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ABSTRACT   

APPROXIMATE STRING MATCHING METHODS 

FOR DUPLICATE DETECTION AND CLUSTERING TASKS 

by  

Oleksandr Rudniy 

 

Approximate string matching methods are utilized by a vast number of duplicate 

detection and clustering applications in various knowledge domains. The application area 

is expected to grow due to the recent significant increase in the amount of digital data and 

knowledge sources. Despite the large number of existing string similarity metrics, there is 

a need for more precise approximate string matching methods to improve the efficiency 

of computer-driven data processing, thus decreasing labor-intensive human involvement.  

This work introduces a family of novel string similarity methods, which 

outperform a number of effective well-known and widely used string similarity functions. 

The new algorithms are designed to overcome the most common problem of the existing 

methods which is the lack of context sensitivity.  

In this evaluation, the Longest Approximately Common Prefix (LACP) method 

achieved the highest values of average precision and maximum F1 on three out of four 

medical informatics datasets used. The LACP demonstrated the lowest execution time 

ensured by the linear computational complexity within the set of evaluated algorithms. 

An online interactive spell checker of biomedical terms was developed based on the 

LACP method. The main goal of the spell checker was to evaluate the LACP method’s 

ability to make it possible to estimate the similarity of resulting sets at a glance. 

The Shortest Path Edit Distance (SPED) outperformed all evaluated similarity 

functions and gained the highest possible values of the average precision and maximum 



F1 measures on the bioinformatics datasets. The SPED design was inspired by the 

preceding work on the Markov Random Field Edit Distance (MRFED). The SPED 

eradicates two shortcomings of the MRFED, which are prolonged execution time and 

moderate performance. 

Four modifications of the Histogram Difference (HD) method demonstrated the 

best performance on the majority of the life and social sciences data sources used in the 

experiments. The modifications of the HD algorithm were achieved using several re-

scorers: HD with Normalized Smith-Waterman Re-scorer, HD with TFIDF and Jaccard 

re-scorers, HD with the Longest Common Prefix and TFIDF re-scorers, and HD with the 

Unweighted Longest Common Prefix Re-scorer. 

Another contribution of this dissertation includes the extensive analysis of the 

string similarity methods evaluation for duplicate detection and clustering tasks on the 

life and social sciences, bioinformatics, and medical informatics domains. The 

experimental results are illustrated with precision-recall charts and a number of tables 

presenting the average precision, maximum F1, and execution time.  
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CHAPTER 1    

INTRODUCTION 

1.1 Motivation   

The Approximate String Matching (ASM) problem emerged in the 1960s and evolved 

in the subsequent decades in a number of different fields. Research efforts in this area 

were motivated by problems of bioinformatics, signal processing, and text retrieval 

[65]. Today, research continues in the above-mentioned domains, although the ASM 

application area has been extended into new fields such as medical informatics, 

human speech research, and others. Thus, development of new, more effective 

methods for approximate string matching remains an important research task. 

1.1.1 Bioinformatics Applications 

Exact string matching is of little use for bioinformatics, since exact pattern matches 

are very rare [65]. Thus ASM is essential to many applications in this field. ASM 

methods are used to find common motifs or similarities in DNA, RNA, or protein 

sequences, where differences are caused by mutations or evolutionary alterations [67]. 

Common motifs among RNA chains can provide information on RNA functionality 

and help to classify RNA families [68]. A crucial sub-problem of reconstruction of 

phylogenetic trees is solved by applying ASM methods to find genetic sequence 

alignment. Recent applications of ASM are in solving problems of structure matching 

and in discovering unknown patterns in bioinformatics [65]. 

The bioinformatics field has experienced tremendous growth, which 

subsequently established a massive volume of data available from multiple 

specialized databases. These sources contain diverse information including annotated 

biological sequences, three-dimensional molecular structures, and genetic and 
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physical maps [69]. Various ASM methods are used by scientists to solve current 

research tasks such as retrieving sequences from existing databases that are 

homologous to newly discovered ones, and establishing multiple sequence alignment 

to discover similarity patterns to predict the function, structure, and evolutionary 

history of biological sequences [69].  

1.1.2 Medical Informatics Applications 

Significant expansion of medical data sources within heterogeneous healthcare 

information systems has resulted in a redundant and sometimes inaccurate 

information split among multiple databases. This phenomenon has caused a problem 

of record linkage and duplicate detection in medical databases. Research tasks include 

patient record aggregation from multiple databases based on a minimum profile (i.e., 

a set of features such as last name, first name, gender and date of birth) [78] and term 

matching for source integration, auditing, and biomedical data mining applications. 

The latter task is considered in the context of the Unified Medical Language System 

(UMLS), a well-known, long-term research project [79]. ASM methods are used for 

adding to, updating, or auditing UMLS vocabularies. ASM methodologies are also 

important for facilitating biomedical information extraction, fact finding, relationship 

search, and concept discovery [80]. 

1.1.3 Human Speech Applications 

A very active area for sequence comparison methods is speech research [81]. Speech 

recognition is one of the well-known application domains of ASM techniques. The 

seminal task has been to transform spoken information into textual data. Recent 

research directions in the speech recognition field are the transcription of speech data 

from novel data sources such as multimedia Web repositories, spoken language 
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comprehension research on children less than ten years of age, delivery of accurate 

speech transcripts automatically retrieved under diverse circumstances, cross-lingual 

language modeling, self-adaptive language machine learning, and others [70]. 

1.1.4 Signal Processing Applications 

Information coded by strings of symbols is often transferred over noisy channels such 

as radio, telegraph, microwave transmission, etc. [81]. The noise adds errors into the 

received signal, thus introducing a problem of detection and correction of errors. 

The classical Levenshtein edit distance appeared as a result of research work 

aiming at solving the problem of correction of errors introduced into data transmitted 

over physical channels [20]. The Levenshtein distance function and its modifications 

play a major role in sequence comparison [81]. Signal processing theory is used to 

estimate such errors. The goal of the field is to recover as much of the original 

transmission data as possible [65]. 

1.1.5 Text Retrieval Applications 

Optical Character Recognition (OCR) is the most widely applied technology for 

utilization of retrospective documents [72]. OCR allows conversion of printed 

documents into electronic form for subsequent database storage and indexing. 

Inevitably, during OCR processing, a number of errors are introduced into the original 

text. This leads to search failures for finding exact matches by a search query [71]. 

ASM is one of the key tools for handling OCR errors [72]. Post-editing and text 

processing to correct errors can be made less labor intensive and more efficient by 

using ASM. 

Another ASM application in the text retrieval domain is record linkage. The 

record linkage process involves finding information that refers to the same entity 
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when no unique identifier is available. A unique identifier may be absent because it 

was impossible to collect, because of confidentiality procedures, or because of 

introduced data errors. This research area refers to the problem of duplicate detection 

in a single source or linking records among multiple sources. Examples of datasets for 

this task are census data and business or personal listings, where the same entity may 

be listed in multiple categories or where the same entity’s record fields are coded 

differently in multiple sources [82]. Other popular ASM applications are spell 

checkers, natural-language interfaces, computer-aided tutoring programs, language-

learning software, spoken text retrieval, handwritten text recognition, and others [65, 

72]. 

1.1.6 Musical Data Mining Applications 

Content-based music access and retrieval is still in its early stages of development 

[73]. Musical pattern extraction is used in music generation, retrieval and analysis 

[74]. Unfortunately, exact string matching is of little use in music retrieval. ASM 

methodologies are applied to music notations consisting of note sequences with 

associated pitch and rhythm to solve the following tasks: match complete melodies, 

locate a fragment in a melody database, and retrieve melodies from musical databases 

[75, 76]. Other applications of string distance methods in musical data mining are 

identification of musical pieces, copyright infringement detection, musicological 

analysis, and singing tutorship. 

1.1.7 Bird Vocalization Applications 

Research on bird songs experienced dramatic growth in recent years. It is important 

because songs are the main means of communication among birds. For some species, 

bird songs are inherited from generation to generation and have dialect-like variations 
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depending on geographical location [81]. These features are rare among non-primates 

and are similar to human language, which makes it an important research topic. Since 

bird songs are coded as sequences of string characters, ASM methods are applied to 

compute distances between them. 

1.1.8 Document Clustering Applications 

String similarity functions are widely used in document clustering applications [99].  

Clustering refers to the problem of dividing documents or records into joint or disjoint 

sets possessing similar characteristics [98]. The entities assigned to the same cluster 

are similar to each other according to a certain criterion while the documents assigned 

to different clusters are dissimilar. String similarity metrics may be used as criteria 

functions in the clustering task [101]. Clustering is different from the classification 

problem since the number of clusters, their properties, and their composition are not 

known in advance [100].  

Cluster analysis is a technique that allows the identification of groups, or 

clusters, of similar objects in multi-dimensional space [117]. It was initially 

introduced in the field of information retrieval for improving the efficiency of the 

serial search task [118]. It has become increasingly common to apply clustering to 

large databases due to growing volumes of collected data of all sorts [102, 103]. 

Document clustering has applications in a number of fields.  

Within the field of data mining, clustering methods are used in database 

segmentation, in predictive modeling, and in the visualization of large datasets [103]. 

Also, clustering is often used as a pre-processing step inside of a larger data mining 

application [107]. Multi-document summarization through the discovery of topic 

hierarchies and the grouping of duplicate or nearly-duplicate documents are among 

other clustering applications in data mining [119]. 
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The number of electronic documents published on the Internet and on 

corporate networks has experienced tremendous growth in recent years [104, 105]. 

The World Wide Web is often characterized as a large unstructured database, which is 

subject to a number of document clustering applications [108, 109]. In addition, 

colossal amounts of textual information are stored within archives of scientific and 

technical publishing houses and of media companies. These areas are of great 

practical interest for clustering applications [106]. Clustering provides a way to 

organize a large collection of unstructured, unlabeled hypertext documents into 

labeled categories that can be discriminated and disambiguated from one other [113].  

Clustering Web search engines have recently gained popularity. These 

applications group the returned search results into a hierarchy of labeled clusters. This 

improves on typical engines that apply clustering methods to results after they are 

returned by a well-known meta search engine [111]. To summarize, document 

clustering in the World Wide Web domain consists of the following tasks: clustering 

retrieved documents for better presentation, clustering documents in digital libraries, 

developing automated document taxonomies, and retrieving cluster-oriented 

information more efficiently [114]. A more recent Web-related clustering application 

to emerge is unwanted email (spam) detection [120]. 

Medical informatics and bioinformatics widely employ clustering methods for 

data mining tasks. It is possible to find functionally related genes and proteins and 

classify them by previously unknown roles after grouping the genetic data into 

clusters [110]. Clustering is efficiently applied in micro array analysis to identify 

potential local patterns within genes and to help discover macroscopic phenotypes of 

related samples or previously undetectable biological cellular processes of genes 
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[112]. Clustering and segmentation techniques are used to split DNA and protein 

sequences into modules that can be assigned specific molecular functions [115]. 

ASM methods are extensively used to assign term weights in clustering 

applications. Clustering methods incorporate similarity metrics such as TFIDF, cosine 

similarity, Jaccard function, Levenshtein, Needleman-Wunsch distance, and others 

[115, 116]. Since the uses of these metrics are constantly growing, there is increased 

demand for improvement of existing ASM metrics used for clustering tasks.   

1.2 Organization of the Dissertation 

Chapter 1, Introduction, presents the motivation behind this research and analyzes 

past and current ASM applications in various domains. Chapter 2, Background, 

reviews related work in the field of ASM, defines the research problems, presents the 

theory relevant to these problems, and states the formulas of well-known string 

similarity metrics. Chapter 3, Data Sources, describes in detail the data sources 

selected for the evaluation. Chapter 3 concludes with the presentation of the standard 

methods used in information retrieval for string similarity function evaluation.  

Chapter 4, Similarity Functions for Duplicate Detection and Clustering Tasks, 

introduces the string similarity algorithms developed by the author and provides 

detailed specifications.  Chapter 5, Evaluation, begins with the description of an 

experimental test bed, the open-source Java toolkit known as Second String [28]. The 

chapter includes a detailed discussion of the methodology used to build the 

experiments. Chapter 5 continues with a thorough presentation of the results obtained 

during the numerous performed experiments, accompanied by supporting charts and 

tables. Chapter 6, Summary, concludes the thesis with a discussion of the 

accomplished work, conclusions, and directions for future work. 
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The work presented in Section 4 was published before or submitted for 

publication. The work related to the Markov Random Field Edit Distance (MRFED) 

method described in Section 4.1 was published in [49, 50]. The research in Section 

4.2 concentrating on the SPED method was published in [96, 123, 124]. The material 

in Section 4.3 and Section 4.4 was submitted for publication. 
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CHAPTER 2    

BACKGROUND 

2.1 Summary 

String distance metrics constitute the central part of approximate string matching 

methodologies. Decades of research efforts in this field have produced a vast number 

of algorithms applied to many scientific problems. Nevertheless, due to the dramatic 

growth of electronic knowledge sources there is a need for more efficient algorithms 

capable of solving newly arising problems.  

This work introduces a family of novel string similarity methods, which 

outperform a number of effective well-known and widely used string similarity 

functions. The new algorithms are designed to overcome a common problem of the 

existing methods, namely, the lack of context sensitivity. 

2.2 Review of the Related Work 

The task of approximate string matching in its most general form is to measure 

similarity or dissimilarity between two strings. Several modifications of non-exact 

string matching methods that allow errors exist in bioinformatics, medical 

informatics, data mining, signal processing, text retrieval, optical character 

recognition, file comparison, image compression, handwriting recognition, virus and 

intrusion detection, and in many other fields. Depending on the knowledge domain, 

these methods may have different final goals, e.g., to link records from separate 

datasets or to find a misspelled word in a text. Nevertheless, all of these tasks can be 

accomplished using string distance functions, which are called edit distances, distance 

metrics, string comparators, or string similarity metrics. 
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Research on ASM began in the 1960s, and it continues up to the present. The 

classic case of the edit distance was introduced by Levenshtein in 1966 [20]. This 

algorithm remains popular today due to its extension by Wagner and Fischer [21]. The 

latter work allowed a string to be composed of any finite alphabet rather than the 

binary one used in Levenshtein's approach [20]. The binary reverse operation was 

converted to the substitution of a character by another character; variable weight 

assignment was allowed for individual edit operations; and a dynamic programming 

algorithm was provided to calculate the distance between two strings.  

Since that extension, numerous research efforts have been made to improve 

existing string similarity techniques, to adapt the algorithms to new fields of 

application, or to introduce a completely new approach for the same task. Fellegi and 

Sunter [14] extended their theory of record linkage by presenting a formal model. Its 

core idea is to use the relative frequencies of strings being compared, e.g., a rare word 

found in pairs of records taken from two files gains more weight than a word that is 

used frequently. Many later applications of frequency-based string matching used 

Fellegi and Sunter's work with additional adjustments. 

A dynamic programming algorithm introduced by Needleman and Wunsch 

[22] is considered to be the first technique that could find the global alignment 

between two amino acid sequences. Eleven years later, another famous project 

conducted by Smith and Waterman [23] targeted the local alignment problem, which 

emerged as the result of the growth in molecular data research. Their paper proposed 

a different method of assigning similarity scores in order to find the optimum local 

alignment of sub-sequences at the expense of the global score. The worst-case 

complexity of this method is of the order of the string lengths product. A more 

efficient solution was introduced by Ukkonen in 1985 [24] with the complexity 
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proportional to the product of the longer string relative to the edit distance value for 

these strings.  

In 1993, Marzal and Vidal [25] demonstrated that the normalized edit distance 

significantly improved the Levenshtein Distance. Marzal and Vidal stressed that in 

order to get better results, the normalization should be performed within a dynamic 

programming algorithm. Marzal and Vidal stressed that the post-normalization of a 

distance metric produces worse results compared to their method. The post-

normalization consists of two steps: first, a not-normalized distance between two 

strings is computed, and then it is divided by the length of its edit path.  

Superior results were obtained in the record-linkage domain by applying 

variants of the Jaro metric [26], which is based on the number and order of the 

common characters in two strings. Winkler was able to further improve this algorithm 

by introducing a re-scorer, which adjusts the final value of the function depending on 

the length of the longest common prefix [27].   

Cohen et al. [28] designed the Soft TFIDF technique, which extended the 

TFIDF method by adding similar tokens in addition to equal tokens. The experiments 

described in their paper showed promising results for matching datasets.  

A supervised learning method based on data training was shown to outperform 

several selected metrics by Bilenko et al. [29]. Bilenko et al. also experimented with 

hybrid methods by combining several distance metrics.  

The problem of identifying duplicate records in databases was originally 

identified by Newcombe [12] as record linkage. Newcombe’s study [12] associated a 

birth record with a marriage record from different databases when information in both 

cases pointed to the same couple. Positive weights were associated with matching 
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fields such as name, place of birth, and age. Mostly, the total record weight was 

sufficient to decide whether a pair was a match or a non-match. 

 In bioinformatics, data cleaning and integration are relatively young problems. 

Recently, they have received more attention in the areas of effective discovery and 

management of biological entities. The Freely Extensible Biomedical Record Linkage 

(Febrl) system is the first major duplicate detection system in biological databases 

[13]. Febrl employs probabilistic data cleaning and standardizing based on Hidden 

Markov Models. In addition, it offers probabilistic data linkage based on the classical 

Fellegi and Sunter model [14]. 

Another work utilizing Markov’s ideas was conducted by Singla and 

Domingos [15]. In this work, various entity matching algorithms such as TFIDF and 

Winkler are combined. As shown in their work, the strength of using Markov logic is 

its flexibility in attaching weights to first-order formulas and in viewing them as 

templates for features of Markov networks [15]. However, Singla and Domingos did 

not incorporate edit distance algorithms into Markov logic, whereas the authors’ 

MRF-based approach does.  

An additional major study by Tsuruoka et al. [16] introduces logistic 

regression for learning a string similarity measure from a gene/protein name 

dictionary. They use both synonymous pairs of strings and non-synonymous pairs 

when optimizing the similarity measure. The experimental results show that using 

diverse types of information improved the accuracy of detecting similar gene/protein 

names. 

 Koh et al. [4] examine a duplicate detection problem applied to biological 

databases. With selected matching criteria, they compute similarity scores for 

corresponding fields of known duplicate pairs, generate association rules, and detect 
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duplicates by using heuristic rules. In the work by Koh et al. [4], performed 

experiments demonstrate that association rules achieve higher efficiency in duplicate 

detection compared to user-defined rules.  

