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ABSTRACT

ANALYTICAL AND COMPUTATIONAL METHODS FOR THE
STUDY OF RARE EVENT PROBABILITIES IN DISPERSIVE AND

DISSIPATIVE WAVES

by
Daniel S. Cargill

The main focus of this dissertation is the application of importance sampling (IS) to

calculate the probabilities associated with rare events in nonlinear, large-dimensional

lightwave systems that are driven by noise, including models for fiber-based optical

communication system and mode-locked lasers. Throughout the last decade, IS has

emerged as a valuable tool for improving the efficiency of simulating rare events in

such systems. In particular, it has shown great success in simulating various sources

of transmission impairments found in optical communication systems, with examples

ranging from large polarization fluctuations resulting from randomly varying fiber

birefringence to large pulse-width fluctuations resulting from imperfections in the

optical fiber. In many cases, the application of IS is guided by a low-dimensional

reduction of the system dynamics. Combining the low-dimensional reduction with

Monte Carlo simulations of the original system has been shown to be an extremely

effective scheme for computing, for example, the probability with which a pulse

deviates significantly from its initial form due to a random forcing. In the context

of nonlinear optics, this might represent a transmission error where the propagation

model is the nonlinear Schrödinger equation (NLSE) with additive or multiplicative

noise.

A shortcoming of this method is that the efficiency of the IS technique depends

strongly on the accuracy of the low-dimensional reduction used to guide the simula-

tions. These low-dimensional reductions are often derived from a formal perturba-

tion theory, referred to as soliton perturbation theory (SPT) for the case of soliton

propagation under the forced NLSE. As demonstrated here, such reduction methods



are often inadequate in their description of the pulse’s dynamics. In particular,

the interaction between a propagating pulse and dispersive radiation leads to a

radiation-induced drift in a pulse’s phase, which is largely unaccounted for in the

reduced systems currently in use.

The first part of this dissertation is devoted to understanding the interaction

between a pulse and dispersive radiation, leading to the derivation of an improved

reduced system based on a variational approach. Once this system is derived and

verified numerically, it serves as the basis for an improved IS method that incorporates

the dynamics of the radiation, which is subsequently extended to more realistic

propagation models. Of particular interest is the case of the NLSE with a periodic

modulation of the dispersion constant, referred to as dispersion management (DM),

and a related model where this modulation is averaged to give an autonomous,

nonlocal equation. Following the nomenclature commonly use in literature, the

former (nonautonomous) equation will be referred to as the NLSE+DM and the

latter (autonomous) equation as the DMNLSE. A complicating aspect of these more

realistic models is that, unlike the NLSE, exact solutions only exist as numerical

objects rather than as closed-form solutions, which introduces an addition source of

error in the derivation of a reduced system for the pulse dynamics.

In the second part of this dissertation, the IS method is extended to the calculation

of phase-slip probabilities in mode-locked lasers (MLL). Realistic models for pulse

propagation in MLL include the dissipative effects of gain and loss, in addition to

nonlocal saturation effects. As a result most of the reduced systems derived for pulse

dynamics are extremely complicated, which diminishes their applicability as guides

for IS simulations. Therefore, a MLL operating in the soliton propagation regime is

considered, where the effects of gain, loss and saturation are treated perturbatively. A

simple reduced system for the pulse dynamics is derived for this MLL model, allowing

the IS technique to be effectively applied.
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CHAPTER 1

INTRODUCTION

Rare Events and the Importance Sampling Technique. In stochastic systems,

the term rare event refers to a particular system configuration, i.e., state, that occurs

with an exceedingly low probability. Despite their name, rare events are ubiquitous

in nature and appear in many different contexts where stochastic effects play an

important role in system dynamics. Although they will be discussed here in the

context of light-wave systems [3, 4, 5, 6, 7, 8], rare events can also be found in problems

from industrial routing [9], rogue waves [10, 11] and financial asset pricing [12]. In

addition, they are not limited to complex systems, as evident in their relation to

failures in the Gaussian elimination algorithm applied to random matrices [13].

Many different methods have been deployed to study rare events, the most com-

mon of which are based on modifications of the Monte Carlo method [14, 15, 16].

In its standard form however, the Monte Carlo method is computationally infeasible

to implement for the study of rare events, simply because of the number of trials

required to generate such an event is inversely proportional to the probability of the

event occurring at random [17]. For example, one would expect to need on the order

of 109 Monte Carlo trials to simulate a rare event occurring with a probability on the

order of 10−9. However, this problem can be addressed by augmenting the standard

Monte Carlo method with the variance reduction technique known as importance

sampling (IS) [15, 18, 19, 20, 21], resulting in what is commonly referred to as the

importance sampled Monte Carlo (ISMC) method. The ISMC method works by

biasing the noise realizations of the standard Monte Carlo method with the intention

of producing rare events with greater frequency and thus increased efficiency. To

account for the biasing, each simulation is weighted when constructing the histogram
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of results. When implemented correctly, the advantages of the ISMC method are

substantial, resulting in an increase in efficiency of several orders of magnitude over

a standard Monte Carlo approach.

Throughout the last decade, the ISMC method has emerged as a valuable tool

for improving the efficiency in simulating rare events [22]. In particular, it has

shown great success in simulating rare events associated with transmission impair-

ments found in optical communication systems [23]. However, one disadvantage

of the ISMC technique is that it requires knowledge of the locations in sample

space that are most likely to lead to rare events. This is usually not a problem

for low-dimensional systems, unfortunately, most of the systems of interest in the

context of rare events are high-dimensional due to the high dimensionality that

is characteristic of quantitatively accurate models of physical systems. Because of

this high-dimensionality, the application of the ISMC method is often supplemented

with a low-dimensional reduction of the system’s dynamics that is used to guide

simulations [23]. This combination works well in most applications, however, a major

shortcoming of this approach is that it couples the efficiency of the ISMC method to

the accuracy of the low-dimensional reduction, and thus has the potential for failure

in systems possessing complex dynamics, which can not be accurately captured by a

low-dimensional approximation.

The low-dimensional reductions discussed above are usually derived from an asymp-

totic approach to the perturbations, e.g., soliton perturbation theory (SPT) for the

case of soliton propagation under the stochastic nonlinear Schrödinger equation. As

the author will demonstrate here, such reduction methods are often inadequate in

their description of the pulse’s dynamics. In particular, the interaction between a

propagating pulse and dispersive radiation leads to a radiation-induced drift in the

pulse’s phase, which is unaccounted for in the reduced systems currently in use as

guides to IS based methods.
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Document Structure. The main focus of this dissertation is the application of the

ISMC method to calculate the probabilities associated with rare events in nonlinear,

high-dimensional light-wave systems that are driven by noise. This includes models

for fiber-based optical communications systems, as well as mode-locked lasers.

Because IS is a central idea throughout this document, a detailed review of this

technique is presented in Chapter 2. The ISMC method is also presented in this

chapter, in the context of finding the probabilities associated with large pulse devia-

tions due to propagation in a noisy optical fiber. This chapter begins by presenting a

stochastic version of the nonlinear Schrödinger equation (NLSE) as a mathematical

propagation model for noisy optical fiber, and continues with a discussion of the

special solutions to the NLSE, known as solitons, and the perturbative technique

known as soliton perturbation theory, which yields a low-dimensional approximation

used to guide the ISMC method.

Chapter 3 of this dissertation is devoted to understanding the interaction between

a pulse and dispersive radiation, leading to the derivation of an improved reduced

system based on a variational approach. Once this system is derived and verified

numerically, it serves as the basis for an improved ISMC method that incorporates

the dynamics of the radiation, which is presented in Chapter 4.

Chapter 5 of this dissertation is devoted to extending the aforementioned improved

ISMC method to more realistic propagation models. Of particular interest is the case

of the NLSE with a periodic modulation of the dispersion constant, referred to as

dispersion management (DM), which yields a varying coefficient version of NLSE

(NLSE+DM), and a related model where this modulation is averaged to give an

autonomous, nonlocal equation (DMNLSE). A complicating aspect of these more

realistic models is that, unlike the NLSE, exact solutions only exist as numerical

objects rather than as closed-form solutions, which introduces an addition source of

error in the derivation of a reduced system for the pulse dynamics.
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In Chapter 6, the ISMC method is extended to the calculation of phase-slip

probabilities in mode-locked lasers (MLL). Importantly, realistic models for pulse

propagation in MLL include dissipative effects such as gain and loss in addition

to nonlocal effects such as saturation, resulting in extremely complicated systems

for the reduced pulse dynamics, which severely limits their use as a guide for IS

simulations. Therefore, a MLL operating in the soliton propagation regime is first

considered, where gain, loss and saturation can be treated perturbatively. A reduced

system for the pulse dynamics is derived for this MLL model, allowing for an effective

ISMC method to be constructed. Chapter 6 concludes by considering MLL models

for operation in the DM soliton regime, where pulses exhibit complex dynamics

throughout propagation. Finally, Chapter 7 provides a summary of the document,

along with a discussion of future directions in which this work can be extended.



CHAPTER 2

REVIEW OF IMPORTANCE SAMPLING FOR RARE EVENTS IN

OPTICAL FIBER COMMUNICATIONS

As previously discussed, the ISMC method has been successfully applied to the

direct simulation of transmission impairments caused by polarization mode dispersion

[24, 25, 26, 27], noise induced perturbations [3, 28] and width fluctuations resulting

from randomly varying dispersion [6]. Since the ISMC method is a fundamental

idea throughout the remainder of this document, this chapter is dedicated to its

detailed review, including its application to the calculation of rare event probabilities

in soliton based optical fiber communication systems, as presented in [23]. The first

part of this chapter reviews the stochastic propagation of solitons in optical fiber-based

communication systems, with particular attention given to the formulation of soliton

perturbation theory (SPT), which provides a method for finding a suitable biasing

distribution when implementing the ISMC method. The second part outlines the

ISMC method, first in a general setting, then extended to the specific application of

finding probabilities associated with large deviations of the parameters of an optical

soliton (optical pulse). The chapter concludes with results from numerical simulations

and a discussion of an observed radiation-driven phase drift, which is investigated

further in subsequent chapters.

2.1 Stochastic Soliton Evolution in

Optical Fiber Communication Systems

An optical fiber is a flexible, cylindrical fiber made of nearly pure silica glass, which

has an inner core and an outer cladding. The index of refraction in the core is

slightly higher than in the cladding, which enables light to be trapped in the core

5
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through total internal reflection [1]. The number of spatial modes a particular fiber

can support is determined by the index of refraction and diameter of both the core

and cladding. Optical fiber-based communication systems (almost) exclusively use

single-mode fiber, i.e., fiber supporting only a single transverse mode, with typical

core and cladding indices around 1.45±0.005 and diameters of 5-10µm and 60-140µm,

respectively [1].

Even with modern advances in both the manufacturing process and the ability

to produce extremely pure silica glass, significant attenuation of optical signals can

still occur over long distances. For this reason, long haul optical communication

systems typically use pulses of relatively high optical power, which are maintained

through periodic amplification based on stimulated emissions of a gain element [29,

30]. High optical power confined to a single mode (with small modal volume) leads

to a polarization response which is nonlinearly dependent on the applied electric

field. When combined with the linear effect of temporal dispersion, this results in an

envelope modulation of the carrier wave into stable optical pulses which are governed

by the well-studied nonlinear Schrödinger equation (NLSE) [31, 32] with a small

linear loss term representing the attenuation. In addition, stimulated emission is

always accompanied by spontaneous emission, taking the form of optical noise in the

fiber. This is referred to as amplified spontaneous emissions noise (ASE noise) and is

typically modeled by an augmentation of NLSE to include a stochastic forcing term.

The NLSE for optical fiber can be formally derived using a slowly-varying-envelope

(SVE) approximation [31, 32, 33, 1] applied to Maxwell’s equations, where nonlinear

effects are included through a power series expansion for the polarization in terms of

the electric field. The perturbations added to account for periodic amplification, result

in periodic power variations in the propagating pulse [34, 35, 29]. If the period of these

variations are small relative to the transmission distance, they can be effectively av-

eraged out through asymptotic averaging (otherwise known as homogenization [36]),
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yielding a stochastically forced NLSE as a first-order approximation for the evolution

of the optical pulse envelopes [29]. In dimensionless form, this equation is given by

i
∂u

∂z
+

1

2

∂2u

∂t2
+ |u|2u = iσn(z, t), (2.1)

where the variables z and t are, respectively, dimensionless distance and retarded

time, and u(z, t) is the complex electromagnetic field envelope. The derivation of

the spatial mode profile in single-mode optical fiber and the SVE approximation that

leads to NLSE with linear loss as the evolution equation for pulses in optical fiber is

presented in Appendix A, along with the details of the homogenization method and

the choice of dimensional quantities that lead to the dimensionless equation given in

Equation (2.1).

Note that this equation provides no indication as to the modulation format, i.e.,

how information is encoded into optical pulses at the beginning of transmission, or

the detection process, i.e., how the information is decoded to an electric signal, at

the end of the transmission line. It does, however, provide a model for the evolution

of the optical pulse, or equivalently for any associated measure of the pulse that

may be used to encode information, e.g., amplitude or phase. The assumption here

is that statistical information about these measures can be related to a bit error

after a specific modulation format is chosen. Commonly used modulation formats

and detector models are discussed in Appendix A, along with the implications of

including these modulation/demodulation models as part of a more complete model

for an optical communication system.

The term n(z, t) in Equation (2.1) is a spatiotemporal stochastic forcing that

represents additive ASE noise. Since the bandwidth of modern optical amplifiers is

very large relative to the bandwidth of optical pulses, ASE noise is typically approx-

imated by idealized (infinite bandwidth) white noise, which is Gaussian-distributed

and mean-zero [37, 29]. When explicitly modeling individual amplifiers, the noise
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takes the discrete form of

n(z, t) =
Na∑
k=1

nk(t) δ(z − kza) , (2.2a)

with

E[nk(t)] = 0 and E[nk(t)n̄j(t
′)] = δ(t− t′)δkj, (2.2b)

where Na is the number of amplifiers, each of which is located at a point z = kza,

with za the amplifier spacing. E[·] represents the expected value, and δ(·) and δkj are

the Dirac and Kronecker delta functions, respectively, and the noise strength is given

by σ2. This noise model is appropriate for discretely placed amplifiers and therefore

is the form used in all simulations, however, it is often mathematically convenient to

take the limit as za → 0 which yields a continuous noise representation, where the

covariance is given by

E[n(z, t)n̄(z′, t′)] = δ(t− t′)δ(z − z′), (2.3)

where σ2 is scaled appropriately such that the total noise power remains the same.

Note that both Equation (2.2) and (2.3) are mathematical idealizations, since

noise in physical systems cannot have infinite bandwidth, or equivalently infinite

power. However, the specific value of the noise bandwidth is not needed as long as it

is larger than the soliton bandwidth (which is the case in practice) [38, 30], because

the only noise components capable of directly affecting the soliton parameters are

assumed to lie within the same spectral range as the soliton itself. On the other

hand, the noise bandwidth can indirectly affect the phase fluctuations. This will be

explicitly shown through numerical simulations in Section 2.4 of this chapter and is

more thoroughly investigated in Chapter 3.
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In the absence of noise (σ = 0), the NLSE in (2.1) admits a well-known four-

parameter family of soliton solutions

usol(z, t) = u0(z, t) exp(iΘ(z, t)) , (2.4a)

where

u0(z, t) = A sech(A[t− T (z)]) , Θ(z, t) = Ω t+ Φ(z), (2.4b)

with

T (z) = T0 + Ωz and Φ(z) =
A2 − Ω2

2
z + Φ0. (2.4c)

The four soliton parameters A, Ω, T0 and Φ0 are arbitrary constants that can be

traced to four invariances found within the NLSE1 [29]. Each soliton parameter can

be associated with a dimensionless physical value: the pulse amplitude A (and inverse

width), the frequency Ω (relative to the carrier frequency and directly proportional

to the group velocity), the initial mean timing T0 and the initial phase offset Φ0,

which are both defined at t = 0. Each time noise is added to the system, part of the

noise is incorporated into the soliton, where it produces small stochastic changes of

the soliton parameters, resulting in a random walk of the four quantities A, Ω, T0 and

Φ0 [39, 40, 29]. For typical system configurations, the noise power σ2 is small, and

thus, the noise-induced changes of the soliton parameters are also small. In rare cases,

however, individual contributions can add coherently, resulting in large deviations of

individual or multiple soliton parameters, thus creating the potential for transmission

errors.

1Note that NLSE is integrable and therefore possesses an infinite number of conserved
quantities. The implication of this point will be made clear in subsequent chapters when
non-integrable and dissipative systems are considered.
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2.1.1 Soliton Perturbation Theory

The effect of noise upon propagating pulses (more specifically on the pulse param-

eters), can be captured using the what is commonly referred to in the nonlinear

optics literature as soliton perturbation theory (SPT) [29, 41]; it is essentially the

method of multiple scales taken to first order in a small parameter characterizing the

perturbation amplitude. The application of SPT to the perturbed NLSE in Equation

(2.1) yields a first order approximation for the evolution of a soliton, in the form of

a set of stochastic ODEs, one for each pulse parameter. These ODEs provide insight

into the interactions between the pulse and the noise, and thus furnish the means to

form an accurate biasing distribution, which is critical to effective implementation of

the ISMC method.

The ability of noise to shift the soliton parameters is embedded in the relationship

each parameter has with an underlying invariance in the NSLE equation. Since these

parameters represent true degrees of freedom, any value of the parameters is permitted

and the noise encounters no resistance when inducing these parameters to change.

This allows small coherent perturbations to build upon each other, leading to large

deviations from the initial parameter values. Furthermore, the two z-dependent terms

in Equation (2.4c) indicate that small fluctuations in the frequency and amplitude

integrate into large timing and phase shifts.

The assumption that the stochastic forcing manifest as adiabatic motion of the

four soliton parameters suggests the introduction of the short length scale z1 = σz,

which equivalently introduces an additional derivative in Equation (2.1), i.e.,

i
∂u

∂z
+ iσ

∂u

∂z1
+

1

2

∂2u

∂t2
+ |u|2u = iσn(z, t), (2.5)

suggesting an expansion for the solution in the form

u = [v0(t, z, z1) + σv1(t, z, z1)] exp(iΘ(t, z, z1)) . (2.6)
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The O(1) equation is the NLSE applied to v0 exp(iΘ) and thus the first order solution

is a soliton with parameters that now depend on the slow time scale,

v0(t, z, z1) exp(iΘ(t, z, z1)) = usol(t, z, A(z1),Ω(z1), T0(z1),Φ0(z1)), (2.7)

where usol is defined in Equation (2.4). The next order gives an evolution equation for

the O(σ) perturbation v1(t, z, z1) (from hereafter referred to as the radiation), which

takes the form

Lnls(v1 exp(iΘ) ;usol) = in(z, t)− i

[
∂usol

∂A

dA

dz1
+

∂usol

∂T

∂T (z, z1)

∂z1

+
∂usol

∂Ω

dΩ

dz1
+

∂usol

∂Φ

∂Φ(z, z1)

∂z1

]
,

(2.8)

where Lnls(·;usol) is the nonlinear Schrödinger operator linearized around the soliton

solution in Equation (2.4). Since the Lnls(v1 exp(iΘ) ;usol) is in the form of a linear

operator acting on v1 exp(iΘ), Fredholm theory [42] requires that the right hand side

of Equation (2.8) be orthogonal to the zero eigenfunctions of the adjoint operator.

Typically, this requirement is used to isolate the O(σ) evolution of the pulse, which

in this case is the evolution of the parameters. In the present form, the projections

would be over both space and time variables. A simpler approach is to separate the

evolutionary and transverse derivatives of Lnls(v1 exp(iΘ) ;usol) by rewriting Equation

(2.8) as(
∂

∂z
+ Ω

∂

∂t

)
v1 − L(v1;u0) = n(z, t) exp(−iΘ(t, z, z1))

−
[
∂u0

∂A

dA

dz1
+

∂u0

∂T

∂T

∂z1
+ iu0t

dΩ

dz1
+ iu0

∂Φ

∂z1

]
,

(2.9a)

where

L(v1;u0) =
i

2

∂2v1
∂t2

− i

2
A2v1 + 2i|u0|2v1 + i(u0)

2v̄1. (2.9b)
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The Fredholm condition can now be framed in terms of the zero eigenfunctions of L,

with projections over only the t variable.

The price paid for this simplification is that the linear operator L(·;u0) is non-

normal, with a generalized nullspace that admits four eigenfunctions at the zero

eigenvalue (two ordinary and two generalized), all four of which must be used in

the projection. These eigenfunctions can be found by mapping each one back to its

corresponding eigenfunction in Lnls, through the relation(
∂

∂z
+ Ω

∂

∂t

)
v − L(v; u0) = −iLnls(v exp(iΘ) ;usol) exp(−iΘ) . (2.10)

By appealing to the four NLSE invariances that produced the free parameters A,

Ω, T0, Φ0, it is easily shown that the solutions of Lnls(v exp(iΘ) , usol) = 0 are the

derivatives of usol(t, z;A,Ω, T0,Φ0) with respect to each of the four free parameters.

To see this more clearly, let Nnls represent the nonlinear Schödinger operator, written

as

Nnls(u) = i
∂u

∂z
+

1

2

∂2u

∂t2
+ |u|2u, (2.11)

and recall that the entire family of soliton solutions given in Equation (2.4) satisfies

the equationNnls(u) = 0. Now consider a solution of the form u
(ε)
sol(t, z;X+ε), whereX

represents one of four free soliton parameters and ε is a small perturbation. Inserting

this solution into Equation (2.11) gives

Nnls

(
u
(ε)
sol

)
= Nnls

(
u
(0)
sol + ε

∂u
(0)
sol

∂X
+O

(
ε2
))

= Nnls

(
u
(0)
sol

)
+ εLnls

(
∂u

(0)
sol

∂X
;u

(0)
sol

)
+O

(
ε2
)
,

(2.12)

implying that

Lnls

(
∂u

(0)
sol

∂X
;u

(0)
sol

)
= 0. (2.13)
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Combining the results of Equation (2.13) with Equation (2.10), suggest the following

definitions for the eigenfunctions of L(·;u0):

vA =
1

A

∂

∂t
[(t− T )u0] , vT = −∂u0

∂t
, vΩ = i(t− T )u0, vΦ = iu0, (2.14)

with corresponding relations,

L (vA; u0) = AvΦ, L (vT ; u0) = 0, L (vΩ;u0) = vT , L (vΦ;u0) = 0. (2.15)

Thus, vΦ and vT represent true eigenfunctions of L, whereas vA and vΩ represent

generalized eigenfunctions; all four are plotted in Figure 2.1.
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Figure 2.1 Real (blue) and imaginary (green) parts of the discrete soliton modes
given in Equation (2.14), with A = 1 and Ω, T , Φ = 0.

Under the standard definition for the inner product, i.e.,

〈f, g〉 = Re

[∫
f̄(t) g(t) dt

]
, (2.16)
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the adjoint of L(·;u0) is calculated to be

L†(v†; u0) = − i

2

∂2v†

∂t2
+

i

2
A2v† − 2i|u0|2v† + i(u0)

2v̄†, (2.17)

which shows that, in addition to being non-normal, L(·; u0) it is also non-self-adjoint.

Note that † denotes the adjoint space and, unless otherwise indicated, all integrals

are over the entire real line. The eigenfunctions of L†(·;u0) can be calculated by the

relation L†(v†;u0) = iL(iv†; u0), which gives

v†A = −ivΦ, v†T = −i
vΩ
A
, v†Ω = i

vT
A
, v†Φ = ivA. (2.18)

Under the inner product defined in Equation (2.16), the eigenfunctions of L(·;u0)

given in Equation (2.14) form an orthogonal set, i.e.,

〈vX , vY 〉 = 〈vY , vX〉 δXY , (2.19)

for X,Y = A, T , Ω, Φ. Likewise, the adjoint eigenfunctions given by Equations (2.18)

are also mutually orthogonal, i.e.,〈
v†X , v

†
Y

〉
=
〈
v†Y , v

†
X

〉
δXY . (2.20)

More importantly, however, is that (as scaled) the eigenfunctions of L(·; u0) together

with their associated adjoint eigenfunctions form a biorthonormal basis for the gen-

eralized nullspace of L(·;u0), i.e., 〈
v†X , vY

〉
= δXY , (2.21)

which can be used to solve for the evolution of each soliton parameter through

projections in Equation (2.9). To see how this is done, first note that the radiation

(v1(t, z, z1)) is orthogonal to the generalized nullspace of L(·;u0), since it is initially

zero and (as it will be shown) only grows from the portion of noise that is orthogonal
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to each of the generalized eigenfunctions and its corresponding adjoint. Using the

definitions in Equation (2.14), Equation (2.9) can be rewritten as(
∂

∂z
+ Ω

∂

∂t

)
v1 − L(v1;u0) = n(z, t) exp(−iΘ(t, z, z1))

−
[
vA

dA

dz1
+ vT

∂T

∂z1
+ (vΩ + TvΦ)

dΩ

dz1
+ vΦ

∂Φ

∂z1

]
.

(2.22)

Projecting both sides of this equation against v†X gives〈
v†X ,

(
∂

∂z
+ Ω

∂

∂t

)
v1

〉
−
〈
v†X , L(v1; u0)

〉
=

∂

∂z

〈
v1, v

†
X

〉
−
〈
v1,

(
∂

∂z
+ Ω

∂

∂t

)
v†X

〉
−
〈
v1, L

†(v†X ;u0)
〉
=〈

v†X , n(z, t) exp(−iΘ(t, z, z1))
〉
−
[
∂X

∂z1
+ T

dΩ

dz1
δXΦ

]
,

(2.23)

for X = A, T , Ω, Φ. Since L†(v†X ;u0) is either 0 or v†Y (Y 6= X) and v1 is orthogonal

to each of the generalized eigenfunctions, the first and third terms on the left side of

this equation evaluate to zero. In addition, each adjoint eigenfunction v†X is only a

function of (t−Ωz), which eliminates the second term on the left. This results in the

following four equations:

dA

dz1
= Re

[∫
v̄†A exp(−iΘ)n(z, t) dt

]
,

∂T

∂z1
= Re

[∫
v̄†T exp(−iΘ)n(z, t) dt

]
,

dΩ

dz1
= Re

[∫
v̄†Ω exp(−iΘ)n(z, t) dt

]
,

∂Φ

∂z1
= Re

[∫ (
v̄†Φ − T v̄†Ω

)
exp(−iΘ)n(z, t) dt

]
.

(2.24)
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Combining these equations with the O(1) derivative in z, yields evolution equations

of the form,

dA

dz
= σRe

[∫
v̄†A exp(−iΘ)n(z, t) dt

]
,

dT

dz
= Ω+ σRe

[∫
v̄†T exp(−iΘ)n(z, t) dt

]
,

dΩ

dz
= σRe

[∫
v̄†Ω exp(−iΘ)n(z, t) dt

]
,

dΦ

dz
=

A2 − Ω2

2
+ σRe

[∫ (
v̄†Φ − T v̄†Ω

)
exp(−iΘ)n(z, t) dt

]
,

(2.25)

which are accurate up to O(σ).

These equations constitute a system of stochastic ODEs that establish a projection

from an infinite-dimensional noise process (n(z, t)) to a random walk for the four

soliton parameters. Using the noise model in Equation (2.2) for discrete amplification,

the stochasticity appears as discrete random jumps in the soliton parameters which

take the form of projections between the noise realizations at each amplifier and the

four adjoint modes of the linearization,

dA

dz
=

Na∑
k=1

σRe

[∫
v̄†A exp(−iΘ)nk(t) dt

]
δ(z − kza), (2.26a)

dT

dz
= Ω+

Na∑
k=1

σRe

[∫
v̄†T exp(−iΘ)nk(t) dt

]
δ(z − kza), (2.26b)

dΩ

dz
=

Na∑
k=1

σRe

[∫
v̄†Ω exp(−iΘ)nk(t) dt

]
δ(z − kza), (2.26c)

and

dΦ

dz
=

A2 − Ω2

2
+

Na∑
k=1

σRe

[∫ (
v̄†Φ − T v̄†Ω

)
exp(−iΘ)nk(t) dt

]
δ(z − kza). (2.26d)
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Because the noise is added at discrete points, these equations can be formally inte-

grated giving

A(z) = A(0) +
Na∑
k=1

∆Ak H(z − kza) , (2.27a)

T (z) = T (0) + Ω(0)z +
Na∑
k=1

∆Ωk (z − kza) H(z − kza)

+
Na∑
k=1

∆Tk H(z − kza) ,

(2.27b)

Ω(z) = Ω(0) +
Na∑
k=1

∆Ωk H(z − kza) , (2.27c)

and

Φ(z) = Φ(0) +
A(0)2

2
z +

Na∑
k=1

A(0)∆Ak (z − kza)H(z − kza)

+
1

2

Na∑
k=1

(∆Ak)
2 (z − kza)H(z − kza)

+
1

2

Na∑
k=1

k−1∑
j=1

∆Ak∆Aj (z − kza)H(z − kza)

+
1

2

Na∑
k=1

Na∑
j=k+1

∆Ak∆Aj (z − jza)H(z − jza)

− Ω(0)2

2
z −

Na∑
k=1

Ω(0)∆Ωk (z − kza)H(z − kza)

− 1

2

Na∑
k=1

(∆Ωk)
2 (z − kza)H(z − jza)

− 1

2

Na∑
k=1

k−1∑
j=1

∆Ωk∆Ωj (z − kza)H(z − kza)

− 1

2

Na∑
k=1

Na∑
j=k+1

∆Ωk∆Ωj (z − jza)H(z − jza)

+
Na∑
k=1

∆Φk H(z − kza) ,

(2.27d)
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where

∆Ak = σRe

[∫
v̄†A(kza, t) exp(−iΘ(kza))nk(t) dt

]
,

∆Ωk = σRe

[∫
v̄†Ω(kza, t) exp(−iΘ(kza))nk(t) dt

]
,

∆Tk = σRe

[∫
v̄†T (kza, t) exp(−iΘ(kza))nk(t) dt

]
,

∆Φk = σRe

[∫ (
v̄†Φ(kza, t)− T (kza)v̄

†
Ω(kza, t)

)
exp(−iΘ(kza))nk(t) dt

]
.

(2.28)

The stochastic jump terms, ∆Xk, are mean zero and, assuming that the parameter

values immediately after the kth amplifier are known, the variances at the k + 1

amplifier are given by

E
[
(∆Ak+1)

2] = σ2

2
‖v†A(kza)‖

2 = σ2Ak,

E
[
(∆Tk+1)

2] = σ2

2
‖v†T (kza)‖

2 =
σ2π2

12A3
k

,

E
[
(∆Ωk+1)

2] = σ2

2
‖v†Ω(kza)‖

2 =
σ2Ak

3
,

E
[
(∆Φk+1)

2] = σ2

2
‖v†Φ(kza)− Tkv

†
Ω(kza)‖

2

= σ212
(
1 + (Tk + Ωkza)

2 A2
k

)
+ π2

36Ak

,

(2.29)

where the notation Xk = X(kza) has been used for brevity.

2.2 The General Importance Sampled Monte Carlo Method

Here, the ISMC method is presented in general terms. Let x be a random variable

(RV) which takes on values from set Ω and is distributed according to the PDF p(x).

In addition, suppose y(x) is a RV which is dependent on the outcomes of x and that

the set R represents the values of y(x) that correspond to a specific event of interest.

The probability of y taking on a value in a region R, is given by the integral,

P = P[y ∈ R] =

∫
Ω∗

p(x) dx =

∫
Ω

I(y(x))p(x)dx = E[I(y(x))] , (2.30)
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where Ω∗ is the subset of Ω for which y(x) ∈ R (x ∈ Ω∗ ⇐⇒ y(x) ∈ R), and I(y(x))

is an indicator function which is 1 for y(x) ∈ R and 0 otherwise. A standard Monte

Carlo scheme would approximate this integral by drawing samples xk according to

the distribution p(x) and forming the estimator

P̂MC =
1

N

N∑
k=1

I(y(xk)). (2.31)

When evaluated at the samples xk, the indicator function I(y(xk)) forms a Bernoulli

RV, where P[I(y(xk)) = 1] = P and P[I(y(xk)) = 0] = 1 − P , and thus the sum

in Equation (2.31) forms a binomial RV with parameters (N,P ), implying that the

estimator P̂MC has variance given by

V
[
P̂MC

]
=

P (1− P )

N
, (2.32)

with a relative error (coefficient of variation) of,

Cvar

[
P̂MC

]
=

√
V
[
P̂MC

]
E
[
P̂MC

] =

√
1− P√
NP

. (2.33)

Ensuring that Equation (2.31) is an accurate estimator for the true probability

requires that Cvar

[
P̂MC

]
� 1. However, if the set R in Equation (2.30) is such

that P � 1 (i.e., y(x) ∈ R is a rare event), this requirement can be approximated by

N � 1/P , which implies that a very large (and often unattainable) number of Monte

Carlo runs is required to obtain a suitably accurate estimate.

To fully understand the reason why the standard MC method requires such a large

number of samples, it is best to think in terms of the set Ω∗ in the sample space which

corresponds to the set R representing the (rare) event of interest. The MC method

is designed to calculate the measure of the set Ω∗ under the distribution p, i.e.,∫
Ω∗

p(x) dx, (2.34)
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by randomly sampling under the p distribution and forming the estimator given in

Equation (2.31). Since the set R represents a rare event, however, the measure of the

set Ω∗ under the p distribution is exceedingly small, thus requiring a large number

of samples to resolve its measure accurately. In cases such as this, IS can be used

to greatly improve the efficiency of the standard MC method, by drawing samples

not from the distribution p, but rather from a new distribution p∗, which is carefully

chosen to assign a much higher measure to set Ω∗, i.e.,∫
Ω∗

p(x) dx �
∫
Ω∗

p∗(x) dx. (2.35)

Note that this requirement is commonly met in application by enforcing the stronger

condition of

p(x) � p∗(x) for x ∈ Ω∗. (2.36)

Of course, sampling according to the new distribution introduces a bias which must

be accounted for by discounting each sample through the likelihood ratio r(x) =

p(x)/p∗(x). Using this approach, Equation (2.30) takes the equivalent form

P[y ∈ R] =

∫
Ω

I(y(x))
p(x)

p∗(x)
p∗(x)dx =

∫
Ω

I(y(x))r(x)p∗(x)dx = E∗ [I(y(x))r(x)] ,

(2.37)

which implies a new ISMC estimator of the form

P̂IS =
1

N

N∑
k=1

I(y(x∗
k))l(x

∗
k), (2.38)

with variance

V∗
[
P̂IS

]
=

E∗ [I(y(x))r2(x)]− P 2

N
≈ E [I(y(x))r(x)])

N
. (2.39)

The expectation in Equation (2.37), the samples in Equation (2.38) and the variance

in (2.39) are all taken with respect to the new distribution p∗(x) as indicated by the
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asterisk. Since the biasing distribution p∗(x) was chosen with the aim of increasing

the measure of the set Ω∗ (i.e. r(x) � 1 for x ∈ Ω∗), Equation (2.39) shows that

a lower variance and relative error of the estimator can be obtained using the same

number of samples under the IS implementation in Equation (2.38).

