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ABSTRACT

FAST ALGORITHMS FOR BROWNIAN DYNAMICS SIMULATION
WITH HYDRODYNAMIC INTERACTIONS

by
Zhi Liang

In the Brownian dynamics simulation with hydrodynamic interactions, one needs

to generate the total displacement vectors of Brownian particles consisting of two

parts: a deterministic part which is proportional to the product of the Rotne-Prager-

Yamakawa (RPY) tensorD [1, 2] and the given external forces F; and a hydrodynamically

correlated random part whose covariance is proportional to the RPY tensor. To be

more precise, one needs to calculate Du for a given vector u and compute
√
Dv for

a normally distributed random vector v. For an arbitrary N -particle configuration,

D is a 3N × 3N matrix and u, v are vectors of length 3N . Thus, classical algorithms

require O(N2) operations for computing Du and O(N3) operations for computing
√
Dv, which are prohibitively expensive and render large scale simulations impossible

since one needs to carry out these calculations many times in a Brownian dynamics

simulation.

In this dissertation, we first present two fast multipole methods (FMM) for

computing Du. The first FMM is a simple application of the kernel independent

FMM (KIFMM) developed by Ying, Biros, and Zorin [3], which requires 9 scalar

FMM calls. The second FMM, similar to the FMM for Stokeslet developed by

Tornberg and Greengard [4], decomposes the RPY tensor into harmonic potentials

and its derivatives, and thus requires only four harmonic FMM calls. Both FMMs

reduce the computational cost of Du from O(N2) to O(N) for an arbitrary N -particle

configuration.

We then discuss several methods of computing
√
Dv, which are all based on

the Krylov subspace approximations, that is, replacing
√
Dv by p(D)v with p(D) a



low degree polynomial in D. We first show rigorously that the popular Chebyshev

spectral approximation method (see, for example, [5, 6]) requires
√
κ log 1

ε
terms for

a desired precision ε, where κ is the condition number of the RPY tensor D. In the

Chebyshev spectral approximation method, one also needs to estimate the extreme

eigenvalues of D. We have considered several methods: the classical Lanczos method,

the Chebyshev-Davidson method, and the safeguarded Lanczos method proposed

by Zhou and Li [7]. Our numerical experiments indicate that κ is usually very

small when the particles are distributed uniformly with low density, and that the

safeguarded Lanczos method is most effective for our cases with very little additional

computational cost. Thus, when combined with the FMMs we described earlier, the

Chebyshev approximation method with safeguarded Lanczos method as eigenvalue

estimators essentially reduces the cost of computing
√
Dv from O(N3) to O(N) for

most practical particle configurations. Finally, we propose to combine the so-called

spectral Lanczos decomposition method (SLDM) (see, for example, [8]) and the FMMs

to compute
√
Dv. Our numerical experiments show that the SLDM is generally more

efficient than the popular Chebyshev spectral approximation method.

The fast algorithms developed in this dissertation will be useful for the study of

diffusion limited reactions, polymer dynamics, protein folding, and particle coagulation

as it enables large scale Brownian dynamics simulations. Moreover, the algorithms

can be extended to speed up the computation involving the matrix square root for

many other matrices, which has potential applications in areas such as statistical

analysis with certain spatial correlations and model reduction in dynamic control

theory.
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CHAPTER 1

INTRODUCTION

In biophysics and biochemistry studies, the theory of Brownian motion was developed

to describe the dynamic behavior of particles whose mass and size are much larger

than those of solvent molecules. In the Fokker-Planck theory or Langevin equation

based models, a configuration-dependent force field (due to interparticle interactions

or external forces) was coupled with stochastic rules to update the location of each

particle, which in turn lead to a displacement of the other particles and new configurations.

Brownian dynamics simulation has been widely used to study the properties of dilute

solutions of large molecules and colloidal particles.

For many particle systems in application, in addition to the commonly used

short-ranged forces (e.g., the hard-sphere exclusion and Lennard-Jones forces) and

electrostatic force, one also needs to consider the hydrodynamic effects between

solvent molecules and Brownian particles in order to describe how the relative motion

of the Brownian particles is coupled mechanically by the displaced solvent. Compared

to a setup that does not consider hydrodynamics, the hydrodynamics interactions

accelerate the dynamics of the particle system. The results presented in [9] demonstrates

the importance of including hydrodynamic interactions in a dynamic simulation of

many-particle Brownian systems. The hydrodynamic interaction is long-range and

influences the dynamics of dilute polymer solutions [10, 11, 12]. There has been recent

interest in the rheological and conformational properties of dilute solutions of DNA

and other proteins [13, 14, 15]. Moreover, the hydrodynamic interaction profoundly

influences the dynamics of diffusional encounters [16, 17] and the description of

the transport properties of multisubunit structures in terms of subunit frictional

coefficients [18, 19]. Computer simulations should be useful for studying certain

1
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aspects of protein folding [20], particle coagulation, and other biochemical processes.

However, when hydrodynamic interactions are included in a Brownian dynamics

simulation, the random displacements become correlated [21], even though they still

have the same (temperature dependent) magnitudes. In a numerical simulation, they

now have to be determined from a factorization of the diffusion tensor of the complete

system, which is numerically demanding. Here we would like to remark that Brady

et al. [22, 23, 24] have developed fast algorithms for Stokesian dynamics simulation,

which are O(N logN) methods.

