, Geweke test is used and trace plot is drawn. The assumption to 

use Geweke test is that MCMC process and the importance function g() , jointly imply 

the existence of a spectrum, and the existence of a spectral density with no discontinuities 

at the frequency 0. The Geweke test (Geweke; 1992) compares values in the early part of 

the Markov chain to those in the latter part of the chain in order to detect failure of 

convergence. The statistic is constructed as follows. Two subsequences of the Markov 

chain {θ
t
} are taken out, with {θ1

t
 : t = 1 ,…, n1} and {θ2

t
 : t = na ,…, n},  

where 1 < n1 < na < n. Let n2 = n - na + 1, and define  

  
 

 
 

  

Let )0(1



S and )0(2



S  denote consistent spectral density estimates at zero frequency for the 

two MCMC chains, respectively. If the ratios n1/n and n2/n are fixed, (n1 + n2)/n < 1, and 

the chain is stationary, then the following statistic converges to a standard normal 

distribution as :  

  

 

    

 

This is a two-sided test, and large absolute -scores indicate rejection.  

(3.1) 

(3.2) 

http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_introbayes_sect013.htm#gewe_j_92


35 

 

                  

Table 3.1  Convergence Diagnostic Tests Available in the Bayesian Procedures  

Name  Description  Interpretation of the Test  

Gelman-Rubin  Uses parallel chains with dispersed initial values to test whether they all converge to the same 

target distribution. Failure could indicate the presence of a multi-mode posterior distribution 

(different chains converge to different local modes) or the need to run a longer chain (burn-in is 

yet to be completed).  

One-sided test based on a variance ratio test 

statistic. Large  values indicate rejection.  

Heidelberger-Welch 

(stationarity test)  

Tests whether the Markov chain is a covariance (or weakly) stationary process. Failure could 

indicate that a longer Markov chain is needed.  

One-sided test based on a Cramer–von Mises 

statistic. Small -values indicate rejection.  

Heidelberger-Welch 

(half-width test)  

Reports whether the sample size is adequate to meet the required accuracy for the mean 

estimate. Failure could indicate that a longer Markov chain is needed.  

If a relative half-width statistic is greater than a 

predetermined accuracy measure, this indicates 

rejection.  

Raftery-Lewis  Evaluates the accuracy of the estimated (desired) percentiles by reporting the number of 

samples needed to reach the desired accuracy of the percentiles. Failure could indicate that a 

longer Markov chain is needed.  

If the total samples needed are fewer than the 

Markov chain sample, this indicates rejection.  

autocorrelation  Measures dependency among Markov chain samples.  High correlations between long lags indicate poor 

mixing.  

effective sample size  Relates to autocorrelation; measures mixing of the Markov chain.  Large discrepancy between the effective sample 

size and the simulation sample size indicates poor 

mixing.  
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3.3 Verification of Repeatability of the Results 

In this research, seventy-thousand iterations are used in simulation trial to get the 

estimator converge. Five thousand simulation trials are conducted to verify the 

repeatability of the results. 

3.4 Priors Selection 

3.4.1 Objective Priors versus Subjective Priors 

 

Bayesian probability measures the degree of belief that you have in a random event. By 

this definition, probability is highly subjective. It follows that all priors are subjective 

priors. Not everyone agrees with this notion of subjectivity when it comes to specifying 

prior distributions. There has long been a desire to obtain results that are objectively 

valid. Within the Bayesian paradigm, this can be achieved by using prior distributions 

that are "objective" (that is, that have a minimal impact on the posterior distribution).  

A prior distribution is non-informative if the prior is "flat" relative to the 

likelihood function. Thus, a prior is non-informative if it has minimal impact on the 

posterior distribution of . Many people favor non-informative priors because they appear 

to be more objective. 

There are several priors in this Bayesian design. The selection of the priors used 

in dose-response model and NDLM is based on the historical data and non-informative 

rule. The selection of each parameter specified in prior distribution is specified below: 

 

 

 

a) μ0 = 0.2  
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A successful efficacy response is defined as a subject has ≥ 20% decrease on the sum of 

SUVmean and SUVmax of FDG-PET uptake at 7 days post-dose compared to pre-dose. 

To obtain equal probability of positive and negative efficacy responses, 0.2 is chosen as a 

flat prior. This will change after more data are brought in. 

b) σ0 = 0.1 

The possibility of increasing on the FDG-PET uptake is very small (=0.025). If the drift 

effect is noticed in the data, σ0 could be adjusted to a larger one accordingly. 0.2/1.96 ≈ 

0.1 

 

Figure 3.1 Probability distribution of θ. 

 

c) a1 = a2 = 2 

 

Standard deviation doesn’t exist when a1=a2=2 for inverse gamma. The distribution is 

close to ‘non-informative’. The result will be data driven which fits one’s need since there 

is no reliable estimation. 

 

a) b1 = 0.0266 
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Based on the historic data [21], the standard deviation of θ is 0.163 and the variance is 

0.0266. And the mean of IG(a1, b1) is b1/(a1-1) = b1 = 0.0266 

b) b2 = 0.0026  

The estimate of standard errors is based on the prior data with some assumption to fit our 

needs. According to the historic data, standard errors of SUV reduction are 0.02164 and 

0.00776 in 10 mg and 25 mg groups, respectively [21]. 

Using those two observed numbers, the variance of standard error is 0.0026 with 

the mean of 0. To be conservative, taking 0.0026 as the mean of IG, b2 = mean*(a2-1) = 

0.0026 when a2 = 2. 

If over-estimated, Bayesian design would not be sensitive enough. The worst case 

scenario is to enroll all 60 subjects without any savings on the sample. 

3.5  Probability Density Functions of IG(a1,b1) and IG(a2,b2) 

Based on the parameter estimation, the probability density functions are showing in the 

figure 3.2. 

Based on the simulation results, the characteristic operation data and curves can 

be obtained with the different scenario of the real increasing on SUV. After that, power 

and probability of the FDG-PET increasing for each stage can be obtained.  



39 

 

 

 

Figure 3.2 Distribution of σθ
2 

and σε
2
. 

 

 

3.6 The Next Step in the Simulation 

 

After the setup of the initial values of the parameters, the posterior derived in previous 

chapter will be used and the following steps will be followed: 

1. Starts with the defined initial values. 

2. Updating successively from the full conditional distributions. 

3. After converge, the stationary or equilibrium distribution is posterior distribution.  

4. Discard burn-in sets (the first 1000 sample values). 

5. Set the true mean of the θ and start the iteration in the simulation by using the 

posterior distribution derived earlier. 

6. Find the samples' mean of θ from simulation and compare with the true mean. 

7. Get the sample size from simulation to see how many sample size saved. 

8. Find the power of the test by using: total of successful trials/trials simulated.
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CHAPTER 4 

RESULTS 

 

 

 

A series of simulations have been done to evaluate the operating characteristics of the 

proposed Bayesian design.  

4.1 Results from Different Scenarios 

The model used in stage 1 of the proposed Bayesian design is as follows: 

                     Yd1 =  θd1  +  ε                                                         (4.1)                                  

                          N(µ0, σ0
2
)       ε ~ N (0, σε

2
) 

                                  IG (a2, b2) 

 

θd1 is the first stage mean response which follows the normal distribution N(µ0, σ0
2
) for 

10 mg dose level. The error term ε follows normal distribution N (0, σε
2
) and σε

2
 follows 

inverse gamma distribution IG (a2, b2). Simulation has been done for several scenarios of 

the results to check the validity of the model and the designs.  

 

4.1.1 Scenario 1 

Table 4.1 shows one scenario of the assumed true mean of SUV decreasing used in the 

simulation. Four random values are taken from SAS random function as the observed 

values from normal distribution with previously assigned N (0.2, 0.026) for θd1. The prior 

chosen for σε
2 

is IG (2, 0.0026). In stage 1, eight patients are assigned to the 10 mg 

dosing group. The simulation was done for the first interim analysis with four subjects’ 
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values. Another four subjects’ values were simulated for the second and third interim 

analyses after the first interim analysis data obtained. Five-thousand iterations are used in 

the program and the first 1000 burn-in results are discarded. The sample response data of 

eight subjects are shown in Tables 4.2. Table 4.3 shows additional four sample subjects 

added in the next stage and used to confirm the results in the previous stage.  

Table 4.1  Scenario 1 - True Mean of SUV Decreasing Used in Simulation 

 

 

 

 

 

 

 

 

Table 4.2  Sample Response from Eight Patients of Each Dose Level 

(Randomly Selected from Normal Distribution) 

 

Dose Group 

True Mean of SUV     

Decreasing Used in 

Simulation 

50 mg 0.32 

25 mg 0.28 

10 mg 0.21 

5 mg 0.14 

2.5 mg 0.10 

  

Sample Response 

from the Patients 

(10 mg) 

Sample Response 

from the Patients 

(25 mg) 

Sample Response 

from the Patients 

(5 mg) 

Sample Response 

from the Patients 

(50 mg) 

0.225358 0.286135 0.125904 0.345133 

0.250183 0.304092 0.119045 0.318048 

0.196323 0.309638 0.074631 0.279937 

0.224806 0.232502 0.126400 0.317466 

0.199867 0.327465 0.083362 0.364753 

0.213084 0.274455 0.140660 0.348125 

0.203742 0.373889 0.173447 0.289752 

0.230214 0.314788 0.108202 0.287554 
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Table 4.3  Sample Response of Additional Four Patients to Confirm the Results  

in Each Dose Level 

 

Five-thousand simulation trials were conducted to verify the repeatability of the 

simulation results. Table 4.4 shows the results of the first 20 simulation trials. The first 

column is the posterior mean of θd1. The second column is the standard deviation. If 

posterior mean of θd1 is greater than or equal to 0.2, the tested dose level is defined to be 

effective. If it is less than 0.2, the tested dose level is determined to be futile. By 

repeating the trial for 4999 times, the rate to correctly declare the effective of 10 mg dose 

based on success in Table 4.4 is 91%. That means if the true SUV decreasing is 0.21 for 

10 mg dose, the chance that one accepts the efficacy of 10 mg and go into the second 

stage to test 5 mg and 25 mg is 91% when safety assessment turns out to be acceptable. 