Popular in bioinformatics, the Smith-Waterman distance [17] was designed to 

find optimal alignments between biological sequences, such as DNA and proteins. It 

is based on a dynamic programming approach and allows gaps as well as character-

specific match scores. The Smith-Waterman algorithm is widely used to perform local 

sequence alignment. 

Research by Herbert et al. [18] describes a toolkit, BIO-AJAX, designed to 

improve biological data quality by eliminating duplicate entries in protein repositories 

using various customized database operations. Although BIO-AJAX requires some 

initial supervised learning, later the tool runs without curator interaction. In the 

experimental section of the work [18], Herbert et al. demonstrate how the toolkit can 

solve a nomenclature problem in a phylogenetic and evolutionary system, TreeBASE.  

One additional integrated framework extends the line of record linkage 

applications in the domain of bioinformatics. KitEGA was proposed to evaluate 

grouping techniques for biological data [19]. This approach treats duplicate detection 

as a grouping task where grouped data entries represent the same entity. Bauckmann 

[9] addresses two issues regarding the integration of biological databases: 1) detecting 

intra-schema relationships and 2) detecting inter-schema relationships. In order to 

resolve these issues, the SPIDER algorithm was proposed for detecting inclusion 

dependencies (INDs) as a precondition for foreign keys. The performance of SPIDER 

was tested with three protein databases: UniProt, SCOP, and PDB. Bauckmann [9] 

demonstrates how duplicate detection can be used for integrating protein databases 

that have different schemas. 
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The main problem of existing edit distance algorithms is that match decisions 

are made independently for each candidate pair [30, 31]. Thus the contextual 

dependencies between adjacent characters are neglected. 

To resolve this context-free problem of the edit distance, this research 

introduces several novel string similarity methods, achieving context dependency in 

different ways. The MRFED method is the adaptation of the Markov Random Fields 

(MRF) concept [32], successfully used in image recognition and computer vision, to 

the string matching domain. The MRFED method exploits the notion of the 

neighborhood system, cliques and clique potentials from MRF theory in the context of 

the Needleman-Wunsch distance [22]. The Shortest Path Edit Distance (SPED) 

incorporates substring match operations to achieve context dependency. The methods 

introduced in the Sections 4.3 and 4.4 are based on the histogram difference operation 

which is re-defined in this work.  

2.3 Research Problem 

There are a number of existing methods for approximate string matching, as described 

in Section 2.4. Nevertheless, the number of knowledge domains applying ASM 

methods has grown since the 1960s, as shown in Sections 1.1.1 to 1.1.8. 

The life and social sciences, bioinformatics and medical informatics have 

experienced a large growth in the amount of electronic data produced by a number of 

sources. To reduce the labor costs of data mining and processing applications, the 

ASM methods are widely employed in the above-mentioned domains. 

The author hypothesizes that the performance of existing, widely used 

similarity metrics may be improved for duplicate detection and clustering tasks. The 
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author will show empirically that this hypothesis holds true in Section 5.2 through 

Section 5.7 by presenting the evaluation results of various string similarity metrics. 

Based on these results, the author claims that there is a scientific need for new string 

similarity metrics capable of improving performance in certain domains.  

The author presents the previously introduced and novel string similarity 

algorithms. An extensive evaluation is performed for duplicate detection and 

clustering tasks. The developed methods are benchmarked against ten well-known 

similarity functions. The proposed methods achieve superior results measured in 

average precision, maximum F1, and execution time.  

2.3.1 Research Problem in Life and Social Sciences Domain 

In the life and social sciences domain, ASM methods are used for creation, 

maintenance, and duplicate identification and removal in name and address lists. It is 

known that many datasets have typographical errors in more than 20% of first names 

and also in last names. The application of ASM methods significantly improves 

matching efficiency and facilitates the labor-intensive manual matching process [89]. 

In the life and social sciences domain, as well as in other areas, the problem of 

duplicate detection arises in the applications which collect and extract data from Web 

pages or other unstructured or semi-structured documents. In this case, ASM methods 

are applied at the data cleaning step, which occurs before uploading records into a 

database [90]. An example of a business-related information integration application 

that uses data from the Web is TheaterLoc [91], which collects and processes 

restaurant and movie theater data from the Internet, locates objects on a map and 

allows site visitors to view restaurant reviews, movie show times and trailers. 
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2.3.2 Research Problem in Bioinformatics Domain 

A vast number of biological entities such as genes and proteins are available in the 

biological databases Swiss-Prot [1], GenBank [2], and others. These databases serve 

as critical resources for molecular biologists to conduct their research. Over the last 

two decades, the rapid development of the biological databases has been driven by an 

explosive growth of data due to the high throughput sequencing and automation in 

genomics and proteomics. For example, the most recent statistical report of SwissProt 

shows that the number of the SwissProt sequences has grown six times over four 

years from two million sequences in 2006 to twelve million sequences in 2010. 

Table 2.1  Sample Duplicate Entities 

Field Swiss-Prot Record PIR Record 

Locus ID P34180 S22388 

Definition 

Phospholipase A2, neutral 
precursor (Ammodytin I2) 
(Phosphatidylcholine 2-
acylhydrolase). 

phospholipase A2 (EC 3.1.1.4) 
ammodytin I2 precursor - western 
sand viper. 

Database 
source 

Swiss-Prot: locus 
PA2N_VIPAA, 
accession P34180; 

PIR: locus S22388 

Organism 
Vipera ammodytes 
ammodytes 

Vipera ammodytes 
ammodytes 

Sequence 

MRTLWIVAVCLIGVE 
GNLYQFGNMIFKMTK 
KSALLSYSNYGCYCG 
WGGKGKPQDATDRC 
CFVHDCCYGRVNGC 
DPKLSIYSYSFENGDI 
VCGGDDPCLRAVCEC 
DRVAAICFGENLNTY 
DKKYKNYPSSHCTET 
EQC 

MRTLWIVAVCLIGVE 
GNLYQFGNMIFKMTK 
KSALLSYSNYGCYCG 
WGGKGKPQDATDRC 
CFVHDCCYGRVNGC 
DPKLSIYSYSFENGDI 
VCGGDDPCLRAVCEC 
DRVAAICFGENLNTY 
DKKYKNYPSSHCTET 
EQC 

 

Even though research efforts, such as the UniProt Knowledgebase, work on 

integration of many biological databases, progress is still far from satisfactory. The 
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most common sources of errors contributing to the low quality of public sequence 

databases are as follows [3]: 

1. Lack of cross-referencing. The same sequence may be entered into more 

than one database without cross-referencing these records.  

2. Duplicate entries. The sequence is submitted more than once to the same 

database.  

3. Duplicate annotations. The annotations of the same sequence are submitted 

separately by different research groups.  

Table 2.1 shows the same protein found in PIR and Swiss-Prot without cross-

referencing between the two records [4]. This example demonstrates the high degree 

of string similarity between definitions of the duplicate entries. This factor justifies 

the use of string comparison techniques to deal with such typographical variations. 

As biological databases become more pervasive, various data quality concerns 

are emerging. The aforementioned quality issues are non-trivial and can cause many 

problems for the database. For the biological data to be corrected and standardized, 

methods and frameworks must be developed to handle both structural and traditional 

data.  

In the field of information integration, duplicate detection has been widely 

studied [5]. Among various techniques proposed in the field, string similarity provides 

an unsupervised statistical model and has been applied in many different applications 

[6, 7]. String similarity and matching algorithms are used for entity matching by 

measuring individual record fields, since individual fields are often stored as strings. 

The widely-used notion of string similarity is the Levenshtein edit distance: the 

minimum number of insertions, deletions, and substitutions required to transform one 

string into another [8].  Advantages gained by entity matching based on string 
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similarity are removing duplicate biological data [9], discovering substructures in 

biochemical molecules [10], and detecting duplicate 2D Nuclear Magnetic Resonance 

(NMR) spectra for the structural analysis of molecules [11].  

The performance of numerous string similarity metrics varies from dataset to 

dataset due to the structure of the data and other textual characteristics, such as length 

of the matched strings, word frequency, logical organization of strings, etc. This 

phenomenon was empirically shown, as described in Chapter 5 of this work. As the 

authors’ experiments agree with research by Tan et al. [125], a single universal string 

metric with superior performance on various types of datasets does not exist. Still, 

efforts to create better methods continue.  

One direction of ongoing research involves accounting for the contextual 

dependencies in texts for performance improvement. Several major research efforts 

based on a probabilistic approach are introduced in Section 2.2 of this work. Another 

significant effort in this field was made by Wei [51]. Wei introduced the Markov Edit 

Distance (MED), which was one of the initial applications of the Markov model to the 

string metric domain. Wei [51] suggested that the MRF, with its solid theoretical 

mathematical background and practical success in many disciplines, was likely to 

shed more light on how to build a salient framework that would render the edit 

distance concept more powerful. Wei presented two modifications of the string metric 

based on Markov's ideas: the reshuffling MED capable of handling reshuffling 

relations among patterns; and the coherence MED, which allows more complex 

operations on sub-patterns such as insertion, deletion, and substitution based on local 

contextual dependencies. 
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2.3.3 Research Problem in Medical Informatics Domain 

Launched in 1986, the Unified Medical Language System (UMLS) remains a well-

known long-term research effort [79] to develop an extensive terminological 

knowledge base consisting of three major components: the Metathesaurus, the 

Semantic Network, and the SPECIALIST Lexicon.  The UMLS 2011AA release 

contains more than 2.4 million concepts and almost 10 million unique terms, retrieved 

from 160 source vocabularies [93].  

 Source integration is a complicated multi-step process demanding a vigorous 

research effort. Although many algorithmic aides are available to support experts who 

are adding to, updating or auditing vocabularies, still no solution has been found to 

solve these problems without extensive human interaction.  It is planned to integrate 

even more sources into the UMLS in the future [79]. Furthermore, new versions of 

existing vocabularies require reintegration into the UMLS as a part of its update cycle. 

Therefore, developing new techniques and improving existing ones for term matching 

for the UMLS remain important tasks. 

 In Section 4.4, the author proposes the Longest Approximately Common 

Prefix (LACP) method as a context-sensitive algorithm for improving existing source 

integration and auditing techniques. The LACP could be included as one data 

processing step into existing text-to-thesaurus mapping programs such as CLARIT, 

SAPHIRE, Metaphrase, MetaMap/MMTx [94], MicroMeSH or integration techniques 

such as Piecewise Synonym Generation [79] in order to improve the precision of the 

results. It is worth noting that the LACP does not perform the kinds of text 

manipulations that the well-known SPECIALIST lexicon tools Norm, Word Index, or 

LVG [95] do, but it assesses the similarity or dissimilarity of two strings. 
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2.4 String Distances 

2.4.1 Edit Distance 

In order to define string metrics, many researchers use the notation introduced in the 

classic paper of Wagner and Fisher [21] and adopted by others [25]. Let Σ be a finite 

alphabet and Σ* be the set of all finite length strings over Σ. Let S = S1S2 ... Sn be a 

string of Σ*, where Si is the i-th symbol of S. Let Si...j be the substring of S consisting 

of consecutive symbols from Si to Sj where 1 ≤ i ≤ n, 1 ≤ j ≤ n. The length of the string 

S is |S| = n and the length of the substring |Si...j| = j – i + 1. When i > j, Si...j is the null 

string λ, | λ | = 0. |S| denotes the length of the string S defined as the number of 

characters in a string. 

A simple edit operation is a pair (a, b) ≠ λ of strings where a and b are strings 

of length 1 or 0. The notation a → b is used for an edit operation (a, b). There are 

three commonly used edit operations: 

 The insertion: a → b, a ≠ λ, b = λ; 

 The deletion: a → b, a = λ, b ≠ λ; 

 The substitution: a → b, a ≠ λ, b ≠ λ. 

 
The edit transformation of string S into string T is the sequence E of the 

elementary edit operations that transform S into T. The elementary edit operations are 

assigned weights by the weight function ω, which assigns to each edit operation (a, b) 

a real number ω(a, b) =  r ≥ 0. The weight function ω can be extended to a sequence 

E as follows: )()(
1




m

i
iEE  , where m is the length of E. 

For the strings S and T   Σ*, the edit distance between S and T is defined as 

follows: 

  δ(S, T) = min { ω (E) | E is the edit transformation of S into T}   (2.1)
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In the classic case, the assumption is that ω(a, b) = δ(a, b) with the following 

constraints: ω(a,a)=0 and ω(a, b) + ω(b, c) ≥ ω(a, c), known as the triangle 

inequality. Furthermore, by adding the assumption that δ is symmetric, i.e. δ(a, b) = 

δ(b, a), and strictly positive on each edit operation, i.e. δ(a, b) > 0 where  a ≠ b, the 

classic approach interprets δ as a metric on a space of all strings, thereby explaining 

the term "distance." 

2.4.2 Traces 

The trace RS,T from a string S to a string T is the sequence of the ordered pairs of 

integers (i, j) satisfying the following conditions:  

 1 ≤ i ≤ n, 1 ≤ j ≤ m where |S| = n and |T| = m;  

 For any two distinct pairs (i1, j1) and (i2 j2) in the trace R the following 
conditions hold: 

a. i1 ≠ i2 and j1 ≠ j2; 

b. i1 < i2 if and only if j1 < j2. 

 

Traces denote possible paths from the pair of initial characters of S and T to 

any other pair of characters from S and T. The sequence forming the trace RS,T may 

correspond to a complete or incomplete transformation from S to T. 

2.4.3 Edit Path 

The edit path PS,T between two strings S and T is the sequence of ordered pairs of 

integers (ik, jk) where 0 ≤ k ≤ m such that: 

1. 0 ≤ ik ≤ |S|; 

2. 0 ≤ jk ≤ |T|; 

3. (i0, j0) = (0, 0); 

4. (ik, jk) = (|S|, |T|); 

5. 0 ≤ ik – ik –1 ≤ 1, k ≥ 1;  

6. 0 ≤ jk – jk –1 ≤ 1, k ≥ 1;  

7. ik – ik –1 + jk – jk –1 ≥ 1. 
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Conditions (1) and (2) specify the ranges for ik and jk. Conditions (3) and (4) 

ensure that the traversal starts at the pair of initial characters of S and T and ends with 

the pair of final characters of S and T. Conditions (5) and (6) ensure that during a 

single step no more than one character is traversed in the horizontal, vertical, or 

diagonal direction. Condition (7) assures that at the k-th step a horizontal, vertical, or 

diagonal move is actually made. 

Each pair of successive points of the edit path corresponds to one edit 

operation of insertion, deletion, or substitution. By traversing the edit path PS,T from 

the beginning to the very end, the full transformation of the string S into the string T 

can be restored. 

  0 1 2 3 4 5 6 7 8 
0   N e w   Y o r k 
1 N                 
2 e                 
3 w                 
4                   
5 J                 
6 e                 
7 r                 
8 s                 
9 e                 
10 y                 

Figure 2.1  An example of the edit path between two strings. 

 
Figure 2.1 shows a graphical representation of the edit path between the 

strings "New York" and "New Jersey." The black cells correspond to the steps of the 

edit path. Here, the edit path PS,T = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 

7), (8, 8), (8, 9), (8, 10)}. 

The weight of the edit path can be computed by the following formula: 
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Now, the formula for the edit distance takes this form: 

  δ(S, T) = min { W(P) | P is the edit path between S and T}   (2.3)

The recursive formula below for the Levenshtein edit distance was introduced 

by Wagner and Fisher [21]: 

  δ(S1...i, T1...j) = min { δ(S1...i-1, T1...j) + ω(Si , λ), 
δ(S1...i-1, T1...j-1) + ω(Si , Tj), 
δ(S1...i, T1...j-1) + ω(λ, Tj)}   (2.4)

 
In (2.4), S1...i denotes the substring of the string S, where S1...i = S1S2...Si and 

T1...j denotes the substring of the string T, where T1...j = T1T2...Tj. The application of the 

formula (2.4) to the transformation of the string "New York" into "New Jersey" is 

shown below in Figure 2.2. Each inner cell with a white background contains a value 

of the edit distance for the substrings S1...k and  T1...l where k is the x-coordinate of the 

cell and l is its y-coordinate. The final value of the Levenshtein edit distance is shown 

in the bottom right cell with the coordinates (8, 10) and the value 5. 

  0 1 2 3 4 5 6 7 8 
0   N e w   Y o r k 
1 N 0 1 2 3 4 5 6 7 
2 e 1 0 1 2 3 4 5 6 
3 w 2 1 0 1 2 3 4 5 
4   3 2 1 0 1 2 3 4 
5 J 4 3 2 1 1 2 3 4 
6 e 5 4 3 2 2 2 3 4 
7 r 6 5 4 3 3 3 2 3 
8 s 7 6 5 4 4 4 3 3 
9 e 8 7 6 5 5 5 4 4 
10 y 9 8 7 6 5 6 5 5 

Figure 2.2  The Levenshtein distance matrix for S = "New York", T = "New Jersey.” 

 

2.4.4 Post-Normalized Edit Distance 

The Post-Normalized Edit Distance (PNED) is a simple approach to take into account 

the lengths of strings for which the metric is being computed. For this variation of the 

algorithm, the value of the edit distance computed using the Levenshtein function is 
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divided by the length of the edit path. As an example, consider a pair of strings of 

length two differing by a single character and a pair of strings of length one hundred 

with one non-matching character. In the first case, the dissimilarity is 50%, but in the 

second case it is only 1%. To stress this difference, the post-normalization is applied 

as follows: 
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where | PS,T | is the length of edit path PS,T. 

2.4.5 Normalized Edit Distance 

The Normalized Edit Distance (NED) [25] differs from the PNED by the way in 

which the normalization is done. In case of the NED, the final value is computed 

within a single dynamic programming process by minimizing the normalized weight 

of the edit path P: 
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Then the expression for the NED takes the form: 

  NED(S,T) = min{ )( ,

^

TSPW }   (2.7)

Marzal and Vidal [25] showed that the NED outperforms the PNED 

significantly. Also the researchers proved that the minimization (2.7) cannot be 

substituted by first minimizing W(PS,T) and then normalizing it by the length of the 

obtained edit path PS,T. 

2.4.6 Damerau-Levenshtein Distance 

The Damerau-Levenshtein Distance (DLD) [33] expands the set of allowed edit 

operations by adding a transposition, which does not satisfy the definition of the 

simple edit operations. The transposition is defined as ab → ba, a ≠ λ, b ≠ λ, a ≠ b. 
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The formula for the DLD is 
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2.4.7 Jaro Metric 

The Jaro metric [26] is not based on the edit distance model. Its positive results in the 

record linkage domain are due to the consideration of the number and order of the 

common characters in two strings. A character Si from a string S is defined to be 

common with a string T when Si = Tj  and i – H ≤ j ≤ i + H, where  

  2

|)||,min(| TS
H 

 

(2.9)

 

As an example, consider strings S = “aaabaa” and T = “ccbccccc”. Here, i=4, 

j=3, character S4 is equal to character T3, and H = min(6, 8)/2 = 3. Now, both 

conditions for character “b” are satisfied: S4 = T3 and i – 3 ≤ j ≤ i + 3. Thus, S4 is 

common with T3. 