In this dissertation, we consider the Ermak-McCammon algorithm [9, 25] for

Brownian dynamics simulation, where the particles are assumed to be of spherical

shape and the hydrodynamic interactions between N particles are described by a

3N × 3N diffusion tensor D. One of the popular choices for the diffusion tensor D is

the Rotne-Prager-Yamakawa tensor [1, 2], which will be defined in Chapter 2.

In the Ermak-McCammon algorithm, the total displacement ∆xm of the mth

particle during a time step ∆t due to the force Fn and diffusion tensor D is given by

∆xm (∆t) =
∑
n

D(xm,xn)Fn

kBT
∆t+

∑
n

∂D(xm,xn)

∂xn
∆t+ Rm (∆t) (1.1)

where the hydrodynamically correlated random displacements Rm (∆t) are normally

distributed with zero mean and finite covariance determined by the diffusion tensor

D. To be more precise, we have

〈Rm (∆t)〉 = 0, 〈Rm (∆t) Rn (∆t)〉 = 2D(xm,xn)∆t. (1.2)

For the Rotne-Prager-Yamakawa tensor, which has the property

∑
n

∂D(xm,xn)

∂xn
∆t ≡ 0 (1.3)
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it is shown in [9], so that this term can be dropped from (1.1). This greatly simplifies

the calculation of the displacements as the gradient of the diffusion tensor does not

have to be calculated. For computing the deterministic part of ∆xm (m = 1, · · · , N),

i.e., the first term on the right side of (1.1), could be considered as calculating

Du for a given vector u. The classical algorithms require O(N2) operations and

it could be computed in O(N) or O(N logN) time using the fast multipole method

or fast Fourier transform (see, for example, [26, 27, 28, 29, 30, 3, 31]). However, It is

nontrivial to generate 3N normally distributed random vectors Rm (m = 1, · · · , N)

with the particular correlation (1.2) efficiently. Indeed, the standard technique in

statistics [32, 33] generates such a random vector in three steps. First, find the

Cholesky factor C of the diffusion matrix D (i.e., D = CT · C and C is an upper

triangular matrix). Second, generate an independent normally distributed random

vector, say, v. Third, multiply C
√

2∆t with v and the resulting vector will be

normally distributed with the correlation given by (1.2). The well-known algorithm

for Cholesky factorization requires O(N3) operations and the third step for computing

matrix-vector multiplication requiresO(N2) operations via direct computation. Thus,

generating the random vector R has become one of the bottlenecks in the large-scale

Brownian dynamics simulations with hydrodynamic interactions.

The purpose of this dissertation is to discuss the fast algorithms for generating

the total displacement ∆xm. We first present two fast multipole methods (FMM)

for computing the first term on the right side of (1.1). The first FMM is a simple

application of the kernel independent FMM (KIFMM) developed by Ying, Biros, and

Zorin [3], which requires 9 scalar FMM calls. The second FMM, similar to the FMM

for Stokeslet developed by Tornberg and Greengard [4], decomposes the RPY tensor

into harmonic potentials and its derivatives, and thus requires only four harmonic

FMM calls. Both FMMs reduce the computational cost of Du from O(N2) to O(N)

for an arbitrary N -particle configuration.
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Next we present three fast algorithms to generate the random displacement

vector R. We first observe that the Cholesky factor in the above algorithm can

be replaced by any matrix B (not necessarily lower triangular) which satisfies the

equation D = B · BT since (1.2) characterizes the random vector R. In particular,

one could replace C by the so-called square root matrix
√
D defined by the equation

D =
√
D

2
. Of course the direct computation of the square root matrix

√
D is

probably as hard as that of C. However, note here that it is more than sufficient if

we can compute
√
Dv efficiently for an arbitrary vector v. We observe that given an

arbitrary vector v, the fast multipole method can compute Dv in O(N) operations.

And our strategy is as follows:

In Algorithm I and II, which are all based on the Krylov subspace approximations,

we replace
√
Dv by p(D)v with p(D) a low degree polynomial in D. First we try

to find an accurate and efficient matrix polynomial approximation for the square

root matrix
√
D, that is,

√
D ≈ pn(D) with pn a polynomial of low degree. This is

possible since D is positive definite. In the popular Chebyshev spectral approximation

method (see, for example, [5, 6]), degree n of the approximate polynomial depends

logarithmically on the prescribed precision ε and is proportional to the square root

of the condition number κ of the matrix D, that is, n ∝ log(1
ε
)
√
κ. In the Chebyshev

spectral approximation method, one also needs to estimate the extreme eigenvalues

of D. We have considered several methods: the classical Lanczos method, the

Chebyshev-Davidson method, and the safeguarded Lanczos method proposed by Zhou

and Li [7]. Our numerical experiments indicate that κ is usually very small when the

particles are distributed uniformly with low density, and that the safeguarded Lanczos

method is most effective for our cases with very little additional computational

cost. Thus, when combined with the FMMs we described earlier, the Chebyshev

approximation method with the safeguarded Lanczos method as eigenvalue estimators
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essentially reduces the cost of computing
√
Dv from O(N3) to O(N) for most practical

particle configurations.