 

 

 

 

 

 

Sample Response 

from the Patients 

(10 mg) 

Sample Response 

from the Patients 

(25 mg) 

Sample Response 

from the Patients 

(5 mg) 

Sample Response 

from the Patients 

(50 mg) 

0.240127 0.276531 0.125417 0.338955 

0.223251 0.309022 0.120123 0.317939 

0.194789 0.302467 0.083290 0.282436 

0.235901 0.233029 0.119879 0.320148 
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Table 4.4  Results from the First Twenty Simulated Trials for 10 mg Dose Group 

 

Trial 

Posterior 

Mean Std Dev Success 

1 0.1986 0.0110 0 

2 0.2135 0.0117 1 

3 0.2048 0.0082 1 

4 0.2007 0.0090 1 

5 0.2205 0.0108 1 

6 0.2137 0.0134 1 

7 0.2015 0.0123 1 

8 0.1983 0.0088 0 

9 0.2093 0.0097 1 

10 0.2045 0.0085 1 

11 0.2263 0.0089 1 

12 0.2148 0.0135 1 

13 0.2043 0.0201 1 

14 0.2139 0.0088 1 

15 0.2090 0.0101 1 

16 0.2143 0.0104 1 

17 0.2013 0.0088 1 

18 0.2128 0.0133 1 

19 0.1960 0.0103 0 

20 0.2136 0.0105 1 

 

 

Similar to the simulation for 10 mg dose group, 5000 simulation trials were 

conducted for 5 mg. Table 4.5 shows the results of the first 20 simulation trials. By 

repeating the trial for 4999 times, the rate to incorrectly declare the effective of 5 mg dose 

based on success in Table 5 is 0.14%. That means if the true SUV decreasing is 0.14 for 5 

mg dose, the chance that one accepts the efficacy of 5 mg and go into the third stage to 

test 2.5 mg is 0.14% when safety assessment turns out to be acceptable. 
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Table 4.5  Results from the First Twenty Simulated Trials for 5 mg Dose Group  

 

Trial 

Posterior 

Mean Std Dev Success 

1 0.1671 0.0137 0 

2 0.1420 0.0141 0 

3 0.1430 0.0159 0 

4 0.1574 0.0117 0 

5 0.1381 0.0126 0 

6 0.1425 0.0164 0 

7 0.1456 0.0139 0 

8 0.1436 0.0171 0 

9 0.1453 0.0155 0 

10 0.1298 0.0148 0 

11 0.1267 0.0112 0 

12 0.1357 0.0115 0 

13 0.1352 0.0130 0 

14 0.1258 0.0140 0 

15 0.1416 0.0122 0 

16 0.1452 0.0109 0 

17 0.1393 0.0125 0 

18 0.1648 0.0115 0 

19 0.1403 0.0117 0 

20 0.1550 0.0107 0 

 

Tables 4.6 and 4.7 present the first 20 simulated trials for dose groups of 25 mg 

and 50 mg. Since both dose levels have true responses much better than 20%, the powers 

to correctly detect the efficacy are as high as 100%. 
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Table 4.6  Results from the First Twenty Simulated Trials for 25 mg Dose Group  

 

Trial 

Posterior 

Mean Std Dev Success 

1 0.2613 0.0094 1 

2 0.2706 0.0094 1 

3 0.2741 0.0122 1 

4 0.2795 0.0110 1 

5 0.2827 0.0147 1 

6 0.2818 0.0105 1 

7 0.2937 0.0134 1 

8 0.2599 0.0125 1 

9 0.2818 0.0148 1 

10 0.2704 0.0137 1 

11 0.2617 0.0123 1 

12 0.2804 0.0137 1 

13 0.2894 0.0133 1 

14 0.2867 0.0105 1 

15 0.2763 0.0165 1 

16 0.2963 0.0140 1 

17 0.2961 0.0124 1 

18 0.2650 0.0140 1 

19 0.2775 0.0105 1 

20 0.2822 0.0133 1 
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Table 4.7  Results from the First Twenty Simulated Trials for 50 mg Dose Group  

 

 

Trial 

Posterior 

Mean Std Dev Success 

1 0.3324 0.0123 1 

2 0.3118 0.0101 1 

3 0.3347 0.0175 1 

4 0.3171 0.0130 1 

5 0.3163 0.0132 1 

6 0.3334 0.0135 1 

7 0.3326 0.0122 1 

8 0.3163 0.0107 1 

9 0.3304 0.0116 1 

10 0.2932 0.0106 1 

11 0.2914 0.0143 1 

12 0.3170 0.0118 1 

13 0.3054 0.0108 1 

14 0.3357 0.0085 1 

15 0.3286 0.0129 1 

16 0.3263 0.0099 1 

17 0.3031 0.0110 1 

18 0.2965 0.0155 1 

19 0.3038 0.0195 1 

20 0.3189 0.0139 1 

 

Figure 4.1 shows the convergence of θd1. The data show the convergence through 

the 5000 iterations. It also shows the posterior distribution of θd1. The autocorrelation 

between the samples are 0. Figure 4.2 shows the convergence of σε
2 

and posterior 

distribution of σε
2
.  The autocorrelation is also 0. 
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Figure 4.1 Convergence, autocorrelation and posterior distribution of θd1. 
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Figure 4.2 Convergence, auto-correlation, and posterior distribution of σε
2
. 

The values of θd1, σε
2
 from the first stage can be used as the prior of the second 

stage. The similar procedure is done for stages 2, 3 and 4. The final results of a random 

selected trial in simulation are showing in Table 4.8. 2.5 mg was not tested since the 5 mg 

dose failed on efficacy. Assuming the safety results are all good, the maximum patients 

need to be recruited in this scenario is 60. In case any safety issues were found in higher 

dose, the dose level will not go up. The sample size will be saved more. 
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Table 4.8  Posterior Information for Each Dose Group 

 

Dose 

Group 

True Mean of  

SUV Decreasing 

Used in 

Simulation 

Posterior 

Mean at the 

end of 

Testing 

Stage 

Posterior 

Std at the 

end of 

Testing 

Stage 

Posterior Probability 

(%) of SUV 

Decreasing ≥ 0.20 

Sample Size 

used in the 

trial 

50 mg 0.32 0.308 0.0185 100.0 12 

25 mg 0.28 0.297 0.0205 100.0 12 

10 mg 0.21 0.227 0.0136 91.2 12 

5 mg 0.14 0.125 0.0412 0.14 12 

 

4.2.2 Scenario 2 

Table 4.9 shows the second scenario of the assumed true mean of SUV decreasing used in 

the simulation.  

Table 4.9  Scenario 2 - True Mean of SUV Decreasing in Simulation 

 

 

 

 

 

 

 

 

Dose Group 

True Mean of  SUV     

Increasing Used in 

Simulation 

50 mg 0.25 

25 mg 0.20 

10 mg 0.15 

5 mg 0.14 

2.5 mg 0.10 
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Table 4.10  Sample Response from Eight Patients (Randomly Selected from Normal 

Distribution) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.11  Sample Response of Additional Four Patients to Confirm the Results in 

Stage 1 

 

 

 

 

Real Response from 

the Patients (10 mg) 

Real Response from 

the Patients (25 mg) 

Real Response from 

the Patients (50 mg) 

0.175852 0.209279 0.198659 

0.128976 0.192248 0.295828 

0.141329 0.150385 0.274836 

0.155357 0.180104 0.233229 

0.216211 0.175942 0.219439 

0.145488 0.213383 0.222021 

0.17906 0.192711 0.263308 

0.199519 0.204148 0.241855 

  

Real Response from  

the Patients  

(10 mg) 

Real Response from  

the Patients  

(25 mg) 

Real Response from 

the Patients  

(50 mg) 

0.216211 0.165097 0.219439 

0.145488 0.203786 0.222021 

0.17906 0.205371 0.263308 

0.199519 0.250228 0.241855 
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Figure 4.3 shows the convergence of θd1. The data show the convergence through 

the 50000 iterations. It also shows the posterior distribution of θd1. Figure 4.4 shows the 

convergence of σε
2

.  

Table 4.12  θd1 Results from the First 20 Simulated Trials 

 

Trial Mean Std Dev success 

1 0.1497 0.0169 1 

2 0.1641 0.0152 1 

3 0.1687 0.0145 1 

4 0.163 0.0156 1 

5 0.1555 0.0172 1 

6 0.1676 0.0146 1 

7 0.1636 0.017 1 

8 0.158 0.0157 1 

9 0.1702 0.0148 1 

10 0.1669 0.0149 1 

11 0.1714 0.0143 1 

12 0.1591 0.0157 1 

13 0.1746 0.015 1 

14 0.1533 0.0163 1 

15 0.1673 0.0148 1 

16 0.1571 0.0169 1 

17 0.1562 0.0155 1 

18 0.1639 0.015 1 

19 0.1661 0.016 1 

20 0.1531 0.0171 1 
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Figure 4.3  Convergence, auto-correlation and posterior distribution of θd1. 
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Figure 4.4  Convergence, auto-correlation, and posterior distribution of σε
2
. 

 

The values of θd1, σε
2
 from the first stage can be used as the prior of the second 

stage. The similar procedure is done for stages 2, 3 and 4. 