It should be stressed that the improvement found in the IS implementation in

Equation (2.38) is only present if the biasing distribution p∗(x) is chosen such that

Equation (2.35) is satisfied. If the biasing distribution is poorly chosen, i.e.,∫
Ω∗

p∗(x) dx <

∫
Ω∗

p(x) dx, (2.40)

the error of the new method can be orders of magnitude higher than that of the

standard MC method using an equivalent number of samples. The IS provides no

indication as to the form of biasing distribution other than (2.35). However, from

Equations (2.34), (2.35) and a bit of intuition, it is seen that the optimal choice of

p∗(x) must satisfy ∫
Ω∗

p∗(x) dx = 1. (2.41)

In addition, if the set Ω∗ is high dimensional, there could be large variations in p(x)

with x ∈ Ω∗. In such cases, it is reasonable to assume that the measure of the set Ω∗

under p(z) will be dominated by the contributions around the points that maximize

p(x). This fact discourages the use of uniform biasing distributions such as

p∗(x) =


1

VΩ∗
x ∈ Ω∗,

0 x /∈ Ω∗,

where VΩ∗ =

∫
Ω∗

dx. (2.42)

In fact, it can be shown that the optimal choice for p∗(x) is p(x|x ∈ Ω∗), i.e., the

original density conditioned on the event of interest [14]. Unfortunately, this distri-

bution requires the very normalization constant one is trying to compute. Further,
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even the simpler requirement of Equation (2.36) is hard to meet in application when

an inadequate amount of information is avaliable concerning set Ω∗.

2.2.1 Multiple Importance Sampling

When computing the probability measure of sets containing multiple critical points

of p, or when reconstructing entire probability distributions rather than measures

associated with compact sets, it is often convenient to use multiple biased noise

distributions whose estimators must then be resummed in an unbiased way. For

example, if the noise configuration space is divided into the non-overlapping bins of

a histogram, the ISMC method above would have to be applied across many sets,

i.e., Rq for q = 1, . . . , Q, the union of which gives all possible values of interest

that the RV y(x) can achieve. The ISMC method applied to each set individually

would result in a large number of discarded runs that fall outside of the target set.

A more efficient approach would be to aggregate the total number of runs across

multiple biasing distributions, so that every run is utilized in the calculation of a

probability. This can be done through an approach known as multiple importance

sampling [24, 43, 44], which assigns a weight, wq(x), to each biasing distribution,

resulting in a multi-distribution importance-sampled estimator of the form,

P̂MIS =
Q∑

q=1

1

Nq

Nq∑
k=1

wq(x
∗
q,k)I(y(x

∗
q,k))rq(x

∗
q,k), (2.43)

where Q is the total number of biasing distributions (each distribution labeled p∗q),

Nq is the number of samples drawn from p∗q(x), x∗
q,k is the kth such sample, and

rq(x) = p(x)/p∗q(x). In addition, an unbiased estimator for the variance of PMIS is
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given by [24]

V∗
[
P̂MIS

]
=

Q∑
q=1

1

Nq − 1

[
1

Nq

Nq∑
k=1

w2
q(x

∗
q,k)I(y(x

∗
q,k))r

2
q(x

∗
q,k)

−

(
1

Nq

Nq∑
k=1

wq(x
∗
q,k)I(y(x

∗
q,k))rq(x

∗
q,k)

)2
 .

(2.44)

There are several possible strategies for selecting the weights; however, in order

to ensure that the estimator P̂MIS stays unbiased, it must be that
Q∑

q=1

wq(x) = 1

for all x. It is illustrative to consider two obvious choices which represent opposite

ends of the possible spectrum of weighting schemes. The first is to take wq(x) = 1

for all x, but only for q = q∗, where q∗ is the index for the distribution chosen to

explicitly target the outcome I(y(x∗)) = 1. This is exactly equivalent to the case of

applying IS to the individual sets, which is inefficient for reasons already discussed.

The second is to take wq(x) = 1/Q for all x and q, which is equivalent to weighting

each biasing distribution equally regardless of the noise realization. This assumes

that each distribution is equally good in resolving different areas of the sample space,

which is obviously not the case since each biasing distribution is chosen to concentrate

samples around a specific set.

A compromise between the two weighting schemes above, and the one implemented

here, is the balance heuristic [44], given by

wq(x) =
Nqp

∗
q(x)

Q∑
q′=1

Nq′p∗q′(x)

.
(2.45)

Note that Nqp
∗
q(x) is proportional to the expected number of outcomes resulting in

I(y(x)) = 1, where the samples are drawn from the qth distribution. Thus, the

weight of a sample with the balance heuristic is given by the likelihood of realizing

that sample with the qth distribution relative to the total likelihood of realizing the

same sample with all distributions. Use of the balance heuristic assumes that the



24

weights wq(x) are trivial to compute, which is not guaranteed to hold in general,

although does hold here.

2.3 ISMC Method for Rare Events in Soliton Communication Systems

In the context of soliton based optical communication systems, rare events are asso-

ciated with large, noise-induced perturbations of the pulse parameters, which occur

with exceedingly low probabilities. The ISMC method is effective in resolving these

probabilities but, as discussed above, it requires knowledge of the specific noise

realizations, i.e., points in sample space, that produce the rare event of interest, i.e.,

a large change in the pulse parameters from their deterministic values. Furthermore,

it is not enough to simply know these points; one really needs knowledge of the

most probable points, i.e., those noise realizations that produce prescribed parameter

changes with highest probability, as these will dominate any approximation of the

measure of this set of points, i.e., the probability of a large deviation.

Finding the specific noise realizations that induce a parameter to significantly

deviate from its mean value is the central problem in applying the ISMC method,

since these are the points around which one must form the biasing distributions.

These points could eventually be found by conducting numerous standard MC runs

of the stochastic NLSE given in Equation (2.1) and recording the noise realizations

leading to the desired deviation; however, to find the biasing points this way would

require as much computational cost as the original MC method for finding the desired

probabilities.

Fortunately, an alternative method for finding these points is found in SPT, which

provides a low dimensional system of stochastic ODEs for the approximate evolution

of just the soliton parameters as opposed to the evolution of an entire pulse. Thus,

SPT provides the means of finding the most likely noise realizations around which to

form the biasing distributions essential to the ISMC method.
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2.3.1 Numerical Implementation and the Biasing Scheme

The implementation of the ISMC method introduced above involves numerically solv-

ing a discretized version of Equation (2.1), where the initial solution is a discretized

soliton with known parameter values. For the results presented below, this was done

using a pseudo-spectral method, where the z evolution was calculated using the fourth

order Runge-Kutta method in conjunction with an integrating factor. Variations

of this method are used in many of the subsequent chapters of this document and

it is therefore presented in detail in Appendix B. Since the stochastic forcing is

modeled at discrete locations along the fiber, it is included by periodically adding

a complex-valued random vector nk =
(
n1,k, . . . , nNp,k

)T
, after evolving the solution

for the number of steps representing the non-dimensional amplifier spacing. Here Np

is the number of computational points in the t domain (or equivalently the number

of Fourier modes), k indexes the amplification points and nj,k = xj,k + iyj,k, where

xj,k and yj,k are independent and identically distributed (i.i.d.) normal RVs such that

E
[
x2
j,k

]
= E

[
y2j,k
]
= σ2

n with σ2
n = σ2/(2∆t). Note that the noise strength, σ2, is

adjusted so that the power spectral density (PSD) of the discretized noise matches

that of the non-truncated idealized white noise. Recalling that the noise vectors are

also independently distributed among amplifiers, the entire noise realization (point

in sample space), for any particular MC run can be represented by the matrix

N = [n1 . . .nNa ], which has a distribution that is composed of the product of

distributions for the individual noise vectors,

ptot(N ) =
Na∏
k=1

p(nk), where p(nk) =
1

(2πσ2
n)

Np
exp

(
−
(
n̄T

knk

)
2σ2

n

)
. (2.46)

The RVs of interest are the pulse parameters evaluated at the end of the trans-

mission line, i.e., X(zf ;N) for X = A, T , Ω and Φ2, which are dependent on the

2From this point on, X will be used to denote the four soliton parameters without explicitly
indicating “for X = A, T , Ω and Φ”.
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total noise added during propagation. The goal of the ISMC method is to construct

the PDFs of these RVs down to the tails, thus approximating the probability of

large deviations of a given pulse parameter from its mean value. The mechanics of

constructing a PDF using the ISMC method is the same as an ordinary MC method.

One partitions the domain of final values for each parameter into non-overlapping

intervals or bins, represented by Rj for j = 1, . . . , Nb, where Nb is the number of

partitions. Each bin Rj is associated with a subset of the sample space, Ωj, which

represents all noise realizations that lead to a final parameter value in the interval

Rj, i.e., N ∈ Ωj =⇒ X(zf ;N) ∈ Rj. Figure 2.2 shows a 2D schematic of this

partitioning, with Figure 2.2(a) showing the level sets of p(N ) and an example set

Ωj containing all noise realizations leading to a final parameter value in the interval

Rj from the example PDF in Figure 2.2(b). To construct an approximation to the

W j

(a) Example Sample Space

XIz f M

R j

(b) Example PDF

Figure 2.2 Left: Illustration of an example sample space for the MC method.
Right: Example probability density function for the MC method.

total PDF of X(zf ;N), the PDF over each interval is approximated by a constant

value, which under the normal MC implementation, is given by the typical unbiased

MC estimator given in Equation (2.31). Of course, the standard MC method would
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rarely sample points from the set Ω and is thus unable to resolve the tails of the PDF,

prompting the use of the ISMC method.

To implement the ISMC method, a biasing distribution (denoted by p∗tot) must

be chosen such that sampling under p∗tot increases the frequency at which noise

realizations are drawn from set Ωj, i.e., noise realizations leading to a final parameter

value in the interval Rj. As discussed in Section 2.2, this biasing distribution should

also reflect the fact that certain points contained in Ωj contribute much more to

the measure of set Ωj under the original distribution ptot(N ). Here, the biasing

distribution is simply taken as a mean-shifted version of the original distribution,

i.e., p∗tot(N
∗) = ptot(N

∗ − Bj), where the mean (labeled Bj) is the determinis-

tic point that maximizes the original distribution, subject to the constraint that

E[X(zf ;N +Bj)] = Xj, whereXj is the midpoint of intervalRj
3. The constraint that

E[X(zf ;N +Bj)] = Xj, as opposed to E[X(zf ;N +Bj)] ∈ Rj, is one of convenience

since, as will be shown below, this condition is associated with an end point of a

boundary value problem (BVP). However, this does restrict the possible location

of Bj to a subset, Ω̂j ⊂ Ωj, of the total noise realizations associated with set Rj.

By assuming that the biasing distribution is a mean-shifted version of the original

distribution, the only remaining unknown is the biasing point Bj. After the biasing

point is found, the biasing distribution is given by

p∗tot(N
∗) = ptot(N

∗ −Bj) = ptot(N ) with N ∗ = N +Bj, (2.47)

which gives a likelihood ratio of

r(N ∗) =
ptot(N +Bj)

ptot(N)
=

Na∏
k=1

p(n∗
k)

p(nk)
, (2.48)

3Note that this scheme implicitly assumes that only one maximum Bj exists, which will be
shown to be true in the actual implementation.
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where n∗
k = nk + bk is the kth vector of noise biased around the kth column of

Bj. Figure 2.3 shows a 2D schematic of the contour lines of an example biasing

distribution and the point Bj around which the biasing distribution is centered.

W
`

j

W j

B j

(a) Example Sample Space With Biasing

XIz f M

Xj

R j

(b) Example PDF With Biasing

Figure 2.3 Left: The contour lines of the original and biasing distributions are give
by the solid and dashed curves, respectively. The biasing point is given by the red
dot. Right: Corresponding probability density function associated with the ISMC
method.

The biasing point Bj is defined with respect to two constraints: (i) it maximizes

ptot(N) over the set Ω̂j and (ii) it satisfies E[X(zf ;N +Bj)] = Xj. Together, these

constraints ensure that, on average, the dynamics of the parameters follow an optimal

path through four dimensional parameter space, with a particular parameter X(z)

starting and ending at the predetermined values X(0) and Xj, respectively. Thus,

determining the biasing point Bj is equivalent to determining the biasing vectors bk,

which when added to the propagating pulse at each corresponding amplifier (along

with the noise realization nk) induce the soliton parameters to change in accordance

with the optimal path.
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The approach adopted here for finding the biasing point Bj is based on a linear

expansion for each biasing vector bk of the form

bk = ∆A,kbA,k +∆Ω,kbΩ,k +∆T,kbT,k +∆Φ,kbΦ,k, (2.49)

where the vectors bX,k are derived such that the addition of ∆X,kbX,k to the propa-

gating pulse at amplifier k produces a ∆X,k change in parameter X. This approach

effectively decomposes the task of finding the vectors bk, and thus the point Bj,

into two separate problems. The first determines the vectors bX,k that produce

unit changes to each of the soliton parameters, while the second determines the

weights ∆X,k for k = 1, . . . , Na that drive the parameter X(z) to the targeted final

value Xj. Both of these problems are subject to the constraint of maximizing the

probability, which can be incorporated by reformulating them in terms of constrained

optimizations with use of SPT.

The first optimization problem is to find the most likely biasing vector, which

when added to a propagating pulse, produces an instantaneous unit change in a

specific soliton parameter. As Equation (2.46) indicates, the noise added at each

amplifier consists of a sequence of complex random variables with real and imaginary

components that are normally distributed and independent. The likelihood of realiz-

ing a particular noise vector can be found by evaluating the Gaussian PDF given in

Equation (2.46), and thus, the biasing vectors of maximum likelihood are those that

maximize a Gaussian function, or equivalently, those with smallest l2-norm,

argmaxbX

(
exp
(
−b̄

T
XbX

))
= argminbX

(
b̄
T
XbX

)
. (2.50)

In the continuous domains of t and z, this corresponds to seeking a biasing function

fX(z, t) with minimum L2-norm,

‖fX(z, t)‖2 =
∫

|fX(z, t)|2 dt. (2.51)
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Of course, this quantity must be minimized subject to the constraint that the biasing

function fX(z, t) delivers a unit change in parameter X. Recalling that the equations

of SPT given in Equation (2.25) have projection terms that represent the (linear)

changes in the pulse parameters from the addition of a noise vector to the propagating

pulse, this constraint can be approximated by

Re

[∫ (
v̄†X(z, t)− T v̄†Ω(z, t)δXΦ

)
exp(−iΘ) fX(z, t) dt

]
= 1, (2.52)

where v†X is the appropriate adjoint linear mode corresponding to changes in param-

eter X, and δkj is the Kronecker delta. Expressing this constrained minimization

problem in Lagrange multiplier form gives the action

M(fX(z, t), f̄X(z, t)) = ‖fX(z, t)‖2

+ λ

[(∫ (
v̄†X(z, t)− T v̄†Ω(z, t)δXΦ

)
exp(−iΘ) fX(z, t) dt

+

∫ (
v†X(z, t)− Tv†Ω(z, t)δXΦ

)
exp(iΘ) f̄X(z, t) dt

)
− 2

]
,

(2.53)

which is stationary at the solution

fX(z, t) =

(
v†X(z, t)− Tv†Ω(z, t)δXΦ

)
‖v†X(z, t)− Tv†Ω(z, t)δXΦ‖2

exp(iΘ) . (2.54)

It is interesting to note that Equation (2.54) is contrary to intuition, in that it

indicates that the most probable way to realize a specific change in a parameter

through an additive perturbation occurs by adding a perturbation proportional to

the re-normalized adjoint mode v†X(z, t)/‖v
†
X(z, t)‖2 as opposed to a perturbation

proportional to the mode vX(z, t), which represents the derivative of the pulse with

respect to the parameterX and thus produces the desired parameter change without a

radiative contribution. However, by simple comparison, it is seen that the L2-norm of

re-normalized adjoint modes given by Equation (2.54) are always larger in value than

the L2-norm of corresponding linear mode vX(z, t). This is a subtle detail that is hard
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to determine a priori and is only provided here as a result of using the information

found in SPT. Finally, note that since the biasing functions given in Equation (2.54)

depend on the adjoint modes v†X(z, t), which themselves depend on the value of the

soliton parameters (c.f., Equations (2.18) and (2.14)), the calculation of the modes

directly depends on the ability to recover accurate estimates for the soliton parameters

from a noisy soliton. For solitons of the NLSE, three methods for accomplishing this

have been explored in the literature: (i) integral representations for the parameters,

i.e., moments, (ii) an iterative projection method [45] and (iii) a solving a numerical

version of the Zakharov-Shabat eigenvalue problem [46]. All three of these methods

are detailed in Appendix B.

Now that the most likely functional forms (in t) imparting unit changes to soliton

parameters are known at any point z, it remains to solve the biasing problem across

all amplifiers (in z). In the discrete form, this amounts to determine the weights

∆X,k that will scale each biasing vector to ensure that the mean evolution path of

the parameters coincides with the most likely path between the endpoint constraints

associated with a particular biasing distribution. In continuous form, these weights

become functions of a continuous variable z, i.e., ∆X(z), and thus the continuous

representation of the biasing vectors given in Equation (2.49) take the form

f(z, t) = ∆A(z)fA(z, t) + ∆Ω(z)fΩ(z, t) + ∆T (z)fT (z, t) + ∆Φ(z)fΦ(z, t). (2.55)

Just as in the above analysis, the likelihood of realizing this biasing vector at any

individual fixed point z is given by the Gaussian PDF in Equation (2.46) and thus,

the most likely biasing vectors are those with smallest L2-norm. However, now the

biasing in z must also be accounted for, implying that the appropriate quantity to
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minimize is the cumulative L2-norm given by,

S =

∫ zf

0

‖f(z, t)‖2 dz =

∫ zf

0

∑
Y

(∆Y (z))
2 ‖fY (z, t)‖2

+ 2∆Φ(z)∆Ω(z) 〈fΦ(z, t), fΩ(z, t)〉 dz,
(2.56)

where
∑
Y

represents the sum over all four parameters.

The functional in Equation (2.56) must be minimized subject to the constraint

X(zf) = Xf , where X represents the parameter of interest and Xf is the targeted final

parameter value. Before showing how this is done, first note that the four weighting

functions ∆Y (z) can be related to the optimal path through parameter space by

finding the mean evolution of the stochastic ODEs given by SPT in Equations (2.25)

after the biasing has been applied. By replacing the mean zero noise σn(z, t) by the

biased noise σn(z, t) +
∑
Y

∆Y (z)fY (z, t), these equations take the form,

Ȧ = nA(z) + ∆A(z), Ω̇ = nΩ(z) + ∆Ω(z) + ∆Ω(z)∆Φ(z)
T‖vΩ‖2

‖vΦ − TvΩ‖2
,

Ṫ = Ω+ nT (z) + ∆T (z), Φ̇ =
A2 − Ω2

2
+ nΦ(z) + ∆Φ(z)

(2.57)

where nX(z) =
〈(

v†X − Tv†ΩδΦX

)
exp(iΘ) , σn(z, t)

〉
and the shorthand notation Ẋ =

dX/dz is used to notate differentiation in z. Taking the expectation of these equations

(noting that E[nX(z)] = 0) gives the deterministic equations relating the weights to

the optimal path taken through parameter space,

Ȧopt = ∆A(z), (2.58a)

Ω̇opt = ∆Ω(z) + ∆Ω(z)∆Φ(z)
ToptA

2
opt

1 + π2

12
+ T 2

optA
2
opt

, (2.58b)

Ṫopt = Ωopt +∆T (z), (2.58c)

Φ̇opt =
A2

opt − Ω2
opt

2
+ ∆Φ(z), (2.58d)
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Thus, the functional S given in Equation (2.56) is seen to depend on the optimal path

each parameter takes through parameter space. Finally, noting that each parameter

begins with a deterministic value Xopt(0) = Xi, it can be shown that (in general)

the minimization of S in Equation (2.56) is equivalent to a four dimensional, second

order boundary value problem, some relevant solutions of which are detailed in the

following sections.

Finally, it should be noted that, although the ISMC method presented here focuses

on the final distribution of individual pulse parameters, this approach is directly

applicable for computing the measure of more complex regions of four-dimensional

parameter space. Furthermore, even the single-parameter problems discussed here

often use optimal parameter paths that involve changes in parameters other than the

one under consideration, the implications of which will become clear in the following

sections.

Biasing the Amplitude. The calculation for the biasing weights is easiest for the

amplitude parameter, since by Equation (2.58a), changes to the other parameters

have no effect on the amplitude evolution which implies that ∆T (z, t), ∆Ω(z, t) and

∆Φ(z, t) can be neglected. This leaves only the biasing vector for the amplitude,

fA(z, t), in the cumulative L2-norm, which now takes the form

SA(Aopt, Ȧopt) =

∫ zf

0

(∆A(z))
2‖fA(z, t)‖2 dz =

∫ zf

0

Ȧ2
opt

2Aopt

dz, (2.59)

where Equation (2.58a) was used to replace ∆A(z) with Ȧopt and Aopt. This functional

must be minimized subject to the constraints

Aopt(0) = Ai, and Aopt(zf) = Af . (2.60)
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After taking variations of SA and applying the boundary conditions, this becomes a

second order boundary value problem for the optimal path Aopt of the form

Äopt =
Ȧ2

opt

2Aopt

, (2.61a)

with boundary conditions

Aopt(0) = Ai and Aopt(zf) = Af . (2.61b)

This equation has two solutions,

Aopt,±(z) =

(
z

zf

[
A

1
2
i ± A

1
2
f

]
− A

1
2
i

)2

. (2.62)

Putting both of these back into SA shows that

Aopt(z) =

(
z

zf

[
A

1
2
i − A

1
2
f

]
− A

1
2
i

)2

(2.63a)

is the global minimum path, which gives a derivative, and equivalently a biasing

weight function, of

Ȧopt(z) = ∆A(z) =
2
[
A

1
2
i − A

1
2
f

]
zf

(
z

zf

[
A

1
2
i − A

1
2
f

]
− A

1
2
i

)
. (2.63b)

The biasing solution given in Equation (2.63) is plotted in Figure 2.4.

Biasing the Frequency. The calculation for ∆Ω(z) is similar to the calculation of

∆A(z), however, since changes in the amplitude parameter do affect the L2-norm of

v†Ω(z, t), the dynamics of both ∆Ω(z) and ∆A(z) must be included when constructing

the cumulative L2-norm, where as ∆T (z) and ∆Φ(z) can be set to zero. This gives

SΩ(Aopt, Ȧopt, Ω̇opt) =

∫ zf

0

(∆A(z))
2 ‖fA(z, t)‖2 + (∆Ω(z))

2 ‖fΩ(z, t)‖2 dz

=

∫ zf

0

Ȧ2
opt

2Aopt

+
3Ω̇2

opt

2Aopt

dz,

(2.64)
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Figure 2.4 Left: The plot of Equation (2.63a) for various targeted final values
of amplitude. Right: The corresponding derivatives given by Equation (2.63b) and
equivalently the biasing weight functions for the amplitude parameter.

where again the Equations (2.58) were used to replace ∆A(z) and ∆Ω(z) with Ȧopt and

Ω̇opt, respectively. Constraining this minimization are the initial conditions Aopt(0) =

Ai and Ωopt(0) = Ωi, along with the end point condition Ω(zf) = Ωf . However, since

Aopt(zf) is not constrained, it will be determined in the course of the minimization.

Combining SΩ and the above constraints into a Lagrange multiplier form and taking

variations yields a coupled system of ODEs given by,

Äopt =
Ȧ2

opt

2Aopt

− 3
Ω̇2

opt

2Aopt

(2.65a)

and

Ω̇opt

Aopt

= cΩ, (2.65b)

with

Aopt(0) = Ai, Ȧopt(zf) = 0, Ωopt(0) = Ωi, Ωopt(zf) = Ωf , (2.66)
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where cΩ is a constant of integration. These equations can be decoupled by replacing

Ω̇opt with cΩAopt(z), which yields an equation for Aopt(z) that has the solution

Aopt(z) = Ai

 cos
(√

3
2
cΩ(z − zf)

)
cos
(√

3
2
cΩzf

)
2

, (2.67)

and derivative

Ȧopt(z) = −Ai

√
3cΩ

cos
(√

3
2
cΩ(z − zf)

)
sin
(√

3
2
cΩ(z − zf)

)
(
cos
(√

3
2
cΩzf

))2 , (2.68)

This also gives

Ω̇opt = AicΩ

 cos
(√

3
2
cΩ(z − zf)

)
cos
(√

3
2
cΩzf

)
2

, (2.69)

which after integrating gives,

Ωopt(z) = Ωi +
Ai

[√
3cΩz + sin

(√
3cΩ(z − zf)

)
+ sin

(√
3cΩzf

)]
2
√
3
(
cos
(√

3
2
cΩzf

))2 . (2.70)

The final boundary condition Ωopt(zf) = Ωf determines the value of cΩ and thus

completes the solution which is plotted in Figure 2.5.



37

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

z/zf

A
o
p
t
(
z
/
z f

)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

z/zf

Ȧ
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Figure 2.5 Top Left: Optimal amplitude parameter paths given in Equation (2.67)
for various targeted final values of the frequency parameter. Top Right: Derivatives
of the optimal paths for the amplitude parameter given in Equation (2.68) for
various targeted final values of the frequency parameter. Bottom Left: Optimal
frequency parameter paths given in Equation (2.69) for various targeted final values.
Bottom Right: Derivatives of the optimal paths for the frequency parameter (and
equivalently the biasing paths) given in Equation (2.70) for various targeted final
values of the frequency parameter.

Biasing the Timing. Because the optimal path of the time parameter depends

directly on the optimal path of the frequency parameter, as seen in Equations (2.58c)

and (2.58b), one must include both ∆T and ∆Ω when constructing the cumulative

L2-norm associated with biasing the time parameter. In addition, since the L2-norm

of both fT and fΩ depend on Aopt, non-zero biasing weights for the amplitude should
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be included as well, leading to a complicated three-dimensional BVP which must

be solved numerically. However, if it is assumed that amplitude changes are small

enough to be neglected, i.e., Aopt(z) = Ai, an analytical solution can be found. Using

this approach, the cumulative L2-norm takes the form

ST (Ṫopt,Ωopt, Ω̇opt) =

∫ zf

0

(∆T )
2 ‖fT (z, t)‖2 + (∆Ω)

2 ‖fΩ(z, t)‖2 dz

=

∫ zf

0

6A3
i

π2

(
Ṫopt − Ωopt

)2
+

3

2Ai

Ω̇2
opt dz,

(2.71)

where ∆T (z) and ∆Ω(z) were replaced with
(
Ṫopt − Ωopt

)
and Ω̇opt, respectively,

through the use of Equations (2.58c) and (2.58b). This functional needs to minimized

under the constraints Ωopt(0) = Ωi, Topt(0) = Ti and Topt(zf) = Tf , where it is noted

that since Ωopt(zf) is unconstrained, it will be determined through the minimization

process.

Taking variations of equation (2.71) yields the system,

Ω̈opt(z) = −cT
Ai

3
, (2.72a)

and

Ṫopt(z) = Ωopt(z) + cT
π2

12A3
i

, (2.72b)

with boundary conditions Ωopt(0) = Ωi, Ω̇opt(zf) = 0, Topt(0) = Ti and Topt(zf) = Tf ,

and where cT represents a constant of integration. These equations are easily solved,

giving solutions of the form,

Ωopt(z) = Ωi + cT
Ai

6
(2zf − z) z, (2.73a)

Ω̇opt(z) = cT
Ai

3
(zf − z) , (2.73b)

Topt(z) = Ti + Ωiz + cT

[
Ai

18
(3zf − z) z2 +

π2

12A3
i

z

]
, (2.73c)
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and

Ṫopt(z) = Ωopt(z) + cT
π2

12A3
i

, (2.73d)

where cT is found to be,

cT =
(Tf − Ti)− Ωizf

π2

12A3
i
zf +

Ai

9
z3f

. (2.74)

These solutions are plotted in Figure 2.6.
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Figure 2.6 Top Left: Optimal frequency parameter paths given by Equation (2.73a)
for various targeted final values of the time parameter. Top Right: Derivatives of the
optimal paths for the frequency parameter given in Equation (2.73b) for various
targeted final values of the time parameter. Bottom Left: Optimal paths for the time
parameter given by Equation (2.73c) for various targeted final values. Bottom Right:
Derivatives of the optimal paths for the time parameter given by Equation (2.73d)
for various targeted final values of the time parameter. In all plots, Ai = 1.

Biasing the Phase. The phase biasing is the most difficult to determine, since

Equation (2.58d) indicates that all four biasing vectors need to be considered in the

formation of the cumulative L2-norm, resulting in a four-dimensional, second-order

BVP for the optimal path, with a solution only attainable through the use of numerical

methods.
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However, if the initial values of both the timing and frequency parameters are

zero, these parameters can be assumed to have a negligible effect on the evolution

of the phase parameter. In contrast, the amplitude parameter starts out as an O(1)

quantity and therefore imparts a significant contribution to the phase evolution. With

this approximation, the cumulative L2-norm takes the form

SΦ(Aopt, Ȧopt, Φ̇opt) =

∫ zf

0

∆A(z)‖fA(z, t)‖2 +∆Φ(z)‖fΦ(z, t)‖2 dz

=

∫ zf

0

Ȧ2
opt

2Aopt

+
18

12 + π2
Aopt

(
Φ̇opt −

A2
opt

2

)2

dz,

(2.75)

under the constraints Aopt(0) = Ai, Φopt(0) = Φi and Φopt(zf) = Φf , with Aopt(zf)

determined through the minimization process. Taking variations gives the following

two-dimensional BVP,

Äopt =
Ȧ2

opt

2Aopt

+
12 + π2

72
c2Φ

1

Aopt

− cΦA
2
opt, (2.76a)

and

Φ̇opt =
A2

opt

2
+ cΦ

12 + π2

36

1

Aopt

, (2.76b)

where cΦ is a constant of integration and Aopt(0) = Ai, Ȧopt(zf) = 0, Φopt(0) = Φi,

and Φopt(zf) = Φf .

This system can be solved by integrating Equation (2.76b) and using the boundary

conditions on Φopt to get cΦ in terms of integrals involving Aopt,

cΦ =
Φf − 1

2

∫ z

0
A2

opt(z
′) dz′

12+π2

36

∫ z

0
1

Aopt(z′)
dz′

. (2.77)

Substituting this back into Equation (2.76a), gives an integro-differential equation for

the optimal amplitude path which can be solved using a modified shooting method,

the results of which are presented in Figure 2.7
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Figure 2.7 Top Left: Optimal amplitude parameter paths given by Equation
(2.76a) for various targeted final values of the phase parameter. Top Right:
Derivatives of the optimal paths for the amplitude parameter for various targeted
final values of the phase parameter. Bottom Left: Optimal phase parameter paths
given by Equation (2.76b) for various final targeted values of the phase parameter.
Bottom Right: Derivatives of the optimal paths for the phase parameter given by
Equation (2.76b).

2.4 Results and Discussion

This section shows the results of applying the ISMC method to construct the PDFs of

the amplitude, frequency, time and phase parameters of a soliton propagated under

the stochastic NLSE in (2.1). As stated previously, the numerical integration of

this equation was performed using a pseudospectral method, where evolutionary
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stepping in z used a fourth-order integrating factor Runge-Kutta scheme [47, 48]

which is outlined in Appendix B. All simulations use solitons with a full width at

half maximum (FWHM) of 17.6 ps, which were represented numerically using 128

computational point (modes) on an computational domain that was taken to be 704

ps (or 40 dimensionless time units) wide. The group velocity dispersion and nonlinear

parameters of the fiber were taken to be −0.2 ps2/km and 2.0 1/(km W), respectively.

The pulses were transmitted over a distance 10,000 km with amplifiers spaced 50 km

apart, translating to a dimensionless step size of ∆z = 0.01, a dimensionless amplifier

spacing of za = 0.1 and total numerical transmission length of 20 non-dimensional

units. The fiber loss was taken as 0.2 dB/km (gain of G = 10), which when combined

with an assumed spontaneous emission factor of 1.4, yields a dimensionless noise

strength of σ2 = 6.3 × 10−5. The exact meaning of these parameters is explained

in more detail in Appendix A and should be compared with the typical fiber values

presented in Table A.1.

Figures 2.8, 2.9, 2.10 and 2.11 displayed below each consist of three plots, the first

of which compares the PDFs of a given parameter plotted on a log scale of base 10.

In this plot, the curves represent: (black) the ISMC method applied to the stochastic

NLSE in (2.1), (green) the standard MC method applied to the stochastic NLSE in

(2.1), (blue) the standard MC method applied to the SODEs given in Equation (2.26)

and (red) an analytical calculation for the solution of the SODEs in Equation (2.26)

linearized around the initial conditions of A = 1 and Ω = T = Φ = 0. The second

plot in each figure shows the coefficient of variation (COV) for all the MC curves

presented in the top plot, while the last plot in each figure shows number of hits

(NOH) each bin received.

Figures 2.8, 2.9 and 2.10 show the results of applying the ISMC method for

construction of the PDFs for the amplitude, frequency and time parameters, respec-

tively. The distributions for the frequency and time parameters are in relatively good
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agreement with the analytically calculated Gaussian curves obtained from linearizing

the SPT equations. This indicates that the true PDFs of these parameters only

differ from their Gaussian predictions by a slight change in variance attributed to

the amplitude dependence of the variances in fluctuations of the frequency and time

parameters, which is given in Equations (2.29) and ignored by the linearization that

led to the Gaussian approximations. By contrast, this dependence leads to a signif-

icant deviation of the amplitude PDF from its Gaussian approximation, indicating

that fluctuations in the amplitude contribute significantly to the high order moments

of the amplitude distribution.