Let S' = S1...SK be the characters in S, which are common with T and appear in 

the same order as they originally appear in S. Let T' = T1...Tk  be the characters in T, 

which are common with S and appear in the same order as they originally appear in T. 

The transposition for S' and T' is the position i such that S'i ≠ T'i. Let JS',T' be half the 

number of the transpositions for S' and T' [28]. The Jaro similarity metric is expressed 

as follows: 
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2.4.8 Jaro-Winkler Metric 

Winkler's modification of the Jaro metric [34] shows a significant improvement in the 

experimental results [35]. This algorithm recalculates the score of the Jaro metric 

based on the length of the common prefix. Let Pref be the longest common prefix 

shared by the strings S and T. Let P'= max(Pref, 4). Then the Jaro-Winkler metric is 

defined as 

  )),(1(
10

'
),(),( TSJaro

P
TSJaroTSWinklerJaro     (2.11)

 

2.4.9 Jaccard Similarity 

The Jaccard similarity [36] is the token-based distance metric, which considers the 

strings S and T as sets of tokens. This method interprets a token as a single word. It 

was first introduced in research on Alpine flora diversity in 1912. The Jaccard 

similarity is  
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where X is the set of tokens of the string S, and Y is the set of tokens of the 

string T. 

2.4.10 Smith-Waterman Algorithm 

This algorithm is considered to be the local version of the dynamic programming 

algorithm for sequence alignment [37]. It is designed to find the best alignment 

between the subsequences of two long sequences in the bioinformatics domain. The 

Smith-Waterman algorithm [38] assigns 0 to the complete mismatch and the highest 

score to the "best local alignment" [37].  
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where ω is a weight function, g is the affine gap cost function, gapstart is a 

cost to start a gap, gapextend is a cost to extend a gap. According to Gotoh [39], 

weights and parameters cannot be determined a priori, but they may be estimated by a 

dynamic optimization procedure.  

 

2.4.12 Monge-Elkan Algorithm 

The Monge-Elkan similarity function [40] makes use of the affine gaps by 

implementing the Gotoh metric to match fields of a record (or words of a string in 

string distance terminology). The Gotoh distance is used to find the most similar word 

in T for each word in S. Then these scores are combined in order to get the final 

similarity value using the following formula: 
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where Gotoh() is the Gotoh function. 

2.4.13 Needleman-Wunsch Algorithm 

Unlike the Smith-Waterman algorithm [38], the Needleman-Wunsch method [22] 

looks for the best global alignment. This method is also known as the Sellers 

algorithm [66]. It is similar to the Levenshtein distance [20] but with parameterized 

values for the insertion and deletion operations. When the gap cost g in the 
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Needleman-Wunsch algorithm is set to 1, it becomes an exact copy of the Levenshtein 

metric. 
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where g is the gap cost. 

2.4.14 TFIDF Algorithm 

Term Frequency-Inverse Document Frequency (TFIDF), also known as the Cosine 

Similarity [41], is a widely used token-based algorithm in information retrieval [43, 

44]. This method calculates a term relevance weight defined as the proportion of 

relevant documents in which the term occurs divided by the proportion of non-

relevant items in which the term occurs [42]. As defined by Cohen et al. [28]: 
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where TFω,S is the frequency of the word ω in S, N is the size of the text, and 

IDFω is the inverse of the fraction of terms in the corpus that contains ω. 

2.4.15 Soft TFIDF 

The Soft TFIDF method was proposed by Cohen et al. [28] as a hybrid distance 

function combining TFIDF with a secondary similarity function. The Monge-Elkan 

[40], Jaro [26], and Jaro-Winkler [27] methods were used by Cohen et al. in the 

experimental phase.  
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where CLOSE(θ, S, T) is the set of words ωS such that T  and 

dist'(ω,)> θ; for  ω CLOSE(θ, S, T), D(ω,T) = maxT dist(ω,). In other words, 

Soft TFIDF does not discard words which match approximately, unlike TFIDF which 

keeps only exact matches. 

2.4.16 Information Distance 

Information Distance [121] is considered by Vitanyi et al. [122] to be a universal 

distance measure for objects of all kinds. Unfortunately, Information Distance, as 

defined by him, is incomputable, since it is based on the Kolmogorov complexity. 

Nevertheless, Vitanyi et al. [122] suggest two approximations of this method. The 

first approximation lies in the calculation of the difference in the number of bytes 

between two compressed files. It is intended for objects which could be represented 

by strings. The second version uses World Wide Web search engine results to target 

names and abstract concepts. In [122], Information Distance is applied to clustering 

and other tasks.  

The Information Distance method was selected for benchmarking, since its 

authors claim its universality, and it has shown promising results in clustering tasks 

[122]. For this work, approximation via compression was selected. Bzip2, PPMZ, and 

Gzip are mentioned as appropriate implementations of compression methods [122]. In 

this work, the Gzip algorithm was selected, since it is available in the Java Software 

Development Kit used for implementation of the other evaluated methods. 
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The formula representing the Information Distance is shown below [121]: 
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where dmin(x, y) is the Information Distance and KU is the Kolmogorov 

complexity for the universal Turing machine. The definition of the Kolmogorov 

complexity is defined as follows [121]: 

  CyxKyxK UU  ),()|( '    (2.20)

where KU(x, y) is the Kolmogorov complexity of a binary string x conditional 

on another binary string y, given a universal Turing machine U. U' is a different 

Turing machine; the constant C depends only on U'. 
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CHAPTER 3  

RESEARCH METHODOLOGY 

 
3.1 Data Sources 

 
3.1.1 Life and Social Sciences Data Sources 
 
The five datasets depicted in Table 3.1 were selected to measure the performance of string metrics in 

text retrieval applications. In the Animals and Birds datasets, common names are used as a primary 

key and scientific names as a secondary key. In the Restaurants dataset, the manually constructed 

secondary keys correspond to the real-world restaurant data consisting of a name, address, phone 

number, and a brief description of the cuisine served. The Parks dataset was built by Cohen et al. 

[45] from the online park directories linking the park names to the URLs of the corresponding sites. 

In this dataset, park names are used as a primary key and the URLs as a secondary key. The Census 

dataset contains census-like data: the database record ID, last name, first name, middle initial, street 

number and name. 

The datasets described above contain duplicate records in the sense that the same dataset has 

more than one record corresponding to the same entity. The primary keys are the exact entity 

identifiers. The secondary keys are the non-matching string fields containing entity data. 

 

Table 3.1 Datasets used for the string metrics evaluation 

Dataset # of Records Source 

Animals 5,709 [45] 
Birds 982 [45] 
Census 841 [28] 
Parks 654 [45] 

Restaurants 863 [46] 
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Table 3.2 shows the extraction of duplicate records from the Census dataset in 

order to identify households living at the same address. The string similarity metric is 

applied to pairs of secondary key values to determine whether a pair of records 

describes members of the same household. Then the correctness of the decision is 

checked by comparing the primary key values: match means the decision is correct 

and non-match that it is incorrect.   

Table 3.2  Duplicate records retrieved from the Census dataset 

Primary Key Secondary Key 

ID445012723835840000 COBY          LASHIWN      Y 303          MAIN 

ID445012723835840000 COBY          WILIAMS      A 303          MAIN 

ID445012723835840000 COBY          ANGELA         303          MAIN 

ID445012723835840000 COBY          MIKE         D 303          MAIN 

ID445012723837740000 REEVES        DOUGLASS     F 625          MARTIN LUTHER K 

ID445012723837740000 REEVES        NWAMAKA      M 625          MARTIN LUTHER K 

ID445012723837740000 REEVES        WILLY        L 625          MARTIN LUTHER K 

ID445012723838570000 HEAVAENER     FLORRE         608          OCONEE 

ID445012723838570000 HEAVAENER     WILSREVO       608          OCONEE 

ID445012723838570000 HEAVAENER     JEFFREY      S 608          OCONEE 

ID445012723840870000 SOLLIVAN      ANNE         G 14245        22 

ID445012723840870000 SOLLIVAN      EVENS          14245        22 

ID445012723840870000 SOLLIVAN      BRANDIE      D 14245        22 

3.1.2 Bioinformatics Data Sources 

The author uses the following UniProt GOA Proteome Sets to compare the 

performance of the Markov Random Field Edit Distance (or MRFED), the normalized 

edit distance, to other algorithms for the entity matching tasks as shown in Table 3.3. 

The Gene Ontology Annotation (GOA) database was developed to provide 

high-quality supplementary Gene Ontology (GO) annotations for proteins in the 

UniProt Knowledgebase [57]. For duplicate identification, the correct answer datasets 

were constructed from the UniProt GOA Proteome [58]. The GOA Proteome data 

provide researchers with an extensive testing ground for a duplication detection task. 
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Table 3.3  Bioinformatics datasets used in experiments 

Organism 
Entries 
Annotated

GO 
Annotations 

Paramecium Tetraurelia 217 1,402 
Bacteriophage T4 116 623 
Carsonella Ruddii 141 1,336 
Hyperthermus Butylicus 918 5,625 
Buchnera Aphidicola Cedri Cinara 339 4,140 

 

Each GOA contains 15 attributes described in Table 3.4. The author used all 

features except the database code and the unique ID from the GOA to compute the 

inter-similarity among entries, i.e., the author measured the metadata identity to find 

similarities. The unique IDs were used to check the correctness of a match/non-match 

decision. The GOA uses the International Protein Index, where the sequence 

identifiers from the GOA, Ensembl, H-Invitational Database, TAIR, RefSeq and Vega 

groups are combined to provide the species-specific annotation sets. 

Table 3.4  Attribute descriptions of GOA 

 

The biological records contain the following three main field types [4]:  

Column Description 

DB Database from which an annotated entry has been 
taken 

DB_Object_ID Unique identifier 
DB_Object_Symbol Symbol (unique and valid) 
Qualifier Flag that modifies the interpretation of the annotation 
GO ID GO identifier 
DB:Reference Reference cited to support the annotation 
Evidence Evidence for the annotation 
With Additional identifier 
Aspect One of three ontologies 
DB_Object_Name Name of the gene or gene product 
Synonym Gene symbol 
DB_Object_Type Entity annotated 
Taxon ID Identifier for the species 
Date Date of the last annotation 
Assigned By Source of the annotation 
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 The sequences themselves, e.g. protein and DNA sequences;  

 The categorical fields;  

 The free-text strings.  

In order to detect the duplicates, the authors’ approach measures the 

categorical and free-text strings.  

3.1.3 Medical Informatics Data Sources 

Medical informatics datasets were obtained from the 2009AB version of the UMLS. 

As the UMLS contains terms from many sources, the author produced two types of 

datasets: 

 Records selected from the multiple UMLS sources; 

 Records selected from the SNOMED CT subset. 

 
There are several reasons to choose these datasets. The multiple-source 

datasets make it possible to perform overall evaluations in medical informatics. The 

UMLS contains biomedical terms from many sources, allows for the integration of 

new sources, and permits researchers to continually audit existing sources over time. 

By performing experiments on a “multiple source dataset,” the author addresses, to 

some degree, the problem of how to integrate a new source into the UMLS. The 

SNOMED CT was selected for evaluation because of its wide use and practical 

importance [92]. 

The datasets were built by applying custom-built SQL queries to a MySQL 

database using the Metathesaurus. The database was populated using the scripts 

provided with the 2009AB UMLS distribution. Analogously to the life and social 

sciences datasets described in Section 3.1.1, concept unique identifiers (CUI) were 

used as a primary key, and string representations of the terms were employed as a 

secondary key.  Two or more records with the same primary key correspond to the 

same concept. Such records are considered as duplicates in the experimental phase.  
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Table 3.5 depicts characteristics of the biomedical datasets, including the 

numbers of unique terms and concepts. There is a notable difference between the 

numbers of unique concepts in datasets (2) and (4). It is possible to explain this as 

follows: dataset (2) contains records from the same terminology and thus has a higher 

chance of retrieving terms describing the same concept. In contrast, dataset (4) 

consists of records collected from multiple sources, which decreases this probability. 

Table 3.5  Medical informatics datasets used in experiments 

# Dataset # of Concepts # of Terms 

1 SNOMED-most frequent concepts 155 5,000 

2 SNOMED-longest concepts 1,805 5,000 

3 
UMLS-most frequent concepts 
from multiple sources 

100 4,979 

4 UMLS-longest concepts 3,337 5,000 
 

Table 3.6  Duplicate records from the “SNOMED-most frequent concepts” dataset 

Primary Key Secondary Key 

C0034606 Diagn. nuclear medicine NOS 
C0034606 Diagn. nuclear medicine NOS (procedure) 
C0034606 Diagnostic nuclear med. 
C0034606 Diagnostic nuclear medicine 
C0034606 Diagnostic nuclear medicine NOS 
C0034606 Diagnostic nuclear medicine NOS (procedure) 
C0034606 Diagnostic radionuclide study 
C0034606 Diagnostic radionuclide study, NOS 
C0034606 NM - Nuclear medicine 
C0034606 Nuclear med.-diagnostic 
C0034606 Nuclear medicine 
C0034606 Nuclear medicine diagnostic procedure 

 

Table 3.6 shows duplicate records retrieved from dataset (1). The most 

frequent concept datasets (1) and (3) were derived by getting the top records out of 

the record sets sorted in descending order by the number of non-matching terms 

belonging to the same concept. The longest concept datasets (2) and (4) were obtained 
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by selecting the top records out of the record sets sorted in descending order by the 

length of the term strings. 

3.2 Details of the Methodology 

The standard approach to evaluating record linkage or duplicate detection systems 

employs the notions of relevant and non-relevant records. For the task of duplicate 

detection, a record is given a designation as a duplicate or a mismatch compared to 

another record. When a decision about duplicate records is made correctly, a relevant 

record is retrieved; when a wrong decision is made, a non-relevant record is recovered 

[47].  

For the life and social sciences datasets presented in Section 3.1.1, matching is 

performed on the secondary keys such as names, addresses and phone numbers. Then 

this decision is assessed in terms of relevance to the primary key. If two records are 

identified as duplicates by the secondary keys and have the same primary key, this 

decision is considered relevant. Otherwise, when two records are identified by the 

system as duplicates but have non-matching primary keys, the decision is non-

relevant.  

The author uses the conventional approach of information retrieval to evaluate 

the performance of string distance metrics [47]. The two most frequent measures for 

information retrieval effectiveness are precision and recall (see formulas (3.3) and 

(3.4)). Evaluation based on these two measures concentrates on true positives by 

examining the quantities of returned relevant documents with respect to the number of 

false positives. The term documents is used here in a broad sense and may refer to the 

document elements, sentences of phrases, or textual records apart from regular 

documents. 
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It is important to calculate both precision and recall because gaining higher 

precision is preferable for certain tasks while higher recall is more valuable for other 

information retrieval problems. In some cases, high precision results are of primordial 

importance, when the extraction results are not manually controlled, while in other 

cases, where the machine extraction is only performing an initial filtering of the 

information that eventually is manually selected, a high recall of the extraction is 

more important [83].  

The high value of precision obtained in some experiments means that the 

retrieved data either have a small number of errors or no errors at all. The high recall 

values correspond to those experiments in which all or almost all of the information 

that needs to be extracted is actually extracted [83]. 

Precision and recall are tradeoffs against one another: on the one hand, it is 

possible to obtain the maximum value of recall with a low value of precision by 

retrieving all documents for all queries. On the other hand, the precision usually 

decreases as the number of retrieved documents grows. A single measure that trades 

off precision versus recall is the F measure, which is the weighted harmonic mean of 

precision and recall [48]. The F measure, derived from the E measure, is the most 

commonly used metric for combining precision and recall into one metric. 
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where α[0, 1] and β2[0, ). The default balanced F measure equally 

weights precision and recall. It is achieved when α = 0.5 or β = 1. It is commonly 

written as F1, which is short for Fβ=1 [48]. 
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For the evaluation of the string distance performance, the author calculated the 

average precision and maximum F1 (see formula (3.5)), and built the precision-recall 

curves for several string similarity techniques evaluated on the datasets mentioned in 

Section 3.1.  

The precision-recall curves became a widespread conceptual tool for assessing 

classification performance. The curves relate the precision of a classifier to its true 

positive rate. The precision-recall curves offer a scale-adapted graphical display that 

makes it possible to visualize and rank performance more easily when the theoretical 

proportion of the positive instances is small compared to the total number of records 

[84]. 

Second String [28], an open-source Java toolkit, was used as the experimental 

test bed. In experiments, each term was matched against all other terms within a set of 

candidate pairs from the same dataset. The goal was to determine whether every pair 

of terms had the same identifier. 

  
t

r

D

D
P     (3.3)

  
r

r

N

D
R     (3.4)

  1

2P R
F

P R





   (3.5)

 

Formulae (3.3) - (3.5) use the following notation: precision P, recall R, 

harmonic mean F1, the number of relevant items retrieved Dr, the number of relevant 

items in a collection Nr, and the total number of retrieved items Dt. In (3.5), the 

number 2 in the numerator indicates that recall and precision are of equal importance. 
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The precision-recall curves consist of the interpolated precision taken at 

eleven recall points 0, 0.1, ..., 1. The interpolated precision Pinterp at recall level R is 

defined as the highest precision found for any recall level R' ≥ R [48]: 

  )'(max
'

interp RPP
RR 

    (3.6) 
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CHAPTER 4  

SIMILARITY FUNCTIONS FOR DUPLICATE DETECTION AND 
CLUSTERING TASKS 

 
 

4.1 Markov Random Field Edit Distance 
 
4.1.1 Background 
 
In this section, several terms related to the Markov Random Field theory are described. 

The MRFs incorporate spatial and contextual dependencies by means of neighborhood 

systems and cliques. The author implements MRF theory using a string distance method 

to improve matching accuracy in comparison to edit distances constructed with symbol-

based cost functions. A Neighborhood System (NS) consists of a set of nodes S. Each 

node is a pair of characters (si, tj), where si  is the i-th character of the first string 

participating in the alignment, and tj is the j-th character of the second string. Li [52] 

defines the Neighborhood System N as 

  
 SiNN i  |

   (4.1)

and 

  },)],([|{ 2 iidppdistSiN iii      (4.2)

where iN is a set of nodes neighboring the i-th node, dist(a, b) denotes the 

Euclidean distance between a and b; and d is an integer value.  