Similar simulation has been done for 10 mg, 25 mg, and 50 mg dose groups. The 

final results are showing in Table 4.13. 2.5 mg and 5 mg doses were not tested since the 

10 mg dose failed on efficacy. Assuming the safety are all good, the maximum patients 

need to be recruited in this scenario is 48. Twenty four subjects in sample size are saved. 

In case any safety issues were found in higher dose, the dose level will not go up. The 

sample size will be saved more. 
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Table 4.13  Posterior Information for Each Dose Group 

 

Dose 

Group 

True Mean of  

SUV Decreasing 

Used in 

Simulation 

Posterior 

Mean at the 

end of 

Testing 

Stage 

Posterior 

Std at the 

end of 

Testing 

Stage 

Posterior 

Probability (%) of 

SUV Decreasing 

between 0.20 and 

0.90 

Sample Size 

used in the 

trial 

50 mg 0.25 0.261 0.0185 99.9 12 

25 mg 0.20 0.199 0.0205 98.8 12 

10 mg 0.15 0.148 0.0136 13.6 12 

 

The results from scenarios 1 and 2 are showing that the model chosen and the 

design are repeatable and have the high power to get the correct results.  

4.2 Operating Characteristics 

Table 4.14 shows operating characteristics for each dose level. In each scenario, 5000 

simulated trials were conducted. 
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 Table  4.14 Operating Characteristics 

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

 

 

 

 

                                                                                                                                                                                                       

                                                                                                                                                                                                                

                                                                                               

             

Scenario 

Assumed Decreasing (%) at Dose Levels Percent of Trials Selecting 

the Right Doses (%) 

Average of the 

Number of Subjects 

Used (Saving %) 2.5 mg 5 mg 10 mg 25 mg 50 mg 

1 10 14 21 28 32 91.2 48(20) 

2 10 14 15 20 25 73.2 36(40) 

3 2.5 5 10 15 21 89.2 23 (61.7) 

4 1 8 10 15 21 85 32 (46.7) 

5 0 3 10 15 20 72.5 23 (61.7) 

6 0 0 0 0 0 100 18 (70) 

7 0 0 0 0 25 100 18 (70) 

8 0 24 30 30 30 100 31 (48.3) 

9 30 30 30 30 30 100 31 (48.3) 

10 25 25 24 24 21 100  60 (0) 
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CHAPTER 5 

BAYESIAN ADAPTIVE DESIGN FOR LONGITUDINAL CLINICAL TRIAL 

 

Another Bayesian adaptive design with longitudinal model is proposed in this research. 

The clinical trial chosen is a phase II dose-selection study to assess the safety and 

efficacy of a drug in treatment of depression with major depressive disorder (MDD) 

patients. Patients are randomly assigned to 8 weeks of the treatment with study drug. 

Phase I study has been conducted to determine the maximum tolerable dose (MTD) based 

on safety availability. After the baseline visit, study visits will be conducted at the end of 

week 1, 2, 4, 6, 8. The primary endpoint defined is change from baseline in the 

Montgomery Asberg Depression Scale (MADRS) total score at week 8. MADRS is a ten-

item diagnostic questionnaire which psychiatrists use to measure the severity of 

depressive episodes in patients with major disorders. It was designed in 1979 by British 

and Swedish researchers as an adjunct to the Hamilton Rating Scale for Depression 

(HAMD). Before this study conducted, MTD dose has already been defined in phase I 

study. Based on MTD, the dose level chosen to be tested are: 180 mg, 150 mg, 125 mg, 

100 mg, 75 mg, 50 mg and 25 mg.  

5.1  The New Proposed Bayesian Adaptive Design 

Figure 5.1 shows the propose design with the maximum possible number of randomized 

subjects in each treatment group.  
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Figure 5.1  The maximum possible number of randomized subjects in each treatment 

group by stage. 
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Stage 1:  

In stage 1, only the highest dose and placebo will be evaluated. Ninety subjects will be 

randomized into 180 mg group and forty-five subjects into Placebo group in a 2:1 ratio in 

this stage. The final maximum sample size 585 is calculated by sample size calculation 

method using historic data with two sided α = 0.05 and β = 0.7 [27].  

Three interim analyses will be performed in each stage. For the first interim 

analysis, forty-five subjects are randomized, thirty subjects in study drug treatment group 

and fifteen in Placebo group.  In order to ensure the balance of the numbers in the study 

treatment and placebo during the trial, the block size of three is chosen. After the subjects 

take the dose, the post-baseline values of MADRS at each study visit and the safety data 

are recorded. The change from baseline of MADRS at week 8 is analyzed using Analysis 

of Covariance (ANCOVA) model with study centers as factor and baseline score of 

MADRS as covariate.  

As the next step for the second interim analysis, thirty more subjects are added 

into 180 mg group and fifteen subjects are added into placebo group. The posterior 

quantities are calculated again using expanded data. At each interim analysis the 

following Bayesian posterior quantities P(θ1 - θ8> 2|Data) were calculated and utilized, 

where θ1 is the response from 180 mg dose group and θ8 is the response from placebo 

group. If P(θ1 - θ8> 2|Data) is less than 0.25 for two consecutive interim analysis, then this 

dose level will be declared as inefficacious due to futility and the study will be 

terminated. On the other hand, if P(θ1 - θ8> 2|Data) is ≥ 0.75 for two consecutive interim 

analysis or P(θ1 - θ8> 2|Data) is ≥ 0.95 for one interim analysis, the tested dose level will 
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be determined to be effective and the stage 1 will be stopped early. Otherwise, thirty more 

subjects in study treatment group and fifteen more in placebo group would be added. The 

posterior quantities are calculated again. 

Given the results of those three interim analyses on efficacy, the efficacy of 180 

mg group would be evaluated using the following criteria: 

1. If the Bayesian posterior probabilities of the comparison of study drug and 

placebo P(θ1 - θ8> 2|Data) are less than 0.25 for two consecutive interim analysis, 

this dose level will be declared as inefficacious due to futility and study 

terminated.  

2. Otherwise, the dose level will be declared as non-futile. 

3. If the Bayesian posterior probabilities of the comparison of study drug and 

placebo P(θ1 - θ8> 2|Data) are ≥ 0.75 for two consecutive interim analysis, or P(θ1 

- θ8> 2|Data) ≥ 0.95 for one interim analysis, this dose level will be declared as 

efficacious at stage 1 and the study will be terminated early. The study will 

continue to stage 2.  

In any case, if the dose level has safety concern in any interim analysis, the next 

lower dose should be tested.  

Stage 2: 

If the efficacy response shows as non-futile, trial goes into stage 2. Otherwise, the trial is 

terminated. In stage 2, three different skipped doses 150 mg, 100 mg, 50 mg and placebo 

are tested with ninety subjects in each treatment group using the posterior mean and 

posterior standard deviation in the 180 mg dose group as prior. Three interim analyses 

will be done with thirty subjects in each study treatment group and fifteen subjects in 

placebo group at each interim analysis.  

Given the results of those three interim analyses on efficacy, the efficacy of 150 

mg, 100 mg 50 mg groups would be evaluated using the same criteria in stage 1. If the 

positive result showed in stage 2 for any dose levels for the first two consecutive interim 
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analyses, the trial goes to stage 3 directly without the third interim analysis. Or if the 

results show non-futile for all three interim analyses, the trial goes to stage 3. Otherwise, 

the trial will be terminated and the maximum dose of 180 mg in stage 1 will be the only 

selected dose.  

Stage 3:  

In stage 3, one more dose level will be tested in order to plot the dose response curve 

more accurately. Which dose group to be tested is determined based on the efficacy 

response of three dose groups in stage 2. If both 150 mg and 100 mg are effective, 125 

mg would not be tested in stage 3. Otherwise, if 150 mg is effective and 100 mg is not, 

the dose group of 125 mg would be tested in stage 3. In some rare case, if the dose 

response is not following the common dose-response curve, e.g., 100 mg dose is effective 

and 150 mg dose is not, the dose group of 125 mg will still be tested. Whether to test the 

dose groups of 75 mg is to be determined in the same way. If 50 mg is effective, the dose 

group of 25 mg would be tested. Otherwise, 25 mg would be skipped. Three interim 

analyses will be done with thirty subjects in study treatment group and fifteen subjects in 

placebo group in each interim analysis. 

The Bayesian posterior probabilities are calculated to determine the effective 

dosing group in stage 3. Figure 5.1 shows the maximum possible number of randomized 

subjects in each treatment group by stage. This happens when safety is good and efficacy 

is acceptable in all stages. Total five hundred and eighty-five patients are exposed to the 

treatment and the acceptable doses range from 25 mg-180 mg. Figure 5.2 and Figure 5.3 

shows some other scenarios of the design. 
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Figure 5.2  Example scenario of the design - efficacy is not acceptable at the highest 

dose and trial stops. 
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Figure 5.3  Example scenario of the design – The efficacy and safety are acceptable in 

the first stage. But the efficacies of all three treatments in the second stages are not 

acceptable. Trial stops. 

 

5.2  Longitudinal Modeling 

Since this is an eight-week study, each patient should complete 8-week assessments for 

each interim analysis. But some subjects may be terminated early from the study due to 

various reasons, including severe AE, patients withdrew consent, protocol violations, etc. 

Longitudinal model was developed to impute the missing week 8 data for those early 

drop-outs. The prediction values of the change from baseline of MADRS at week 8 from 

longitudinal model were used in efficacy analysis for the subjects who have not 

completed 8-week study. Historical data from another investigational compound were 
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examined to assess response patterns over time. Based on this review, a longitudinal 

model and prior distributions were selected for use in the current trial. The previous 

research found that some significant factors that affect the response of the treatment: 

baseline score of MADRS, sex, age [29]. The interaction between sex and time is also 

found. The following linear multivariate model is used to predict 8-week change from 

baseline of MADRS: 

 

Yi,8  =  adi + btXi,t + ctS + dtA +ε,                                                (5.1)         

     

                 i=1, 2, 3, 4, 5, 6, 7, 

where Xi,t is the latest available value for the i-th subject at time t and Yi,8 is the final 

response value for the i-th subject, which is unknown. S is Gender factor, A is Age factor. 