Finally in Algorithm III, we combine the so-called Spectral Lanczos Decomposition

Method (SLDM) [8] and the FMM to compute
√
Dv for an arbitrary vector v. The

SLDM, like the Chebyshev polynomial based method, tries to find an approximation

to
√
Dv in the Krylov subspace Kk = span{v,Dv, · · · , Dkv}, but the method is based

on the standard Lanczos iteration (see, for example, [34]) and does not require the

estimation of extreme eigenvalues. Our numerical experiments show that the SLDM is

generally more efficient that the popular Chebyshev spectral approximation method.

The overall complexity of generating one such random vector R by all the algorithms is

essentially linear (i.e., O(N)) considering the fact that n is very small. Our technique

will be incorporated into existing Brownian dynamics simulation packages, including

the open source Browndye [35], and applications on biomolecular systems will be

reported in the future.

The outline of this dissertation is as follows. The numerical tools needed for our

algorithms are summarized in Chapter 2. In Chapter 3, we discuss the fast multipole

methods for the Rotne-Prager-Yamakawa tensor. In Chapter 4, we present the details

of our three fast algorithms. The performance of our fast algorithms is illustrated via

several numerical examples in Chapter 5. Finally, we present a short conclusion and

discuss possible extension and applications of our algorithm in Chapter 6.



CHAPTER 2

NUMERICAL PRELIMINARY

2.1 The Square Root of a Real, Symmetric,

and Positive Definite Matrix

Suppose that D is a real, symmetric, and positive definite matrix. Then D admits

the following decomposition:

D = BB∗. (2.1)

This decomposition is not unique. Indeed, if B satisfies (2.1), then B ·U also satisfies

(2.1) for any unitary matrix U since BU · (BU)∗ = BUU∗B∗ = BIB∗ = D. Thus

there are infinitely many matrices satisfying (2.1) and these matrices are associated

with unitary transformations.

Nevertheless, there are two natural choices for B. One is the Cholesky factor C,

a real upper triangular matrix. The Cholesky factorization is a standard algorithm

for finding C, which is essentially the LU decomposition with the symmetry of the

matrix taken into account and requires 1
6
N3 operations. The other is the so-called

square root matrix
√
D, which satisfies

D =
√
D ·
√
D. (2.2)

√
D is also real, symmetric, and positive definite. If the eigenvalue decomposition of

D is OΛOT with O an orthogonal matrix and Λ = diag(λ1, · · · , λN) the eigenvalue

matrix, then
√
D = O

√
ΛOT , where

√
Λ = diag(

√
λ1, · · · ,

√
λN). Thus

√
D is

actually unique. There are many algorithms for computing
√
D (see, for example,

[36]). However, the explicit construction of such a matrix requires at least O(N2)

operations for a general matrix.

6
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The following lemma is interesting and somewhat surprising.

Lemma 2.1.1. Suppose that D is a real, symmetric, and positive definite matrix and

that
√
D is its square root defined by (2.2). Then there exists a polynomial p(·) such

that
√
D = p(D), and the degree of p equals to the number of distinct eigenvalues of

D minus 1.

Proof. Suppose D = OΛOT with O an orthogonal matrix and Λ the eigenvalue matrix

of D. Then
√
D = O

√
ΛOT .

Now if D has k distinct eigenvalues λ1, · · · , λk, then there exist c0, · · · , ck−1

such that √
λi = p(λi) =

k−1∑
j=0

cjλi
j, i = 1, · · · , k. (2.3)

The existence and uniqueness of these k coefficients cj (j = 0, · · · , k−1) are guaranteed

since the coefficient matrix in the above linear system (2.3) is a Vandermonde matrix.

Thus, there exists a polynomial p of degree k − 1 such that p(x) =
√
x for x =

λ1, · · · , λk. Hence, p(Λ) =
√

Λ where Λ is the eigenvalue matrix of D and p(D) =

Op(Λ)OT = O
√

ΛOT =
√
D.

However, though
√
D is exactly equal to a polynomial p in D, the degree of p

might be very large if D has a large number of distinct eigenvalues. Thus, instead

of trying to find the exact polynomial p in D which equals
√
D, we will try to find

an approximate polynomial p in D so that p(D) is very close to
√
D and the degree

of p is fairly low. For this, we need the spectral approximation of the square root

function.

2.2 Spectral Approximation Using Chebyshev Polynomials

The Chebyshev polynomial of degree n, denoted by Tn, is defined by the formula

Tn(x) = cos(n arccosx), x ∈ [−1, 1]. (2.4)
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They also satisfy the following recurrence relation

T0(x) = 1,

T1(x) = x,

Tn+1 = 2xTn(x)− Tn−1(x) n ≥ 1.

(2.5)

The Chebyshev points are the zeros of Tn+1(x) in [−1, 1], given explicitly by

xj = cos

[
(2j + 1)π

2n+ 2

]
, j = 0, 1, · · · , n. (2.6)

Given a sufficiently smooth function f , we will denote the polynomial interpolating f

on the Chebyshev points by pn(x). The following theorem states that the Chebyshev

polynomial approximation has spectral accuracy for functions analytic on [−1, 1]. It

can be found in [37, 34].