Finally, the PDF of the unwrapped phase (i.e., extended via Riemannian sheets to

the real line) is displayed in Figure 2.11, which shows a large disagreement with

the corresponding Gaussian prediction from the linearized SPT equations. This

disagreement is expected since the dynamics of all four parameters contribute to

the final value of the phase, which is again ignored by the linearization that leads to

a Gaussian distribution. More important, however, is the fact that it also disagrees

with MC simulations of the full nonlinear SPT equations. Further investigations of

this phenomenon, which is shown in Figure 2.12, indicates that the magnitude of this

disagreement, as quantified by the translation in the peak of the PDF, grows as the

noise bandwidth increases, suggesting that the dispersive radiation that is neglected

by first-order SPT plays an important role in the evolution of the phase parameter.

Moreover, these plots also indicate that the dispersive radiation has a particularly

important effect on the mean evolution of the phase.

2.5 Summary

The first section of this chapter began by presenting a stochastically forced version of

the nonlinear Schrödinger equation as a model for electromagnetic pulse propagation

in nonlinear optical fiber in the presence of noise generated by pulse amplification.
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After assuming pulses in the form of the well-known four-parameter family of solitons,

it was shown that the first order effect of adding noise to this system is to induce

the soliton parameters to undergo a random walk from their initial values. This

walk is quantified by soliton perturbation theory, which provides a way of describing

the stochastic evolution of the pulse parameters by reducing their dynamics to a

four-dimensional SODE. Section 2.2 presented the general ISMCmethod including the

aggregation technique of multiple importance sampling, which enables the simultane-

ous use of multiple biasing distributions to construct different regions of the PDF in

an efficient manner. Section 2.3 described the implementation of the ISMC method to

estimate the probability of rare error events in soliton-based communication systems,

including the biasing scheme, which is based on the results of SPT. Finally, the results

of this method were presented in Section 2.4, in the form of PDF plots for the four

soliton parameters.

The results of the ISMC method presented here indicate that, although sufficient

in describing the perturbed evolution of a soliton’s amplitude, frequency and timing,

first-order SPT cannot correctly capture the evolution of the soliton’s phase in the

presence of dispersive radiation. Furthermore, this inadequacy is exacerbated in

numerical studies involving idealized white noise, since as shown above, the evo-

lution of the phase’s mean value is dependent on the bandwidth of noise feeding

the radiation, a quantity that is often dictated by the bandwidth of the simulation

itself. It should also be noted that this radiation-driven phase rotation is not unique

to the integrable form of the NLSE, and in fact has been commented on in past

investigations focusing on more complicated models of stochastic pulse propagation

in optical fiber [49], the most notable being stochastic versions of the dispersion

managed nonlinear Schrödinger equation (DMNLSE) [50, 51, 52] and the complex

Ginzburg-Landau equation [53, 54, 55]. The next chapter is devoted to understanding

the interaction between dispersive radiation and the evolution of the soliton’s phase
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parameter, leading to the derivation of an improved low-order reduction of the soliton

dynamics in the presence of radiation. This scheme is used to build an improved

importance sampling method for NLSE in Chapter 4, and is extended to the case of

DMNLSE in Chapter 5.
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Figure 2.8 Top: The black curve gives the PDF of the amplitude parameter using
2 × 105 ISMC runs of the stochastically forced NLSE in (2.1). For comparison, the
dashed blue and solid green curves represent the results of 5 × 105 MC runs of the
SODEs given in (2.26) and the stochastically forced NLSE in (2.1), respectively. In
addition, the solid red curve is the analytical solution of Equations (2.26) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log scale
of base 10. Middle: Each curve represents the COV for corresponding curve in top
figure. Bottom: Each sequence of markers represents the NOH each bin received in
the construction of the PDFs in the top figure. All plots are on a Log scale of base
10.
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Figure 2.9 Top: The black curve gives the PDF of the frequency parameter using
2 × 105 ISMC runs of the stochastically forced NLSE in (2.1). For comparison, the
dashed blue and solid green curves represent the results of 5 × 105 MC runs of the
SODEs given in (2.26) and the stochastically forced NLSE in (2.1), respectively. In
addition, the solid red curve is the analytical solution of Equations (2.26) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log scale
of base 10. Middle: Each curve represents the COV for corresponding curve in top
figure. Bottom: Each sequence of markers represents the NOH each bin received in
the construction of the PDFs in the top figure. All plots are on a Log scale of base
10.
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Figure 2.10 Top: The black curve gives the PDF of the time shift parameter using
2 × 105 ISMC runs of the stochastically forced NLSE in (2.1). For comparison, the
dashed blue and solid green curves represent the results of 5 × 105 MC runs of the
SODEs given in (2.26) and the stochastically forced NLSE in (2.1), respectively. In
addition, the solid red curve is the analytical solution of Equations (2.26) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log scale
of base 10. Middle: Each curve represents the COV for corresponding curve in top
figure. Bottom: Each sequence of markers represents the NOH each bin received in
the construction of the PDFs in the top figure. All plots are on a Log scale of base
10.
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Figure 2.11 Top: The black curve gives the PDF of the phase parameter using
2 × 105 ISMC runs of the stochastically forced NLSE in (2.1). For comparison, the
dashed blue and solid green curves represent the results of 5 × 105 MC runs of the
SODEs given in (2.26) and the stochastically forced NLSE in (2.1), respectively. In
addition, the solid red curve is the analytical solution of Equations (2.26) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log scale
of base 10. Middle: Each curve represents the COV for corresponding curve in top
figure. Bottom: Each sequence of markers represents the NOH each bin received in
the construction of the PDFs in the top figure. All plots are on a Log scale of base
10.
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Figure 2.12 Top: Comparison of PDFs for the phase parameter while varying the
number of simulation modes. The dashed and solid cyan curves are respectively, the
results of 5 × 105 MC runs of the nonlinear system of Equations in (2.26) and an
analytical solution to these equations linearized around the initial conditions A = 1
and Ω = T = Φ = 0. The blue, green, magenta and red curves are the PDFs
generated with 2 × 105 runs of the ISMC method, using 128, 256, 512 and 1024
simulation modes, respectively. Each colored curve is accompanied by a black dashed
line representing the results of 1× 106 standard MC runs of the stochastically forced
NLSE in (2.1). All plots are on a Log scale of base 10. Middle: Each colored curve
represents the COV for the corresponding PDF in the top figure, while the black
dashed curve represents the COV for the 5×105 MC runs of the stochastically forced
NLSE in (2.1). Bottom: Each sequence of colored markers correspond to the NOH
each bin received under the ISMC runs that produced to the PDF plots in the top
figure.



CHAPTER 3

RADIATION-INDUCED PHASE DRIFT

As the preceding chapter has shown, dispersive radiation, which appears as second

order term in a perturbation expansion, has the ability to contribute a first-order

effect to the evolution of a soliton’s phase parameter. Although this was first realized

in numerical simulations of the NLSE [23, 56], similar effects have been reported in

related equations [51], most notably in the dispersion managed nonlinear Schrödinger

equation (DMNLSE), suggesting that this phenomenon has origins in the cubic non-

linear structure common to both equations. In this chapter, the evolution of a NLSE

soliton in the presence of radiation is examined with the aim of understanding this

phase drift in detail and developing a more accurate reduction method, capable of

capturing the correct evolution of the soliton’s phase parameter that can be used to

build an improved ISMC scheme.

The first part of this chapter is devoted to understanding the evolution of radiation

in a nonlinear medium and the interactions between radiation and soliton solutions

of the NLSE. The main difficulty this problem presents is in the lack of functional

form for the radiation. Indeed, a complete representation of the radiation’s evolution

can only be found by appealing to the integrability of the NLSE [46] and the inverse

scattering transform (IST) [57]. As one might expect, however, the solutions resulting

from the IST are too cumbersome to be used directly in computations. Here, this

theory will only be used as a source of insight into the evolution of dispersive radiation,

from which an appropriate evolutionary approximation for the radiation can be

constructed. This approximation is used in the second part of this chapter to construct

a reduction method capable of producing a set of SODEs for the evolution of the pulse

and the radiation, along with the dominant interaction that occurs between the two.

52
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Although the initial approach is based on extending the multiple scales approximation

of SPT in Section 2.1.1, a simpler method is found in a variational approach, which

can be extended to non-integrable (and even non-hamiltonian) evolution equations,

such as the DMNLSE [58, 59, 60].

The construction of an improved reduction method has two important implica-

tions. Broadly, it demonstrates an interesting problem in the area of asymptotic

methods, where the approximating expansion becomes disordered in certain param-

eter regimes, with second order terms (radiation) contributing at first order. More

narrowly, it provides an improved method for a biasing distribution needed in the

application of importance sampling. In this sense, the work presented here “closes

the loop” in a problem where an initially crude approximation was used to bias

simulations of a high-dimensional model, which provided additional information on

the dynamics to feed back into an improved low-dimensional reduction and therefore

improved biasing. This potential for iterative improvements in ISMC used for rare

event computations is exciting and novel, and is expected to have relevance to other

contexts where rare events are important. Applying the information from this chapter

to the application of the ISMC method for rare event detection is considered in the

next chapter.

3.1 Extending SPT to Second Order

The most direct approach for modeling the radiation-induced phase drift is to extend

the SPT derived in Section 2.1.1 to second order. In Section 2.1.1, it was assumed

that the stochastic forcing manifest as adiabatic motion of the four soliton parameters,

which motivated the introduction of the short length scale z1 = σz. Extending this

to the next order requires the introduction of an additional length scale z2 = σ2z,

which in turn introduces an additional derivative in the NLSE, now given as

i
∂u

∂z
+ iσ

∂u

∂z1
+ iσ2 ∂u

∂z2
+

1

2

∂2u

∂t2
+ |u|2u = iσn(t, z, z1, . . . ), (3.1)
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and prompts the inclusion of an additional term in the power series expansion for the

solution,

u =
[
v0(t, z, z1, z2) + σv1(t, z, z1, z2) + σ2v2(t, z, z1, z2)

]
exp(iΘ(t, z, z1, z2)) . (3.2)

The O(1) and O(σ) equations remain unchanged, so the first order solution remains

a soliton with parameters that now depend on both z1 and z2,

v0(t, z, z1, z2) exp(iΘ(t, z, z1, z2))

= usol(t, z;A(z1, z2),Ω(z1, z2), T0(z1, z2),Φ0(z1, z2))

= u0(t, z, z1, z2) exp(iΘ(t, z, z1, z2)) ,

(3.3)

and the second order equation still governs the evolution of the radiation,

Lnls(v1 exp(iΘ) ;usol) = in(t, z)

−i

[
∂usol

∂A

dA

dz1
+

∂usol

∂T

∂T

∂z1
+

∂usol

∂Ω

dΩ

dz1
+

∂usol

∂Φ

∂Φ

∂z1

]
.

(3.4)

The first order evolution of each parameter is still found by appealing to the

Fredholm orthogonality requirement. Recalling that L(·;usol) is the nonlinear Schrödinger

operator linearized around the soliton solution, it can be written using the alternative

representation(
∂

∂z
+ Ω

∂

∂t

)
v1 − L(v1;u0) = n(t, z) exp(−iΘ(t, z, z1))

−
[
∂u0

∂A

dA

dz1
+

∂u0

∂T

∂T

∂z1
+ iu0t

dΩ

dz1
+ iu0

∂Φ

∂z1

]
,

(3.5a)

where

L(v1;u0) =
i

2

∂2v1
∂t2

− i

2
A2v1 + 2i|u0|2v1 + i(u0)

2v̄1. (3.5b)

Once the Fredholm orthogonality requirement is satisfied, the evolution of the radia-

tion follows (
∂

∂z
+ Ω

∂

∂t

)
v1 − L(v1;u0) = nr(t, z), (3.6)
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where nr(t, z) is remaining noise after the contributions to changes in the four soliton

parameters are projected out. Normally, this equation is solved before continuing

to the next order, however, this would require transforming the radiation into a

basis of eigenfunctions for the Lnls(·;usol) (or equivalently L(·;u0)), alternatively

known as radiation modes, which correspond to non-zero eigenvalues. Finding these

eigenfunctions is a nontrivial task, which is primarily complicated by the dependence

of linearized operator L(v1;u0) on the pulse u0. Indeed, in the region |t| � 1, these

terms can be neglected, implying that the radiation modes consist of dressed Fourier

modes [61, 62, 63] which asymptote to the standard Fourier modes far from the

position of the soliton.

Formally continuing with the expansion, the O(σ2) equation takes the form

Lnls(v2 exp(iΘ) ;usol) = −i

[
∂usol

∂A

dA

dz2
+

∂usol

∂T

∂T

∂z2
+

∂usol

∂Ω

dΩ

dz2
+

∂usol

∂Φ

∂Φ

∂z2

]
−
[
i

(
∂v1
∂z1

+ iv1
∂Θ

∂z1

)
+ 2|v1|2u0 + ū0v

2
1

]
exp(iΘ) ,

(3.7)

or equivalently(
∂

∂z
+ Ω

∂

∂t

)
v2 − L(v2;u0) = −

[
vA

dA

dz2
+ vT

∂T

∂z2
+ (vΩ + TvΦ)

dΩ

dz2
+ vΦ

∂Φ

∂z2

]
−
[(

∂v1
∂z1

+ iv1
∂Θ

∂z1

)
− 2vΦ|v1|2 − vΦv

2
1

]
,

(3.8)

where L is defined in Equation (3.5b) and the normalizable soliton eigenfunctions

have been inserted where appropriate. Using the same orthogonality requirement

as before allows the projection of the right-hand side of Equation (3.8) against the

adjoint eigenfunctions, where it is again noted that the radiation, represented as v1,

remains orthogonal to the basis of adjoint modes throughout its evolution, thus giving

dA

dz2
= 0,

∂T

∂z2
= 0,

dΩ

dz2
= 0, (3.9)
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and

∂Φ

∂z2
=
〈
v†Φ,
(
2|v1|2 + v21

)
vΦ

〉
=
〈
v†Φ, 2|v1|

2vΦ

〉
+
〈
v†Φ, v

2
1vΦ

〉
. (3.10)

Since the form of v1 is still unknown at this point, progress can only be made by

making assumptions as to how the radiation evolves. However, it is clear from

Equation (3.10) that the term
〈
v†Φ, 2|v1|2vΦ

〉
represents a significant contribution

to the radiation drift since it contains the radiation power which has a nonzero mean.

3.2 Variational Formulation

The NLSE belongs to a class of evolution equations whose solutions can be recast

as stationary points of a functional, referred to as the action, which for the NLSE

presented here, takes the form of a double integral over a Lagrangian density [64]. By

constraining the functional form of the solution to a parametrized family, integration

over the transverse variable(s) yields an effective Lagrangian for the parameters,

whose evolution is then dictated by the usual Euler-Lagrange equations [58]. With

suitable modifications, one can also treat terms in the evolution equation that are

not strictly variational in nature [60]. As is shown below, this approach results in

the derivation of SODEs identical to the first order SPT approximation given in

Section 2.1.1 for the NLSE with a hyperbolic secant (sech) pulse ansatz. In addition,

when a functional form for the radiation is included in the ansatz, this method

results in an augmented set of SODEs that approximate the second order effects

of radiation on the phase evolution of the soliton. It should be noted however, that

unlike the asymptotic approach of SPT, quantifying the accuracy of these variational

approximations is difficult [65], and the ability to do so depends in large part on the

form of approximating ansatz. Thus, these approximations are commonly validated

through numerical comparisons with the PDE model.
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3.2.1 Derivation of SODEs with Radiation Terms

Recall from Chapter 2 that the model for soliton propagation in a noisy environment

is given as

i
∂u

∂z
+

1

2

∂2u

∂t2
+ |u|2u = iσn(z, t), (3.11)

where n(z, t) represents the ASE noise from amplification. Before beginning the

variational procedure, it is advantageous to explicitly write the solution to Equation

(3.11) as the sum of two parts, u = us + ur, where us and ur represent the solitonic

and radiative components of the solution, respectively. Making this substitution into

Equation (3.11) gives

i
∂us

∂z
+ i

∂ur

∂z
+

1

2

∂2us

∂t2
+

1

2

∂2ur

∂t2
+ |us|2us + 2|ur|2us

+ u2
s ūr + u2

r ūs + |ur|2ur + 2|us|2ur = iσn(z, t).

(3.12)

As seen above, the cubic nonlinear term in Equation (3.11) produces six new nonlinear

terms in the equation above, each representing a different nonlinear effect. The

terms |us|2us and |ur|2ur represent self-phase modulation [1] (SPM) for the pulse

and radiation, respectively, where the rate of phase rotation across each quantity

is dependent on instantaneous intensity. The terms 2|ur|2us and 2|us|2ur represent

cross-phase modulation [1] (CPM). Like SPM, these terms cause a nonlinear phase

rotation in both the pulse and radiation. Unlike SPM however, this is due to the

presence of the intensity of the opposing quantity. Finally, u2
s ūr and u2

r ūs represent

mixing terms that shift energy among the various frequency components that satisfy

a resonance condition involving the wave number [1].

The CPM terms are independent of radiation phase and therefore generically

contribute to the phase rotation of the signal, however, the mixing terms are sensitive

to the random phase of the radiation, and can therefore be neglected. In fact,

comparing these terms to those of Equation (3.10), the radiation dependent rotation
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of the soliton’s phase is seen to originate from the CPM term 2|ur|2us, i.e., the CPM of

the pulse from the presence of radiation. Also neglected is the SPM for the radiation,

since it contributes at O(u3
r ), corresponding to O(σ3) in the power series expansion.

With these terms excluded, the above equation can be separated into two coupled

equations [1], one for the soliton and one for the radiation,

i
∂us

∂z
+

1

2

∂2us

∂t2
+ |us|2us + 2|ur|2us = iσns(z, t), (3.13a)

i
∂ur

∂z
+

1

2

∂2ur

∂t2
+ 2|us|2ur = iσnr(z, t). (3.13b)

Notice that the noise term is also separated into a portion that drives the soliton

equation, ns(z, t), and portion that drives the radiation, nr(z, t). The justification for

this lies in the fact that to O(σ), the only portion of the noise that results in changes

to the parameters is that which projects onto the eigenbasis formed by the discrete

eigenfunctions associated with the four soliton parameters. Because of this, the noise

can be decomposed as

σn(z, t) = σns(z, t) + σnr(z, t). (3.14a)

where

ns(z, t) =
〈
v†A(z, t) exp(iΘ) , n(z, t)

〉
vA(z, t) exp(iΘ)

+
〈
v†T (z, t) exp(iΘ) , n(z, t)

〉
vT (z, t) exp(iΘ)

+
〈
v†Ω exp(iΘ) , n(z, t)

〉
vΩ exp(iΘ)

+
〈(

v†Φ − Tv†Ω

)
exp(iΘ) , n(z, t)

〉
(vΦ − TvΩ) exp(iΘ) ,

(3.14b)

and

nr(z, t) = n(z, t)− ns(z, t). (3.14c)
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The Equations in (3.13) are together referred to as the coupled NLSE, which models

the separate evolution of pulse and radiation, which are coupled through nonlinear

interaction terms. Just as in the NLSE, the envelopes us and ur are complex-valued,

so the complete system must also include the complex conjugates of Equations (3.13a)

and (3.13b).

As discussed above, the system of evolution equations given in (3.13) can be

represented as a variational equation, where the solution of the system corresponds

to a point in function space that extremizes an associated functional, referred to as

the action, taking the form

J(us, ūs, ur, ūr) =

∫ zf

0

∫
Lden(us, ūs, ur, ūr) dtdz, (3.15)

where Lden is the Lagrangian density given by

Lden = Re

[
iūs

∂us

∂z

]
+Re

[
iūr

∂ur

∂z

]
− 1

2

[∣∣∣∣∂us

∂t

∣∣∣∣2 + ∣∣∣∣∂ur

∂t

∣∣∣∣2
]
+

1

2
|us|4

+ 2 |us|2 |ur|2 − Re [ūs(ins(z, t))]− Re [ūr(inr(z, t))] .

(3.16)

To see more clearly how this formulation is related to the Equations (3.13), one can

calculate the functional derivatives δJ/δūk and δJ/δuk, for k = s and r, showing that

δJ

δūk

= 0 and
δJ

δuk

= 0 (3.17)

are equivalent to an application of the Euler-Lagrange equations to Lden, i.e.,

∂Lden

∂ūk

=
d

dz

∂Lden

∂ (∂zūk)
+

d

dt

∂Lden

∂ (∂tūk)
(3.18a)

and

∂Lden

∂uk

=
d

dz

∂Lden

∂ (∂zuk)
+

d

dt

∂Lden

∂ (∂tuk)
, (3.18b)



60

where ∂j = ∂
∂j

for j = z and t. Inserting the definition of Lden given in Equation

(3.16) into the Euler-Lagrange equations of (3.18) shows that for k = s they are

equivalent to Equation (3.13a) and its complex conjugate, while for k = r they are

equivalent to Equation (3.13b) and its complex conjugate. Thus, the stationary points

of J(us, ūs, ur, ūr) given in Equation (3.15), correspond to solutions of the coupled

NLSE.

Now that Equation (3.13) is in a variational form, an approximation can be made

by restricting the infinite-dimensional general solutions us(t, z) and ur(t, z) to fixed

functional forms with a finite number of parameters that account for the z evolution,

i.e., us = fs(t,ps(z)) and ur = fr(t,pr(z)), where fs and fr are known functions with

ps(z) and pr(z) representing vectors consisting of z dependent parameters for the

soliton and radiation, respectively. Under this assumption, the t integral in Equation

(3.15) can be calculated, leading to a reduced action of the form

J(ps, ṗs,pr, ṗr) =

∫ zf

0

Lavg (ps(z), ṗs(z),pr(z), ṗr(z)) dz, (3.19)

where Lavg is referred to as the averaged Lagrangian and is given by

Lavg(ps(z), ṗs(z),pr(z), ṗr(z)) =

∫
Lden (fs(t,ps), fr(t,pr)) dt, (3.20)

with the notation ẋ = dx/dz. The corresponding stationary points for this action are

given by the Euler-Lagrange equations applied to each parameter,

∂Lavg

∂ps,1
=

d

dz

∂Lavg

∂ṗs,1
,

∂Lavg

∂pr,1
=

d

dz

∂Lavg

∂ṗr,1
,

∂Lavg

∂ps,2
=

d

dz

∂Lavg

∂ṗs,2
,

∂Lavg

∂pr,2
=

d

dz

∂Lavg

∂ṗr,2
,

...

∂Lavg

∂ps,Ns

=
d

dz

∂Lavg

∂ṗs,Ns

,
∂Lavg

∂pr,Nr

=
d

dz

∂Lavg

∂ṗr,Nr

,

(3.21)
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where Ns and Nr are the number of parameters contained in ps and pr, respectively.

Equations (3.21) can now be solved for each parameter ṗs,k and ṗr,j, k = 1, . . . , Ns

and j = 1, . . . , Nr, giving first order SODEs for their evolution.

For the case of NLSE, the obvious choice for the pulse ansatz is the NLSE soliton,

with the four free parameters discussed previously,

fs (t, A(z), T (z),Ω(z),Φ(z)) = A(z) sech(A(z)(t− T (z))) exp(Ω(z)t+ Φ(z)) . (3.22)

The choice of radiation ansatz is much more difficult, primarily because it represents

the evolution of noise which lacks a simple functional form. However, the second

order SPT calculation in Section 3.1 implies that there exists a basis of eigenfunctions

(radiation modes) capable of representing the radiation to arbitrary accuracy. This

basis is given by the eigenfunctions of the linearized NLSE or equivalently by the

squared Jost functions from inverse scattering theory [66, 62, 61], which are known

as “dressed” modes, in that they consist of the classical Fourier modes with local

variations around the position of the soliton to account for its presence. In the absence

of a soliton, these modes collapse back to the standard Fourier modes, suggesting that

they can be reasonably approximated as such. With this in mind, the radiation is

approximated by a windowed Fourier decomposition,

fr(t, α1, α2, . . . , αN) =
N/2−1∑
n=−N/2

αn(z) exp(−iωnt) H(w − |t|) , (3.23)

where the parameters αn(z) are the Fourier coefficients of each mode. The decom-

position has been truncated at N modes, corresponding either to a deliberate choice

of radiation bandwidth or to the bandwidth limitation imposed by a computational

method. For simplicity, the frequencies are taken to match the numerical frequencies

of ωn = nπ/w. With these two functional forms, the Lagrangian density and its
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average are found to be

Lden = −A2 [ sech(A[t− T ])]2 [Ω̇t+ Φ̇]

− A4

2
[ sech(A[t− T ]) tanh(A(t− T ))]2

− A2Ω2

2
[ sech(A[t− T ])]2 +

A4

2
[ sech(A[t− T ])]4

− H(w − |t|)
N/2−1∑
j=−N/2

Re [iαj ˙̄αj]−
1

2
H(w − |t|)

N/2−1∑
j=−N/2

ω2
j |αj|2

+ 2A2 [ sech(A[t− T ])]2
N/2−1∑
j=−N/2

|αj|2 + 2Re [ūs(ins)]

+ 2
N/2−1∑
j=−N/2

Re [ᾱj exp(iωjt) H(w − |t|) (inr)]

(3.24)

and

Lavg = −2AT Ω̇− 2AΦ̇ +
A3

3
− AΩ2 − w

N/2−1∑
j=−N/2

[
2iRe [αj ˙̄αj] + ω2

j |αj|2
]

+ 4A
N/2−1∑
j=−N/2

|αj|2 − 2Re

[∫
ūs(ins)

]
− 2

N/2−1∑
j=−N/2

Re

[∫ w

−w

ᾱj exp(iωj) (inr) dt

]
.

(3.25)

Note that since the window [−w,w] is much wider than the soliton width, the integrals

involving both the soliton and radiation can be well approximated by integrating over

the entire real line.

Applying the Euler-Lagrange equations to Equation (3.25) results in the following

set of SODEs:

Ȧ = σRe

[∫
i
∂ūs

∂Φ
ns(z, t) dt

]
= σRe

[∫
v̄†A n(z, t) dt

]
, (3.26a)

Ω̇ = σRe

[∫
(−i)

1

A

∂ūs

∂T
ns(z, t) dt

]
= σRe

[∫
v̄†Ω n(z, t) dt

]
, (3.26b)

Ṫ = Ω+ σRe

[∫ [
i
1

A

∂ūs

∂Ω
− i

T

A

∂ūs

∂Φ

]
ns(z, t) dt

]
= Ω+ σRe

[∫
v̄†T n(z, t) dt

]
,

(3.26c)
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Φ̇ =
A2 − Ω2

2
+ 2

N/2−1∑
j=−N/2

|αj|2 + σRe

[∫ [
i
T

A

∂ūs

∂T
− i

∂ūs

∂A

]
ns(z, t) dt

]
=

A2 − Ω2

2
+ 2

N/2−1∑
j=−N/2

|αj|2 + σRe

[∫ (
v̄†Φ − T v̄†Ω

)
n(z, t) dt

]
,

(3.26d)

where the radiation modes evolve according to,

α̇j = i

(
2A

w
−

ω2
j

2

)
αj +

σ

2w

∫ w

−w

exp(iωjt) nr(z, t) dt

≈ i

(
2A

w
−

ω2
j

2

)
αj +

σ

2w

∫ w

−w

exp(iωjt) n(z, t) dt,

(3.26e)

and

˙̄αj = −i

(
2A

w
−

ω2
j

2

)
ᾱj +

σ

2w

∫ w

−w

exp(−iωjt) n̄r(z, t) dt

≈ −i

(
2A

w
−

ω2
j

2

)
ᾱj +

σ

2w

∫ w

−w

exp(−iωjt) n̄(z, t) dt.

(3.26f)

Notice that the approximations in Equations (3.26e) and (3.26f) are due to the

replacement of nr with the full noise n. This results in the entire noise contributing

to growth in the radiation, whereas the appropriate contribution should only be

from the portion of the noise that is orthogonal to the eigenbasis formed from the

discrete eigenfunctions associated with changes in the soliton parameters. In practice,

however, the noise power contributing to perturbations in the soliton parameters is

small, since it only incorporates four of the many modes comprising the total noise

power, and thus this approximation is reasonable.

3.2.2 Discrete Noise Equations

The SODEs in (3.26) are almost identical to those derived through SPT, with the

only exceptions being the phase Equation (3.26d), which includes a term representing

the power in the radiation, and the evolution of the radiation modes themselves given

by Equations (3.26e) and (3.26f). Using the definition of noise that corresponds to
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discrete amplification, i.e.,

n(z, t) =
Na∑
k=1

nk(t) δ(z − kza) , (3.27a)

with

E[nk(t)] = 0 and E[nk(t)n̄j(t
′)] = δ(t− t′)δkj, (3.27b)

the equations in (3.26) take the form

dA

dz
=

Na∑
k=1

σRe

[∫
v̄†A exp(−iΘ)nk(t) dt

]
δ(z − kza), (3.28a)

dT

dz
= Ω+

Na∑
k=1

σRe

[∫
v̄†T exp(−iΘ)nk(t) dt

]
δ(z − kza), (3.28b)

dΩ

dz
=

Na∑
k=1

σRe

[∫
v̄†Ω exp(−iΘ)nk(t) dt

]
δ(z − kza), (3.28c)

dΦ

dz
=

A2 − Ω2

2
+ 2P (α, ᾱ)

+
Na∑
k=1

σRe

[∫ (
v̄†Φ − T v̄†Ω

)
exp(−iΘ)nk(t) dt

]
δ(z − kza),

(3.28d)

where the radiation power is represented as P (α, ᾱ). This term takes the place of

the sum over the squared coefficients of the radiation modes, the evolution of which

are given by the 2N Equations (3.26e) and (3.26f). However, as Equation (3.28d)

indicates, only the radiation’s power contributes to the evolution of the soliton’s

phase, which is independent of the individual phases of the radiation coefficients.

Because of this, the phase rotation terms in Equations (3.26e) and (3.26f) can be

neglected, leaving only the contributions of the stochastic terms, i.e.,

α̇j =
σ

2w

Na∑
k=1

∫ w

−w

exp(iωjt) nk(t) dt δ(z − kza) (3.28e)
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and

˙̄αj =
σ

2w

Na∑
k=1

∫ w

−w

exp(−iωjt) n̄k(t) dt δ(z − kza). (3.28f)

In this form, these equation can be formally integrated, to give

αj(z) = αj(0) +
Na∑
k=1

∆αj,k H(z − kza) (3.29a)

and

ᾱj(z) = ᾱj(0) +
Na∑
k=1

∆ᾱj,k H(z − kza) , (3.29b)

where the complex valued stochastic jump terms, ∆αj,k and ∆ᾱj,k, are given by

∆αj,k =
σ

2w

∫ w

−w

exp(iωjt) nk(t) dt, (3.30a)

and

∆ᾱj,k =
σ

2w

∫ w

−w

exp(−iωjt) n̄k(t) dt. (3.30b)

Using Equations (3.29a) and (3.29b), the radiation power term takes the form

P (α, ᾱ) =
N/2−1∑
j=−N/2

|αj(z)|2

=
N/2−1∑
j=−N/2

|αj(0)|2 +
N/2−1∑
j=−N/2

Na∑
k=1

2Re [αj(0)∆ᾱj,k] H(z − kza)

+
N/2−1∑
j=−N/2

Na∑
k1=1

Na∑
k2=1

∆αj,k1∆ᾱj,k2 H(z − k1za) H(z − k2za) ,

(3.31)

which can conveniently be written as

P (z) = P (0) + ∆P (z), (3.32a)
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where

P (0) =
N/2−1∑
j=−N/2

|αj(0)|2 (3.32b)

and

∆P (z) =
N/2−1∑
j=−N/2

Na∑
k=1

2Re [αj(0)∆ᾱj,k] H(z − kza)

+
N/2−1∑
j=−N/2

Na∑
k1=1

Na∑
k2=1

∆αj,k1∆ᾱj,k2 H(z − k1za) H(z − k2za) .

(3.32c)

The SODEs for the soliton parameters can also be integrated giving

A(z) = A(0) +
Na∑
k=1

∆Ak H(z − kza) , (3.33a)

T (z) = T (0) + Ω(0)z +
Na∑
k=1

∆Ωk (z − kza) H(z − kza)

+
Na∑
k=1

∆Tk H(z − kza) ,

(3.33b)

Ω(z) = Ω(0) +
Na∑
k=1

∆Ωk H(z − kza) , (3.33c)
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Φ(z) = Φ(0) +
A(0)2

2
z +

Na∑
k=1

A(0)∆Ak (z − kza)H(z − kza)

+
1

2

Na∑
k=1

(∆Ak)
2 (z − kza)H(z − kza)

+
1

2

Na∑
k=1

k−1∑
j=1

∆Ak∆Aj (z − kza)H(z − kza)

+
1

2

Na∑
k=1

Na∑
j=k+1

∆Ak∆Aj (z − jza)H(z − jza)

− Ω(0)2

2
z −

Na∑
k=1

Ω(0)∆Ωk (z − kza)H(z − kza)

− 1

2

Na∑
k=1

(∆Ωk)
2 (z − kza)H(z − jza)

− 1

2

Na∑
k=1

k−1∑
j=1

∆Ωk∆Ωj (z − kza)H(z − kza)

− 1

2

Na∑
k=1

Na∑
j=k+1

∆Ωk∆Ωj (z − jza)H(z − jza)

+ 2P (0)z + 2I∆P (z) +
Na∑
k=1

∆Φk H(z − kza) ,

(3.33d)

where

I∆P (z) =

∫ z

0

∆P (z′) dz′

=
N/2−1∑
j=−N/2

Na∑
k=1

2Re [αj(0)∆ᾱj,k] (z − kza)H(z − kza)

+
N/2−1∑
j=−N/2

Na∑
k=1

|∆αj,k|2 (z − kza)H(z − kza)

+
N/2−1∑
j=−N/2

Na∑
k1=1

k1−1∑
k2=1

∆αj,k1∆ᾱj,k2 (z − k1za)H(z − k1za)

+
N/2−1∑
j=−N/2

Na∑
k1=1

Na∑
k2=k1+1

∆αj,k1∆ᾱj,k2 (z − k2za)H(z − k2za) .