In (4.2), a parameter d corresponds to the order of the NS, e.g. d = 1 defines the 

NS of order 1 described in (4.5) and d = 10 defines the NS of order 7 shown in Figures 

4.1 and 4.2. Several values of the parameter d with the corresponding orders of NS are 

given in Table 4.1, which has been computed empirically. 
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Table 4.1  Correspondence of the NS order to the parameter d 

NS order Parameter d

1 1 
2 2 
3 4 
4 5 
5 8 
6 9 
7 10 

 

The Euclidean distance in (4.2) is calculated using the following formula for 

the 2D space between two points P (x1, y1) and Q (x2, y2): 

  2 2
1 2 1 2( , ) ( ) ( )dist P Q x x y y       (4.3)

where x and y are the horizontal and vertical coordinates of a point.  

The neighborhood relationship has the following properties:  

 A site cannot be a neighbor to itself;  

 The neighboring relationship is mutual.  

In other words, the neighborhood relationships are symmetric but non-

reflexive.  The 2D alignment of two strings is viewed as the rectangular area of nodes 

of character pairs (si, tj) constituting the set of nodes S: 

  }1,1|),{( mjnijiS     (4.4)

and a node has up to four neighbors in the NS of the first order: 

  
})1,(),1,(),,1(),,1({,  jijijijiN ji    

(4.5)

The order of the NS is the measure of the number of nodes. The order of the 

NS can also be defined as the measure of complexity of the NS. A node corresponds 

to one square in the 2D lattice.  A node has fewer neighbors when it is located in the 

corner or on the border of the 2D lattice [52]. 
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The clique potential Vc is the function on S with the property that Vc depends only on 

those coordinates for which s  C. The resultant objective energy function for the 

node (i, j) is formulated as 

     (4.7)

The Needleman–Wunsch [22] edit distance described in the Section 2.4.13 of 

this work can be considered as a particular case of the MRFED with a second order 

causal neighborhood system. The clique potentials in the MRFED may be considered 

as the insertion, deletion and substitution costs of the Needleman-Wunsch algorithm. 

The number of cliques increases rapidly with the growth of the neighborhood 

system order leading to an increase in the computational time. To reduce the problem 

size, the clique potential values are defined as follows: 

     (4.8)
In (4.8), k is the number of nodes in the clique and h is a histogram, which is 

defined as an associative array counting the number of occurrences of each distinct 

symbol in a string. 

The parameter α ≥ 0 assigns a weight to the clique potential Vc. When α = 0, 

the MRFED degrades to the Needleman-Wunsch edit distance. The clique potential 

gets the minimal weight when α → 0. During the experimental phase, the author set 

α= 0.5 as suggested in Wei’s work [51].  

Putting together (4.7), (4.8), and (2.16), the final expression for the MRFED 

takes the form: 

     
(4.9)

where k is the number of nodes in the clique, K is the number of diagonal 

nodes in the 2D lattice representing the causal neighborhood system N, and NWij is 

})2,(',),2('min{),(' 21 cc VjiMRFEDVjiMRFEDjiMRFED 

( 1) if ( [ 1, ]) ( [ 1, ])

  otherwisec

k h S i k i h T j k j
V

       
  

,

,  if ( [ 1, ]) ( [ 1, ])
,  2..

min( ,  *( 1)) otherwise
ij

ij
ij i k j k

NW h S i k i h T j k j
MRFED k K

NW MRFED k 





    
 

 
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the Needleman-Wunsch edit distance for the substrings S1..i and T1..j. For example, k = 

2 for a causal NS of the seventh order as depicted in Figure 4.5. There you can see 

two grey squares on the main diagonal leading to the node (0, 0). 

4.1.2 MRFED Algorithm 

Inspired by the Reshuffling Markov Edit Distance [51], the author formulates the 

Markov Random Field-based Edit Distance and proposes the flexible algorithm for 

computing the MRFED depicted in Figure 4.6. As proposed in [51], the MRFED uses 

the notions of neighborhood system, cliques and clique potentials, but the author 

interprets these notions in a different way, such that the edit distance is minimized at 

each iteration and then normalized by the edit path length. 

Post normalization was implemented in order to improve the results of the 

MRFED. It is known that post normalization gives worse results compared to 

normalization in the ordinary sense, but it takes less computational time [25]. The 

post-normalization was done by storing the edit path and then dividing the MRFED 

value by the length of the edit path in the last iteration, as seen in formula (4.10). 

Below, n and m are the lengths of the strings S and T, and L(P) is the length of the edit 

path from S to T. 

 

,
,

,( )
n m

n m
n m

unnormalized MRFED
MRFED

L P

 
  

(4.10)

The MRFED was implemented in Java by extending the open-source Second 

String project [23]. The MRFED algorithm for calculating the Markov Random Field-

based distance for two strings S1..n and T1..m is given below in Figure 4.6. 

The algorithm starts with the creation of a placeholder for the MRFED values 

corresponding to S1..i and T1..j matching substrings. All the intermediate values should 
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be stored in order to calculate the final MRFED, which corresponds to the whole 

lengths of strings S1..n and T1..m.  

In Step 2, the initial values are set. They correspond to the transformation of 

the empty string λ [25] to a substring and vice versa. The two embedded loops shown 

in Steps 3 and 4 are required to calculate the Needleman-Wunsch edit distance and 

clique potentials for the substrings being matched at the current iteration. 

 
0. Initialize k from a user input, set α = 0.5. 
1. Create the 2D array MRFED[1..n][1..m] 
2. Set MRFED starting values j*gapCost for the first row and i*gapCost for 

the first column 
3. For i = 2 to n do  

4. For j = 2 to m do  
5. Calculate NW[i, j] 
6. Search for the substrings with the equal histograms, setting the 

length of the compared substrings as r = min(k, i, j). Within the 
loop, go up to r characters back from the current position. 

For p = 0 to r do  
7. If the histograms of the substrings Si-p..i Tj-p..j match  
8. Then calculate the clique potential  

Vij[r-p] = MRFED[i-(r-p), j-(r-p)] + *(r - p -1) 
9. Set MRFED[i, j] to min(V[1..k]) and add to the edit path the new traces 
10. Set MRFED[i, j] to min(MRFED[i, j], NW[i, j]) 
11. Return MRFED[n, m] divided by the length of the edit path. 
 

Figure 4.6  Description of the MRFED algorithm. 
 

The loop at Step 6 serves to find the equal histograms of the substrings, which 

stretch from the current position i for r characters back; r is set to min(k, i, j) to 

prevent exceeding the string boundaries. The parameter k is the number of nodes in 

the corresponding clique (see formulas (4.8) and (4.9)). The clique potentials Vij are 

calculated whenever equal histograms are found and MRFED is set to the maximum 

value of Vij. At Step 10, the smaller of the values MRFEDij and NWij is picked. When 

the two substrings reach the lengths of the full strings, post normalization is applied 

and the final MRFED value is returned. The suggested choice for k, used at Step 6, is 
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min(n, m). In the simplest case, k = 1, thus excluding the substring matching operation 

from consideration and degrading the model to the classic case of character-to-

character operations. In that case, a lattice node represents the interaction between the 

pair of characters Si and Tj. 

When k = min(n, m), three sub-cases are possible depending on the lengths of 

the strings S and T: 

 n = m leads to a lattice consisting of the single node, which includes a 
comparison operation of two whole strings.  

 n > m gives a two node lattice where the first node matches substrings S1..m 
with T1..m and the second node  s[(m-n)..n] is matched with an empty string. 

 m > n will give a two node lattice where the first node is S1..n matching with 
T1..n and the second node is the empty string matching with T(n-m)..m. 

 

The lattices calculated for the strings "Albert Einstein" and "Archimedes" are 

shown in Figure 4.8. Figure 4.8 (a) depicts the node sizes and values calculated for the 

string neighborhood length k = 2. The partition that results, when the length k = 3, is 

shown in Figure 4.8 (b). The values of the nodes are calculated using the arithmetic 

mean method, defined below in this chapter. 

4.2.3 Lattice-based Graph Composition 

The second step of the proposed Shortest Path Edit Distance (SPED) algorithm is the 

transformation of the lattice into a directed, weighted acyclic graph. In the classic 

case, the two strings being matched are put onto the vertical and horizontal sides of 

the matrix, which is filled by the values obtained at every iteration of the string 

distance calculation. Then the edit path can be shown as a sequence of cells, starting 

at the cell corresponding to the first characters of each string to the cell located at the 

intersection of the last characters. The last cell contains the value of the edit distance 

between the two strings. Any path from the first to the last cell can have horizontal, 
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incoming edges. The source node is added at the left top corner of the graph. It does 

not have any incoming edges and is connected to the vertex (1, 1) of the graph by a 

diagonal edge, which is the single incoming edge of the vertex (1, 1). The horizontal 

and vertical edges are assigned a gap cost. During the experimental stage, the author 

used the gap cost 1 following a common approach [28]. The diagonal edge is assigned 

a value stored in a lattice cell.  The process of weight assignment is described in 

Sections 4.2.2 and 4.2.9. As described above, this value is the weight of the string 

neighborhood edit operation. The source vertex will be used as a placeholder for the 

starting point of the algorithm. 

Figure 4.9 depicts three possible cases of the graph shape: case (a) when 

strings S and T are of the same length, n = m; (b) when string S is longer than T, n>m; 

and (c) when string S is shorter than T, n<m. These three cases are important because 

they influence the graph traversal pattern as described below in Section 4.2.4. 

4.2.4 Analysis of Shortest Path Graph Algorithms 

In the SPED algorithm, the task of calculating a string distance value between two 

strings becomes a task of calculating the shortest path from the source vertex to the 

destination vertex. The destination vertex corresponds to the pair of last string 

neighborhoods of strings S and T. By design, the graph is a directed, weighted, acyclic 

graph. The most efficient algorithm to solve the shortest path problem should be 

chosen to find an optimal solution. The classical algorithms are well known:  

 Dijkstra’s algorithm—the single-source shortest path for graphs with non-
negative edges, O(|V|2) [60];  

 Floyd’s algorithm—the all-pairs shortest path for the weighted directed graph, 
O(|V|3) [61];  

 Bellman-Ford’s algorithm—the single-source shortest path that can be used 
for a weighted graph allowing the edge weights to be negative, O(|V|·|E|) [62, 
63].  
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The two most efficient algorithms that work for directed acyclic graphs and 

allow negative edge weights are the Reaching algorithm [64] and the Pulling 

algorithm [59], both working in O(n) time. 

4.2.5 Reaching and Pulling Algorithms 

The Reaching and Pulling techniques shown in Table 4.2 are similar to other dynamic 

programming algorithms. These methods assign labels to graph vertices first and then 

traverse a graph from the smallest to the largest label, computing the shortest path 

from node 1 to node k at the k-th iteration. The only difference is that the Pulling 

algorithm examines incoming edges, while the Reaching algorithm operates with 

emanating edges.  

Table 4.2  The Reaching and Pulling algorithms 

The Pulling Algorithm The Reaching Algorithm 

1. Assign labels to graph nodes. 
2. Process the vertices from the lowest to the highest label. 

3. At the k-th iteration, find 
 min(d (i) + cik)  
for all incoming edges (i, k)  

3. At the k-th iteration, find 
 min(d (k) + ckj)  
for all emanating edges (k, j)  

 

By design, each lattice node is transformed into a graph vertex. The weights of 

incoming diagonal edges are set to the lattice values of the corresponding vertices. 

Since the SPED algorithm uses the incoming edges, the choice of the Pulling 

algorithm is clearly better because it operates with the costs of incoming edges. 

The first step of the Pulling algorithm requires a preprocessing phase. Vertices 

of the graph must be marked with labels from 1 to |V| with respect to the subsequent 

calculations. The direction of the emanating edges should be taken into consideration 

when assigning a label. The labels are set in a zigzag pattern for every vertex of the 

graph in a way that does not leave behind any unlabeled vertex. 
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The pattern (2) is shown in Figure 4.10 (a). Here, the right side moves are 

from node 16 to node 17 and from node 20 to node 21.  The pattern (3) is shown in 

Figure 4.10 (b). Here, the down side moves are from 16 to 17 and from 20 to 21. The 

trivial pattern (1) is a subset of (2) and (3). For each lattice 6x4 (1) and 4x6 (2) shown 

in the figures, the trivial pattern is the sub-section of the path that starts at vertex 0 

and stops at vertex 16. 

4.2.6 Winkler-like Re-scorer 

In the last step of the SPED algorithm, its value is adjusted by applying the Winkler-

like re-scorer as follows. The two strings are checked for the presence of a common 

prefix. When several successive initial characters of both strings match, the SPED 

value for these strings is computed as shown in formula (4.11): 

  )'1(1.0' SPEDprefLengthSPEDSPED     (4.11)

where SPED' is the value of the SPED algorithm before the application of the 

Winkler-like re-scorer, prefLength is the length of the common prefix, and SPED 

denotes the final score for the two strings. 

The original re-scorer by Winkler examined match or non-match of the four 

initial characters of both strings. In the case of SPED, the re-scorer does not stop at 

the fourth character. The Winkler-like re-scorer proceeds up to the 100th character, 

unless there is a mismatch or the end of one of the strings is encountered.  

4.2.7 SPED Algorithm Complexity 

The complexity of the new algorithm is estimated as )( 2nO . Its main steps are shown 

in Table 4.3. Even though it has the same computational time as the MRFED 

algorithm, the SPED algorithm shows a faster performance in practice. It is possible 
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4.2.8 Parameters Adjusting Performance 

It is possible to fine-tune the SPED by changing its internal parameters of the two 

following types: 

 The internal string distance which assigns weights to the string neighborhood 
edit operations. The internal metric can be selected as an existing string edit 
distance or as a new operation assigning values as the result of a similarity 
estimation of its arguments. 

 The length of the string neighborhood. This parameter allows adapting to the 
existing local dependencies in the strings, which may be unique to a given 
dataset.  

4.2.9 String Neighborhood Edit Operations Assignment 

The string neighborhood edit operations assign a weight to a pair of string 

neighborhoods. It is possible to use an existing string distance metric for weight 

assignment. In this work, the author uses the Arithmetic Mean method, described as 

follows. Within two corresponding string neighborhoods, each pair of corresponding 

characters is assigned the value 0 for a match and 1 for a mismatch. Then these values 

are added and the sum is divided by the number of pairs. Consider the example of the 

weight calculation for the two string neighborhoods "si" and "ki":  

 The pair ("s", "k") is assigned the weight of 1;  

 The pair ("s", "i") is assigned the weight of 1;  

 The pair ("s"; "k") is assigned the weight of 1;  

 The pair ("i", "i") is assigned the weight of 0; 

 Adding these four weights together, the sum of 3 is obtained;  

 The sum of 3 is divided by the number of pairs, which is 4;   

 Thus the weight for the string neighborhoods "si" and "ki" is 0.75. 
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4.3 Histogram Difference Method 

The Histogram Difference (HD) method was inspired by Wei’s work [51] where a 

histogram difference was involved at one of the steps in the Coherence Markov Edit 

Distance algorithm. The histogram is defined as an associative array, counting the 

number of occurrences of each character in a string. The implementation of the 

histogram in the Java programming language is done utilizing the hash table data 

structure. Wei used formula (4.12) to compute a HD between two strings S and T. In 

(4.12), hist is the histogram function [51], i.e. the value of the hash table for this 

argument: 

( ) ( ) (0.5 ( ( ) ( )) ( ) ( ))hist s hist t hist S hist T hist S hist T       (4.12)

In this work, a new definition of the HD is introduced in formula (4.13) below: 

( , ) ( ( ) ( ) 2( ( ) ( )))histDiff S T hist S hist T hist S hist T     (4.13)

The example of the application of formulas (4.12) and (4.13) is shown in 

Figure 4.12.  
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Figure 4.12  Two approaches to HD calculation. 
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The formula of the HD method takes the form: 

( , )

( ( ) ( ))

histDiff S T
HD

hist S hist T


  (4.14)

 

The histDiff (S,T ) function is normalized by the sum of the histograms of the 

strings S and T. This is done in order to take into account the lengths of both strings. 

The ratio is subtracted from 1 in order to comply with the specifications of the Second 

String project design. Now, when S equals T, the histDiff (S,T ) becomes 0 and HD 

becomes 1. When S and T don’t have any characters in common, histDiff (S,T) 

becomes equal to ∑(hist(S)+hist(T)) thus the numerator is equal to the denominator 

and the ratio becomes equal to 1, making HD equal to 0. 

The computational complexity of the HD method is O(n) as shown in the table 

below. 

Table 4.4  The HD Algorithm complexity 

Step Description Complexity 

1 Calculation of hist(S) O(n) 
2 Calculation of hist(T) O(n) 
3 Calculation of hist(S)∩hist(T) O(1) 
4 Summation operations O(1) 
5 Subtraction operations O(1) 
6 Deletion operations O(1) 

Total O(n) 
 

Several modifications of the HD method are introduced in this work. All the 

modifications use HD as a core method but apply difference re-scorers. In previous 

work, the SPED method used the Winkler-like re-scorer. The idea of adjusting the 

final string distance value gets broader implementation in the family of HD methods 

discussed below. 
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4.3.1 HD with Normalized Smith-Waterman Re-scorer 

This variant of the HD method uses the Smith-Waterman re-scorer normalized by the 

sum of the lengths of strings S and T. The initial HD method value is calculated using 

the formula (4.14). In the next step, the Smith-Waterman function is applied to the 

strings S and T and the obtained value is divided by the sum of the string lengths, 

|S|+|T|. The normalized Smith-Waterman value is weighted and added to the HD 

value. These steps are depicted by the formula (4.15) below: 

( , )
( , ) (1 ( , ))

| | | |

SW S T
HDSW HD S T HD S T

S T
  


 (4.15)

where HDSW is the HD method with the normalized Smith-Waterman Re-

Scorer, HD is the Histogram Difference function, and SW is the Smith-Waterman 

function. The implementation of the re-scorer shown in (4.15) ensures that the HDSW 

value lies within the [0, 1] interval. 

The computational complexity of the HDSW method is O(n2). The analysis 

behind it is as follows: The HD complexity is O(n); the complexity of the summation, 

subtraction, and deletion operations are O(1) each; the complexity of the Smith-

Waterman method is O(n2). 

4.3.2 HD with TFIDF and Jaccard Re-scorers 

This modification of the HD method utilizes two re-scorers: TFIDF and Jaccard. As in 

Section 4.3.1, the HD method is computed for the strings S and T. Then TFIDF and 

Jaccard re-scorers are applied sequentially, as show in the formulae (4.16) and (4.17) 

below. 