Theorem 2.2.1. Suppose that f is analytic on [−1, 1] and pn(x) is its Chebyshev

polynomial interpolant which interpolates f on the Chebyshev points. Suppose further

that z0 is the closest singular point of f to the interval [−1, 1]. Then pn(z) converges

to f(z) exponentially fast for any z inside the ellipse that passes through z0 and has

foci ±1. In particular, for x ∈ [−1, 1],

|f(x)− pn(x)| = O(e−n(φ(z0)+ln 2)) as N →∞, (2.7)

where the potential function φ is defined by the formula

φ(z) = log
|z −
√
z2 − 1|
2

. (2.8)

2.3 The Rotne-Prager-Yamakawa Tensor

For a chain of N particles of radius a, the Brownian motion in the absence of

external forces is governed by the Kirkwood-Riseman diffusion [38]. The diffusion

tensor normally used to treat hydrodynamic interactions in polymer molecules is not
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necessarily positive definite, an unphysical behavior which results from the neglect of

short-range contributions to the interaction between chain segments. The problem

can be reformulated as a minimization of the rate at which energy is dissipated by the

motion of the suspending fluid, and in this way Rotne and Prager [1] have obtained

an approximate diffusion tensor which is positive definite for all configurations of

the polymer molecule, approaches the Kirkwood-Riseman diffusion tensor at large

separations between the interacting segments, and can be written as the true diffusion

tensor plus a positive definite correction. Then for examining the possible effects of

the correction term on the transport properties of flexible chains, Yamakawa [2] has

improved the approximate diffusion tensor which describes the interaction when the

particles adhibit together. The Rotne-Prager-Yamakawa tensor is defined as follows,

which is the most common choice to model the Stokes flow for two spheres and neglect

the hydrodynamic rotation-rotation and rotation-translation coupling:

D(xm,xm) =
kBT

6πηa
I, (2.9)

D(xm,xn) =
kBT

8πηrmn
[(I +

rmnrmn
r2mn

) +
2a2

3r2mn
(I− 3

rmnrmn
r2mn

)]

for m 6= n and rmn ≥ 2a,

(2.10)

D(xm,xn) =
kBT

6πηa
[(1− 9

32

rmn
a

)I +
3

32a

rmnrmn
rmn

]

for m 6= n and rmn < 2a.

(2.11)

Here kB is the Boltzmann constant, T is the absolute temperature, η is the solvent

viscosity, a represents the hydrodynamic radius of each particle, m and n label particle

indices, I is the 3 × 3 identity matrix, rmn = xm − xn, and rmn =
√

rmn · rmn with

xm the position vector of the mth particle.
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Following for the sake of simplicity, we mark rmn = (x, y, z) and r = rmn =√
x2 + y2 + z2. Then we can get,



x
∂

∂x

(
1

r

)
= −x

2

r3
y
∂

∂x

(
1

r

)
= −xy

r3
z
∂

∂x

(
1

r

)
= −xz

r3

x
∂

∂y

(
1

r

)
= −xy

r3
y
∂

∂y

(
1

r

)
= −y

2

r3
z
∂

∂y

(
1

r

)
= −yz

r3

x
∂

∂z

(
1

r

)
= −xz

r3
y
∂

∂z

(
1

r

)
= −yz

r3
z
∂

∂z

(
1

r

)
= −z

2

r3

(2.12)



∂2

∂x2

(
1

r

)
= − 1

r3
+

3x2

r5
∂2

∂xy

(
1

r

)
= −3xy

r5
z
∂2

∂xz

(
1

r

)
= −3xz

r5

∂

∂yx

(
1

r

)
= −3xy

r5
∂

∂y2

(
1

r

)
= − 1

r3
+

3y2

r5
∂

∂yz

(
1

r

)
= −3yz

r5

∂

∂zx

(
1

r

)
= −3xz

r5
∂

∂zy

(
1

r

)
= −3yz

r5
∂

∂z2

(
1

r

)
= − 1

r3
+

3z2

r5

(2.13)

combined with rmnrmn =

[
xx xy xz
xy yy yz
xz yz zz

]
, the Rotne-Prager-Yamakawa tensor can be

written as following form:

D(xm,xm) = C0


1 0 0

0 1 0

0 0 1

 (2.14)

D(xm,xn) = C1




1 0 0

0 1 0

0 0 1

 1

r
−


x ∂
∂x

y ∂
∂x

z ∂
∂x

x ∂
∂y

y ∂
∂y

z ∂
∂y

x ∂
∂z

y ∂
∂z

z ∂
∂z

 1

r

− C2


∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z

∂2

∂x∂y
∂2

∂y2
∂2

∂y∂z

∂2

∂x∂z
∂2

∂y∂z
∂2

∂z2

 1

r

for m 6= n and rmn ≥ 2a,

(2.15)
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D(xm,xn) = C0




1 0 0

0 1 0

0 0 1

− 9

32a


1 0 0

0 1 0

0 0 1

 r − 3

32a


x ∂
∂x

y ∂
∂x

z ∂
∂x

x ∂
∂y

y ∂
∂y

z ∂
∂y

x ∂
∂z

y ∂
∂z

z ∂
∂z

 r


for m 6= n and rmn < 2a.