(3.33e)

The stochastic jump perturbations of the soliton parameters are equivalent to those

given in Chapter 2, i.e.,

∆Xk = σRe

[∫ (
v̄†X(kza, t)− T (kza)v̄

†
Ω(kza, t)δX,Φ

)
×

exp(−iΘ(kza))nk(t) dt] ,

(3.34)
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forX = A, Ω, T and Φ, where it is recalled that the functions v†X are the adjoint eigen-

functions, associated with the adjoint operator L†, which are defined in Equations

(2.18). All of the stochastic jump terms above are mean zero and, assuming that

the parameter values immediately after the kth amplifier are known, the stochastic

jumps at amplifier k + 1 have variances given by

E
[
(∆Ak+1)

2] = σ2

2
‖v†A(kza)‖

2 = σ2Ak,

E
[
(∆Tk+1)

2] = σ2

2
‖v†T (kza)‖

2 =
σ2π2

12A3
k

,

E
[
(∆Ωk+1)

2] = σ2

2
‖v†Ω(kza)‖

2 =
σ2Ak

3
,

E
[
(∆Φk+1)

2] = σ2

2
‖v†Φ(kza)− Tkv

†
Ω(kza)‖

2

= σ212
(
1 + (Tk + Ωkza)

2 A2
k

)
+ π2

36Ak

,

E[∆αj,k+1∆ᾱj,k+1] =
σ2

2w
,

(3.35)

where it is noted that

E
[
(∆αj,k+1)

2] = E
[
(∆ᾱj,k+1)

2] = 0. (3.36)

3.3 Linearized Equations and Parameter Statistics

Note that, although presented in closed form, the parameter statistics at a given

amplifier as given in Equations (3.35) are still dependent on the value of the parame-

ters evaluated at all prior amplification points. Thus, to make quantitative measures

of these statistics, one must still numerically solve the SODEs in (3.28). However,

approximate values for these statistics can be found if the equations are first linearized

around the initial parameter values, which for all simulations here are taken to be

A(0) = 1, Ω(0) = T (0) = Φ(0) = 0 and αj(0) = 0 for j = N/2, . . . , N/2 − 1. Doing

this gives random jumps that are independent of prior changes in the parameters,
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which implies that parameter variances are now independent of amplifier index, i.e.,

E
[
(∆Ak)

2] = σ2, E
[
(∆Tk)

2] = σ2π2

12
,

E
[
(∆Ωk)

2] = σ2

3
, E

[
(∆Φk)

2] = σ212 + π2

36
,

(3.37)

where as before

E[∆αj,k∆ᾱj,k] =
σ2

2w
. (3.38)

After neglecting higher order terms, the solutions in (3.33) become

A(z) = 1 +
Na∑
k=1

∆Ak H(z − kza) , (3.39a)

T (z) =
Na∑
k=1

∆Ωk (z − kza) H(z − kza) +
Na∑
k=1

∆Tk H(z − kza) , (3.39b)

Ω(z) =
Na∑
k=1

∆Ωk H(z − kza) , (3.39c)

Φ(z) =
1

2
z +

Na∑
k=1

∆Ak (z − kza)H(z − kza) + 2Ĩ∆P (z) +
Na∑
k=1

∆Φk H(z − kza) ,

(3.39d)

where

Ĩ∆P (z) =
N/2−1∑
j=−N/2

Na∑
k=1

|∆αj,k|2 (z − kza)H(z − kza) . (3.39e)

It is important to note that, although the term Ĩ∆P (z) appears to be O(σ2), the

aggregation over all radiation modes reduces the effective order of this term to O(σ).

Using the approximate solutions given in Equations (3.39) evaluated at the end

of the transmission line, z = Naza, the PDF’s of the parameters A, Ω, and T are

calculated as

A(zf ) ∼ N
(
1, σ2Na

)
, (3.40a)
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T (zf ) ∼ N
(
0, σ2

(
z2aNa(Na − 1)

2Na − 1

18
+

π2

12

))
, (3.40b)

and

Ω(zf ) ∼ N
(
0, σ2Na

3

)
, (3.40c)

where N (µ, σ2) represents the normal distribution with mean µ and variance σ2. The

distribution of the phase, however, is now altered by the radiation term,

Ĩ∆P (zf ) =
Na∑
k=1

N/2−1∑
j=−N/2

|∆αj,k|2 za(Na − k), (3.41)

which follows a χ2 distribution and thus contributes to both the mean and variance

of final phase values. To simplify this term, first notice that since ∆αj,k and ∆ᾱj,k are

normally distributed with mean zero and a cross variance of σ2/2w (recall Equation

(3.38)), the inner summation in (3.41) can be written as

N/2−1∑
j=−N/2

|∆αj,k|2 =
σ2

2w
Xk, (3.42)

where Xk is a χ2
N -distributed random variable with N degrees of freedom, indexed by

the amplifier index k. In addition, since N is assumed to be large, the central limit

theorem allows Xk to be well approximated by a normal distribution, i.e.,

N → ∞ =⇒ χ2
N → N (N, 2N) . (3.43)

Using this, the contribution from radiation can be written as a normal RV with

E
[
Ĩ∆P (zf )

]
≈ σ2

2w
zaN

Na(Na − 1)

2
, (3.44a)

and

V
[
Ĩ∆P (zf )

]
≈
(
σ2

2w
za

)2

2N
Na(Na − 1)(2Na − 1)

6
. (3.44b)
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Thus,

Φ(zf ) ∼ N (µΦ, σΦ) , (3.45a)

where

µΦ =
Naza
2

+
σ2

2w
zaNNa(Na − 1), (3.45b)

and

σΦ = σ2z2a
(N2

a −Na)(2Na − 1)

6

(
2N

σ2

w2
+ 1

)
+ σ2Na

12 + π2

36
. (3.45c)

From these results, the contributions to the mean and variance of the soliton’s phase

originating from direct phase perturbations, amplitude perturbations and radiation

perturbations can be individually identified. These are given in Table 3.1, along with

with their quantitative approximations, which were calculated from the parameter

values used in the simulations presented in Chapter 2.

3.4 Results and Discussion

To verify the analysis above, 106 standard MC simulations were conducted using the

stochastic NLSE in (3.11) and the SODEs in (3.28) using the same parameter values as

in the simulations of Chapter 2. The results these simulations are displayed in Figure

3.1, where the solid curves and markers correspond to the results of the stochastic

NLSE and the SODEs, respectively. The top left and top right plots compare the

mean and variance of the phase parameter, respectively, which are plotted as functions

of the normalized transmission length using 128, 256, 512 and 1024 simulation modes.

Alternatively, the bottom left and bottom right plots compare the mean and variance

of the phase parameter, respectively, which are plotted as functions of the number of

radiation modes at z = 5, 10, 15 and 20. In all of these plots, the mean and variance
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Table 3.1 Approximate Contributions to the Nonlinear Soliton Phase Rotation

Source: Phase Amplitude Radiation

Mean Contribution N/A Naza
2

σ2

2w
zaN(N2

a −Na)

Value (128 Modes) 0 10 0.8

Value (256 Modes) 0 10 1.6

Value (512 Modes) 0 10 3.2

Value (1024 Modes) 0 10 6.4

Variance Contribution σ2Na
12+π2

36
σ2z2a

(N2
a−Na)(2Na−1)

6
σ4z2aN

(N2
a−Na)(2Na−1)

3w2

Value (128 Modes) 7.5× 10−3 1.7 6.7× 10−5

Value (256 Modes) 7.5× 10−3 1.7 1.3× 10−4

Value (512 Modes) 7.5× 10−3 1.7 2.7× 10−4

Value (1024 Modes) 7.5× 10−3 1.7 5.4× 10−4

calculations from the linearized SODEs of SPT are plotted using the black dashed

line. The results of this figure confirm the predictions of the linearized theory above,

showing that the effects of radiation are primarily seen in the mean evolution of the

phase, while only making a small contribution to variance.
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Figure 3.1 Top: The blue, green, magenta and red lines are the mean (Left) and
variance (Right) of the phase parameter as a function of the normalized transmission
length as calculated from 1 × 106 MC runs of the stochastic NLSE in (3.11) (solid
curves) and the SODEs in (3.28) (markers), using 128, 256, 512 and 1024 simulation
modes, respectively. Bottom: The blue, green, magenta and red lines are the mean
(Left) and variance (Right) of the phase parameter as a function of the number of
simulation modes as calculated from 1 × 106 MC runs of the stochastic NLSE in
(3.11) (solid curves) and the SODEs in (3.28) (markers), using z = 5, 10, 15 and 20,
respectively. In all plots, the circle markers are the corresponding solutions of the
calculated from 1× 106 MC runs.

3.5 Summary

This chapter began by formally extending the linear SPT of Chapter 2 to second order,

giving the first analytical indication that dispersive radiation can make an effective

first order contribution to the nonlinear evolution of a soliton’s phase. Although the
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initial calculation was based on a formal application of the method of multiple scales,

it can be tied explicitly to an eigenfunction expansion of the radiation in terms of the

squared eigenfunctions from inverse scattering theory [61, 62, 63]. Motivated by the

results of this formal calculation, Section 3.2 introduced a less complex variational

reformulation, leading to a modified low-dimensional reduction with additional terms

that correctly account for the presence of dispersive radiation. From linear analy-

sis of these equations, the individual contributions to both the mean and variance

of soliton’s phase evolution, as originating from direct perturbations to the phase

and indirect perturbations in the amplitude and radiation which integrate to phase

changes, were identified. The final section presented numerical verification that this

new reduced system correctly approximates the full evolution of the soliton’s phase in

the presence of radiation and thus provides an improved basis around which a more

efficient IS scheme can be constructed, which is the topic investigated in the next

chapter.



CHAPTER 4

IMPROVEMENTS TO IMPORTANCE SAMPLING FOR NLSE

In this chapter, the ISMC method presented in Chapter 2 for the investigation of large

phase deviations is modified to account for the presence of dispersive radiation. The

approach taken here is similar to the original approach outlined in [23] and reviewed

in Chapter 2, however, under the newly derived ODEs of Chapter 3, the evolution

of the phase includes an additional term that accounts for the impact of dispersive

radiation. This adds an additional layer of complexity in the calculation of the correct

biasing distributions, which now must include changes to all four soliton parameters

and to the dispersive radiation.

4.1 Evolution of the Phase Parameter with Radiation

The biasing for the phase parameter is now calculated using the modified ODEs for

the reduced soliton dynamics derived in Chapter 3, which under a general noise term,

take the form

dA

dz
= σRe

[∫
v̄†A(z, t) exp(−iΦ(z))n(z, t) dt

]
, (4.1a)

dΩ

dz
= σRe

[∫
v̄†Ω(z, t) exp(−iΦ(z))n(z, t) dt

]
, (4.1b)

dT

dz
= Ω+ σRe

[∫
v̄†T (z, t) exp(−iΦ(z))n(z, t) dt

]
, (4.1c)

dΦ

dz
=

1

2
(A2 − Ω2) + 2

∑
n

|αn|2

+ σRe

[∫ [
v̄†Φ(z, t)− T v̄†Ω(z, t)

]
exp(−iΦ(z))n(z, t) dt

] (4.1d)

75
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dαk

dz
= i

(
2A2

w
− 1

2
ω2
k

)
αk +

σ

2w

∫
exp(iωkt) H(w − |t|)n(z, t) dt, (4.1e)

and

dᾱk

dz
= −i

(
2A2

w
− 1

2
ω2
k

)
ᾱk +

σ

2w

∫
exp(−iωkt) H(w − |t|) n̄(z, t) dt. (4.1f)

Recall that these equations were derived under the assumption that the radiation is

well represented by a sum over Fourier coefficients αn(z), i.e.,

R(z, t) =
N/2−1∑
n=−N/2

αn(z) exp(−iωnt) H(w − |t|) , (4.2)

each of which evolves according to the Equations (4.1e) and (4.1f). These equations

indicate that the radiation evolution consists of two terms; (i) a phase rotation,

reflecting the effects of dispersion and cross phase modulation, and (ii) a stochastic

perturbation in the form of a projection of the noise onto the same Fourier basis used

to represent the radiation in Equation (4.2).

It is important to note that, as previously discussed, the radiation cannot be

completely represented by the Fourier expansion in Equation (4.2), since by definition,

the radiation must be orthogonal to the basis of discrete eigenfunctions, i.e., those

modes forming the projection operator for capturing leading order perturbations to

the soliton parameters, which is is clearly not the case under the representation in

Equation (4.2). This fact is explicit in the construction of Equations (4.1e) and

(4.1f), which originally used the noise term nr to indicate that the radiation was

only forced by the portion of noise orthogonal to the four discrete eigenfunctions. In

addition, the correct expansion would be in dressed Fourier modes, which consist of

standard Fourier modes with additional local variations that account for presence of

the soliton [61, 62, 63].

It is also important to note that the radiation term in Equation (4.1d), is in the

form of a sum over squared Fourier coefficients, implying that each radiation mode
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contributes equally to the total mean phase drift of the soliton. This is counter

intuitive to the expectation that the effects of radiation should saturate as higher

order modes are included. However, in the course of reducing Equations (4.1) to

their present form, all dependencies on the modal index are lost, resulting in the

radiation power term in Equation (4.1d). This is consistent with the assumption

that the soliton evolves in a radiation bath, i.e., periodic domain, with radiation

continuously entering and leaving the computational window as the total background

radiation power increases linearly with the number of amplification points that the

pulse passes. If this assumption was relaxed to allow the radiation to leave the

computational window, one would need to rederive ODEs for each radiation mode

that account for the loss in radiation power, much like what was done by Kath and

Smyth [67]. Finally, it should be pointed out that this model depends critically on the

uniformity of the noise over the entire domain, whether it be periodic or the real line.

Dispersive radiation generated by a localized disturbance, such as that considered by

Kath and Smyth, would not build up a mean background level in the same way.

4.1.1 Further Simplifications

The reduced system in (4.1) has four equations for the evolution of the soliton

parameters, and 2N equations for the evolution of the real and imaginary parts of

the radiation. However, as previously discussed, the term that couples the radiation

to the evolution of the soliton parameters is a sum over the squared modulus of the

radiation coefficients, i.e., the radiation’s power, that appears in the Equation (4.1d).

This suggest that, rather than accounting for 2N individual radiation modes, a more

economical way of representing the radiation is to use a single parameter for the

radiation’s power,

P (z) =
1

2w

∫
|R|2 dt =

N/2−1∑
n=−N/2

|αn(z)|2, (4.3)
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which takes place of the sum in Equation (4.1d) over the 2N radiation coefficients. In

addition, the soliton’s phase evolution is independent of the phase of the radiation,

implying that the phase rotation terms in Equations (4.1e) and (4.1f) can be neglected.

Using this, the evolution of the parameter representing the radiation’s power in

Equation (4.3) is found to be

dP

dz
=

1

2w

∫
∂R

∂z
R̄ +R

∂R̄

∂z
dt =

1

w
Re

[∫
R̄(z, t)n(z, t) dt

]
. (4.4)

Recalling is the variance in the discretized noise and approximating the noise as

continuous, i.e.,

E[n(z, t)n̄(z′, t′)] = δ(t− t′)δ(z − z′), (4.5)

The mean of P (z) is calculated as

E[P (z)] = σ2
nz, (4.6)

where is it recalled that σ2
n = σ2N/2w = σ2/∆t is the modified noise strength. From

this, it is immediately apparent that

E
[
dP

dz

]
=

2

2w
E
[
Re

[∫
R̄(z, t)n(z, t) dt

]]
= σ2

n. (4.7)

Note that both equations (4.6) and (4.7) have alternative forms under the discrete

noise representation, that are given in Equations (3.35).

4.2 Biasing the Radiation Power Parameter

Since the radiation power is now represented as a single parameter, the radiation

can be biased in much the same way as each soliton parameter was biased in the

original approach. Thus, the radiation biasing will be separated into two distinct

steps, the first of which involves finding the optimal biasing mode which, when added



79

to the radiation, produces a (linear) unit change in the radiation power parameter

P . The second step is to determine the weighting functions for the four soliton

parameters and the new parameter P , such that the evolution of these parameters

through parameter space follows an optimal path, which is determined through a

constrained optimization problem that includes changes in the radiation power.

4.2.1 Biasing Mode for Radiation Power Parameter

Equation (4.4) implies that the instantaneous form of the radiation plays the role of an

“eigenfunction” for the radiation power. Although this is not surprising, it provides

an easy way of incorporating the radiation in the biasing scheme without dealing

with each radiation mode separately. Just like the four soliton parameter modes, the

likelihood of realizing a mode that results in a shift in the radiation power is given by

the multivariate Gaussian distribution in Section 2.3.1. Likewise, the most probable

biasing mode for the radiation is equivalent to the one with the smallest L2-norm.

Combining this with the constraint of imparting a unit change in the radiation power

gives a Lagrange multiplier problem of the form

MP (fP , f̄P ) =

∫
|fP |2dt+ λ

[
dP

dz
− 1

]
=

∫
|fP |2dt+ λ

[∫
R̄(z, t′)

2w
fP +

R(z, t′)

2w
f̄P dt′ − 1

]
,

(4.8)

where Equation (4.4) was used in expressing the constraint. Taking variations of

Equation (4.8) over fP and f̄P gives a solution of

fP (z, t) =
R(z, t)

2P (z)
, (4.9)

which, as expected, is seen to be a normalized form of the radiation.
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4.2.2 Biasing Path for Radiation Power Parameter

By including a weighted version of the biasing radiation mode in Equation (4.9), the

continuous representation of the biasing vector takes the form

f(z, t) = ∆A(z)fA(z, t) + ∆Ω(z)fΩ(z, t)

+ ∆T (z)fT (z, t) + ∆Φ(z)fΦ(z, t) + ∆P (z)fP (z, t),

(4.10)

where as previous calculated

fX(z, t) =

(
v†X(z, t)− Tv†Ω(z, t)δXΦ

)
‖v†X(z, t)− Tv†Ω(z, t)δXΦ‖2

exp(iΘ) . (4.11)

The quantity that must be minimized is still given by the cumulative L2-norm, i.e.,

SΦ =

∫ zf

0

‖f(z, t)‖2 dz, (4.12)

which now includes the weighted biasing mode for the radiation parameter. However,

the inclusion of this mode only effects the evolution of the phase, and thus, any

assumptions made in the original phase biasing problem of Section 2.3.1 are still valid.

In particular, the assumption that both the timing and frequency parameters, i.e., T

and Ω, are limited in their capacity to change the phase parameter still holds, implying

that ∆Ω(z) and ∆T (z) can be neglected and Topt(z) = Ωopt(z) = 0, since both have

initial values of zero in all simulations. Using this assumption, the cumulative L2-

norm takes the form

SΦ =

∫ zf

0

(∆A(z))
2 ‖fA(z, t)‖2 + (∆Φ(z))

2 ‖fΦ(z, t)‖2

+ (∆P (z))
2 ‖fP (z, t)‖2 dz.

(4.13)

After applying the biasing, the mean zero noise σn(z, t) takes the form σn(z, t) +

f(z, t), where f(z, t) is the biasing vector given in (4.10). Thus, under the biased
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noise, the evolution equations take the form

Ȧ = nA(z) + ∆A(z),

Ω̇ = nΩ(z) + ∆Ω(z) + ∆Ω(z)∆Φ(z)
T‖vΩ‖2

‖vΦ − TvΩ‖2

Ṫ = Ω+ nT (z) + ∆T (z),

Φ̇ =
A2 − Ω2

2
+ 2P + nΦ(z) + ∆Φ(z),

Ṗ = nP (z) + ∆P (z),

(4.14)

where nX(z) =
〈(

v†X − Tv†ΩδΦX

)
exp(iΘ) , n(z, t)

〉
for X = A, Ω, T and Φ, and

nP (z) =
1
w
〈R(z, t), n(z, t)〉. The relations between biasing weights and the optimal

parameter paths are given by taking the expectation of these equations, which for the

parameters A, Ω and T , gives the same relations obtained in Chapter 2, i.e.,

Ȧopt = ∆A(z) (4.15a)

Ω̇opt = ∆Ω(z) + ∆Ω(z)∆Φ(z)
ToptA

2
opt

1 + π2

12
+ T 2

optA
2
opt

(4.15b)

and

Ṫopt = Ωopt +∆T (z). (4.15c)

Of course, as previously noted, the assumption that ∆T (z) = ∆Ω(z) = 0 yield trivial

optimal paths for both the timing and frequency parameters, i.e., Ṫopt(z) = Topt(z) =

0 and Ω̇opt(z) = Ωopt(z) = 0. The equation for Φ̇opt(z) is given by

Φ̇opt =
A2

opt − Ω2
opt

2
+ 2Popt +∆Φ(z), (4.15d)

and now includes a term for the optimal path of the radiation power, Popt, which is

given by the equation

Ṗopt = σ2
n +∆P (z). (4.15e)
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Note that unlike the soliton parameters, Popt has a nonzero contribution from the

expectation of the noise term driving the radiation, the value of which was given in

Equation (4.6). Including these path constraints in the cumulative L2-norm gives,

SΦ =

∫ zf

0

Ȧ2
opt

2Aopt

+

(
Φ̇opt −

1

2
A2

opt − 2Popt

)2
18Aopt

12 + π2
+

w
(
Ṗopt − σ2

n

)2
2Popt

dz (4.16)

with initial value constraints

Aopt(0) = Ai, Φopt(0) = Φi, Popt(0) = Pi, (4.17)

and final value constraint

Φopt(zf) = Φf . (4.18)

The values Ai and Φi are, respectfully, the amplitude and phase of the launched

soliton, the value Pi is the initial power in the radiation, and Φf is the targeted final

phase value. Note that Aopt(zf) and Popt(zf) are both unconstrained and must be

determined through the optimization process. Because of this, the targeted final

phase value is best enforced through the use of a Lagrangian multiplier, giving

SΦ =

∫ zf

0

F (Aopt, Ȧopt, Φ̇opt, Popt, Ṗopt) dz − λ (Φopt(zf)− Φf) , (4.19a)

with

F =
Ȧ2

opt

2Aopt

+

(
Φ̇opt −

1

2
A2

opt − 2Popt

)2
18Aopt

12 + π2
+

w
(
Ṗopt − σ2

n

)2
2Popt

, (4.19b)

where the initial value constraints can be applied externally.

Taking variations with respect to each parameter gives the following BVP:(
Φ̇opt −

1

2
A2

opt − 2Popt

)
= λ

12 + π2

36Aopt

, Φopt(0) = Φi, Φopt(zf) = Φf (4.20a)

Äopt =
Ȧ2

opt

2Aopt

+ λ212 + π2

72Aopt

− λA2
opt, Aopt(0) = Ai, Ȧopt(zf) = 0 (4.20b)
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d

dz

(
Ṗopt − σ2

n

Popt

)
+

1

2

(
Ṗopt − σ2

n

Popt

)2

= −2λ

w
, Popt(0) = Pi, Ṗopt(zf) = σ2

n (4.20c)

The first two equations are similar to those derived in Section 2.3.1, the only difference

being that the optimal phase path now depends on the optimal path of the radiation

power, which satisfies an additional second order equation, bring the total number of

degrees of freedom to five. This severly complicates any attempt at finding a numerical

solution via a shooting method approach, as was done in Section 2.3.1. Fortunately,

the equation for the optimal path of the radiation power, i.e., Equation (4.20c), can

be solved exactly, as detailed in the next section, which reduces the dimensionality of

the system back to three. Thus, finding the biasing distribution with radiation has

the same computational cost as the original biasing problems of Chapter 2.

4.2.3 Solution for Optimal Path of Radiation Power Parameter

First, note that λ = 0 corresponds to the case of no biasing, since in this case,

Equation (4.20b) is solved by the constant solution Aopt(z) = Ai, Equation (4.20c) is

solved by Popt(z) = Pi+σ2
nz, which only includes the linear evolution from the non-zero

mean noise contribution, and Equation (4.20a) can be integrated to give Φopt(z) =

Φi +
A2

i

2
z+ σ2

nz
2 +2Piz. Of course, for this to be an actual solution, the final value of

the phase must match the targeted value, i.e., Φopt(zf) = Φi+
A2

i

2
zf+σ2

nz
2
f +2Pizf = Φf .

Assuming this is not the case, Equation (4.20c) must be solved for λ > 0 and λ < 0.

Assuming that λ > 0, the substitutions

z =

√
w

λ
x and

Ṗopt − σ2
n

Popt

= −2

√
λ

w
P̂ (4.21)

transform equation (4.20c) to the form

dP̂

dx
= 1 + P̂ 2, (4.22)
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which is identified as a trigonometric identity for P̂ (x) = tan(x). Transforming back

to the original variables gives,

Ṗopt − σ2
n

Popt

= −2

√
λ

w
tan

(√
λ

w
(z − zf)

)
, (4.23)

where the constant from integrating (4.22) was used to satisfy the end point constraint

Ṗopt(zf) = σ2
n, leaving an initial value problem of the form

Ṗopt + 2

√
λ

w
tan

(√
λ

w
(z − zf)

)
Popt = σ2

n, Popt(0) = Pi. (4.24)

This equation is easily integrated, giving a solution of

Popt(z) = Pi

 cos
(√

λ
w
(z − zf)

)
cos
(√

λ
w
zf

)

2

+ σ2
n

√
w

λ

(
cos

(√
λ

w
(z − zf)

))2 [
tan

(√
λ

w
(z − zf)

)
+ tan

(√
λ

w
zf

)]
.

(4.25)

Finally, the weighting function, i.e., ∆P (z) = Ṗopt(z)− σ2
n, is given by

∆P (z) = − cos

(√
λ

w
(z − zf)

)
sin

(√
λ

w
(z − zf)

)
×Pi

√
λ

w

2(
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(√

λ
w
zf

))2 + 2σ2
n

[
tan

(√
λ

w
(z − zf)

)
+ tan

(√
λ

w
zf

)] .

(4.26)

The case of λ < 0 similar to the λ > 0 case above, where the initial transformations

z =

√
w

λ
x and

Ṗopt − σ2
n

Popt

= 2

√
λ

w
P̂ (4.27)

inserted into equation (4.20c) yields

dP̂

dx
= 1− P̂ 2, (4.28)
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which is solved by P̂ (x) = tanh(x), giving a similar initial value problem of

Ṗopt − 2

√
λ

w
tanh

(√
λ

w
(z − zf)

)
Popt = σ2

n, Popt(0) = Pi. (4.29)

This equation has the solution

Popt(z) = Pi

 cosh
(√

λ
w
(z − zf)

)
cosh

(√
λ
w
zf

)


2

+ σ2
n

√
w

λ

(
cosh

(√
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w
(z − zf)

))2

×

[
tanh

(√
λ

w
(z − zf)

)
+ tanh

(√
λ

w
zf

)]
,

(4.30)

which implies a biasing function of

∆P (z) = cosh

(√
λ

w
(z − zf)

)
sinh

(√
λ

w
(z − zf)

)
Pi

√
λ

w

2(
cosh

(√
λ
w
zf

))2 + 2σ2
n

[
tanh

(√
λ

w
(z − zf)

)
+ tanh

(√
λ

w
zf

)] .

(4.31)

4.2.4 The Optimal Biasing Solution

Since the solution for the optimal path of radiation power is known exactly, the

remaining two equations can be solved by the same shooting method that was imple-

mented in Section 2.3.1. Following this, equation (4.20a) is integrated to given λ in

terms of integrals of Aopt and Popt and the boundary conditions for the phase, i.e.,

λ(Aopt, z) =
(Φf − Φi)− 1

2

∫ zf
0

A2
opt dz − 2

∫ zf
0

Popt dz
12+π2

36

∫ zf
0

1
Aopt

dz
. (4.32)

Putting this back into equation (4.20b) gives the integro-differential equation

Äopt =
Ȧ2

opt

2Aopt

+ (λ(Aopt, z))
212 + π2

72Aopt

− λ(Aopt, z)A
2
opt, (4.33a)
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with boundary conditions

Aopt(0) = Ai and Ȧopt(zf) = 0. (4.33b)

Figures 4.1 (128 modes), 4.2 (256 modes), 4.3 (512 modes) and 4.4 (1024 modes)

plot the optimal paths for the amplitude, phase and radiation power parameters for

various final targeted phase values. These plots show that, as expected, the amount

of biasing the radiation requires increases with the number of modes included in the

simulations. At the same time, the biasing of the amplitude and phase parameters are

decrease as the number of radiation modes are increased, indicating that the radiation

can make significant contributions to the evolution of the phase parameter.

4.3 Results and Discussion

This section shows the results of using the improved low-dimensional reduction given

in (4.1) to guide the application of the ISMC method. Figures 4.5, 4.6, 4.7 and 4.8

display the modified PDFs resulting from the use of the biasing functions displayed in

Figures 4.1-4.4. As expected, these plots show that including radiation in the biasing

scheme results in as lower COV for the same number MC runs. This improvement

becomes more pronounced as the number of radiation modes increase. In particular,

Figure 4.8 shows an approximate 50% improvement in the coefficient of variation for

around the portion of the PDF corresponding to the mean phase value. In addition,

this improvement extends far down into the left tails of the distribution, indicating

that radiation plays an important role in the production of large phase deviations.

Unfortunately, increasing the radiation to drive the phase to higher values, also makes

it much more difficult to accurately resolve the parameters of the soliton at those

amplifiers toward the end of the transmission line. This is particularly evident in the

right half of the COV curve in Figure 4.8, which represents both a large number of

radiation modes in the simulations and high final phase values.
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4.4 Summary

This chapter used the improved low-dimensional reduction, derived in Chapter 3 and

given in Equations (4.1), to derived new biasing paths for the parameters representing

the phase, amplitude and power in the radiation. Using these biasing paths, an

improved ISMC method is constructed, which unlike the original implementation, also

includes biasing in the radiation to drive the phase parameter. With the successful

implementation of the improved ISMC method above, the next chapter extends this

approach to more realistic evolution equations.
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Figure 4.1 Top: The biasing paths (Top) and derivatives (Bottom) for the
amplitude (Left) and phase (Right) parameters using 128 radiation modes. In all
plots the green, cyan, blue, magenta and red curves represent final phase targets of
5.0, 9.0, 14.0, 19.0 and 24.0, respectively, which cover the entire range of values used
in the implementation of the ISMC method. In addition, the black dashed curves
are the corresponding biasing paths of Chapter 2, which do not include radiation.
Bottom: The biasing paths (Top) and derivatives (Bottom) for the radiation power
parameter using the same final phase targets and color scheme as the top four figures.
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Figure 4.2 Top: The biasing paths (Top) and derivatives (Bottom) for the
amplitude (Left) and phase (Right) parameters using 256 radiation modes. In all
plots the green, cyan, blue, magenta and red curves represent final phase targets of
5.0, 9.0, 14.0, 19.0 and 24.0, respectively, which cover the entire range of values used
in the implementation of the ISMC method. In addition, the black dashed curves
are the corresponding biasing paths of Chapter 2, which do not include radiation.
Bottom: The biasing paths (Top) and derivatives (Bottom) for the radiation power
parameter using the same final phase targets and color scheme as the top four figures.
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Figure 4.3 Top: The biasing paths (Top) and derivatives (Bottom) for the
amplitude (Left) and phase (Right) parameters using 512 radiation modes. In all
plots the green, cyan, blue, magenta and red curves represent final phase targets of
5.0, 9.0, 14.0, 19.0 and 24.0, respectively, which cover the entire range of values used
in the implementation of the ISMC method. In addition, the black dashed curves
are the corresponding biasing paths of Chapter 2, which do not include radiation.
Bottom: The biasing paths (Top) and derivatives (Bottom) for the radiation power
parameter using the same final phase targets and color scheme as the top four figures.
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Figure 4.4 Top: The biasing paths (Top) and derivatives (Bottom) for the
amplitude (Left) and phase (Right) parameters using 1024 radiation modes. In all
plots the green, cyan, blue, magenta and red curves represent final phase targets of
5.0, 9.0, 14.0, 19.0 and 24.0, respectively, which cover the entire range of values used
in the implementation of the ISMC method. In addition, the black dashed curves
are the corresponding biasing paths of Chapter 2, which do not include radiation.
Bottom: The biasing paths (Top) and derivatives (Bottom) for the radiation power
parameter using the same final phase targets and color scheme as the top four figures.
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Figure 4.5 Top: The black curve gives the PDF of the phase parameter using 2×105

ISMC simulations of the stochastically forced NLSE in (3.11) with 128 simulation
modes. This is compared to the green curve representing the results of 2× 105 ISMC
runs using 128 modes, but guided by the SODEs of SPT. For comparison, the blue
markers represent the results of 1 × 106 MC runs of the SODEs given in Equation
(3.28), while the red curve is the analytical solution of Equation (3.28) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log
scale of base 10. Middle: Each colored curve is the represents the COV for the
corresponding PDF in the top figure. Bottom: Each sequence of colored markers
correspond to the NOH each bin received under the MC simulations that produced
to the PDF plots in the top figure.
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Figure 4.6 Top: The black curve gives the PDF of the phase parameter using 2×105

ISMC simulations of the stochastically forced NLSE in (3.11) with 256 simulation
modes. This is compared to the green curve representing the results of 2× 105 ISMC
runs using 256 modes, but guided by the SODEs of SPT. For comparison, the blue
markers represent the results of 1 × 106 MC runs of the SODEs given in Equation
(3.28), while the red curve is the analytical solution of Equation (3.28) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log
scale of base 10. Middle: Each colored curve is the represents the COV for the
corresponding PDF in the top figure. Bottom: Each sequence of colored markers
correspond to the NOH each bin received under the MC simulations that produced
to the PDF plots in the top figure.
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Figure 4.7 Top: The black curve gives the PDF of the phase parameter using 2×105

ISMC simulations of the stochastically forced NLSE in (3.11) with 512 simulation
modes. This is compared to the green curve representing the results of 2× 105 ISMC
runs using 512 modes, but guided by the SODEs of SPT. For comparison, the blue
markers represent the results of 1 × 106 MC runs of the SODEs given in Equation
(3.28), while the red curve is the analytical solution of Equation (3.28) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log
scale of base 10. Middle: Each colored curve is the represents the COV for the
corresponding PDF in the top figure. Bottom: Each sequence of colored markers
correspond to the NOH each bin received under the MC simulations that produced
to the PDF plots in the top figure.
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Figure 4.8 Top: The black curve gives the PDF of the phase parameter using 2×105

ISMC simulations of the stochastically forced NLSE in (3.11) with 1024 simulation
modes. This is compared to the green curve representing the results of 2× 105 ISMC
runs using 1024 modes, but guided by the SODEs of SPT. For comparison, the blue
markers represent the results of 1 × 106 MC runs of the SODEs given in Equation
(3.28), while the red curve is the analytical solution of Equation (3.28) linearized
around the initial conditions A = 1 and Ω = T = Φ = 0. All plots are on a Log
scale of base 10. Middle: Each colored curve is the represents the COV for the
corresponding PDF in the top figure. Bottom: Each sequence of colored markers
correspond to the NOH each bin received under the MC simulations that produced
to the PDF plots in the top figure.