Error terms ε are the independent identically distributed normal random variables. 

Intercept adi is dose dependent and is different for different doses. Slope parameters bt, ct, 

and dt, are assumed to be the same for each dose but depend on the time of the 

measurement, t. So the intercept is different for each dose, one common slope for all dose 

for each time point. Distinct models are fit for each time period.  

5.3  Test of the Model 

The patient data are simulated based on the historic data for different time points: weeks 

1, 2, 4, 6, and 8. Figure 5.4 shows the regression output by using SAS procedure. It is 

used to predict week 8 data for dose level 125 mg, based on week 2 data. That means if 

the last available data for the patient is at week 2, week 8 data can be predicted by the 

longitudinal model proposed. 
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Table 5.1  Analysis of Variance 

 

Source DF Sum of Squares Mean Square F value Pr > F 

Model 3 6726.57 20.52411 3.856 0.011 

Error 143 761.06 5.322   

Corrected Total 146 7487.63    

 

Root MSE 5.87326 R-Square 0.90 

Dependent Mean 13.92612 Adj R-Sq 0.81 

Coeff Var 42.17442   

 

 

Table 5.2  Parameter Estimate 

 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| 

Intercept 1 6.52653 0.90021  7.25 0.0873 

Week 2 1 0.20976 0.02310 9.08 0.0698 

Age 1 0.34270 0.04119 8.32 0.0761 

Sex 1 0.87885 0.08394 10.47 0.0606 

 

So the final regression model for Y8 for dose level 125 mg is: 

 
 

In the real clinical trial, different regression output should be obtained for the different 

dose and time point. 

5.4  Simulation 

5.4.1  NDLM Model 

 

The point estimator ̂  is defined as the change from baseline of MADRS. The point 

estimation of ̂calculation starts with a set of initial values: μ0, σ0, a1, a2, b1, b2, and the 

sample values of θ can be obtained from full conditional distributions derived in chapter 

2. Stage 1 model is showing in 5.2. NDLM model used in stage 2 – 4 is showing in 5.3. 
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                     Yd1 =  θd1  +  ε                                                         (5.2)                                  

                          N(µ0, σ0
2
)             N (0, σε

2
) 

                                  IG (a2, b2) 

 

                                        Y = 
id    +   ε,      i=2, 3, 4, 5, 6, 7                                                                 

                   N(
1


id , σθ

2
)           N (0, σε

2
) 

                  IG (a1, b1)          IG (a2, b2)             

 

(5.3) 

5.4.2  Prior Parameter Selection 

1) µ0 = 2 

Since a successful efficacy response is defined as a treatment group difference ≥ 2 points 

comparing study treatment to placebo on MASRS total score at week 8. To obtain equal 

probability of positive and negative efficacy responses, we choose 2 as a flat prior.  

2) σ0 = 1 

The possibility of increasing on MADRS total score is very small (= 0.025). If the drift 

effect is noticed in the data, σ0 could be adjusted to a larger one accordingly. Note that σ0 

is selected as 2/1.96 ≈ 1. 

3) a1 = a2 = 2 

 

Standard deviation doesn’t exist when a1 = a2 = 2 for inverse gamma. The same approach 

is used when we choose μ0. The distribution is close to ‘non-informative’. The result will 

be data driven which fits one’s need since there is no reliable estimation. 

4) b1 =187,  b2 = 0.41  
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The estimate of standard errors is based on the prior data with some assumption to fit our 

needs. According to the data in Forest Laboratories’ trial [30], standard errors of MADRS 

change are 0.85 and 0.9 in placebo and study drug groups, respectively. 

Using those two observed numbers, the variance of standard error is 0.41 with the 

mean of 0. Taking 0.41 as the mean of IG, b2 = mean*(a2-1) = 0.41 when a2 = 2.7,  b1 = 

187. 

 Forest Laboratories conducted a phase III clinical trial for MDD indication to test 

the safety and efficacy of Vilazodone. The LS means and 95% confidence intervals of 

study drug and placebo on MADRS change at Week 8 are -13.3 (-15.1, -11.5) and -10.8 

(-12.6, -9.1), respectively. The sample size is each treatment group is 231. Given this 

information, the standard error is around 0.9 and the standard deviation is about 13.7 for 

both cases. The variance is calculated to be 187. Since the value of ‘a’ is chosen to be 2, 

the value of ‘b’ is equal to the mean of variance which is (a-1)*187 = 187. 

 

5.4.3  Simulation 

 

Simulation has been done for this design. Table 5.3 shows one scenario of the assumed 

probability of in the simulation. Forty-five random values are taken from SAS random 

function as the observed values from normal distribution with previously assigned N (2, 

1) for θd1. The prior chosen for σε
2 

is IG (2, 0.41). In stage 1, one hundred thirty-five 

patients are assigned to the 180 mg dosing group. The simulation was done for the first 

interim analysis with forty-five subjects’ values. Another forty-five subjects’ values were 

simulated for the second and third interim analyses after the first interim analysis data 
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obtained. Six thousand iterations are used in the program and the first 1000 burn-in 

results are discarded. The sample response data of ten subjects are shown in Tables 5.4. 

Table 5.5 shows additional ten sample subjects added in the next stage and used to 

confirm the results in the previous stage.  

The final results for one scenario are shown in Table 5.6. The 125 mg and 25 mg 

doses were not tested since the 150 and 100 mg doses are successful and 50 mg failed on 

efficacy. The maximum patients need to be recruited in this scenario is 224. Thus, 541 

subjects in sample size are saved. Figure 5.4 – Figure 5.8 show the convergence of θdi for 

each dose level. The data show the convergence through the 50000 iterations. It also 

shows the posterior distribution of θdi. 

Table 5.3  Scenario 1 - True Mean of SUV Decreasing Used in Simulation 

Dose Groups True Mean of Treatment Difference 

180 mg 3.5 

150 mg 3.0 

125 mg 2.5 

100 mg 2 

75 mg 1.5 

50 mg 1.0 

25 mg 0.5 

Placebo 0 
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Table 5.4  Sample Response from Ten Patients of Each Dose Level 

25 mg 50 mg 75 mg 100 mg 125 mg 150 mg 180 mg 

NT 1.2463 1.6133 2.1816 NT 3.5231 3.4364 

 1.2233 1.7225 2.1356  2.9425 3.3537 

 0.8972 1.6920 2.2626  2.9667 3.3286 

 1.1578 1.7527 1.9762  3.2563 3.3696 

 0.9384 1.7399 2.2038  2.9896 2.8457 

 1.2893 1.6223 2.0728  2.7325 3.4341 

 0.9438 1.6592 2.0695  3.0665 3.4379 

 0.9102 1.8158 2.2569  3.2164 2.8973 

 1.2954 1.8657 1.9857  3.0786 3.6705 

 1.1879 1.9379 2.1061  2.9173 3.2780 

   NT: Not Tested 

 

Figure 5.4  Convergence, auto-correlation and posterior distribution of θd for 180 mg. 
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Figure 5.5  Convergence, auto-correlation and posterior distribution of θd for 150 mg.  

 

 

Figure 5.6  Convergence, auto-correlation and posterior distribution of θd for 100 mg.  
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Figure 5.7  Convergence, auto-correlation and posterior distribution of θd for 75 mg. 

 

Figure 5.8  Convergence, auto-correlation and posterior distribution of θd for 50 mg. 
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Table  5.5  Posterior Information for Each Dose Group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dose Group 

True Mean of  Tested 

Dose Groups 

Compared to Placebo 

Used in Simulation 

Posterior Mean at 

the end of Testing 

Stage 

Posterior Std at 

the end of Testing 

Stage 

Posterior Probability 

(%) of Mean difference 

≥ 2 points on MADRS  

Average Sample Size 

used in the trial 

180 mg 3.5 3.18 0.407 99.8 30 

150 mg 3.0 3.20 0.247 100 30 

125 mg 2.5 Not Tested Not Tested Not Tested 0 

100 mg 2 2.20 0.196 86.5 41 

75 mg 1.5 1.81 0.158 10.6 38 

50 mg 1.0 1.08 0.099 0.00 30 

25 mg 0.5 Not Tested Not Tested Not Tested 0 

Placebo 0 Controlled Controlled Controlled 55 

Total     224 
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5.5  Operating Characteristics 

Table 5.6 shows operating characteristics for each dose level. In each scenario, 5000 

simulated trials were conducted. The results from the table are showing that the model 

chosen and the design have the high power to get the correct results.  
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         Table 5.6  Operating Characteristics 

 

 

Scenario 

Assumed Increasing (%) at Dose Levels 
Percent of 

Trials Selecting 

the Right Doses 

(%) 

Mean of the 

Number of 

Subjects Used 

(Savings %) 180 mg 150 mg 125 mg 100 mg 75 mg 50 mg 25 mg 

1 3.5 3 2.5 2 1.5 1 0.5 94 224 (61.7) 

2 3.1 3 2.7 2.5 1.5 1.2 1 94 214 (63.4) 

3 3.1 3 2.1 2 1.7 1.2 1 84 250 (57.3) 

4 0 0 0 0 0 0 0 100 45 (92.3) 

5 3 0 0 0 0 0 0 100 151 (74.2) 

6 3 3 3 0 0 0 0 100 181 (69.1) 

7 3 3 3 3 3 3 3 100 195 (66.7) 
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CHAPTER 6 

CONTINUOUS-TIME MARKOV CHAIN MODEL AND ITS APPLICATION IN 

TIME-TO-EVENT DATA IN CLINICAL TRIALS 

6.1  Markov Chain 

A Markov chain, named after Andrey Markov, is a stochastic process with the Markov 

property. Markov property is a mathematical model for the random evolution of a 

memoryless system. In other words, the sequence is a Markov chain if the probability that 

the system enters the state it at time t depends only on the immediately preceding state it-1 

at time t-1. Simplistically, the future is independent of the past. Often, the term Markov 

chain is used to mean a discrete-time Markov process. Mathematically, Markov chain is 

defined as follows: 

Let  = {1,2,…,m} (m < ) be a finite state space, and let {Yt}  = 

{Y0,Y1,…,Yt,…} be a sequence of random variables defined on . Then the sequence 

will be called a finite Markov chain if, for any sequence {Y0 = i0, Y1 = i1,…, Yt-1 = it-1, Yt 

= it}, t = 1,2,…, satisfies, 

P(Yt = it| Yt-1 = it-1,…, Y0 = i0) = P(Yt = it| Yt-1 = it-1) 

The conditional probabilities P(Yt = j|Yt-1 = i) = pij(t), i, j   

pij(t) are called one-step transition probabilities for the system at time t. A Markov 

chain {Y0, Y1, …} is homogeneous if the transition probabilities are constant in time, i.e. 