(2.16)

Where C0 = kBT
6πηa

, C1 = kBT
8πη

and C2 = kBTa
2

12πη
. This kind form of Rotne-Prager-

Yamakawa tensor will be used for harmonic fast multipole method in Chapter 3.

2.4 A Brief Overview to the Fast Multipole Method

2.4.1 Introduction

Many methods in computational physics are based on the evolution of particle systems

with pairwise interactions corresponding to potentials related to the fundamental

solution of elliptic partial differential equations. The most important among these

kernels is the single-layer Laplacian. Given N particles each carrying a charge qj at

location yj (j = 1, · · ·N), the electrostatic potential field is described by

φ (xi) =
N∑

j=1,j 6=i

qj
‖xi − yj‖

(2.17)

It also arises in the integral equation methods when a convolution
∫
K(x, y)q(y)dy

of the Green’s function (kernel) K(x, y) and a given density q(y) is discretized using

quadrature rules. Equation (2.17) can be equivalently represented as a matrix-vector

multiplication, with the matrix having zeros on the diagonal and {1/‖xi − yj‖} on

the off-diagonals and the vector being {qj} for i, j = 1, ..., N . When a direct method

is applied to the summation or the corresponding matrix-vector multiplication, O(N2)

operations are required, which becomes a significant bottleneck for large-scale problems

even on modern supercomputers. Indeed, the advance in computer architectures
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requires innovative numerical algorithms. In particular, the asymptotically optimal

O(N) methods for the special structured matrix vector operations are in urgent need

in science and engineering applications.

There have been many research efforts to developO(N) orO(N logN) algorithms

for the summation in Equation (2.17), including the Fast Fourier Transform algorithms

[39, 40, 41], multi-wavelet based schemes [42], multigrid multi-level methods [43],

and the multipole expansion techniques [44, 45, 26, 27]. In [44], and [45] the “tree-

code” algorithm, the complexity is reduced to O(N logN) by using a low order

spherical harmonics expansion to represent the “far-field” of a cluster of particles

and a downward (or upward) pass to transmit this “multipole” expansion to the

“interaction” list. In 1987, by introducing the additional local expansion and using

both the upward and downward passes, Greengard and Rokhlin invented the asymptoti-

cally optimal O(N) fast multipole method (FMM) and applied it to many-body

problems [26]. The FMM was elected as one of the top ten algorithms for the twentieth

century and it has been successfully applied in many science and engineering fields

such as computational electromagnetic, molecular dynamics, computational fluid and

solid mechanics, etc.

Given N source densities {qi} located at N points {yi} in Rd(d = 2, 3), we want

to compute the potential {φi} at N points {xi} induced by a kernel K (single layer,

double layer or other kernels of a elliptic PDE) using the following relation:

φ(xi) =
N∑
j=1

K(xi,yj)q(yj), i = 1, · · · , N. (2.18)

The implementation of FMM depends on the analytic expansion of the kernel.

Such expansions need to be carried differently for different kernels, which somewhat

makes the implementation of efficient and accurate FMM accelerators tedious. The

original FMM deals with the kernel K(x,y) = log |r|, with r = x − y in 2D and
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K(x,y) = 1/|r| in 3D. Recently, there have been many so-called kernel independent

fast multipole methods (KIFMMs) which aim at computing the summation (2.18)

for a much broader class of kernels. The constraint on the kernel K is fairly mild,

requiring only that K is hierarchically semi-separable (see, for example, [46]). In

other words, K is increasingly smooth for x further away from y. To be more precise,

the numerical rank of the off-diagonal submatrices of K is very low regardless of their

sizes.

Gimbutas and Rokhlin derived a modification of FMM in 2D applicable to

non-oscillatory kernels [29]. In their scheme, the Taylor and Laurent expansions

are replaced with tensor products of Legendre expansions, which are subsequently

compressed using singular value decomposition (SVD). The advantage of this technique

is that using SVD guarantees an optimal compression in the sense of L2 form, hence

the number of terms in the multipole expansion is minimal for a given approximation

error.

Martinsson and Rokhlin proposed a scheme based on the so-called “skeletonization”

for 1D problems [30]. For two sets of particles, one as the source and the other one

as target, this scheme approximates the interaction matrix by a low-rank matrix to

within some precision, say rank k. They then choose a subset of k “proxy” sources to

represent the source set, and another subset of k target locations with the property

that if the potential is known at these k points, it can be interpolated to all of the

remaining points.

A formulation of FMM for non-oscillatory kernels which are only known numerically

was proposed by Fong and Darve [28]. This algorithm combines interpolation with

SVD. Specifically, the far-field behavior of the kernel K(x, y) is approximated by a

Chebyshev interpolation scheme which results in a low-rank representation of the

kernel. Then the multipole-to-local operator is to evaluate the field due to particles

located at Chebyshev nodes, which is done using an SVD.
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A kernel-independent FMM based on Fourier series expansions has been developed

by Zhang and Huang [31] and applied to kernels with scaling property. The scheme

only relies on the ability of kernel evaluation in a finite region, which extends the

ideas of FMM to situations that the analytical kernel expansion is either unavailable

or too expensive to compute.