CHAPTER 5

VARIATIONAL APPROXIMATION FOR THE NLSE WITH

DISPERSION MANAGEMENT AND DMNLSE

Prior to 1995, models for electromagnetic signal propagation through optical fiber

were largely based on the constant-coefficient NLSE, with the primary impacts of

ASE noise understood to be Gordon-Haus timing jitter [39] and Gordon-Mollenauer

phase jitter [40]. At the same time, however, the drive for higher throughput was

leading researchers to couple multiple frequency (wavelength) channels into the same

fiber for co-propagation using a technique known as wavelength-division multiplexing

(WDM). The presence of multiple wavelengths in the same fiber leads to crosstalk

through the fiber’s nonlinearity, however, and this effect grows more severe as the

number of wavelengths increases. Around this time, optical engineers developed a

technique that is now known as dispersion management (DM), whereby sections

of fiber with oppositely signed dispersion constants are concatenated in a periodic

array [68] This was originally done to mitigate the timing and phase jitter in soliton

propagation, however, it was quickly realized that DM also reduced crosstalk between

the multiple frequencies that are present in a fiber using WDM. The essential idea

behind DM is to have a high local value of dispersion in order to cause the pulses to

broaden and reform periodically (i.e., to “breathe”), thus minimizing the conversion

of frequency fluctuations to timing jitter through the Gordon-Haus effect, and a low

path-averaged value of dispersion to balance the nonlinearity and form stable periodic

solutions. While it is not altogether surprising that solitons of the constant-dispersion

NLSE persist as periodic solitary waves in the perturbative limit of small-amplitude

DM, it is rather more surprising that exact periodically breathing solutions of the

NLSE+DM exist far away from the perturbative limit of the NLSE. These periodic

96
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pulses are commonly referred to as dispersion managed solitons, even though they are

not solutions of an integrable system.

In this chapter, the NLSE is extended to the case of varying dispersion and

nonlinear coefficients to construct a model for DM soliton propagation in DM fiber,

i.e., NLSE+DM. Although this equation is close to the form of the NLSE, the

DM soliton solutions of NLSE+DM are very different from the soliton solutions of

NLSE, due to the complex breathing dynamics resulting from the periodic variations

in the dispersion coefficient. Fortunately, the periodicity that is characteristic of

the NLSE+DM allows for a natural simplification through averaging, where the

propagation a DM soliton is averaged over one dispersion map period, effectively

separating the fast breathing from the slower evolution of the pulse “core”. This core

solution is shown to satisfy an averaged equation referred to as the DMNLSE [50],

which no longer has periodically varying coefficients. However, the price paid for this

simplification is the introduction of a non-local nonlinearity that takes the form of a

convolution.

This chapter also presents a low-dimensional reduction for the pulse dynamics

in a stochastically forced versions of DMNLSE. Like the NLSE, the core DM soliton

solutions of the DMNLSE exhibit a radiation induce phase drift when noise is included

in the propagation model. In addition, an extension of SPT to the DMNLSE for the

derivation of a low-dimensional reduction for the DM soliton core dynamics fails

to captures these effects in the same way it fail to capture radiation effects in the

NLSE [51]. In preparation of constructing an ISMC method that accounts for this

phase drift, the low-dimensional reduction constructed here uses the same variational

approach presented in Chapter 4 for the NLSE, enabling the inclusion of radiation

effects through the choice of ansatz for the evolution of the radiation. Unlike the

NLSE, however, the localized pulse solutions to the DMNLSE can only be found
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numerically, which introduces an additional source of error in the low-dimensional

approximation.

5.1 The NLSE with Dispersion Management: NLSE+DM

Under dispersion management (DM), the transmission line consists of short segments

of optical fiber characterized by large individual dispersion coefficients that alternate

in sign, forming what is referred to as a dispersion map. For several reasons, the

dispersion maps implemented in physical systems are neither exactly periodic nor

symmetrically centered; in a typical scenario most of the dispersion period consists

of single-mode fiber (SMF) with fixed anomalous (positive) dispersion, with a rela-

tively short segment of dispersion-compensating fiber (DCF) with normal (negative)

dispersion placed just prior to the amplifier. Nevertheless, it is often mathematically

equivalent to treat an idealized map with equal amounts of fiber having dispersion

coefficients that are nearly equal in absolute value, forming a periodic dispersion

map that is symmetric around the midpoint between amplifiers and possessing a

period congruent to the amplification cycle [69]. Figures A.2 and A.3 in Appendix

A provides a comparison between realistic and idealized dispersion maps, along with

the dynamics of a typical DM pulse. The dispersion coefficients in the dispersion map

are chosen such that the accumulated dispersion over each map period nearly cancels,

resulting in an average dispersion value that is much smaller than the dispersion

coefficients of both fibers. In addition, the two fibers typically differ in the coefficients

associated with nonlinearity and loss as well, however, these do not alternate in sign

and thus, average out to a value very close to the local values of the individual fibers.

With the details discussed above, the evolution equation for optical pulses in DM

fiber (denoted NLSE+DM) can be derived from a simple modification to the NLSE,

where the constant coefficients are replaced with periodic functions that depend on

the spacial coordinate z. Under the assumption of a piecewise constant dispersion
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map, referred to as a two step map, this equation takes the dimensionless form

i
∂U

∂z
+ iclg

(
1−

Na∑
m=1

δ

(
z

za
−m

))
U +

1

2
cdm(z)

∂2U

∂t2

+ cnl|U |2U = i
Na∑
m=1

σnm(t) δ(z −mza) ,

(5.1a)

with noise statistics that are equivalent to the constant coefficient case, i.e.,

E[nj(t)] = 0 and E[nj(t1)n̄k(t2)] = δjk δ(t1 − t2) , (5.1b)

with σ2 representing the dimensionless noise strength. The dimensionless dispersion

map coefficient is given by

cdm(z) =


cdm,1, 0 ≤ z < za

4

−cdm,2,
za
4
≤ z < 3za

4

cdm,1,
3za
4

≤ z < za,

(5.1c)

with numerical subscripts denoting the two types of fibers that comprise the dispersion

map. The choice of dimensional scales that lead to this equation are given in Appendix

A, and are chosen such that (i) the dimensionless dispersion map period appears as

a small parameter, i.e., za � 1, (ii) the dispersion and loss/gain coefficients are

large, i.e., cdm,j, clg ∼ O(1/za) for j = 1, 2, and (iii) the nonlinear coefficients satisfy

cnl ∼ O(1). Note that because the dispersion coefficient now depends on the evolution

variable z, the NLSE+DM is does not possess the same invariances as the NLSE

from which it was derived. In particular, it no longer has the Galilean invariance

that produces the free frequency parameter seen in NLSE solitons, nor the amplitude

invariance which involves rescaling both the time and space variables.
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5.2 The DMNLSE

The small dimensionless period of the dispersion map, combined with the large

changes in the local dimensionless dispersion coefficient, creates a natural setting for

the application of asymptotic averaging. This procedure factors the varying coefficient

NLSE+DM into an O(1) linear equation capturing the “fast” breathing dynamics of

the DM soliton, and a constant coefficient nonlinear integro-differential equation at

O(zp) (DMNLSE) that governs the evolution of the DM soliton “core”. One major

benefit of using this approach is that many of the invariances of NLSE that where

lost in the transition to NLSE+DM, are found to exist in the DMNLSE, which allows

one to formulate a perturbation theory analogous to SPT for the constant coefficient

NLSE [70, 51]. Finally, it should be noted that the DMNLSE notation is associated

with the work of Ablowitz and Biondini [50] who reformulated the original derivation

by Gabitov and Turitsyn [71]. Because of this, the DMNLSE is also referred to as

the Gabitov-Turitsyn equation (GTE).

5.2.1 Averaging NLSE+DM: DMNLSE

Since the averaging procedure is fully detailed in Appendix A, only a brief outline the

derivation is presented here. By introducing the variable x = z/za and rewriting the

coefficient functions to explicitly reflect their order in za, the NLSE+DM equation in

(5.1a) can be written as

iza
∂U

∂z
+ i

∂U

∂x
+ ic̃lg

(
1−

Na∑
m=1

δ(x−m)

)
U + za

1

2

∂2U

∂t2

+ d(x)
∂2U

∂t2
+ zacnl|U |2U = iza

Na∑
m=1

nm(t) δ(z −mza) ,

(5.2)

where c̃lg and d(x) are O(1) quantities that are related to the original coefficients by

clg =
1

za
c̃lg and cdm(z/za) = 1 + 2

1

za
d(x). (5.3)
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Note that since the dispersion map function alternates in sign, it has an O(1) mean

term that is separated from its O(1/za) variations according to

cdm(z) =
1

za

∫ za

0

cdm(z) dz +
1

za

(
cdm(z)−

∫ za

0

cdm(z) dz

)
= 1 +

2

za
d(x),

(5.4)

where the non-dimensionalization given in Appendix A was chosen such that

1

za

∫ za

0

cdm(z) dz = 1. (5.5)

By assuming a series solution of the form

U(z, x, t) = u0(z, x, t) + zau1(z, x, t) + z2au2(z, x, t) + . . . , (5.6)

the leading order solution of equation (5.2) is found to be

û0(z, x, t) = û(z, ω) exp(−A(x)) exp
(
−iω2D(x)

)
, (5.7)

where

A(x) = c̃lg

∫ x

0

(
1−

Na∑
m=1

δ(y −m)

)
dy, D(x) =

∫ x

0

d(y) dy, (5.8)

and the ∧ superscript denotes the Fourier transform (FT) defined as

F [f(t)] = f̂(ω) =

∫
f(t) exp(iωt) dt,

F−1
[
f̂(ω)

]
= f(t) =

1

2π

∫
f̂(ω) exp(−iωt) dω.

(5.9)

By applying Fredholm theory to the O(za) equation resulting from the series ex-

pansion, the “core” pulse solution û(z, ω) is seen to satisfy the FT version of the

DMNLSE, which takes the form

i
∂û

∂z
− ω21

2
û+

∫ ∫
û(z, ω1 + ω)û(z, ω2 + ω)¯̂u(z, ω2 + ω1 + ω)×

K̂(ω1, ω2; smap) dω1 dω2 = i
Na∑
m=1

n̂m(ω) δ(z −mza) ,

(5.10a)
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where

K̂(ω1, ω2; smap) =
1

(2π)2
sinc

(
ω1ω2

smap

2

)
. (5.10b)

Note that this equation is parameterized by what is referred to as the map strength,

denoted smap, which is defined as the L1-norm of the variations in the non-dimensional

dispersion map, i.e.,

smap =

∫ 1

0

|d(x)| dx. (5.11)

By taking the inverse FT, the DMNLSE in the time domain is given as

i
∂u

∂z
+

1

2

∂2u

∂t2
+

∫ ∫
u(z, t2 + t)u(z, t1 + t)ū(z, t1 + t2 + t)×

K(t1, t2; smap) dt1dt2 = i
Na∑
m=1

nm(t) δ(z −mza) ,

(5.12a)

where

K(t1, t2; smap) =

∫ ∫
exp(−iω1t1) exp(−iω2t2) K̂(ω1, ω2; smap) dω1 dω2. (5.12b)

5.2.2 Invariances of the DMNLSE

As previously stated, the averaging procedure which transforms the NLSE+DM to

the DMNLSE also restores many of the invariances (more precisely the conserved

quantities and rate equations that result from Noether’s theorem [72, 73, 74, 75])

that are commonly associated with NLSE. In particular, the DMNLSE is phase, time

and Galilean invariant, which implies the introduction of free parameters Φ, T and

Ω, that appear in pulse solutions of the DMNLSE in a manner similar to the soliton

solutions of the NLSE. Note that the DMNLSE is also invariant under translations

in z; however, like the NLSE, this invariance can be shown to be equivalent to a

combination of the above three for the pulse solutions discussed here.
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One more invariance exists in the DMNLSE, that leads the inclusion of an am-

plitude scaling parameter A. As in the NLSE, this invariance is associated with

conservation of energy (or photon number) given by

d

dz

∫
|u(z, t)|2 dt = 0. (5.13)

In the case of the NLSE, this leads to the inverse relationship between the amplitude

and width parameters in the soliton solution of Equation (2.4). However, since

pulse solutions of the DMNLSE have an additional dependence on the map strength

parameter, the relationship here is not as simple. When the map strength parameter

of a DM soliton is varied, the functional form of the pulse solution changes, which

subsequently changes the initial amplitude and width of the pulse. Although this

variation in the pulse shape does not affect the other conserved quantities, it does

affect the pulse energy. Therefore, any scaling of the amplitude parameter must also

be accompanied by a change in the pulse form, which occurs through a scaling of the

map strength parameter. This becomes evident in the exact form for the invariance,

given by

ũ(z, t; smap, A) = Au(A2z, At;A2smap), (5.14)

which states that, as long as u(z, t; smap) is a solution of the DMNLSE, than ũ(z, t; smap, A)

is also a solution for any value of A.

Including all four invariances discussed above produces a family of DM solitons of

the form

udmsol(z, t; smap, A,Ω, T,Φ) =

Au0(A(t− T − Ωz);A2smap) exp

(
Ω(t− T ) +

A2 + Ω2

2
z + Φ)

)
,

(5.15)

where u0(z, t; smap) is the underlying pulse solution, i.e., functional form, which is

analogous to the hyperbolic secant pulse form of the NLSE soliton. It is important
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to note however, that although easily found numerically and well approximated

analytically for large map strengths by a Gaussian pulse form, u0(z, t; smap) does not

have a closed-form expression, complicating any attempt at forming a perturbation

theory analogous to SPT of the NLSE.

5.2.3 Pulse Solutions of the DMNLSE

Because the DMNLSE does not admit closed-form solutions, the only way of pro-

ducing a DM soliton is numerically, which is done here through a simple iterative

method based on the DMNLSE in the Fourier domain given by Equation (5.10a) [70].

By neglecting the noise terms and assuming a DM soliton of the form

udmsol(z, t; smap, λ) = u0(t; smap, λ) exp
(
iλ2z/2

)
, (5.16)

the z derivative is replaced by the nonlinear eigenvalue λ, giving the equation

λ2 + ω2

2
û0(ω; smap, λ) =

∫ ∫
û0(ω1 + ω; smap, λ)û0(ω2 + ω; smap, λ)×

¯̂u0(ω2 + ω1 + ω; smap, λ)K̂(ω1, ω2; smap) dω1 dω2,

(5.17)

which can be solved using an iterative method [70]. Note, by comparing (5.16) to the

general four-parameter family of DM solitons in (5.15), it is seen that the eigenvalue λ

is a proxy for the amplitude parameter A, which implies that the resulting numerical

solution u0(t; smap, λ) can be generated from the amplitude invariance [52], i.e.,

u0(t; smap, λ) = λu0(λt;λ
2smap, 1). (5.18)

Thus, all DM soliton solutions of Equation (5.17) can be generated from the one

parameter family of solutions u0(t; smap, 1) which are plotted in Figure 5.1.
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Figure 5.1 Top Left: DM soliton solutions of (5.17) as a function of the map
strength parameter. Top Right: DM soliton solutions of (5.17) on Log scale as a
function of the map strength parameter. Bottom Left: Contour plots of DM soliton
solutions as a function of map strength. Bottom Right: Profile of DM solitons on a
Log scale with varying map strength. In all plots λ = 1.

5.3 DMNLSE Phase Shift from Radiation

The radiation induced phase drift seen in the NLSE of Chapter 2 is also seen in

simulations of the stochastically forced DMNLSE given in (5.12a) [51, 52]. In this

section, the variational approach from Chapter 3 is extended to the DMNLSE, with

the aim of deriving a low-dimensional reduction capable of accounting for this phase

drift. However, this case is slightly more complicated by the lack of closed functional

form for the DM soliton which, when combined with the approximation for the

radiation, introduces additional error in the reduced system.



106

5.3.1 Reduced Equations through Variational Approach

Following the derivation in Chapter 3 for the NLSE, the solution we are approximating

is first written as a sum of two distinct parts, u = us + ur, where us and ur represent

the solitonic and radiative components of the solution, respectively. Putting this into

equation (5.12a) and rewriting the resulting equation as a coupled system gives

i
∂us

∂z
+

1

2

∂2us

∂t2
+

∫ ∫
K(t1, t2)us(z, t1 + t)us(z, t2 + t)ūs(z, t1 + t2 + t) dt1dt2

+ 2

∫ ∫
K(t1, t2)us(z, t1 + t)ur(z, t2 + t)ūr(z, t1 + t2 + t) dt1dt2 = iσns,

i
∂ur

∂z
+

1

2

∂2ur

∂t2

+ 2

∫ ∫
K(t1, t2)us(z, t1 + t)ur(z, t2 + t)ūs(z, t1 + t2 + t) dt1dt2 = iσnr,

(5.19)

where again, the radiation is explicitly split into a portion driving the pulse, ns, and

portion driving the radiation, nr, and the negligible terms corresponding to SPM of

the radiation and FWM are discarded. Note that the complete system also includes

the conjugates of these equations, which are not shown. The functional representation

for this system takes the same form as before, i.e.,

J(us, ūs, ur, ūr) =

∫ zf

0

∫
Lden(us, ūs, ur, ūr) dtdz; (5.20a)

however, the Lagrangian density is now given as

Lden(us, ūs, ur, ūr) = Re

[
i
∂us

∂z
ūs

]
+Re

[
i
∂ur

∂z
ūr

]
− 1

2

∣∣∣∣∂us

∂t

∣∣∣∣2 − 1

2

∣∣∣∣∂ur

∂t

∣∣∣∣2
+

1

2
Re

[∫ ∫
K(t1, t2)us(z, t1 + t)us(z, t2 + t)ūs(z, t1 + t2 + t)ūs(z, t) dt1dt2

]
+ 2Re

[∫ ∫
K(t1, t2)us(z, t1 + t)ur(z, t2 + t)ūr(z, t1 + t2 + t)ūs(z, t) dt1dt2

]
− 2Re [ūs ins]− 2Re [ūr inr] .

(5.20b)
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At this point, functional forms must be chosen for both the solitonic and radiative

parts of the solution. Noting that we are interested in the large map strength regime,

and recalling from Section 5.2.3 that the core of DM soliton solutions of the DMNLSE

take the form of a Gaussian pulse as the map strength gets large, the solitonic portion

of the solution is taken to be a chirped Gaussian pulse,

us(E,W, T,Ω,Φ, C) =

√
E

W
exp

(
−Σ(t, z)2

2

)
exp(iΨ(t, z)) (5.21a)

where

Σ(t, z) =
(t− T (z))

W (z)
(5.21b)

and

Ψ(t, z) = Φ(z) + Ω(z)(t− T (z)) +
C(z)

2
(t− T (z))2. (5.21c)

As before, the radiation is represented by a windowed Fourier decomposition,

ur(t, α1, α2, . . . , αN) =
N/2−1∑
n=−N/2

αn(z) exp(−iωnt) H(w − |t|) , (5.22)

where the parameters αn(z) are the Fourier coefficients of each mode and the frequen-

cies are taken to match the numerical frequencies of ωn = nπ
w
.

Before stating the resulting averaged Lagrangian from these two functional forms,

it is instructive to first explicitly state the calculations of the two integral terms in



108

(5.20b). The first is

1

2
Re

[∫ ∫
K(t1, t2)us(z, t1 + t)us(z, t2 + t)ūs(z, t1 + t2 + t)ūs(z, t) dt1dt2

]
=

1

2

(
E

W

)2

Re

[∫ ∫ ∫
K(t1, t2) exp(−iCt1t2)×

exp

(
− 1

2W 2

[
(t1)

2 + (t2)
2 + (t1 + t2)

2
]
− 2

W 2

[
(t1+2)(t− T ) + (t− T )2

])
dt1 dt2 dt

]
=

√
π

2
√
2
E2K1(W,C)

(5.23a)

where

K1(W,C) =
1

smap

1

2β
ln

κ+ +
(
κ2
+ + 1

) 1
2

κ+ − (κ2
+ + 1)

1
2

κ− −
(
κ2
− + 1

) 1
2

κ− + (κ2
− + 1)

1
2

 (5.23b)

with

β2 =
(1 +W 4C2)

W 2
, κ± = W 2C ± smapβ

2

2
. (5.23c)

The second is

2Re

[∫ ∫
K(t1, t2)us(z, t1 + t)ur(z, t2 + t)ūr(z, t1 + t2 + t)ūs(z, t) dt1dt2

]
≈ 2

E

W

N/2−1∑
j=−N/2

|αj|2Re
[∫

exp

(
− 1

W 2
(t− T )2

)
dt

]
= 2

√
πE

N/2−1∑
j=−N/2

|αj|2,
(5.24)

where the approximation results from the two assumptions that (i) the soliton is much

narrower than the window width and thus the Heaviside functions can be ignored by

relying only on the support of the Gaussian soliton for convergence of the integral,

i.e., w � W (z), and (ii) the non-resonant terms coupling the radiation back to the

soliton can be neglected, just as the FWM terms were in the construction of the

coupled system in (5.19).
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With these two calculations, the averaged Lagrangian takes the form

Lavg = −
√
πEφ̇+

√
πEΩṪ −

√
π

4
EW 2Ċ −

√
π

4

E

W 2
−

√
π

2
EΩ2

−
√
π

4
EC2W 2 + iw

N/2−1∑
j=−N/2

[ᾱjα̇j − αj ˙̄αj]− w
N/2−1∑
j=−N/2

|αj|2 ω2
j

+ 2
√
πE

N/2−1∑
j=−N/2

|αj|2 +
√
π

2
√
2
E2K1(W,C)− 2Re [ūs ins]− 2Re [ūr inr] ,

(5.25)

which, after applying the Euler-Lagrange equations for each parameter, i.e.,

∂Lavg

∂X
− d

dz

[
∂Lavg

∂Ẋ

]
= 0 (5.26)

for X = E, W , T , Ω, Φ and C, gives SODEs of the form

dE

dz
=

2√
π
Re

[∫
∂ūs

∂φ
(in(t, z)) dt

]
, (5.27a)

dΩ

dz
= − 2√

πE

[
Re

[∫
∂ūs

∂T
(in(t, z)) dt

]
+ ΩRe

[∫
∂ūs

∂Φ
(in(t, z)) dt

]]
, (5.27b)

dT

dz
= Ω+

2√
πE

Re

[∫
∂ūs

∂Ω
(in(t, z)) dt

]
, (5.27c)

dC

dz
=

1

W 4
− C2 +

1√
2

E

W

∂K1

∂W
− 4√

πEW
Re

[∫
∂ūs

∂W
(in(t, z)) dt

]
, (5.27d)

dW

dz
= CW − 1√

2

E

W

∂K1

∂C

+
4√

πEW

(
Re

[∫
∂ūs

∂C
(in(t, z)) dt

]
− W 2

4
Re

[∫
∂ūs

∂Φ
(in(t, z)) dt

])
,

(5.27e)

dΦ

dz
=

1

2
Ω2 − 1

2

1

W 2
+

1√
2
EK1(W,C)− 1

4
√
2
EW

∂K1

∂W
+ 2

N/2−1∑
j=−N/2

|αj|2

+
W√
πE

Re

[∫
∂ūs

∂W
(in(t, z)) dt

]
+

2√
πE

ΩRe

[∫
∂ūs

∂Ω
(in(t, z)) dt

]
− 2√

π
Re

[∫
∂ūs

∂E
(in(t, z)) dt

]
,

(5.27f)
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where the radiation coefficients satisfy

α̇j = i

(√
π

w
E − 1

2
ω2
j

)
αj +

1

2w

∫
exp(iωjt) H(w − |t|)nr(t, z) dt

≈ i

(√
π

w
E − 1

2
ω2
j

)
αj +

1

2w

∫
exp(iωjt) H(w − |t|)n(t, z) dt,

(5.27g)

and

˙̄αj = −i

(√
π

w
E − 1

2
ω2
j

)
ᾱj +

1

2w

∫
exp(−iωjt) H(w − |t|) n̄r dt

=≈ −i

(√
π

w
E − 1

2
ω2
j

)
ᾱj +

1

2w

∫
exp(−iωjt) H(w − |t|) n̄(t, z) dt.

(5.27h)

5.3.2 The Approximate DMNLSE Soliton Modes

Equations (5.27) have terms representing the noise projected onto a basis formed from

linear combinations of the derivatives of the Gaussian soliton ansatz with respect to

each of the six parameters, i.e., ∂us/∂X for X = E, W , T , Ω, Φ and C. This was also

the case in Equations (3.26), however, there the functional form of the soliton ansatz

matched the exact soliton solution (which is known in closed form), resulting in the

equivalence between the true discrete eigenfunctions (and adjoints) of the linearized

NLSE and those functions found through the variational method. Here, however, the

DM soliton solutions are not known in closed form, but instead are approximated by a

Gaussian ansatz, resulting in Gaussian approximations for the discrete eigenfunctions

(and the adjoint eigenfunctions) of the linearized DMNLSE [70].

By explicitly calculating these derivatives and accounting for real, imaginary, even

and odd parts, a convenient representation for the approximate eigenfunctions of the

linearized DMNLSE is given by

vE =
1

2E
us, vW =

1

2W
(2Σ2 − 1)us, vT =

1

W
Σus

vΩ = iWΣus, vΦ = ius, vC = i
W 2

4
(2Σ2 − 1)us,

(5.28)
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which, through the projection terms in Equations in (5.27), results in approximate

adjoint eigenfunctions of

v†E = −i
2√
π
vΦ, v†Φ = i

2√
π
vE, v†T = −i

2√
πE

vΩ,

v†Ω = i
2√
πE

vT , v†W = −i
4√

πEW
vC , v†C = i

4√
πEW

vW .

(5.29)

Note that under the inner product defined in Equation (2.16), i.e.,

〈f, g〉 = Re

[∫
f̄ g dt

]
, (5.30)

the approximate eigenfunctions given in Equation (5.28) form an orthogonal set, i.e.,

〈vX , vY 〉 = 〈vY , vX〉 δXY , (5.31)

for X, Y = E, W , T , Ω, C and Φ. Likewise, the adjoint eigenfunctions given by

Equations (5.29) are also orthogonal, and thus, the these two sets together form a

bi-orthogonal basis, i.e., 〈
v†X , vY

〉
=
〈
vY , v

†
X

〉
δXY . (5.32)

Using these relations and the discrete form of noise given in Equation (2.2), the

SODEs 5.27 can be written as

dE

dz
=

Na∑
k=1

∆Ek δ(z − kza), (5.33a)

dΩ

dz
=

Na∑
k=1

∆Ωk δ(z − kza), (5.33b)

dT

dz
= Ω+

Na∑
k=1

∆Tk δ(z − kza), (5.33c)

dW

dz
= CW − 1√

2

E

W

∂K1

∂C
+

Na∑
k=1

∆Wk δ(z − kza), (5.33d)
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dC

dz
=

1

W 4
− C2 +

1√
2

E

W

∂K1

∂W
+

Na∑
k=1

∆Ck δ(z − kza), (5.33e)

dΦ

dz
=

1

2
Ω2 − 1

2

1

W 2
+

1√
2
EK1

− 1

4
√
2
EW

∂K1

∂W
+ 2

N/2−1∑
j=−N/2

|αj|2 +
Na∑
k=1

∆Φk δ(z − kza),

(5.33f)

dαj

dz
≈ i

(√
π

w
E − 1

2
ω2
j

)
αj +

Na∑
k=1

∆αj,k δ(z − kza), (5.33g)

and

dᾱj

dz
≈ −i

(√
π

w
E − 1

2
ω2
j

)
ᾱj +

Na∑
k=1

∆ᾱj,k δ(z − kza). (5.33h)

where the stochastic jump terms are given by evaluating the projection functions

∆Ek = σRe

[∫
v̄†E(kza, t) exp(−iΨ(kza, t))nk(t) dt

]
,

∆Ωk = σRe

[∫ (
v̄†Ω(kza, t) + C(kza)v̄

†
T (kza, t)

)
exp(−iΨ(kza, t))nk(t) dt

]
,

∆Tk = σRe

[∫
v̄†T (kza, t) exp(−iΨ(kza, t))nk(t) dt

]
,

∆Wk = σRe

[∫
v̄†W (kza, t) exp(−iΨ(kza, t))nk(t) dt

]
,

∆Ck = σRe

[∫
v̄†C(kza, t) exp(−iΨ(kza, t))nk(t) dt

]
,

∆Φk = σRe

[∫ (
v̄†Φ(kza, t) + Ω(kza)v̄

†
T (kza, t)

−W (kza)
2

4
v̄†C(kza, t)

)
exp(−iΨ(kza, t))nk(t) dt

]
,

∆αj,k =
σ

2w

∫ w

−w

exp(iωjt) nk(t) dt,

∆ᾱj,k =
σ

2w

∫ w

−w

exp(−iωjt) n̄k(t) dt,

(5.34)

at the amplification points kza. Like in the case of the NLSE, these jump terms are

mean zero. Unlike the NLSE, however, there are many covariances between these
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terms, which are best displayed as

E





∆Ek+1

∆Wk+1

∆Tk+1

∆Ck+1

∆Ωk+1

∆Φk+1





∆Ek+1

∆Wk+1

∆Tk+1

∆Ck+1

∆Ωk+1

∆Φk+1



T
= (5.35)

σ2

√
π



2Ek 0 0 0 0 0

0
W 2

k

Ek
0 0 0 0

0 0
W 2

k

Ek
0

CkW
2
k

Ek

ΩW 2
k

Ek

0 0 0 4
EkW

4
k

0 − 1
2EkW

2
k

0 0
CkW

2
k

Ek
0 1

Ek

(
1

W 2
k
+ C2

kW
2
k

)
CkΩkW

2
k

Ek

0 0
ΩkW

2
k

Ek
− 1

2EkW
2
k

CkΩkW
2
k

Ek

1
Ek

(
3
4
+ Ω2

kW
2
k

)


, (5.36)

and

E[∆αj,k+1∆ᾱj,k+1] =
σ2

2w
, (5.37)

where the notation Xk = X(kza) was used for brevity.

5.4 Results and Discussion

The phase evolution given by Equation (5.33f) can now be compared to the evolution

of the phase of a DM soliton. The results of this are given in Figure 5.2, and are seen

to approximate the phase evolution very well.
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Figure 5.2 The plot on the left gives the mean phase vs. number of simulation
modes using the SODEs in (5.27) (solid lines) and the DMNLSE given in (5.12a)
(markers) at z = 16 (squares), 28 (circles) and 40 (triangles) with smap = 5. The
plot to the right given the mean of phase vs. transmission length using the SODEs
in (5.27) (solid lines) and the DMNLSE given in (5.12a) (markers) for N = 256
(squares), 512 (circles), and 1024 (triangles) with smap = 5. For comparison, the
dashed line correspond to the first-order SPT approximation.

5.5 Summary

In this chapter, the NLSE was extended to the case of varying dispersion and non-

linear coefficients to construct a model for DM soliton propagation in DM fiber, i.e.,

NLSE+DM. This equation is close to the form of the NLSE, the resulting DM soliton

solutions for this equation are very different from the soliton solutions of NLSE,

due to the complex breathing dynamics resulting from the periodic variations in the

dispersion coefficient. By applying an averaging technique, where the propagation

of a DM soliton is averaged over one period of the variations, the fast breathing

dynamics of the DM soliton was separated the from the slower evolution of the pulse

“core”, the latter of which was shown to satisfy an averaged equation referred to as

the DMNLSE [50]. The DMNLSE no longer has periodically varying coefficients due

to the averaging, which also resulted in the introduction of a non-local nonlinearity

that takes the form of a convolution. This chapter continued by constructing a
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low-dimensional reduction for the pulse dynamics in a stochastically forced versions

of DMNLSE, which captures the radiation-induced phase drift when noise is included

in the propagation model.



CHAPTER 6

REDUCED SYSTEMS FOR MODELS OF MODE-LOCKED LASERS

In previous chapters, the ISMC method was used to quantify rare event proba-

bilities in optical communication systems modeled by variations of the stochastic

NLSE. In this chapter, this ISMC method is applied to quantify failure rates in

mode-locked lasers (MLL) operating in the soliton and dispersion-managed (DM)

soliton (or stretched pulse) regimes. There are many similarities shared by the

mathematical models commonly used to describe these two systems. Both include a

balance between dispersion and nonlinearity that facilitates the propagation of optical

pulses, and both include random perturbations from ASE noise. In addition, MLLs

commonly implement the effects of dispersion and nonlinearity separately, through

the combination of various separate optical components, i.e., lenses, mirrors and

prisms, which results in a propagation model that includes space-dependent terms

completely analogous to those of the NLSE+DM of optical communication presented

in Chapter 5. However, there are also important differences between the two system,

the majority of which stem from the amplification and modulation mechanisms that

are essential in the formation of optical pulses in MLLs.

This chapter begins with a description of MLLs in both the time and frequency

domains, which is followed by a review of several commonly used mathematical models

for pulse propagation. This culminates with the presentation of a relatively new

model, termed the dispersion-managed perturbed nonlinear Schrödinger equation

(PNLSE+DM), that accounts for nonlinearity and dispersion variations inside the

laser cavity, in addition to saturated modulation and bandwidth limited gain. In

the soliton operating regime, this equation collapses to the constant-coefficient NLSE

with non-conservative perturbations (PNLSE), which is amendable to an application

116



117

of the SPT presented in Chapter 2. This results in a low-dimensional reduction for

the PNLSE, which is used to guide the ISMC method.

