
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1-31-2012

Approximate string matching methods for duplicate detection and Approximate string matching methods for duplicate detection and

clustering tasks clustering tasks

Oleksandr Rudniy
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Rudniy, Oleksandr, "Approximate string matching methods for duplicate detection and clustering tasks"
(2012). Dissertations. 333.
https://digitalcommons.njit.edu/dissertations/333

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/333?utm_source=digitalcommons.njit.edu%2Fdissertations%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

APPROXIMATE STRING MATCHING METHODS

FOR DUPLICATE DETECTION AND CLUSTERING TASKS

by

Oleksandr Rudniy

Approximate string matching methods are utilized by a vast number of duplicate

detection and clustering applications in various knowledge domains. The application area

is expected to grow due to the recent significant increase in the amount of digital data and

knowledge sources. Despite the large number of existing string similarity metrics, there is

a need for more precise approximate string matching methods to improve the efficiency

of computer-driven data processing, thus decreasing labor-intensive human involvement.

This work introduces a family of novel string similarity methods, which

outperform a number of effective well-known and widely used string similarity functions.

The new algorithms are designed to overcome the most common problem of the existing

methods which is the lack of context sensitivity.

In this evaluation, the Longest Approximately Common Prefix (LACP) method

achieved the highest values of average precision and maximum F1 on three out of four

medical informatics datasets used. The LACP demonstrated the lowest execution time

ensured by the linear computational complexity within the set of evaluated algorithms.

An online interactive spell checker of biomedical terms was developed based on the

LACP method. The main goal of the spell checker was to evaluate the LACP method’s

ability to make it possible to estimate the similarity of resulting sets at a glance.

The Shortest Path Edit Distance (SPED) outperformed all evaluated similarity

functions and gained the highest possible values of the average precision and maximum

F1 measures on the bioinformatics datasets. The SPED design was inspired by the

preceding work on the Markov Random Field Edit Distance (MRFED). The SPED

eradicates two shortcomings of the MRFED, which are prolonged execution time and

moderate performance.

Four modifications of the Histogram Difference (HD) method demonstrated the

best performance on the majority of the life and social sciences data sources used in the

experiments. The modifications of the HD algorithm were achieved using several re-

scorers: HD with Normalized Smith-Waterman Re-scorer, HD with TFIDF and Jaccard

re-scorers, HD with the Longest Common Prefix and TFIDF re-scorers, and HD with the

Unweighted Longest Common Prefix Re-scorer.

Another contribution of this dissertation includes the extensive analysis of the

string similarity methods evaluation for duplicate detection and clustering tasks on the

life and social sciences, bioinformatics, and medical informatics domains. The

experimental results are illustrated with precision-recall charts and a number of tables

presenting the average precision, maximum F1, and execution time.

APPROXIMATE STRING MATCHING METHODS

FOR DUPLICATE DETECTION AND CLUSTERING TASKS

by
Oleksandr Rudniy

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2012

Copyright © 2012 by Oleksandr Rudniy

ALL RIGHTS RESERVED

APPROVAL PAGE

APPROXIMATE STRING MATCHING METHODS

FOR DUPLICATE DETECTION AND CLUSTERING TASKS

Oleksandr Rudniy

Dr. James Geller, Dissertation Co-Advisor Date
Professor of Computer Science, NJIT

Dr. Min Song, Dissertation Co-Advisor Date
Assistant Professor of Information Systems, NJIT

Dr. Narain Gehani, Committee Member Date
Professor of Computer Science, NJIT
Dean of College of Computing Sciences, NJIT

Dr. Vincent Oria, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Xiaohua Tony Hu, Committee Member Date
Associate Professor of Drexel University, Philadelphia, PA

BIOGRAPHICAL SKETCH

Author: 	Oleksandr Rudniy

Degree:	 Doctor of Philosophy

Date: 	January 2012

Undergraduate and Graduate Education:

• Ph.D. Student in Computer Science,
New Jersey Institute of Technology, Newark, NJ, August 2011

• Master of Science in Applied Mathematics,
Kharkiv State University of Radio Electronics, Kharkiv, Ukraine, 2001

• Bachelor of Science in Applied Mathematics,
Kharkiv State University of Radio Electronics, Kharkiv, Ukraine, 2000

Presentations and Publications:

M. Song and A. Rudniy, "Detecting duplicate biological entities using Markov
random field-based edit distance," Knowledge and Inform. Syst. , vol. 25, no.
2, pp. 371-387, 2010.

A. Rudniy et al., "Detecting duplicate biological entities using Shortest Path Edit
Distance," Int. J. of Data Mining and Bioinf. , vol. 4, no. 4, pp. 395-410, 2010.

A. Rudniy et al., "Shortest Path Edit Distance for Enhancing UMLS Integration and
Audit," in Proc. of AMIA 2010 Symp. , Washington, D.C., 2010, pp. 697-701.

A. Rudniy et al., "Shortest Path Edit Distance for Detecting Duplicate Biological
Entities," in Proc. of ACM Int. Conf. on Bioinf. and Comput. Biol. , Niagara
Falls, NY, 2010, pp. 442-444.

M. Song and A. Rudniy, "Detecting Duplicate Biological Entities Using Markov
Random Field-Based Edit Distance," in IEEE Int. Conf. on Bioinf. and
Biomed. , Philadelphia, PA, 2008, pp. 457-460.

A. Rudniy et al., "Histogram Difference String Distance for Enhancing Ontology
Integration in Bioinformatics," submitted to Int. Conf. on Bioinf. and Comp.
Biol .

iv

v

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……............................………………..…………………………. 1

 1.1 Motivation………………………………….. 1

 1.1.1 Bioinformatics Applications ……………….. 1

 1.1.2 Medical Informatics Applications ... 2

 1.1.3 Human Speech Applications ... 2

 1.1.4 Signal Processing Applications ... 3

 1.1.5 Text Retrieval Applications ... 3

 1.1.6 Musical Data Mining Applications ... 4

 1.1.7 Bird Vocalization Applications ... 4

 1.1.8 Document Clustering Applications .…………………………………… 5

 1.2 Organization of the Dissertation …………………... 7

2 BACKGROUND …………………………………………….………….......……… 9

 2.1 Summary ….......………………………………….. 9

 2.2 Review of the Related Work ….......………………………............................... 9

 2.3 Research Problem ……….………………………….. 14

 2.3.1 Research Problem in Life and Social Sciences Domain ...…………... 15

 2.3.2 Research Problem in Bioinformatics Domain ……………………….. 16

 2.3.3 Research Problem in Medical Informatics Domain …………………. 19

 2.4 String Distances ……………………………………………………………….. 20

 2.4.1 Edit Distance ... 20

 2.4.2 Traces .. 21

 2.4.3 Edit Path .. 21

vi

TABLE OF CONTENTS

(Continued)

Chapter Page

 2.4.4 Post-Normalized Edit Distance .. 23

 2.4.5 Normalized Edit Distance ... 24

 2.4.6 Damerau-Levenshtein Distance .. 24

 2.4.7 Jaro Metric .. 25

 2.4.8 Jaro-Winkler Metric ... 25

 2.4.9 Jaccard Similarity ... 26

 2.4.10 Smith-Waterman Algorithm ... 26

 2.4.11 Gotoh Algorithm .. 27

 2.4.12 Monge-Elkan Algorithm .. 28

 2.4.13 Needleman-Wunsch Algorithm .. 28

 2.4.14 TFIDF Algorithm ... 29

 2.4.15 Soft TFIDF ... 29

 2.4.16 Information Distance ……………………………….…………………. 30

3 RESEARCH METHODOLOGY ………………………... 32

 3.1 Data Sources ... 32

 3.1.1 Life and Social Sciences Data Sources .. 32

 3.1.2 Bioinformatics Data Sources …………………………..……………… 33

 3.1.3 Medical Informatics Data Sources …….……………….……………... 35

 3.2 Details of the Methodology …..............……….……….................................... 37

4 SIMILARITY FUNCTIONS FOR DUPLICATE DETECTION AND
CLUSTERING TASKS ... 41

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

 4.1 Markov Random Field Edit Distance .. 41

 4.1.1 Background …... 41

 4.1.2 MRFED Algorithm …... 48

 4.2 Shortest Path Edit Distance …..........……….…………..................................... 50

 4.2.1 Motivation ….. 50

 4.2.2 Lattice of String Neighborhoods ……………………………..……….. 51

 4.2.3 Lattice-based Graph Composition ………………………….....………. 52

 4.2.4 Analysis of Shortest Path Graph Algorithms …………………..……... 54

 4.2.5 Reaching and Pulling Algorithms ………………………………..…… 55

 4.2.6 Winkler-like Re-scorer ……………………………………………..…. 57

 4.2.7 SPED Algorithm Complexity ………………………………………..... 57

 4.2.8 Parameters Adjusting Performance ………………………………….... 59

 4.2.9 SN Edit Operations Assignments …………………………………..…. 59

 4.3 Histogram Difference Method ….........…………….. 60

 4.3.1 HD with Normalized Smith-Waterman Re-scorer …………………..... 63

 4.3.2 HD with TFIDF and Jaccard Re-scorers …………………………..….. 63

 4.3.3 HD with the Longest Common Prefix and TFIDF Re-scorers …..……. 64

 4.3.4 HD with the Unweighted Longest Common Prefix Re-scorer …...…… 65

 4.4 Longest Approximately Common Prefix Method ... 66

 4.4.1 LACP Method Algorithm ………………………………………..……. 69

 4.4.2 LACP Method Complexity ………………………………………...….. 70

5 EVALUATION ………………………………………………………………...….. 71

viii

TABLE OF CONTENTS

(Continued)

Chapter Page

 5.1 Experimental Environment ……….. 71

 5.1.1 Benchmark Suite …... 71

 5.1.2 Benchmarking Methodology …... 72

 5.2 Evaluation of Duplicate Detection on Life and Social Sciences Data Sources . 74

 5.2.1 Average Precision for Duplicate Detection Experiments 74

 5.2.2 Maximum F1 for Duplicate Detection Experiments …...…………...….. 76

 5.2.3 Execution Time for Duplicate Detection Experiments ……...……….... 77

 5.2.4 Precision-Recall Curves for Duplicate Detection Experiments ……….. 77

 5.3 Evaluation of Clustering on Life and Social Sciences Data Sources ……...….. 79

 5.3.1 Average Precision for Clustering Experiments 80

 5.3.2 Maximum F1 for Clustering Experiments ………....…………………... 81

 5.3.3 Execution Time for Clustering Experiments ……...………………….... 82

 5.3.4 Precision-Recall Curves for Clustering Experiments ………………….. 82

 5.4 Evaluation of Duplicate Detection on Bioinformatics Data Sources ……….... 84

 5.4.1 Average Precision for Duplicate Detection Experiments 84

 5.4.2 Maximum F1 for Duplicate Detection Experiments …...……………..... 85

 5.4.3 Execution Time for Duplicate Detection Experiments ……...……...…. 86

 5.4.4 Precision-Recall Curves for Duplicate Detection Experiments ……...... 87

 5.5 Evaluation of Clustering on Bioinformatics Data Sources ………………...…. 88

 5.5.1 Average Precision for Clustering Experiments 88

 5.5.2 Maximum F1 for Clustering Experiments …………....……………..…. 90

ix

TABLE OF CONTENTS

(Continued)

Chapter Page

 5.5.3 Execution Time for Clustering Experiments ……...………………….... 91

 5.5.4 Precision-Recall Curves for Clustering Experiments ………………….. 92

 5.6 Evaluation of Clustering on Medical Informatics Data Sources ……………... 93

 5.6.1 Average Precision for Duplicate Detection Experiments 93

 5.6.2 Maximum F1 for Duplicate Detection Experiments …...…………….... 94

 5.6.3 Execution Time for Duplicate Detection Experiments ……...……...…. 95

 5.6.4 Precision-Recall Curves for Duplicate Detection Experiments ……...... 96

 5.6.5 LACP-Based Interactive Spell-Checker ……………………………...... 96

 5.7 Evaluation of Clustering on Medical Informatics Data Sources ……………... 101

 5.7.1 Average Precision for Clustering Experiments 101

 5.7.2 Maximum F1 for Clustering Experiments ………....…………………... 102

 5.7.3 Execution Time for Clustering Experiments ……...………………...…. 103

 5.7.4 Precision-Recall Curves for Clustering Experiments ……………...…... 104

6 SUMMARY ………....…………….…………...……………………………...…... 105

 6.1 Discussion .. 105

 6.2 Conclusions .. 106

 6.3 Future Work ... 107

APPENDIX A PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION
EXPERIMENTS ON LIFE AND SOCIAL SCIENCES DATASETS.. 109

APPENDIX B PRECISION-RECALL CHARTS FOR CLUSTERING
EXPERIMENTS ON LIFE AND SOCIAL SCIENCES DATASET… 119

x

TABLE OF CONTENTS
(Continued)

Chapter Page

APPENDIX C PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION
EXPERIMENTS ON BIOINFORMATICS DATASETS ………….... 129

APPENDIX D PRECISION-RECALL CHARTS FOR CLUSTERING
EXPERIMENTS ON BIOINFORMATICS DATASETS …………… 135

APPENDIX E PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION
EXPERIMENTS ON BIOMEDICAL DATASETS …………………. 140

APPENDIX F PRECISION-RECALL CHARTS FOR CLUSTERING
EXPERIMENTS ON BIOMEDICAL DATASETS …………………. 145

REFERENCES ………………………………………………………………………... 150

xi

LIST OF TABLES

Table Page

2.1 Sample Duplicate Entities ……………………………………………....……….. 16

3.1 Datasets Used for the String Metrics Evaluation ……..….…………………..….. 32

3.2 Duplicate Records Retrieved from the Census Dataset ..…....…....…………..…. 33

3.3 Bioinformatics Datasets Used in Experiments ...……..………………..…...…… 34

3.4 Attribute Descriptions of GOA ………………………………………………...... 34

3.5 Medical Informatics Datasets Used in Experiments …..….….….………………. 36

3.6 Duplicate Records from the SNOMED Most Frequent Concepts Dataset ….…... 36

4.1 Correspondence of the NS Order to the Parameter d……….……...………... 42

4.2 The Reaching and Pulling Algorithms …………………………………………... 55

4.3 The SPED Algorithm Complexity …………………………...………………….. 58

4.4 The HD Algorithm Complexity ………………………...……………………….. 62

4.5 Common Prefixes in the UMLS Terms ……………………………………......... 68

4.6 Complexity of the LACP Method ……………………………………………….. 70

5.1 Record Pairs from the Candidate Set of the Parks Dataset ……………………… 73

5.2 Average Precision for Duplicate Detection Experiments ……………………….. 75

5.3 Maximum F1 for Duplicate Detection Experiments …………………………….. 76

5.4 Execution Time in Seconds for Duplicate Detection Experiments ……………… 77

5.5 Average Precision for Clustering Experiments ………………………………….. 80

5.6 Maximum F1 for Clustering Experiments ………………………………………. 81

5.7 Execution Time in Seconds for Clustering Experiments ………………………... 82

5.8 Average Precision for Duplicate Detection Experiments ……………………….. 85

5.9 Maximum F1 for Duplicate Detection Experiments ……………………………. 86

xii

LIST OF TABLES
(Continued)

Table Page

5.10 Execution Time for Duplicate Detection Experiments ………………………….. 87

5.11 Average Precision for Clustering Experiments ………………………………….. 89

5.12 Maximum F1 for Clustering Experiments ………………………………………. 90

5.13 Execution Time in Seconds for Clustering Experiments ………………………... 92

5.14 Average Precision for Duplicate Detection Experiments ……………………….. 94

5.15 Maximum F1 for Duplicate Detection Experiments ……………………………. 95

5.16 Execution Time in Seconds for Duplicate Detection Experiments ……………… 96

5.17 Results Returned by the Spell Checker…………………………………………... 98

5.18 Search Results for the Misspelled Term “Vertebrate”…………………………… 99

5.19 Search Results for the Misspelled Term “Sodium Fluoride”…………..………… 100

5.20 Search Results for the Misspelled Term “Pancreatitis”……………..…………… 100

5.21 Average Precision for Clustering Experiments ………………………………….. 102

5.22 Maximum F1 for Clustering Experiments ………………………………………. 103

5.23 Execution Time in Seconds for Clustering Experiments ………………………... 104

xiii

LIST OF FIGURES

Figure Page

2.1 An example of the edit path between the two strings ..…………………………. 22

2.2 The Levenshtein distance matrix for S = "New York", T = "New Jersey" …….. 23

4.1 The neighborhood system of the seventh order for the node (5, 5) on the 2D
lattice of nodes …………………………………………………………………... 43

4.2 The neighborhood system of the seventh order for the node (5, 5) on the 2D
lattice of nodes …………………………………………………………………. 44

4.3 The assignment of Euclidean coordinates to the lattice of nodes ……………… 45

4.4 The causal neighborhood system of the seventh order for the node (5, 5) on the
2D lattice of nodes. The numbers n = 1...14 express the outermost neighboring
sites in the causal neighborhood system of the n-th order ……………………… 46

4.5 The causal neighborhood system of the seventh order for the node (5, 5) on the
2D lattice of nodes. The numbers indicate the squares of the Euclidean distance
[dist(pi', pi)]

2 from the node (5, 5) to the other nodes ……………………….... 46

4.6 The description of the MRFED algorithm ………………………………………. 49

4.7 The MRFED distance matrix and the 2D word alignment ……………………… 50

4.8 Lattices computed for the strings "Albert Einstein" and "Archimedes" using the
SN lengths two (a) and three (b) ………………………………………………… 51

4.9 Graphs constructed from the lattices of the (a) 4x4, (b) 6x4, (c) 4x6 dimensions. 53

4.10 Label assignment to the graph nodes ……………………………………………. 56

4.11 The interim SPED values and the trace back for the algorithm with the SN of
length 2 …………………………………………………………………………... 58

4.12 Two approaches to HD calculation ……………………………………………… 60

4.13 Venn diagram view of the HD …………………………………………………... 61

4.14 Separated subsets view of the HD ………………………………………………. 61

4.15 Example of the histogram intersection for two UMLS terms: (a) : “ammonium”,
(b) “ammonium ion”, (c) the resulting histogram intersection ………………….. 68

4.16 Algorithm of the LACP method ………………………………………………… 69

xiv

LIST OF FIGURES
(Continued)

Figure Page

5.1 Sample experiment “scenario” file ……………………………………………… 72

A.1 Precision-recall curves for the duplicate detection experiments on the Animals
dataset ………………………………………………………………………….. 109

A.2 Precision-recall curves for the duplicate detection experiments on the Animals
dataset …………………………………………………………………………… 110

A.3 Precision-recall curves for the duplicate detection experiments on the Birds
dataset …………………………………………………………………………… 111

A.4 Precision-recall curves for the duplicate detection experiments on the Birds
dataset …………………………………………………………………………… 112

A.5 Precision-recall curves for the duplicate detection experiments on the Census
dataset …………………………………………………………………………… 113

A.6 Precision-recall curves for the duplicate detection experiments on the Census
dataset …………………………………………………………………………… 114

A.7 Precision-recall curves for the duplicate detection experiments on the Parks
dataset …………………………………………………………………………… 115

A.8 Precision-recall curves for the duplicate detection experiments on the Parks
dataset …………………………………………………………………………… 116

A.9 Precision-recall curves for the duplicate detection experiments on the
Restaurants dataset ………………………………………………………………. 117

A.10 Precision-recall curves for the duplicate detection experiments on the
Restaurants dataset ……………………………………………………………… 118

B.1 Precision-recall curves for the clustering experiments on the Animals dataset…. 119

B.2 Precision-recall curves for the clustering experiments on the Animals dataset…. 120

B.3 Precision-recall curves for the clustering experiments on the Birds dataset ……. 121

B.4 Precision-recall curves for the clustering experiments on the Birds dataset ……. 122

B.5 Precision-recall curves for the clustering experiments on the Census dataset ….. 123

B.6 Precision-recall curves for the clustering experiments on the Census dataset ….. 124

B.7 Precision-recall curves for the clustering experiments on the Parks dataset ….… 125

xv

LIST OF FIGURES

(Continued)

Figure Page

B.8 Precision-recall curves for the clustering experiments on the Parks dataset …… 126

B.9 Precision-recall curves for the clustering experiments on the Restaurants
dataset …………………………………………………………………………… 127

B.10 Precision-recall curves for the clustering experiments on the Restaurants
dataset …………………………………………………………………………… 128

C.1 Precision-recall curves for duplicate detection experiments on the Paramecium
Tetraurelia dataset ………………………………………………………………. 130

C.2 Precision-recall curves for duplicate detection experiments on the Bacteriophage
T4 dataset …………………………………………………….............................. 131

C.3 Precision-recall curves for duplicate detection experiments on the Carsonella
Ruddii dataset ……………………………………………………………………. 132

C.4 Precision-recall curves for duplicate detection experiments on the Hyperthermus
Butylicus dataset ………………………………………………………………… 133

C.5 Precision-recall curves for duplicate detection experiments on the Buchnera
Aphidicola Cedri Cinara dataset ……………………………………………… 134

D.1 Precision-recall curves for clustering experiments on the Paramecium
Tetraurelia dataset ……………………………………………………………….. 135

D.2 Precision-recall curves for clustering experiments on the Bacteriophage T4
dataset …………………………………………………………………………… 136

D.3 Precision-recall curves for clustering experiments on the Carsonella Ruddii
dataset …………………………………………………………………………… 137

D.4 Precision-recall curves for clustering experiments on the Hyperthermus
Butylicus dataset ………………………………………………………………… 138

D.5 Precision-recall curves for clustering experiments on the Buchnera Aphidicola
Cedri Cinara dataset ……………………………………………………………... 139

E.1 Precision-recall curves for duplicate detection experiments on the UMLS Most
Frequent Concepts dataset ………………………………………………………. 141

E.2 Precision-recall curves for duplicate detection experiments on the SNOMED
Most Frequent Concepts dataset ………………………………………………… 142

xvi

LIST OF FIGURES
(Continued)

Figure Page

E.3 Precision-recall curves for duplicate detection experiments on the UMLS
Longest Concepts dataset ……………………………………………………….. 143

E.4 Precision-recall curves for duplicate detection experiments on the SNOMED
Longest Concepts dataset ………………………………………………………... 144

F.1 Precision-recall curves for clustering experiments on the UMLS Most Frequent
Concepts dataset …………………………………………………………………. 146

F.2 Precision-recall curves for clustering experiments on the SNOMED Most
Frequent Concepts dataset ………………………………………………………. 147

F.3 Precision-recall curves for clustering experiments on the UMLS Longest
Concepts dataset …………………………………………………………………. 148

F.4 Precision-recall curves for clustering experiments on the SNOMED Longest
Concepts dataset …………………………………………………………………. 149

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The Approximate String Matching (ASM) problem emerged in the 1960s and evolved

in the subsequent decades in a number of different fields. Research efforts in this area

were motivated by problems of bioinformatics, signal processing, and text retrieval

[65]. Today, research continues in the above-mentioned domains, although the ASM

application area has been extended into new fields such as medical informatics,

human speech research, and others. Thus, development of new, more effective

methods for approximate string matching remains an important research task.

1.1.1 Bioinformatics Applications

Exact string matching is of little use for bioinformatics, since exact pattern matches

are very rare [65]. Thus ASM is essential to many applications in this field. ASM

methods are used to find common motifs or similarities in DNA, RNA, or protein

sequences, where differences are caused by mutations or evolutionary alterations [67].

Common motifs among RNA chains can provide information on RNA functionality

and help to classify RNA families [68]. A crucial sub-problem of reconstruction of

phylogenetic trees is solved by applying ASM methods to find genetic sequence

alignment. Recent applications of ASM are in solving problems of structure matching

and in discovering unknown patterns in bioinformatics [65].

The bioinformatics field has experienced tremendous growth, which

subsequently established a massive volume of data available from multiple

specialized databases. These sources contain diverse information including annotated

biological sequences, three-dimensional molecular structures, and genetic and

2

physical maps [69]. Various ASM methods are used by scientists to solve current

research tasks such as retrieving sequences from existing databases that are

homologous to newly discovered ones, and establishing multiple sequence alignment

to discover similarity patterns to predict the function, structure, and evolutionary

history of biological sequences [69].

1.1.2 Medical Informatics Applications

Significant expansion of medical data sources within heterogeneous healthcare

information systems has resulted in a redundant and sometimes inaccurate

information split among multiple databases. This phenomenon has caused a problem

of record linkage and duplicate detection in medical databases. Research tasks include

patient record aggregation from multiple databases based on a minimum profile (i.e.,

a set of features such as last name, first name, gender and date of birth) [78] and term

matching for source integration, auditing, and biomedical data mining applications.

The latter task is considered in the context of the Unified Medical Language System

(UMLS), a well-known, long-term research project [79]. ASM methods are used for

adding to, updating, or auditing UMLS vocabularies. ASM methodologies are also

important for facilitating biomedical information extraction, fact finding, relationship

search, and concept discovery [80].

1.1.3 Human Speech Applications

A very active area for sequence comparison methods is speech research [81]. Speech

recognition is one of the well-known application domains of ASM techniques. The

seminal task has been to transform spoken information into textual data. Recent

research directions in the speech recognition field are the transcription of speech data

from novel data sources such as multimedia Web repositories, spoken language

3

comprehension research on children less than ten years of age, delivery of accurate

speech transcripts automatically retrieved under diverse circumstances, cross-lingual

language modeling, self-adaptive language machine learning, and others [70].

1.1.4 Signal Processing Applications

Information coded by strings of symbols is often transferred over noisy channels such

as radio, telegraph, microwave transmission, etc. [81]. The noise adds errors into the

received signal, thus introducing a problem of detection and correction of errors.