P(Yt = j|Yt-1 = i) = pij for any i, j  , and all t = 1, 2, . It is equivalent to saying that the 

transition probability matrices of a homogeneous Markov chain may be represented by 

the single matrix M = Mt = (pij) for all t = 1, 2, …, where the transition probabilities pij

(6.1) 
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are free of the time index t. The transition probabilities pij(t), 1  i, j  m, may be 

represented as pij, an m  m matrix:                      

M = (pij) =  

mmmmmm

m

ppp

ppp

ppp

m























...

............

...

...

21

2221

11211

2  

The matrix M is called one-step transition probability matrices. 

6.2  Continuous-time Markov Chain Model  

Continuous-time Markov model has the advantage over the traditional survival model 

and can be used to describe disease as a series of probable transitions between health 

states. This is an attractive feature since it provides the ability to describe the course of 

disease over time. It can also describe and estimate expected survival in clinical cohort. 

The transition probability matrix P summarizes the probabilities of events and can be 

used to describe the probabilistic course of the disease for a population or for an 

individual with a known health state.                                                    

 Markov process is time-independent and time homogenous when the transition 

probabilities are constant during the process. One can assume that the distribution of the 

number of transitions into a state follows a homogenous Poisson process. The Poisson 

distribution is described as Pr{N(t) = k} = ((λt)
k
e

-λt
)/k!, where λ is the average number of 

transitions per unit time with λt the average in period t, and k the exact number of 

observed transitions. The time between transitions in a homogenous Poisson process 

follows an exponential distribution defined by the same parameter λ. Exponential 

(6.2) 
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distribution has memory-less property and can be certainly applied with Markov chain to 

disease progression.  

 Time to progression and overall survival time are the important endpoints in many 

oncology trials. One can assume the distribution of the events follow Poisson distribution 

and the time to progression and overall survival follows an exponential distribution. In 

the next few sections, the applications of continuous-time Markov process applied to time 

to progression and overall survival analysis will be discussed. 

6.2.1 Transition Count Matrix and Transition Probability Matrix 

In oncology clinical trials, the transition between health states is actually a rate for a 

continuous-time Markov process. The transition rate does not depend on the length of the 

observation interval since it is the number of transitions that occur per unit time. The 

transition count matrix S(t) contains components fij which are the counts from state i to j 

in each cycle (at time t) [31]. The count matrix could be written as for a three-state 

Markov chain model: 

 

 

 

 

 

The probability of transition in a Markov chain can be derived based on the summation of 

the count matrix for all the cycles and the observation interval. The summation matrix is 

used to construct the probability (P) matrix using maximum likelihood estimates of ijp


, 

 1 2 3 

       1   f11 

 

f12 f13 

S = 2    f21 

 

f22 f23 

       3    f31 

 

f23 f33 

(6.3) 
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the probability of transition from state i to state j, given by ijp


= fij(k)/fi·(k), where fij is the 

frequency or count of patients making the transition from state i to state j, fi. is the sum of 

patients initially in state i and k is the cycle with total of K cycles [32]. 

6.2.2 Markov Models with Covariates 

In clinical trials, there are many covariates that may cause the process to be non-

homogenous over time. Some common covariates are age, disease characteristics, race, 

etc. One strategy to adjust the non-homogenous transitions is to add states to the 

transition matrix but it will increase model complexity and will require more 

computation. Another strategy is to create separate transition matrices. For example, if 

age dependent transition is suspected, the model can be stratified by age groups and 

separate transition matrices for different age groups can be created.  

 In case there is time-dependent transition, separate matrices can be created for 

different time periods and can be run simultaneously. 

6.2.3 Continuous-time Markov Model in Time to Progression Analysis 

Time to progression is a widely used endpoint in oncology clinical trials. Kaplan-Meier 

product limit is commonly used to analyze the time to progression endpoint. Only two 

states are considered when Kaplan-Meier product limit is used: progression and non-

progression. The non-progression patient will always be right censored. The right 

censored patients include: 1) Patient with response. 2) Early drop-off from the study due 

to toxicity. 3) Lost to follow-up. 4) Died due to other cause rather than disease. For the 

patients who have response and dropped off from the study early, time to progression 

were always right censored to the last available date collected in the trial data. However, 
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the patients could develop progression after lost to follow-up or discontinuation and 

shouldn’t be considered as no-event. In that case, simply censored the subjects could 

cause biased prediction of the study result. Also, the next patient state only depends on 

the current state, and independent of previous state. That is, whatever the previous states 

the patient was in, the next cycle state could be any states defined in Markov model. For 

example, patients may have standard disease (SD), response (R) in the previous cycle and 

they could develop into progression disease (PD), stay in SD/R, and drop off from the 

study or even death in the next cycle. The state they develop into is independent from the 

previous state. By using Markov model, those states such as lost to follow-up, death due 

to other caused, can be added into Markov chain and viewed as continuous-time Markov 

process. The use of Markov model for right-censored data has an advantage over 

traditional survival analysis in that each censored subject contributes more information to 

the model than it can contribution to the survival analysis with only two states. The prior 

state transitions these subjects experience add useful information [33]. Hence, Markov 

process can help the investigator to describe the course of the disease status over time by 

adding in the different states into the model.  

The elements of the probability matrix P = (pij) describe the probability of going 

from state i to state j in one cycle. The operation of P·P·P···P (n times), depicted as P(n) 

= P
n
 yields a matrix denoted the n

th 
matrix, whose individual elements pij(n) are the 

probabilities of transition to state j from state i after n cycles [34]. This information is 

applied to a population rather than the individual. The matrix multiplication estimates the 

probability of reaching a certain state for an average subject after n cycles. It also 

estimates the proportion of a population that resides in a certain state after n cycles. The 
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analysis that has been done before Markov process converges is called transition analysis. 

Many researchers have used graphic depiction for the transition analysis. The probability 

curve calculated from transition matrix P
n
 is sometimes referred to as “Markov survival 

curve” [35]. Transition analysis may cause convergence of the probability distribution 

vector to tend to a limiting specific value as n increases. When the number of cycles 

increases, the probability vector approaches a limiting value and the Markov process 

reach a steady state.  

6.2.4 Model Validation 

There are two fundamental assumptions in Markov model: Markovian assumption of 

current state depending on the immediate past and time homogeneity. Those two 

assumptions need to be validated before the analysis can move forward.  

 Jain used likelihood ratio test to test the time homogeneity [36]. The test 

compares the observed transition probabilities with expected probabilities derive from the 

model.  

 Data Splitting is another way to test the time homogeneity [37]. It is separating 

data and using one portion of the data to fit the model. The model is used to predict the 

expected state distribution for the future time period that is compared to the observed 

state distribution of the remaining data already collected. 
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6.3  Data and Results 

6.3.1 Data 

Data from a single arm, open-label phase II study for patient with neuroendocrine 

carcinoma was used [38].  The treatment has been studies in several Phase I and Phase II 

trials in other indications. The safety profile was believed to be satisfactory. Patients were 

treated in an outpatient setting, receiving once weekly doses of the treatment via a 30-

minute infusion. A cycle of treatment was defined as 28 days. So the patient received 

four treatments per cycle. Patients were to continue with treatment until disease 

progression, patient withdrew consent, severe adverse event, remove from study due to 

physician discretion, or lost to follow-up. Patient data with patient response status is 

listed in Table 6.1. Adverse events (AE) are any untoward medical occurrence in a 

patient or clinical investigation subject administered a pharmaceutical product and which 

does not necessarily have a causal relationship with this treatment. An adverse event 

(AE) can therefore be any unfavorable and unintended sign (including an abnormal 

laboratory finding), symptom, or disease temporally associated with the use of a 

medicinal investigational product, whether or not related to the medicinal investigational 

product [39]. 

Six states are defined in Table 6.2. There are three transient states, O (original 

state, which is the state patients entered the trial), response (R) and standard disease (SD). 