Another 3D kernel independent fast multipole method has been developed by

Ying et al. [3]. This algorithm is designed to generalize FMM to second-order constant

coefficient nonoscillatory elliptic partial differential equations. Their scheme only

requires the existence of the Green’s function and relies on kernel evaluation. The

potential generated by sources inside a box is represented by a continuous distribution

of an equivalent density on a surface enclosing the box, which is found by matching

its potential to the potential of the original sources at a surface in the far-field.

This scheme is applicable to second-order constant coefficient non-oscillatory elliptical

partial differential equations.

Generally speaking, all of these KIFMMs have O(N) complexity for a prescribed

precision; they are all based on a hierarchical tree structure; and their algorithmic

structure are all quite similar to that of the original fast multipole method [26] with

two types of expansions: multipole expansion which gives a low rank approximation

for far-field interactions, local expansion which makes O(N) algorithm possible (if

we use far-field expansion alone, we will obtain an O(N logN) algorithm); and

translation operators for converting multipole and local expansions between different

levels and for converting multipole expansions to local expansions. For all of the

kernel-independent FMM to be discussed, they are characterized by the basis used

for kernel expansion and the corresponding translation operators.
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2.4.2 Data Structure of Adaptive FMM

Given a set of N points, we define the computational domain to be a box, the root

box, large enough to contain all points. We construct a hierarchical tree (a quad-tree

in 2D and an oct-tree in 3D) and refer to the tree nodes (squares in 2D and cubes

in 3D) as boxes. If the particle distribution is uniform, a regular grid can be used;

however, we are primarily interested in non-uniform particle distributions. In this

case an adaptively refined grid is needed. The grid is recursively refined until the

number of points in each leaf box is less than a fixed number s.

The root box is referred to as refinement level 0. Starting from level 0, we

recursively obtain level l + 1 through subdivision of the boxes at level l with more

than s points into 4 boxes in 2D or 8 boxes in 3D of equal size. At each level of

refinement, a table of non-empty boxes is maintained, so that once an empty box is

encountered, its existence is forgotten and it is completely ignored by the subsequent

process.

A box is called a parent box if it contains more than s points. Otherwise, it is

referred to as a childless box or leaf box. A box C is said to be the child of box B

if it is obtained by a single subdivision of box B. On the other hand, such a box B

is the parent of the box C. Boxes resulting from the subdivision of a parent box are

referred to as siblings. The colleagues of a box B consist of the boxes at the same

level of B and adjacent to B, including box B itself. Apparently, a given box can

have up to 9 colleagues in 2D or 27 colleagues in 3D.

One key observation in the FMM algorithm is the so-called “low separation

rank” property for the well-separated boxes in the tree structure. We say two sets

{xi} and {yi} are well-separated if there exists points x0 and y0 and a real number

r > 0 such that
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|xi − x0| < r ∀i = 1, ...,m

|yi − y0| < r ∀i = 1, ..., n, and

|x0 − y0| < c · r

(2.19)

where c is bounded below by some constant c0 > 2. Two boxes B1 and B2 of the

same size in the tree structure are said to be well-separated if they are at least one

box of the same size apart, i.e., if any sets of points {xi} ⊂ B1 and {yi} ⊂ B2 are

well-separated. The “information” in two well-separated boxes can be compressed

either analytically using special basis functions, or numerically using singular value

decomposition (SVD) before being sent out.

Well-separated boxes can also appear at different levels. Assume that a box

B can inherit information from its parents while traversing down the tree structure,

which contains the information from all well-separated boxes of B’s parents. Then

we can define the interaction list of B as the union of boxes at the same level of B

that are well-separated from B, but whose parents are not well-separated from B’s

parent. Clearly, the information received from B’s parent and the interaction list is

equivalent to the information from all well-separated boxes of B.

For a given box B in the adaptive tree structure, in Figure 2.1, we associate B

with four lists of other boxes, determined by their positions with respect to B. We

store lists and pointers for parent-child relations for each box in the tree structure.

In the following, we give the detailed definition for each list:

• List U of a box B will be denoted by UB. It is empty if B is a parent box. If

B is leaf, UB consists of B and all leaf boxes adjacent to B.

• List V of a box B will be denoted by VB and is formed by all the children of the

colleagues of B’s parent that are well-separated from B. List V is also referred

to as the interaction list.
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Figure 2.1 FMM Data Structure: Box and Its Associated
Lists

• List W of a box B will be denoted by WB. WB is empty if B is a parent box,

and consists of all descendants of B’s colleagues whose parents are adjacent to

B, but who are not adjacent to B themselves, if B is a leaf box.

• List X of a box B will be denoted by XB and is formed by all boxes C such

that B ∈ WC . Note that all boxes in List X are leaves and larger than B.

2.4.3 Approximations and Translations

Another important concept in the FMM algorithm is the extraction, storage, and

transmission of the data or information based on the tree structure. In this section,

using the single layer Laplacian kernel as an example, we introduce the analytical

expansions and the translation operators which transmit the information from one

box to another.
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In two dimensions we have K(x,y) = − 1
2π

log ρ, with r = x− y and ρ = |r|. In

the FMM context it is convenient to use K(x,y) = Re(log(zx − zy)) where zx and zy

are complex numbers corresponding to x(target) and y(source) points on the plane.