The classical Levenshtein edit distance appeared as a result of research work

aiming at solving the problem of correction of errors introduced into data transmitted

over physical channels [20]. The Levenshtein distance function and its modifications

play a major role in sequence comparison [81]. Signal processing theory is used to

estimate such errors. The goal of the field is to recover as much of the original

transmission data as possible [65].

1.1.5 Text Retrieval Applications

Optical Character Recognition (OCR) is the most widely applied technology for

utilization of retrospective documents [72]. OCR allows conversion of printed

documents into electronic form for subsequent database storage and indexing.

Inevitably, during OCR processing, a number of errors are introduced into the original

text. This leads to search failures for finding exact matches by a search query [71].

ASM is one of the key tools for handling OCR errors [72]. Post-editing and text

processing to correct errors can be made less labor intensive and more efficient by

using ASM.

Another ASM application in the text retrieval domain is record linkage. The

record linkage process involves finding information that refers to the same entity

4

when no unique identifier is available. A unique identifier may be absent because it

was impossible to collect, because of confidentiality procedures, or because of

introduced data errors. This research area refers to the problem of duplicate detection

in a single source or linking records among multiple sources. Examples of datasets for

this task are census data and business or personal listings, where the same entity may

be listed in multiple categories or where the same entity’s record fields are coded

differently in multiple sources [82]. Other popular ASM applications are spell

checkers, natural-language interfaces, computer-aided tutoring programs, language-

learning software, spoken text retrieval, handwritten text recognition, and others [65,

72].

1.1.6 Musical Data Mining Applications

Content-based music access and retrieval is still in its early stages of development

[73]. Musical pattern extraction is used in music generation, retrieval and analysis

[74]. Unfortunately, exact string matching is of little use in music retrieval. ASM

methodologies are applied to music notations consisting of note sequences with

associated pitch and rhythm to solve the following tasks: match complete melodies,

locate a fragment in a melody database, and retrieve melodies from musical databases

[75, 76]. Other applications of string distance methods in musical data mining are

identification of musical pieces, copyright infringement detection, musicological

analysis, and singing tutorship.

1.1.7 Bird Vocalization Applications

Research on bird songs experienced dramatic growth in recent years. It is important

because songs are the main means of communication among birds. For some species,

bird songs are inherited from generation to generation and have dialect-like variations

5

depending on geographical location [81]. These features are rare among non-primates

and are similar to human language, which makes it an important research topic. Since

bird songs are coded as sequences of string characters, ASM methods are applied to

compute distances between them.

1.1.8 Document Clustering Applications

String similarity functions are widely used in document clustering applications [99].

Clustering refers to the problem of dividing documents or records into joint or disjoint

sets possessing similar characteristics [98]. The entities assigned to the same cluster

are similar to each other according to a certain criterion while the documents assigned

to different clusters are dissimilar. String similarity metrics may be used as criteria

functions in the clustering task [101]. Clustering is different from the classification

problem since the number of clusters, their properties, and their composition are not

known in advance [100].

Cluster analysis is a technique that allows the identification of groups, or

clusters, of similar objects in multi-dimensional space [117]. It was initially

introduced in the field of information retrieval for improving the efficiency of the

serial search task [118]. It has become increasingly common to apply clustering to

large databases due to growing volumes of collected data of all sorts [102, 103].

Document clustering has applications in a number of fields.

Within the field of data mining, clustering methods are used in database

segmentation, in predictive modeling, and in the visualization of large datasets [103].

Also, clustering is often used as a pre-processing step inside of a larger data mining

application [107]. Multi-document summarization through the discovery of topic

hierarchies and the grouping of duplicate or nearly-duplicate documents are among

other clustering applications in data mining [119].

6

The number of electronic documents published on the Internet and on

corporate networks has experienced tremendous growth in recent years [104, 105].

The World Wide Web is often characterized as a large unstructured database, which is

subject to a number of document clustering applications [108, 109]. In addition,

colossal amounts of textual information are stored within archives of scientific and

technical publishing houses and of media companies. These areas are of great

practical interest for clustering applications [106]. Clustering provides a way to

organize a large collection of unstructured, unlabeled hypertext documents into

labeled categories that can be discriminated and disambiguated from one other [113].

Clustering Web search engines have recently gained popularity. These

applications group the returned search results into a hierarchy of labeled clusters. This

improves on typical engines that apply clustering methods to results after they are

returned by a well-known meta search engine [111]. To summarize, document

clustering in the World Wide Web domain consists of the following tasks: clustering

retrieved documents for better presentation, clustering documents in digital libraries,

developing automated document taxonomies, and retrieving cluster-oriented

information more efficiently [114]. A more recent Web-related clustering application

to emerge is unwanted email (spam) detection [120].

Medical informatics and bioinformatics widely employ clustering methods for

data mining tasks. It is possible to find functionally related genes and proteins and

classify them by previously unknown roles after grouping the genetic data into

clusters [110]. Clustering is efficiently applied in micro array analysis to identify

potential local patterns within genes and to help discover macroscopic phenotypes of

related samples or previously undetectable biological cellular processes of genes

7

[112]. Clustering and segmentation techniques are used to split DNA and protein

sequences into modules that can be assigned specific molecular functions [115].

ASM methods are extensively used to assign term weights in clustering

applications. Clustering methods incorporate similarity metrics such as TFIDF, cosine

similarity, Jaccard function, Levenshtein, Needleman-Wunsch distance, and others

[115, 116]. Since the uses of these metrics are constantly growing, there is increased

demand for improvement of existing ASM metrics used for clustering tasks.

1.2 Organization of the Dissertation

Chapter 1, Introduction, presents the motivation behind this research and analyzes

past and current ASM applications in various domains. Chapter 2, Background,

reviews related work in the field of ASM, defines the research problems, presents the

theory relevant to these problems, and states the formulas of well-known string

similarity metrics. Chapter 3, Data Sources, describes in detail the data sources

selected for the evaluation. Chapter 3 concludes with the presentation of the standard

methods used in information retrieval for string similarity function evaluation.

Chapter 4, Similarity Functions for Duplicate Detection and Clustering Tasks,

introduces the string similarity algorithms developed by the author and provides

detailed specifications. Chapter 5, Evaluation, begins with the description of an

experimental test bed, the open-source Java toolkit known as Second String [28]. The

chapter includes a detailed discussion of the methodology used to build the

experiments. Chapter 5 continues with a thorough presentation of the results obtained

during the numerous performed experiments, accompanied by supporting charts and

tables. Chapter 6, Summary, concludes the thesis with a discussion of the

accomplished work, conclusions, and directions for future work.

8

The work presented in Section 4 was published before or submitted for

publication. The work related to the Markov Random Field Edit Distance (MRFED)

method described in Section 4.1 was published in [49, 50]. The research in Section

4.2 concentrating on the SPED method was published in [96, 123, 124]. The material

in Section 4.3 and Section 4.4 was submitted for publication.

9

CHAPTER 2

BACKGROUND

2.1 Summary

String distance metrics constitute the central part of approximate string matching

methodologies. Decades of research efforts in this field have produced a vast number

of algorithms applied to many scientific problems. Nevertheless, due to the dramatic

growth of electronic knowledge sources there is a need for more efficient algorithms

capable of solving newly arising problems.

This work introduces a family of novel string similarity methods, which

outperform a number of effective well-known and widely used string similarity

functions. The new algorithms are designed to overcome a common problem of the

existing methods, namely, the lack of context sensitivity.

2.2 Review of the Related Work

The task of approximate string matching in its most general form is to measure

similarity or dissimilarity between two strings. Several modifications of non-exact

string matching methods that allow errors exist in bioinformatics, medical

informatics, data mining, signal processing, text retrieval, optical character

recognition, file comparison, image compression, handwriting recognition, virus and

intrusion detection, and in many other fields. Depending on the knowledge domain,

these methods may have different final goals, e.g., to link records from separate

datasets or to find a misspelled word in a text. Nevertheless, all of these tasks can be

accomplished using string distance functions, which are called edit distances, distance

metrics, string comparators, or string similarity metrics.

10

Research on ASM began in the 1960s, and it continues up to the present. The

classic case of the edit distance was introduced by Levenshtein in 1966 [20]. This

algorithm remains popular today due to its extension by Wagner and Fischer [21]. The

latter work allowed a string to be composed of any finite alphabet rather than the

binary one used in Levenshtein's approach [20]. The binary reverse operation was

converted to the substitution of a character by another character; variable weight

assignment was allowed for individual edit operations; and a dynamic programming

algorithm was provided to calculate the distance between two strings.

Since that extension, numerous research efforts have been made to improve

existing string similarity techniques, to adapt the algorithms to new fields of

application, or to introduce a completely new approach for the same task. Fellegi and

Sunter [14] extended their theory of record linkage by presenting a formal model. Its

core idea is to use the relative frequencies of strings being compared, e.g., a rare word

found in pairs of records taken from two files gains more weight than a word that is

used frequently. Many later applications of frequency-based string matching used

Fellegi and Sunter's work with additional adjustments.

A dynamic programming algorithm introduced by Needleman and Wunsch

[22] is considered to be the first technique that could find the global alignment

between two amino acid sequences. Eleven years later, another famous project

conducted by Smith and Waterman [23] targeted the local alignment problem, which

emerged as the result of the growth in molecular data research. Their paper proposed

a different method of assigning similarity scores in order to find the optimum local

alignment of sub-sequences at the expense of the global score. The worst-case

complexity of this method is of the order of the string lengths product. A more

efficient solution was introduced by Ukkonen in 1985 [24] with the complexity

11

proportional to the product of the longer string relative to the edit distance value for

these strings.

In 1993, Marzal and Vidal [25] demonstrated that the normalized edit distance

significantly improved the Levenshtein Distance. Marzal and Vidal stressed that in

order to get better results, the normalization should be performed within a dynamic

programming algorithm. Marzal and Vidal stressed that the post-normalization of a

distance metric produces worse results compared to their method. The post-

normalization consists of two steps: first, a not-normalized distance between two

strings is computed, and then it is divided by the length of its edit path.

Superior results were obtained in the record-linkage domain by applying

variants of the Jaro metric [26], which is based on the number and order of the

common characters in two strings. Winkler was able to further improve this algorithm

by introducing a re-scorer, which adjusts the final value of the function depending on

the length of the longest common prefix [27].

Cohen et al. [28] designed the Soft TFIDF technique, which extended the

TFIDF method by adding similar tokens in addition to equal tokens. The experiments

described in their paper showed promising results for matching datasets.

A supervised learning method based on data training was shown to outperform

several selected metrics by Bilenko et al. [29]. Bilenko et al. also experimented with

hybrid methods by combining several distance metrics.

The problem of identifying duplicate records in databases was originally

identified by Newcombe [12] as record linkage. Newcombe’s study [12] associated a

birth record with a marriage record from different databases when information in both

cases pointed to the same couple. Positive weights were associated with matching

12

fields such as name, place of birth, and age. Mostly, the total record weight was

sufficient to decide whether a pair was a match or a non-match.

 In bioinformatics, data cleaning and integration are relatively young problems.

Recently, they have received more attention in the areas of effective discovery and

management of biological entities. The Freely Extensible Biomedical Record Linkage

(Febrl) system is the first major duplicate detection system in biological databases

[13]. Febrl employs probabilistic data cleaning and standardizing based on Hidden

Markov Models. In addition, it offers probabilistic data linkage based on the classical

Fellegi and Sunter model [14].

Another work utilizing Markov’s ideas was conducted by Singla and

Domingos [15]. In this work, various entity matching algorithms such as TFIDF and

Winkler are combined. As shown in their work, the strength of using Markov logic is

its flexibility in attaching weights to first-order formulas and in viewing them as

templates for features of Markov networks [15]. However, Singla and Domingos did

not incorporate edit distance algorithms into Markov logic, whereas the authors’

MRF-based approach does.

An additional major study by Tsuruoka et al. [16] introduces logistic

regression for learning a string similarity measure from a gene/protein name

dictionary. They use both synonymous pairs of strings and non-synonymous pairs

when optimizing the similarity measure. The experimental results show that using

diverse types of information improved the accuracy of detecting similar gene/protein

names.

 Koh et al. [4] examine a duplicate detection problem applied to biological

databases. With selected matching criteria, they compute similarity scores for

corresponding fields of known duplicate pairs, generate association rules, and detect

13

duplicates by using heuristic rules. In the work by Koh et al. [4], performed

experiments demonstrate that association rules achieve higher efficiency in duplicate

detection compared to user-defined rules.

Popular in bioinformatics, the Smith-Waterman distance [17] was designed to

find optimal alignments between biological sequences, such as DNA and proteins. It

is based on a dynamic programming approach and allows gaps as well as character-

specific match scores. The Smith-Waterman algorithm is widely used to perform local

sequence alignment.

Research by Herbert et al. [18] describes a toolkit, BIO-AJAX, designed to

improve biological data quality by eliminating duplicate entries in protein repositories

using various customized database operations. Although BIO-AJAX requires some

initial supervised learning, later the tool runs without curator interaction. In the

experimental section of the work [18], Herbert et al. demonstrate how the toolkit can

solve a nomenclature problem in a phylogenetic and evolutionary system, TreeBASE.

One additional integrated framework extends the line of record linkage

applications in the domain of bioinformatics. KitEGA was proposed to evaluate

grouping techniques for biological data [19]. This approach treats duplicate detection

as a grouping task where grouped data entries represent the same entity. Bauckmann

[9] addresses two issues regarding the integration of biological databases: 1) detecting

intra-schema relationships and 2) detecting inter-schema relationships. In order to

resolve these issues, the SPIDER algorithm was proposed for detecting inclusion

dependencies (INDs) as a precondition for foreign keys. The performance of SPIDER

was tested with three protein databases: UniProt, SCOP, and PDB. Bauckmann [9]

demonstrates how duplicate detection can be used for integrating protein databases

that have different schemas.

14

The main problem of existing edit distance algorithms is that match decisions

are made independently for each candidate pair [30, 31]. Thus the contextual

dependencies between adjacent characters are neglected.

To resolve this context-free problem of the edit distance, this research

introduces several novel string similarity methods, achieving context dependency in

different ways. The MRFED method is the adaptation of the Markov Random Fields

(MRF) concept [32], successfully used in image recognition and computer vision, to

the string matching domain. The MRFED method exploits the notion of the

neighborhood system, cliques and clique potentials from MRF theory in the context of

the Needleman-Wunsch distance [22]. The Shortest Path Edit Distance (SPED)

incorporates substring match operations to achieve context dependency. The methods

introduced in the Sections 4.3 and 4.4 are based on the histogram difference operation

which is re-defined in this work.

2.3 Research Problem

There are a number of existing methods for approximate string matching, as described

in Section 2.4. Nevertheless, the number of knowledge domains applying ASM

methods has grown since the 1960s, as shown in Sections 1.1.1 to 1.1.8.

The life and social sciences, bioinformatics and medical informatics have

experienced a large growth in the amount of electronic data produced by a number of

sources. To reduce the labor costs of data mining and processing applications, the

ASM methods are widely employed in the above-mentioned domains.

The author hypothesizes that the performance of existing, widely used

similarity metrics may be improved for duplicate detection and clustering tasks. The

15

author will show empirically that this hypothesis holds true in Section 5.2 through

Section 5.7 by presenting the evaluation results of various string similarity metrics.

Based on these results, the author claims that there is a scientific need for new string

similarity metrics capable of improving performance in certain domains.

The author presents the previously introduced and novel string similarity

algorithms. An extensive evaluation is performed for duplicate detection and

clustering tasks. The developed methods are benchmarked against ten well-known

similarity functions. The proposed methods achieve superior results measured in

average precision, maximum F1, and execution time.

2.3.1 Research Problem in Life and Social Sciences Domain

In the life and social sciences domain, ASM methods are used for creation,

maintenance, and duplicate identification and removal in name and address lists. It is

known that many datasets have typographical errors in more than 20% of first names

and also in last names. The application of ASM methods significantly improves

matching efficiency and facilitates the labor-intensive manual matching process [89].

In the life and social sciences domain, as well as in other areas, the problem of

duplicate detection arises in the applications which collect and extract data from Web

pages or other unstructured or semi-structured documents. In this case, ASM methods

are applied at the data cleaning step, which occurs before uploading records into a

database [90]. An example of a business-related information integration application

that uses data from the Web is TheaterLoc [91], which collects and processes

restaurant and movie theater data from the Internet, locates objects on a map and

allows site visitors to view restaurant reviews, movie show times and trailers.

16

2.3.2 Research Problem in Bioinformatics Domain

A vast number of biological entities such as genes and proteins are available in the

biological databases Swiss-Prot [1], GenBank [2], and others. These databases serve

as critical resources for molecular biologists to conduct their research. Over the last

two decades, the rapid development of the biological databases has been driven by an

explosive growth of data due to the high throughput sequencing and automation in

genomics and proteomics. For example, the most recent statistical report of SwissProt

shows that the number of the SwissProt sequences has grown six times over four

years from two million sequences in 2006 to twelve million sequences in 2010.

Table 2.1 Sample Duplicate Entities

Field Swiss-Prot Record PIR Record

Locus ID P34180 S22388

Definition

Phospholipase A2, neutral
precursor (Ammodytin I2)
(Phosphatidylcholine 2-
acylhydrolase).

phospholipase A2 (EC 3.1.1.4)
ammodytin I2 precursor - western
sand viper.

Database
source

Swiss-Prot: locus
PA2N_VIPAA,
accession P34180;

PIR: locus S22388

Organism
Vipera ammodytes
ammodytes

Vipera ammodytes
ammodytes

Sequence

MRTLWIVAVCLIGVE
GNLYQFGNMIFKMTK
KSALLSYSNYGCYCG
WGGKGKPQDATDRC
CFVHDCCYGRVNGC
DPKLSIYSYSFENGDI
VCGGDDPCLRAVCEC
DRVAAICFGENLNTY
DKKYKNYPSSHCTET
EQC

MRTLWIVAVCLIGVE
GNLYQFGNMIFKMTK
KSALLSYSNYGCYCG
WGGKGKPQDATDRC
CFVHDCCYGRVNGC
DPKLSIYSYSFENGDI
VCGGDDPCLRAVCEC
DRVAAICFGENLNTY
DKKYKNYPSSHCTET
EQC

Even though research efforts, such as the UniProt Knowledgebase, work on

integration of many biological databases, progress is still far from satisfactory. The

17

most common sources of errors contributing to the low quality of public sequence

databases are as follows [3]:

1. Lack of cross-referencing. The same sequence may be entered into more

than one database without cross-referencing these records.

2. Duplicate entries. The sequence is submitted more than once to the same

database.

3. Duplicate annotations. The annotations of the same sequence are submitted

separately by different research groups.

Table 2.1 shows the same protein found in PIR and Swiss-Prot without cross-

referencing between the two records [4]. This example demonstrates the high degree

of string similarity between definitions of the duplicate entries. This factor justifies

the use of string comparison techniques to deal with such typographical variations.

As biological databases become more pervasive, various data quality concerns

are emerging. The aforementioned quality issues are non-trivial and can cause many

problems for the database. For the biological data to be corrected and standardized,

methods and frameworks must be developed to handle both structural and traditional

data.

In the field of information integration, duplicate detection has been widely

studied [5]. Among various techniques proposed in the field, string similarity provides

an unsupervised statistical model and has been applied in many different applications

[6, 7]. String similarity and matching algorithms are used for entity matching by

measuring individual record fields, since individual fields are often stored as strings.

The widely-used notion of string similarity is the Levenshtein edit distance: the

minimum number of insertions, deletions, and substitutions required to transform one

string into another [8]. Advantages gained by entity matching based on string

18

similarity are removing duplicate biological data [9], discovering substructures in

biochemical molecules [10], and detecting duplicate 2D Nuclear Magnetic Resonance

(NMR) spectra for the structural analysis of molecules [11].

The performance of numerous string similarity metrics varies from dataset to

dataset due to the structure of the data and other textual characteristics, such as length

of the matched strings, word frequency, logical organization of strings, etc. This

phenomenon was empirically shown, as described in Chapter 5 of this work. As the

authors’ experiments agree with research by Tan et al. [125], a single universal string

metric with superior performance on various types of datasets does not exist. Still,

efforts to create better methods continue.

One direction of ongoing research involves accounting for the contextual

dependencies in texts for performance improvement. Several major research efforts

based on a probabilistic approach are introduced in Section 2.2 of this work. Another

significant effort in this field was made by Wei [51]. Wei introduced the Markov Edit

Distance (MED), which was one of the initial applications of the Markov model to the

string metric domain. Wei [51] suggested that the MRF, with its solid theoretical

mathematical background and practical success in many disciplines, was likely to

shed more light on how to build a salient framework that would render the edit

distance concept more powerful. Wei presented two modifications of the string metric

based on Markov's ideas: the reshuffling MED capable of handling reshuffling

relations among patterns; and the coherence MED, which allows more complex

operations on sub-patterns such as insertion, deletion, and substitution based on local

contextual dependencies.

19

2.3.3 Research Problem in Medical Informatics Domain

Launched in 1986, the Unified Medical Language System (UMLS) remains a well-

known long-term research effort [79] to develop an extensive terminological

knowledge base consisting of three major components: the Metathesaurus, the

Semantic Network, and the SPECIALIST Lexicon. The UMLS 2011AA release

contains more than 2.4 million concepts and almost 10 million unique terms, retrieved

from 160 source vocabularies [93].

 Source integration is a complicated multi-step process demanding a vigorous

research effort. Although many algorithmic aides are available to support experts who

are adding to, updating or auditing vocabularies, still no solution has been found to

solve these problems without extensive human interaction. It is planned to integrate

even more sources into the UMLS in the future [79]. Furthermore, new versions of

existing vocabularies require reintegration into the UMLS as a part of its update cycle.

Therefore, developing new techniques and improving existing ones for term matching

for the UMLS remain important tasks.

 In Section 4.4, the author proposes the Longest Approximately Common

Prefix (LACP) method as a context-sensitive algorithm for improving existing source

integration and auditing techniques. The LACP could be included as one data

processing step into existing text-to-thesaurus mapping programs such as CLARIT,

SAPHIRE, Metaphrase, MetaMap/MMTx [94], MicroMeSH or integration techniques

such as Piecewise Synonym Generation [79] in order to improve the precision of the

results. It is worth noting that the LACP does not perform the kinds of text

manipulations that the well-known SPECIALIST lexicon tools Norm, Word Index, or

LVG [95] do, but it assesses the similarity or dissimilarity of two strings.

20

2.4 String Distances

2.4.1 Edit Distance

In order to define string metrics, many researchers use the notation introduced in the

classic paper of Wagner and Fisher [21] and adopted by others [25]. Let Σ be a finite

alphabet and Σ* be the set of all finite length strings over Σ. Let S = S1S2 ... Sn be a

string of Σ*, where Si is the i-th symbol of S. Let Si...j be the substring of S consisting

of consecutive symbols from Si to Sj where 1 ≤ i ≤ n, 1 ≤ j ≤ n. The length of the string

S is |S| = n and the length of the substring |Si...j| = j – i + 1. When i > j, Si...j is the null

string λ, | λ | = 0. |S| denotes the length of the string S defined as the number of

characters in a string.

A simple edit operation is a pair (a, b) ≠ λ of strings where a and b are strings

of length 1 or 0. The notation a → b is used for an edit operation (a, b). There are

three commonly used edit operations:

 The insertion: a → b, a ≠ λ, b = λ;

 The deletion: a → b, a = λ, b ≠ λ;

 The substitution: a → b, a ≠ λ, b ≠ λ.

The edit transformation of string S into string T is the sequence E of the

elementary edit operations that transform S into T. The elementary edit operations are

assigned weights by the weight function ω, which assigns to each edit operation (a, b)

a real number ω(a, b) = r ≥ 0. The weight function ω can be extended to a sequence

E as follows:)()(
1

m

i
iEE , where m is the length of E.

For the strings S and T Σ*, the edit distance between S and T is defined as

follows:

 δ(S, T) = min { ω (E) | E is the edit transformation of S into T} (2.1)

21

In the classic case, the assumption is that ω(a, b) = δ(a, b) with the following

constraints: ω(a,a)=0 and ω(a, b) + ω(b, c) ≥ ω(a, c), known as the triangle

inequality. Furthermore, by adding the assumption that δ is symmetric, i.e. δ(a, b) =

δ(b, a), and strictly positive on each edit operation, i.e. δ(a, b) > 0 where a ≠ b, the

classic approach interprets δ as a metric on a space of all strings, thereby explaining

the term "distance."

2.4.2 Traces

The trace RS,T from a string S to a string T is the sequence of the ordered pairs of

integers (i, j) satisfying the following conditions:

 1 ≤ i ≤ n, 1 ≤ j ≤ m where |S| = n and |T| = m;

 For any two distinct pairs (i1, j1) and (i2 j2) in the trace R the following
conditions hold:

a. i1 ≠ i2 and j1 ≠ j2;

b. i1 < i2 if and only if j1 < j2.

Traces denote possible paths from the pair of initial characters of S and T to

any other pair of characters from S and T. The sequence forming the trace RS,T may

correspond to a complete or incomplete transformation from S to T.

2.4.3 Edit Path

The edit path PS,T between two strings S and T is the sequence of ordered pairs of

integers (ik, jk) where 0 ≤ k ≤ m such that:

1. 0 ≤ ik ≤ |S|;

2. 0 ≤ jk ≤ |T|;

3. (i0, j0) = (0, 0);

4. (ik, jk) = (|S|, |T|);

5. 0 ≤ ik – ik –1 ≤ 1, k ≥ 1;

6. 0 ≤ jk – jk –1 ≤ 1, k ≥ 1;

7. ik – ik –1 + jk – jk –1 ≥ 1.