6.1 Mode-Locked Lasers in the Time Domain

In the simplest terms, a MLL is a laser that emits pulsed light in the time domain. The

term mode-locking refers to a fixed phase relationship between axial modes in a laser

cavity [76]. Under normal operation, the phase of each axial mode in a laser cavity

is random, whereas in a mode-locked state, they are locked to a common value, thus

aligning the modes and forming pulsed emissions. Though described as a resonant

phenomenon occurring in the frequency domain, mode-locking is physically achieved

through a power feed-back mechanism applied in the time domain. This was originally

done with mechanically controlled power modulators, which is referred to as active

mode-locking. However, the need for shorter pulses and higher repetition rates has

lead to passive modulation designs, which rely on intensity-dependent attenuation,

i.e., saturable absorption, to induce mode-locking. At the same time, the gain medium

used for maintaining short pulses has also evolved to include an array of materials

with extended bandwidths. Two of the more successful materials used for this purpose

include Ti:Sapphire, commonly used in open cavity MLLs, and erbium-doped silica

fiber, used in optical fiber-based MLLs [77].

The addition of a periodic modulation, in the form of saturable absorption, to

a normally operating laser, forces the circulating radiation to coalesce into a pulse

that is shortened and amplified on every pass through the cavity. The shortening

process continues until the spectrum of the pulse approaches the finite bandwidth of

the gain material and settles into a state where the effects of gain, loss, dispersion

and nonlinearity are balanced in each round trip through the cavity. Thus, the

combination of saturated loss from the modulation and broad-bandwidth gain from

amplification can be thought of as creating a basin of attraction for the formation
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and stabilization of an optical pulse. As a result, MLLs are extremely stable and

accurate devices, making them useful in applications that require extreme precision

over extended periods of time. However, these very attractive properties of MLLs

also present a difficult challenge when it is necessary to quantify their failure rate in

the presence of noise. Even the simplest models are sufficiently complex to prevent

their analysis using probabilistic methods, and the precision and stability of MLLs

demand that failures be extremely rare events, rendering ensemble approaches based

on numerical simulations prohibitively expensive, thus the need for an extension of

the ISMC method.

It is important to note that, not all MLLs produce optical pulses in the manner

discussed above and, in general, there exists three regimes for optical pulse propaga-

tion within these devices. The first is the soliton regime, which primarily relies on

a balance between dispersion and nonlinearity, with saturated loss and gain effects

contributing as perturbations. However, self-phase modulation (SPM) causes the

higher intensity portions of a soliton pulse to rotate faster than lower intensity tails,

which results in wave breaking and/or multi-pulsing. Thus, there is a limit to the

amount of power a single soliton pulse can carry in a MLL cavity. To create pulses

with higher power, MLL laser designs started to incorporate the idea of dispersion

management from optical communications, where different components of the laser

contribute large amounts of either positive or negative dispersion. On average, the

pulse receives just enough dispersion to counter the effects of nonlinearity, while

the periodically alternating values of instantaneous dispersion forces the pulse to

rapidly stretch and compress during one round trip through the laser cavity, which is

referred to as stretched pulse or DM soliton propagation. During the time the pulse is

stretched, the power is spread out over a longer time interval, thus reducing both the

local intensity and SPM effect, and allowing for higher optical powers. Finally, a more

recent approach to pulse propagation in MLLs has emerged that uses the self-similar
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solution for pulse propagation in gain fiber, which results in the formation of so-called

similariton pulses. These lasers are almost entirely constructed out of gain material,

and incorporate rapid loss through chirped filtering [78, 79, 80]. The rapid transition

to and from states of high gain and loss, results in complex pulse dynamics which

are extremely difficult to capture with low-dimensional approximations. Thus, this

regime is not considered here.

6.2 Mode-Locked Lasers in the Frequency Domain

As stated above, the term mode-locking refers to a fixed phase relationship between

the axial modes in a laser cavity [76], which through interference, produces a train

of pulses at integer multiples of the round trip time in the temporal domain. In the

spectral domain, this output results in a series of sharp spikes at integer multiples of

the repetition frequency, which is referred to as a frequency comb [81].

Importantly, the formation of a stable frequency comb requires mode-locking of

two elements. First, the longitudinal cavity modes must be locked to produce pulsed

output, and second, the phase differences between the carrier wave and the envelope

must be locked to ensure that the spectral lines that form the comb have narrow

enough line-width to be differentiated as individual spikes. To see this more clearly,

consider

E(t) =
N−1∑
n=0

u(t− nτ) exp(in∆φe) exp(iωct) exp(iφr,n) + c.c.

=
N−1∑
n=0

u(t− nτ) exp(i(ωc(t− nτ) + n∆φce + φr,n)) + c.c.,

(6.1)

which represents the pulse train leaving the cavity. The laser cavity is assumed to

have a round trip time of τ , resulting in a laser output that consists of a sequence

of pulses, each centered at integer multiples of τ . In this representation, u(t) is the

form of the pulse circulating in the laser cavity, exp(iωct) is the carrier wave which

is assumed to have a zero initial phase, φr,n represents random phase perturbations
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from noise and n∆φce = n∆φe + nωcτ is the phase at the peak of the nth pulse,

which is the sum of phase rotations of the pulse (n∆φe) and carrier wave (nωcτ). It

should also be noted that, since we are primarily concerned with perturbations to the

phase, this representation assumes no perturbations of the pulse timing, frequency

or amplitude, which could be included by allowing the pulses to depend on timing,

frequency and amplitude parameters that vary with the index n. A plot of Equation

(6.1) in the absence of random phase perturbations is given in Figure 6.1.

Time

E
(t

)

τ

∆φ
ce

Figure 6.1 Illustration of the enveloped carrier wave output of a mode-locked laser.
The red curve represents the envelope and the black curve represents the carrier wave.

The frequency comb that is generated by a train of N pulses can be found from

calculating the Fourier transform (FT) of Equation (6.1),

F [E(t)] = Ê(ω − ωc) = Û(ω − ωc)
N−1∑
n=0

exp(−inωτ + in∆φce + iφr,n) + c.c.

= Û(ω − ωc)Ĉ(ω) + c.c.

(6.2)

where the FT was defined as

F [f(t)] = f̂(ω) =

∫
f(t) exp(−iωt) dt,

F−1
[
f̂(ω)

]
= f(t) =

1

2π

∫
f̂(ω) exp(iωt) dω,

(6.3)
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and Ĉ(ω) represents the comb function, defined as

Ĉ(ω) =
N−1∑
n=0

exp(−in(ωτ −∆φce) + iφr,n) . (6.4)

In the absence of random phase perturbations, i.e., φce,n = 0, the comb function takes

the form

Ĉ(ω) =
N−1∑
n=0

exp(−in(ωτ −∆φce))

= exp

(
−i

(ωτ −∆φce)

2
(N − 1)

) sin
(

(ωτ−∆φce)
2

N
)

sin
(

(ωτ−∆φce)
2

) ,

(6.5)

which gives a power spectral density (PSD) of

|Ê(ω)|2 = |Û(ω − ωc)Ĉ(ω) + c.c.|2 ≈ 2|Û(ω − ωc)|2|Ĉ(ω)|2

= 2|Û(ω − ωc)|2
 sin

(
(ωτ−∆φce)

2
N
)

sin
(

(ωτ−∆φce)
2

)
2

.
(6.6)

In the limit of N → ∞, Equation (6.6) is seen to form sharp spectral peaks at ωk =

2πk/τ+∆φce/τ = 2πfrepk+∆φcefrep with frequency spacing of ∆ω = 2π/τ = 2πfrep,

where frep is repetition frequency of the pulses in the cavity. Thus, as illustrated in

Figure 6.2, the PSD is in the form of many sharp, evenly spaced spectral peaks which

are shifted to account for the carrier-envelope phase offset and enveloped by the broad

spectral profile of the pulse centered at the carrier frequency.

6.3 Mode-Locked Laser Models

As previously stated, this chapter is focused on MLLs operating in the soliton and

dispersion-managed (DM) soliton (stretched-pulse) regimes. It is assumed that the

feedback (modulation) is supplied by a fast saturable absorber reacting instanta-

neously to changes in the pulse intensity, while the gain element is band-limited and

slowly saturates with the total energy in the cavity [77]. As the resulting model
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Figure 6.2 Illustration of the frequency comb output of a mode-locked laser. The
red lines represent shifted combs spikes, enveloped by the spectral profile of the pulse.

will show, this combination of gain element and saturable absorber creates a larger

positive net gain on the peak intensity portions of the pulse which acts to narrow

the pulse until the spectral bandwidth of the gain medium is reached and the pulse

settles into an equilibrium state. Figure 6.3 shows a diagram for the gain dynamics

resulting from this combination.

It is important to note, however, that a complete description of a particular MLL

design depends on much more than just the implementation of the modulation and

gain. Moreover, there exist numerous MLL designs that use the same modulation and

gain elements, but in different combinations and proportions, to produce a variety of

different pulse dynamics. Because of this, the most common mathematical models

for MLLs are constructed phenomenologically from existing models of optical pulse

propagation in nonlinear materials and usually include a large number of parameters

that allow the models to be “tuned”. In addition, the majority of these models are

categorized as distributed models in that they do not directly account for the evolution
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Figure 6.3 Gain dynamics for the combination of passive (fast) saturable absorber
and (slow) saturable gain.

of the pulse through different components of the laser cavity, but instead assume that

the effect of each component can be modeled as occurring simultaneously throughout

the laser cavity. This treatment is formally equivalent to keeping the zeroth order

equation from an averaging procedure, such as that presented in Chapter 4 for the

derivation of DMNLSE.

6.3.1 Commonly Used MLL Models

The most widely known model for MLLs is the master mode-locking equation (MMLE),

i
∂u

∂z
+

1

2

∂u

∂tt
+ |u|2u+ ig0u+ ig1|u|2u+ i

2g0(u− τ ∂u
∂tt

)

1 + ‖u‖2/E0

= 0, (6.7)

originally derived by Haus [82, 83, 76, 77]. Note that ‖u‖2 =
∫
|u|2dt. The MMLE

models the effects of nonlinearity and dispersion through same terms as in the NLSE

for pulse propagation in optical fiber. It also models bandwidth-limited gain through

an energy saturation term and intensity discrimination through a cubic nonlinearity.

For a narrow range of these parameters, this equation has stable pulse solutions
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with mode-locking evolution [77]. Otherwise the pulses are found to be unstable;

either dispersing to radiation, evolving into non-localized quasi-periodic states, or

grow rapidly under evolution [77]. Thus, the basic MMLE captures some qualitative

aspects of pulse propagation in a laser cavity, but only possesses as a small range of

the parameter space for which stable mode-locked pulses exist.

Various modifications have been proposed to extend the parameter space over

which stable pulse are formed in the MMLE. These range from the inclusion of higher-

order nonlinear terms to more complex models for the absorber [77]. A commonly

used extension of the MMLE includes a quintic nonlinear term resulting in the quintic

master mode-locking equation (QMMLE) given by

i
∂u

∂z
+

1

2

∂u

∂tt
+ |u|2u+ ig0u+ ig1|u|2u+ ig2|u|4u+ i

2g0(u− τ ∂u
∂tt

)

1 + ‖u‖2/E0

= 0. (6.8)

The stability of the pulses in both the MMLE and the QMMLE are verified

numerically, since the energy saturated gain term complicates the attempts at rigorous

stability analysis of these equations. When rigorous stability statements are needed, it

is common to approximate the saturating term as a constant, which leads to Ginzburg-

Landau type equations, such as the Quintic Complex Ginzburg-Landau Equation

(QCGLE) given by

i
∂u

∂z
+

(
1

2
− ig0τ

)
∂u

∂tt
− iκutttt + (1 + ig1)|u|2u+ (ν + ig2) |u|4u+ i2g0u = 0, (6.9)

which support many types of pulsating, chaotic, and periodically growing or decaying

localized states, some of which can be seen in physical MLL systems [84, 76, 77, 55, 81].

6.3.2 The Perturbed NLSE as a Model for MLLs

The model that will be used here for the extension of the ISMC method to MLLs,

is a stochastically forced, dispersion managed version of the perturbed nonlinearity
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Schrödinger equation [85](PNLSE+DM), given in dimensionless form by

i
∂u

∂z
+ d(z)

∂2u

∂t2
+ ν(z)|u|2u =

i

(
g(z)

1 + E(u)
Esat

)
u+ i

(
τ(z)

1 + E(u)
Esat

)
∂2u

∂t2
− i

(
l(z)

1 + P (u)
Psat

)
u+ iσn(t, z).

(6.10a)

where

P (u) = |u|2 and E(u) =

∫
|u|2dt. (6.10b)

The coefficient functions are all taken to be piecewise constant, with d(z) and ν(z)

accounting for variations in dispersion and nonlinearity, respectively, just as in the

NLSE+DM discussed in Chapter 4. However, unlike NLSE+DM, the functions

g(z) and τ(z) quantify the strength of the energy-saturated gain and its bandwidth,

respectively, while l(z) accounts for power saturated loss. The noise term is written

in a general form as n(t, z) and is assumed to have statistics similar to what was

used in Chapter 2 for the stochastic NLSE. This equation was originally considered,

in the absence of noise, for propagation of large amplitude self-similar pulses, i.e.,

similaritons, in Ti:sapphire lasers with only normal dispersion [78, 86] and later

extended to soliton and DM soliton-based lasers [85], which are the lasers of interest

here.

6.4 The Soliton Propagation Regime

The assumption of operating in a soliton regime is equivalent to the assumption that

the pulse shape remains relatively constant throughout propagation. To model this

type of pulse propagation, the variation in the coefficients of the PNLSE+DM can

approximated as perturbative constants. Thus, the equation used here for MLLs

operating in a soliton regime (PNLSE) takes the form of a stochastic NLSE with
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non-conservative perturbation terms,

i
∂u

∂z
+

1

2

∂2u

∂t2
+ |u|2u =

i

(
g

1 + E(u)
Esat

)
u+ i

(
τ

1 + E(u)
Esat

)
∂2u

∂t2
− i

(
l

1 + P (u)
Psat

)
u+ iσn(t, z),

(6.11)

where g ∼ τ ∼ l ∼ σ � 1, and it is assumed that d(z) = 1/2 and ν(z) = 1.

6.4.1 Derivation of a Reduced System

Because the system in Equation (6.11) is in the form a perturbed NLSE, the resulting

solutions take the form of perturbed hyperbolic secant solitons, and thus, the SPT of

Chapter 2 can be extended to derive a reduced system for the evolution of the pulse

parameters. Now, however, inclusion of the non-conservative gain and loss terms

introduce restoring forces to both the amplitude and frequency parameters. In the

absence of stochastic effects, these parameter now converge to steady state values

fixed by the coefficients g, τ and l.

Recalling that SPT is essentially an application of multiple scales, we introduce

the length scale z1 = σz, which transforms Equation (6.11) to

i
∂u

∂z
+ iσ

∂u

∂z1
+

1

2

∂2u

∂t2
+ |u|2u =

iσ

(
g̃

1 + E(u)
Esat

)
u+ iσ

(
τ̃

1 + E(u)
Esat

)
∂2u

∂t2
− iσ

(
l̃

1 + P (u)
Psat

)
u+ iσn(t, z),

(6.12)

where g̃, τ̃ and l̃ are now O(1) quantities. Inserting an expansion for the solution in

the form

u = [v0(t, z, z1) + σv1(t, z, z1)] exp(iΘ(t, z, z1)) , (6.13)

gives the NLSE as the O(1) equation, which as expected, gives the first order solution

of a soliton with parameters that now depend on z1,

v0(t, z, z1) exp(iΘ(t, z, z1)) = usol(t, z, A(z1),Ω(z1), T0(z1),Φ0(z1)), (6.14)
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where usol is defined in Equation (2.4) and repeated here for convenience as

usol(z, t) = u0(z, t) exp(iΘ(z, t)) , (6.15a)

where

u0(z, t) = A sech(A[t− T (z)]) , Θ(z, t) = Ω t+ Φ(z), (6.15b)

with

T (z) = T0 + Ωz and Φ(z) =
A2 − Ω2

2
z + Φ0. (6.15c)

At O(σ), the expansion gives(
∂

∂z
+ Ω

∂

∂t

)
v1 − L(v1;u0) = n(z, t) exp(−iΘ(t, z, z1)) +

(
g̃

1 + E(u0)
Esat

)
u0

+

(
τ̃

1 + E(u0)
Esat

)[
∂2u0

∂t2
+ 2iΩ

∂u0

∂t
− u0Ω

]
−

(
l̃

1 + P (u0)
Psat

)
u0

−
[
vA

dA

dz1
+ vT

∂T

∂z1
+ (vΩ + TvΦ)

dΩ

dz1
+ vΦ

∂Φ

∂z1

]
,

(6.16a)

where as before,

L(v1;u0) =
i

2

∂2v1
∂t2

− i

2
A2v1 + 2i|u0|2v1 + i(u0)

2v̄1, (6.16b)

is the reduced linearized operator resulting from the linearization of the NLSE about

the soliton solution and vX , for X = A, Ω, T and Φ, are the general eigenfunctions

corresponding to the soliton parameters. Recall that these eigenfunctions form an

orthonormal basis with respect to the corresponding adjoint eigenfunctions, denoted

by v†X and defined in Equation (2.18), under the inner product defined by Equation

(2.16). Thus, enforcement of the Fredholm orthogonality condition for Equation

(6.16a) gives the reduces system

dA

dz
= gA(A,Ω) + σRe

[∫
v̄†A exp(−iΘ)n(z, t) dt

]
, (6.17a)
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dT

dz
= Ω+ σRe

[∫
v̄†T exp(−iΘ)n(z, t) dt

]
, (6.17b)

dΩ

dz
= −gΩ(A,Ω) + σRe

[∫
v̄†Ω exp(−iΘ)n(z, t) dt

]
, (6.17c)

and

dΦ

dz
=

A2 − Ω2

2
+ gΩ(A,Ω)T

+ σRe

[∫ (
v̄†Φ − T v̄†Ω

)
exp(−iΘ)n(z, t) dt

]
,

(6.17d)

where gA(A,Ω) and gΩ(A,Ω) are functions of the amplitude and frequency parameters

given by

gA(A,Ω) = 2gEsat
A

Esat + 2A
− 2l

Psat

(Psat + A2)
1
2

arctanh

(
A

(Psat + A2)
1
2

)

− 2τEsat
A

Esat + 2A

(
A3

3
+ Ω2

)
,

(6.17e)

and

gΩ(A,Ω) =
4

3
τEsat

A2

Esat + 2A
Ω, (6.17f)

which originate from the new perturbation terms included in the reduction. Finally,

using the discrete amplification model for the noise given in Equation (2.2), the

stochasticity appears as discrete random jumps in the soliton parameters which take

the form of projections between the noise realizations at each amplifier and the four

adjoint modes of the linearization,

dA

dz
= gA(A,Ω) +

Na∑
k=1

∆Ak δ(z − kza), (6.18a)

dT

dz
= Ω+

Na∑
k=1

∆Tk δ(z − kza), (6.18b)

dΩ

dz
= −gΩ(A,Ω) +

Na∑
k=1

∆Ωk δ(z − kza), (6.18c)
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and

dΦ

dz
=

A2 − Ω2

2
+ gΩ(A,Ω)T +

Na∑
k=1

∆Φk δ(z − kza), (6.18d)

where the stochastic jump terms are given by evaluating the projection functions

∆Ak = σRe

[∫
v̄†A(kza, t) exp(−iΘ(kza, t))nk(t) dt

]
,

∆Ωk = σRe

[∫
v̄†Ω(kza, t) exp(−iΘ(kza, t))nk(t) dt

]
,

∆Tk = σRe

[∫
v̄†T (kza, t) exp(−iΘ(kza, t))nk(t) dt

]
,

∆Φk = σRe

[∫ (
v̄†Φ(kza, t)− T (kza)v̄

†
Ω(kza, t)

)
exp(−iΘ(kza, t))nk(t) dt

]
,

(6.19)

at the amplification points kza. Note that because the addition of the new perturba-

tive terms in no way effects the form of the linearized modes, these stochastic jump

terms are equivalent to those in Chapter 2. In particular, they are mean zero and

have variances at the k + 1 amplifier given by

E
[
(∆Ak+1)

2] = σ2

2
‖v†A(kza, t)‖

2 = σ2Ak,

E
[
(∆Tk+1)

2] = σ2

2
‖v†T (kza, t)‖

2 =
σ2π2

12A3
k

,

E
[
(∆Ωk+1)

2] = σ2

2
‖v†Ω(kza, t)‖

2 =
σ2Ak

3
,

E
[
(∆Φk+1)

2] = σ2

2
‖v†Φ(kza, t)− Tkv

†
Ω(kza, t)‖

2

= σ212
(
1 + (Tk + Ωkza)

2 A2
k

)
+ π2

36Ak

,

(6.20)

where the notation Xk = X(kza) was used for brevity. Figure 6.4 shows a comparison

between the parameter evolution in the PNLSE of Equation (6.11) and the ODEs in

Equations (6.18) in the absence of noise, demonstrating that this reduced system

provides an excellent approximation for the deterministic pulse parameter evolution.
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Figure 6.4 Comparison of the amplitude (Left) and phase (Right) parameters
between noiseless numerical simulation of the PNLSE given in (6.11) and the system
of ODEs given in (6.17). The blue and red curves represent the PDE and ODE results,
respectively, whereas the dashed black curves represent the optimal paths under the
original conservative SPT equations for NSLE and the solid black curves represent
the fixed point, which is chosen to correspond to A = 1 by setting the parameter
values to be g = 0.022, τ = 0.01 and l = 0.01 in all simulations.

6.4.2 ISMC for the PNLSE in the Soliton Regime

The reduced system in Equations (6.18) can now be used to derive biasing distribu-

tions for the implementation of the ISMC method. This is only done for the phase

parameter here, however, since this is the parameter of focus in previous chapters.

Recall that the task of constructing the biasing distributions for ISMC method

involves solving two related problems. The first problem is to find the vectors (or

functions in the continuous limit) that are most likely to impart unit changes through

addition to the pulse. For the NLSE in Chapter 2, these were found to be normalized

versions of the adjoint generalized eigenfunctions from SPT, i.e.,

fX(z, t) =

(
v†X(z, t)− Tv†Ω(z, t)δXΦ

)
‖v†X(z, t)− Tv†Ω(z, t)δXΦ‖2

exp(iΘ) , (6.21)

for X = A, Ω, T and Φ. Since the new terms included in the reduction for PNLSE

have no effect on the form of these linear modes, the same functions can be used in
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this case as well. Thus, it only remains to determine the biasing weights ∆X(z) that

are used to construct the biasing vector

f(z, t) = ∆A(z)fA(z, t) + ∆Ω(z)fΩ(z, t) + ∆T (z)fT (z, t) + ∆Φ(z)fΦ(z, t), (6.22)

that is added to the noise to drive the parameters along the optimal path to the

targeted final values. Just as in the Chapter 2, the likelihood of realizing this biasing

vector at any individual fixed point z is given by a Gaussian PDF and thus, the most

likely biasing vector is the one with smallest cumulative L2-norm given by,

S =

∫ zf

0

‖f(z, t)‖2 dz =

∫ zf

0

∑
Y

(∆Y (z))
2 ‖fY (z, t)‖2

+ 2∆Φ(z)∆Ω(z) 〈fΦ(z, t), fΩ(z, t)〉 dz,
(6.23)

where
∑
Y

represents the sum over all four parameters. The functional in Equation

(6.23) must be minimized subject to the constraint X(zf ) = Xf , where X represents

the parameter of interest and Xf is the targeted final parameter value. As before,

the four weighting functions ∆Y (z) can be related to the optimal path through

parameter space by finding the mean evolution of Equations (6.17) after the biasing

has been applied. By replacing the mean zero noise σn(z, t) with the biased noise

σn(z, t)+
∑
Y

∆Y (z)fY (z, t) and taking the expectation of these equations (noting that

E[n(z, t)] = 0), we arrive at equations that relate the biasing weights to the optimal

path taken through parameter space, i.e.,

Ȧopt = gA(Aopt,Ωopt) + ∆A(z), (6.24a)

Ω̇opt = −gΩ(Aopt,Ωopt) + ∆Ω(z) + ∆Ω(z)∆Φ(z)
ToptA

2
opt

1 + π2

12
+ T 2

optA
2
opt

, (6.24b)

Ṫopt = Ωopt +∆T (z), (6.24c)

Φ̇opt =
A2

opt − Ω2
opt

2
+ gΩ(Aopt,Ωopt)Topt +∆Φ(z), (6.24d)
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where Ẋ = dX/dz. Using these equations, the functional S given in Equation (2.56)

is seen to depend on the optimal path each parameter takes through parameter space.

6.5 Results and Discussion

Just as in all previous calculations for the biasing path associated with the phase pa-

rameter, it is assumes here that the changes in both timing and frequency parameters

have a negligible effect on the evolution of the phase parameter. This leaves only

the amplitude and phase parameters in the construction of the cumulative L2-norm,

which takes the form

SΦ(Aopt, Ȧopt, Φ̇opt) =

∫ zf

0

∆A(z)‖fA(z, t)‖2 +∆Φ(z)‖fΦ(z, t)‖2 dz

=

∫ zf

0

(
Ȧopt − gA(Aopt, 0)

)2
2Aopt

+
18

12 + π2
Aopt

(
Φ̇opt −

A2
opt

2

)2

dz,

(6.25)

under the constraints Aopt(0) = Ai, Φopt(0) = Φi and Φopt(zf ) = Φf , where is it noted

that Aopt(zf ) is free to vary and will therefore be determined through the minimization

process.

Taking variations of SΦ gives the following two-dimensional BVP,

Äopt =
Ȧ2

opt

2Aopt

+ h(Aopt)

(
∂h(Aopt)

∂Aopt

− h(Aopt)

2Aopt

)
+

12 + π2

72
c2Φ

1

Aopt

− cΦA
2
opt, (6.26a)

Φ̇opt =
A2

opt

2
+ cΦ

12 + π2

36

1

Aopt

, (6.26b)

where cΦ is a constant of integration and

h(Aopt) = gA(Aopt, 0)

= 2gEsat
A(zf )

Esat + 2Aopt

− 2l
Psat

(Psat + A2
opt)

1
2

arctanh

(
Aopt

(Psat + A2
opt)

1
2

)

− 2

3
τEsat

A4
opt

Esat + 2Aopt

.

(6.26c)
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The boundary conditions for this system are given by Aopt(0) = Ai, Φopt(0) = Φi,

Φopt(zf ) = Φf and Ȧopt(zf ) = h(Aopt(zf )). By integrating Equation (6.26b) and using

the boundary conditions on Φopt, the integration constant cΦ can be written in terms

of integrals involving Aopt, i.e.,

cΦ =
Φf − 1

2

∫ z

0
A2

opt(z
′) dz′

12+π2

36

∫ z

0
1

Aopt(z′)
dz′

, (6.27)

which gives a integro-differential equation for the optimal path for the amplitude

parameter. Just as before, this equation can be solved by a modified shooting method,

the form of which is more complex due to the boundary condition on Ȧopt(zf ) and

the additional term in Equation (6.26a) that contains the function h(Aopt). These

solutions are plotted in Figure 6.5 which, for comparison, also contains the optimal

paths for the case of the NLSE in Chapter 2. In addition, the biasing weight functions

∆A(z) and ∆Φ(z) are given in Figure 6.6 for both the PNLSE above and the NLSE.
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Figure 6.5 The optimal parameter paths for the amplitude (Top Left) and phase
(Bottom Left) parameters are given for targeted final phase values of 5.0, 9.0, 14.0,
19.0, 24.0. The derivatives of these paths are given in the plots to the right. For
comparison, the analogous parameter paths for the NLSE are given by the dashed
black curves. In these calculations, the fixed point was chosen to correspond to
A = 1 by setting the parameter values to be g = 0.022, τ = 0.01 and l = 0.01 in all
simulations. In the absence of biasing Φf = 10.
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Figure 6.6 The biasing functions for the amplitude (Left) and phase (Right)
parameters are given for targeted final phase values of 5.0, 9.0, 14.0, 19.0, 24.0.
For comparison, the corresponding biasing functions for the NLSE are given by the
dashed black curves. In these calculations, the fixed point was chosen to correspond
to A = 1 by setting the parameter values to be g = 0.022, τ = 0.01 and l = 0.01 in
all simulations. In the absence of biasing Φf = 10.

Now that the biasing paths for the amplitude and phase are known, an ISMC

method is easily constructed in a manner analogous to what was presented in Chapter

2 for the NLSE. Figure 6.8 plots the PDFs for the phase using 128, 256, 512 and 1024

simulation modes and a PDF from the ISMC method applied to the NLSE in Chapter

2, which has been shifted to eliminate the radiation-induced phase shift. This plot

confirms two expectations, (i) for the same noise strength, large phase deviations in

the PNLSE are significantly less probable than in the NLSE due to the restoring

forces which constantly work to restore the pulses amplitude to it fixed point value,

and (ii) although the radiation induced phase shift is still present in the PNLSE,

its effects are greatly reduced due to the smoothing of the noise from the filter in

the gain model. To illustrate the effect a filter has on the propagation of a noisy

soliton, Figure 6.7 plots the evolution of an initial noise soliton in both the NLSE

and PNLSE. Finally, Figure 6.8 plots the PDFs obtained from the ISMC method
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against the results of a standard MC method applied to both the SODEs in (6.19)

and the PNLSE in Equation (6.11).
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Figure 6.7 Comparison between noisy evolution of a soliton in the NLSE (Top) and
the PNLSE (Bottom), which illustrates the smoothing effects of the filtering terms in
the PNLSE.
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It is interesting to note the effects the saturable gain terms have on the resulting

PDFs for the phase parameter. First, recall that in the NLSE, large phase deviations

where primarily achieved through biasing the amplitude parameter, which integrated

to changes in the phase. The same is true for the PNSLE, because the conservative

part of the parameter dynamics are equivalent to those of the NSLE. However, with

the addition of the loss terms, changes in the amplitude parameter are now countered

by the restoring forces of the gain and loss. Thus, one would intuitively expect that

larger biasing strengths are required to achieve the same final phase value. This

expectation is partially validated by the plots in Figure 6.6, which show that the

biasing curves for targeted phase values above the mean phase are larger than those

required for the NLSE, in both the amplitude and phase parameters. However, this

is not true for the targeted final phase values of 5.0 and 9.0, both of which are below

the mean phase value of 10.0.

For phase value of 5.0 (green curves in Figures 6.6 and 6.5), both the amplitude

and phase biasing curves in the case of the PNLSE are seen to remain very close to the

biasing curves of the NLSE. Although this is result is surprising, it does not contradict

intuition, since the reduced (in absolute value) biasing curve for the amplitude is

compensated for by the increased (in absolute value) phase biasing curve. The results

for the phase value of 9.0 (cyan curves in Figures 6.6 and 6.5), are even more surprising

in that both the amplitude and phase biasing curves in the case of the PNLSE are

seen to decrease (in absolute value), which implies that it is more probable to get a

final phase value of 9.0 in the PNLSE than in the NLSE. To explain this, consider the

result in Figure 6.8, which show that the PDFs of the final phase value under PNLSE

fall inside of the PDF curve for NSLE, implying that large deviations in the PNLSE

are less probable than in the NLSE or equivalently that the PDFs for the PNLSE

have smaller variances than those of the NSLE. However, a subtle consequence of this

is that the PDF around the mean must increase to ensure that the total probability
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remains one, which confirms what was implied by the cyan curves in Figures 6.6, i.e.,

final phase values around the mean are more probable in PNLSE than in NLSE.

Finally, it is important to note that the effects of dispersive radiation are greatly

diminished in the case of the PNLSE, as shown in the PDFs of Figure 6.8. As stated

before, this can be attributed to the effect of filtering in the gain term, which damps

many of the high frequency radiation modes and reduces their contribution to the

phase shift effect seen in the NLSE. Therefore, it is expected that any improvements

in the reduced system through the inclusion of radiation will not yield better perfor-

mance of the ISMC method for the case of PNLSE or related equations that include

filtering effects.

6.6 Summary

This chapter began by introducing the concept of mode-locking in both the temporal

and spectral domains. In the temporal domain, the output of a MLL is short highly

energetic pulses of light, whereas in the in the spectral domain, the output is a

frequency comb of sharply spiked spectral lines. The chapter continued by introducing

several models for the pulse propagation, including the PNSLE, which was the focus

for the remainder of the chapter. Using the PNLSE, and assuming a laser operating in

the soliton regime, SPT was used to derive a reduces system for the pulse dynamics,

that was numerically shown to compare extremely well to simulations of the PNLSE.

Finally, this reduced system was used to construct the biasing distributions necessary

for the implementation of the ISMC method, the results of which were compared to

the results of ISMC method applied to the NLSE in Chapter 2.



CHAPTER 7

SUMMARY AND FUTURE WORK

Summary. This dissertation has presented the results of applying the importance

sampling Monte-Carlo (ISMC) method to various mathematical models associated

with both optical communications and mode-locked lasers. Chapter 2 presented the

ISMC method applied to a stochastic version of the nonlinear Schrödinger equa-

tion (NLSE) as a mathematical propagation model for noisy optical fiber. This

included a discussion of the special solutions to the NLSE, known as solitons, and

the perturbative technique known as soliton perturbation theory (SPT), which yields

a low-dimensional approximation used to guide the ISMC method. The results of

this chapter were used to illustrate that the reduction resulting from first order SPT

lacks the capability of accounting for the effects of dispersive radiation, which can

contribute significantly to the evolution of the phase parameter.

The inadequacy of SPT to correctly account for the evolution of the phase pa-

rameter was addressed in Chapter 3 through the construction of an improved low-

dimensional reduction based on a variational reformulation of the stochastic NLSE.

Under this approach, the perturbed soliton solutions of the stochastic NLSE are seen

to correspond to stationary points of a functional. By assuming that the stochastic

dynamics of the pulse stays close to that of a soliton and that the radiation can be

represented as a windowed Fourier decomposition, stochastic ODEs are derived for

the soliton parameters and the Fourier coefficients of the radiation, which are coupled

through a term representing the radiation’s power that appears in the evolutionary

ODE for the soliton’s phase. This reduced system was numerically verified through

comparison with numerical simulations of the stochastic NLSE, which compares
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both the fully nonlinear system of coupled stochastic ODEs (SODEs) and analytical

solutions of the linear system resulting from a linearization around a soliton solution.