( , ) (1 ( , )) ( , )HDTF HD S T HD S T TFIDF S T     (4.16)

( , ) (1 ( , )) ( , )HDTFJ HDTF S T HDTF S T Jaccard S T     (4.17)
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where HDTF is the HD method after the application of the TFIDF re-scorer, 

HD is the Histogram Difference function, HDTFJ is the HD method with both the 

TFIDF and the Jaccard re-scorers applied, and Jaccard is the Jaccard function. The 

weighted application of the re-scorers guarantees that the HDTFJ value falls within 

the interval [0, 1]. 

The computational complexity of the HDTFJ method consists of the 

computational complexities of the HD method and the re-scorers contributing to the 

final value. The HD complexity is O(n), the complexity of the summation and 

subtraction operations is O(1) each. The Jaccard method complexity is O(DS,T), where 

DS,T  is the number of individual terms in the strings S and T. The TFIDF method 

complexity is O(NR + DR), where NR is the number of records in a dataset and DR is 

the total number of individual words in a dataset. Since DR > DS,T , the total 

complexity of the HDTFJ method is O(n + NR + DR). 

4.3.3  HD with the Longest Common Prefix and TFIDF Re-scorers 

The Histogram Difference with the Longest Common Prefix Re-scorer (HDLCP) 

method uses the weighted normalized longest common prefix length to adjust the 

string similarity value. The author had successfully applied the Winkler-like re-scorer 

in the past [96]. The HDLCP is the logical continuation of the previous effort, which 

had only used the first few characters to re-score the final value. 

The HDLCP utilizes the length of the longest common prefix, which is 

normalized by the length of the shortest string in the pair, min(|S|,|T|). After applying 

the longest common prefix re-scorer, the TFIDF re-scorer is employed. The formulae 

for HDLCP are given below: 

| |
' ( , ) (1 ( , ))

min(| |,| |)

LCP
HDLCP HD S T HD S T

S T
    (4.18)
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'( , ) (1 '( , )) ( , )HDLCP HDLCP S T HDLCP S T TFIDF S T     (4.19)

where HDLCP' is the HD method re-scored with the longest common prefix 

re-scorer, HD is the Histogram Difference function, and LCP is the longest common 

prefix. HDLCP is the final value of the HDLCP method after applying both re-

scorers, and TFIDF is the TFIDF function. The formula for LCP is as follows: 

1.. 1.. 1 1

1.. 1..

 IF  AND  AND min(| |,| |)

min(| |,| |) IF  AND min(| |, | |)
i i i i

i i

i S T S T i S T
LCP

S T S T i S T
   

   
 

(4.20)
 

In (4.18), the length of LCP is weighted and normalized to make sure the 

value of HDLCP falls in [0, 1]. In (4.16), the TFIDF value is weighted in a similar 

way to (4.19). 

The complexity of the HDLCP method is the combined complexities of the 

LCP and TFIDF algorithms. The LCP complexity is O(n) since in the worst case it 

stops when the end of the shorter string is reached. The TFIDF method complexity is 

O(NR + DR), where NR is the number of records in a dataset and DR is the total number 

of individual words in a dataset. Thus the total complexity of the HDLCP method is 

O(n + NR + DR). 

4.3.4 HD with the Unweighted Longest Common Prefix Re-scorer 

The Histogram Difference with the Unweighted Longest Common Prefix Re-scorer 

(HDULCP) method is similar to the HDLCP method presented in Section 4.3.3. In the 

HDULCP case, the longest common prefix is weighted differently, namely in such a 

way that it does not guarantee the final value of the HDULCP to be in the [0, 1] 

interval. The idea behind the use of the unweighted re-scorer is to give the re-scorer 

more impact on the final value. The formulae (4.21) and (4.22) define the HDULCP 

function. 
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| |
' ( , ) ( , )

min(| |,| |)

LCP
HDULCP HD S T HD S T

S T
   (4.21)

'( , ) (1 '( , )) ( , )HDULCP HDULCP S T HDULCP S T TFIDF S T     (4.22)

The HDULCP computational complexity is calculated in the same way as for 

the HDLCP method. It is O(n + NR + DR). 

4.4 Longest Approximately Common Prefix Method 

The Longest Approximately Common Prefix (LACP) method uses approximate 

histogram matches of prefixes to determine the similarity value of a pair of strings. 

Non-exact matching is performed via the Approximate Histogram Match (AHM) 

function (formula (4.23)). This function returns “true” when the histogram difference 

between prefixes of strings S and T:  

 at position (i1) is less than a threshold parameter α;  

 at position i is equal to α or the end of the shorter string is reached, i.e. 
i=min(|S|, |T|). 

 
 

1.. 1 1.. 1

1.. 1..

( , )  AND

when ( ( , )  OR
( , , )

min( , ))

otherwise

i i

i i

prefHistDiff S T

true prefHistDiff S T
AHM S T i

i S T

false




  
   


  (4.23)

 

where prefHistDiff  is a prefix histogram difference function and α is the 

threshold parameter. At the i-th character position, the histogram difference takes the 

form: 

1.. 1.. 1.. 1..( , ) | ( ) ( ) |i i i iprefHistDiff S T i hist S hist T       (4.24)
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where hist is the histogram function and i denotes the prefix length. The 

number of characters, which are common to the histograms of both prefixes, is 

subtracted from i. Then, the difference is the number of non-common characters. 

The AHM function is applied sequentially to a pair of substrings S1..i and T1..i , 

i ϵ [1..min(|S|, |T|)]. This search stops when the AHM function returns false at some 

position i or the last character of the shorter string is reached. Now, the position i  is 

the last character of the longest common prefix. Since the search is started at the first 

characters of both strings, it follows that the value i denotes the length of the longest 

approximately common prefix. A threshold value α denotes the number of allowed 

mismatches in the histograms of the prefixes S1..i and T1..i.  

At the next step, the length of the LACP is normalized by the average length 

of strings S and T to ensure that the LACP method value fits in the [0..1] interval. It is 

also possible to normalize by the length of the shorter string min (|S|, |T|) to assure a 

zero-to-one interval of method values.  

The formula for the LACP method is as follows: 

 
| |

(| | | |) / 2

prefix
LACP

S T



    (4.25)

where |prefix| is the length of the longest approximately common prefix and 

LACP is the value of the LACP method. The formula for |LACP| is given below: 

 | |  when AHM( , , )prefix i S T i true      (4.26)

where i denotes the prefix length.  

The expression hist(S1..i) ∩ hist(T1..i) denotes the intersection of the histograms 

of two substrings. Let’s consider the example given in Figure 4.14.  
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(a)  (b)  (с) 

Figure 4.15  Example of the histogram intersection for two UMLS terms: (a) 
“ammonium”, (b) “ammonium ion”, (c) the resulting histogram intersection. 

 

In order to get the size of the histogram intersection, the numbers in the 

resulting matrix are added together. For the case shown in Figure 4.15 (c), the size is 

(1+1+3+1+1+1)=8. 

Table 4.5  Common Prefixes in the UMLS terms 

# String Length 

S1 Ammonium 8 
S2 Ammonium_ion    12 
S3 AMMONIUM CHLORIDE 1 MG / 

CYANOCOBALAMIN 5 MCG / FERRIC 
AMMON IUM CITRATE 40 MG / FOLIC ACID 1 
MG / LYSINE HYDROCHLORIDE 100 MG / 
MAGNESIUM SULFATE 1 MG / MANGANESE 
SULFATE ANHYDROUS 1 MG / NIACIN 5 MG / 
PANTHENOL 1 MG / POTASSIUM SULFATE 1 
MG / PYRIDOXINE HYDROCHLORIDE 0.5 MG 
/ RIBOFLAVIN 1.2 MG / THIAMINE 
HYDROCHLORIDE 12 MG / ZINC SULFATE 1 
MG ORAL LIQUID [HEMERGON] 

370 

 

The normalization by the average is chosen to take into account the lengths of 

both strings. Consider the example of two pairs of strings sharing the same LACP 

shown in the Table 4.5. Strings (1) and (2) comprise the first pair, strings (1) and (3)–

the second pair. When the prefix length is normalized by the length of the shorter 

string in a pair, the greater degree of dissimilarity in the pair (1) and (3) is neglected. 
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Thus with the choice of the normalization by the shorter string length, strings (1) and 

(2) receive the same dissimilarity value as strings (1) and (3). This is obviously not 

the desired outcome. However, when normalized by the average string length, the 

LACP method takes into account the string lengths.   

Table 4.5 depicts three UMLS terms. Strings S1 and S2 are associated with the 

same concept with CUI C0002611, the string S3 belongs to a different concept with 

CUI C1816069. In the string S2, the space between the words ammonium and ion was 

replaced with the underscore character “_” for the sake of presentation. According to 

formulas (4.23)-(4.25) and the choice of α = 3, LACP(S1, S2) = 8 / ((8 + 12)·0.5) = 0.8, 

similarly LACP(S1, S3) = 8 / ((8 + 370)·0.5) = 0.042, and LACP(S2, S3) = 10 / ((12 + 

370)·0.5) = 0.052. 

4.4.1 LACP Method Algorithm 

The LACP algorithm is shown in Figure 4.16 below. The prefHistDiff function was 

described in detail in the previous section. The LACP algorithm flow is 

straightforward. It is of linear-time complexity. 

1 For i=1 to min(|S|, |T|) 

2    Begin 

3       If  prefHistDiff (S1..i, T1..i) = α Then return i 

4    End 

5 Return min(|S|, |T|) 
 

Figure 4.16  Algorithm of the LACP method. 
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4.4.2 LACP Method Complexity 

The worst-case complexity of the LACP algorithm is shown schematically in Table 

4.6.  

Table 4.6  Complexity of the LACP method 

Step Complexity 

Search for the ACP  O(n) 
Calculation of the prefHistDiff function O(n) 
Return the final value O(1) 
Total complexity O(n) 

 

With the O(n) worst-case complexity, the LACP method performed faster 

compared to other well-known methods in every experiment conducted. These and 

other results will be shown below in Chapter 5, Evaluation. 
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CHAPTER 5  

EVALUATION 

 
 

5.1 Experimental Environment 
 
5.1.1 Benchmark Suite 
 
The open-source Java toolkit Second String [28] was used as the experimental test bed. 

Second String consists of several Java packages, which implement blockers, string 

distances, and a routine to perform experiments.  

The blockers are needed to reduce the problem size of duplicate detection or 

clustering tasks. The blockers are methods which remove a large portion of 

approximately dissimilar record pairs from consideration and leave a minimal subset of 

approximately similar records in a given dataset [97, 98]. The initial problem size is 

measured by the total number of record pairs in a given dataset. As an example, the 

Cartesian product of a dataset with 5,000 records produces 2.5·107 pairs of records. A 

problem size of this kind makes it impossible to perform evaluation in a reasonable 

amount of time. This is rectified by using blockers.  

Second String includes implementations of well-known string similarity metrics 

such as the distance metrics used in the evaluation described in Section 2.4: Jaccard, Jaro, 

Jaro-Winkler, Levenshtein, Monge-Elkan, Needleman-Wunsch, Smith-Waterman, Soft 

TFIDF, and TFIDF. Several datasets are also included in the toolkit. The following 

datasets were used in the experiments: Animals, Birds, Census, Parks, and Restaurants. 

The routine to perform experiments implements the benchmarking methodology 

described in detail below in Section 5.1.2. 
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Table 5.1  Record Pairs from the Candidate Set of the Parks Dataset 

Record 1 Record 2 Correct Pair 
Marker 

Richmond NB Park Richmond NBP True 

Sequoia and Kings Canyon NP Sequoia & Kings Canyon NP True 

Catocin Mtn. Park Catoctin Mountain Park True 

Jean Lafitte NHP & NPRES Jean Lafitte NHP & Preserve True 

Colorado NM Coronado NM False 

Acadia NP Arches NP False 

Bighorn Canyon NRA Bryce Canyon NP False 
 

When the blocking process is completed, a duplicate detection or clustering 

experiment is performed using each of the selected string similarity functions. The 

type of the experiment is determined by applying either the clustering or duplicate 

detection blocker. 

Second String assigns a string similarity value to each pair of records in the 

matching set. When the experiment is completed, the values of the measures selected 

in the “scenario” file are computed and displayed for analysis. 

During the evaluation, four available measures in the Second String toolkit 

were selected for computation: execution time, average precision, maximum F1, and 

precision-recall data used for plotting precision-recall charts. 

A stemming algorithm was applied to the dataset records during the 

experiments. The strings were stripped of the leading and trailing spaces, multiple 

repeating spaces were replaced with a single space, and the strings were converted to 

lower case. 
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5.2 Evaluation of Duplicate Detection in Life and Social Sciences Data Sources 

To compare the obtained results, the author built tables aligning average precision, 

maximum F1, and execution time for the evaluated metrics. Higher values of average 

precision and maximum F1 gained by a string similarity metric indicate better 

performance. Lower values for execution time also indicate a better result. On the 

precision-recall curves, better metrics show higher values of precision at more recall 

points. 

In this paper, the author selected ten string metrics to evaluate performance. 

These metrics are as follows: 

 Information Distance; 

 Jaccard; 

 Jaro; 

 Jaro-Winkler; 

 Levenshtein; 

 Monge-Elkan; 

 Needleman-Wunsch; 

 Smith-Waterman; 

 Soft TFIDF; 

 TFIDF.  

This selection was based on the popularity of the techniques in the literature as 

well as their relevance to this research. 

5.2.1 Average Precision for Duplicate Detection Experiments 

In this section, the evaluation results of the different methods used in duplicate 

detection tasks are described for the Life and Social Sciences datasets. The methods 

proposed in this work achieve the best values of average precision on three datasets 

out of five. On the remaining two datasets, the new methods produce top results 

approaching those of the best performers. 
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For the Animals dataset, the three best methods with the same values of 

average precision (0.95) are Jaccard, TFIDF and Soft TFIDF. They are followed by 

the three methods proposed in this work: HDTFJ with 0.93, HDLCP with 0.83, and 

HDSW with 0.64. The rest of the techniques demonstrated numbers close to zero.  

For the Birds dataset, the best values of average precision (0.81) belong to 

TFIDF and Soft TFIDF. The next best results of 0.75 are of the HDTFJ and Jaro 

methods. The rest of the functions demonstrate similar numbers, except for the 

HDULCP and Information Distance methods, which are worse. 

The best average precision of 0.94 on the Census dataset is achieved using the 

HDSW metric.  It is followed by Smith-Waterman with 0.92, and Levenshtein and 

Needleman-Wunsch both measuring 0.90. 

Table 5.2  Average Precision for Duplicate Detection Experiments 

Metric 
Dataset 

Animals Birds Census Parks Restaurants

Information Distance 0.01 0.13 0.05 0.05 0.00 
Jaccard 0.95 0.73 0.40 0.87 0.98 
Jaro 0.06 0.75 0.73 0.94 0.92 
Jaro-Winkler 0.04 0.74 0.71 0.95 0.93 
Levenshtein 0.05 0.74 0.90 0.87 0.71 
Monge-Elkan 0.08 0.71 0.76 0.95 0.75 
Needleman-Wunsch 0.05 0.74 0.90 0.87 0.71 
Smith-Waterman 0.09 0.43 0.92 0.81 0.86 
Soft TFIDF 0.95 0.81 0.38 0.96 0.99 
TFIDF 0.95 0.81 0.38 0.96 0.99 
HDULCP 0.13 0.10 0.65 0.64 1.00 
HDLCP 0.83 0.72 0.82 0.96 0.99 
HDSW 0.64 0.72 0.94 0.94 0.89 
HDTFJ 0.93 0.75 0.74 0.95 0.98 

 

On the Parks dataset, three methods obtain the same best value of average 

precision: HDLCP, TFIDF, and Soft TFIDF. The next closest value of 0.95 is 
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achieved by the HDTFJ, Jaro-Winkler, and Monge-Elkan methods. The third best 

value of 0.94 belongs to the HDSW and Jaro methods. 

On the Restaurants dataset, the best possible value of 1.00 is reached by the 

HDULCP method. The second best number is 0.99, produced by the HDLCP, TFIDF, 

and Soft TFIDF methods. The next best result of 0.98 belongs to HDTFJ and Jaccard. 

5.2.2 Maximum F1 for Duplicate Detection Experiments 

The four HD-based methods achieve the best values of the F1 metric on four datasets: 

0.90 for the HDTFJ method on the Animals dataset, 0.88 for the HDSW method on 

the Census data, 0.95 by the HDLCP method on the Parks dataset, and 0.99 by the 

HDULCP method on the Restaurant data. On the Birds dataset, the best number of 

0.86 belongs to the Jaccard method, which is closely approached by the following  

methods developed in this research: HDTFJ with 0.85, HDLCP and HDSW with 0.84. 

Table 5.3  Maximum F1 for Duplicate Detection Experiments 

Metric 
Dataset 

Animals Birds Census Parks Restaurants

Information Distance 0.04 0.29 0.10 0.14 0.01 
Jaccard 0.90 0.86 0.57 0.88 0.94 
Jaro 0.12 0.82 0.69 0.91 0.90 
Jaro-Winkler 0.09 0.82 0.65 0.92 0.94 
Levenshtein 0.08 0.82 0.83 0.88 0.72 
Monge-Elkan 0.13 0.85 0.70 0.94 0.75 
Needleman-Wunsch 0.08 0.82 0.83 0.88 0.72 
Smith-Waterman 0.15 0.54 0.85 0.77 0.81 
Soft TFIDF 0.90 0.84 0.52 0.94 0.95 
TFIDF 0.90 0.84 0.52 0.94 0.95 
HDULCP 0.31 0.29 0.65 0.85 0.99 
HDLCP 0.79 0.84 0.75 0.95 0.96 
HDSW 0.74 0.84 0.88 0.93 0.83 
HDTFJ 0.90 0.85 0.73 0.94 0.95 
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5.2.3 Execution Time for Duplicate Detection Experiments 

The two fastest algorithms are the Jaro method, which requires the shortest time on 

the Animals, Birds, and Parks datasets and the Jaccard method, which has the best 

timing for the Census and Restaurants datasets. The Monge-Elkan and Information 

Distance metrics are the slowest in most cases. The Levenshtein and Needleman-

Wunsch metrics demonstrate similar numbers because they are, in fact, similar 

techniques. 