22

Conditions (1) and (2) specify the ranges for ik and jk. Conditions (3) and (4)

ensure that the traversal starts at the pair of initial characters of S and T and ends with

the pair of final characters of S and T. Conditions (5) and (6) ensure that during a

single step no more than one character is traversed in the horizontal, vertical, or

diagonal direction. Condition (7) assures that at the k-th step a horizontal, vertical, or

diagonal move is actually made.

Each pair of successive points of the edit path corresponds to one edit

operation of insertion, deletion, or substitution. By traversing the edit path PS,T from

the beginning to the very end, the full transformation of the string S into the string T

can be restored.

 0 1 2 3 4 5 6 7 8
0 N e w Y o r k
1 N
2 e
3 w
4
5 J
6 e
7 r
8 s
9 e
10 y

Figure 2.1 An example of the edit path between two strings.

Figure 2.1 shows a graphical representation of the edit path between the

strings "New York" and "New Jersey." The black cells correspond to the steps of the

edit path. Here, the edit path PS,T = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7,

7), (8, 8), (8, 9), (8, 10)}.

The weight of the edit path can be computed by the following formula:

m

k
iiTS kk

TSPW
1

,),()(

(2.2)

23

Now, the formula for the edit distance takes this form:

 δ(S, T) = min { W(P) | P is the edit path between S and T} (2.3)

The recursive formula below for the Levenshtein edit distance was introduced

by Wagner and Fisher [21]:

 δ(S1...i, T1...j) = min { δ(S1...i-1, T1...j) + ω(Si , λ),
δ(S1...i-1, T1...j-1) + ω(Si , Tj),
δ(S1...i, T1...j-1) + ω(λ, Tj)} (2.4)

In (2.4), S1...i denotes the substring of the string S, where S1...i = S1S2...Si and

T1...j denotes the substring of the string T, where T1...j = T1T2...Tj. The application of the

formula (2.4) to the transformation of the string "New York" into "New Jersey" is

shown below in Figure 2.2. Each inner cell with a white background contains a value

of the edit distance for the substrings S1...k and T1...l where k is the x-coordinate of the

cell and l is its y-coordinate. The final value of the Levenshtein edit distance is shown

in the bottom right cell with the coordinates (8, 10) and the value 5.

 0 1 2 3 4 5 6 7 8
0 N e w Y o r k
1 N 0 1 2 3 4 5 6 7
2 e 1 0 1 2 3 4 5 6
3 w 2 1 0 1 2 3 4 5
4 3 2 1 0 1 2 3 4
5 J 4 3 2 1 1 2 3 4
6 e 5 4 3 2 2 2 3 4
7 r 6 5 4 3 3 3 2 3
8 s 7 6 5 4 4 4 3 3
9 e 8 7 6 5 5 5 4 4
10 y 9 8 7 6 5 6 5 5

Figure 2.2 The Levenshtein distance matrix for S = "New York", T = "New Jersey.”

2.4.4 Post-Normalized Edit Distance

The Post-Normalized Edit Distance (PNED) is a simple approach to take into account

the lengths of strings for which the metric is being computed. For this variation of the

algorithm, the value of the edit distance computed using the Levenshtein function is

24

divided by the length of the edit path. As an example, consider a pair of strings of

length two differing by a single character and a pair of strings of length one hundred

with one non-matching character. In the first case, the dissimilarity is 50%, but in the

second case it is only 1%. To stress this difference, the post-normalization is applied

as follows:

||

),(
),(

,TSP

TS
TSPNED

 (2.5)

where | PS,T | is the length of edit path PS,T.

2.4.5 Normalized Edit Distance

The Normalized Edit Distance (NED) [25] differs from the PNED by the way in

which the normalization is done. In case of the NED, the final value is computed

within a single dynamic programming process by minimizing the normalized weight

of the edit path P:

||

)(
)(

,

,
,

^

TS

TS
TS P

PW
PW

(2.6)

Then the expression for the NED takes the form:

 NED(S,T) = min{)(,

^

TSPW } (2.7)

Marzal and Vidal [25] showed that the NED outperforms the PNED

significantly. Also the researchers proved that the minimization (2.7) cannot be

substituted by first minimizing W(PS,T) and then normalizing it by the length of the

obtained edit path PS,T.

2.4.6 Damerau-Levenshtein Distance

The Damerau-Levenshtein Distance (DLD) [33] expands the set of allowed edit

operations by adding a transposition, which does not satisfy the definition of the

simple edit operations. The transposition is defined as ab → ba, a ≠ λ, b ≠ λ, a ≠ b.

25

The formula for the DLD is

otherwise

TSTSwhen

TS

SSSSTS
DLD jiji

ji

iiiiji 11

...1...1

1122 ,

),(

),(),(

 (2.8)

2.4.7 Jaro Metric

The Jaro metric [26] is not based on the edit distance model. Its positive results in the

record linkage domain are due to the consideration of the number and order of the

common characters in two strings. A character Si from a string S is defined to be

common with a string T when Si = Tj and i – H ≤ j ≤ i + H, where

 2

|)||,min(| TS
H

(2.9)

As an example, consider strings S = “aaabaa” and T = “ccbccccc”. Here, i=4,

j=3, character S4 is equal to character T3, and H = min(6, 8)/2 = 3. Now, both

conditions for character “b” are satisfied: S4 = T3 and i – 3 ≤ j ≤ i + 3. Thus, S4 is

common with T3.

Let S' = S1...SK be the characters in S, which are common with T and appear in

the same order as they originally appear in S. Let T' = T1...Tk be the characters in T,

which are common with S and appear in the same order as they originally appear in T.

The transposition for S' and T' is the position i such that S'i ≠ T'i. Let JS',T' be half the

number of the transpositions for S' and T' [28]. The Jaro similarity metric is expressed

as follows:

|'|

|'|

||

|'|

||

|'|

3

1
),('',

S

JS

T

T

S

S
TSJaro TS (2.10)

26

2.4.8 Jaro-Winkler Metric

Winkler's modification of the Jaro metric [34] shows a significant improvement in the

experimental results [35]. This algorithm recalculates the score of the Jaro metric

based on the length of the common prefix. Let Pref be the longest common prefix

shared by the strings S and T. Let P'= max(Pref, 4). Then the Jaro-Winkler metric is

defined as

)),(1(
10

'
),(),(TSJaro

P
TSJaroTSWinklerJaro (2.11)

2.4.9 Jaccard Similarity

The Jaccard similarity [36] is the token-based distance metric, which considers the

strings S and T as sets of tokens. This method interprets a token as a single word. It

was first introduced in research on Alpine flora diversity in 1912. The Jaccard

similarity is

||

||

YX

YX
Jaccard

 (2.12)

where X is the set of tokens of the string S, and Y is the set of tokens of the

string T.

2.4.10 Smith-Waterman Algorithm

This algorithm is considered to be the local version of the dynamic programming

algorithm for sequence alignment [37]. It is designed to find the best alignment

between the subsequences of two long sequences in the bioinformatics domain. The

Smith-Waterman algorithm [38] assigns 0 to the complete mismatch and the highest

score to the "best local alignment" [37].

Thi

deletion or

attribute th

costs are ω

2.4.11 Got

An extensi

adding the

opening a

algorithm u

which ends

of S1..i and

the alignme

 G(S0, T0) =
 G(S0, Tj) =
 G(Si, T0) =
 H(Si, T0) =
 V(S0, Tj) =

),(ji TSG

s algorithm

r insertion o

he variable c

deletion(Si, λ)

toh Algorit

ion of the S

affine gap p

gap and

uses three m

s without a

T1..j ends w

ent ends wit

= 0
= H(S0, Tj) =
= V(Si, T0) =
= – ∞,
= – ∞,

(

max

SG

m assigns di

of a pair of

costs to a g

and ωinsertio

thm

Smith-Wate

penalty. The

another sm

matrices: G f

gap; H for

with a gap in

th a gap in T

= g(j), 1
= g(j), 1

0
0

),(

),(

), 11

ji

ji

ji

TSV

TSH

TS

ifferent wei

f characters

gap when a

on(λ, Tj).

erman techn

e main idea

maller pena

for storing t

the best sco

n S; and V f

T. The Goto

≤ j ≤ | T |
≤ i ≤ | S |
≤ i ≤ | S |
≤ j ≤ | T |

)

)

),(ji TS
,

ights depen

s. This feat

aligning two

nique was

a of this met

alty for ext

the best sco

ores with th

for the best

oh algorithm

ding on the

ture also m

o strings. In

introduced

thod is to im

tending the

ores for the

he condition

scores with

m is defined

1 ≤ i ≤ |
1 ≤ j ≤ |

e match, mi

makes it pos

n this case,

by Gotoh

mpose a pen

e gap. The

alignment S

n that the al

h the condit

d as follows

S |
T |

27

(2.13)
ismatch,

ssible to

the gap

[39] by

nalty for

e Gotoh

Si and Tj

lignment

tion that

:

(2.14)

28

gapextendTSH

gapextendgapstartTSG
TSH

ji

ji
ji),(

),(
max),(

1

1
, 1 ≤ i ≤ | S |

1 ≤ j ≤ | T |

gapextendTSV

gapextendgapstartTSG
TSH

ji

ji
ji),(

),(
max),(

1

1
, 1 ≤ i ≤ | S |

1 ≤ j ≤ | T |

where ω is a weight function, g is the affine gap cost function, gapstart is a

cost to start a gap, gapextend is a cost to extend a gap. According to Gotoh [39],

weights and parameters cannot be determined a priori, but they may be estimated by a

dynamic optimization procedure.

2.4.12 Monge-Elkan Algorithm

The Monge-Elkan similarity function [40] makes use of the affine gaps by

implementing the Gotoh metric to match fields of a record (or words of a string in

string distance terminology). The Gotoh distance is used to find the most similar word

in T for each word in S. Then these scores are combined in order to get the final

similarity value using the following formula:

)),((max
||

1
),(

||

1

||

1
ji

S

i

T

j
TSGotoh

S
TSME

 (2.15)

where Gotoh() is the Gotoh function.

2.4.13 Needleman-Wunsch Algorithm

Unlike the Smith-Waterman algorithm [38], the Needleman-Wunsch method [22]

looks for the best global alignment. This method is also known as the Sellers

algorithm [66]. It is similar to the Levenshtein distance [20] but with parameterized

values for the insertion and deletion operations. When the gap cost g in the

29

Needleman-Wunsch algorithm is set to 1, it becomes an exact copy of the Levenshtein

metric.

gTSNW

gTSNW

TSTSNW

TSNW

ji

ji

jiji

ji

),(

),(

),(),(

max),(

1

1

11

(2.16)

where g is the gap cost.

2.4.14 TFIDF Algorithm

Term Frequency-Inverse Document Frequency (TFIDF), also known as the Cosine

Similarity [41], is a widely used token-based algorithm in information retrieval [43,

44]. This method calculates a term relevance weight defined as the proportion of

relevant documents in which the term occurs divided by the proportion of non-

relevant items in which the term occurs [42]. As defined by Cohen et al. [28]:

TS

TVSVTSTFIDF

),(),(),(

)log()1log(),('

),('

),('
),(

,

'

2

IDFTFSV

SV

SV
SV

S

(2.17)

where TFω,S is the frequency of the word ω in S, N is the size of the text, and

IDFω is the inverse of the fraction of terms in the corpus that contains ω.

2.4.15 Soft TFIDF

The Soft TFIDF method was proposed by Cohen et al. [28] as a hybrid distance

function combining TFIDF with a secondary similarity function. The Monge-Elkan

[40], Jaro [26], and Jaro-Winkler [27] methods were used by Cohen et al. in the

experimental phase.

30

),(),(),(),(
),,(

TDTVSVTSSoftTFIDF
TSCLOSE

 (2.18)

where CLOSE(θ, S, T) is the set of words ωS such that T and

dist'(ω,)> θ; for ω CLOSE(θ, S, T), D(ω,T) = maxT dist(ω,). In other words,

Soft TFIDF does not discard words which match approximately, unlike TFIDF which

keeps only exact matches.

2.4.16 Information Distance

Information Distance [121] is considered by Vitanyi et al. [122] to be a universal

distance measure for objects of all kinds. Unfortunately, Information Distance, as

defined by him, is incomputable, since it is based on the Kolmogorov complexity.

Nevertheless, Vitanyi et al. [122] suggest two approximations of this method. The

first approximation lies in the calculation of the difference in the number of bytes

between two compressed files. It is intended for objects which could be represented

by strings. The second version uses World Wide Web search engine results to target

names and abstract concepts. In [122], Information Distance is applied to clustering

and other tasks.

The Information Distance method was selected for benchmarking, since its

authors claim its universality, and it has shown promising results in clustering tasks

[122]. For this work, approximation via compression was selected. Bzip2, PPMZ, and

Gzip are mentioned as appropriate implementations of compression methods [122]. In

this work, the Gzip algorithm was selected, since it is available in the Java Software

Development Kit used for implementation of the other evaluated methods.

31

The formula representing the Information Distance is shown below [121]:

)}(),(min{

)}|(),|(min{(
),(min yKxK

xyKyxK
yxd

UU

UU (2.19)

where dmin(x, y) is the Information Distance and KU is the Kolmogorov

complexity for the universal Turing machine. The definition of the Kolmogorov

complexity is defined as follows [121]:

 CyxKyxK UU),()|(' (2.20)

where KU(x, y) is the Kolmogorov complexity of a binary string x conditional

on another binary string y, given a universal Turing machine U. U' is a different

Turing machine; the constant C depends only on U'.

32

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Data Sources

3.1.1 Life and Social Sciences Data Sources

The five datasets depicted in Table 3.1 were selected to measure the performance of string metrics in

text retrieval applications. In the Animals and Birds datasets, common names are used as a primary

key and scientific names as a secondary key. In the Restaurants dataset, the manually constructed

secondary keys correspond to the real-world restaurant data consisting of a name, address, phone

number, and a brief description of the cuisine served. The Parks dataset was built by Cohen et al.

[45] from the online park directories linking the park names to the URLs of the corresponding sites.

In this dataset, park names are used as a primary key and the URLs as a secondary key. The Census

dataset contains census-like data: the database record ID, last name, first name, middle initial, street

number and name.

The datasets described above contain duplicate records in the sense that the same dataset has

more than one record corresponding to the same entity. The primary keys are the exact entity

identifiers. The secondary keys are the non-matching string fields containing entity data.

Table 3.1 Datasets used for the string metrics evaluation

Dataset # of Records Source

Animals 5,709 [45]
Birds 982 [45]
Census 841 [28]
Parks 654 [45]

Restaurants 863 [46]

33

Table 3.2 shows the extraction of duplicate records from the Census dataset in

order to identify households living at the same address. The string similarity metric is

applied to pairs of secondary key values to determine whether a pair of records

describes members of the same household. Then the correctness of the decision is

checked by comparing the primary key values: match means the decision is correct

and non-match that it is incorrect.

Table 3.2 Duplicate records retrieved from the Census dataset

Primary Key Secondary Key

ID445012723835840000 COBY LASHIWN Y 303 MAIN

ID445012723835840000 COBY WILIAMS A 303 MAIN

ID445012723835840000 COBY ANGELA 303 MAIN

ID445012723835840000 COBY MIKE D 303 MAIN

ID445012723837740000 REEVES DOUGLASS F 625 MARTIN LUTHER K

ID445012723837740000 REEVES NWAMAKA M 625 MARTIN LUTHER K

ID445012723837740000 REEVES WILLY L 625 MARTIN LUTHER K

ID445012723838570000 HEAVAENER FLORRE 608 OCONEE

ID445012723838570000 HEAVAENER WILSREVO 608 OCONEE

ID445012723838570000 HEAVAENER JEFFREY S 608 OCONEE

ID445012723840870000 SOLLIVAN ANNE G 14245 22

ID445012723840870000 SOLLIVAN EVENS 14245 22

ID445012723840870000 SOLLIVAN BRANDIE D 14245 22

3.1.2 Bioinformatics Data Sources

The author uses the following UniProt GOA Proteome Sets to compare the

performance of the Markov Random Field Edit Distance (or MRFED), the normalized

edit distance, to other algorithms for the entity matching tasks as shown in Table 3.3.

The Gene Ontology Annotation (GOA) database was developed to provide

high-quality supplementary Gene Ontology (GO) annotations for proteins in the

UniProt Knowledgebase [57]. For duplicate identification, the correct answer datasets

were constructed from the UniProt GOA Proteome [58]. The GOA Proteome data

provide researchers with an extensive testing ground for a duplication detection task.

34

Table 3.3 Bioinformatics datasets used in experiments

Organism
Entries
Annotated

GO
Annotations

Paramecium Tetraurelia 217 1,402
Bacteriophage T4 116 623
Carsonella Ruddii 141 1,336
Hyperthermus Butylicus 918 5,625
Buchnera Aphidicola Cedri Cinara 339 4,140

Each GOA contains 15 attributes described in Table 3.4. The author used all

features except the database code and the unique ID from the GOA to compute the

inter-similarity among entries, i.e., the author measured the metadata identity to find

similarities. The unique IDs were used to check the correctness of a match/non-match

decision. The GOA uses the International Protein Index, where the sequence

identifiers from the GOA, Ensembl, H-Invitational Database, TAIR, RefSeq and Vega

groups are combined to provide the species-specific annotation sets.

Table 3.4 Attribute descriptions of GOA

The biological records contain the following three main field types [4]:

Column Description

DB Database from which an annotated entry has been
taken

DB_Object_ID Unique identifier
DB_Object_Symbol Symbol (unique and valid)
Qualifier Flag that modifies the interpretation of the annotation
GO ID GO identifier
DB:Reference Reference cited to support the annotation
Evidence Evidence for the annotation
With Additional identifier
Aspect One of three ontologies
DB_Object_Name Name of the gene or gene product
Synonym Gene symbol
DB_Object_Type Entity annotated
Taxon ID Identifier for the species
Date Date of the last annotation
Assigned By Source of the annotation

35

 The sequences themselves, e.g. protein and DNA sequences;

 The categorical fields;

 The free-text strings.

In order to detect the duplicates, the authors’ approach measures the

categorical and free-text strings.

3.1.3 Medical Informatics Data Sources

Medical informatics datasets were obtained from the 2009AB version of the UMLS.

As the UMLS contains terms from many sources, the author produced two types of

datasets:

 Records selected from the multiple UMLS sources;

 Records selected from the SNOMED CT subset.

There are several reasons to choose these datasets. The multiple-source

datasets make it possible to perform overall evaluations in medical informatics. The

UMLS contains biomedical terms from many sources, allows for the integration of

new sources, and permits researchers to continually audit existing sources over time.

By performing experiments on a “multiple source dataset,” the author addresses, to

some degree, the problem of how to integrate a new source into the UMLS. The

SNOMED CT was selected for evaluation because of its wide use and practical

importance [92].

The datasets were built by applying custom-built SQL queries to a MySQL

database using the Metathesaurus. The database was populated using the scripts

provided with the 2009AB UMLS distribution. Analogously to the life and social

sciences datasets described in Section 3.1.1, concept unique identifiers (CUI) were

used as a primary key, and string representations of the terms were employed as a

secondary key. Two or more records with the same primary key correspond to the

same concept. Such records are considered as duplicates in the experimental phase.

36

Table 3.5 depicts characteristics of the biomedical datasets, including the

numbers of unique terms and concepts. There is a notable difference between the

numbers of unique concepts in datasets (2) and (4). It is possible to explain this as

follows: dataset (2) contains records from the same terminology and thus has a higher

chance of retrieving terms describing the same concept. In contrast, dataset (4)

consists of records collected from multiple sources, which decreases this probability.

Table 3.5 Medical informatics datasets used in experiments

Dataset # of Concepts # of Terms

1 SNOMED-most frequent concepts 155 5,000

2 SNOMED-longest concepts 1,805 5,000

3
UMLS-most frequent concepts
from multiple sources

100 4,979

4 UMLS-longest concepts 3,337 5,000

Table 3.6 Duplicate records from the “SNOMED-most frequent concepts” dataset

Primary Key Secondary Key

C0034606 Diagn. nuclear medicine NOS
C0034606 Diagn. nuclear medicine NOS (procedure)
C0034606 Diagnostic nuclear med.
C0034606 Diagnostic nuclear medicine
C0034606 Diagnostic nuclear medicine NOS
C0034606 Diagnostic nuclear medicine NOS (procedure)
C0034606 Diagnostic radionuclide study
C0034606 Diagnostic radionuclide study, NOS
C0034606 NM - Nuclear medicine
C0034606 Nuclear med.-diagnostic
C0034606 Nuclear medicine
C0034606 Nuclear medicine diagnostic procedure

Table 3.6 shows duplicate records retrieved from dataset (1). The most

frequent concept datasets (1) and (3) were derived by getting the top records out of

the record sets sorted in descending order by the number of non-matching terms

belonging to the same concept. The longest concept datasets (2) and (4) were obtained

37

by selecting the top records out of the record sets sorted in descending order by the

length of the term strings.

3.2 Details of the Methodology

The standard approach to evaluating record linkage or duplicate detection systems

employs the notions of relevant and non-relevant records. For the task of duplicate

detection, a record is given a designation as a duplicate or a mismatch compared to

another record. When a decision about duplicate records is made correctly, a relevant

record is retrieved; when a wrong decision is made, a non-relevant record is recovered

[47].

For the life and social sciences datasets presented in Section 3.1.1, matching is

performed on the secondary keys such as names, addresses and phone numbers. Then

this decision is assessed in terms of relevance to the primary key. If two records are

identified as duplicates by the secondary keys and have the same primary key, this

decision is considered relevant. Otherwise, when two records are identified by the

system as duplicates but have non-matching primary keys, the decision is non-

relevant.

The author uses the conventional approach of information retrieval to evaluate

the performance of string distance metrics [47]. The two most frequent measures for

information retrieval effectiveness are precision and recall (see formulas (3.3) and

(3.4)). Evaluation based on these two measures concentrates on true positives by

examining the quantities of returned relevant documents with respect to the number of

false positives. The term documents is used here in a broad sense and may refer to the

document elements, sentences of phrases, or textual records apart from regular

documents.

38

It is important to calculate both precision and recall because gaining higher

precision is preferable for certain tasks while higher recall is more valuable for other

information retrieval problems. In some cases, high precision results are of primordial

importance, when the extraction results are not manually controlled, while in other

cases, where the machine extraction is only performing an initial filtering of the

information that eventually is manually selected, a high recall of the extraction is

more important [83].

The high value of precision obtained in some experiments means that the

retrieved data either have a small number of errors or no errors at all. The high recall

values correspond to those experiments in which all or almost all of the information

that needs to be extracted is actually extracted [83].

Precision and recall are tradeoffs against one another: on the one hand, it is

possible to obtain the maximum value of recall with a low value of precision by

retrieving all documents for all queries. On the other hand, the precision usually

decreases as the number of retrieved documents grows. A single measure that trades

off precision versus recall is the F measure, which is the weighted harmonic mean of

precision and recall [48]. The F measure, derived from the E measure, is the most

commonly used metric for combining precision and recall into one metric.

RP

PR
F

2

2)1(

 (3.1)

12

 (3.2)

where α[0, 1] and β2[0,). The default balanced F measure equally

weights precision and recall. It is achieved when α = 0.5 or β = 1. It is commonly

written as F1, which is short for Fβ=1 [48].

39

For the evaluation of the string distance performance, the author calculated the

average precision and maximum F1 (see formula (3.5)), and built the precision-recall

curves for several string similarity techniques evaluated on the datasets mentioned in

Section 3.1.

The precision-recall curves became a widespread conceptual tool for assessing

classification performance. The curves relate the precision of a classifier to its true

positive rate. The precision-recall curves offer a scale-adapted graphical display that

makes it possible to visualize and rank performance more easily when the theoretical

proportion of the positive instances is small compared to the total number of records

[84].

Second String [28], an open-source Java toolkit, was used as the experimental

test bed. In experiments, each term was matched against all other terms within a set of

candidate pairs from the same dataset. The goal was to determine whether every pair

of terms had the same identifier.

t

r

D

D
P (3.3)

r

r

N

D
R (3.4)

 1

2P R
F

P R

 (3.5)

Formulae (3.3) - (3.5) use the following notation: precision P, recall R,

harmonic mean F1, the number of relevant items retrieved Dr, the number of relevant

items in a collection Nr, and the total number of retrieved items Dt. In (3.5), the

number 2 in the numerator indicates that recall and precision are of equal importance.

40

The precision-recall curves consist of the interpolated precision taken at

eleven recall points 0, 0.1, ..., 1. The interpolated precision Pinterp at recall level R is

defined as the highest precision found for any recall level R' ≥ R [48]:

)'(max
'

interp RPP
RR

 (3.6)

41

CHAPTER 4

SIMILARITY FUNCTIONS FOR DUPLICATE DETECTION AND
CLUSTERING TASKS

4.1 Markov Random Field Edit Distance

4.1.1 Background

In this section, several terms related to the Markov Random Field theory are described.

The MRFs incorporate spatial and contextual dependencies by means of neighborhood

systems and cliques. The author implements MRF theory using a string distance method

to improve matching accuracy in comparison to edit distances constructed with symbol-

based cost functions. A Neighborhood System (NS) consists of a set of nodes S. Each

node is a pair of characters (si, tj), where si is the i-th character of the first string

participating in the alignment, and tj is the j-th character of the second string. Li [52]

defines the Neighborhood System N as

 SiNN i |

 (4.1)

and

 },)],([|{ 2 iidppdistSiN iii (4.2)

where iN is a set of nodes neighboring the i-th node, dist(a, b) denotes the

Euclidean distance between a and b; and d is an integer value.