In Chapter 4, the improved low-dimensional approximation derived in Chapter

3 was used to construct an improved ISMC method that accounts for the interac-

tion between the soliton and radiation. This method differs from the original by

incorporating changes in both the soliton parameters and the power in the radiation,

resulting in a more effective biasing scheme and a more efficient application of the

ISMC method.

The effects of radiation seen in Chapter 2, and subsequently investigated in

Chapter 3, also appear in more realistic propagation models for optical communication

systems. Of particular interest was the case of the NLSE with a periodic modulation

of the dispersion constant, referred to as dispersion management (DM), which yields

a varying coefficient version of NLSE (NLSE+DM), and a related model where this

modulation is averaged to give an autonomous, nonlocal equation (DMNLSE). The

variational approach used in Chapter 3 was extended to the case of the DMNLSE

in Chapter 5, with the aim of deriving an improved low-dimensional approximation

for these systems that correctly accounts for the effects of radiation. Although this

resulted in an improved low-dimensional reduction for the evolution of the DM soliton

in the presence of radiation, the use of this reduction in the construction of a more

efficient ISMC method remains limited by the lack of closed-form solutions of the

DMNLSE.

In Chapter 6, the ISMC method was extended to the calculation of phase-slip

probabilities in mode-locked lasers (MLL), which unlike the conservative systems

considered in previous chapters, includes dissipative effects such as gain and loss, and

non-local effects such as energy saturation. In their most general form, such models

exhibit complicated pulse dynamics which cannot be accurately captured by a reduced

system. Because of this, the investigation here was focused on a MLL operating in the
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soliton propagation regime modeled by the constant coefficient perturbed nonlinear

Schrödinger equation (PNLSE), which allows for a perturbative treatment of gain,

loss and saturation effects. A reduced system for the PNLSE was derived using SPT,

which is subsequently utilized to find the biasing paths needed by the ISMC method.

From this, the PDF of the phase parameter was constructed.

Future Work. Other approaches have been considered for finding the biasing

distributions need by the ISMC method. One of the more recent is based on a

purely numerical implementation, which is capable of handing systems exhibiting

complicated dynamics [87]. Although these methods are more general, they require

significantly more computational resources and provide less insight into the tran-

sitions that lead to the detection of an error. The next step in this investigation

is an alternative to both of these approaches, which is based on the extension of

Wentzell-Freidlin theory to the stochastic PDE models. In this approach, the problem

of finding an optimal path through sample space is transformed into a nonlinear

optimization problem over a constrained spatiotemporal functional, which is the

infinite-dimensional analog of the constrained minimization problem involving the

cumulative L2-norm of the biasing vector and the equations of the low-dimensional

reduction. One of the primary objectives of this work will be to develop a numerical

method capable of solving the constrained optimization problem when the endpoint

constraints are not critical points of the functional, as is typically the case, but points

in functional space that correspond to failure states of the light-wave system under

consideration.



APPENDIX A

EVOLUTION EQUATIONS FOR OPTICAL FIBER

A.1 The Derivation of the NLSE

The derivation of NLSE can be found in many text on nonlinear optics. The derivation

presented here is based on those found in references [33] and [1].

The propagation of electromagnetic fields in optical fiber, like all other optical

material, is fundamentally governed by Maxwell’s equations,

∇ ·D = 0, (A.1a)

∇ ·B = 0, (A.1b)

∇×E = −∂B

∂t
, (A.1c)

∇×H =
∂D

∂t
, (A.1d)

along with the constitutive relations

D = ε0 (E + P ) and B = µ0 (H +M ) , (A.1e)

where it is assumed that the material is void of free charge and surface currents.

The external electric and magnetic fields are represented by the vectors E and H ,

respectively, whereas the vectors P and M represent the electric and magnetic polar-

izations, respectively, which accounts for the material’s response to the external fields.

The constitutive relations in (A.1e) relate the field vectors with their corresponding

polarization through the flux densities D and B, where ε0 and µ0 represent the free
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space permittivity and permeability, respectively, which are related to the speed of

light in vacuum, denoted c, through the relation 1/c2 = ε0µ0.

A.1.1 Maxwell’s Equations in Optical Fiber

Any specific application of Maxwell’s equations requires knowledge of both the ma-

terial composition (determining susceptibility of the material to both electric and

magnetic polarization) and geometry of optical cavity (determining the boundary

conditions that the fields must satisfy). Typical optical fiber consist two concentric

cylinders, an inner core and an outer cladding. Both the core and cladding are

composed of nearly pure silica glass with slightly different electrical susceptibilities,

leading to slightly different indices of refraction. This is an important distinction

since it is responsible for the phenomena of total internal reflection in which the

electromagnetic (EM) field is primarily confined to the core, allowing EM waves

to be transmitted without significant radiation from the surface of the fiber. The

difference in electrical susceptibilities between the core and cladding are accounted for

mathematically by taking the electrical susceptibility to consist of a piecewise constant

function that takes on different values in these two regions. Using this approach,

Maxwell’s equations can be applied in both the core and cladding independently

using a general electrical susceptibility, leading to two independent solutions that are

coupled through the boundary condition at the interface. In addition, the magnetic

susceptibility of silica glass in negligible, resulting in the absence of a magnetic

polarization M .

Since the electric polarization vector P is the material’s response to an applied

electric field, it is reasonable to assume a representation in the form of a power

series expansion in powers of E, where each term is related to a component of the
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polarization vector through a susceptibility tensor, i.e.,

Pj =

∫ ∞

−∞
χ
(1)
jk (t− t1)Ek(t1)dt1

+

∫ ∞

−∞

∫ ∞

−∞
χ
(2)
jkl(t− t1)Ek(t1)El(t2)dt1dt2

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ
(3)
jklm(t− t1, t− t2, t− t3)Ek(t1)El(t2)Em(t3)dt1dt2dt3

+ . . . ,

(A.2)

where summation is assumed over like indices. Note that since the equations in

(A.1) are linear and the magnetic polarization M is assumed to be zero, the only

source of nonlinearity comes from the polarization defined in equation (A.2). The

representation of the electric polarization vector as convolution integrals in time is

necessary to correctly model the non-instantaneous nature of the material’s response

to an external electric field. In addition, causality implies that the an induced electric

polarization cannot depend on future values of the electric field, thus the susceptibility

tensors are assumed to be zero for all negative arguments.

The polarization above is written in a very general form, which is much too

complex to be used in the derivation of the NLSE. Fortunately, optical fiber posses

two properties that significantly simplify this representation [33]. The first being

the centrosymmetric nature of the fiber, which implies that the sign of the electric

polarization must follow that of the electric field, i.e., if E → −E, then it is required

that P → −P . An immediate consequence of this requirement is that all polarizations

having an even power of E are identically zero, and thus, the first nonlinear term

encountered is cubic in the electric field. The second is that the fiber is isotropic, which

implies that the material’s electrical susceptibility is essentially independent of the

polarization of the external electric field, which reduces the number of independent

susceptibility terms in the cubic nonlinearity. Applying these simplifications, the
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polarization takes the form

P =

∫ ∞

−∞
χ(1)(t− t1)E(t1)dt1

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3) (E(t1) ·E(t2))E(t3)dt1dt2dt3,

(A.3)

where the expansion is truncated after the cubic term. Finally, note that χ(1)(t−t1) is

a complex valued quantity, with an imaginary part that produces attenuation (loss)

in the fiber. However, due to its small relative strength, this term is included as

a perturbation, i.e., χ(1)(t − t1) = χ
(1)
R (t − t1) + iε2χ

(1)
I (t − t1), where ε is a small

parameter which will be defined later. In addition, the third order susceptibility is

also complex, however the imaginary component is typically too small to contribute

at the orders considered in this derivation.

By taking the curl of Equations (A.1c) and (A.1d), and using the constitutive

relation in Equation (A.1e), Maxwell’s equation are decoupled into

∇2E −∇ (∇ ·E)− 1

c2

(
∂2E

∂t2
+

∂2P L

∂t2

)
=

1

c2
∂2P NL

∂t2
, (A.4a)

and

∇ ·D = 0 (A.4b)

for the electric field, and

∇2H − 1

c2
∂2H

∂t2
= − 1

c2

(
∇× ∂P

∂t

)
, (A.5a)

and

∇ ·H = 0 (A.5b)

for the magnetic field, where M = 0 was used to eliminate the divergence term in

the magnetic field equation. Note that the electric polarization vector P is separated



147

into linear and nonlinear parts as P = P L + P NL with,

P L =

∫ ∞

−∞
χ(1)(t− t1)E(t1)dt1 (A.6a)

and

P NL =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)×

(E(t1) ·E(t2))E(t3)dt1dt2dt3.

(A.6b)

Note also that the nonlinear polarization the electric flux density D = E+P L+P NL

is not linearly proportional to the electric field E, and thus, the term ∇ (∇ ·E) must

remain in equation (A.4a).

A.1.2 Approximation for the Spatial Mode

Before beginning the calculation of the NLSE, it is illustrative to derive an approx-

imation for the first order solution of the expansion, which gives the spatial mode

profile for the fiber. By neglecting the nonlinear terms, the Equations in (A.4) are

written as

∇2E −∇ (∇ ·E)− 1

c2

(
∂2E

∂t2
+

∂2P L

∂t2

)
= 0, (A.7a)

and

∇ · (E + P L) = 0, (A.7b)

which represent the linear evolution of the electric field through a medium with

constant electric susceptibility. Because this equation is linear, the time derivatives

can be removed by taking the FT, or equivalently inserting a trial solution of the

form

E = F̂ (x⊥; k(ω), ω) exp(i(kz − ωt)) + c.c., (A.8)
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where c.c. represents the complex conjugate of the first term, making the solution a

real quantity. Note, the c.c. will be assumed in each equation that follows, even when

not explicitly written. Inserting (A.8) into the Equations in (A.7a) gives

∇2F̂ + n2(ω)
ω2

c2
F̂ = 0, (A.9a)

and

∇ · F̂ = 0, (A.9b)

where n2(ω) = 1 + χ̂(1)(ω) is the index of refraction for the material, i.e., either in

the core or the cladding.

At this point, two simplifications can be applied. First, as it commonly known,

only two of the six independent terms (three for both the electric and magnetic fields)

are independent, so with out loss of generality, only the equation for the z component

of F̂ will be considered. Second, because of the cylindrical geometry of the fiber, it

is advantageous to work in the cylindrical coordinate system, which results in gives

the equation

∂2F̂z

∂r2
+

1

r

∂F̂z

∂r
+

1

r2
∂2F̂z

∂φ2
− k2F̂z +

n2ω2

c2
F̂z = 0. (A.10)

Using separation of variables, it is assumed that the solution of Equation (A.10) takes

the form

F̂z(r, φ;ω) = Ã(ω)R(r) exp(imφ) (A.11)

which gives

∂2R

∂r2
+

1

r

∂R

∂r
+

(
n2ω2

c2
− k2 − m2

r2

)
R = 0. (A.12)
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It is immediately apparent that Equation (A.12) is the well-known equation for a

Bessel function. Defining ri as the radius of the interface and letting ncr and ncl be

the indicies of refraction for the core and cladding, respectfully, the equation in the

core (r < ri) has a solution of

R(r) = Jm(κcrr), (A.13a)

where Jm is the Bessel function of the first kind and

κcr =
n2
crω

2

c2
− k2. (A.13b)

In addition, the solution in the cladding (r > ri) takes the form

R(r) = Km(κclr), (A.14a)

whereKm is the modified Bessel function that decays to zero with increasing argument

and

κcl = k2 − n2
clω

2

c2
. (A.14b)

The boundary condition at the interface are used to determine the constant k, and

thus, the number of spacial modes the fiber can support [88]. Optical fiber based

communication systems (almost) exclusively use single-mode fiber, i.e., fiber sup-

porting only a single transverse mode, with typical core and cladding indices around

1.45± 0.005 and diameters of 5-10 µm and 60-140µm, respectively [1].

A.1.3 Simplifying Assumptions and the General Dispersion Relation

The NLSE will be derived through a perturbation approach, where the solution is

represented by an asymptotic expansion of the electric field in a small parameter

associated with the bandwidth of the pulse in the frequency domain. This is equivalent
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to the slowly-varying-envelope (SVE) approximation, which assumes that the pulse

is approximately constant, i.e., slowly-varying, over a large portion of the transverse

(time) domain. For simplicity, the derivation presented here neglects the restrictions

imposed by Equation (A.4b) and the boundary conditions at the interface between the

core and cladding, leaving only Equation (A.4a). Because the boundary conditions

are neglected, this derivation can be carried out in Cartesian coordinates, noting

that each equation has an analog in the cylindrical coordinate system, which is more

appropriate for derivations that include the interfacial effects between the core and

cladding.

The General Dispersion Relation. As stated above, the expansion used in this

derivation has a first order term that consists of a small-bandwidth wave packet

solution. The modal structure for this term can found by neglecting the nonlinear

electric polarization terms in Equation (A.4a) and inserting a general solution of the

form

E = F̂ (x⊥; k, ω) exp(i(kz − ωt)) , (A.15)

which, in matrix-vector notation, gives

L

(
∂

∂x
,
∂

∂y
, ik,−iω

)[
F̂ (x⊥; k, ω)

]
= 0, (A.16a)

where

L

(
∂

∂x
,
∂

∂y
, ik,−iω

)
=

∂2

∂y2
+ (ik)2 − n2(ω)(iω)2

c2
− ∂

∂x
∂
∂y

−ik ∂
∂x

− ∂
∂x

∂
∂y

∂2

∂x2 + (ik)2 − n2(ω)(iω)2

c2
−ik ∂

∂y

−ik ∂
∂x

−ik ∂
∂y

∂2

∂x2 +
∂2

∂y2
− n2(ω)(iω)2

c2

 ,

(A.16b)
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and n2(x⊥, ω) = (1 + χ̂
(1)
R (x⊥, ω)) with x⊥ = [x, y]T . For any particular value of ω,

there exist nontrivial solutions, F̂ (x⊥; k(ω), ω), to the above operator, which along

with the appropriate boundary conditions determine the dispersion relation k(ω) =

f(ω, n(ω)). In addition, by defining an inner product as

〈X,Y 〉 =
∫ ∞

−∞

∫ ∞

−∞
X̄ · Y dxdy, (A.17)

integration-by-parts shows that

〈X, L [Y ]〉 = 〈L [X] ,Y 〉 , (A.18)

and thus, L is self-adjoint and 〈X, L[Y ]〉 is real 1. From Equation (A.16a), it is seen

that 〈
F̂ , L

[
F̂
]〉

= 0, (A.19)

where F̂ is the solution to L
[
F̂
]
= 0. Since both L and F̂ depend parametrically on

ω, Equation (A.19) can be differentiated with respect to ω, giving the useful relation

k′
〈
F̂ ,

∂L

∂(ik)

[
F̂
]〉

=

〈
F̂ ,

∂L

∂(−iω)

[
F̂
]〉

. (A.20)

A.1.4 The Expansion

It is now assumed that the solution to the linearized problem, F̂ (x⊥; k(ω), ω) and

therefore the dispersion relation k(ω), is known, which allows for the introduction of

a series expansion for the nonlinear solution of

E(z, t) = E0 + ε2E1 + ε3E2 + . . . , (A.21)

where

Ê0 = F̂ (x⊥;ω)Â

(
Z1, Z2, Z3, . . . ,

ω − ω0

ε

)
exp(ik0z) + c.c., (A.22)

1In both statements it is assumed that X, Y , ∂X
∂x , ∂Y

∂x , ∂X
∂y and ∂Y

∂y → 0 sufficiently fast

as x⊥ → ∞
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with Zj = εjz, T = εt and k0 = k(ω0) . Note that the FT version of the first term

in this expansion consist of the linear solution of Equation (A.16a) enveloped by an

amplitude coefficient, A, that is localized around a central wave number ω0, where

the localization is quantized by the small parameter ε. Also note that c.c. stands for

the complex conjugate of the first term, which ensures that the field is real. Taking

the inverse FT of Equation (A.22) gives

E0(z, t) =
∞∑
n=0

in

n!
εn+1∂

nF̂

∂ωn

∣∣∣∣∣
ω=ω0

∂nA

∂T n
exp(i(k0z − ω0t)) + c.c. (A.23)

Follow the usual procedure of inserting the expansion in Equation (A.21) into (A.4a)

and solving order by order, gives the linear operator L applied to each perturbation

Ej which is forced by the terms from E0 that are of the same order. By enforcing the

expansion to stay well ordered, one can derive an equation for the amplitude envelope

A(Z1, Z2, . . . , T ).

A.1.5 The Polarization Terms

Before beginning the process of solving the linear equations at each order, it is

advantageous to first indicate the polarization term that results from the assumed

expansion in Equation (A.21).

Linear Polarization. Using the FT, the linear polarization term is written as

P̂ L = F
[∫ ∞

−∞
χ(1)(t− t1)E(t1) dt1

]
=
(
χ̂
(1)
R (ω) + iε2χ̂

(1)
I (ω)

)
Ê. (A.24)

Inserting the FT of the expansion in Equation (A.21) for Ê gives

P̂ L =
∞∑
n=0

1

n!

∂n
(
χ̂
(1)
R (ω)F̂ (x⊥;ω)

)
∂ωn

∣∣∣
ω=ω0

(ω − ω0)
nÂ

(
ω − ω0

ε

)
exp(ik0z)

+ iε2
∞∑
n=0

1

n!

∂n
(
χ̂
(1)
I (ω)F̂ (x⊥;ω)

)
∂ωn

∣∣∣
ω=ω0

(ω − ω0)
nÂ

(
ω − ω0

ε

)
exp(ik0z)

+ ε2χ̂
(1)
R (ω)Ê1 + ε3χ̂

(1)
R (ω)Ê2 + c.c.+O

(
ε4
)
,

(A.25)
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which after taking the inverse FT yields

P L =
∞∑
n=0

in

n!

∂n
(
χ̂
(1)
R F̂

)
∂ωn

∣∣∣
ω=ω0

εn+1∂
nA

∂T n
exp(i(k0z − ω0t))

+ iε2
∞∑
n=0

in

n!

∂n
(
χ̂
(1)
I F̂

)
∂ωn

∣∣∣
ω=ω0

εn+1∂
nA

∂T n
exp(i(k0z − ω0t))

+ ε2
∫

χ
(1)
R (t− t1)E1(t1) dt1 + ε3

∫
χ
(1)
R (t− t1)E2(t1) dt1

+ c.c.+O
(
ε4
)
.

(A.26)

Differentiating this twice with respect to t gives

∂2P L

∂t2
= ε

[
χ̂
(1)
R (ω0)F̂ (ω0)(iω0)

2
]
ω=ω0

A exp(i(k0z − ω0t))

+ ε2

−2iω0

(
χ̂
(1)
R F̂

)
+ i(iω0)

2
∂
(
χ̂
(1)
R F̂

)
∂ω


ω=ω0

∂A

∂T
exp(i(k0z − ω0t))

+ ε3

χ̂(1)
R F̂ − i2(iω0)

∂
(
χ̂
(1)
R F̂

)
∂ω

− (iω0)
2

2

∂2
(
χ̂
(1)
R F̂

)
∂ω2


ω=ω0

∂2A

∂T 2
exp(i(k0z − ω0t))

+ ε3
[
i(iω0)

2
(
χ̂
(1)
I F̂

)]
ω=ω0

A exp(i(k0z − ω0t))

+ ε2
∂2

∂t2

∫
χ
(1)
R (t− t1)E1(t1) dt1 + ε3

∂2

∂t2

∫
χ
(1)
R (t− t1)E2(t1) dt1

+ c.c.+O
(
ε4
)
.

(A.27)

Nonlinear Polarization. The calculation of the nonlinear polarization vector is

similar to the linear polarization above, however, since only terms up to O(ε3) are

used for the derivation of the NSLE, only the first term of the expansion in Equation

(A.21) is needed. In addition, from the assumption that χ(3) is real, the FT of this

quantity is seen to be even in each argument, which is a used to combine terms.

Recall that the nonlinear polarization is give by

P NL =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)×

(E0(t1) ·E0(t2))E0(t3) dt1dt2dt3,

(A.28)
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which can be written as

P NL =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ̂(3)(ω1, ω2, ω3)×(

Ê0(ω1) · Ê0(ω2)
)
Ê0(ω3) exp(−i(ω1 + ω2 + ω3)t) dω1dω2dω3,

(A.29)

by using the definition of the inverse FT, i.e.,

E0(tj) =
1

2π

∫
Ê0(tj) exp(−iωjtj) dωj. (A.30)

Using the assumed form of Ê0 from Equation (A.22), (A.29) can be written as

P NL = ε3χ̂(3)(ω0)
[(

2( ˆ̄F · F̂ )F̂ + (F̂ · F̂ ) ˆ̄F
)
|A|2A exp(i(k0z − ω0t))

+(F̂ · F̂ )F̂A3 exp(3i(k0z − ω0t))
]
+ c.c.+O

(
ε4
)
,

(A.31)

which immediately gives

∂2P NL

∂t2
= ε3χ̂(3)(ω0)(iω0)

2
[(

2( ˆ̄F · F̂ )F̂ + (F̂ · F̂ ) ˆ̄F
)
|A|2A exp(i(k0z − ω0t))

+9(iω0)
2(F̂ · F̂ )F̂A3 exp(3i(k0z − ω0t))

]
+ c.c.+O

(
ε4
)
.

(A.32)

Order ε. The linear equation at O(ε) is equivalent to Equation (A.16), which is

satisfied by the choice of spacial mode F̂ (x⊥; k(ω0), ω0).

Order ε2. At O(ε2), the expansion gives

∇2E1 −∇ (∇ ·E1)−
1

c2
∂2

∂t2

(
E1 +

∫ ∞

−∞
χ
(1)
R (t− t1)E1(t1) dt1

)
= −G1 (A.33a)

where

G1 =

(
iL

[
∂F̂

∂ω

]
∂A

∂T
+

∂L

∂(ik0)

[
F̂
] ∂A

∂Z1

+
∂L

∂(−iω0)

[
F̂
] ∂A
∂T

)
exp(i(k0z − ω0t)) .

(A.33b)
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Differentiating Equation (A.16a) with respect to ω gives the useful relation

L
[
F̂ ω

]
= −ik′

0

∂L

∂(ik0)

[
F̂
]
+ i

∂L

∂(−iω0)

[
F̂
]
, (A.34)

which when substituted into Equation (A.33b) gives

G1 =
∂L

∂(ik0)

[
F̂
]( ∂A

∂Z1

+ k′
0

∂A

∂T

)
exp(i(k0z − ω0t)) . (A.35)

Finally, by letting

E1 = F̂ exp(i(k0z − ω0t)) , (A.36)

the orthogonality condition of Fredholm theory [42] gives the restriction of

∂A

∂Z1

+ k′
0

∂A

∂T
= 0. (A.37)

Order ε3 The O(ε3) equation gives the first nonlinear term for A,

∇2E2 −∇ (∇ ·E2)−
1

c2
∂2

∂t2

(
E2 +

∫ ∞

−∞
χ
(1)
R (t− t1)E2(t1) dt1

)
= −G2 (A.38a)

where

G2 =

(
−1

2
L

[
∂2F̂

∂ω2

]
∂2A

∂T 2
+

∂L

∂(ik0)

[
F̂
] ∂A

∂Z2

+
(k′

0)
2

2

∂L

∂(ik0)

[
F̂
] ∂2A

∂T 2

+
1

2

∂L

∂(−iω0)

[
F̂
] ∂2A

∂T 2
− ik′

0

∂L

∂(ik0)

[
∂F̂

∂ω

]
∂2A

∂T 2
+ i

∂L

∂(−iω0)

[
∂F̂

∂ω

]
∂2A

∂T 2

+
i(iω0)

2χ̂
(1)
I

c2
F̂A+

(iω0)
2χ̂(3)

c2

[
2( ˆ̄F · F̂ )F̂ + (F̂ · F̂ ) ˆ̄F

]
|A|2A

)
exp(i(k0z − ω0t))

+
9(iω0)

2χ̂(3)

c2
(F̂ · F̂ )F̂A3 exp(3i(k0z − ω0t))

(A.38b)

In general 3k(w0) 6= k(3w0), which implies that the last term does not satisfy the

dispersion relation for the operator on the left. Hence, the term will not contribute



156

to any orthogonality restrictions on A and therefore can be neglected. Just as in

the previous case, differentiating Equation (A.16a) twice with respect to ω gives the

useful relation

1

2
L

[
∂2F̂

∂ω2

]
= −i

k′′
0

2

∂L

∂(ik0)

[
F̂
]
+

(k′
0)

2

2

∂L

∂(ik0)

[
F̂
]

+
1

2

∂L

∂(−iω0)

[
F̂
]
− ik′

0

∂L

∂(ik0)

[
∂F̂

∂ω

]
+ i

∂L

∂(−iω0)

[
∂F̂

∂ω

]
,

(A.39)

which gives

G2 =

(
∂L

∂(ik0)

[
F̂
] ∂A

∂Z2

+ i
k′′
0

2

∂L

∂(ik0)

[
F̂
] ∂2A

∂T 2
+

1

c2

[
i(iω0)

2χ̂
(1)
I

]
F̂A

+
1

c2
[
(iω0)

2χ̂(3)
] [

2( ˆ̄F · F̂ )F̂ + (F̂ · F̂ )F̂
∗] |A|2A) exp(i(k0z − iω0t)) .

(A.40)

At this point, the solvability condition is obtained by projecting F̂ onto G2 and

setting the result equal to zero, i.e.,〈
F̂ ,

∂L

∂(ik0)

[
F̂
]〉 ∂A

∂Z2

+ i
k′′
0

2

〈
F̂ ,

∂L

∂(ik0)

[
F̂
]〉

ATT − i
ω2
0

c2

〈
F̂ , χ̂

(1)
I F̂

〉
A

− ω2
0

c2

〈
F̂ , χ̂(3)

[
2( ˆ̄F · F̂ )F̂ + (F̂ · F̂ ) ˆ̄F

]〉
|A|2A = 0,

(A.41)

which can be written as

∂A

∂Z2

+
ik′′

0

2

∂2A

∂T 2
+

α

2
A− iγ|A|2A = 0, (A.42a)

where the relation in (A.20) was used to write

α = 2ω2
0k

′
0

〈
F̂ , χ̂

(1)
I F̂

〉
〈
F̂ , ∂(n(ω0)ω0)

2

∂ω0
F̂
〉 (A.42b)

and

γ = ω2
0k

′
0

〈
F̂ , χ̂(3)

[
2(F̂

∗ · F̂ )F̂ + (F̂ · F̂ )F̂
∗]〉〈

F̂ , ∂(n(ω0)ω0)
2

∂ω0
F̂
〉 . (A.42c)
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A.2 The NLSE with Loss and Amplification

The above derivation gives two equation for the evolution of the slowly varying

envelope A(Z1, Z2, T ),

∂A

∂Z1

+ k′
0

∂A

∂T
= 0, (A.43a)

and

∂A

∂Z2

+
ik′′

0

2

∂2A

∂T 2
+

α

2
A− iγ|A|2A = 0. (A.43b)

The first is solved by making the variable transformation τ = T + k′
0Z1, which is

just a transformation into a reference frame moving at the group velocity in optics

coordinates. The remaining equation becomes

i
∂A

∂ζ
+ i

α

2
A− sgn(k′′

0)
|k′′

0 |
2

∂2A

∂τ 2
+ γ|A|2A = 0, (A.44)

where the evolution coordinate z2 was renamed to ζ. This is a dimensional version of

the nonlinear Schrödinger equation with a loss term represented by iα
2
A, where it is

noted that α represents the loss in power, thus the factor of 1/2 in the loss term. In

addition, sgn(k′′
0) is the sign function applied to k′′

0 , which represents dispersion in a

reference frame moving at the group velocity, i.e., group velocity dispersion (GVD).

For solitons to exist, the GVD must counter the effects of nonlinearity, requiring that

sgn(k′′
0) = −1, which is referred to as the anomalous dispersion case. Although this

restriction can be relaxed in the case of dispersion management [89], from this point

forward anomalous dispersion is assumed.

A.2.1 Amplification and ASE Noise

Optical amplifiers can be classified into two categories based on the how the amplifi-

cation is imparted, lumped and distributed. In distributed amplification, an external
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power source, i.e., laser, introduces a pump wave which amplifies the signal via stimu-

lated Raman scattering over a long length scale. Alternatively, lumped amplification

uses stimulated emission from short segments of doped fiber, e.g., erbium doped fiber

(EDF), which is excited (pumped) by an outside source to amplify the pulse at discrete

amplification points. Figure A.1 shows a simplified diagram of an EDF amplifier,

which is pumped with light from two laser diodes (bidirectional pumping), although

unidirectional pumping in only the forward or backward direction (co-directional and

counter-directional pumping) is also very common [2]. The pump light, which is

Figure A.1 Taken from [2]: Diagram of a typical erbium-doped-fiber amplifier.
Two laser diodes provide the pump power, which are injected via (dichroic) fiber
couplers. Optical isolators reduce the sensitivity of the device to back-reflections.

most often at the 980 nm wavelength, excites the erbium ions (Er3+) into a higher

energy state, from which they can amplify light via stimulated emission back to the

ground-state. Of course, this also produces spontaneous emission in the form of noise,

i.e., ASE noise, that propagates with the pulse.

Compared to all other length scales, the length of each lumped amplifier is ex-

tremely short (0.1m - 1m), indicating that the amplifiers can be modeled as point

sources which are periodically positioned at a distance of Lamp apart, each contribut-

ing a (dimensionless) strength g = αLamp. In practice Lamp is a critical design parame-

ter that is chosen based other system values, e.g., the loss coefficient α. Consequently,

the ASE noise generated in the amplification process is modeled as point sources of
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mean zero white noise, Gaussian distributed and delta correlated at individual values

of τ . Additionally, the there is no correlation between distinct amplifiers, which

implies a δ-correlation in both space and time. Thus, the propagation of pulses in

the presence of amplification is governed by

i
∂A

∂ζ
+ i

α

2
A− sgn(k′′

0)
|k′′

0 |
2

∂2A

∂τ 2
+ γ|A|2A =

i
g

2

Na∑
m=1

δ(ζ −mLamp)A+ i
Na∑
m=1

Nm(τ) δ(ζ −mLamp) ,

(A.45a)

where δ(x) and δj,k are the Kronecker and Dirac delta functions, respectively, and Na

is the number of amplifiers in the transmission line. The noise statistics are given by

E[Nj(τ)] = 0 and E
[
Nj(τ1)N̄k(τ2)

]
= σ̃2δjk δ(τ1 − τ2) , (A.45b)

where the noise strength σ̃2 is a dimensional quantity derived from analysis of the

amplification process at the microscopic scale [29] and takes the form

σ̃2 = ~ω0nsp(G− 1). (A.45c)

Here ~ is the reduced Planck constant (Dirac constant), ω0 is the frequency of the

carrier wave, G = exp(g) = exp(αLamp) is the dimensionless gain factor of the

amplifier and 0 < nsp < 1 is the dimensionless spontaneous emissions factor associated

with the microscopic model of the amplifier.

A.2.2 Dimensionless NLSE

Since the investigations in this thesis are only concerned with the dynamics of a

single pulse, the time variable and pulse amplitude are respectively scaled using the

full-width-at-half-maximum (FWHM), denoted Tfwhm, and the peak launch power,

denoted P0, of a typical Schrödigner soliton2

2Note that the FWHM is related to the width through the relation Tfwhm = 2f−1(1/2)T0,
where the pulse is given by f(t/T0), with T0 representing the normal pulse width.
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The scaling for the distance variable is more complicated since there are multiple

natural length scales from which to choose, the three most relevant being the amplifier

spacing Lamp (which has specific relation to the loss length scale given by Lloss = 1/α),

the dispersion length scale Ldis = T 2
fwhm/|k′′

0 | (length over which the dispersion be-

comes O(1)) and the nonlinear length scale Lnl = 1/γP0 (length over which nonlinear

effects becomes O(1)). However, the effects of dispersion and nonlinearity must

mutually compensate for solitons to propagate over significant distances, which is

mathematically equivalent to the restriction Ldis ∼ Lnl. Since the nonlinear length

scale is in inverse proportion to the initial peak pulse power P0, this restriction is

often met by adjusting the peak power of the launched pulse. Assuming this is done

here, there are only two effective lengths with which to scale the distance variable;

the shorter amplification/loss length or the longer dispersion/nonlinear length. Since

this thesis is concerned with the long distance propagation of optical pulses, it is

appropriate to scale with respect to the dispersion/nonlinear length.

Introducing the non-dimensional variables

U(z, t) =
A√
P0

, t =
τ

Tfwhm

and z =
ζ

Ldis

, (A.46)

results in the dimensionless equation,

i
∂U

∂z
+ i

1

2

(
αLdis − g

Na∑
m=1

δ(z −mza)

)
U +

1

2

∂2U

∂t2
+

Ldis

Lnl

|U |2U

= i
Na∑
m=1

nm(t) δ(z −mza) ,

(A.47a)

where

E[nj(t)] = 0 and E[nj(t1)n̄k(t2)] = σ2δjk δ(t1 − t2) , (A.47b)

which has a non-dimensional noise strength of σ2 = σ̃2/P0Tfwhm. Note that za =

Lamp/Ldis is the non-dimensional period of the amplification cycle.
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Table A.1 Typical Values for Coefficients of Single Mode Fiber in Long-haul Optical
Communication Systems [1].

Quantity Parameter Value Units

Absorption α 0.2 dB/km

Pulse Width (FWHM) Tfwhm 20 ps

Carrier Frequency ω0 150 THz

Group Velocity 1
k′0

2.04× 105 km/s

Group Velocity Dispersion |k′′
0 | 2.0 ps2/km

Nonlinear Refractive Index n2 2.4× 10−20 m2/W

Effective Core Area Aeff 50 µm2

Nonlinear Coefficient γ 2.0 1/W km

Although Equation (A.47a) is in non-dimensional form, specific values for the

dimensional coefficients have yet to be given. Typical values for these coefficients in

a long-haul systems using single mode fiber are given in Table A.13 which indicate

that Lamp ≈ 1 km and Ldis ≈ 200 km.