Table 5.4  Execution Time in Seconds for Duplicate Detection Experiments 

Metric 
Dataset 

Animals Birds Census Parks Restaurants

Information Distance 3.50 0.42 7.57 1.25 40.03 
Jaccard 0.22 0.02 0.15 0.07 1.99 
Jaro 0.18 0.01 0.44 0.05 2.87 
Jaro-Winkler 0.96 0.06 2.44 0.45 2.92 
Levenshtein 1.32 0.07 5.58 0.67 37.31 
Monge-Elkan 3.36 0.16 11.85 1.10 87.64 
Needleman-Wunsch 1.33 0.07 5.57 0.37 37.31 
Smith-Waterman 1.50 0.07 5.87 1.40 39.30 
Soft TFIDF 0.99 0.04 1.17 0.37 23.28 
TFIDF 0.28 0.02 0.22 0.08 2.98 
HDULCP 2.20 0.12 1.37 0.76 12.34 
HDLCP 1.75 0.09 1.23 0.56 12.54 
HDSW 3.24 0.16 2.50 0.86 60.97 
HDTFJ 2.02 0.11 1.44 0.62 15.68 

 

5.2.4 Precision-Recall Curves for Duplicate Detection Experiments 

The figures depicting precision-recall curves for duplicate detection experiments in 

the life and social sciences domain are shown in Appendix A. These charts correlate 

well with the average precision data shown in Table 5.2 but provide a more detailed 

outlook. Each of the figures in Appendix A depicts a precision-recall curve for one of 

the fourteen string metrics applied to one of the five datasets.  
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The precision-recall curves are an easy visual way to estimate an algorithm’s 

performance. The general way to interpret a precision-recall chart is based on the 

location of a curve. When the curve goes through the lower-left section of the graph, 

then the method's overall performance is poor. In contrast, when the curve goes 

though the top right portion of the chart, the method's overall performance is good. 

On each of the charts, the horizontal axis shows the recall points from 0.0 to 1.0 and 

the vertical axis measures the interpolated average precision values, also from 0.0 to 

1.0. 

Figures A.1 and A.2 in Appendix A distinctively show that five string metrics 

have the best performance on the Animals dataset. These are Jaccard, Soft TFIDF, 

TFIDF, HDTFJ, and HDLCP. The pattern of the HDSW indicates worse results 

compared to the five leaders. The rest of the methods are far behind.  

Figures A.3 and A.4 (see Appendix A) depict the precision-recall curves of the 

fourteen string similarity metrics for the Birds dataset. The curves of the Information 

Distance and HDULCP methods indicate low performance. The Smith-Waterman 

chart reflects moderate results. On the other hand, the rest of the methods have similar 

curves which indicate above average performance. 

The next set of charts, shown in Figures A.5 and A.6 in Appendix A, portray 

the evaluation on the Census dataset. It is easy to notice that the HDSW curve has the 

highest precision values at the greatest number of recall points. It is followed by the 

similar curves of the Levenshtein, Needleman-Wunsch, and Smith-Waterman 

methods. The worst precision-recall dynamics belongs to Information Distance, 

TFIDF, and Soft TFIDF. These three curves have a similar trajectory, although the 

Information Distance has the deeper decrease of precision at the 0.1 point of recall. 
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Figures A.7 and A.8 (see Appendix A) portray the precision-recall charts for 

the Parks dataset. The pattern of performance of the string similarity metrics changes 

again as the characteristics of the dataset change. The eight metrics demonstrating 

excellent results and almost identical curves are the Jaro, Jaro-Winkler, Monge-Elkan, 

Soft TFIDF, TFIDF, HDLCP, HDSW, and HDTFJ methods. For these metrics, 

precision drops at the 0.9 recall point. The Jaccard, Levenshtein, and Needleman-

Wunsch curves show a similar pattern but their precision drops occur at the 0.8 recall 

value. The Smith-Waterman and HDULCP curves lie lower on the chart, indicating 

lower performance. The Information Distance shows the worst performance.  

The evaluation of the various distance metrics on the Restaurants dataset is 

shown in Figures A.9 and A.10 in Appendix A. The best performance is demonstrated 

by the HDULCP method. Its curve goes through the highest values of the precision up 

to 0.9 of recall and then drops insignificantly. Several methods have similar curves, 

namely HDLCP, TFIDF, Soft TFIDF, HDTFJ, and Jaccard. The Information Distance 

curve shows the worst performance at all recall points. 

5.3 Evaluation of Clustering on Life and Social Sciences Data Sources 

This section presents the evaluation of the selected string similarity metrics on the life 

and social sciences datasets for the clustering tasks. Four methods developed in this 

dissertation are benchmarked against the previously introduced ten methods of other 

researchers. In each of the Animals, Census, Parks, and Restaurants datasets, one of 

the proposed methods demonstrates superior performance in terms of average 

precision and maximum F1. On the Birds dataset, three proposed methods obtain 

superior values. 
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5.3.1 Average Precision for Clustering Experiments 

The four HD-based methods achieve the best values of average precision on four 

datasets during the clustering experiments: 0.54 for the HDTFJ on the Animals 

dataset, 0.46 by the HDSW on the Census dataset, 0.93 by the HDLCP on the Parks 

dataset, and 0.98 by the HDULCP on the Restaurants dataset.  

On the Birds dataset, the HDTFJ, HDSW, and HDLCP methods obtain 0.71, 

0.69, and 0.69 values of average precision respectively. These values are very close to 

the best value of 0.72 achieved by Jaro, Jaro-Winkler, TFIDF and Soft TFIDF. Other 

methods with superior performance are Jaccard (0.54) on the Animals data; Monge-

Elkan (0.91), TFIDF (0.90), Soft TFIDF (0.90), HDSW (0.90), and HDTFJ (0.90) on 

the Parks dataset; TFIDF (0.98), Soft TFIDF (0.98), HDLCP (0.97), and HDTFJ 

(0.96) on the Restaurant data. 

 Table 5.5  Average Precision for Clustering Experiments 

Metric 
Dataset 

Animals Birds Census Parks Restaurants

Information Distance 0.01 0.02 0.02 0.02 0.00 
Jaccard 0.54 0.71 0.12 0.82 0.94 
Jaro 0.23 0.72 0.26 0.89 0.76 
Jaro-Winkler 0.23 0.72 0.26 0.89 0.89 
Levenshtein 0.24 0.71 0.37 0.81 0.54 
Monge-Elkan 0.07 0.69 0.27 0.91 0.49 
Needleman-Wunsch 0.24 0.71 0.37 0.81 0.54 
Smith-Waterman 0.25 0.19 0.38 0.61 0.32 
Soft TFIDF 0.37 0.72 0.11 0.90 0.98 
TFIDF 0.37 0.72 0.11 0.90 0.98 
HDULCP 0.01 0.02 0.24 0.48 0.98 
HDLCP 0.42 0.69 0.24 0.93 0.97 
HDSW 0.26 0.69 0.46 0.90 0.71 
HDTFJ 0.54 0.71 0.23 0.90 0.96 
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5.3.2 Maximum F1 for Clustering Experiments 

The four HD-based methods attain the best values of the maximum F1 metric on four 

datasets during the clustering experiments: the HDTFJ method (0.66) on the Animals 

dataset, the HDSW method (0.65) on the Census dataset, the HDLCP method (0.92) 

on the Parks dataset, and the HDULCP method (0.95) on the Restaurants dataset. On 

the Birds dataset, the HDLCP and HDSW methods achieve a maximum F1 value of 

0.84, which is the second best result after the Monge-Elkan method (0.85). The 

HDTFJ result on the Birds data is 0.83. 

Other superior results are achieved as follows:  Jaccard (0.66) on the Animals 

dataset;  Jaccard, TFIDF, and Soft TFIDF register 0.84 each on the Birds dataset; 

HDTFJ, TFIDF, and Soft TFIDF achieve 0.91 each on the Parks data, while HDSW 

obtains 0.90; TFIDF along with Soft TFIDF achieve 0.94 of maximum F1 on the 

Restaurant data, followed by HDLCP (0.93) and HDTFJ (0.92). 

Table 5.6  Maximum F1 for Clustering Experiments 

Metric 
Dataset 

Animals Birds Census Parks Restaurants

Information Distance 0.03 0.05 0.06 0.08 0.01 
Jaccard 0.66 0.84 0.28 0.86 0.90 
Jaro 0.36 0.81 0.41 0.88 0.73 
Jaro-Winkler 0.36 0.80 0.41 0.88 0.88 
Levenshtein 0.37 0.80 0.56 0.86 0.61 
Monge-Elkan 0.28 0.85 0.44 0.89 0.53 
Needleman-Wunsch 0.37 0.80 0.56 0.86 0.61 
Smith-Waterman 0.35 0.32 0.58 0.62 0.43 
Soft TFIDF 0.53 0.84 0.26 0.91 0.94 
TFIDF 0.53 0.84 0.26 0.91 0.94 
HDULCP 0.04 0.07 0.32 0.72 0.95 
HDLCP 0.61 0.84 0.37 0.92 0.93 
HDSW 0.37 0.84 0.65 0.90 0.70 
HDTFJ 0.66 0.83 0.36 0.91 0.92 
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5.3.3 Execution Time for Clustering Experiments 

The fastest methods on all the five life and social sciences datasets during clustering 

experiments are the Jaro and Jaro-Winkler methods, followed by Jaccard and TFIDF. 

The Information Distance and Monge-Elkan turn out to be the slowest similarity 

metrics for this type of experiment. The most significant difference in execution time 

appears on the Restaurant dataset evaluation. This dataset does not have the highest 

number of records, compared to the other evaluated data sources, but its average 

record length is the longest. This characteristic explains the observation of an 

increased execution time. 

Table 5.7  Execution Time in Seconds for Clustering Experiments 

Metric 
Dataset 

Animals Birds Census Parks Restaurants

Information Distance 63.53 6.57 12.51 11.29 96.00 
Jaccard 1.39 0.11 0.45 0.20 6.28 
Jaro 0.91 0.08 1.20 0.13 8.25 
Jaro-Winkler 0.91 0.08 1.19 0.13 8.27 
Levenshtein 6.40 0.55 13.31 0.92 93.82 
Monge-Elkan 31.78 2.68 51.76 4.49 450.17 
Needleman-Wunsch 6.33 0.54 13.26 0.92 93.17 
Smith-Waterman 7.25 0.62 14.87 1.06 103.80 
Soft TFIDF 5.42 0.48 3.25 1.00 107.12 
TFIDF 2.10 0.19 0.77 0.37 11.31 
HDULCP 6.98 0.58 2.12 0.94 22.60 
HDLCP 6.18 0.57 2.13 0.93 23.05 
HDSW 11.53 0.95 4.22 1.54 111.02 
HDTFJ 7.15 0.63 2.48 1.11 28.41 

 

5.3.4 Precision-Recall Curves for Clustering Experiments 

The figures with precision-recall curves for clustering experiments in the life and 

social sciences domain are shown in Appendix B. The interesting fact is that most of 

the similarity metrics have similar shapes of precision-recall curves on each particular 
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dataset, varying by the degree of steepness and the recall point at which a precision 

drop occurs. This can be explained by the varying composition and characteristics of 

each particular dataset. 

Figures B.1 and B.2 in Appendix B show the precision-recall charts for the 

clustering experiments on the Animals dataset. Except for the Information Distance 

and the HDULCP methods, which have the worst trajectories, other similarity 

functions have curve shapes indicating moderate performance. The Smith-Waterman 

and Monge-Elkan curves are smoother and the precision drops occur earlier, resulting 

in moderate performances. The Jaccard and HDTFJ curves have better shapes 

implying a better performance compared to the rest of the metrics.  

In the Figures B.3 and B.4, the precision-recall charts for the Birds dataset are 

shown. Except for two outliers, Information Distance and HDULCP, the rest of the 

precision-recall curves represent very similar performances for all of the methods. 

Again, in Figures B.5 and B.6 (Appendix B), precision-recall curves follow a 

similar pattern. Nevertheless, the HDSW method gets the highest precision values at 

most of the recall points when compared pairwise to every other method. This fact 

correlates well with the average precision data in Section 5.3.1. The HDULCP 

method starts with precision 1.0 at recall point 0.0, but its average precision is the 

same as that of the HDLCP method. 

The Jaro, Jaro-Winkler, Monge-Elkan, Soft TFIDF, TFIDF, HDLCP, HDSW, 

and HDTFJ methods have similar trajectories in their precision-recall curves, as 

depicted in Figures B.7 and B.8 in Appendix B. These methods are followed by a 

second group consisting of the Jaccard, Levenshtein, and Needleman-Wunsch 

methods. Both the Smith-Waterman and HDULCP curves show a moderately good 

performance, though it is not clear from the charts, which of these methods has a 
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better curve. The average precision values given in Table 5.5 clearly demonstrate this 

case: the Smith-Waterman method (0.61) outperforms the HDULCP (0.48) method. 

The Information Distance method offers an inferior performance on this dataset as 

well. 

Figures B.9 and B.10 clearly demonstrate the superior precision-recall 

performances for the HDULCP, TFIDF, and Soft TFIDF methods. It is easy to see 

that the next best values belong to the HDLCP and HDTFJ methods. 

5.4 Evaluation of Duplicate Detection on Bioinformatics Data Sources 

This section represents the results of the application of string similarity metrics to 

bioinformatics data for the duplicate detection tasks. The SPED method is 

benchmarked against ten selected similarity functions. The SPED method achieves 

the best possible results in terms of average precision and maximum F1. The SPED 

method outperforms all the selected methods in maximum F1 on all datasets and in 

average precision on three out of five datasets. 

5.4.1 Average Precision for Duplicate Detection Experiments 

This section presents experimental results expressed in average precision measures of 

the selected string similarity functions in the bioinformatics domain for the duplicate 

detection task. The SPED method, originally introduced in the authors’ previous work 

[96, 123, 124], achieves the highest possible values on all five datasets and 

outperforms the rest of the benchmarked methods on three datasets. 

The SPED, Soft TFIDF, and TFIDF methods achieve the maximum possible 

1.0 value of average precision on the Buchnera Aphidicola Cedri Cinara and 

Paremecium Tetraurelia datasets. On the Bacteriophage T4, Carsonella Ruddii, and 
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Hyperthermus Butylicus, the SPED methods outperforms both the TFIDF and Soft 

TFIDF methods as well as the rest of the similarity metrics. 

Table 5.8  Average Precision for Duplicate Detection Experiments 

Metric 

Dataset 
Buchnera 

Aphidicola 
Cedri 

Cinara 

Bacteriophage
T4 

Carsonella
Ruddii 

Hyperthermus 
Butylicus 

Paramecium
Tetraurelia

Information 
Distance 

0.02 0.09 0.06 0.01 0.08 

Jaccard 0.65 0.50 0.66 0.61 0.74 
Jaro 0.28 0.41 0.31 0.26 0.28 
Jaro-Winkler 0.37 0.67 0.32 0.32 0.31 

Levenshtein 0.56 0.58 0.57 0.56 0.62 
Monge-Elkan 0.54 0.55 0.57 0.55 0.62 
MRFED 0.55 0.56 0.57 0.56 0.63 

Needleman-
Wunsch 

0.56 0.58 0.57 0.56 0.62 

Smith-
Waterman 

0.52 0.53 0.48 0.42 0.53 

Soft TFIDF 1.00 0.97 0.99 0.99 1.00 
TFIDF 1.00 0.97 0.99 0.99 1.00 
SPED 1.00 1.00 1.00 1.00 1.00 

 

The MRFED method gains better results than the Information Distance, Jaro 

and Smith-Waterman methods on all datasets. Also, it surpasses Jaro-Winkler and 

Monge-Elkan on most datasets. 

5.4.2 Maximum F1 for Duplicate Detection Experiments 

Table 5.9 demonstrates that SPED surpasses the rest of the methods for duplicate 

detection. It is closely followed by the TFIDF and Soft TFIDF methods.  

The MRFED method introduced in the authors’ previous work [49, 50] 

demonstrates moderate results, outperforming the Information Distance, Jaro, and 

Smith-Waterman methods on all datasets. The MRFED method outperforms Jaro-

Winkler on all the datasets, except for the Bacteriophage T4 dataset. 
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Table 5.9  Maximum F1 for Duplicate Detection Experiments 

Metric 

Dataset 
Buchnera 

Aphidicola 
Cedri 

Cinara 

Bacteriophage
T4 

Carsonella
Ruddii 

Hyperthermus 
Butylicus 

Paramecium
Tetraurelia

Information 
Distance 

0.06 0.17 0.13 0.03 0.16 

Jaccard 0.67 0.62 0.72 0.70 0.79 
Jaro 0.35 0.51 0.36 0.35 0.37 
Jaro-Winkler 0.40 0.69 0.37 0.39 0.39 

Levenshtein 0.62 0.63 0.65 0.66 0.67 
Monge-Elkan 0.63 0.63 0.65 0.65 0.68 
MRFED 0.62 0.62 0.64 0.65 0.69 

Needleman-
Wunsch 

0.62 0.63 0.65 0.66 0.67 

Smith-
Waterman 

0.57 0.51 0.57 0.45 0.59 

Soft TFIDF 0.98 0.93 0.98 0.97 0.99 
TFIDF 0.98 0.93 0.98 0.97 0.99 
SPED 1.00 1.00 1.00 1.00 1.00 

 

5.4.3 Execution Time for Duplicate Detection Experiments 

The shortest execution time during the duplicate detection experiments on the 

bioinformatics datasets is demonstrated by the Jaccard method. The TFIDF time is 

second best. It differs from the Jaccard by a factor of approximately 2.0. It is worth 

noting that the SPED method improves the execution time of the author’s previous 

work, the MRFED method. The longest execution time is exhibited by MRFED, the 

next result belongs to the Monge-Elkan, followed by the SPED, Smith-Waterman, and 

Levenshtein techniques. 
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Table 5.10  Execution Time for Duplicate Detection Experiments 

Metric 

Dataset 
Buchnera 

Aphidicola 
Cedri 

Cinara 

Bacteriophage
T4 

Carsonella
Ruddii 

Hyperthermus 
Butylicus 

Paramecium
Tetraurelia

Information 
Distance 

517 22 45 812 51 

Jaccard 240 5 26 465 32 
Jaro 880 16 85 1582 115 
Jaro-Winkler 880 16 86 1593 116 

Levenshtein 12047 222 1196 21727 1663 
Monge-Elkan 46591 856 4575 86964 6638 
MRFED 73209 1470 7546 170669 13744 

Needleman-
Wunsch 

9973 183 985 18293 1394 

Smith-
Waterman 

12940 241 1303 23503 1775 

Soft TFIDF 5585 96 525 9415 643 
TFIDF 478 10 50 877 60 
SPED 26388 483 2584 47890 3720 

5.4.4 Precision-Recall Curves for Duplicate Detection Experiments 

Appendix C contains precision-recall charts for the duplicate detection experiments 

on the bioinformatics datasets. Figures C.1, C.2, C.3, C.4, and C.5 display precision-

recall charts for the twelve string similarity metrics selected for this type of 

experiments. 