In (4.2), a parameter d corresponds to the order of the NS, e.g. d = 1 defines the

NS of order 1 described in (4.5) and d = 10 defines the NS of order 7 shown in Figures

4.1 and 4.2. Several values of the parameter d with the corresponding orders of NS are

given in Table 4.1, which has been computed empirically.

42

Table 4.1 Correspondence of the NS order to the parameter d

NS order Parameter d

1 1
2 2
3 4
4 5
5 8
6 9
7 10

The Euclidean distance in (4.2) is calculated using the following formula for

the 2D space between two points P (x1, y1) and Q (x2, y2):

 2 2
1 2 1 2(,) () ()dist P Q x x y y (4.3)

where x and y are the horizontal and vertical coordinates of a point.

The neighborhood relationship has the following properties:

 A site cannot be a neighbor to itself;

 The neighboring relationship is mutual.

In other words, the neighborhood relationships are symmetric but non-

reflexive. The 2D alignment of two strings is viewed as the rectangular area of nodes

of character pairs (si, tj) constituting the set of nodes S:

 }1,1|),{(mjnijiS (4.4)

and a node has up to four neighbors in the NS of the first order:

})1,(),1,(),,1(),,1({, jijijijiN ji

(4.5)

The order of the NS is the measure of the number of nodes. The order of the

NS can also be defined as the measure of complexity of the NS. A node corresponds

to one square in the 2D lattice. A node has fewer neighbors when it is located in the

corner or on the border of the 2D lattice [52].

Figure 4.1
(0,0) in the

Figu

(0,0). It con

nodes conta

in the neigh

equal to 1 b

to 2 constit

Con

of the squa

(20)2 + (1

(4.2). Acco

neighborho

The

set of edge

such that a

assigned to

above-men

approach a

 Node ran
2D lattice o

ure 4.1 sho

ntains thirty

ain number

hborhood s

belong to th

tute the NS

nsider the n

ared Euclid

0)2 = 5. Th

ording to T

ood distance

e pair G=(S,

es. A clique

any two no

o the clique

tioned noti

advocated b

nkings for t
of nodes.

ws the neig

y-four highl

s from 1 to

ystem of th

he NS of the

of the secon

node (2, 1) i

dean distanc

his value co

Table (4.1),

e of 4th orde

, N) constitu

e c in G is

odes of c a

es in order

ions are us

by Geman

the seventh

ghborhood

lighted node

14 corresp

he n-th orde

e first order

nd order and

in Figure 4

ce between

orresponds

 d = 5 me

er. Thus, thi

utes the gra

defined as

are neighbo

to distingu

sed in the

et al. [53

order neig

system of t

es with valu

onding to th

er, e.g. the n

r, the nodes

d so on.

.1. Accordi

this node

to the param

eans that th

s explains t

aph G where

the subset

ors of each

uish differen

Maximum

] and othe

ghborhood s

the seventh

ues less than

he outermos

nodes with

with value

ing to formu

and the cen

meter d = 5

he node (2,

he number 4

e S is a set o

of the neigh

h other. Th

nt local inte

a Posterio

rs [54, 55]

system of t

order for t

n or equal t

st neighbor

values less

es less than

mula (4.3), th

enter node (

5 following

, 1) belong

4 in the cel

of nodes an

ghboring no

he potential

eractions [5

ori (MAP)

]. The MA

43

the node

the node

o 7. The

ing sites

s than or

or equal

he value

(0, 0) is

formula

s to the

l (2, 1).

nd N is a

des of S

ls V are

51]. The

– MRF

AP-MRF

framework

in image re

Figure 4.2
system of th

Figu

(4.2) to det

highlighted

The

point P is th

of the Eucl

and x-axis

node locate

side (1, 0)

coordinates

inequality s

Due

not intersec

random nod

are calculat

makes it po

ecognition, c

 Squared
he node (0,

ure 4.2 show

termine nod

d cells const

e Euclidean

he point for

lidean spac

left-to-right

ed at the rig

), the one ab

s of the oth

specified in

e to the form

cted by the

de of the la

ted once an

ossible to cr

computer vi

Euclidean d
0) on the 2

ws the squa

des constitut

titute the NS

n distance f

r which the

e. The axes

t as shown

ght side from

bove (0, 1)

her point Q

(4.2) holds

mula (4.2), t

border of t

attice. The n

d then appl

reate agile a

ision, and st

distance va
D lattice of

ares of dista

ting the neig

S of the sev

formula is a

NS is calcu

s are going

in Figure 4

m the origin

), the one be

Q are subst

s, the point Q

the NS alw

the lattice.

node coordi

ied to the re

algorithms f

tring match

alues for the
f nodes.

ance values

ghborhood

venth order.

applied to t

ulated. The

 through th

4.3. The unit

n has coordi

elow (0,1) a

tituted into

Q belongs t

ays has a sy

Figures 4.1

inates that c

est of the la

for different

hing [52].

e seventh o

 assigned to

system of th

the lattice o

point P is t

he origin: y-

t of length i

inates (1, 0)

and so on (s

the formul

o the NS of

ymmetric fo

1 and 4.2 di

constitute th

attice in orde

nt kinds of p

order neighb

o the nodes

he given or

of nodes. T

treated as th

-axis top-to

is one node

), the one at

see Figure 4

la (4.3). W

f the point P

orm when th

isplay the N

he NS for a

der to get the

44

problems

borhood

s used in

der. The

The first

he origin

o-bottom

e. So the

t the left

4.3). The

When the

P.

he NS is

NS for a

any node

e NS for

the other no

the coordin

Figure 4.3

The

problem op

i ≤ n and j

for two stri

the followi

the ordinary

is the effect

The

neighborho

defined as f

The

of the neigh

odes. A nod

nates (0, 0).

 The assign

e edit path o

ptimality of

≤ m. This i

ings. The c

ng assertion

y neighborh

t.

e author lim

ood system

follows:

{iN i

e causal NS

hboring nod

de, for whic

nment of Eu

optimality b

finding the

s the causal

causal relati

ns: the caus

hood system

mits the ca

of the giv

| [i S dis

is a specia

des are cons

ch an NS is

uclidean coo

between two

e edit paths b

l relationshi

ionship proj

se consists

m for the giv

ausal nodes

ven node. T

2(,)]i ist p p

al case of th

strained to

s built, is al

ordinates to

o strings S1..

between the

ip of the edi

jected onto

of the node

ven node (F

s to those

Then the ca

2 ,d i i

he neighborh

be less than

ways locate

the lattice o

n and T1..m d

e substrings

it distance c

the lattice

es located in

Figure 4.3),

which bel

ausal neigh

}

hood system

n or equal to

ed at the po

of nodes.

depends on

s S1..i and T1

calculation p

of nodes p

n the quadr

and the giv

long to the

hborhood sy

m where the

to the indice

45

oint with

the sub-

1..j where

problem

produces

ant II of

ven node

e causal

ystem is

(4.6)

e indices

es of the

center node

seventh ord

shown as b

Figure 4.4
in the 2D la
sites in the

Figure 4.5
the 2D latt
[dist(pi', pi)

The

that the use

compared w

reducing th

Util

introduced

causal neig

(i1, j) and

with the cli

e. Figure 4.

der represen

old number

 The causa
attice of no
causal neig

 The causa
ice of node
]2 from the

e pair wise

e of the cau

with the re

he problem s

lizing the a

as the mea

ghborhood N

d (i, j1) and

ique potenti

4 shows th

nted with th

rs outside th

al neighborh
odes. The nu
ghborhood s

l neighborh
es. The num
e node (0, 0)

comparison

sal neighbo

egular neigh

size and imp

above conce

asure of sim

N is adopted

d the collect

ial Vc1 and

he location o

he highlight

he lattice.

hood system
umbers n =
system of th

hood system
mbers indica
) to the othe

n of Figures

orhood syste

hborhood s

proving the

epts and the

milarity be

d, then the

tion of cliqu

c2={(i, j), (

of the causa

ted cells in

m of the sev
1...14 expr

he n-th order

m of the seve
ate the squa
er nodes.

s 4.1 to 4.4

em significa

system of t

e computatio

e MAP-MR

tween two

neighbors o

ues is C={c

(i, j1)} and

al neighborh

the 2D latti

venth order
ress the oute
r.

enth order f
ares of the

and Figure

antly cuts th

the corresp

onal time.

RF framewo

strings. W

of the (i, j)

c1, c2} wher

d with the c

hood system

ice. The ind

for the nod
ermost neig

for the node
Euclidean

es 4.2 to 4.

he number o

ponding ord

ork, the MR

When the fir

node are th

re c1={(i, j),

clique poten

46

m of the

dices are

de (0, 0)
ghboring

e (0,0) in
distance

5 shows

of nodes

der, thus

RFED is

rst order

he nodes

 (i1,j)}

ntial Vc2.

47

The clique potential Vc is the function on S with the property that Vc depends only on

those coordinates for which s C. The resultant objective energy function for the

node (i, j) is formulated as

 (4.7)

The Needleman–Wunsch [22] edit distance described in the Section 2.4.13 of

this work can be considered as a particular case of the MRFED with a second order

causal neighborhood system. The clique potentials in the MRFED may be considered

as the insertion, deletion and substitution costs of the Needleman-Wunsch algorithm.

The number of cliques increases rapidly with the growth of the neighborhood

system order leading to an increase in the computational time. To reduce the problem

size, the clique potential values are defined as follows:

 (4.8)
In (4.8), k is the number of nodes in the clique and h is a histogram, which is

defined as an associative array counting the number of occurrences of each distinct

symbol in a string.

The parameter α ≥ 0 assigns a weight to the clique potential Vc. When α = 0,

the MRFED degrades to the Needleman-Wunsch edit distance. The clique potential

gets the minimal weight when α → 0. During the experimental phase, the author set

α= 0.5 as suggested in Wei’s work [51].

Putting together (4.7), (4.8), and (2.16), the final expression for the MRFED

takes the form:

(4.9)

where k is the number of nodes in the clique, K is the number of diagonal

nodes in the 2D lattice representing the causal neighborhood system N, and NWij is

})2,(',),2('min{),(' 21 cc VjiMRFEDVjiMRFEDjiMRFED

(1) if ([1,]) ([1,])

 otherwisec

k h S i k i h T j k j
V

,

, if ([1,]) ([1,])
, 2..

min(, *(1)) otherwise
ij

ij
ij i k j k

NW h S i k i h T j k j
MRFED k K

NW MRFED k

48

the Needleman-Wunsch edit distance for the substrings S1..i and T1..j. For example, k =

2 for a causal NS of the seventh order as depicted in Figure 4.5. There you can see

two grey squares on the main diagonal leading to the node (0, 0).

4.1.2 MRFED Algorithm

Inspired by the Reshuffling Markov Edit Distance [51], the author formulates the

Markov Random Field-based Edit Distance and proposes the flexible algorithm for

computing the MRFED depicted in Figure 4.6. As proposed in [51], the MRFED uses

the notions of neighborhood system, cliques and clique potentials, but the author

interprets these notions in a different way, such that the edit distance is minimized at

each iteration and then normalized by the edit path length.

Post normalization was implemented in order to improve the results of the

MRFED. It is known that post normalization gives worse results compared to

normalization in the ordinary sense, but it takes less computational time [25]. The

post-normalization was done by storing the edit path and then dividing the MRFED

value by the length of the edit path in the last iteration, as seen in formula (4.10).

Below, n and m are the lengths of the strings S and T, and L(P) is the length of the edit

path from S to T.

,
,

,()
n m

n m
n m

unnormalized MRFED
MRFED

L P

(4.10)

The MRFED was implemented in Java by extending the open-source Second

String project [23]. The MRFED algorithm for calculating the Markov Random Field-

based distance for two strings S1..n and T1..m is given below in Figure 4.6.

The algorithm starts with the creation of a placeholder for the MRFED values

corresponding to S1..i and T1..j matching substrings. All the intermediate values should

49

be stored in order to calculate the final MRFED, which corresponds to the whole

lengths of strings S1..n and T1..m.

In Step 2, the initial values are set. They correspond to the transformation of

the empty string λ [25] to a substring and vice versa. The two embedded loops shown

in Steps 3 and 4 are required to calculate the Needleman-Wunsch edit distance and

clique potentials for the substrings being matched at the current iteration.

0. Initialize k from a user input, set α = 0.5.
1. Create the 2D array MRFED[1..n][1..m]
2. Set MRFED starting values j*gapCost for the first row and i*gapCost for

the first column
3. For i = 2 to n do

4. For j = 2 to m do
5. Calculate NW[i, j]
6. Search for the substrings with the equal histograms, setting the

length of the compared substrings as r = min(k, i, j). Within the
loop, go up to r characters back from the current position.

For p = 0 to r do
7. If the histograms of the substrings Si-p..i Tj-p..j match
8. Then calculate the clique potential

Vij[r-p] = MRFED[i-(r-p), j-(r-p)] + *(r - p -1)
9. Set MRFED[i, j] to min(V[1..k]) and add to the edit path the new traces
10. Set MRFED[i, j] to min(MRFED[i, j], NW[i, j])
11. Return MRFED[n, m] divided by the length of the edit path.

Figure 4.6 Description of the MRFED algorithm.

The loop at Step 6 serves to find the equal histograms of the substrings, which

stretch from the current position i for r characters back; r is set to min(k, i, j) to

prevent exceeding the string boundaries. The parameter k is the number of nodes in

the corresponding clique (see formulas (4.8) and (4.9)). The clique potentials Vij are

calculated whenever equal histograms are found and MRFED is set to the maximum

value of Vij. At Step 10, the smaller of the values MRFEDij and NWij is picked. When

the two substrings reach the lengths of the full strings, post normalization is applied

and the final MRFED value is returned. The suggested choice for k, used at Step 6, is

in the range

time of the

Figu

"markovdel

edit path is

lies on the

horizontal m

a move dow

Figu

4.2.1 Moti

As shown

prevents it

records are

precision, m

existing me

e 3..6, whic

algorithm t

ure 4.7 dep

lfie" of leng

 depicted w

edit path a

move denot

wn is an ins

ure 4.7 Th

ivation

in Section

ts use for c

e involved.

maximum F

ethods. The

ch provides

to O(nm).

picts the M

gth 12 and t

with black ce

and therefor

tes a deletio

ertion.

e MRFED d

4.2 Sho

4.1, the ma

computation

Also, the

F1, and pre

e present res

good practi

MRFED dis

the string T

ells. The bl

re contribu

on, a diagon

distance ma

ortest Path

ain problem

nal tasks, w

performan

ecision-reca

search has b

ical results

stance matr

T "markovfi

ue cells sho

tes to the f

nal move is

atrix and the

h Edit Dista

m of the MR

where data

ce of the M

all curves is

been condu

and reduces

ix compute

eld" of leng

ow histogram

final value.

a match or

e 2D word a

ance

RFED is its

asets of ten

MRFED in

s not ideal

cted to dev

s the compu

ed for the

gth 11. The

am matching

In the edit

r a substitut

alignment.

s low speed

ns of thous

n terms of

compared

velop a new

50

utational

string S

optimal

g, which

t path, a

tion, and

d, which

sands of

average

to other

method

that preserv

several inno

4.2.2 Latti

In the first

interactions

min(...0 nk

string neigh

length k, k

n/k 1)

Figure 4.8 (

Figure 4.8
using the st

A l

where one

typical latti

ves the best

ovations an

ice of Strin

t step of th

s is constru

), mn and n

hborhoods

= 1…n for

 k. Each n

(a) for strin

 (a)

(b)

8 Lattices
tring neighb

attice elem

string neigh

ices are giv

t features o

nd improvem

g Neighbor

he modeling

ucted. The

n and m den

will be def

r (n/k 1

neighborhoo

g S = “Albe

computed f
borhoods of

ment is defin

hborhood be

en in Figure

of the previo

ments to it.

rhoods

g process, a

substrings

note the len

fined as a s

) elements

od will be g

ert Einstein”

for the strin
f lengths tw

ned as an i

elongs to st

e 4.8. Cons

ous work on

a lattice of

are denote

ngths of th

set C of the

and the n/

given a num

”, n = 15, k

ngs "Albert
o (a) and th

interaction

tring S and a

sider two bo

n MRFED,

f nodes repr

ed as Si-k...i

he strings S

e consequen

/k-th eleme

mber in the

= 2, therefo

t Einstein"
hree (b).

of two stri

another to T

order condit

 while cont

resenting s

 and Tj-k..

S and T. Th

nt substring

ent is of len

 range 1…

ore n/k = 7

and "Arch

ing neighbo

T. Two exam

tions: k = 1

51

tributing

ubstring

.j where

he set of

gs of the

ngth n (

n/k. In

7.

himedes"

orhoods,

mples of

and k =

52

min(n, m). In the simplest case, k = 1, thus excluding the substring matching operation

from consideration and degrading the model to the classic case of character-to-

character operations. In that case, a lattice node represents the interaction between the

pair of characters Si and Tj.

When k = min(n, m), three sub-cases are possible depending on the lengths of

the strings S and T:

 n = m leads to a lattice consisting of the single node, which includes a
comparison operation of two whole strings.

 n > m gives a two node lattice where the first node matches substrings S1..m
with T1..m and the second node s[(m-n)..n] is matched with an empty string.

 m > n will give a two node lattice where the first node is S1..n matching with
T1..n and the second node is the empty string matching with T(n-m)..m.

The lattices calculated for the strings "Albert Einstein" and "Archimedes" are

shown in Figure 4.8. Figure 4.8 (a) depicts the node sizes and values calculated for the

string neighborhood length k = 2. The partition that results, when the length k = 3, is

shown in Figure 4.8 (b). The values of the nodes are calculated using the arithmetic

mean method, defined below in this chapter.

4.2.3 Lattice-based Graph Composition

The second step of the proposed Shortest Path Edit Distance (SPED) algorithm is the

transformation of the lattice into a directed, weighted acyclic graph. In the classic

case, the two strings being matched are put onto the vertical and horizontal sides of

the matrix, which is filled by the values obtained at every iteration of the string

distance calculation. Then the edit path can be shown as a sequence of cells, starting

at the cell corresponding to the first characters of each string to the cell located at the

intersection of the last characters. The last cell contains the value of the edit distance

between the two strings. Any path from the first to the last cell can have horizontal,

vertical, an

as the delet

pair of char

Figure 4.9
dimensions

Eac

vertex with

horizontal,

have horizo

nd/or diagon

tion, vertica

racters.

(a)

(b)

(c)

9 Graphs
s.

ch lattice cel

h the coor

vertical, an

ontal incom

nal moveme

al as the ins

constructed

ll is convert

dinates in

nd diagonal.

ming edges.

ents. Usual

sertion and

d from the

ted into a gr

the range

. All the ver

The vertice

lly, the hori

diagonal as

e lattices o

raph vertex

[2..n, 2..m

rtices from t

es from the

izontal dire

 the substitu

of (a) 4x4,

. As shown

m] has three

the top row

left column

ection is int

tution or ma

 (b) 6x4,

n in Figure 4

e incoming

w down exce

n only have

53

terpreted

atch of a

(c) 4x6

4.9, each

g edges:

ept (1, 1)

 vertical

54

incoming edges. The source node is added at the left top corner of the graph. It does

not have any incoming edges and is connected to the vertex (1, 1) of the graph by a

diagonal edge, which is the single incoming edge of the vertex (1, 1). The horizontal

and vertical edges are assigned a gap cost. During the experimental stage, the author

used the gap cost 1 following a common approach [28]. The diagonal edge is assigned

a value stored in a lattice cell. The process of weight assignment is described in

Sections 4.2.2 and 4.2.9. As described above, this value is the weight of the string

neighborhood edit operation. The source vertex will be used as a placeholder for the

starting point of the algorithm.

Figure 4.9 depicts three possible cases of the graph shape: case (a) when

strings S and T are of the same length, n = m; (b) when string S is longer than T, n>m;

and (c) when string S is shorter than T, n<m. These three cases are important because

they influence the graph traversal pattern as described below in Section 4.2.4.

4.2.4 Analysis of Shortest Path Graph Algorithms

In the SPED algorithm, the task of calculating a string distance value between two

strings becomes a task of calculating the shortest path from the source vertex to the

destination vertex. The destination vertex corresponds to the pair of last string

neighborhoods of strings S and T. By design, the graph is a directed, weighted, acyclic

graph. The most efficient algorithm to solve the shortest path problem should be

chosen to find an optimal solution. The classical algorithms are well known:

 Dijkstra’s algorithm—the single-source shortest path for graphs with non-
negative edges, O(|V|2) [60];

 Floyd’s algorithm—the all-pairs shortest path for the weighted directed graph,
O(|V|3) [61];

 Bellman-Ford’s algorithm—the single-source shortest path that can be used
for a weighted graph allowing the edge weights to be negative, O(|V|·|E|) [62,
63].

55

The two most efficient algorithms that work for directed acyclic graphs and

allow negative edge weights are the Reaching algorithm [64] and the Pulling

algorithm [59], both working in O(n) time.

4.2.5 Reaching and Pulling Algorithms

The Reaching and Pulling techniques shown in Table 4.2 are similar to other dynamic

programming algorithms. These methods assign labels to graph vertices first and then

traverse a graph from the smallest to the largest label, computing the shortest path

from node 1 to node k at the k-th iteration. The only difference is that the Pulling

algorithm examines incoming edges, while the Reaching algorithm operates with

emanating edges.

Table 4.2 The Reaching and Pulling algorithms

The Pulling Algorithm The Reaching Algorithm

1. Assign labels to graph nodes.
2. Process the vertices from the lowest to the highest label.

3. At the k-th iteration, find
 min(d (i) + cik)
for all incoming edges (i, k)

3. At the k-th iteration, find
 min(d (k) + ckj)
for all emanating edges (k, j)

By design, each lattice node is transformed into a graph vertex. The weights of

incoming diagonal edges are set to the lattice values of the corresponding vertices.

Since the SPED algorithm uses the incoming edges, the choice of the Pulling

algorithm is clearly better because it operates with the costs of incoming edges.

The first step of the Pulling algorithm requires a preprocessing phase. Vertices

of the graph must be marked with labels from 1 to |V| with respect to the subsequent

calculations. The direction of the emanating edges should be taken into consideration

when assigning a label. The labels are set in a zigzag pattern for every vertex of the

graph in a way that does not leave behind any unlabeled vertex.

(a)

(b)

Figu

For

nodes in th

(1, 3) → (3

(3, 4) → (4

(6, 4).

Dep

strings S an

1. The

2. The

3. The

ure 4.10 L

the 6x4 la

he following

, 2) → (2, 3

4, 4) → (5, 1

pending on

nd T, the thr

e trivial patt

e Right Side

e Bottom Si

abel assignm

attice depict

g order: (0,

3) → (3, 3)

1) → (5, 2)

the lattice s

ree patterns

tern when n

e First patter

de First patt

ment to the

ted in Figu

0) → (1, 1)

→ (4, 1) →

→ (5, 3) →

shape, whic

of the trave

 = m;

rn when n >

ttern when m

graph node

re 4.9 (b),

) → (2, 1) →

→ (1, 4) → (

→ (5, 4) → (

h is defined

ersal are pos

> m;

m > n.

es.

the labels a

→ (1, 2) →

4, 2) → (2,

6, 1) → (6,

d by the len

ssible:

are assigne

→ (2, 2) → (

4) → (4, 3)

2) → (6, 3)

ngths n and

56

ed to the

(3, 1) →

) →

) →

m of the

57

The pattern (2) is shown in Figure 4.10 (a). Here, the right side moves are

from node 16 to node 17 and from node 20 to node 21. The pattern (3) is shown in

Figure 4.10 (b). Here, the down side moves are from 16 to 17 and from 20 to 21. The

trivial pattern (1) is a subset of (2) and (3). For each lattice 6x4 (1) and 4x6 (2) shown

in the figures, the trivial pattern is the sub-section of the path that starts at vertex 0

and stops at vertex 16.

4.2.6 Winkler-like Re-scorer

In the last step of the SPED algorithm, its value is adjusted by applying the Winkler-

like re-scorer as follows. The two strings are checked for the presence of a common

prefix. When several successive initial characters of both strings match, the SPED

value for these strings is computed as shown in formula (4.11):

)'1(1.0' SPEDprefLengthSPEDSPED (4.11)

where SPED' is the value of the SPED algorithm before the application of the

Winkler-like re-scorer, prefLength is the length of the common prefix, and SPED

denotes the final score for the two strings.

The original re-scorer by Winkler examined match or non-match of the four

initial characters of both strings. In the case of SPED, the re-scorer does not stop at

the fourth character. The Winkler-like re-scorer proceeds up to the 100th character,

unless there is a mismatch or the end of one of the strings is encountered.

4.2.7 SPED Algorithm Complexity

The complexity of the new algorithm is estimated as)(2nO . Its main steps are shown

in Table 4.3. Even though it has the same computational time as the MRFED

algorithm, the SPED algorithm shows a faster performance in practice. It is possible

that two alg

differing by

Step

distance ca

 The
edit

 The

Step

1

2

3

4
5

Total

The

back, show

cell shows

substrings o

the trace ba

Figure 4.11
string neigh

gorithms w

y a constant

ps 3 and 4,

lculation:

e shortest pa
t path betwe

e cost of the

T

Cal

Tran
and
Find
vert
App
Retu
valu

e usual way

wing the path

 the interm

of the two s

ack, which i

1 The inter
hborhood of

with the sam

t.

shown in T

ath from th
een two strin

e shortest pa

Table 4.3 T

D

culation of

nsformation
d calculation
ding the sho
tex to the de
plication of
urning the s
ue of the ed

y to depict

h of the edi

mediate valu

strings "Alb

is the revers

rim SPED v
f length 2.

me worst-cas

Table 4.3 can

he source to
ngs;

ath is the va

The SPED A

Description

the lattice n

n of the latti
n of the edg
ortest path f
estination v

f the Winkle
shortest path

dit distance.

the interme

it distance c

ue of the

bert Einstein

sed edit path

values and th

se time com

n be viewed

o the destina

alue of the d

Algorithm co

n

nodes.

ice into the
e costs.
from the sou

vertex.
er-like re-sc
h cost, whic

ediate edit

calculation,

SPED, com

n" and "Arc

h for the tw

he trace bac

mplexity hav

d as the clas

ation can be

distance func

omplexity

graph

urce

orer.
ch is the

distance va

is shown in

mputed for

chimedes."

o strings.

ck for the al

ve actual ru

ssic case of

e considere

ction.