The idea of FMM is to encode the potentials of a set of source densities using the

multipole expansion and local expansion at places far away from these sources.

Suppose the source densities are supported in a disk centered at zc with radius r.

Then for all z outside the disk with radius R(R > r), we can represent the potential

at z from the source densities using a set of coefficients {ak, 0 ≤ k ≥ p}.

(Multipole Expansion (τSM translation)): Suppose the m source densities {qj}

located at {zj}, with |zj − zC | < r, then for any |z − zC | > R, the induced potential

φ(z) can be approximated by:

φ(z) = a0 log(z − zC) +

p∑
k=1

ak
(z − zC)k

+O(
rp

Rp
) (2.20)

where {ak, 0 ≤ k ≤ p} satisfies

a0 =
m∑
j=1

qj and ak =
m∑
j=1

−qj(zj − zC)k

k
. (2.21)

On the other hand, if the source densities are outside the disk with radius R, the

potential at a point z inside the disk with radius r can be represented using a set of

coefficients {ck, 0 ≤ k ≥ p}.

(Local Expansion (τLT translation)): Suppose them source densities {qj} located

at {zj}, with |zj − zC | > R, then for any |z− zC | < r, the induced potential φ(z) can

be approximated by:

φ(z) =

p∑
k=0

ck(z − zC)k +O(
rp

Rp
) (2.22)
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where {ck, 0 ≤ k ≤ p} satisfies

c0 =
m∑
j=1

qj log(zC − zj) and ck =
m∑
j=1

−qj
k(zj − zC)k

. (2.23)

In both expansions, p is usually a small constant determined from the desired accuracy

of the result.

FMM employs the above representations in a recursive way. The computational

domain, a box large enough to contain all source and target points, is hierarchically

partitioned into a tree structure (a quadtree in 2D or an octtree in 3D). Each node

of the tree corresponds to a geometric box (square or cube). The tree is constructed

so that the leaves contain no more than a prespecified number of points. For each

box, the potential induced by its source densities is represented using a multipole

expansion, while the potential induced by the sources from non-adjacent boxes is

encoded in a local expansion. The number of expansion terms p is chosen so that,

both expansions give an error which is less than a prescribed threshold.

Not only these expansions (multipole and local) can be used for efficient evaluation,

but translations between these expansions are also available which make an O(N)

complexity algorithm possible. In particular, the following types of translations are

used:

(τMM translation): The multipole to multipole translation transforms the multipole

expansions of a box’s children to its own multipole expansion. Suppose zC is the center

of a box and zM is the center of its parent. Suppose further {ak} is the multipole

expansion at zC , then the multipole expansion at zM can be written as:

φ(z) = b0 log(z − zM) +

p∑
l=1

bl
(z − zM)l

+O(ε) (2.24)

where {bl, 0 ≤ l ≤ p} satisfies
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b0 = a0 and bl = −a0(zC − zM)l

l
+

l∑
k=1

ak(zC − zM)l−k
(
l − 1

k − 1

)
. (2.25)

(τML translation): The multipole to local translation transforms the multipole

expansion of a box to the local expansion of another non-adjacent box. Suppose zM

and zL are the centers of two non-adjacent boxes on the same level, {bl} is multipole

expansion at zM . Then the local expanion at zL transformed can be written as:

φ(z) =

p∑
l=0

dl(z − zL)l +O(ε) (2.26)

where {dl, 0 ≤ l ≤ p} satisfies

d0 = b0 log(zL − zM) +

p∑
k=1

bk
(zL − zM)k

dl = − b0
l(zM − zL)l

+
1

(zM − zL)l

p∑
k=1

bk
(zL − zM)k

(
l + k − 1

k − 1

)
.

(2.27)

(τLL translation): The local to local translation of the local expansion of a box’s

parent to its own local expansion. Suppose zT is the center of a box and zL the

center of its parent. Suppose further {dl} is the local expansion at zL, then the local

expansion at zT can be written as:

φ(z) =

p∑
l=0

el(z − zT )l +O(ε) (2.28)

where {el, 0 ≤ l ≤ p} satisfies

el =

p∑
k=l

dk(zT − zL)k−l
(
k

l

)
. (2.29)
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Using the tree structure, FMM algorithmic structure consists of two basic steps.

During the first step, the upward pass, the tree is traversed in postorder to compute

the multipole expansion for each box. At the leaves, the multipole expansions are

built following the kernel expansion, also called source to multipole τSM translation.

At each non-leaf node, the multipole expansion is shifted from its children using the

multipole to multipole τMM translation.

In the second step, the downwards pass, the tree is traversed in a preorder to

compute the local expansion. For each box B, the local expansion is the sum of

two parts. First, the local to local τLL translation collects the local expansion of B’s

parent, the result condenses the contributions from the sources in all the boxes which

are not adjacent to B’s parent. Second, the multipole to local τML translation collects

the multipole expansions of the boxes which are the children of the neighbors of B’s

parent but are not adjacent to B. These boxes compose the interaction list of B.

The sum of these two parts encodes all of the contributions from the sources in the

boxes which are not adjacent to B itself. At the end, the far filed interaction for each

box, which is evaluated using the local expansion at this box, the local to target τLT

translation, is combined with the near filed interaction evaluated by iterating over all

of the source points in the neighborhood of the target box to obtain the potential.