Three absorbing states were also defined: off study due to various reasons (C), 

progressive Disease (PD), and death (D). The definition of health states was constructed 

such that the states were mutually exclusive.  
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 For each cycle, a count matrix was constructed based on the number of patients 

making the respective transitions. The count matrices were summated to give the overall 

summation (S) matrix [36]. The summation matrix was used to construct the transition 

probability (P) matrix using maximum likelihood estimates of ijp


, the probability of 

transition from state i, the previous state, to state j, the future state, given by ijp


= 

fij(k)/fi·(k) where fij is the frequency or count of the patients making the transition from 

state i to state j at time k and fi· is the count for all transitions from state i at time k. Thus 

the overall summation matrix is: 
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Table 6.1  Patient Data 

 Cycle 

ID 1 2 3 4 5 6 7 8 9 

001 SD SD SD SD PD     

002 SD SD SD WC      

003 SD PD        

004 SD SD PD       

005 PD         

006 SD SD SD SD SD SD SD SD PD 

007 SD SD SD DTH      

008 AE         

009 PD         

010 PD         

011 PD         

012 PD         

013 PD         

014 SD SD SD SD SD SD SD DTH  

015 SD SD R R R R R R ONTR(R) 

016 SD SD SD SD SD SD SD SD PD 

017 DTH 

 

        

018 SD SD SD SD SD SD SD AE  

019 PD         

020 PD         

021 SD SD R LTF      

022 SD PD 

 

       

023 SD WC        

024 R R 

 

WC       

025 SD PD        

026 SD PD        

027 AE         

028 SD SD SD SD R R R R ONTR(R) 

029 AE         

030 SD SD SD SD SD SD SD DTH  

031 SD SD SD SD SD SD SD SD ONTR(SD) 

032 SD SD SD PD      

033 SD SD SD SD SD SD SD SD ONTR(SD) 

034 PD 

 

        

035 SD SD SD PD      

036 SD WC        

AE: Adverse events, ONTR: On-treatment, PHYS: Remove from the study due to physician discretion, 

WC: Withdrew consent. PD: Progression, DTH: Death, LTF: Lost to follow-up. SD: Standard disease. R: 

Response. 
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Table 6.2  Definition of Patient States 

State Definition Type 

O Original state patient enter 

the trial 

Transient 

R Response Transient 

SD Standard disease Transient 

PD Progression Absorbing 

C Off study due to withdrew 

consent, lost to follow-up or 

Adverse Events 

Absorbing 

DTH Death Absorbing 

 

Based on the data, the count matrix for each cycle is: 

 

 

 

      S1 =  

 

 

 

 

     S2 =  

 

 

 

…. 

 O R SD PD C DTH 

O 0 1 17 12 5 1 

R 0 0 0 0 0 0 

SD 0 0 0 0 0 0 

PD 0 0 0 0 0 0 

C 0 0 0 0 0 0 

DTH 0 0 0 0 0 0 

 O R SD PD C DTH 

O 0 0 0 0 0 0 

R 0 0 0 0 0 0 

SD 0 0 16 4 2 0 

PD 0 0 0 0 0 0 

C 0 0 0 0 0 0 

DTH 0 0 0 0 0 0 

(6.5) 

(6.6) 
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    S8 = 

 

 

The summation matrix for all eight cycles is: 

 

 

      S =  

 

 

 

So the transition matrix can be estimated from ijp


= fij(k)/fi·(k). 

 

 

      P =  

 

 

6.3.2 Time Homogeneity Assumption 

The likelihood ratio test is used to test the homogeneity assumption [36]. The criterion λ 

is given by λ =  
 

5

1,

)(
9

1

]
)(ˆ

ˆ
[

ji

kf

ij

ij

k

ij

kp

p
.   

 O R SD PD C DTH 

O 0 0 0 0 0 0 

R 0 2 0 0 0 0 

SD 0 0 3 1 0 0 

PD 0 0 0 0 0 0 

C 0 0 0 0 0 0 

DTH 0 0 0 0 0 0 

 

 
      

 O R SD PD C DTH 

O 0 1 17 12 5 1 

R 0 6 1 0 1 0 

SD 0 2 61 9 1 1 

PD 0 0 0 0 0 0 

C 0 0 0 0 0 0 

DTH 0 0 0 0 0 0 

       

 

 
      

 O R SD PD C DTH 

O 0 0.028 0.472 0.389 0.139 0.028 

R 0 0.75 0.125 0 0.125 0 

SD 0 0.027 0.824 0.122 0.014 0.014 

PD 0 0 0 1 0 0 

C 0 0 0 0 1 0 

DTH 0 0 0 0 0 1 

(6.9) 

(6.8) 

(6.7) 
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The Hypothesis is: 

H0:  pij (k)= pij   for all k = 1, 2, 3, 4, … 9 

H1:  the transition probabilities depend on k. 

Evaluation across the entire nine cycles shows that χ
2
 = 161.34, df = 160, p = 0.4554. 

Thus the null hypothesis of constant transition probability matrix can not be rejected. The 

model can be represented by a single transition matrix. 

6.3.3   N Step Transition Analysis 

By using n-step transition analysis, the transition matrix will be multiply by ‘n’ times in 

order to get the steady state. SAS/IML is used for the transition matrix analysis. The 

complete absorption occurred by 40 cycles. 
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Figure 6.1 The n-step transition analysis of Markov Model. The transition state: R, SD. 

The absorbing state: PD, C, DTH.  
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The probabilities in the transient state decrease over the time and the probabilities of 

absorpting states increase such that all patients are eventually absorbed.  

6.3.4 Estimation of Time to Progression using Matrix Algebra 

By using matrix algebra, the residence time in each transition state can be calculated. The 

transition probability matrix of a Markov chain that contains absorbing states can be 

divided into four sections under appropriate arrangement of the state space [40]. As 

showing in Figure 6.2, the section labeled Q reflects the transition probabilities between 

the transient states, which are the probabilities of going from one transient state to 

another transient state; the section O is zero matrix, which represents zero probability of 

transition from absorbing state to transient state; the section R reflects the probability of 

being absorbed from transient state to absorbing state; and section I is an identity matrix. 

 

 

      

                  P = 

 

 

Figure 6.2  Four Sections in probability matrix containing absorbing states.  

 

 The fundamental matrix N is calculated by taking the inverse of (I – Q) [41]. The 

fundamental matrix indicates the expected number of cycles the patient will be in any of 

the transient states before absorption occurs [42]. Based on the fundamental matrix N = (I 

- Q)
-1

, the average number of cycles that a patient resided in either transition state before 
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absorption can be estimated. The matrix N specifies the number of cycles that the patients 

resided in the transient state such that N = (I - Q)
-1

, where I is the identity matrix and Q is 

the square matrix of the transient probabilities in Figure 6.2 [43]. 

 The variance of N is V = N (2N
'
 – I) – N

2
, where N

' 
has the same diagonal entries 

as N and zeros elsewhere and N
2
 is square of N [41]. Each element of V is the variance of 

the corresponding element of N. The square root of each element in V was used as the 

standard error of the corresponding element of N. Based on the transition matrix P 

derived earlier, Q, N and V are derived as follows: 

  

 

                                     Q = 

 

 

 

                      N = (I – Q)
-1 

=               

 

 

 

                V = N (2N
'
 – I) – N

2 
=  

 

 

                       SE =  

 

 O R SD 

O 0 0.028 0.472 

R 0 0.75 0.125 

SD 0 0.027 0.824 

 O R SD 

O 1 0.435 2.991 

R 0 4.332 3.077 

SD 0 0.665 6.154 

 O R SD 

O 0 0 3.8 

R 0 3.57 3.41 

SD 0 0 8.41 

 O R SD 

O 0 0 1.949 

R 0 1.889 1.847 

SD 0 0 2.431 
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Thus, the duration (days) of SD and R can be found from N by multiply 28 since each 

cycle has 28 days: 

 

 

           N (days) = 

 

 

 Since patient started from the state O, the average duration of the patients stay in 

transient state R is 12.2 days for all the patients, and the average duration of the patients 

stay in transition state SD is 83.7 days for all the patients. Estimation of the sum of the 

total average residence time in transient states before going into the absorption states as 

seen in (6.9) is 12.2 + 83.7 = 95.9 days with 95% CI (36.6 – 155.2). This sum is 

considered to be survival time, which is time to progression in this study. The expected 

time to progression is 95.9 days.  For the patients who transit from starting state to R, the 

average time staying in R is 121.3 days and average survival time staying in SD is 86.2 

days. For the patients who transit from R to state SD, the average survival time to stay in 

R is 18.6 days and the average survival time to stay in SD is 172.3 days. 

 Next, the probability that the patient will eventually be absorbed given any 

starting state can be obtained by N × R matrix [42]. 

 

 

  

 
O R 

 

SD 

O 0 12.2 

 

83.7 

R 0 121.3 86.2 

SD 0 
 

18.6 

 

 

172.3 
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                                        N =                                

               
 

 

                                      R =  

 

 

                     N × R =  

 

 From the above calculation, one can see that the probability that patient will be 

absorbed into PD state is 0.754. The probability that patient will eventually drop off from 

the study is 0.235. The probability that patient will die is 0.080.  

6.3.5 Survival Curves from Markov Model 

Survival probabilities were obtained based on the transition matrix after applying matrix 

algebra. For the first cycle, the survival probability is taken from P. For n cycles, the 

survival probability is taken from transition matrix P
n
. The survival function S(t) = p12(t) 

+ p13(t), where p12 and p13 are the transition probabilities for patients transit to the 

transient state (SD and R, respectively) at time t [35]. Table 6.3 shows the survival 

probabilities calculated from transition matrix for each cycle. Figure 6.2 shows the 

survival curve for the patients. 

 

Table 6.3  Survival Probabilities  

 O R SD 

O 1 0.435 2.991 

R 0 4.332 3.077 

SD 0 0.665 6.154 

 PD C DTH 

PD 0.389 0.139 0.028 

C 0 0.125 0 

DTH 0.122 0.014 0.014 

 PD C DTH 

O 0.754 0.235 0.080 

R 0.375 0.585 0.043 

SD 0.751 0.169 0.086 
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28 Days 56 Days 84 Days 112 Days 140 Days 

0.600 0.454 0.381 0.319 0.268 

168 Days 196 Days 224 Days 252 Days  

0.223 0.191 0.165 0.131  

 

  

     Days 

Figure 6.3  Survival curve from Markov model. 