Complexit

)(2nO

)(2nO

O(n)

)(2nO

alues and t

n Figure 4.1

the corres

The arrows

lgorithm wi

)(nO

)1(O

58

un times

f the edit

ed as the

ty

the trace

11. Each

ponding

s portray

th the

59

4.2.8 Parameters Adjusting Performance

It is possible to fine-tune the SPED by changing its internal parameters of the two

following types:

 The internal string distance which assigns weights to the string neighborhood
edit operations. The internal metric can be selected as an existing string edit
distance or as a new operation assigning values as the result of a similarity
estimation of its arguments.

 The length of the string neighborhood. This parameter allows adapting to the
existing local dependencies in the strings, which may be unique to a given
dataset.

4.2.9 String Neighborhood Edit Operations Assignment

The string neighborhood edit operations assign a weight to a pair of string

neighborhoods. It is possible to use an existing string distance metric for weight

assignment. In this work, the author uses the Arithmetic Mean method, described as

follows. Within two corresponding string neighborhoods, each pair of corresponding

characters is assigned the value 0 for a match and 1 for a mismatch. Then these values

are added and the sum is divided by the number of pairs. Consider the example of the

weight calculation for the two string neighborhoods "si" and "ki":

 The pair ("s", "k") is assigned the weight of 1;

 The pair ("s", "i") is assigned the weight of 1;

 The pair ("s"; "k") is assigned the weight of 1;

 The pair ("i", "i") is assigned the weight of 0;

 Adding these four weights together, the sum of 3 is obtained;

 The sum of 3 is divided by the number of pairs, which is 4;

 Thus the weight for the string neighborhoods "si" and "ki" is 0.75.

60

4.3 Histogram Difference Method

The Histogram Difference (HD) method was inspired by Wei’s work [51] where a

histogram difference was involved at one of the steps in the Coherence Markov Edit

Distance algorithm. The histogram is defined as an associative array, counting the

number of occurrences of each character in a string. The implementation of the

histogram in the Java programming language is done utilizing the hash table data

structure. Wei used formula (4.12) to compute a HD between two strings S and T. In

(4.12), hist is the histogram function [51], i.e. the value of the hash table for this

argument:

() () (0.5 (() ()) () ())hist s hist t hist S hist T hist S hist T (4.12)

In this work, a new definition of the HD is introduced in formula (4.13) below:

(,) (() () 2(() ()))histDiff S T hist S hist T hist S hist T (4.13)

The example of the application of formulas (4.12) and (4.13) is shown in

Figure 4.12.

2

7

5
S

a

h b

c

,
3

4

8
T

b

h c

d

.

Following (4.12):

1

2 1 1

10 3 5 3 21
() () 7.5

9 4 4.5 4 0.52

8 4 4

a a a

b b b b b
h

c c c c c

d d d

Following (4.13):

2

2 2 2

10 3 10 6 4
(2) () 15

9 4 9 8 1

8 8 8

a a a

b b b b b
h

c c c c c

d d d

Figure 4.12 Two approaches to HD calculation.

A

Not

and (4.13)

the exampl

derived for

giving the b

Figu

formula (4

advocated b

A and B hav

the purpose

to the histo

symmetric

subsets. No

applied, wh

Figu

Figu

te that ∆h2 =

only differ

le above are

cases (4.12

better one.

ure 4.12 sh

.13), introd

below utiliz

ving certain

e of finding

ograms A an

difference

ow it is easy

hereas formu

ure 4.13 V

ure 4.14 S

= 2∆h1. It m

by a factor

e substitute

2) and (4.13

howed the v

duced in thi

zing a Venn

n elements i

g a string di

nd B should

of the sets

y to see that

ula (4.12) d

Venn diagram

eparated sub

may seem t

r of 2. Neve

ed in (4.14)

3), i.e., diffe

values prod

is thesis, is

n diagram. C

in common,

ssimilarity

d return a s

s A and B.

t in order to

does not pro

m view of th

ubsets view

hat string d

ertheless, w

 below, HD

erent final re

duced by for

more suita

Consider hi

, as depicted

value, the a

subset equa

 Figure 4.6

o obtain A'

oduce the re

he HD.

of the HD.

distance valu

when ∆h1, ∆h

D1 = 0.74 a

esults are ob

rmulas (4.1

able for the

stograms hS

d in Figures

application

al to A' B

6 depicts it

 B', formu

quired valu

ues based o

h2, |S|, and

and HD2 =

btained, wit

12) and (4.1

 HD functi

S and hT as

s 4.13 and 4

of the HD

B' or, in wo

t as four se

ula (4.13) sh

ue.

61

on (4.12)

|T| from

0.48 are

th (4.13)

13). The

on. It is

two sets

4.14. For

function

ords, the

eparated

hould be

62

The formula of the HD method takes the form:

(,)

(() ())

histDiff S T
HD

hist S hist T

 (4.14)

The histDiff (S,T) function is normalized by the sum of the histograms of the

strings S and T. This is done in order to take into account the lengths of both strings.

The ratio is subtracted from 1 in order to comply with the specifications of the Second

String project design. Now, when S equals T, the histDiff (S,T) becomes 0 and HD

becomes 1. When S and T don’t have any characters in common, histDiff (S,T)

becomes equal to ∑(hist(S)+hist(T)) thus the numerator is equal to the denominator

and the ratio becomes equal to 1, making HD equal to 0.

The computational complexity of the HD method is O(n) as shown in the table

below.

Table 4.4 The HD Algorithm complexity

Step Description Complexity

1 Calculation of hist(S) O(n)
2 Calculation of hist(T) O(n)
3 Calculation of hist(S)∩hist(T) O(1)
4 Summation operations O(1)
5 Subtraction operations O(1)
6 Deletion operations O(1)

Total O(n)

Several modifications of the HD method are introduced in this work. All the

modifications use HD as a core method but apply difference re-scorers. In previous

work, the SPED method used the Winkler-like re-scorer. The idea of adjusting the

final string distance value gets broader implementation in the family of HD methods

discussed below.

63

4.3.1 HD with Normalized Smith-Waterman Re-scorer

This variant of the HD method uses the Smith-Waterman re-scorer normalized by the

sum of the lengths of strings S and T. The initial HD method value is calculated using

the formula (4.14). In the next step, the Smith-Waterman function is applied to the

strings S and T and the obtained value is divided by the sum of the string lengths,

|S|+|T|. The normalized Smith-Waterman value is weighted and added to the HD

value. These steps are depicted by the formula (4.15) below:

(,)
(,) (1 (,))

| | | |

SW S T
HDSW HD S T HD S T

S T

 (4.15)

where HDSW is the HD method with the normalized Smith-Waterman Re-

Scorer, HD is the Histogram Difference function, and SW is the Smith-Waterman

function. The implementation of the re-scorer shown in (4.15) ensures that the HDSW

value lies within the [0, 1] interval.

The computational complexity of the HDSW method is O(n2). The analysis

behind it is as follows: The HD complexity is O(n); the complexity of the summation,

subtraction, and deletion operations are O(1) each; the complexity of the Smith-

Waterman method is O(n2).

4.3.2 HD with TFIDF and Jaccard Re-scorers

This modification of the HD method utilizes two re-scorers: TFIDF and Jaccard. As in

Section 4.3.1, the HD method is computed for the strings S and T. Then TFIDF and

Jaccard re-scorers are applied sequentially, as show in the formulae (4.16) and (4.17)

below.

(,) (1 (,)) (,)HDTF HD S T HD S T TFIDF S T (4.16)

(,) (1 (,)) (,)HDTFJ HDTF S T HDTF S T Jaccard S T (4.17)

64

where HDTF is the HD method after the application of the TFIDF re-scorer,

HD is the Histogram Difference function, HDTFJ is the HD method with both the

TFIDF and the Jaccard re-scorers applied, and Jaccard is the Jaccard function. The

weighted application of the re-scorers guarantees that the HDTFJ value falls within

the interval [0, 1].

The computational complexity of the HDTFJ method consists of the

computational complexities of the HD method and the re-scorers contributing to the

final value. The HD complexity is O(n), the complexity of the summation and

subtraction operations is O(1) each. The Jaccard method complexity is O(DS,T), where

DS,T is the number of individual terms in the strings S and T. The TFIDF method

complexity is O(NR + DR), where NR is the number of records in a dataset and DR is

the total number of individual words in a dataset. Since DR > DS,T , the total

complexity of the HDTFJ method is O(n + NR + DR).

4.3.3 HD with the Longest Common Prefix and TFIDF Re-scorers

The Histogram Difference with the Longest Common Prefix Re-scorer (HDLCP)

method uses the weighted normalized longest common prefix length to adjust the

string similarity value. The author had successfully applied the Winkler-like re-scorer

in the past [96]. The HDLCP is the logical continuation of the previous effort, which

had only used the first few characters to re-score the final value.

The HDLCP utilizes the length of the longest common prefix, which is

normalized by the length of the shortest string in the pair, min(|S|,|T|). After applying

the longest common prefix re-scorer, the TFIDF re-scorer is employed. The formulae

for HDLCP are given below:

| |
' (,) (1 (,))

min(| |,| |)

LCP
HDLCP HD S T HD S T

S T
 (4.18)

65

'(,) (1 '(,)) (,)HDLCP HDLCP S T HDLCP S T TFIDF S T (4.19)

where HDLCP' is the HD method re-scored with the longest common prefix

re-scorer, HD is the Histogram Difference function, and LCP is the longest common

prefix. HDLCP is the final value of the HDLCP method after applying both re-

scorers, and TFIDF is the TFIDF function. The formula for LCP is as follows:

1.. 1.. 1 1

1.. 1..

 IF AND AND min(| |,| |)

min(| |,| |) IF AND min(| |, | |)
i i i i

i i

i S T S T i S T
LCP

S T S T i S T

(4.20)

In (4.18), the length of LCP is weighted and normalized to make sure the

value of HDLCP falls in [0, 1]. In (4.16), the TFIDF value is weighted in a similar

way to (4.19).

The complexity of the HDLCP method is the combined complexities of the

LCP and TFIDF algorithms. The LCP complexity is O(n) since in the worst case it

stops when the end of the shorter string is reached. The TFIDF method complexity is

O(NR + DR), where NR is the number of records in a dataset and DR is the total number

of individual words in a dataset. Thus the total complexity of the HDLCP method is

O(n + NR + DR).

4.3.4 HD with the Unweighted Longest Common Prefix Re-scorer

The Histogram Difference with the Unweighted Longest Common Prefix Re-scorer

(HDULCP) method is similar to the HDLCP method presented in Section 4.3.3. In the

HDULCP case, the longest common prefix is weighted differently, namely in such a

way that it does not guarantee the final value of the HDULCP to be in the [0, 1]

interval. The idea behind the use of the unweighted re-scorer is to give the re-scorer

more impact on the final value. The formulae (4.21) and (4.22) define the HDULCP

function.

66

| |
' (,) (,)

min(| |,| |)

LCP
HDULCP HD S T HD S T

S T
 (4.21)

'(,) (1 '(,)) (,)HDULCP HDULCP S T HDULCP S T TFIDF S T (4.22)

The HDULCP computational complexity is calculated in the same way as for

the HDLCP method. It is O(n + NR + DR).

4.4 Longest Approximately Common Prefix Method

The Longest Approximately Common Prefix (LACP) method uses approximate

histogram matches of prefixes to determine the similarity value of a pair of strings.

Non-exact matching is performed via the Approximate Histogram Match (AHM)

function (formula (4.23)). This function returns “true” when the histogram difference

between prefixes of strings S and T:

 at position (i1) is less than a threshold parameter α;

 at position i is equal to α or the end of the shorter string is reached, i.e.
i=min(|S|, |T|).

1.. 1 1.. 1

1.. 1..

(,) AND

when ((,) OR
(, ,)

min(,))

otherwise

i i

i i

prefHistDiff S T

true prefHistDiff S T
AHM S T i

i S T

false

 (4.23)

where prefHistDiff is a prefix histogram difference function and α is the

threshold parameter. At the i-th character position, the histogram difference takes the

form:

1.. 1.. 1.. 1..(,) | () () |i i i iprefHistDiff S T i hist S hist T (4.24)

67

where hist is the histogram function and i denotes the prefix length. The

number of characters, which are common to the histograms of both prefixes, is

subtracted from i. Then, the difference is the number of non-common characters.

The AHM function is applied sequentially to a pair of substrings S1..i and T1..i ,

i ϵ [1..min(|S|, |T|)]. This search stops when the AHM function returns false at some

position i or the last character of the shorter string is reached. Now, the position i is

the last character of the longest common prefix. Since the search is started at the first

characters of both strings, it follows that the value i denotes the length of the longest

approximately common prefix. A threshold value α denotes the number of allowed

mismatches in the histograms of the prefixes S1..i and T1..i.

At the next step, the length of the LACP is normalized by the average length

of strings S and T to ensure that the LACP method value fits in the [0..1] interval. It is

also possible to normalize by the length of the shorter string min (|S|, |T|) to assure a

zero-to-one interval of method values.

The formula for the LACP method is as follows:

| |

(| | | |) / 2

prefix
LACP

S T

 (4.25)

where |prefix| is the length of the longest approximately common prefix and

LACP is the value of the LACP method. The formula for |LACP| is given below:

 | | when AHM(, ,)prefix i S T i true (4.26)

where i denotes the prefix length.

The expression hist(S1..i) ∩ hist(T1..i) denotes the intersection of the histograms

of two substrings. Let’s consider the example given in Figure 4.14.

68

∩ =

(a) (b) (с)

Figure 4.15 Example of the histogram intersection for two UMLS terms: (a)
“ammonium”, (b) “ammonium ion”, (c) the resulting histogram intersection.

In order to get the size of the histogram intersection, the numbers in the

resulting matrix are added together. For the case shown in Figure 4.15 (c), the size is

(1+1+3+1+1+1)=8.

Table 4.5 Common Prefixes in the UMLS terms

String Length

S1 Ammonium 8
S2 Ammonium_ion 12
S3 AMMONIUM CHLORIDE 1 MG /

CYANOCOBALAMIN 5 MCG / FERRIC
AMMON IUM CITRATE 40 MG / FOLIC ACID 1
MG / LYSINE HYDROCHLORIDE 100 MG /
MAGNESIUM SULFATE 1 MG / MANGANESE
SULFATE ANHYDROUS 1 MG / NIACIN 5 MG /
PANTHENOL 1 MG / POTASSIUM SULFATE 1
MG / PYRIDOXINE HYDROCHLORIDE 0.5 MG
/ RIBOFLAVIN 1.2 MG / THIAMINE
HYDROCHLORIDE 12 MG / ZINC SULFATE 1
MG ORAL LIQUID [HEMERGON]

370

The normalization by the average is chosen to take into account the lengths of

both strings. Consider the example of two pairs of strings sharing the same LACP

shown in the Table 4.5. Strings (1) and (2) comprise the first pair, strings (1) and (3)–

the second pair. When the prefix length is normalized by the length of the shorter

string in a pair, the greater degree of dissimilarity in the pair (1) and (3) is neglected.

1

1

3

1

1

1

a

i

m

n

o

u

1

2

3

2

2

1

1

a

i

m

n

o

u

1

1

3

1

1

1

a

i

m

n

o

u

69

Thus with the choice of the normalization by the shorter string length, strings (1) and

(2) receive the same dissimilarity value as strings (1) and (3). This is obviously not

the desired outcome. However, when normalized by the average string length, the

LACP method takes into account the string lengths.

Table 4.5 depicts three UMLS terms. Strings S1 and S2 are associated with the

same concept with CUI C0002611, the string S3 belongs to a different concept with

CUI C1816069. In the string S2, the space between the words ammonium and ion was

replaced with the underscore character “_” for the sake of presentation. According to

formulas (4.23)-(4.25) and the choice of α = 3, LACP(S1, S2) = 8 / ((8 + 12)·0.5) = 0.8,

similarly LACP(S1, S3) = 8 / ((8 + 370)·0.5) = 0.042, and LACP(S2, S3) = 10 / ((12 +

370)·0.5) = 0.052.

4.4.1 LACP Method Algorithm

The LACP algorithm is shown in Figure 4.16 below. The prefHistDiff function was

described in detail in the previous section. The LACP algorithm flow is

straightforward. It is of linear-time complexity.

1 For i=1 to min(|S|, |T|)

2 Begin

3 If prefHistDiff (S1..i, T1..i) = α Then return i

4 End

5 Return min(|S|, |T|)

Figure 4.16 Algorithm of the LACP method.

70

4.4.2 LACP Method Complexity

The worst-case complexity of the LACP algorithm is shown schematically in Table

4.6.

Table 4.6 Complexity of the LACP method

Step Complexity

Search for the ACP O(n)
Calculation of the prefHistDiff function O(n)
Return the final value O(1)
Total complexity O(n)

With the O(n) worst-case complexity, the LACP method performed faster

compared to other well-known methods in every experiment conducted. These and

other results will be shown below in Chapter 5, Evaluation.

71

CHAPTER 5

EVALUATION

5.1 Experimental Environment

5.1.1 Benchmark Suite

The open-source Java toolkit Second String [28] was used as the experimental test bed.

Second String consists of several Java packages, which implement blockers, string

distances, and a routine to perform experiments.

The blockers are needed to reduce the problem size of duplicate detection or

clustering tasks. The blockers are methods which remove a large portion of

approximately dissimilar record pairs from consideration and leave a minimal subset of

approximately similar records in a given dataset [97, 98]. The initial problem size is

measured by the total number of record pairs in a given dataset. As an example, the

Cartesian product of a dataset with 5,000 records produces 2.5·107 pairs of records. A

problem size of this kind makes it impossible to perform evaluation in a reasonable

amount of time. This is rectified by using blockers.

Second String includes implementations of well-known string similarity metrics

such as the distance metrics used in the evaluation described in Section 2.4: Jaccard, Jaro,

Jaro-Winkler, Levenshtein, Monge-Elkan, Needleman-Wunsch, Smith-Waterman, Soft

TFIDF, and TFIDF. Several datasets are also included in the toolkit. The following

datasets were used in the experiments: Animals, Birds, Census, Parks, and Restaurants.

The routine to perform experiments implements the benchmarking methodology

described in detail below in Section 5.1.2.

5.1.2 Benc

The Second

in the main

experiment

 One

 One

 One

 Opt

An

specified b

subset of an

the script.

Figu

In t

blocking al

records con

grows to th

upper limit

pair of reco

it is marked

depicted in

chmarking

d String too

n script file

t “scenario”

e blocker m

e or more ed

e or more da

tions specify

experiment

blocker is u

n original d

ure 5.1 Sam

the experim

lgorithms a

ntaining the

he upper lim

t is equal or

ords is mark

d as incorre

Table 5.1.

Methodolo

olkit perform

. An examp

” consists of

method file n

dit distance

ataset file n

ying measur

t starts by

used to buil

dataset. A c

mple experi

ment, a bloc

are beyond

same token

mit of the nu

r smaller th

ked as corre

ect. A short

ogy

ms an exper

ple of such

f several par

name;

file names;

names;

ures to comp

reading the

ld a candid

andidate se

iment “scen

cker provid

the scope

ns. These pa

number of c

han the tota

ect when bo

extract from

riment acco

a file is sh

rts:

;

pute during

e instruction

date record

et is built fo

nario” file.

ed by Seco

of this wor

airs are add

andidate pa

al number o

oth records

m the candi

rding to a “

own below

the experim

ns in the “

set for ma

or each of th

ond String w

rk. The blo

ded to the ca

airs for a pa

of records in

have the sa

idate set of

“scenario” s

w in Figure 5

ment.

“scenario” f

atching, wh

he listed da

was used s

ocker finds

andidate set

articular tok

n the datas

ame ID. Oth

the Parks d

72

specified

5.1. The

file. The

hich is a

tasets in

ince the

pairs of

t, until it

ken. The

et. Each

herwise,

dataset is

73

Table 5.1 Record Pairs from the Candidate Set of the Parks Dataset

Record 1 Record 2 Correct Pair
Marker

Richmond NB Park Richmond NBP True

Sequoia and Kings Canyon NP Sequoia & Kings Canyon NP True

Catocin Mtn. Park Catoctin Mountain Park True

Jean Lafitte NHP & NPRES Jean Lafitte NHP & Preserve True

Colorado NM Coronado NM False

Acadia NP Arches NP False

Bighorn Canyon NRA Bryce Canyon NP False

When the blocking process is completed, a duplicate detection or clustering

experiment is performed using each of the selected string similarity functions. The

type of the experiment is determined by applying either the clustering or duplicate

detection blocker.

Second String assigns a string similarity value to each pair of records in the

matching set. When the experiment is completed, the values of the measures selected

in the “scenario” file are computed and displayed for analysis.

During the evaluation, four available measures in the Second String toolkit

were selected for computation: execution time, average precision, maximum F1, and

precision-recall data used for plotting precision-recall charts.

A stemming algorithm was applied to the dataset records during the

experiments. The strings were stripped of the leading and trailing spaces, multiple

repeating spaces were replaced with a single space, and the strings were converted to

lower case.

74

5.2 Evaluation of Duplicate Detection in Life and Social Sciences Data Sources

To compare the obtained results, the author built tables aligning average precision,

maximum F1, and execution time for the evaluated metrics. Higher values of average

precision and maximum F1 gained by a string similarity metric indicate better

performance. Lower values for execution time also indicate a better result. On the

precision-recall curves, better metrics show higher values of precision at more recall

points.

In this paper, the author selected ten string metrics to evaluate performance.

These metrics are as follows:

 Information Distance;

 Jaccard;

 Jaro;

 Jaro-Winkler;

 Levenshtein;

 Monge-Elkan;

 Needleman-Wunsch;

 Smith-Waterman;

 Soft TFIDF;

 TFIDF.

This selection was based on the popularity of the techniques in the literature as

well as their relevance to this research.

5.2.1 Average Precision for Duplicate Detection Experiments

In this section, the evaluation results of the different methods used in duplicate

detection tasks are described for the Life and Social Sciences datasets. The methods

proposed in this work achieve the best values of average precision on three datasets

out of five. On the remaining two datasets, the new methods produce top results

approaching those of the best performers.

75

For the Animals dataset, the three best methods with the same values of

average precision (0.95) are Jaccard, TFIDF and Soft TFIDF. They are followed by

the three methods proposed in this work: HDTFJ with 0.93, HDLCP with 0.83, and

HDSW with 0.64. The rest of the techniques demonstrated numbers close to zero.

For the Birds dataset, the best values of average precision (0.81) belong to

TFIDF and Soft TFIDF. The next best results of 0.75 are of the HDTFJ and Jaro

methods. The rest of the functions demonstrate similar numbers, except for the

HDULCP and Information Distance methods, which are worse.

The best average precision of 0.94 on the Census dataset is achieved using the

HDSW metric. It is followed by Smith-Waterman with 0.92, and Levenshtein and

Needleman-Wunsch both measuring 0.90.

Table 5.2 Average Precision for Duplicate Detection Experiments

Metric
Dataset

Animals Birds Census Parks Restaurants

Information Distance 0.01 0.13 0.05 0.05 0.00
Jaccard 0.95 0.73 0.40 0.87 0.98
Jaro 0.06 0.75 0.73 0.94 0.92
Jaro-Winkler 0.04 0.74 0.71 0.95 0.93
Levenshtein 0.05 0.74 0.90 0.87 0.71
Monge-Elkan 0.08 0.71 0.76 0.95 0.75
Needleman-Wunsch 0.05 0.74 0.90 0.87 0.71
Smith-Waterman 0.09 0.43 0.92 0.81 0.86
Soft TFIDF 0.95 0.81 0.38 0.96 0.99
TFIDF 0.95 0.81 0.38 0.96 0.99
HDULCP 0.13 0.10 0.65 0.64 1.00
HDLCP 0.83 0.72 0.82 0.96 0.99
HDSW 0.64 0.72 0.94 0.94 0.89
HDTFJ 0.93 0.75 0.74 0.95 0.98

On the Parks dataset, three methods obtain the same best value of average

precision: HDLCP, TFIDF, and Soft TFIDF. The next closest value of 0.95 is

76

achieved by the HDTFJ, Jaro-Winkler, and Monge-Elkan methods. The third best

value of 0.94 belongs to the HDSW and Jaro methods.

On the Restaurants dataset, the best possible value of 1.00 is reached by the

HDULCP method. The second best number is 0.99, produced by the HDLCP, TFIDF,

and Soft TFIDF methods. The next best result of 0.98 belongs to HDTFJ and Jaccard.

5.2.2 Maximum F1 for Duplicate Detection Experiments

The four HD-based methods achieve the best values of the F1 metric on four datasets:

0.90 for the HDTFJ method on the Animals dataset, 0.88 for the HDSW method on

the Census data, 0.95 by the HDLCP method on the Parks dataset, and 0.99 by the

HDULCP method on the Restaurant data. On the Birds dataset, the best number of

0.86 belongs to the Jaccard method, which is closely approached by the following

methods developed in this research: HDTFJ with 0.85, HDLCP and HDSW with 0.84.