The methods exhibit almost identical curve trajectories, insignificantly varying 

from dataset to dataset. An interesting observation concerns SPED, TFIDF, and Soft 

TFIDF. On every chart, SPED gets 1.0 precision at every recall point. The TFIDF and 

Soft TFIDF methods experience a slight precision drop at the recall of 1.0. Still, this 

drop does not affect their average precision on the Buchnera Aphidicola Cedri Cinara 

and Paramecium Tetraurelia datasets, but decreases the precision on average for the 

rest of the data sources. 
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5.5 Evaluation of Clustering on Bioinformatics Data Sources 

This section describes the results of the evaluation of string similarity functions for 

the clustering task applied to the bioinformatics data.  The evaluation is done by 

taking the same approach of measuring the average precision, maximum F1, and 

execution time, as well as plotting the precision-recall charts. This section presents the 

experimental results for the following methods: Information Distance, Jaccard, Jaro, 

Jaro-Winkler, Levenshtein, Monge-Elkan, MRFED, Needleman-Wunsch, Smith-

Waterman, Soft MRFED, Soft TFIDF, TFIDF, and SPED. 

Similar to the duplicate detection experiments presented in Section 5.4, the 

SPED method achieves the highest possible values for average precision and 

maximum F1 on all the evaluated bioinformatics datasets. SPED outperforms the rest 

of the methods in terms of maximum F1 on all the datasets. It surpasses other 

evaluated methods on the average precision measure for three datasets, whereas the 

TFIDF and Soft TFIDF methods have matching values of average precision on two 

datasets. 

5.5.1 Average Precision for Clustering Experiments 

The SPED method demonstrated the maximum possible value of 1.0 average 

precision on all the datasets in the clustering experiments. The TFIDF and Soft TFIDF 

methods achieved the best value of 1.0 on two datasets and showed top results on the 

other three data sources. The predecessor of the SPED method, MRFED, 

demonstrated moderate performance. Its average precision values lie in the [0.5, 0.6] 

interval. 

Taking a closer look at the rest of the methods, Jaccard achieves a superior 

value for average precision on the Paramecium Tetraurelia, Carsonella Ruddii, 
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Hyperthermus Butylicus, and Buchnera Aphidicola Cedri Cinara datasets. The Jaro-

Winkler method has the best average precision among the remaining set of metrics on 

the Bacteriophage T4. 

 

Table 5.11  Average Precision for Clustering Experiments 

Metric 

Dataset 
Buchnera 

Aphidicola 
Cedri 

Cinara 

Bacteriophage
T4 

Carsonella
Ruddii 

Hyperthermus 
Butylicus 

Paramecium
Tetraurelia

Information 
Distance 

0.02 0.07 0.05 0.01 0.06 

Jaccard 0.64 0.47 0.65 0.59 0.73 
Jaro 0.27 0.39 0.29 0.24 0.25 
Jaro-Winkler 0.35 0.65 0.30 0.30 0.28 

Levenshtein 0.54 0.55 0.55 0.55 0.59 
Monge-Elkan 0.54 0.54 0.56 0.54 0.59 
MRFED 0.54 0.53 0.52 0.50 0.61 

Needleman-
Wunsch 

0.54 0.55 0.55 0.55 0.59 

Smith-
Waterman 

0.51 0.51 0.46 0.39 0.51 

Soft TFIDF 1.00 0.95 0.97 0.98 1.00 
TFIDF 1.00 0.95 0.97 0.98 1.00 
SPED 1.00 1.00 1.00 1.00 1.00 

 

The MRFED method outperforms the Information Distance, Jaro, Jaro-

Winkler, Levenshtein, Monge-Elkan, Needleman-Wunsch and Smith-Waterman 

methods on the Paramecium Tetraurelia dataset. The MRFED method has better 

results than the Information Distance, Jaccard, Jaro, and Smith-Waterman methods on 

the Bacteriophage T4. On the Carsonella Ruddii, Hyperthermus Butylicus, and 

Aphidicola Cedri Cinara datasets, MRFED achieves higher values of average 

precision than the Information Distance, Jaro, Jaro-Winkler, and Smith-Waterman 

methods. The comparison above shows that the MRFED has an average performance 
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on the Gene Ontology Annotation (GOA) datasets, though it outperforms several 

well-known string similarity metrics.  

5.5.2 Maximum F1 for Clustering Experiments 

Table 5.12 demonstrates the maximum F1 measure values for the string metrics 

evaluation performed on the GOA datasets for clustering tasks. Again, as in the case 

of the duplicate detection task for the bioinformatics datasets, SPED has the highest 

values on all the datasets. It outperforms all other evaluated metrics, though the 

TFIDF and Soft TFIDF methods show very close results. 

Table 5.12  Maximum F1 for Clustering Experiments 

Metric 

Dataset 
Buchnera 

Aphidicola 
Cedri 

Cinara 

Bacteriophage
T4 

Carsonella
Ruddii 

Hyperthermus 
Butylicus 

Paramecium
Tetraurelia

Information 
Distance 

0.06 0.16 0.12 0.03 0.14 

Jaccard 0.67 0.61 0.71 0.70 0.78 
Jaro 0.33 0.49 0.34 0.33 0.34 
Jaro-Winkler 0.39 0.66 0.35 0.37 0.36 

Levenshtein 0.62 0.63 0.64 0.66 0.65 
Monge-Elkan 0.63 0.63 0.64 0.65 0.66 
MRFED 0.62 0.62 0.58 0.49 0.67 

Needleman-
Wunsch 

0.62 0.63 0.64 0.66 0.65 

Smith-
Waterman 

0.57 0.49 0.56 0.43 0.57 

Soft TFIDF 0.98 0.91 0.93 0.95 0.98 
TFIDF 0.98 0.91 0.93 0.95 0.98 
SPED 1.00 1.00 1.00 1.00 1.00 

 

Consider the remaining ten metrics as a separate set. The Jaccard metric 

achieved the best performance on four datasets: the Parametrium Tetraurelia, 

Carsonella Ruddii, Hyperthermus Butylicus, and Buchnera Aphidicola Cedri Cinara. 
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The best performance on the Bacteriophage T4 dataset was obtained by the Jaro-

Winkler metric.  

The MRFED outperformed the following similarity metrics: 

 Information Distance, Jaro, Jaro-Winkler, Levenshtein, Monge-Elkan, 
Needleman-Wunsch, Smith-Waterman on the first dataset; 

 Information Distance, Jaccard, Jaro, Smith-Waterman on the second dataset; 

 Information Distance, Jaro, Jaro-Winkler, Smith-Waterman on the third, 
fourth, and fifth datasets. 

The MRFED method is not the best string similarity metric for duplicate 

detection on the GOA datasets but it was able to outperform several well-known 

widely used methods. 

 

5.5.3 Execution Time for Clustering Experiments 

In terms of the execution time, the Jaccard method earned the best results on all 

datasets. The TFIDF metric had the second best running time on each of the 

bioinformatics datasets.  

The MRFED method was the slowest on the first, second, third, and fifth 

datasets. Soft TFIDF showed the worst execution time on the Hyperthermus Butylicus 

dataset. The Levenshtein, Monge-Elkan, Needleman-Wunsch, and SPED methods 

were among the slowest. 

It is worth noting that an execution time shown in Table 5.13 is not a perfect 

estimate of its method's run time, as it may be skewed by the available amount of 

operating memory, processor load, and other factors affecting the experiment’s flow. 

These factors don't have any influence on the average precision, maximum F1, and 

precision-recall charts. However, one of the best ways to compare algorithm run times 

remains the analysis of their computational complexities. 
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Table 5.13  Execution Time in Seconds for Clustering Experiments 

Metric 

Dataset 
Buchnera 

Aphidicola 
Cedri 

Cinara 

Bacteriophage
T4 

Carsonella
Ruddii 

Hyperthermus 
Butylicus 

Paramecium
Tetraurelia

Information 
Distance 

1,054 91 408 3,361 249 

Jaccard 512 7 38 1,071 45 
Jaro 2,350 22 115 2,619 160 
Jaro-Winkler 1,461 23 134 2,731 160 

Levenshtein 101,068 302 1,848 34,789 2,670 
Monge-Elkan 62,463 788 4,257 72,022 6,363 
MRFED 134,595 8,529 6,565 6,969 23,036 

Needleman-
Wunsch 

21,164 382 1,920 37,285 2,665 

Smith-
Waterman 

21,346 361 1,847 33,759 2,622 

Soft TFIDF 62,385 83 429 199,743 506 
TFIDF 642 14 61 1,605 71 
SPED 65,150 508 5,244 96,405 3,845 

 

5.5.4 Precision-Recall Curves for Clustering Experiments 

Appendix D shows precision-recall charts for the string distance evaluation of 

clustering tasks on the bioinformatics datasets. Each method shows a very similar 

precision-recall curve for each of the datasets, with only slight differences. This is 

explained by the similar dataset characteristics. In all cases, except for the Information 

Distance method in Figures D.1 and D.2, curves start at the upper left corner with the 

1.0 value of precision. In almost all cases, except for SPED, TFIDF, and Soft TFIDF, 

the precision declines and reaches values close to zero at the 1.0 point of recall. 

Nevertheless, the SPED, TFIDF, and Soft TFIDF methods demonstrate 

superior performance in Figures D.1 through D.5. SPED obtains 1.0 values of 

precision at each point of recall. In Figures D.1 and D.5, the TFIDF and Soft TFIDF 

methods manage to keep up a 1.0 level of precision, up to the 0.9 point of recall and 
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experience a precision drop at the last recall point. The TFIDF and Soft TFIDF 

methods have a declining precision starting at the first point of recall and continue the 

decline up to the last point in Figures D.2, D.3, and D.4. This behavior is reflected in 

the average precision values given in Table 5.11 of Section 5.5.1. 

5.6 Evaluation of Duplicate Detection on Medical Informatics Data Sources 

The results of the string metrics evaluation for duplicate detections tasks on the 

medical informatics datasets are presented in this section. Three methods proposed by 

the author, HDLCP, HDTFJ, and LACP, are benchmarked against ten popular string 

similarity metrics. On each of the datasets, the new methods outperform the rest of the 

evaluated methods in the maximum F1 measure. In average precision, the new 

methods surpass the rest of the techniques on the second and third datasets, achieve 

superior results on the first data source, and are among the top performers on the forth 

dataset. 

5.6.1 Average Precision for Duplicate Detection Experiments 

This section shows that the new methods created in this research demonstrate superior 

values of average precision for duplicate detection tasks on the medical informatics 

datasets. For the UMLS Longest Concepts dataset, the HDLCP and HDTFJ methods, 

along with TFIDF and Soft TFIDF show a 0.25 average precision, which is the best 

value for this dataset. On the SNOMED Longest Concepts and the UMLS Most 

Frequent Concepts datasets, the LACP method excels over the other methods with 

0.84 and 0.62 values of average precision, respectively. On the SNOMED Longest 

Concepts dataset, HDLCP and HDTFJ show the second best average precision value 

of 0.72. For the SNOMED Most Frequent Concepts dataset, the TFIDF and Soft 



94 
 
 

 

TFIDF methods demonstrate the best average precision of 0.55. The closest following 

results for this dataset are shown by the HDLCP (0.52) and LACP (0.51) methods. 

Table 5.14  Average Precision for Duplicate Detection Experiments 

Metric 

Dataset 
UMLS 
Longest 
Concepts 

SNOMED 
Longest 
Concepts 

UMLS 
Most 
Frequent 
Concepts 

SNOMED 
Most Frequent 
Concepts 

Information Distance 0.00 0.00 0.04 0.03 
Jaccard 0.22 0.54 0.31 0.33 
Jaro 0.14 0.69 0.26 0.40 
Jaro-Winkler 0.14 0.69 0.44 0.45 

Levenshtein 0.18 0.54 0.16 0.21 
Monge-Elkan 0.12 0.65 0.22 0.32 
Needleman-Wunsch 0.18 0.54 0.16 0.21 

Smith-Waterman 0.09 0.34 0.18 0.16 

Soft TFIDF 0.25 0.69 0.51 0.55 
TFIDF 0.25 0.69 0.51 0.55 
HDLCP 0.25 0.72 0.50 0.52 
HDTFJ 0.25 0.72 0.36 0.42 
LACP 0.12 0.84 0.62 0.51 

 

5.6.2 Maximum F1 for Duplicate Detection Experiments 

The new methods demonstrate the highest values of maximum F1 on each medical 

informatics dataset for duplicate detection experiments. On the UMLS Longest 

Concepts dataset, the HDLCP and HDTFJ methods produce a maximum F1 value of 

0.41. For the SNOMED Longest Concepts, UMLS Most Frequent Concepts, and 

SNOMED Most Frequent Concepts data, the LACP achieves the highest values of 

maximum F1: 0.92, 0.69, and 0.61, respectively.  
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Table 5.15  Maximum F1 for Duplicate Detection Experiments 

Metric 

Dataset 
UMLS 
Longest 
Concepts 

SNOMED 
Longest 
Concepts 

UMLS 
Most 
Frequent 
Concepts 

SNOMED 
Most Frequent 
Concepts 

Information Distance 0.03 0.02 0.07 0.07 
Jaccard 0.37 0.59 0.33 0.38 
Jaro 0.28 0.77 0.33 0.49 
Jaro-Winkler 0.28 0.77 0.56 0.57 

Levenshtein 0.33 0.65 0.21 0.28 
Monge-Elkan 0.26 0.67 0.24 0.37 
Needleman-Wunsch 0.33 0.65 0.21 0.28 

Smith-Waterman 0.18 0.38 0.21 0.22 

Soft TFIDF 0.40 0.70 0.49 0.58 
TFIDF 0.40 0.70 0.49 0.58 
HDLCP 0.41 0.73 0.48 0.57 
HDTFJ 0.41 0.74 0.36 0.46 
LACP 0.27 0.92 0.69 0.61 

 

 

5.6.3 Execution Time for Duplicate Detection Experiments 

One of the newly developed methods, LACP, demonstrates the shortest execution 

time for all medical informatics datasets. This fact, in combination with the superior 

values of average precision and maximum F1, shows it to be the best method for 

duplicate detection tasks according to the performed evaluation. The LACP method 

shows the shortest execution time (in seconds) on each of the datasets, namely 202, 

40, 11, and 202 for the datasets one through four, respectively. 
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Table 5.16  Execution Time in Seconds for Duplicate Detection Experiments 

Metric 

Dataset 
UMLS 
Longest 
Concepts 

SNOMED 
Longest 
Concepts 

UMLS 
Most 
Frequent 
Concepts 

SNOMED 
Most Frequent 
Concepts 

Information Distance 1022 949 396 1022 
Jaccard 568 70 20 568 
Jaro 3637 105 25 3637 
Jaro-Winkler 3617 115 26 3617 

Levenshtein 57811 1273 301 57811 
Monge-Elkan 258502 6240 1340 258502 
Needleman-Wunsch 57982 1294 258 57982 

Smith-Waterman 58753 1444 293 58753 

Soft TFIDF 16874 806 174 16874 
TFIDF 928 132 37 928 
HDLCP 2364 247 67 2364 
HDTFJ 1947 301 82 1947 
LACP 202 40 11 202 

 

5.6.4 Precision-Recall Curves for Duplicate Detection Experiments 

Figures E.1 through E.4 illustrate precision-recall dependencies of the duplicate 

detection evaluation on medical informatics data. Each method curve follows 

approximately the same pattern from dataset to dataset. The pattern differences are in 

the degree of precision drop and the recall point where this drop occurs. The LACP 

method shows higher precision values at more recall points on most figures. 

5.6.5 LACP-Based Interactive Spell Checker 

As one more way to evaluate the LACP method’s performance, this research 

demonstrates an interactive online spell checker [126] developed by the author. It is 

based on the LACP method and checks the spelling of SNOMED CT terms. The spell 

checker is a program written in the PHP language, which connects to a MySQL 

database containing SNOMED CT terms from the 2009AB edition of the UMLS. The 
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goal of the application is to evaluate the LACP performance, so that the similarity of 

resulting sets may be estimated at a glance. It also provides a practical application that 

can be perused by non-expert end users of SNOMED CT.  

The LACP spell checker accepts an input query and interactively outputs the 

SNOMED CT terms satisfying the condition  LACP(S, T) < threshold. Here, S is an 

input query, and T is a SNOMED CT term. To reduce the running time, the algorithm 

limits the set of search terms applying length criteria as described below.  

Three modes of operation were implemented: (a) search with dynamically 

estimated parameters; (b) search with static parameters; and (c) search with user-

defined parameters. In case (a), the search is limited to the database terms meeting the 

criterion (5.1); α is defined in (5.2), threshold is 0.1. 

max(0, 3) 3
10 10

S S
S T S

   
        
   

(5.1)

In case (a), the parameter α is set individually for each pair of strings S and T 

as shown in (5.2): 

min( , )

5

S T


 
  
 

(5.2)

In case (b), α is set to 1, threshold is 0.1, and the length of a term should be in 

the following range: 

max(0, 3) 3S T S    (5.3)

In case (c), a user selects values of the parameters from the predefined sets. 

The search is restricted to terms with lengths in the interval (5.4). 

max(0, )S a T S b    (5.4)

Parameters a, b, and α are constrained to integers in the interval 1..15, and 

threshold should be selected from the set (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).  
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The spell checker returns the following information for each matching term T: 

a sequence number; the value LACP(S,T); the string representation of the similar term 

T; the CUI of the term; and the value of α.  

Table 5.17 depicts results returned for the input term “Ischemia” (case (a)); 

static search for “Haemophilia”, (case (b)); and user-defined search for “Ammonium” 

with the following parameter values a = 3, b = 3, threshold = 0.1 (case (c)). The 

example in Table 5.17 shows that the spell checker returns closely related matches for 

the input queries. 

Table 5.17  Results Returned by the Spell Checker 

Case (a): Dynamic search for “Ischemia” 

# LACP Value SNOMED CT Term CUI α 

1 0 Ischemia C0022116 2 

2 0 Ischemic C0475224 2 

3 0.06 Ischaemia C0022116 2 

4 0.06 Ischaemic C0475224 2 

 

Case (b): Static search for “Haemophilia” 

# LACP Value SNOMED CT Term CUI α 

1 0 Haemophilia C0684275 1 

2 0 Haemophilia C1321589 1 

3 0.08 Haemophilia B C0008533 1 

4 0.08 Haemophilia C C0015523 1 

5 0.08 Haemophilia A C0019069 1 

 

Case (c): User-defined search for “Ammonium”, a = 3, b = 3, 
threshold = 0.1 

# LACP Value SNOMED CT Term CUI α 

1 0 Ammonium C0002611 2 

2 0.07 Ammonia C0002607 2 
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The examples below demonstrate the dynamic search for a SNOMED CT term 

with intentionally introduced misspellings. The spell checker returns the correct term 

Vertebrate, when a single misspelling is introduced (Table 5.18, case (a)). There are 

four records returned with the correct term among them, when two characters are 

wrong (Table 5.18, case (b)). 