6.4 Estimation using Kaplan-Meier Estimate 

Kaplan-Meier estimate is also used to find out the survival curve and expected time to 

progression. Lost to follow-up, discontinuation due to AE and other reasons, and on 

treatment patients are right censored to the last available date in the data. The median 

time to progression is 112 days with 95% confidence interval 56 – 224 days. The mean 
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time to progression is 111 days with standard error 17.34. Thirty-six patients were 

observed and thirteen patients were right censored (Figure 6.2). The time table is listed in 

Table 6.3. 

 By comparing mean of the time to progression calculated from Markov model and 

Kaplan-Meier analysis, one can find that the expected time to progression calculated 

from Markov model is shorter than the expected time to progression from Kaplan-Meier 

analysis. It is because that more states are added to the transition matrix model and this 

reduces the bias caused by non-informative right censoring used in Kaplan-Meier 

analysis. In Kaplan-Meier estimation, only two states are considered, progression and not 

progression. All the patients who have states SD, R, C were right censored, which has the 

effect of increasing the survival estimate and their confidence intervals. The Markov 

model estimates were stable and the variance of such estimates was less than those 

obtained by Kaplan-Meier estimation.  
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Figure 6.4  SAS output of Kaplan-Meier product limit estimation of the survival function 

for time to progression analysis. 
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Table 6.4  Kaplan-Meier Time Table for Time to Progression Analysis 

Time to 

Progression 

(Days) 

Survival 

95% CI Lower 

limit 

95% CI upper 

limit Censoring 

0 1 1 1 No 

28 0.7222 0.5427 0.8398 No 

28 0.7222 0.5427 0.8398 Yes 

28 0.7222 0.5427 0.8398 Yes 

28 0.7222 0.5427 0.8398 Yes 

56 0.5966 0.4142 0.7389 No 

56 0.5966 0.4142 0.7389 Yes 

56 0.5966 0.4142 0.7389 Yes 

84 0.5615 0.3785 0.7098 No 

84 0.5615 0.3785 0.7098 Yes 

112 0.4492 0.2795 0.6128 No 

112 0.4492 0.2795 0.6128 Yes 

112 0.4492 0.2795 0.6128 Yes 

140 0.4043 0.2280 0.5742 No 

224 0.3145 0.1518 0.4916 No 

224 0.3145 0.1518 0.4916 Yes 

252 0.2096 0.0738 0.3920 No 

252 0.2096 0.0738 0.3920 Yes 

252 0.2096 0.0738 0.3920 Yes 

252 0.2096 0.0738 0.3920 Yes 

252 0.2096 0.0738 0.3920 Yes 
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CHAPTER 7 

CONCLUSION AND DISCUSSION 

 

In the current age, Bayesian Adaptive Design is becoming more and more popular in 

clinical trials, especially for early phase trials. According to the simulation results, the 

proposed Bayesian Adaptive Designs are sensitive and robust to help investigators draw 

conclusion as early as possible. The designs have the ability to utilize accumulating data 

obtained in real time to alter the course of the trial, thereby enabling dynamic allocation 

to different dosing groups and dropping of ineffective dosing group earlier. The posterior 

probability of success for the trial is from 72-100% based on the simulation result. It 

increased the probability of success comparing with the other adaptive dose finding 

design. So it provides the better treatment to the patients. In this thesis, both of the 

Bayesian designs can reduce sample size substantially which in turn leads to savings in 

cost and time.  

However, Bayesian Adaptive Design also has some disadvantages. One major 

limitation is the difficulty to control type I error after so many adaption. As the 

consequence, it is relatively hard to apply Bayesian Adaptive Design in phase III 

submission trials. How to control type I error efficiently is a topic worth more research in 

the future. The second Bayesian adaptive design is fit for the clinical trials which are hard 

to recruit the patients and the trials with slow patient enrollment. This design is also fit 

for the short term trials in which the interim analysis results can be obtained quickly after 

the patients start the trials. For the long term trials or the trials which have fast patient 

enrollment, the longitudinal model can be applied earlier. It is also important to find 
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appropriate priors. The priors should be defined based on external evidence. Also there 

are computational challenges associated with such a choice.  

The Markov chain model is an alternative way to do the exploratory analysis in 

oncology trial. The model has the advantage over the traditional survival model and can 

be used to describe disease as a series of probable transitions between health states and 

predict the expected time to progression time. This is an attractive feature since it 

provides the ability to describe the course of disease over time. However since the 

complication for each oncology trial and treatment, the model needs to be validated 

beforehand and the time homogeneity needs to be tested.  

In case the Markov process is non-homogeneous, covariate can be added into the 

model. The model can be stratified by covariates and separate transition matrices for 

different covariates can be created.  

The precision of the Markov estimates obtained by matrix algebra will be also 

affected by sample size with small sample sizes resulting in greater variance. This is a 

disadvantage of the Markov methods, especially if the population is stratified. In this the 

situation, MCMC simulation can be useful since the precision of the estimates can be 

increased by increasing the number of individual simulations. 

Some future work can be done by using Markov model: 

1. The application can be extended to overall survival time analysis, progression 

free survival analysis and time-to-event analysis in oncology trial. 

2. Treatment difference test can be done by using Markov models. 
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APPENDIX  

 

SOURCE CODES 

 

Some selected source codes written in SAS programming language are included in this 

section. The first two SAS programs are setup to calculate the posterior quantities in 

Bayesian Adaptive Designs. The last two programs are used for the calculation of 

transition matrix, fundamental matrix analysis and Kaplan-Meier analysis. 

 

Program 1: 

 

proc datasets kill; run; quit; 

 

options nonotes nosource symbolgen mprint mlogic; 

 

%global loop a1 a2; 

%let loop=10000; 

%let a1=2; 

%let b1=0.01; 

%let a2=2; 

%let b2=0.01; 

 

*************************************************; 

*** Macro Runit ***; 

*************************************************; 

 

%macro runit(datain=datain50_1, seq=1, mu0=0.20, v0=0.01, a1=2, b1=0.0266, a2=2, 

b2=0.0026, loop=50000, k=1, theta_mean=mean50, theta_var=var50); 

 

%global &theta_mean &theta_var; 

 

proc sql noprint; 

 select mean(rate) into: ybar 

 from &datain; 

 

 select count(*) into: j 

 from &datain; 

quit; 

 

proc transpose data=&datain out=tmp1(drop=_name_) prefix=y; 

 var rate; 

run;
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data tmp2; 

 set tmp1; 

 array y[*] y1-y12; 

 

  mu=&mu0; 

 %if &dose^=10 %then %do; vt=&b1; %end; 

 %else %do; vt=&v0; %end; 

 theta=&ybar; 

 

 do i = 1 to &loop; 

  %if &dose^=10 %then %do;  

mu=rand('normal', (vt*&mu0+&v0*sum(theta))/(vt+&K*&v0), 

sqrt((vt*&v0)/(vt+&k*&v0))); 

  vt=(&b1+0.5*sum((theta-mu)*(theta-mu)))/rand('gamma', &a1+&k/2); 

  %end; 

  ysum=0; 

  do m = 1 to &j; 

   ytmp=(y[m]-theta)**2; 

   ysum=ysum+ytmp; 

  end; 

  ve=(&b2+0.5*ysum)/rand('gamma', &a2+&K*&J/2); 

  thetatmp=rand('normal', (ve*mu)/(&j*vt+ve), sqrt((vt*ve)/(&j*vt+ve))); 

  theta=thetatmp+((&j*vt)/(&j*vt+ve))*&ybar; 

  output; 

 end; 

run; 

 

data tmp3_&dose; 

 set tmp2; 

 if 0.2<=theta<=0.9 then resp=1; 

 else resp=0; 

 sigmae=sqrt(ve); 

 sigmat=sqrt(vt); 

 if _n_>1000; 

run; 

 

proc sql noprint; 

 create table final&seq(keep=eff post_prob) as 

 select sum(resp) as eff, calculated eff/(&loop-1000) as post_prob 

 from tmp3_&dose; 

 

 select mean(theta) into: &theta_mean 

 from tmp3_&dose; 
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 select (std(theta)**2) into: &theta_var 

 from tmp3_&dose; 

quit; 

 

%mend runit; 

 

 

********************************************************************; 

*** Macro Dose                                                                                                       ***; 

*** This macro is used to run the simulation for each dose level                           ***; 

********************************************************************; 

 

%macro dose(dose=10, expmean=0.25, prmean=0.25, prvar=0.1); 

%global prob&dose expstd; 

 

data _null_; 

 call symput('expstd', max(&expmean*0.138, 0.001)); 

 *call symput('expstd', 0.09); 

run; 

 

*** interims ***; 

%macro check(i=1); 

 

%if &i=1 %then %do; 

data datain&dose._1; 

 do i = 1 to 4; 

  rate=max(min(rand('normal', &expmean, &expstd), 1), 0); 

  output; 

 end; 

run; 

%end; 

%else %do; 

data datain&dose._2; 

 i=&i; 

 rate=max(min(rand('normal', &expmean, &expstd), 1), 0); 

run; 

 

data datain&dose._1; 

 set datain&dose._1 datain&dose._2; 

run; 

%end; 

 

%runit(datain=datain&dose._1, seq=&i, mu0=&prmean, v0=&prvar, a1=&a1, b1=&b1, 

a2=&a2, b2=&b2, loop=&loop, k=1, theta_mean=mean&dose, theta_var=var&dose); 

 

data _null_; 
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 set final1; 

 call symput("proba&dose.", post_prob); 

run; 

 

%if (&&proba&dose <0.2) | (&&proba&dose >=0.9 | &i=8) %then %do; 