Table 5.3 Maximum F1 for Duplicate Detection Experiments

Metric
Dataset

Animals Birds Census Parks Restaurants

Information Distance 0.04 0.29 0.10 0.14 0.01
Jaccard 0.90 0.86 0.57 0.88 0.94
Jaro 0.12 0.82 0.69 0.91 0.90
Jaro-Winkler 0.09 0.82 0.65 0.92 0.94
Levenshtein 0.08 0.82 0.83 0.88 0.72
Monge-Elkan 0.13 0.85 0.70 0.94 0.75
Needleman-Wunsch 0.08 0.82 0.83 0.88 0.72
Smith-Waterman 0.15 0.54 0.85 0.77 0.81
Soft TFIDF 0.90 0.84 0.52 0.94 0.95
TFIDF 0.90 0.84 0.52 0.94 0.95
HDULCP 0.31 0.29 0.65 0.85 0.99
HDLCP 0.79 0.84 0.75 0.95 0.96
HDSW 0.74 0.84 0.88 0.93 0.83
HDTFJ 0.90 0.85 0.73 0.94 0.95

77

5.2.3 Execution Time for Duplicate Detection Experiments

The two fastest algorithms are the Jaro method, which requires the shortest time on

the Animals, Birds, and Parks datasets and the Jaccard method, which has the best

timing for the Census and Restaurants datasets. The Monge-Elkan and Information

Distance metrics are the slowest in most cases. The Levenshtein and Needleman-

Wunsch metrics demonstrate similar numbers because they are, in fact, similar

techniques.

Table 5.4 Execution Time in Seconds for Duplicate Detection Experiments

Metric
Dataset

Animals Birds Census Parks Restaurants

Information Distance 3.50 0.42 7.57 1.25 40.03
Jaccard 0.22 0.02 0.15 0.07 1.99
Jaro 0.18 0.01 0.44 0.05 2.87
Jaro-Winkler 0.96 0.06 2.44 0.45 2.92
Levenshtein 1.32 0.07 5.58 0.67 37.31
Monge-Elkan 3.36 0.16 11.85 1.10 87.64
Needleman-Wunsch 1.33 0.07 5.57 0.37 37.31
Smith-Waterman 1.50 0.07 5.87 1.40 39.30
Soft TFIDF 0.99 0.04 1.17 0.37 23.28
TFIDF 0.28 0.02 0.22 0.08 2.98
HDULCP 2.20 0.12 1.37 0.76 12.34
HDLCP 1.75 0.09 1.23 0.56 12.54
HDSW 3.24 0.16 2.50 0.86 60.97
HDTFJ 2.02 0.11 1.44 0.62 15.68

5.2.4 Precision-Recall Curves for Duplicate Detection Experiments

The figures depicting precision-recall curves for duplicate detection experiments in

the life and social sciences domain are shown in Appendix A. These charts correlate

well with the average precision data shown in Table 5.2 but provide a more detailed

outlook. Each of the figures in Appendix A depicts a precision-recall curve for one of

the fourteen string metrics applied to one of the five datasets.

78

The precision-recall curves are an easy visual way to estimate an algorithm’s

performance. The general way to interpret a precision-recall chart is based on the

location of a curve. When the curve goes through the lower-left section of the graph,

then the method's overall performance is poor. In contrast, when the curve goes

though the top right portion of the chart, the method's overall performance is good.

On each of the charts, the horizontal axis shows the recall points from 0.0 to 1.0 and

the vertical axis measures the interpolated average precision values, also from 0.0 to

1.0.

Figures A.1 and A.2 in Appendix A distinctively show that five string metrics

have the best performance on the Animals dataset. These are Jaccard, Soft TFIDF,

TFIDF, HDTFJ, and HDLCP. The pattern of the HDSW indicates worse results

compared to the five leaders. The rest of the methods are far behind.

Figures A.3 and A.4 (see Appendix A) depict the precision-recall curves of the

fourteen string similarity metrics for the Birds dataset. The curves of the Information

Distance and HDULCP methods indicate low performance. The Smith-Waterman

chart reflects moderate results. On the other hand, the rest of the methods have similar

curves which indicate above average performance.

The next set of charts, shown in Figures A.5 and A.6 in Appendix A, portray

the evaluation on the Census dataset. It is easy to notice that the HDSW curve has the

highest precision values at the greatest number of recall points. It is followed by the

similar curves of the Levenshtein, Needleman-Wunsch, and Smith-Waterman

methods. The worst precision-recall dynamics belongs to Information Distance,

TFIDF, and Soft TFIDF. These three curves have a similar trajectory, although the

Information Distance has the deeper decrease of precision at the 0.1 point of recall.

79

Figures A.7 and A.8 (see Appendix A) portray the precision-recall charts for

the Parks dataset. The pattern of performance of the string similarity metrics changes

again as the characteristics of the dataset change. The eight metrics demonstrating

excellent results and almost identical curves are the Jaro, Jaro-Winkler, Monge-Elkan,

Soft TFIDF, TFIDF, HDLCP, HDSW, and HDTFJ methods. For these metrics,

precision drops at the 0.9 recall point. The Jaccard, Levenshtein, and Needleman-

Wunsch curves show a similar pattern but their precision drops occur at the 0.8 recall

value. The Smith-Waterman and HDULCP curves lie lower on the chart, indicating

lower performance. The Information Distance shows the worst performance.

The evaluation of the various distance metrics on the Restaurants dataset is

shown in Figures A.9 and A.10 in Appendix A. The best performance is demonstrated

by the HDULCP method. Its curve goes through the highest values of the precision up

to 0.9 of recall and then drops insignificantly. Several methods have similar curves,

namely HDLCP, TFIDF, Soft TFIDF, HDTFJ, and Jaccard. The Information Distance

curve shows the worst performance at all recall points.

5.3 Evaluation of Clustering on Life and Social Sciences Data Sources

This section presents the evaluation of the selected string similarity metrics on the life

and social sciences datasets for the clustering tasks. Four methods developed in this

dissertation are benchmarked against the previously introduced ten methods of other

researchers. In each of the Animals, Census, Parks, and Restaurants datasets, one of

the proposed methods demonstrates superior performance in terms of average

precision and maximum F1. On the Birds dataset, three proposed methods obtain

superior values.

80

5.3.1 Average Precision for Clustering Experiments

The four HD-based methods achieve the best values of average precision on four

datasets during the clustering experiments: 0.54 for the HDTFJ on the Animals

dataset, 0.46 by the HDSW on the Census dataset, 0.93 by the HDLCP on the Parks

dataset, and 0.98 by the HDULCP on the Restaurants dataset.

On the Birds dataset, the HDTFJ, HDSW, and HDLCP methods obtain 0.71,

0.69, and 0.69 values of average precision respectively. These values are very close to

the best value of 0.72 achieved by Jaro, Jaro-Winkler, TFIDF and Soft TFIDF. Other

methods with superior performance are Jaccard (0.54) on the Animals data; Monge-

Elkan (0.91), TFIDF (0.90), Soft TFIDF (0.90), HDSW (0.90), and HDTFJ (0.90) on

the Parks dataset; TFIDF (0.98), Soft TFIDF (0.98), HDLCP (0.97), and HDTFJ

(0.96) on the Restaurant data.

 Table 5.5 Average Precision for Clustering Experiments

Metric
Dataset

Animals Birds Census Parks Restaurants

Information Distance 0.01 0.02 0.02 0.02 0.00
Jaccard 0.54 0.71 0.12 0.82 0.94
Jaro 0.23 0.72 0.26 0.89 0.76
Jaro-Winkler 0.23 0.72 0.26 0.89 0.89
Levenshtein 0.24 0.71 0.37 0.81 0.54
Monge-Elkan 0.07 0.69 0.27 0.91 0.49
Needleman-Wunsch 0.24 0.71 0.37 0.81 0.54
Smith-Waterman 0.25 0.19 0.38 0.61 0.32
Soft TFIDF 0.37 0.72 0.11 0.90 0.98
TFIDF 0.37 0.72 0.11 0.90 0.98
HDULCP 0.01 0.02 0.24 0.48 0.98
HDLCP 0.42 0.69 0.24 0.93 0.97
HDSW 0.26 0.69 0.46 0.90 0.71
HDTFJ 0.54 0.71 0.23 0.90 0.96

81

5.3.2 Maximum F1 for Clustering Experiments

The four HD-based methods attain the best values of the maximum F1 metric on four

datasets during the clustering experiments: the HDTFJ method (0.66) on the Animals

dataset, the HDSW method (0.65) on the Census dataset, the HDLCP method (0.92)

on the Parks dataset, and the HDULCP method (0.95) on the Restaurants dataset. On

the Birds dataset, the HDLCP and HDSW methods achieve a maximum F1 value of

0.84, which is the second best result after the Monge-Elkan method (0.85). The

HDTFJ result on the Birds data is 0.83.

Other superior results are achieved as follows: Jaccard (0.66) on the Animals

dataset; Jaccard, TFIDF, and Soft TFIDF register 0.84 each on the Birds dataset;

HDTFJ, TFIDF, and Soft TFIDF achieve 0.91 each on the Parks data, while HDSW

obtains 0.90; TFIDF along with Soft TFIDF achieve 0.94 of maximum F1 on the

Restaurant data, followed by HDLCP (0.93) and HDTFJ (0.92).

Table 5.6 Maximum F1 for Clustering Experiments

Metric
Dataset

Animals Birds Census Parks Restaurants

Information Distance 0.03 0.05 0.06 0.08 0.01
Jaccard 0.66 0.84 0.28 0.86 0.90
Jaro 0.36 0.81 0.41 0.88 0.73
Jaro-Winkler 0.36 0.80 0.41 0.88 0.88
Levenshtein 0.37 0.80 0.56 0.86 0.61
Monge-Elkan 0.28 0.85 0.44 0.89 0.53
Needleman-Wunsch 0.37 0.80 0.56 0.86 0.61
Smith-Waterman 0.35 0.32 0.58 0.62 0.43
Soft TFIDF 0.53 0.84 0.26 0.91 0.94
TFIDF 0.53 0.84 0.26 0.91 0.94
HDULCP 0.04 0.07 0.32 0.72 0.95
HDLCP 0.61 0.84 0.37 0.92 0.93
HDSW 0.37 0.84 0.65 0.90 0.70
HDTFJ 0.66 0.83 0.36 0.91 0.92

82

5.3.3 Execution Time for Clustering Experiments

The fastest methods on all the five life and social sciences datasets during clustering

experiments are the Jaro and Jaro-Winkler methods, followed by Jaccard and TFIDF.

The Information Distance and Monge-Elkan turn out to be the slowest similarity

metrics for this type of experiment. The most significant difference in execution time

appears on the Restaurant dataset evaluation. This dataset does not have the highest

number of records, compared to the other evaluated data sources, but its average

record length is the longest. This characteristic explains the observation of an

increased execution time.

Table 5.7 Execution Time in Seconds for Clustering Experiments

Metric
Dataset

Animals Birds Census Parks Restaurants

Information Distance 63.53 6.57 12.51 11.29 96.00
Jaccard 1.39 0.11 0.45 0.20 6.28
Jaro 0.91 0.08 1.20 0.13 8.25
Jaro-Winkler 0.91 0.08 1.19 0.13 8.27
Levenshtein 6.40 0.55 13.31 0.92 93.82
Monge-Elkan 31.78 2.68 51.76 4.49 450.17
Needleman-Wunsch 6.33 0.54 13.26 0.92 93.17
Smith-Waterman 7.25 0.62 14.87 1.06 103.80
Soft TFIDF 5.42 0.48 3.25 1.00 107.12
TFIDF 2.10 0.19 0.77 0.37 11.31
HDULCP 6.98 0.58 2.12 0.94 22.60
HDLCP 6.18 0.57 2.13 0.93 23.05
HDSW 11.53 0.95 4.22 1.54 111.02
HDTFJ 7.15 0.63 2.48 1.11 28.41

5.3.4 Precision-Recall Curves for Clustering Experiments

The figures with precision-recall curves for clustering experiments in the life and

social sciences domain are shown in Appendix B. The interesting fact is that most of

the similarity metrics have similar shapes of precision-recall curves on each particular

83

dataset, varying by the degree of steepness and the recall point at which a precision

drop occurs. This can be explained by the varying composition and characteristics of

each particular dataset.

Figures B.1 and B.2 in Appendix B show the precision-recall charts for the

clustering experiments on the Animals dataset. Except for the Information Distance

and the HDULCP methods, which have the worst trajectories, other similarity

functions have curve shapes indicating moderate performance. The Smith-Waterman

and Monge-Elkan curves are smoother and the precision drops occur earlier, resulting

in moderate performances. The Jaccard and HDTFJ curves have better shapes

implying a better performance compared to the rest of the metrics.

In the Figures B.3 and B.4, the precision-recall charts for the Birds dataset are

shown. Except for two outliers, Information Distance and HDULCP, the rest of the

precision-recall curves represent very similar performances for all of the methods.

Again, in Figures B.5 and B.6 (Appendix B), precision-recall curves follow a

similar pattern. Nevertheless, the HDSW method gets the highest precision values at

most of the recall points when compared pairwise to every other method. This fact

correlates well with the average precision data in Section 5.3.1. The HDULCP

method starts with precision 1.0 at recall point 0.0, but its average precision is the

same as that of the HDLCP method.

The Jaro, Jaro-Winkler, Monge-Elkan, Soft TFIDF, TFIDF, HDLCP, HDSW,

and HDTFJ methods have similar trajectories in their precision-recall curves, as

depicted in Figures B.7 and B.8 in Appendix B. These methods are followed by a

second group consisting of the Jaccard, Levenshtein, and Needleman-Wunsch

methods. Both the Smith-Waterman and HDULCP curves show a moderately good

performance, though it is not clear from the charts, which of these methods has a

84

better curve. The average precision values given in Table 5.5 clearly demonstrate this

case: the Smith-Waterman method (0.61) outperforms the HDULCP (0.48) method.

The Information Distance method offers an inferior performance on this dataset as

well.

Figures B.9 and B.10 clearly demonstrate the superior precision-recall

performances for the HDULCP, TFIDF, and Soft TFIDF methods. It is easy to see

that the next best values belong to the HDLCP and HDTFJ methods.

5.4 Evaluation of Duplicate Detection on Bioinformatics Data Sources

This section represents the results of the application of string similarity metrics to

bioinformatics data for the duplicate detection tasks. The SPED method is

benchmarked against ten selected similarity functions. The SPED method achieves

the best possible results in terms of average precision and maximum F1. The SPED

method outperforms all the selected methods in maximum F1 on all datasets and in

average precision on three out of five datasets.

5.4.1 Average Precision for Duplicate Detection Experiments

This section presents experimental results expressed in average precision measures of

the selected string similarity functions in the bioinformatics domain for the duplicate

detection task. The SPED method, originally introduced in the authors’ previous work

[96, 123, 124], achieves the highest possible values on all five datasets and

outperforms the rest of the benchmarked methods on three datasets.

The SPED, Soft TFIDF, and TFIDF methods achieve the maximum possible

1.0 value of average precision on the Buchnera Aphidicola Cedri Cinara and

Paremecium Tetraurelia datasets. On the Bacteriophage T4, Carsonella Ruddii, and

85

Hyperthermus Butylicus, the SPED methods outperforms both the TFIDF and Soft

TFIDF methods as well as the rest of the similarity metrics.

Table 5.8 Average Precision for Duplicate Detection Experiments

Metric

Dataset
Buchnera

Aphidicola
Cedri

Cinara

Bacteriophage
T4

Carsonella
Ruddii

Hyperthermus
Butylicus

Paramecium
Tetraurelia

Information
Distance

0.02 0.09 0.06 0.01 0.08

Jaccard 0.65 0.50 0.66 0.61 0.74
Jaro 0.28 0.41 0.31 0.26 0.28
Jaro-Winkler 0.37 0.67 0.32 0.32 0.31

Levenshtein 0.56 0.58 0.57 0.56 0.62
Monge-Elkan 0.54 0.55 0.57 0.55 0.62
MRFED 0.55 0.56 0.57 0.56 0.63

Needleman-
Wunsch

0.56 0.58 0.57 0.56 0.62

Smith-
Waterman

0.52 0.53 0.48 0.42 0.53

Soft TFIDF 1.00 0.97 0.99 0.99 1.00
TFIDF 1.00 0.97 0.99 0.99 1.00
SPED 1.00 1.00 1.00 1.00 1.00

The MRFED method gains better results than the Information Distance, Jaro

and Smith-Waterman methods on all datasets. Also, it surpasses Jaro-Winkler and

Monge-Elkan on most datasets.

5.4.2 Maximum F1 for Duplicate Detection Experiments

Table 5.9 demonstrates that SPED surpasses the rest of the methods for duplicate

detection. It is closely followed by the TFIDF and Soft TFIDF methods.

The MRFED method introduced in the authors’ previous work [49, 50]

demonstrates moderate results, outperforming the Information Distance, Jaro, and

Smith-Waterman methods on all datasets. The MRFED method outperforms Jaro-

Winkler on all the datasets, except for the Bacteriophage T4 dataset.

86

Table 5.9 Maximum F1 for Duplicate Detection Experiments

Metric

Dataset
Buchnera

Aphidicola
Cedri

Cinara

Bacteriophage
T4

Carsonella
Ruddii

Hyperthermus
Butylicus

Paramecium
Tetraurelia

Information
Distance

0.06 0.17 0.13 0.03 0.16

Jaccard 0.67 0.62 0.72 0.70 0.79
Jaro 0.35 0.51 0.36 0.35 0.37
Jaro-Winkler 0.40 0.69 0.37 0.39 0.39

Levenshtein 0.62 0.63 0.65 0.66 0.67
Monge-Elkan 0.63 0.63 0.65 0.65 0.68
MRFED 0.62 0.62 0.64 0.65 0.69

Needleman-
Wunsch

0.62 0.63 0.65 0.66 0.67

Smith-
Waterman

0.57 0.51 0.57 0.45 0.59

Soft TFIDF 0.98 0.93 0.98 0.97 0.99
TFIDF 0.98 0.93 0.98 0.97 0.99
SPED 1.00 1.00 1.00 1.00 1.00

5.4.3 Execution Time for Duplicate Detection Experiments

The shortest execution time during the duplicate detection experiments on the

bioinformatics datasets is demonstrated by the Jaccard method. The TFIDF time is

second best. It differs from the Jaccard by a factor of approximately 2.0. It is worth

noting that the SPED method improves the execution time of the author’s previous

work, the MRFED method. The longest execution time is exhibited by MRFED, the

next result belongs to the Monge-Elkan, followed by the SPED, Smith-Waterman, and

Levenshtein techniques.

87

Table 5.10 Execution Time for Duplicate Detection Experiments

Metric

Dataset
Buchnera

Aphidicola
Cedri

Cinara

Bacteriophage
T4

Carsonella
Ruddii

Hyperthermus
Butylicus

Paramecium
Tetraurelia

Information
Distance

517 22 45 812 51

Jaccard 240 5 26 465 32
Jaro 880 16 85 1582 115
Jaro-Winkler 880 16 86 1593 116

Levenshtein 12047 222 1196 21727 1663
Monge-Elkan 46591 856 4575 86964 6638
MRFED 73209 1470 7546 170669 13744

Needleman-
Wunsch

9973 183 985 18293 1394

Smith-
Waterman

12940 241 1303 23503 1775

Soft TFIDF 5585 96 525 9415 643
TFIDF 478 10 50 877 60
SPED 26388 483 2584 47890 3720

5.4.4 Precision-Recall Curves for Duplicate Detection Experiments

Appendix C contains precision-recall charts for the duplicate detection experiments

on the bioinformatics datasets. Figures C.1, C.2, C.3, C.4, and C.5 display precision-

recall charts for the twelve string similarity metrics selected for this type of

experiments.

The methods exhibit almost identical curve trajectories, insignificantly varying

from dataset to dataset. An interesting observation concerns SPED, TFIDF, and Soft

TFIDF. On every chart, SPED gets 1.0 precision at every recall point. The TFIDF and

Soft TFIDF methods experience a slight precision drop at the recall of 1.0. Still, this

drop does not affect their average precision on the Buchnera Aphidicola Cedri Cinara

and Paramecium Tetraurelia datasets, but decreases the precision on average for the

rest of the data sources.

88

5.5 Evaluation of Clustering on Bioinformatics Data Sources

This section describes the results of the evaluation of string similarity functions for

the clustering task applied to the bioinformatics data. The evaluation is done by

taking the same approach of measuring the average precision, maximum F1, and

execution time, as well as plotting the precision-recall charts. This section presents the

experimental results for the following methods: Information Distance, Jaccard, Jaro,

Jaro-Winkler, Levenshtein, Monge-Elkan, MRFED, Needleman-Wunsch, Smith-

Waterman, Soft MRFED, Soft TFIDF, TFIDF, and SPED.

Similar to the duplicate detection experiments presented in Section 5.4, the

SPED method achieves the highest possible values for average precision and

maximum F1 on all the evaluated bioinformatics datasets. SPED outperforms the rest

of the methods in terms of maximum F1 on all the datasets. It surpasses other

evaluated methods on the average precision measure for three datasets, whereas the

TFIDF and Soft TFIDF methods have matching values of average precision on two

datasets.

5.5.1 Average Precision for Clustering Experiments

The SPED method demonstrated the maximum possible value of 1.0 average

precision on all the datasets in the clustering experiments. The TFIDF and Soft TFIDF

methods achieved the best value of 1.0 on two datasets and showed top results on the

other three data sources. The predecessor of the SPED method, MRFED,

demonstrated moderate performance. Its average precision values lie in the [0.5, 0.6]

interval.

Taking a closer look at the rest of the methods, Jaccard achieves a superior

value for average precision on the Paramecium Tetraurelia, Carsonella Ruddii,

89

Hyperthermus Butylicus, and Buchnera Aphidicola Cedri Cinara datasets. The Jaro-

Winkler method has the best average precision among the remaining set of metrics on

the Bacteriophage T4.

Table 5.11 Average Precision for Clustering Experiments

Metric

Dataset
Buchnera

Aphidicola
Cedri

Cinara

Bacteriophage
T4

Carsonella
Ruddii

Hyperthermus
Butylicus

Paramecium
Tetraurelia

Information
Distance

0.02 0.07 0.05 0.01 0.06

Jaccard 0.64 0.47 0.65 0.59 0.73
Jaro 0.27 0.39 0.29 0.24 0.25
Jaro-Winkler 0.35 0.65 0.30 0.30 0.28

Levenshtein 0.54 0.55 0.55 0.55 0.59
Monge-Elkan 0.54 0.54 0.56 0.54 0.59
MRFED 0.54 0.53 0.52 0.50 0.61

Needleman-
Wunsch

0.54 0.55 0.55 0.55 0.59

Smith-
Waterman

0.51 0.51 0.46 0.39 0.51

Soft TFIDF 1.00 0.95 0.97 0.98 1.00
TFIDF 1.00 0.95 0.97 0.98 1.00
SPED 1.00 1.00 1.00 1.00 1.00

The MRFED method outperforms the Information Distance, Jaro, Jaro-

Winkler, Levenshtein, Monge-Elkan, Needleman-Wunsch and Smith-Waterman

methods on the Paramecium Tetraurelia dataset. The MRFED method has better

results than the Information Distance, Jaccard, Jaro, and Smith-Waterman methods on

the Bacteriophage T4. On the Carsonella Ruddii, Hyperthermus Butylicus, and

Aphidicola Cedri Cinara datasets, MRFED achieves higher values of average

precision than the Information Distance, Jaro, Jaro-Winkler, and Smith-Waterman

methods. The comparison above shows that the MRFED has an average performance

90

on the Gene Ontology Annotation (GOA) datasets, though it outperforms several

well-known string similarity metrics.

5.5.2 Maximum F1 for Clustering Experiments

Table 5.12 demonstrates the maximum F1 measure values for the string metrics

evaluation performed on the GOA datasets for clustering tasks. Again, as in the case

of the duplicate detection task for the bioinformatics datasets, SPED has the highest

values on all the datasets. It outperforms all other evaluated metrics, though the

TFIDF and Soft TFIDF methods show very close results.

Table 5.12 Maximum F1 for Clustering Experiments

Metric

Dataset
Buchnera

Aphidicola
Cedri

Cinara

Bacteriophage
T4

Carsonella
Ruddii

Hyperthermus
Butylicus

Paramecium
Tetraurelia

Information
Distance

0.06 0.16 0.12 0.03 0.14

Jaccard 0.67 0.61 0.71 0.70 0.78
Jaro 0.33 0.49 0.34 0.33 0.34
Jaro-Winkler 0.39 0.66 0.35 0.37 0.36

Levenshtein 0.62 0.63 0.64 0.66 0.65
Monge-Elkan 0.63 0.63 0.64 0.65 0.66
MRFED 0.62 0.62 0.58 0.49 0.67

Needleman-
Wunsch

0.62 0.63 0.64 0.66 0.65

Smith-
Waterman

0.57 0.49 0.56 0.43 0.57

Soft TFIDF 0.98 0.91 0.93 0.95 0.98
TFIDF 0.98 0.91 0.93 0.95 0.98
SPED 1.00 1.00 1.00 1.00 1.00

Consider the remaining ten metrics as a separate set. The Jaccard metric

achieved the best performance on four datasets: the Parametrium Tetraurelia,

Carsonella Ruddii, Hyperthermus Butylicus, and Buchnera Aphidicola Cedri Cinara.

91

The best performance on the Bacteriophage T4 dataset was obtained by the Jaro-

Winkler metric.

The MRFED outperformed the following similarity metrics:

 Information Distance, Jaro, Jaro-Winkler, Levenshtein, Monge-Elkan,
Needleman-Wunsch, Smith-Waterman on the first dataset;

 Information Distance, Jaccard, Jaro, Smith-Waterman on the second dataset;

 Information Distance, Jaro, Jaro-Winkler, Smith-Waterman on the third,
fourth, and fifth datasets.