Table 5.18  Search Results for the Misspelled Term “Vertebrate” 

Case (a): Dynamic search for “Verteprate” 

# LACP Value SNOMED CT Term CUI α 

1 0 Vertebrate C0042567 2 

 

Case (b): Dynamic search for “Vertepratee” 

# LACP Value SNOMED CT Term CUI α 

1 0 Temperature C0039476 3 

2 0 Overtreated C1273485 3 

3 0.05 Vertebrate C0042567 2 

4 0.08 Perseveration C0233651 3 
 

The next example in Table 5.19 depicts the results of the dynamic search for 

the misspelled term Sodium Fluoride. In case (a), the search phrase has one 

misspelled character and one missing character. The correct term is returned along 

with three other terms. In case (b), the number of incorrect term is decreased by one, 

while the number of misspellings is increased to two.   
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Table 5.19  Search Results for the Misspelled Term “Sodium Fluoride” 

Case (a): Dynamic search for “Sodeum floride” 

# LACP Value SNOMED CT Term CUI α 

1 0.03 Sodium fluoride C0037508 3 

2 0.03 Sodium feredate C0357084 3 

3 0.04 Sodium folate C0304894 3 

4 0.1 Sodium feredetate C0357084 3 

 

Case (b): Dynamic search for “Sodeum Florida” 

# LACP Value SNOMED CT Term CUI α 

1 0.03 Sodium fluoride C0037508 3 

2 0.03 Sodium feredate C0357084 3 

3 0.04 Sodium folate C0304894 3 

 
The search for the misspelled term Pancreatitis is shown in Table 5.20. In both 

cases (a) and (b), two misspellings are introduced in the search phrases. The spell 

checker returns only the correct term in case (a). In case (b), the term Turkmenistan is 

returned as well as the correct term.  

Table 5.20  Search Results for the Misspelled Term “Pancreatitis” 

Case (a): Dynamic search for “Bankreatitis” 

# LACP Value SNOMED CT Term CUI α 

1 0 Pancreatitis C0030305 3 

 

Case (b): Dynamic search for “Punkreatitis” 

# LACP Value SNOMED CT Term CUI α 

1 0 Pancreatitis C0030305 3 

2 0 Turkmenistan C0041403 3 
 

The results provided by the dynamic search are positive, returning the related 

terms. Still, unrelated terms may be displayed within the search results. The spell 

checker allows to set the parameter values manually to adjust the performance. It is 
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possible to include or remove records from a resulting set by tuning the parameters in 

the Search in the User-Defined Parameters mode of the spell-checker.  

5.7 Evaluation of Clustering on Medical Informatics Data Sources 

The section presents an evaluation for clustering tasks of the selected string similarity 

metrics on medical informatics data. Similar to the duplicate detection on the medical 

informatics data shown in the Section 5.6, the proposed methods demonstrate superior 

results in the maximum F1 measure on every dataset and superior values of average 

precision on three out of four data sources. 

5.7.1 Average Precision for Clustering Experiments 

The three proposed methods achieve top performance in average precision on all 

datasets and the best results on three out of four data sources. The HDLCP and 

HDTFJ methods obtain a value of 0.25 as average precision on the UMLS Longest 

Concepts data. The same number is produced by the TFIDF and Soft TFIDF methods. 

The LACP method gets the highest scores on the SNOMED Longest Concepts data 

(0.84) and on the UMLS Most Frequent Concepts (0.62). The HDLCP and HDTFJ 

methods have the next best value of 0.72 average precision on the SNOMED Longest 

Concepts data source. The TFIDF and Soft TFIDF methods demonstrate the best 

average precision of 0.55 on the SNOMED Most Frequent Concepts dataset. The 

closest results of 0.52 and 0.51 belong to the HDLCP and LACP methods. 
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Table 5.21  Average Precision for Clustering Experiments 

Metric 

Dataset 
UMLS 
Longest 
Concepts 

SNOMED 
Longest 
Concepts 

UMLS 
Most 
Frequent 
Concepts 

SNOMED 
Most Frequent 
Concepts 

Information Distance 0.00 0.00 0.03 0.03 
Jaccard 0.21 0.46 0.30 0.31 
Jaro 0.14 0.69 0.25 0.39 
Jaro-Winkler 0.13 0.69 0.43 0.44 

Levenshtein 0.17 0.53 0.15 0.20 
Monge-Elkan 0.14 0.55 0.20 0.29 
Needleman-Wunsch 0.17 0.54 0.15 0.20 

Smith-Waterman 0.08 0.33 0.18 0.15 

Soft TFIDF 0.24 0.42 0.50 0.53 
TFIDF 0.24 0.42 0.50 0.53 
HDLCP 0.21 0.75 0.49 0.50 
HDTFJ 0.24 0.58 0.35 0.40 
LACP 0.11 0.85 0.61 0.50 

 

5.7.2 Maximum F1 for Clustering Experiments 

The proposed methods outrank the benchmarked ones on the maximum F1 measure 

on every evaluated dataset. On the first dataset, the highest score of 0.40 belongs to 

the HDTFJ method. The best scores for the second, third, and fourth data sources are 

achieved by the LACP method: 0.92, 0.69, and 0.60, respectively. 
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Table 5.22  Maximum F1 for Clustering Experiments 

Metric 

Dataset 
UMLS 
Longest 
Concepts 

SNOMED 
Longest 
Concepts 

UMLS 
Most 
Frequent 
Concepts 

SNOMED 
Most Frequent 
Concepts 

Information Distance 0.02 0.01 0.07 0.07 
Jaccard 0.36 0.56 0.33 0.37 
Jaro 0.27 0.77 0.32 0.48 
Jaro-Winkler 0.27 0.77 0.55 0.56 

Levenshtein 0.32 0.64 0.21 0.27 
Monge-Elkan 0.30 0.65 0.22 0.35 
Needleman-Wunsch 0.32 0.65 0.21 0.27 

Smith-Waterman 0.17 0.37 0.20 0.21 

Soft TFIDF 0.39 0.45 0.48 0.57 
TFIDF 0.39 0.45 0.48 0.57 
HDLCP 0.38 0.74 0.47 0.56 
HDTFJ 0.40 0.66 0.36 0.45 
LACP 0.25 0.92 0.69 0.60 

 

5.7.3 Execution Time for Clustering Experiments 

The best method in terms of the execution time for clustering experiments on the 

medical informatics datasets is LACP. The LACP method demonstrated the shortest 

time (in seconds) on each of the datasets: 644, 480, 68, and 13 for the first through 

fourth datasets, respectively.  

Considering results for all three measures shown in the Sections 5.7.1 through 

5.7.3, LACP turns out to be the best performing method for the clustering tasks on the 

evaluated medical informatics datasets. The other methods introduce in this research 

also show top performance. 

  



104 
 
 

 

 

Table 5.23  Execution Time in Seconds for Clustering Experiments 

Metric 

Dataset 
UMLS 
Longest 
Concepts 

SNOMED 
Longest 
Concepts 

UMLS 
Most 
Frequent 
Concepts 

SNOMED 
Most Frequent 
Concepts 

Information Distance 1326 1102 2555 287 
Jaccard 12347 544 119 166 
Jaro 6144 1990 221 39 
Jaro-Winkler 6315 2288 203 39 

Levenshtein 97833 28069 2099 442 
Monge-Elkan 442106 137657 21885 2174 
Needleman-Wunsch 97820 15886 2131 427 

Smith-Waterman 101092 31134 2431 579 

Soft TFIDF 369720 143353 1342 291 
TFIDF 20060 1006 221 110 
HDLCP 3139 2201 495 136 
HDTFJ 4771 2814 605 165 
LACP 644 480 68 13 

 

5.7.4 Precision-Recall Curves for Clustering Experiments 

Figures F.1 through F.4 illustrate precision-recall curves for the thirteen evaluated 

similarity functions on the medical informatics datasets for clustering tasks. Analysis 

of the charts shows that most curves start at the top value of precision at the 0.0 recall 

point and then drop to the lowest value. The better performing similarity metrics stay 

at the higher values of precision longer and experience the precision decrease later, 

compared to the worst performing metrics. The LACP method demonstrates the 

distinctively superior curve trajectories in Figures F.1 and F.4. In Figures F.2 and F.3, 

the TFIDF, Soft TFIDF, HDLCP, HDTFJ, and LACP curves lie close to one another, 

indicating similar performances. 
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CHAPTER 6    

SUMMARY 

6.1 Discussion 

Several new approximate string matching methods, designed in this research, were 

evaluated for duplicate detection and clustering tasks on datasets from the life and 

social sciences, bioinformatics, and medical informatics domains. These methods 

were benchmarked against ten well-known and widely used string similarity metrics.  

The MRFED and SPED methods developed in this research were evaluated on 

the bioinformatics datasets. The initially developed MRFED method suffered from 

moderate performance and long execution times. The SPED method was developed to 

overcome these problems, improve results and decrease run times. The SPED 

computational complexity is O(n2), which is the same as that of the MRFED method. 

The performance evaluation experiments showed a decrease in execution time by a 

constant factor. Also, the SPED method significantly improved the performance of 

the MRFED method. 

The SPED method was described in previously published work of the author. 

An evaluation of the utility of a different SPED version, without the use of the re-

scorer, on the bioinformatics domain has been presented in previously published work 

[123, 124]. The SPED method with the implementation of the Winkler-like re-scorer 

has been applied to the medical informatics domain in the past [96]. In this thesis, the 

SPED method with the re-scorer was applied to the bioinformatics domain for the first 

time. It showed outstanding results in both duplicate detection and clustering 

experiments. The SPED achieved the highest possible values of average precision and 

maximum F1 measures on all datasets used in the evaluation.
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The new HD method and its four modifications were proposed in Section 4.3. 

These methods targeted the social and life sciences domain. This family of methods 

outperformed ten well-known similarity methods used on four datasets in terms of 

average precision and maximum F1. Excellent results were obtained on the remaining 

data sources. These positive outcomes were reached for both, duplicate detection and 

clustering tasks. 

The LACP method is presented in this dissertation for the first time. It was 

designed for duplicate detection and clustering tasks in the medical informatics 

domain. Also, the HDLCP and HDTFJ methods were chosen for evaluation on 

medical informatics datasets. The HDCLP and HDTFJ methods showed the best 

average precision along with TFIDF and Soft TFIDF on the UMLS Longest Concepts 

dataset. The HDTFJ method achieved the best values of maximum F1 on the UMLS 

Longest Concepts dataset. These successful results were obtained for both duplicate 

detection and clustering tasks.  

The LACP metric outperformed the rest of the benchmarked methods in 

average precision on two out of four datasets. It showed the best numbers of 

maximum F1 on three out of four data sources. Also, the LACP method showed the 

shortest computational time on all bioinformatics datasets.  

6.2 Conclusions 

This work demonstrates the effectiveness of several new string similarity metrics for 

duplicate detection and clustering tasks in the social and life sciences, bioinformatics, 

and medical informatics domains. These methods show superior, and in certain cases 

outstanding results compared to ten well-known and widely used similarity functions.  
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Based on the experimental results obtained during this research, the author 

concludes: SPED achieves the best results applied to the bioinformatics datasets, 

LACP shows outstanding performance on the medical informatics datasets, and the 

HD-based methods demonstrate superior results on the life and social sciences 

datasets. The MRFED method, developed as the starting point of this research, does 

not produce competitive results. 

Described in detail, the motivation and research problems support the 

importance of this research in the domains of social sciences, bioinformatics and 

medical informatics. Extensive evaluations were performed, to validate the proposed 

methods. In the majority of experiments, the new methods introduced by the author in 

this work achieved the highest values of the measures used for performance 

evaluation. Two outcomes deserve particular attention: (1) the SPED method gained 

the highest possible values of average precision and maximum F1 on bioinformatics 

datasets in all performed experiments; (2) the LACP method produced the best results 

on three out of four medical informatics datasets in the shortest time with the lowest 

computational complexity of O(n). 

6.3 Future Work 

The main direction of future work is to combine the string similarity metrics 

developed by the author into one compound method. This new method should 

produce an automated decision indicating which inner method is most appropriate for 

a particular case. This decision could be based on the evaluation of a subset of a 

dataset. Tan et al. [125] empirically show that a universal method with superior 

performance in all domains does not exist. It was also shown that the performance of 

metrics varies for datasets from different domains. Thus, a compound method as 



 

 

108

described above would make a choice of which method to use, instead of using one 

specialized method. Such a combined method would save labor and time of 

terminology integrators.  

Another direction for future work lies in the modification of the SPED 

method. A new formula for histogram difference was introduced in Section 4.3. It is 

possible to use this formula to calculate the node values in connection with the SPED 

algorithm. Further evaluation of this technique is necessary to test the validity of this 

proposed approach. 
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APPENDIX A 

PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION 

EXPERIMENTS ON LIFE AND SOCIAL SCIENCES DATASETS 

This appendix provides precision-recall charts for the evaluation presented in the 

Section 5.2.4. 

 

 

Figure A.1  Precision-recall curves for the duplicate detection experiments on the 
Animals dataset. 
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Figure A.2  Precision-recall curves for the duplicate detection experiments on the 
Animals dataset. 
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Figure A.3  Precision-recall curves for the duplicate detection experiments on the 
Birds dataset. 
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Figure A.4  Precision-recall curves for the duplicate detection experiments on the 
Birds dataset. 
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Figure A.5  Precision-recall curves for the duplicate detection experiments on the 
Census dataset. 
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Figure A.6  Precision-recall curves for the duplicate detection experiments on the 
Census dataset. 
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Figure A.7  Precision-recall curves for the duplicate detection experiments on the 
Parks dataset. 
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Figure A.8  Precision-recall curves for the duplicate detection experiments on the 
Parks dataset. 
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Figure A.9  Precision-recall curves for the duplicate detection experiments on the 
Restaurants dataset. 
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Figure A.10  Precision-recall curves for the duplicate detection experiments on the 
Restaurants dataset. 
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APPENDIX B 

PRECISION-RECALL CHARTS FOR THE CLUSTERING EXPERIMENTS 

ON LIFE AND SOCIAL SCIENCES DATASETS 

This appendix provides precision-recall charts for the evaluation presented in the 

Section 5.3.4. 

 

 

 

 

Figure B.1  Precision-recall curves for the clustering experiments on the Animals 
dataset. 
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Figure B.2  Precision-recall curves for the clustering experiments on the Animals 
dataset. 
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Figure B.3  Precision-recall curves for the clustering experiments on the Birds 
dataset. 
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Figure B.4  Precision-recall curves for the clustering experiments on the Birds 
dataset. 
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Figure B.5  Precision-recall curves for the clustering experiments on the Census 
dataset. 
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Figure B.6  Precision-recall curves for the clustering experiments on the Census 
dataset. 
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Figure B.7  Precision-recall curves for the clustering experiments on the Parks 
dataset. 
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Figure B.8  Precision-recall curves for the clustering experiments on the Parks 
dataset. 
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Figure B.9  Precision-recall curves for the clustering experiments on the Restaurants 
dataset. 
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Figure B.10  Precision-recall curves for the clustering experiments on the Restaurants 
dataset. 
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APPENDIX C 

PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION 

EXPERIMENTS ON BIOINFORMATICS DATASETS 

This appendix provides precision-recall charts for the evaluation presented in the 

Section 5.4.4. 
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Figure C.1  Precision-recall curves for duplicate detection experiments on the 
Paramecium Tetraurelia dataset. 
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Figure C.2  Precision-recall curves for duplicate detection experiments on the 
Bacteriophage T4 dataset. 
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Figure C.3  Precision-recall curves for duplicate detection experiments on the 
Carsonella Ruddii dataset. 
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Figure C.4  Precision-recall curves for duplicate detection experiments on the 
Hyperthermus Butylicus dataset. 



 

 

134

 

Figure C.5  Precision-recall curves for duplicate detection experiments on the 
Buchnera Aphidicola Cedri Cinara dataset. 
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APPENDIX D 

PRECISION-RECALL CHARTS FOR CLUSTERING EXPERIMENTS ON 

BIOINFORMATICS DATASETS 

This appendix provides precision-recall charts for the evaluation presented in the 

Section 5.5.4. 

 

Figure D.1  Precision-recall curves for clustering experiments on the Paramecium 
Tetraurelia dataset. 
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Figure D.2  Precision-recall curves for clustering experiments on the Bacteriophage 
T4 dataset. 
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Figure D.3  Precision-recall curves for clustering experiments on the Carsonella 
Ruddii dataset. 
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Figure D.4  Precision-recall curves for clustering experiments on the Hyperthermus 
Butylicus dataset. 
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Figure D.5  Precision-recall curves for clustering experiments on the Buchnera 
Aphidicola Cedri Cinara dataset. 
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APPENDIX E 

PRECISION-RECALL CHARTS FOR DUPLICATE DETECTION 

EXPERIMENTS ON BIOMEDICAL DATASETS 

This appendix provides precision-recall charts for the evaluation presented in the 

Section 5.6.4. 
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Figure E.1  Precision-recall curves for duplicate detection experiments on the UMLS 
Most Frequent Concepts dataset. 
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Figure E.2  Precision-recall curves for duplicate detection experiments on the 
SNOMED Most Frequent Concepts dataset. 
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Figure E.3  Precision-recall curves for duplicate detection experiments on the UMLS 
Longest Concepts dataset. 
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Figure E.4  Precision-recall curves for duplicate detection experiments on the 
SNOMED Longest Concepts dataset. 
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APPENDIX F 

PRECISION-RECALL CHARTS FOR CLUSTERING EXPERIMENTS ON 

BIOMEDICAL DATASETS 

This appendix provides precision-recall charts for the evaluation presented in the 

Section 5.7.4. 
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Figure F.1  Precision-recall curves for clustering experiments on the UMLS Most 
Frequent Concepts dataset. 
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Figure F.2  Precision-recall curves for clustering experiments on the SNOMED Most 
Frequent Concepts dataset. 
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Figure F.3  Precision-recall curves for clustering experiments on the UMLS Longest 
Concepts dataset. 
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Figure F.4  Precision-recall curves for clustering experiments on the SNOMED 
Longest Concepts dataset. 
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