 

%global stop; 

data _null_; 

 set final1; 

 call symput("prob&dose.", post_prob); 

 call symput("stop", 1); 

run; 

%end; 

%else %do; 

data _null_; 

 set final1; 

 call symput("stop", 0); 

run; 

%end; 

 

%mend check; 

 

**** the interims ***; 

%check(i=1); 

%if &stop=0 %then %do; %check(i=5); %end; 

%if &stop=0 %then %do; %check(i=6); %end; 

%if &stop=0 %then %do; %check(i=7); %end; 

%if &stop=0 %then %do; %check(i=8); %end; 

 

data datain&dose; 

 set datain&dose._1; 

run; 

 

%mend dose; 

 

********************************************************************; 

*** Macro Add four                                                                                                 ***; 

*** This macro is used to add more subjects for each dose level                            ***; 

********************************************************************; 

 

%macro addfour(dose=10, expmean=0.25, prmean=0.2, prvar=0.1); 

 

data datain&dose._4; 

 do i = 5 to 8; 

  rate=min(rand('normal', &expmean, &expstd), 1); 

  output; 
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 end; 

run; 

 

data datain&dose; 

 set datain&dose datain&dose._4; 

run; 

 

%runit(datain=datain&dose, seq=4, mu0=&prmean, v0=&prvar, a1=&a1, b1=&b1, 

a2=&a2, b2=&b2, loop=&loop, k=1, theta_mean=mean&dose, theta_var=var&dose); 

 

data _null_; 

 set final4; 

 call symput("prob&dose", post_prob); 

run; 

 

%mend addfour; 

 

*****************************************************; 

*** Macro mstep                                                                        ***; 

*** This is the general macro for all dose levels                       ***; 

*****************************************************; 

 

%macro mstep(seq=1); 

%global prob2 prob5 prob10 prob25 prob50; 

 

*** Stage 1 ***; 

%dose(dose=10, expmean=&resp10, prmean=0.2, prvar=0.1); 

 

*** Stage 2 ***; 

%if &prob10>=0.2 %then %do; 

%dose(dose=5, expmean=&resp5, prmean=&mean10, prvar=&var10); 

%dose(dose=25, expmean=&resp25, prmean=&mean10, prvar=&var10); 

%end; 

%else %do; 

%let prob5=-1; 

%dose(dose=25, expmean=&resp25, prmean=&mean10, prvar=&var10); 

%end; 

 

%addfour(dose=10, expmean=&resp10, prmean=0.2, prvar=0.1); 

 

*** Stage 3 ***; 

%if &prob5>=0.2 %then %do; 

%dose(dose=2, expmean=&resp2, prmean=&mean5, prvar=&var5); 

%end; 

%else %do; 

%let prob2=-1; 



101 

 

 

%end; 

 

%if &prob25>=0.2 %then %do; 

%dose(dose=50, expmean=&resp50, prmean=&mean25, prvar=&var25); 

%end; 

%else %do; 

%let prob50=-1; 

%end; 

 

%if &prob5>=0 %then %do; %addfour(dose=5, expmean=&resp5, prmean=&mean10, 

prvar=&var10); %end; 

%if &prob25>=0 %then %do; %addfour(dose=25, expmean=&resp25, 

prmean=&mean10, prvar=&var10); %end; 

 

*** Stage 4 ***; 

%if &prob2>=0 %then %do; %addfour(dose=2, expmean=&resp2, prmean=&mean5, 

prvar=&var5); %end; 

%if &prob50>=0 %then %do; %addfour(dose=50, expmean=&resp50, 

prmean=&mean25, prvar=&var25); %end; 

 

*** power ***; 

%if &prob2<0.2 and &prob5<0.2 and &prob10<0.2 and &prob25>=0.2 and 

&prob50>=0.2 %then %do; 

data con&seq; 

 success=1; 

run; 

%end; 

%else %do; 

data con&seq; 

 success=0; 

run; 

%end; 

 

%macro checkempty(dsn); 

%if &&prob&dsn<0 %then %do; 

 data datain&dsn; 

  i=1; 

  rate=-1; 

 run; 

%end; 

%mend checkempty; 

 

%checkempty(dsn=2); 

%checkempty(dsn=5); 

%checkempty(dsn=10); 

%checkempty(dsn=25); 
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%checkempty(dsn=50); 

 

data final_data&seq; 

 set datain2(in=a) datain5(in=b) datain10(in=c) datain25(in=d) datain50(in=e); 

 if a then dose=2; 

 if b then dose=5; 

 if c then dose=10; 

 if d then dose=25; 

 if e then dose=50; 

run; 

 

%mend mstep; 

 

%macro power(max=100); 

 

%do i = 1 %to &max; 

%mstep(seq=&i); 

 

proc append base=conclusion data=con&i force; 

run; 

%end; 

 

proc sql noprint; 

 create table power as 

 select sum(case when success=1 then 1 else 0 end) as eff, calculated eff/&max as 

power 

 from conclusion; 

quit; 

 

proc print data=power; run; 

 

%mend power; 

 

%power(max=100); 

 

%put _user_; 

 

 

Program 2: 

 

dm "log; clear; output; clear;"; 

 

%macro power(max=100); 

 

%do i = 1 %to &max; 

%mstep(seq=&i); 
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%if &i=1 %then %do; 

 data conclusion; 

  set theta&i; 

 run; 

%end; 

%else %do; 

proc append base=conclusion data=theta&i force; 

run; 

%end; 

%end; 

 

proc sql noprint; 

 create table power as 

 select sum(success) as eff, calculated eff/&max as power 

 from conclusion; 

quit; 

 

proc print data=power; run; 

 

%mend power; 

 

%macro mstep(dose=180, expmean=3.5, expvar=0.21,prtmean=2, 

prtvar=1,prshape=2,prscale=187); 

data resp; 

 do i = 1 to 4; 

  y=max(max(rand('normal', &expmean, &expvar), 1), 0); 

  output; 

 end; 

run; 

 

ods output PostSummaries=temp; 

ods graphics on; 

   proc mcmc data=resp outpost=respout nmc=5000 thin=50 seed=246810; 

   parms theta &expmean;
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   parms sigma2 &expvar; 

   prior theta ~ normal(mean=&prtmean, var=&prtvar); 

      prior sigma2 ~ igamma(shape = &prshape, scale = &prscale);  

      model y ~ n(theta, var = sigma2); 

   run; 

ods graphics off; 

 

ods trace off; 

 

proc univariate data=respout noprint; 

var theta; 

output out=m mean=mean std=sd; 

run; 

 

data resp; 

 set m; 

 call symput("mean&dose",mean)); 

run; 

 

data theta&seq; 

 set temp; 

 if parameter='theta';  

 if 0.2<mean then resp=1; 

 else resp=0; 

run; 

 

%power(max=100);  

 

%mend; 

 

%mstep; 

%mstep(dose=150, expmean=3, expvar=2,prtmean=3.2, 

prtvar=1.5,prshape=2,prscale=187,sign=<); 

%mstep(dose=100, expmean=2, expvar=2,prtmean=3.5, 

prtvar=1.5,prshape=2,prscale=187,sign=<); 

%mstep(dose=50, expmean=1, expvar=2,prtmean=3.5, 

prtvar=1.5,prshape=2,prscale=187,sign=<); 

 

run; 
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Program 3: SAS program used for transition analysis 

 
proc iml; 

 S={0 0.028 0.611 0.692 0.231 0.077, 0 0.875 0 0 0.125 0, 

 0 0.026 0.829 0.132 0.013 0, 0 0 0 1 0 0, 0 0 0 0 1 0, 0 0 0 0 0 

1}; 

 T={0 0.028 0.611 0.692 0.231 0.077, 0 0.875 0 0 0.125 0, 

 0 0.026 0.829 0.132 0.013 0, 0 0 0 1 0 0, 0 0 0 0 1 0, 0 0 0 0 0 

1}; 

 

 do i = 1 to 48; 

  T=T*S; 

 end; 

 

 print T; 

run; 

 

/*** Calculate Matrix N ***/ 

proc iml; 

 Q={0 0.028 0.611, 0 0.6 0.1,0 0.027 0.824}; 

 I={1 0 0, 0 1 0 , 0 0 1 }; 

 T=I-Q; 

 N=inv(T); 

 

 print N; 

run; 

 

/*** Calculate V ***/ 

proc iml; 

 N={1 0.316 3.651,0 2.600 1.477,0 0.399 5.908}; 

 Np={1 0 0, 0 2.600 0, 0 0 5.908}; 

 I={1 0 0, 0 1 0, 0 0 1}; 

 V=N*(2*Np-I)-N*N; 

 

 print V; 

run; 
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Program 4: SAS program for Kaplan-Meier analysis 

 
data pd; 

 input subjid ttp cens @@; 

 DATALINES; 

 1 140 0 

 2 112 1 

 3 56 0 

 4 84 0 

 5 28 0 

 6 252 0 

 7 112 0 

 8 28 1 

 9 28 0 

 10 28 0 

 11 28 0 

 12 28 0 

 13 28 0 

 14 224 0 

 15 252 1 

 16 252 0 

 17 28 0 

 18 224 1 

 19 28 0 

 20 28 0 

 21 112 1 

 22 56 0 

 23 56 1 

 24 84 1 

 25 56 0 

 26 56 0 

 27 28 1 

 28 252 1 

 29 28 1 

 30 224 0 

 31 252 1 

 32 112 0 

 33 252 1 

 34 28 0 

 35 112 0 

 36 56 1 

 ; 

RUN; 

 

proc lifetest data=PD PLOTS=(S, LS, LLS) OUTSURV=TTP; 

TIME TTP*CENS(1); 

RUN;  

 

PROC PRINT DATA=TTP noobs; 

RUN; 
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