The MRFED method is not the best string similarity metric for duplicate

detection on the GOA datasets but it was able to outperform several well-known

widely used methods.

5.5.3 Execution Time for Clustering Experiments

In terms of the execution time, the Jaccard method earned the best results on all

datasets. The TFIDF metric had the second best running time on each of the

bioinformatics datasets.

The MRFED method was the slowest on the first, second, third, and fifth

datasets. Soft TFIDF showed the worst execution time on the Hyperthermus Butylicus

dataset. The Levenshtein, Monge-Elkan, Needleman-Wunsch, and SPED methods

were among the slowest.

It is worth noting that an execution time shown in Table 5.13 is not a perfect

estimate of its method's run time, as it may be skewed by the available amount of

operating memory, processor load, and other factors affecting the experiment’s flow.

These factors don't have any influence on the average precision, maximum F1, and

precision-recall charts. However, one of the best ways to compare algorithm run times

remains the analysis of their computational complexities.

92

Table 5.13 Execution Time in Seconds for Clustering Experiments

Metric

Dataset
Buchnera

Aphidicola
Cedri

Cinara

Bacteriophage
T4

Carsonella
Ruddii

Hyperthermus
Butylicus

Paramecium
Tetraurelia

Information
Distance

1,054 91 408 3,361 249

Jaccard 512 7 38 1,071 45
Jaro 2,350 22 115 2,619 160
Jaro-Winkler 1,461 23 134 2,731 160

Levenshtein 101,068 302 1,848 34,789 2,670
Monge-Elkan 62,463 788 4,257 72,022 6,363
MRFED 134,595 8,529 6,565 6,969 23,036

Needleman-
Wunsch

21,164 382 1,920 37,285 2,665

Smith-
Waterman

21,346 361 1,847 33,759 2,622

Soft TFIDF 62,385 83 429 199,743 506
TFIDF 642 14 61 1,605 71
SPED 65,150 508 5,244 96,405 3,845

5.5.4 Precision-Recall Curves for Clustering Experiments

Appendix D shows precision-recall charts for the string distance evaluation of

clustering tasks on the bioinformatics datasets. Each method shows a very similar

precision-recall curve for each of the datasets, with only slight differences. This is

explained by the similar dataset characteristics. In all cases, except for the Information

Distance method in Figures D.1 and D.2, curves start at the upper left corner with the

1.0 value of precision. In almost all cases, except for SPED, TFIDF, and Soft TFIDF,

the precision declines and reaches values close to zero at the 1.0 point of recall.

Nevertheless, the SPED, TFIDF, and Soft TFIDF methods demonstrate

superior performance in Figures D.1 through D.5. SPED obtains 1.0 values of

precision at each point of recall. In Figures D.1 and D.5, the TFIDF and Soft TFIDF

methods manage to keep up a 1.0 level of precision, up to the 0.9 point of recall and

93

experience a precision drop at the last recall point. The TFIDF and Soft TFIDF

methods have a declining precision starting at the first point of recall and continue the

decline up to the last point in Figures D.2, D.3, and D.4. This behavior is reflected in

the average precision values given in Table 5.11 of Section 5.5.1.

5.6 Evaluation of Duplicate Detection on Medical Informatics Data Sources

The results of the string metrics evaluation for duplicate detections tasks on the

medical informatics datasets are presented in this section. Three methods proposed by

the author, HDLCP, HDTFJ, and LACP, are benchmarked against ten popular string

similarity metrics. On each of the datasets, the new methods outperform the rest of the

evaluated methods in the maximum F1 measure. In average precision, the new

methods surpass the rest of the techniques on the second and third datasets, achieve

superior results on the first data source, and are among the top performers on the forth

dataset.

5.6.1 Average Precision for Duplicate Detection Experiments

This section shows that the new methods created in this research demonstrate superior

values of average precision for duplicate detection tasks on the medical informatics

datasets. For the UMLS Longest Concepts dataset, the HDLCP and HDTFJ methods,

along with TFIDF and Soft TFIDF show a 0.25 average precision, which is the best

value for this dataset. On the SNOMED Longest Concepts and the UMLS Most

Frequent Concepts datasets, the LACP method excels over the other methods with

0.84 and 0.62 values of average precision, respectively. On the SNOMED Longest

Concepts dataset, HDLCP and HDTFJ show the second best average precision value

of 0.72. For the SNOMED Most Frequent Concepts dataset, the TFIDF and Soft

94

TFIDF methods demonstrate the best average precision of 0.55. The closest following

results for this dataset are shown by the HDLCP (0.52) and LACP (0.51) methods.

Table 5.14 Average Precision for Duplicate Detection Experiments

Metric

Dataset
UMLS
Longest
Concepts

SNOMED
Longest
Concepts

UMLS
Most
Frequent
Concepts

SNOMED
Most Frequent
Concepts

Information Distance 0.00 0.00 0.04 0.03
Jaccard 0.22 0.54 0.31 0.33
Jaro 0.14 0.69 0.26 0.40
Jaro-Winkler 0.14 0.69 0.44 0.45

Levenshtein 0.18 0.54 0.16 0.21
Monge-Elkan 0.12 0.65 0.22 0.32
Needleman-Wunsch 0.18 0.54 0.16 0.21

Smith-Waterman 0.09 0.34 0.18 0.16

Soft TFIDF 0.25 0.69 0.51 0.55
TFIDF 0.25 0.69 0.51 0.55
HDLCP 0.25 0.72 0.50 0.52
HDTFJ 0.25 0.72 0.36 0.42
LACP 0.12 0.84 0.62 0.51

5.6.2 Maximum F1 for Duplicate Detection Experiments

The new methods demonstrate the highest values of maximum F1 on each medical

informatics dataset for duplicate detection experiments. On the UMLS Longest

Concepts dataset, the HDLCP and HDTFJ methods produce a maximum F1 value of

0.41. For the SNOMED Longest Concepts, UMLS Most Frequent Concepts, and

SNOMED Most Frequent Concepts data, the LACP achieves the highest values of

maximum F1: 0.92, 0.69, and 0.61, respectively.

95

Table 5.15 Maximum F1 for Duplicate Detection Experiments

Metric

Dataset
UMLS
Longest
Concepts

SNOMED
Longest
Concepts

UMLS
Most
Frequent
Concepts

SNOMED
Most Frequent
Concepts

Information Distance 0.03 0.02 0.07 0.07
Jaccard 0.37 0.59 0.33 0.38
Jaro 0.28 0.77 0.33 0.49
Jaro-Winkler 0.28 0.77 0.56 0.57

Levenshtein 0.33 0.65 0.21 0.28
Monge-Elkan 0.26 0.67 0.24 0.37
Needleman-Wunsch 0.33 0.65 0.21 0.28

Smith-Waterman 0.18 0.38 0.21 0.22

Soft TFIDF 0.40 0.70 0.49 0.58
TFIDF 0.40 0.70 0.49 0.58
HDLCP 0.41 0.73 0.48 0.57
HDTFJ 0.41 0.74 0.36 0.46
LACP 0.27 0.92 0.69 0.61

5.6.3 Execution Time for Duplicate Detection Experiments

One of the newly developed methods, LACP, demonstrates the shortest execution

time for all medical informatics datasets. This fact, in combination with the superior

values of average precision and maximum F1, shows it to be the best method for

duplicate detection tasks according to the performed evaluation. The LACP method

shows the shortest execution time (in seconds) on each of the datasets, namely 202,

40, 11, and 202 for the datasets one through four, respectively.

96

Table 5.16 Execution Time in Seconds for Duplicate Detection Experiments

Metric

Dataset
UMLS
Longest
Concepts

SNOMED
Longest
Concepts

UMLS
Most
Frequent
Concepts

SNOMED
Most Frequent
Concepts

Information Distance 1022 949 396 1022
Jaccard 568 70 20 568
Jaro 3637 105 25 3637
Jaro-Winkler 3617 115 26 3617

Levenshtein 57811 1273 301 57811
Monge-Elkan 258502 6240 1340 258502
Needleman-Wunsch 57982 1294 258 57982

Smith-Waterman 58753 1444 293 58753

Soft TFIDF 16874 806 174 16874
TFIDF 928 132 37 928
HDLCP 2364 247 67 2364
HDTFJ 1947 301 82 1947
LACP 202 40 11 202

5.6.4 Precision-Recall Curves for Duplicate Detection Experiments

Figures E.1 through E.4 illustrate precision-recall dependencies of the duplicate

detection evaluation on medical informatics data. Each method curve follows

approximately the same pattern from dataset to dataset. The pattern differences are in

the degree of precision drop and the recall point where this drop occurs. The LACP

method shows higher precision values at more recall points on most figures.

5.6.5 LACP-Based Interactive Spell Checker

As one more way to evaluate the LACP method’s performance, this research

demonstrates an interactive online spell checker [126] developed by the author. It is

based on the LACP method and checks the spelling of SNOMED CT terms. The spell

checker is a program written in the PHP language, which connects to a MySQL

database containing SNOMED CT terms from the 2009AB edition of the UMLS. The

97

goal of the application is to evaluate the LACP performance, so that the similarity of

resulting sets may be estimated at a glance. It also provides a practical application that

can be perused by non-expert end users of SNOMED CT.

The LACP spell checker accepts an input query and interactively outputs the

SNOMED CT terms satisfying the condition LACP(S, T) < threshold. Here, S is an

input query, and T is a SNOMED CT term. To reduce the running time, the algorithm

limits the set of search terms applying length criteria as described below.

Three modes of operation were implemented: (a) search with dynamically

estimated parameters; (b) search with static parameters; and (c) search with user-

defined parameters. In case (a), the search is limited to the database terms meeting the

criterion (5.1); α is defined in (5.2), threshold is 0.1.

max(0, 3) 3
10 10

S S
S T S

(5.1)

In case (a), the parameter α is set individually for each pair of strings S and T

as shown in (5.2):

min(,)

5

S T

(5.2)

In case (b), α is set to 1, threshold is 0.1, and the length of a term should be in

the following range:

max(0, 3) 3S T S (5.3)

In case (c), a user selects values of the parameters from the predefined sets.

The search is restricted to terms with lengths in the interval (5.4).

max(0,)S a T S b (5.4)

Parameters a, b, and α are constrained to integers in the interval 1..15, and

threshold should be selected from the set (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).

98

The spell checker returns the following information for each matching term T:

a sequence number; the value LACP(S,T); the string representation of the similar term

T; the CUI of the term; and the value of α.

Table 5.17 depicts results returned for the input term “Ischemia” (case (a));

static search for “Haemophilia”, (case (b)); and user-defined search for “Ammonium”

with the following parameter values a = 3, b = 3, threshold = 0.1 (case (c)). The

example in Table 5.17 shows that the spell checker returns closely related matches for

the input queries.

Table 5.17 Results Returned by the Spell Checker

Case (a): Dynamic search for “Ischemia”

LACP Value SNOMED CT Term CUI α

1 0 Ischemia C0022116 2

2 0 Ischemic C0475224 2

3 0.06 Ischaemia C0022116 2

4 0.06 Ischaemic C0475224 2

Case (b): Static search for “Haemophilia”

LACP Value SNOMED CT Term CUI α

1 0 Haemophilia C0684275 1

2 0 Haemophilia C1321589 1

3 0.08 Haemophilia B C0008533 1

4 0.08 Haemophilia C C0015523 1

5 0.08 Haemophilia A C0019069 1

Case (c): User-defined search for “Ammonium”, a = 3, b = 3,
threshold = 0.1

LACP Value SNOMED CT Term CUI α

1 0 Ammonium C0002611 2

2 0.07 Ammonia C0002607 2

99

The examples below demonstrate the dynamic search for a SNOMED CT term

with intentionally introduced misspellings. The spell checker returns the correct term

Vertebrate, when a single misspelling is introduced (Table 5.18, case (a)). There are

four records returned with the correct term among them, when two characters are

wrong (Table 5.18, case (b)).

Table 5.18 Search Results for the Misspelled Term “Vertebrate”

Case (a): Dynamic search for “Verteprate”

LACP Value SNOMED CT Term CUI α

1 0 Vertebrate C0042567 2

Case (b): Dynamic search for “Vertepratee”

LACP Value SNOMED CT Term CUI α

1 0 Temperature C0039476 3

2 0 Overtreated C1273485 3

3 0.05 Vertebrate C0042567 2

4 0.08 Perseveration C0233651 3

The next example in Table 5.19 depicts the results of the dynamic search for

the misspelled term Sodium Fluoride. In case (a), the search phrase has one

misspelled character and one missing character. The correct term is returned along

with three other terms. In case (b), the number of incorrect term is decreased by one,

while the number of misspellings is increased to two.

100

Table 5.19 Search Results for the Misspelled Term “Sodium Fluoride”

Case (a): Dynamic search for “Sodeum floride”

LACP Value SNOMED CT Term CUI α

1 0.03 Sodium fluoride C0037508 3

2 0.03 Sodium feredate C0357084 3

3 0.04 Sodium folate C0304894 3

4 0.1 Sodium feredetate C0357084 3

Case (b): Dynamic search for “Sodeum Florida”

LACP Value SNOMED CT Term CUI α

1 0.03 Sodium fluoride C0037508 3

2 0.03 Sodium feredate C0357084 3

3 0.04 Sodium folate C0304894 3

The search for the misspelled term Pancreatitis is shown in Table 5.20. In both

cases (a) and (b), two misspellings are introduced in the search phrases. The spell

checker returns only the correct term in case (a). In case (b), the term Turkmenistan is

returned as well as the correct term.

Table 5.20 Search Results for the Misspelled Term “Pancreatitis”

Case (a): Dynamic search for “Bankreatitis”

LACP Value SNOMED CT Term CUI α

1 0 Pancreatitis C0030305 3

Case (b): Dynamic search for “Punkreatitis”

LACP Value SNOMED CT Term CUI α

1 0 Pancreatitis C0030305 3

2 0 Turkmenistan C0041403 3

The results provided by the dynamic search are positive, returning the related

terms. Still, unrelated terms may be displayed within the search results. The spell

checker allows to set the parameter values manually to adjust the performance. It is

101

possible to include or remove records from a resulting set by tuning the parameters in

the Search in the User-Defined Parameters mode of the spell-checker.

5.7 Evaluation of Clustering on Medical Informatics Data Sources

The section presents an evaluation for clustering tasks of the selected string similarity

metrics on medical informatics data. Similar to the duplicate detection on the medical

informatics data shown in the Section 5.6, the proposed methods demonstrate superior

results in the maximum F1 measure on every dataset and superior values of average

precision on three out of four data sources.

5.7.1 Average Precision for Clustering Experiments

The three proposed methods achieve top performance in average precision on all

datasets and the best results on three out of four data sources. The HDLCP and

HDTFJ methods obtain a value of 0.25 as average precision on the UMLS Longest

Concepts data. The same number is produced by the TFIDF and Soft TFIDF methods.

The LACP method gets the highest scores on the SNOMED Longest Concepts data

(0.84) and on the UMLS Most Frequent Concepts (0.62). The HDLCP and HDTFJ

methods have the next best value of 0.72 average precision on the SNOMED Longest

Concepts data source. The TFIDF and Soft TFIDF methods demonstrate the best

average precision of 0.55 on the SNOMED Most Frequent Concepts dataset. The

closest results of 0.52 and 0.51 belong to the HDLCP and LACP methods.

102

Table 5.21 Average Precision for Clustering Experiments

Metric

Dataset
UMLS
Longest
Concepts

SNOMED
Longest
Concepts

UMLS
Most
Frequent
Concepts

SNOMED
Most Frequent
Concepts

Information Distance 0.00 0.00 0.03 0.03
Jaccard 0.21 0.46 0.30 0.31
Jaro 0.14 0.69 0.25 0.39
Jaro-Winkler 0.13 0.69 0.43 0.44

Levenshtein 0.17 0.53 0.15 0.20
Monge-Elkan 0.14 0.55 0.20 0.29
Needleman-Wunsch 0.17 0.54 0.15 0.20

Smith-Waterman 0.08 0.33 0.18 0.15

Soft TFIDF 0.24 0.42 0.50 0.53
TFIDF 0.24 0.42 0.50 0.53
HDLCP 0.21 0.75 0.49 0.50
HDTFJ 0.24 0.58 0.35 0.40
LACP 0.11 0.85 0.61 0.50

5.7.2 Maximum F1 for Clustering Experiments

The proposed methods outrank the benchmarked ones on the maximum F1 measure

on every evaluated dataset. On the first dataset, the highest score of 0.40 belongs to

the HDTFJ method. The best scores for the second, third, and fourth data sources are

achieved by the LACP method: 0.92, 0.69, and 0.60, respectively.

103

Table 5.22 Maximum F1 for Clustering Experiments

Metric

Dataset
UMLS
Longest
Concepts

SNOMED
Longest
Concepts

UMLS
Most
Frequent
Concepts

SNOMED
Most Frequent
Concepts

Information Distance 0.02 0.01 0.07 0.07
Jaccard 0.36 0.56 0.33 0.37
Jaro 0.27 0.77 0.32 0.48
Jaro-Winkler 0.27 0.77 0.55 0.56

Levenshtein 0.32 0.64 0.21 0.27
Monge-Elkan 0.30 0.65 0.22 0.35
Needleman-Wunsch 0.32 0.65 0.21 0.27

Smith-Waterman 0.17 0.37 0.20 0.21

Soft TFIDF 0.39 0.45 0.48 0.57
TFIDF 0.39 0.45 0.48 0.57
HDLCP 0.38 0.74 0.47 0.56
HDTFJ 0.40 0.66 0.36 0.45
LACP 0.25 0.92 0.69 0.60

5.7.3 Execution Time for Clustering Experiments

The best method in terms of the execution time for clustering experiments on the

medical informatics datasets is LACP. The LACP method demonstrated the shortest

time (in seconds) on each of the datasets: 644, 480, 68, and 13 for the first through

fourth datasets, respectively.

Considering results for all three measures shown in the Sections 5.7.1 through

5.7.3, LACP turns out to be the best performing method for the clustering tasks on the

evaluated medical informatics datasets. The other methods introduce in this research

also show top performance.

104

Table 5.23 Execution Time in Seconds for Clustering Experiments

Metric

Dataset
UMLS
Longest
Concepts

SNOMED
Longest
Concepts

UMLS
Most
Frequent
Concepts

SNOMED
Most Frequent
Concepts

Information Distance 1326 1102 2555 287
Jaccard 12347 544 119 166
Jaro 6144 1990 221 39
Jaro-Winkler 6315 2288 203 39

Levenshtein 97833 28069 2099 442
Monge-Elkan 442106 137657 21885 2174
Needleman-Wunsch 97820 15886 2131 427

Smith-Waterman 101092 31134 2431 579

Soft TFIDF 369720 143353 1342 291
TFIDF 20060 1006 221 110
HDLCP 3139 2201 495 136
HDTFJ 4771 2814 605 165
LACP 644 480 68 13

5.7.4 Precision-Recall Curves for Clustering Experiments

Figures F.1 through F.4 illustrate precision-recall curves for the thirteen evaluated

similarity functions on the medical informatics datasets for clustering tasks. Analysis

of the charts shows that most curves start at the top value of precision at the 0.0 recall

point and then drop to the lowest value. The better performing similarity metrics stay

at the higher values of precision longer and experience the precision decrease later,

compared to the worst performing metrics. The LACP method demonstrates the

distinctively superior curve trajectories in Figures F.1 and F.4. In Figures F.2 and F.3,

the TFIDF, Soft TFIDF, HDLCP, HDTFJ, and LACP curves lie close to one another,

indicating similar performances.

105

CHAPTER 6

SUMMARY

6.1 Discussion

Several new approximate string matching methods, designed in this research, were

evaluated for duplicate detection and clustering tasks on datasets from the life and

social sciences, bioinformatics, and medical informatics domains. These methods

were benchmarked against ten well-known and widely used string similarity metrics.

The MRFED and SPED methods developed in this research were evaluated on

the bioinformatics datasets. The initially developed MRFED method suffered from

moderate performance and long execution times. The SPED method was developed to

overcome these problems, improve results and decrease run times. The SPED

computational complexity is O(n2), which is the same as that of the MRFED method.

The performance evaluation experiments showed a decrease in execution time by a

constant factor. Also, the SPED method significantly improved the performance of

the MRFED method.

The SPED method was described in previously published work of the author.

An evaluation of the utility of a different SPED version, without the use of the re-

scorer, on the bioinformatics domain has been presented in previously published work

[123, 124]. The SPED method with the implementation of the Winkler-like re-scorer

has been applied to the medical informatics domain in the past [96]. In this thesis, the

SPED method with the re-scorer was applied to the bioinformatics domain for the first

time. It showed outstanding results in both duplicate detection and clustering

experiments. The SPED achieved the highest possible values of average precision and

maximum F1 measures on all datasets used in the evaluation.

106

The new HD method and its four modifications were proposed in Section 4.3.

These methods targeted the social and life sciences domain. This family of methods

outperformed ten well-known similarity methods used on four datasets in terms of

average precision and maximum F1. Excellent results were obtained on the remaining

data sources. These positive outcomes were reached for both, duplicate detection and

clustering tasks.

The LACP method is presented in this dissertation for the first time. It was

designed for duplicate detection and clustering tasks in the medical informatics

domain. Also, the HDLCP and HDTFJ methods were chosen for evaluation on

medical informatics datasets. The HDCLP and HDTFJ methods showed the best

average precision along with TFIDF and Soft TFIDF on the UMLS Longest Concepts

dataset. The HDTFJ method achieved the best values of maximum F1 on the UMLS

Longest Concepts dataset. These successful results were obtained for both duplicate

detection and clustering tasks.

The LACP metric outperformed the rest of the benchmarked methods in

average precision on two out of four datasets. It showed the best numbers of

maximum F1 on three out of four data sources. Also, the LACP method showed the

shortest computational time on all bioinformatics datasets.

6.2 Conclusions

This work demonstrates the effectiveness of several new string similarity metrics for

duplicate detection and clustering tasks in the social and life sciences, bioinformatics,

and medical informatics domains. These methods show superior, and in certain cases

outstanding results compared to ten well-known and widely used similarity functions.

107

Based on the experimental results obtained during this research, the author

concludes: SPED achieves the best results applied to the bioinformatics datasets,

LACP shows outstanding performance on the medical informatics datasets, and the

HD-based methods demonstrate superior results on the life and social sciences

datasets. The MRFED method, developed as the starting point of this research, does

not produce competitive results.

Described in detail, the motivation and research problems support the

importance of this research in the domains of social sciences, bioinformatics and

medical informatics. Extensive evaluations were performed, to validate the proposed

methods. In the majority of experiments, the new methods introduced by the author in

this work achieved the highest values of the measures used for performance

evaluation. Two outcomes deserve particular attention: (1) the SPED method gained

the highest possible values of average precision and maximum F1 on bioinformatics

datasets in all performed experiments; (2) the LACP method produced the best results

on three out of four medical informatics datasets in the shortest time with the lowest

computational complexity of O(n).

6.3 Future Work

The main direction of future work is to combine the string similarity metrics

developed by the author into one compound method. This new method should

produce an automated decision indicating which inner method is most appropriate for

a particular case. This decision could be based on the evaluation of a subset of a

dataset. Tan et al. [125] empirically show that a universal method with superior

performance in all domains does not exist. It was also shown that the performance of

metrics varies for datasets from different domains. Thus, a compound method as

108

described above would make a choice of which method to use, instead of using one

specialized method. Such a combined method would save labor and time of

terminology integrators.

Another direction for future work lies in the modification of the SPED

method. A new formula for histogram difference was introduced in Section 4.3. It is

possible to use this formula to calculate the node values in connection with the SPED

algorithm. Further evaluation of this technique is necessary to test the validity of this

proposed approach.

109

APPENDIX A

PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION

EXPERIMENTS ON LIFE AND SOCIAL SCIENCES DATASETS

This appendix provides precision-recall charts for the evaluation presented in the

Section 5.2.4.

Figure A.1 Precision-recall curves for the duplicate detection experiments on the
Animals dataset.

110

Figure A.2 Precision-recall curves for the duplicate detection experiments on the
Animals dataset.

111

Figure A.3 Precision-recall curves for the duplicate detection experiments on the
Birds dataset.

112

Figure A.4 Precision-recall curves for the duplicate detection experiments on the
Birds dataset.

113

Figure A.5 Precision-recall curves for the duplicate detection experiments on the
Census dataset.

114

Figure A.6 Precision-recall curves for the duplicate detection experiments on the
Census dataset.

115

Figure A.7 Precision-recall curves for the duplicate detection experiments on the
Parks dataset.

116

Figure A.8 Precision-recall curves for the duplicate detection experiments on the
Parks dataset.

117

Figure A.9 Precision-recall curves for the duplicate detection experiments on the
Restaurants dataset.

118

Figure A.10 Precision-recall curves for the duplicate detection experiments on the
Restaurants dataset.

119

APPENDIX B

PRECISION-RECALL CHARTS FOR THE CLUSTERING EXPERIMENTS

ON LIFE AND SOCIAL SCIENCES DATASETS

This appendix provides precision-recall charts for the evaluation presented in the

Section 5.3.4.

Figure B.1 Precision-recall curves for the clustering experiments on the Animals
dataset.

120

Figure B.2 Precision-recall curves for the clustering experiments on the Animals
dataset.

121

Figure B.3 Precision-recall curves for the clustering experiments on the Birds
dataset.

122

Figure B.4 Precision-recall curves for the clustering experiments on the Birds
dataset.

123

Figure B.5 Precision-recall curves for the clustering experiments on the Census
dataset.