A.2.3 Path-Averaging NLSE

Equation (A.47a) is a dimensionless, stochastically forced, version of the NLSE in the

presence of loss from absorption and gain from amplification. With the above scaling,

the non-dimensional period of the amplification cycle, i.e., za = Lamp/Ldis ≈ 0.005,

forms a small parameter which can be used to average out the fast dynamics of

absorption and amplification.

3Note that dB denotes the (dimensionless) scaling units of decibels which can be transformed

to the original value through the relation x = 10
xdB
10 .
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By introducing the variable, x = z/za, equation (A.47a) can be rewritten as

iza
∂U

∂z
+ i

∂U

∂x
+ i

1

2

(
αLamp − g

Na∑
m=1

δ(x−m)

)
U

+ za
1

2

∂2U

∂t2
+ za

Ldis

Lnl

|U |2U = iza
Na∑
m=1

nm(t) δ(z −mza) ,

(A.48)

where the noise terms are keep at O(za) due to the small value of the noise strength.

The solution to equation is assumed to take the form of a power series expansion in

the small parameter, i.e.,

U(z, x, t) = u0(z, x, t) + zau1(z, x, t) + z2au2(z, x, t) + . . . , (A.49)

which when inserted into equation (A.48) gives at O(1),

i
∂u0

∂x
+ i

1

2

(
αLamp − g

Na∑
m=1

δ(x−m)

)
u0 = 0. (A.50)

Assumed that the gain exactly counters the loss at the discrete amplification points,

i.e., g = αLamp, the solution of this equation takes the form

u0(z, x, t) = exp(−h(x))u(z, t), (A.51a)

with

h(x) =
αLamp

2

(
x−

Na∑
m=1

H(x−m)

)
, (A.51b)

which consists of a rapidly varying function ( exp(−h(x))) and a slowly varying

function (u(z, t)) that remains undetermined.

At O(za), the expansion gives

i
∂u1

∂z
+ i

1

2

(
αLamp − g

Na∑
m=1

δ(x−m)

)
u1

= −
[
exp(−h(x)) i

∂u

∂z
+ exp(−h(x))

1

2

∂2u

∂t2
+ exp(−3h(x))

Ldis

Lnl

|u|2u
]

+ i
Na∑
m=1

nm(t) δ(z −mza) ,

(A.52)
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where the solution found at O(1) was used on the right hand-side. Following the

normal procedure, an application of the Fredholm alternative [42] provides a solv-

ability condition in the form of an orthogonality constraint, resulting in an evolution

equation for u(z, t). By defining the inner product as

〈f, g〉 = Re

[∫ 1

0

f̄(x) g(x) dx

]
, (A.53)

the homogeneous equation associated with the adjoint of the right-hand-side of equa-

tion (A.50) is found to be

∂u†
1

∂z
− 1

2

(
αLamp − g

Na∑
m=1

δ(x−m)

)
u†
1 = 0, (A.54)

which has the solution

u†
1(x) = exp(h(x))u†(z, t). (A.55)

Projecting this on both sides of equation (A.52) gives

i
∂u

∂z
+

1

2

∂2u

∂t2
+

G− 1

G ln(G)

Ldis

Lnl

|u|2u = i
Na∑
m=1

nm(t) δ(z −mza) , (A.56)

where as previously stated, G = exp(g) = exp(αLamp). The last step in the process is

determining the value of initial power P0 to ensure that the nonlinear and dispersion

coefficients are in the correct proportion to support solitons. This amounts to choosing

P0 =
G ln(G)

(G− 1)

1

γLdis

. (A.57)

However, since the dimensionless noise strength also depends on the initial power,

the final equation becomes

i
∂u

∂z
+

1

2

∂2u

∂t2
+ |u|2u = i

Na∑
m=1

nm(t) δ(z −mza) , (A.58)
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where

E[nj(t)] = 0 and E[nj(t1)n̄k(t2)] = σ2δjk δ(t− t′) , (A.59)

with

σ2 =
G− 1

G ln(G)

γLdisσ̃
2

Tfwhm

=
(G− 1)2

G ln(G)

(
γLdis~ω0nsp

Tfwhm

)
. (A.60)

A.3 The NLSE+DM and DMNLSE for Optical Fiber

As discussed in Chapter 5, a transmission line with dispersion management consists

of alternating segments of optical fiber with individual dispersion coefficients that are

large in absolute value and opposite in algebraic sign. Assuming an ideal dispersion

map (periodic, with a period equal to the amplification cycle), the equation for

dispersion managed fiber in the presence of amplification takes the same form as

that of (A.45), but with coefficients that piecewise constant functions representing

the two different segments of fiber (the NLSE+DM),

i
∂A

∂ζ
+ i

1

2

(
α(ζ)− g

Na∑
m=1

δ(ζ −mLamp)

)
A− 1

2
k(ζ)

∂2A

∂τ 2
+ γ(ζ)|A|2A

= i
Na∑
m=1

Nm(τ) δ(ζ −mLamp) ,

(A.61a)

α(ζ) =


α1, 0 ≤ ζ < (1−θ)

2
Lamp

α2,
(1−θ)

2
Lamp ≤ ζ < (1+θ)

2
Lamp

α1,
(1+θ)

2
Lamp ≤ ζ < Lamp,

(A.61b)

k(ζ) =


|k′′

0 |1, 0 ≤ ζ < (1−θ)
2

Lamp

−|k′′
0 |2,

(1−θ)
2

Lamp ≤ ζ < (1+θ)
2

Lamp

|k′′
0 |1,

(1+θ)
2

Lamp ≤ ζ < Lamp,

(A.61c)
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and

γ(ζ) =


γ1, 0 ≤ ζ < (1−θ)

2
Lamp

γ2,
(1−θ)

2
Lamp ≤ ζ < (1+θ)

2
Lamp

γ1,
(1+θ)

2
Lamp ≤ ζ < Lamp,

(A.61d)

where the noise statistics are equivalent to those defined in equation (A.45). Note

that the subscripts on the dimensional values in the piece-wise continuous coefficient

functions denote the two distinct fibers that comprise the dispersion map and θ

represents the proportion of the dispersion map period that is occupied by the

compensating fiber.

A.3.1 Dimensionless NLSE+DM

The non-dimensionalization of Equation (A.61) follows the non-dimensionalization of

Equation (A.45) very closely. The time variable is scaled using the full-width-at-half-

maximum (FWHM) Tfwhm of a typical (DM) pulse and the pulse power is scaled using

the peak launch power P0. However, since the parameters that define the length scales

now vary with distance, the averaged values of dispersion and nonlinear coefficients

are used to define the characteristic length scales for dispersion and nonlinear effects,

i.e.,

Ldis =
T 2
fwhm

|k′′
0 |1(1− θ)− |k′′

0 |2θ
and Lnl =

1

(γ1(1− θ) + γ2θ)P0

. (A.62)

In addition, the averaged loss length scale is given as

Lloss =
1

α1(1− θ) + α2θ
, (A.63)

which is used to define an appropriate amplifier spacing Lamp.
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With these definitions, the same scalings can be used here as was used in the

constant coefficient case, i.e.,

U(z, t) =
A√
P0

, t =
τ

Tfwhm

and z =
ζ

Ldis

, (A.64)

which results in the dimensionless equation

i
∂U

∂z
+ i

1

2

(
α(z)

Ldis

Lloss

− g
Na∑
m=1

δ(z −mza)

)
U +

1

2
k(z)

∂2U

∂t2
+ γ(z)|U |2U

= i
Na∑
m=1

nm(t) δ(z −mza) ,

(A.65a)

where as before,

E[nj(t)] = 0 and E[nj(t1)n̄k(t2)] = σ2δjk δ(t1 − t2) , (A.65b)

with a non-dimensional noise strength of σ2 = σ̃2/P0Tfwhm and non-dimensional

amplification period za = Lamp/Ldis. Now however, the non-dimensional coefficient

functions are given by

α(z) =



α1

α1(1−θ)+α2θ
, 0 ≤ z < (1−θ)

2
za

α2

α1(1−θ)+α2θ
, (1−θ)

2
za ≤ z < (1+θ)

2
za

α1

α1(1−θ)+α2θ
, (1+θ)

2
za ≤ z < za,

(A.65c)

k(z) =



|k′′0 |1
|k′′0 |1(1−θ)−|k′′0 |2θ

, 0 ≤ z < (1−θ)
2

za

− |k′′0 |2
|k′′0 |1(1−θ)−|k′′0 |2θ

, (1−θ)
2

za ≤ z < (1+θ)
2

za

|k′′0 |1
|k′′0 |1(1−θ)−|k′′0 |2θ

, (1+θ)
2

za ≤ z < za,

(A.65d)
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Table A.2 Typical Values for SMF and DCF Coefficients for Optical
Communication Systems with Dispersion Management [1].

Quantity Parameter SMF Values DCF Values Units

Absorption α 0.2 0.5 dB/km

Group Velocity 1
k′0

2.048× 105 2.034× 105 km/s

Group Velocity Dispersion k′′
0 −16 127 ps2/km

Nonlinear Refractive Index n2 2.4× 10−20 2.8× 10−20 m2/W

Effective Core Area Aeff 50 20 µm2

Nonlinear Coefficient γ 2.0 5.0 1/W km

and

γ(z) =
Ldis

Lnl



γ1
γ1(1−θ)+γ2θ

, 0 ≤ z < (1−θ)
2

za

γ2
γ1(1−θ)+γ2θ

, (1−θ)
2

za ≤ z < (1+θ)
2

za

γ1
γ1(1−θ)+γ2θ

, (1+θ)
2

za ≤ z < za.

(A.65e)

As discussed before, a realistic DM transmission line consists mainly of single-mode

fiber (SMF) over much of the dispersion map, which is compensated by a relatively

short segment of dispersion compensating fiber (DCF) placed just prior to the ampli-

fier. Typical parameter values for both SMF and DCF are given in Table A.2, which

shows that the major differences in values between the two are in the dispersion.

Figure A.2 shows a more realistic,i.e., unbalanced (θ 6= 1/2) dispersion map used

in implementation of dispersion management. For numerical reasons however, it

is advantageous to used an idealization of this where local dispersion values that

are nearly equivalent in absolute value and a dispersion map which is symmetrical

around the midpoint between amplifiers (θ = 1/2) as shown in Figure A.3. It should

be noted that the map strength, i.e., the L1-norm of the dispersion map, and the

average dispersion are equivalent between both realistic and ideal dispersion maps.
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z

k Hz L

Figure A.2 Simplified diagram of a realistic dispersion map with pulse dynamics.
The solid blue line indicates local dispersion values and the dashed line indicates the
average dispersion over the entire map.

A.3.2 Averaged NLSE+DM: DMNLSE

Just as the small length scale variations from the amplitude and loss cycle could be

factored out of the leading order solution of the constant coefficient case, an analogous

averaging can be done here. However, in this case, the variations in the dispersion

are large enough to to contribute to the fast dynamics at leading order.

Introducing the small length scale variable, x = z/za where za = Lamp/Ldis,

equation (A.65a) can be rewritten as

iza
∂U

∂z
+ i

∂U

∂x
+ i

1

2

(
α(x)− g

Na∑
m=1

δ(x−m)

)
U +

za
2

∂2U

∂t2
+ d(x)

∂2U

∂t2

+ zaγ(x)|U |2U = iza
Na∑
m=1

nm(t) δ(z −mza) ,

(A.66a)

with new x dependent, O(1) coefficients, of the form

α(x) =
Lamp

Lloss



α1

α1(1−θ)+α2θ
, 0 ≤ x < (1−θ)

2

α2

α1(1−θ)+α2θ
, (1−θ)

2
≤ x < (1+θ)

2

α1

α1(1−θ)+α2θ
, (1+θ)

2
≤ x < 1,

(A.66b)
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z

k Hz L

Figure A.3 Simplified diagram of an idealized dispersion map with pulse dynamics.
The solid blue line indicates local dispersion values and the dashed line indicates the
average dispersion over the entire map.

d(x) =
za
2


θ

|k′′0 |1+|k′′0 |2
|k′′0 |1(1−θ)−|k′′0 |2θ

, 0 ≤ x < (1−θ)
2

−(1− θ)
|k′′0 |1+|k′′0 |2

|k′′0 |1(1−θ)−|k′′0 |2θ
, (1−θ)

2
≤ x < (1+θ)

2

θ
|k′′0 |1+|k′′0 |2

|k′′0 |1(1−θ)−|k′′0 |2θ
, (1+θ)

2
≤ x < 1,

(A.66c)

and

γ(x) =
Ldis

Lnl



γ1
γ1(1−θ)+γ2θ

, 0 ≤ x < (1−θ)
2

γ2
γ1(1−θ)+γ2θ

, (1−θ)
2

≤ x < (1+θ)
2

γ1
γ1(1−θ)+γ2θ

, (1+θ)
2

≤ x < 1.

(A.66d)

It is important to note that due to the large variations in the dispersion, the function

k(x)/2 in equation (A.65a) was separated into an O(1) mean term and an O(1/za)

varying term by writing it in the form

1

2
k(x) =

1

2

∫ 1

0

k(x)dx+
1

za

(
za
2
k(x)− za

2

∫ 1

0

k(x)dx

)
=

1

2
+

1

za
d(x), (A.67)

where d(x) is the O(1) function given in (A.66c).
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The leading order solution to this equation can be found by assuming a solution

in the form of an expansion in the small parameter, i.e.,

U(z, x, t) = u0(z, x, t) + zau1(z, x, t) + z2au2(z, x, t) + . . . . (A.68)

Inserting this back into equation (A.48) gives at O(1),

i
∂u0

∂x
+ i

1

2

(
α(x)− g

Na∑
m=1

δ(x−m)

)
u0 + d(x)

∂2u0

∂t2
= 0, (A.69)

Using the Fourier transform (FT), defined as

F [f(t)] = f̂(ω) =

∫
f(t) exp(iωt) dt,

F−1
[
f̂(ω)

]
= f(t) =

1

2π

∫
f̂(ω) exp(−iωt) dω,

(A.70)

the FT of equation (A.69) and its corresponding solution is given by

i
∂û0

∂x
+ i

1

2

(
α(x)− g

Na∑
m=1

δ(x−m)

)
û0 − ω2d(x)û0 = 0, (A.71)

and

û0(z, x, ω) = û(z, ω) exp(−A(x)) exp
(
−iω2D(x)

)
, (A.72)

respectively, where

A(x) =
1

2

∫ x

0

α(y)− Lamp

Lloss

Na∑
m=1

δ(y −m) dy, D(x) =

∫ x

0

d(y) dy, (A.73)

and g =
∫ 1

0
α(x) dx = Lamp

Lloss
was used to indicate that the amplifier fully counters

the absorption in the fiber. Note that û(z, ω) is yet to be determined and represents

the FT evolution of the “core” solution, whereas exp(−iω2D(x)) captures the fast

oscillations in the DM soliton’s width and chirp, and exp(−A(x)) captures the loss

and gain.
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The O(zp) equation and its FT is given by

i
∂u1

∂x
+ i

1

2

(
α(x)− Lamp

Lloss

Na∑
m=1

δ(x−m)

)
u1 + d(x)

∂2u1

∂t2
=

−
[
i
∂u0

∂z
+

1

2

∂2u0

∂t2
+ γ(x)|u0|2u0

]
+ i

Na∑
m=1

nm(t) δ(z −mza) ,

(A.74a)

and

i
∂û1

∂x
+ i

1

2

(
α(x)− Lamp

Lloss

Na∑
m=1

δ(x−m)

)
û1 − ω2d(x)û1 =

−
[
i
∂û0

∂z
− ω21

2
û0 + γ(x)F

[
|u0|2u0

]]
+ i

Na∑
m=1

n̂m(ω) δ(z −mza) ,

(A.74b)

respectively. As expected, the right-hand side of equation (A.74b) contains the same

operator as in the O(1) equation, which implies that the evolution of û(z, ω) can

be found through the application of Fredholm theory, which as previously discussed,

states that the right-hand side of equation (A.74b) must be orthogonal to the ho-

mogeneous solution of adjoint operator of the left-hand side [42], with orthogonality

defined with respect to the inner product

〈f, g〉 = Re

[∫ 1

0

f̄(x) g(x) dx

]
. (A.75)

Using this inner product, the adjoint operator is found to be

i
∂û†

1

∂x
− i

1

2

(
α(x)− Lamp

Lloss

Na∑
m=1

δ(x−m)

)
û†
1 − ω2d(x)û†

1, (A.76)

which has the homogeneous solution of

û†
h(z, x, t) = û†

h(z, ω) exp(A(x)) exp
(
−iω2D(x)

)
. (A.77)
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Projecting this solution on both sides of equation (A.74b) gives

i
∂û

∂z
− ω21

2
û+

∫ 1

0

γ(x) exp(−2A(x)) exp
(
iω2D(x)

)
×

F
[∣∣F−1

[
û(z, ω) exp

(
−iω2D(x)

)]∣∣2F−1
[
û(z, ω) exp

(
−iω2D(x)

)]]
dx =

i
Na∑
m=1

n̂m(ω) δ(z −mza) ,

(A.78)

where the first order solution in (A.72) was used in the nonlinear term. The FT inside

the integral can be rewritten as a convolution, i.e.,

F
[∣∣F−1

[
û(z, ω) exp

(
−iω2D(x)

)]∣∣2F−1
[
û(z, ω) exp

(
−iω2D(x)

)]]
=

1

(2π)2

∫ ∫
û(z, ω′)û(z, ω′′)¯̂u(z, ω′′ + ω′ − ω)×

exp
(
i
(
2ω′′ω′ − 2ω′′ω − 2ω′ω + ω2

)
D(x)

)
dω′ dω′′,

(A.79)

which when put back into the integral in equation (A.78), gives

i
∂û

∂z
− ω21

2
û+

∫ ∫
û(z, ω1 + ω)û(z, ω2 + ω)¯̂u(z, ω2 + ω1 + ω)×

K̂(ω1, ω2) dω1 dω2 = i
Na∑
m=1

n̂m(ω) δ(z −mza) ,

(A.80a)

where

K̂(ω1, ω2) =
1

(2π)2

∫ 1

0

γ(x) exp(−2A(x)) exp(i2ω1ω2D(x)) dx. (A.80b)

Equation (A.80a) is the DMNLSE in the Fourier domain which is converted to the

time domain by taking the inverse FT which gives

i
∂u

∂z
+

1

2

∂2u

∂t2
+

∫ ∫
u(z, t2 + t)u(z, t1 + t)ū(z, t1 + t2 + t)×

K(t1, t2) dt1dt2 = i
Na∑
m=1

nm(t) δ(z −mza) ,

(A.81a)

where

K(t1, t2) =

∫ ∫
exp(−iω1t1) exp(−iω2t2) K̂(ω1, ω2) dω1 dω2. (A.81b)
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A.3.3 Simplifying Assumptions

At this point it is advantageous to make a few assumptions to simplify the above

equations. From the values in Table A.2, the loss coefficients for both types of fiber

that comprise the dispersion map are approximately equal in value. Because of this,

it is reasonable to let both coefficients equal their average values, i.e.,

α1 = α2 ≈ α1(1− θ) + α2θ, (A.82)

which implies that

A(x) =
1

2

Lamp

Lloss

(
x−

Na∑
m=1

H(x−m)

)
. (A.83)

Now, if it assumed that the period of the amplification is much smaller than the loss

length scale, i.e., Lamp

Lloss
� 1, then the function exp(−2A(x)) can be well approximated

by its mean value,

exp(−2A(x)) ≈ G− 1

G ln(G)
, (A.84)

where G = exp
(

Lamp

Lloss

)
. By the same argument, both nonlinear coefficients can be

approximated by their mean value, giving

γ1 = γ2 ≈ γ1(1− θ) + γ2θ. (A.85)

Using both of these assumptions, the kernel of the convolution in equation (A.80b)

can be written as

K̂(ω1, ω2) ≈
1

(2π)2
G− 1

G ln(G)

∫ 1

0

exp(i2ω1ω2D(x)) dx

=
1

(2π)2
G− 1

G ln(G)
sinc

(
ω1ω2

zad̂

2
θ(1− θ)

)
.

(A.86)

Since many of the non-dimensional functions, such as d(x), D(x) and K̂(ω1, ω2),

depend on several different dispersion map parameters, it is advantageous to express
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all dimensionless functions in terms of the L1-norm of the dispersion variations,

denoted smap, which is referred to as the map strength, i.e.,

smap =

∫ 1

0

|d(x)| dx = zad̂(1− θ)θ where d̂ =
|k′′

0 |1 + |k′′
0 |2

|k′′
0 |1(1− θ)− |k′′

0 |2θ
. (A.87)

Using the definition of map strength in conjunction with the assumptions above, gives

a DMNLSE in the Fourier domain of the form

i
∂û

∂z
− ω21

2
û+

∫ ∫
û(z, ω1 + ω)û(z, ω2 + ω)¯̂u(z, ω2 + ω1 + ω)×

K̂(ω1, ω2; smap) dω1 dω2 = i
Na∑
m=1

n̂m(ω) δ(z −mza) ,

(A.88a)

where

K̂(ω1, ω2; smap) =
1

(2π)2
sinc

(
ω1ω2

smap

2

)
, (A.88b)

which in the time domain becomes

i
∂u

∂z
+

1

2

∂2u

∂t2
+

∫ ∫
u(z, t2 + t)u(z, t1 + t)ū(z, t1 + t2 + t)×

K(t1, t2; smap) dt1dt2 = i
Na∑
m=1

nm(t) δ(z −mza) ,

(A.89a)

where

K(t1, t2, smap) =

∫ ∫
exp(−iω1t1) exp(−iω2t2) K̂(ω1, ω2; smap) dω1 dω2. (A.89b)

Notice that the initial power was chosen as

P0 =
G ln(G)

G− 1

1

Ldis(γ1(1− θ) + γ2θ)
=

G ln(G)

G− 1

|k′′
0 |1(1− θ)− |k′′

0 |2θ
T 2
fwhm(γ1(1− θ) + γ2θ)

. (A.90)

so the nonlinear coefficient is normalized. With this choice of P0 the noise statistics

are given as

E[nk(t)] = 0 and E[nk(t1)n̄j(t2)] = σ2 δ(t1 − t2) δk,j (A.91)
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where

σ2 =
(G− 1)2

G ln(G)

(
(γ1(1− θ) + γ2θ)Ldis~ω0nsp

Tfwhm

)
. (A.92)

A.4 Modulation Formats

We have shown that the soliton solution of the NLSE has four free parameters,

corresponding to invariance under various transformations. When used as a bit

carrier, information is encoded into the soliton parameters, transmitted, received,

and decoded. Each bit occupies a given time window based on the data rate (e.g.,

10Gb/s → 100ps window). At reception, the soliton parameters are read and the

receiver determines if that window contains a 0 or 1. However, since there four free

parameters, there is a number of coding schemes that one can use to encode the

information. Three of the most used are discussed below.

A.4.1 On-Off Keying (OOK)

In the on-off keying scheme, the amplitude is the encoding parameter. The optical

power integrated over a particular window is compared to an energy threshold to

determine if window contains a 1 or a 0. The two main source for bit errors in this

scheme are time shifts and loss.

A.4.2 Phase-Shift Keying (PSK)

In phase-shift keying, every window contains a pulse. At detection, the phase of each

pulse is compared to that of a local oscillator. If the soliton is in phase, they are read

as 1; if the pulse is out of phase it is read as 0.

A.4.3 Differential Phase-Shift Keying (DPSK)

Differential phase-shift keying is similar to PSK, in that the phase is used to encode

information. But instead of depending directly of the phase, the bit is encoded in the



176

phase difference between two pulses, which does not require an external oscillator. If

the phase difference is zero, the detector reads 1, if the phase change is π, the detector

reads a 0.



APPENDIX B

NUMERICAL METHODS

This appendix contains an outline for many of the numerical methods used through

out this thesis. In particular, it contains the derivation of a pseudo-spectral method

based on the fourth order Runge-Kutta scheme, which is used to solve the various

nonlinear evolution equation presented in this document. It should be noted that this

technique relies heavily on the celebrated Fast Fourier Transform (FFT) which allows

the numerical Fourier transform to be computed in O(N ln(N)) operations as opposed

to O(N2), which is number of operations a straightforward approach would require.

In both approximations, N is the number of computational modes representing the

numerical solution.

B.1 Integrating Factor Fourth-Order Runge-Kutta Method

This method, denoted by IFRK, is based on the method of lines [90] applied to the

evolution equation written in the Fourier domain. For simplicity, the IFRK method

will be derived for the case of a general nonlinearity, which can be substituted for as

need to solve all other version of this equation.

Consider the equation,

∂u

∂z
= i

1

2

∂2u

∂t2
+N(u) (B.1)

which is to be solved on the infinite strip given by t ∈ (∞,−∞) and z ∈ [0, Zf ],

where N(u) represents a general nonlinear term. By taking the Fourier transform in

the variable t, this equation takes form in the Fourier domain as

dû

dz
= −iω21

2
û+ iF [N(u)] (B.2)
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With the differentiation in time variable eliminated, this equation can be discretized

over the frequency variable ω giving

dûj

dz
= i

ω2
j

2
ûj + iF [N(uj)] (B.3)

which represents a system of ODEs, i.e., method of lines, that are parameterized

by ωj, where uj = u(z, ωj). Note that, for simple nonlinearities, these ODEs are

decoupled, however, in general this is not the case. Also notice that the nonlinear

term is left in its general form, indicating that it should always be evaluated in the

time domain through the use of the FFT.

The reason for working with in Fourier space is to eliminate any temporal deriva-

tive, that would require the use of finite differences, which are replaced by products

of the frequency variable. However, this results in system of ODEs that contain

the term ω2
j , which can range over several orders of magnitude. Thus, the resulting

system of ODEs are stiff, which require such methods as a backward differentiation

formulas (BDF) or implicit Runge-Kutta (RK) to do the stepping in z. However, this

particular form of stiffness can be easily dealt with by wrapping the ω2
j term up into

a phase rotation, which is the foundation of the integrating factor method. Letting

ûj(z) = exp

(
i
1

2
ω2
j z

)
v̂j(z) (B.4)

gives

dûj

dz
= i

1

2
ω2
j exp

(
i
1

2
ω2
j z

)
v̂j(z) + exp

(
i
1

2
ω2
j z

)
∂v̂j
∂z

= i
ω2
j

2
exp

(
i
1

2
ω2
j z

)
v̂j(z) + iF

[
N

(
F−1

[
exp

(
i
1

2
ω2
j z

)
v̂j(z)

])] (B.5)

implying that

dv̂j
dz

= i exp

(
i
1

2
ω2
j z

)
F
[
N

(
F−1

[
exp

(
i
1

2
ω2
j z

)
v̂j(z)

])]
. (B.6)
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Now that we have an equation that is no longer stiff, we can apply an explicit

RK method, such as the commonly used fourth order RK method, which after

discretization of the z variable as zn = n∆z and v̂j(zn) = v̂
(n)
j , gives

v̂
(n+1)
j = v̂

(n)
j +

1

6
∆z[K1 + 2K1 + 2K3 +K4] (B.7a)

where

K1 = f(zn, v̂
(n)
j ), (B.7b)

K2 = f(zn +
1

2
∆z, v̂

(n)
j +

1

2
∆zK1), (B.7c)

K3 = f(zn +
1
2
∆z, v̂

(n)
j +

1

2
∆zK2), (B.7d)

and

K4 = f(zn +∆z, v̂
(n)
j +∆zK3), (B.7e)

where

f(zn, v̂
(n)
j ) = i exp

(
i
1

2
ω2
j zn

)
F
[
N

(
F−1

[
exp

(
i
1

2
ω2
j zn

)
v̂
(n)
j

])]
. (B.7f)

Note that each stage requires two FFTs, so the computational cost is eight FFTs per

evolutionary step. Figure B.1 plots the Log of the local error in the IFRK method as

a function of the Log of the step size, confirming that the local error is O(∆z4).

B.2 Parameter Extraction

This section describes the methods used to extract the parameters of noisy soliton

solution. There are three methods discussed, an integral representation, an iterative

method based on projections and a method based on the inverse scattering transform
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Figure B.1 Plot of the Log of the local error in the IFRK method as a function of
the Log of the step size. The t domain is taken to be 40 dimensionless units wide and
represented by 1024 computational points, yielding a time spacing of ∆t = 0.0195.

B.2.1 Integral Representations

The fastest and most direct method for computing the parameters of a noisy soliton

is to use integral approximations for each parameter. For the frequency, timing, and

phase parameters, these are normalized moment equations, which weight the possible

values of a given parameter, e.g., the phase, by the noisy soliton intensity [72, 74].

Alternatively, for the hyperbolic secant soliton of the NSLE, the amplitude parameter

shares a relationship with the energy that can exploited to calculate its value [72, 74].

The pulse can be written as

u(t) = unsol(t;A,Ω, T,Φ) +R(t) (B.8a)

represent the noisy soliton, where

unsol(t;A,Ω, T,Φ) = A sech(A(t− T )) exp(iΩt+ iΦ) (B.8b)
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is the numerical soliton and R(t) is the radiative portion of the pulse containing all

the noise after the changes to the soliton parameters have been projected out. The

amplitude parameter can be approximated by calculating the energy,∫ ∣∣u(t)∣∣2 dt = A2

∫
( sech(A(t− T )))2 dt+

∫ ∣∣R(t)
∣∣2 dt

+ 2Re

[∫
A sech(A(t− T )) exp(−i(Ωt+ Φ))R(t) dt

]
≈ 2A,

(B.9a)

where it is assumed that

Re

[∫
A sech(A(t− T )) exp(−i(Ωt+ Φ))R(t) dt

]
(B.9b)

can be neglected due to its mean zero contribution and∫ ∣∣R(t)
∣∣2 dt (B.9c)

can be neglected due to the small noise strength assumption. Thus,

A ≈ 1

2

∫ ∣∣u(t)∣∣2 dt, (B.9d)

is the approximation used for the amplitude parameter, which on average, results in

the amplitude being over estimated [45].

The remaining three parameters can be approximated by weighted moment equa-

tions of the form

Ω ≈
∫
ω
∣∣û(ω)∣∣2dω∫ ∣∣û(ω)∣∣2dω , (B.10a)

T ≈
∫
t
∣∣u(t)∣∣2dt∫ ∣∣u(t)∣∣2dt , (B.10b)

Φ ≈

∫
arctan

(
Im[u]
Re[u]

) ∣∣u(t)∣∣2dt∫ ∣∣u(t)∣∣2dt , (B.10c)
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where û is the Fourier transformed version of u. Finally, it is noted that since the

bandwidth of the radiation is larger than the pulse, the noisy pulse is often filtered

prior to calculating the approximations above. To accomplish this, an estimate for

the frequency value is first found through the moment equation

Ωest =

∫
ω
∣∣û(ω)∣∣2 dω∫ ∣∣û(ω)∣∣2 dω , (B.11a)

which is then used to construct the Gaussian filtered pulse

ufil(t) = F−1

[
exp

(
−(ω − Ωest)

2

2Wfil

)
û(ω)

]
. (B.11b)

B.2.2 Projection Method

Recall that as a result of SPT, the stochastic perturbations to each parameter can be

represented by (linear combinations of) projections of the form

∆Xk = σRe

[∫
v̄†X(kza, t) exp(−iΘ(kza))nk(t) dt

]
, (B.12)

where k indexes the amplifier, v†X are the discrete adjoint eigenfunctions and nk is

the noise. Because of this, perturbations in the parameters (and by extension the

pulse) are seen to originate from the portion of noise that projects onto the basis of

these eigenfunctions, and more importantly, any noise that is orthogonal to this basis

has no instantaneous effect on the pulse. Thus, the exact underlying soliton must be

orthogonal to the radiation (defined as the difference between the soliton and noisy

pulse) is must be orthogonal to each eigenfunction v†X . From this, an iterative method

can be constructed, the steps of which are given as:

1. Given the noisy pulse u, calculate approximations for the soliton parameters

from the moment Equations (B.9d), (B.10a), (B.10b) and (B.10c).

2. Use these approximations to construct an approximation for the soliton, usol,

and approximations for the adjoint eigenvectors v†X .
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3. Use usol to construct an approximation for the radiation through Rapp = u−usol.

4. Calculate any changes in the parameters through the projections

∆X = Re

[∫
v̄†X exp(−iΘ)R(t) dt

]
, (B.13)

and update the parameter values.

5. Calculate the error, e.g., maxX ∆X.

6. Return to step 2 and iterate until the error falls below a predefined value.

Finally, note that since this iteration method is only dependent on the construction of

a basis of discrete eigenfunctions, it can be easily extended to the case of DMNLSE. Of

course, it such settings, the pulse formation step is more complicated by the absence

of a close form solution.

B.2.3 IST Reconstruction of the Numerical Soliton

The final method for recovering the pulse parameters is based on a discretized version

of the trace formula from IST [57]. This allows one to reconstruct the pulse from the

eigenvalues ζ and eigenfunctions (Jost functions) v1 and v2 of the forward scatter

problem presented by Zakharov [46]

i
∂v1
∂t

− iuv2 = ζv1,

−i
∂v2
∂t

− iūv1 = ζv2,

(B.14)

where u (referred to as the potential) is the noisy pulse at some point along fiber.

There exists various methods for solving Equations (B.14), the one used here was

derived by Weideman and Herbst [91]. Assuming that the numerical object contains

a single noisy soliton, the spectrum will consist of a continuum along the real axis

corresponding to the radiation and one eigenvalue away from the axis corresponding
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to the soliton, which is denoted ζ∗, with corresponding Jost functions of v1(t; ζ
∗) and

v2(t; ζ
∗). After these eigenvalues and eigenfunctions are known, the soliton portion of

the numerical pulse, unsol, can be exactly represented using the discrete part of the

trace formula [57]

unsol = − v21(t; ζ
∗)∫

v2(t; ζ∗)v1(t; ζ∗) dt
− v̄22(t; ζ

∗)∫
v̄2(t; ζ∗)v̄1(t; ζ∗) dt

(B.15)

It is important to note, however, that this formula is only valid for soliton solutions of

the NLSE, since it relies on integrability which is a property that is not shared by any

of the varying coefficient equations, such as NLSE+DM, or the averaged equations,

such as the DMNLSE.
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