124

Figure B.6 Precision-recall curves for the clustering experiments on the Census
dataset.

125

Figure B.7 Precision-recall curves for the clustering experiments on the Parks
dataset.

126

Figure B.8 Precision-recall curves for the clustering experiments on the Parks
dataset.

127

Figure B.9 Precision-recall curves for the clustering experiments on the Restaurants
dataset.

128

Figure B.10 Precision-recall curves for the clustering experiments on the Restaurants
dataset.

129

APPENDIX C

PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION

EXPERIMENTS ON BIOINFORMATICS DATASETS

This appendix provides precision-recall charts for the evaluation presented in the

Section 5.4.4.

130

Figure C.1 Precision-recall curves for duplicate detection experiments on the
Paramecium Tetraurelia dataset.

131

Figure C.2 Precision-recall curves for duplicate detection experiments on the
Bacteriophage T4 dataset.

132

Figure C.3 Precision-recall curves for duplicate detection experiments on the
Carsonella Ruddii dataset.

133

Figure C.4 Precision-recall curves for duplicate detection experiments on the
Hyperthermus Butylicus dataset.

134

Figure C.5 Precision-recall curves for duplicate detection experiments on the
Buchnera Aphidicola Cedri Cinara dataset.

135

APPENDIX D

PRECISION-RECALL CHARTS FOR CLUSTERING EXPERIMENTS ON

BIOINFORMATICS DATASETS

This appendix provides precision-recall charts for the evaluation presented in the

Section 5.5.4.

Figure D.1 Precision-recall curves for clustering experiments on the Paramecium
Tetraurelia dataset.

136

Figure D.2 Precision-recall curves for clustering experiments on the Bacteriophage
T4 dataset.

137

Figure D.3 Precision-recall curves for clustering experiments on the Carsonella
Ruddii dataset.

138

Figure D.4 Precision-recall curves for clustering experiments on the Hyperthermus
Butylicus dataset.

139

Figure D.5 Precision-recall curves for clustering experiments on the Buchnera
Aphidicola Cedri Cinara dataset.

140

APPENDIX E

PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION

EXPERIMENTS ON BIOMEDICAL DATASETS

This appendix provides precision-recall charts for the evaluation presented in the

Section 5.6.4.

141

Figure E.1 Precision-recall curves for duplicate detection experiments on the UMLS
Most Frequent Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDLCP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

142

Figure E.2 Precision-recall curves for duplicate detection experiments on the
SNOMED Most Frequent Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDLCP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

143

Figure E.3 Precision-recall curves for duplicate detection experiments on the UMLS
Longest Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

LACP

144

Figure E.4 Precision-recall curves for duplicate detection experiments on the
SNOMED Longest Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDLCP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

145

APPENDIX F

PRECISION-RECALL CHARTS FOR CLUSTERING EXPERIMENTS ON

BIOMEDICAL DATASETS

This appendix provides precision-recall charts for the evaluation presented in the

Section 5.7.4.

146

Figure F.1 Precision-recall curves for clustering experiments on the UMLS Most
Frequent Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Information Distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaccard

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro-Winkler

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Levenshtein

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Monge-Elkan

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Needleman-Wunsch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Smith-Waterman

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Soft TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDLCP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

LACP

147

Figure F.2 Precision-recall curves for clustering experiments on the SNOMED Most
Frequent Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Information Distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaccard

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro-Winkler

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Levenshtein

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Monge-Elkan

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Needleman-Wunsch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Smith-Waterman

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Soft TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDLCP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

LACP

148

Figure F.3 Precision-recall curves for clustering experiments on the UMLS Longest
Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Information Distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaccard

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro-Winkler

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Levenshtein

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Monge-Elkan

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Needleman-Wunsch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Smith-Waterman

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Soft TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDLCP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

LACP

149

Figure F.4 Precision-recall curves for clustering experiments on the SNOMED
Longest Concepts dataset.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Information Distance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaccard

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Jaro-Winkler

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Levenshtein

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Monge-Elkan

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Needleman-Wunsch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Smith-Waterman

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

Soft TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

TFIDF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDLCP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

HDTFJ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
i
s
i
o
n

Recall

LACP

150

REFERENCES

1. B. Boeckmann et al., "The SWISS-PROT protein knowledge base and its
supplement TrEMBL, Nucleic Acids Research, vol. 31, pp. 365-370, 2003.

2. D. Benson et al., "GenBank: update," Nucleic Acids Research, vol. 32, pp. 23-26,
2004.

3. H. Muller et al., "Data quality in genome databases," in Proc. Int. Conf. Inform.
Quality, Boston, MA, pp 269-284, 2003.

4. J. Koh et al., "Duplicate detection in biological data using association rule
mining," in Proc. ECML/PKDD Workshop Data Mining and Text Mining
for Bioinformatics, Pisa, Italy, pp. 35-41, 2004.

5. A. Elmagarmid et al., "Duplicate record detection: a survey," in IEEE Trans.
Knowl. Data Eng., vol. 19, pp. 1-16, 2007.

6. S. Ye et al., "A systematic study on parameter correlations in large scale duplicate
document detection," Knowledge and Inform. Syst., vol. 14, no. 2, pp. 217-
232, 2007.

7. H. P. Leung et al., "On the use of hierarchical information in sequential mining-
based XML document similarity computation," Knowl. and Inform. Syst.,
vol. 7, no. 4, pp. 476-498, 2005.

8. E. Ristad and P. Yianilos, "Learning string edit distance," in IEEE Trans. Pattern
Anal. Mach. Intell., vol. 20, pp.522-532, 2008.

9. J. Bauckmann, "Automatically integrating life science data sources," in Proc. of
PhD Workshop in Conjunction with VLDB 2007, Vienna, Austria, pp.
1448-1450, 2007.

10. D. Jiang et al., "Mining gene-sample-time microarray data: a coherent gene cluster
discovery approach," Knowl. and Inform. Syst., vol. 13, no. 3, pp. 305-335,
2007.

11. A. Hinneburg et al., "Duplicate detection of 2D-NMR Spectra," J. Integrative
Bioinformatics, vol. 4, no. 1, pp. 53-70, 2007.

12. H. B. Newcombe et al., "Automatic linkage of vital records," Science, vol. 130,
pp. 954-959, 1959.

13. P. Christen et al., "Febrl - A parallel open source data linkage system," in Proc.
PAKDD 2004, Sydney, Australia, pp. 638-647, 2004.

14. I. P. Fellegi and A. B. Sunter, "A theory for record linkage," J. Amer.Stat. Assoc.,
vol. 64, pp. 1183-1210, 1969.

15. P. Singla and P. Domingos, "Entity resolution with Markov logic," in Proc. Sixth
Intern. Conf. on Data Mining, pp. 572-582, 2006.

16. Y. Tsuruoka et al., "Learning string similarity measures for gene/protein name
dictionary look-up using logistic regression," Bioinformatics, vol. 23, no.
20, pp. 2768-2774, 2007.

17. A. E. Monge and C. P. Elkan, "The field matching problem: algorithm and
applications," in Proc. of ACM SIGKDD, Portland, pp. 267-270, 1996.

151

18. K. Herbert, N. Gehani, W. Piel, J. Wang, C. Wu, "BIO-AJAX: An extensible
framework for biological data cleaning," ACM SIGMOD, pp. 51-57, 2004.

19. V. Jakoniene and P. Lambrix, "A tool for evaluating strategies for grouping of
biological data," J. of Integrative Bioinformatics, vol. 4, no. 3, pp. 83-95,
2007.

20. V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and
reversals," Sov. Phys Dokl., vol. 10, pp. 707-710, 1966.

21. R. Wagner and M. Fischer, "The string to string correction problem," J. Assoc.
Comput. Mach., vol. 21, no. 1, pp.168-173, 1974.

22. S. B. Needleman and C. D. Wunsch, "A general method applicable to the search
for similarities in the amino acid sequence of two proteins," J. Mol. Biol.,
vol. 48, pp. 443-453, 1970.

23. T. F. Smith and M. S. Waterman, "Identification of common molecular
subsequences," J. Mol. Biol., vol. 147, pp. 195-197, 1981.

24. E. Ukkonen, "Algorithms for approximate string matching," Inf. Contr., vol. 64,
pp. 100-118, 1985.

25. A. Marzal and E. Vidal, "Computation of normalized edit distance and
applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 9, pp.
926-932, 1993.

26. M. A. Jaro, "Advances in record-linkage methodology as applied to matching the
1985 Census of Tampa, Florida," J. Amer. Stat. Assoc., vol. 89, pp. 414-
420, 1989.

27. W. E. Winkler "String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage," in Proc. of the Section on Survey
Research Methods Amer. Stat. Assoc., pp. 354–359, 1990.

28. W. W. Cohen et al., "A comparison of string distance metrics for name-matching
tasks," in IIWeb 2003, pp. 73-78, 2003.

29. M. Bilenko et al., "Adaptive name matching in information integration," IEEE
Intell. Syst., vol. 18, pp. 16-23, 2003.

30. R. Lowrance and R. Wagner, "An extension to string-to-string correction
Problem," J. of ACM, vol. 23, no. 2, pp. 177-183, 1975.

31. G. Seni et al., "Generalizing edit distance to incorporate domain information:
handwritten text recognition as a case study," Pattern Recognition, vol. 29,
no. 3, pp. 405-414, 1996.

32. R. Kindermann and JL Snell, Markov random fields and their applications.
Amer. Math. Soc., 1980.

33. F. J. Damerau, "A technique for computer detection and correction of spelling
errors," Inform. Retrieval, vol. 7, no. 3, pp. 171-176, 1964.

34. W. E. Winkler , "String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage," in Proc. Section Survey Research
Methods Amer. Stat. Assn., pp. 354-359, 1990.

35. C. D. Budzinsky, "Automated spelling correction," Stat. Canada Tech. Rep.,
Ottawa, Canada, 1991.

152

36. P. Jaccard, "The distribution of the flora in the alpine zone," New Phytologist,
Vol. 11(2), pp.37-50, 1912.

37. R. Durbin et al., "Biological sequence analysis: probabilistic models of proteins
and nucleic acids," Cambridge University Press, 1998.

38. T. F. Smith and M.S. Waterman, "Identification of common molecular
subsequences," J. Mol. Biol., vol. 147, pp. 195-197, 1981.

39. O. Gotoh, "An improved algorithm for matching biological sequences," J. Mol.
Biol., vol. 162, pp. 705-708, 1982.

40. A.E. Monge and C.P. Elkan, "The field matching problem: algorithms and
applications," in Proc. Second Int. Conf. on Knowl. Discovery and Data
Mining, 1996.

41. J. K. Spärck, "A statistical interpretation of term specificity and its application in
retrieval," J. of Documentation, vol. 28, no. 1, pp. 11–21, 1972.

42. G. Salton and C. Buckley, "Term Weighting Approaches in Automatic Text
Retrieval," Inf. Process. Manage., vol. 24, no. 5, pp. 513-523, 1988.

43. M. Holi, "Integrating TF-IDF weighting with fuzzy view-based search," in Proc.
ECAI Workshop Text-Based Inf. Retrieval, 2006.

44. M. Eck et al., "Language model adaptation for statistical machine translation
based on information retrieval," in Proc. of LREC, 2004.

45. W. Cohen, "Data integration using similarity joins and a word-based information
representation language," in ACM Trans. Inf. Syst., vol. 18, no. 3, pp. 288-
321, 2000.

46. S. Tejada et al., "Learning domain-independent string transformation weights for
high accuracy object identification," in Proc. 8th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, pp. 350–359, 2002.

47. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. ACM Press,
New York, 1999.

48. C. Manning et al., Introduction to Information Retrieval. Cambridge University
Press, 2008.

49. M. Song and A. Rudniy, "Detecting duplicate biological entities using Markov
Random Field-Based Edit Distance," in Proc. IEEE Int. Conf.
Bioinformatics Biomedicine, pp. 457-460, 2008.

50. A. Rudniy et al., "Detecting duplicate biological entities using Markov Random
Field-based Edit Distance," Knowl. Inf. Syst., vol. 25, no. 2, pp. 371-387,
2010.

51. J. Wei, "Markov Edit Distance," in IEEE Trans. Pattern Anal. Mach. Intell., vol.
26, no. 3, pp. 311-321, 2004.

52. S. Z. Li, Markov Random Field Modeling in Computer Vision. London, UK:
Springer-Verlag, 1995.

53. S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution and the
Bayesian restoration of images," in IEEE Trans. Pattern Anal. and Mach.
Intell., vol. 6, no. 6, pp. 721-741, 1984.

153

54. G. Zheng and X. Zhang, "A unifying MAP-MRF framework for deriving new
point similarity measures for intensity-based 2D-3D registration," ICPR,
vol. 2, pp. 1181-1185, 2006.

55. F. Garcia-Ugalde et al., "Segmentation of moving human body parts by a
modified MAP-MRF algorithm," in Proc. of Int. Conf. Virtual Syst.
Multimedia, 1997.

56. S. Sahay et al., "Semantic annotation and inference for medical knowledge
discovery," NSF Symp. Next Generation Data Mining, Baltimore, MD,
2007.

57. E. B. Camon et al., "An evaluation of GO annotation retrieval for BioCreATivE
and GOA," BMC Bioinformatics, vol. 6, pp. 15-17, 2005.

58. GOA (2008, October 12) Gene Ontology Annotation – Proteomes [online].
Available: http://www.ebi.ac.uk/GOA/ proteomes.html

59. M. Sniedovich, Dynamic Programming. New York, NY: Marcel Dekker, 1992.

60. E. W. Dijkstra, "A note on two problems in connection with graphs," Numer.
Math., vol. 1, pp. 269–271, 1959.

61. R. W. Floyd, "Algorithm 97: Shortest path," CACM, vol. 5, p. 345, 1962.

62. R. Bellman, "On a Routing Problem," Quarterly of Appl. Math., vol. 16, no. 1, pp.
87-90, 1958.

63. J. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton
University Press, 1962.

64. D. E. Denardo, Dynamic Programming Models and Applications. New York, NY:
Dover, 2003.

65. G. Navarro, "A guided tour to approximate string matching," ACM Comp. Surv.,
vol. 33, no. 1, pp. 31–88, 2001.

66. P. Sellers, "On the theory and computation of evolutionary distances," SIAM J.
Appl. Math., vol. 26, pp. 787–793, 1974.

67. J. C. Herbordt et al., "Field-programmable custom computing machines," in Proc.
FCCM 14th Annu. IEEE Symp., pp. 217-226, 2006.

68. S. Michal et al., "Finding a common motif of RNA sequences using genetic
programming: The Gernamo System," in IEEE/ACM Trans.Computational
Biology and Bioinformatics, vol. 4, no. 4, pp. 596-610, 2007.

69. T. K. Yap, "Parallel computation in biological sequence analysis," in IEEE Trans.
Parallel Distrib. Syst., vol. 9, no. 3, pp. 283-294, 1998.

70. J. Baker, "Developments and directions in speech recognition and
understanding," IEEE Signal Process. Mag., vol. 26, pp.75-80, 2009.

71. M. Ohta et al., "Retrieval methods for English-text with misrecognized OCR
characters," in Proc. 4th Int. Conf. Document Anal. Recognition, pp. 950-
956, 1997.

72. A. Takasu, "Document filtering for fast approximate string matching of erroneous
text," in Proc. of 6th Int. Conf. Document Anal. Recognition, pp. 916-920,
2001.

154

73. G. Neve and Orio N, "Comparison of melodic segmentation techniques for music
information retrieval," in Proc. ECDL 2005, pp. 49–56, 2005.

74. P. Y. Rolland and J.G. Ganascia, "Pattern detection and discovery: the case of
music data mining," in Proc. ESF Exploratory Workshop Pattern Detection
Discovery, pp. 190-198, 2002.

75. R. J. McNab et al., "Towards the digital music library: tune retrieval from acoustic
input," in Proc. ACM Digital Libraries, p. 11-18, 1996.

76. M. Mongeau and D. Sankoff, "Comparison of musical sequences," Comput.
Humanities, vol. 24, pp. 161-175, 1990.

77. G. Tremblay and F. Champagne, "Marking musical dictations using the edit
distance algorithm," Softw. Pract. Exper., vol. 37, pp. 207-230, 2007.

78. E. A. Sauleau et al., "Medical record linkage in health information systems by
approximate string matching and clustering," BMC Medical Informatics
and Decision Making, vol. 5, no. 32, 2005.

79. K. C. Huang et al., "Piecewise Synonyms for Enhanced UMLS Source
Terminology Integration," in Proc. AMIA Annu. Symp., pp. 339-343, 2007.

80. J. F. Wang, "Assessment of approximate string matching in a biomedical text
retrieval problem," Comput.Biology Medicine, vol. 35, no. 8, pp. 717-724,
2005.

81. D. Sankoff and J. Kruskal, Time warps, string edits, and macromolecules. The
theory and practice of sequence comparison. Reading, Mass.: Addison-
Wesley, 1999.

82. W. Winkler, "Overview of record linkage and current research directions,"
Technical Report RRS2006/02, US Bureau of the Census, 2006.

83. M.-F. Moens, Information Extraction: Algorithms and Prospects in a Retrieval
Context. The Netherlands: Springer, 2006.

84. S. Clemencon and N. Vayatis, "Nonparametric estimation of the precision-recall
curve," in Proc. of 26th Int. Conf. on Mach. Learning, Montreal, Canada,
2009.

85. C. W. Therrien "Linear filtering models for texture classification and
segmentation," in Proc. 18th IEEE Conf. Decision Control, pp. 110-117,
1979.

86. C. W. Therrien, "An estimation-theoretic approach to terrain image
segmentation," Comput. Vision, Graphics Image Process., vol. 22, pp. 313-
326, 1983.

87. H. Elliott et al., "Application of Gibbs distributions to image segmentation," Tech.
Rep. # UMASS-ECE-AU83-2, Univ. of Massachusetts, Amherst, MA, pp.
1-30, 1983.

88. R. R. Hansen and H. Elliot, "Image segmentation using simple Markov random
field models," Comp. Gr. Im. Proc., vol. 20, pp. 101-132, 1982.

155

89. E. H. Porter and W.E. Winkler, "Approximate String Comparison and its Effect in
an Advanced Record Linkage System," in Record Linkage Techniques,
Alvey and Jamerson, Ed. Nat. Research Council, Nat. Academy Press:
Washington, D.C., pp. 190-199, 1997.

90. L. Jin et al., "Efficient Record Linkage in Large Data Sets," in Proc. IEEE 8th Int.
Conf. Database Syst. Advanced Applicat., vol. 137, 2003.

91. G. Barish et al., "Theaterloc: A case study in information integration," IJCAI
Workshop Intell. Inf. Integration, Stockholm, Sweden, 1999.

92. K. C. Huang et al., "Auditing SNOMED Integration into the UMLS for Duplicate
Concepts," in Proc. AMIA Annu. Symp., pp. 321–325, 2010.

93. UMLS 2011AA Release Available (2011, May 05). NLM Technical Bulletin
[online]. Available: http://www.nlm.nih.gov/pubs/techbull/mj11/
mj11_umls_2011aa_release.html

94. A. R. Aronson, "Effective Mapping of Biomedical Text to the UMLS
Metathesaurus: the MetaMap Program," in Proc. AMIA Symp., pp. 17-21,
2001.

95. Specialist Lexicon and Lexical Tools (2010, February 1) [Online]. Available:
http:// www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=nlmumls&part=ch06

96. A. Rudniy et al., "Shortest Path Edit Distance for Enhancing UMLS Integration
and Audit," in Proc of AMIA, pp. 697-701, 2010.

97. R.P. Kelley, "Advances in record linkage methodology: a method for determining
the best blocking strategy," in Proc.Workshop Exact Matching
Methodologies, pp. 199-203, 1985.

98. M. Y. Bilenko, "Learnable Similarity Functions and Their Application to Record
Linkage and Clustering," Ph.D. dissertation, Univ. of Texas, Austin, TX,
2006.

99. P. A. V. Hall and G.R. Dowling, "Approximate String Matching," ACM Comput.
Surveys, vol. 12, no. 4, pp. 381-402, 1980.

100. N. O. Andrews and E.A. Fox, "Recent Developments in Document
Clustering," Tech. Rep. TR-07-35, Computer Science, Virginia Tech, 2007.

101. Y. Zhao and G. Karypis, "Empirical and Theoretical Comparisons of
Selected Criterion Functions for Document Clustering," Mach. Learning,
vol. 55, pp. 311–331, 2004.

102. J. Han et al., "Spatial clustering methods in data mining: A survey," in
Geographic data mining and knowledge discovery, H. Miller and J. Han,
Ed. New York, NY: Taylor and Francis, 2001.

103. A. K. Jain et al., "Data clustering: A review," ACM Comput. Surveys, vol.
31, no. 3, pp. 264–323, 1999.

104. Y. W. Seo and K. Sycara, "Text clustering for topic detection," Robotics
Institute, Carnegie Mellon University, Tech. Rep., January 2004.

105. A. Hotho et al., "Explaining text clustering results using semantic
structures," in Principles Data Mining and Knowl. Discovery 7th European
Conf., Dubrovnik, Croatia, 2003.

156

106. I. S. Dhillon and D. S. Modha, "Concept decompositions for large sparse
text data using clustering," Mach. Learning, vol. 42, no. 1, pp. 143-175,
January 2001.

107. U. M. Fayyad, "Data mining and knowledge discovery: Making sense out
of data," IEEE Expert, vol. 11, pp. 20–25, October 1996.

108. O. Etzioni, "The World-Wide Web: quagmire or gold mine," Commun.
ACM, vol. 39, no. 11, pp. 65–68, 1996.

109. L. Rigouste et al., "Evaluation of a probabilistic method for unsupervised
text clustering," in Int. Symp. Applied Stochastic Models Data Analysis,
2005.

110. D. Hoon et al., "Open source clustering software," Bioinformatics, vol. 20,
pp. 1453-1454, 2004.

111. C. Carpineto et al., "A survey of Web clustering engines," ACM Comput.
Surv., vol. 41, no. 3, pp. 1-38, 2009.

112. H. Cho and I. Dhillon, "Co-clustering of human cancer microarrays using
minimum sum-squared residue co-clustering," in IEEE/ACM Trans. on
Comp. Bio. and Bioinfo., vol. 5, 385–400, 2008.

113. S. Dharmendra et al., "Clustering hypertext with applications to Web
searching," in Proc. ACM Hypertext Conf., San Antonio, TX, May-June
2000.

114. K. M. Hammouda and M.S. Kamel, "Efficient Phrase-Based Document
Indexing for Web Document Clustering," in IEEE Trans. Knowledge and
Data Eng., vol. 16, no. 10, pp. 1279-1296, Oct. 2004.

115. M. Lexa et al., "Data-mining protein structure by clustering, segmentation
and evolutionary algorithms," in Data Mining: Theoretical Found.
Applicat., Germany : Springer Verlag, 2009, pp. 221-248.

116. H. Chim and X. Deng, "Efficient Phrase-based Document Similarity for
Clustering," in IEEE Trans. Knowl. Data Eng., vol. 20, pp. 1217-1229,
2008.

117. R. M. Cormack, "A review of classification," J. Royal Stat. Soc., vol. 134,
pp. 321-353, 1971.

118. G. Salton, Automatic Information Organization and Retrieval. New York:
McGraw-Hill, 1968.

119. B. Larsen and C. Aone, "Fast and effective text mining using linear-time
document clustering," 5th SIGKDD, pp. 16-22, 1999.

120. M. Sasaki and S. Hiroyuki, "Spam Detection Using Text Clustering," in
Proc. Int. Conf. Cyberworlds, pp. 316-319, November 2005.

121. X. Zhang et al., "Information distance from a question to an answer," in
Proc. Conf. Knowl. Discovery and Data Mining, August 2007.

122. P. M. B. Vitanyi et al., "Normalized Information Distance in Information
Theory and Statistical Learning," F. Emmert-Streib, M. Dehmer, Eds.
Springer, 2008.

157

123. A. Rudniy et al., "Shortest Path Edit Distance for Detecting Duplicate
Biological Entities," in Proc. ACM Int. Conf. Bioinformatics Comput.
Biology, Niagara Falls, NY, pp. 442-444, 2010.

124. A. Rudniy et al., "Detecting duplicate biological entities using Shortest
Path Edit Distance," Int. J. Data Mining Bioinformatics, vol. 4, no. 4, pp.
395-410, 2010.

125. P. T. Tan et al., "Selecting the Right Interestingness Measure for
Association Patterns," SIGKDD’02, Alberta, Canada, pp. 32-41, 2002.

126. SNOMED CT Spell Checker, http://snomedct-spell-checker.com.

	Approximate string matching methods for duplicate detection and clustering tasks
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Table of Contents (1 of 6)
	Table of Contents (2 of 6)
	Table of Contents (3 of 6)
	Table of Contents (4 of 6)
	Table of Contents (5 of 6)
	Table of Contents (6 of 6)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Research Methodology
	Chapter 4: Similarity Functions for Duplicate Detection and Clustering Tasks
	Chapter 5: Evaluations
	Chapter 6: Summary
	Appendix A: Precision-Recall Charts for Duplicate Detection Experiments on Life and Social Sciences Datasets
	Appendix B: Precision-Recall Charts for the Clustering Experiments on Life and Social Sciences Datasets
	Appendix C: Precision-Recall Charts for Duplicate Detection Experiments on Bioinformatics Datasets
	Appendix D: Precision-Recall Charts for Clustering Experiments on Bioinformatics Datasets
	Appendix E: Precision-Recall Charts for Duplicate Detection Experiments on Biomedical Datasets
	Appendix F: Precision-Recall Charts for Clustering Experiments on Biomedical Datasets
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