Following we present a pseudo-code to explain the algorithmic structure of the

FMM, assume N is the total number of points, s is the maximum number of points

allowed in leaf box, we have:
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The pseudo-code for the algorithm:

STEP 1 TREE CONSTRUCTION

for each box B in preorder traversal of the tree do

subdivide B if B has more than s points in it

end for

for each box B in preorder traversal of the tree do

construct UB,VB,WB and XB for B

end for

STEP 2 UPWARDS PASS

for each leaf box B in postorder traversal of the tree do

evaluate B’s multipole expansion using τSM

end for

for each non-leaf box B in postorder traversal of the tree do

add to B’s multipole expansion the contribution from its children box using τMM

end for

STEP 3 DOWNWARDS PASS

for each non-root box B in preorder traversal of the tree do

add to B’s local expansion the contribution from points in XB using τLT

add to B’s local expansion the contribution from its parent box using τLL

add to B’s local expansion the contribution from points in VB using τML

end for

for each leaf box B in preorder traversal of the tree do

calculate the potential at each point in B from local expansion

add to the potential due to all points in WB from multipole expansion

add to the potential due to all points in UB from direct interaction

end for



CHAPTER 3

FAST MULTIPOLE METHODS FOR THE

ROTNE-PRAGER-YAMAKAWA TENSOR

In this dissertation, we consider the calculation of the following sums:

umi =
N∑
n=1

3∑
j=1

Dij(x
m,xn)vnj , i = 1, 2, 3, m = 1, · · · , N, (3.1)

where vn = (vn1 , v
n
2 , v

n
3 ) are vector source strengths. For notational convenience, we

will write u = Dv with u, v vectors of length 3N and D a 3N × 3N matrix. Clearly,

the direct evaluation of umi for i = 1, 2, 3 and m = 1, · · · , N requires O(N2) work.

Here, we present both the kernel independent FMM and the harmonic FMM for the

sums in (3.1) that reduce the computational cost to O(N).

3.1 Kernel Independent FMM

In our work, we use the KIFMM developed in [3] to speed up the computation of

Dv for an arbitrary vector v. We refer the reader to the original award-winning

paper [3] for a detailed description of the algorithm. Here we give a rough sketch

on the KIFMM in [3]. The input of the KIFMM consists of the vector v and N

particle locations xm (m = 1, · · · , N) which determine the Rotne-Prager-Yamakawa

tensor D. The KIFMM first builds an adaptive octtree of boxes by successively

dividing the box into its children so that the leaf boxes contain no more than a

certain number of particles, with the top box containing all particles. Next, the

KIFMM performs an upward pass starting from leaf boxes in which the far equivalent

potential is constructed for each box summarizing the far field interaction due to

the particles in that box. The KIFMM then performs a downward pass in which

the local equivalent potential is constructed for each box, so that the interaction

23
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due to particles in all well-separated boxes can be computed using that potential

alone. Finally, the KIFMM will compute each entry of Dv by summing over the local

interactions directly and the far interactions using the local equivalent potential. The

speed-up from O(N2) to O(N) is achieved in the following two key steps. First, the

equivalent potentials for any box need only a constant number of terms regardless of

number of particles in that box and the size of the box. Second, three translation

operators (multipole-to-multipole, multipole-to-local, and local-to-local) are utilized

to constrcut those equivalent potentials in O(N) time.

Table 3.1 Relative Error and Timing Results of KIFMM

N relative error TN

500 1.09979e-15 0.024001

1000 1.57043e-15 0.088006

2000 1.99245e-06 0.232015

4000 2.45951e-06 0.516033

8000 5.97456e-06 1.62018

10000 5.06958e-06 2.71617

100000 2.34039e-05 31.5622

1000000 9.21691e-05 317.968

In Table 3.1, we report the average timing results TN for computing the N

particle hydrodynamic interactions via the KIFMM in [3, 47]. The first column

contains the number of particles. The second column contains the relative error with

the direct summation as the reference result; when N is large, the error is computed

over 200 randomly chosen points. The third column contains the CPU time of the

computation in seconds. In these experiments, we require 4-digit accuracy and set the
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maximum number of the points allowed in a leaf box to 150, and maximum number

of levels to 10.

Remark 3.1.1. We observe that TN grows approximately linearly with respect to the

number of particles N . Since D is a tensor, the hydrodynamic interactions between

N particles require 9 KIFMM calls.

3.2 FMM with Harmonic Potentials

Here we present an FMM for computing sums involving the Rotne-Prager-Yamakawa

tensor. The method, similar to the approach in [4] for the Stokeslet, decomposes the

tensor vector product into a sum of harmonic potentials and fields induced by four

different charge and dipole distributions.

We begin with a brief overview of the harmonic FMM for Coulombic interactions.

The FMM is an O(N) scheme for the evaluation of sums of the form:

Pm(q, p,d) =
N∑

n=1,n 6=m

qn

rmn
+

N∑
n=1,n 6=m

(dn · rmn)pn

r3mn
, m = 1, · · · , N (3.2)

Fm
i (q, p,d) =

∂Pm(q, p,d)

∂xmi
, i = 1, 2, 3, m = 1, · · · , N, (3.3)

where rmn = xm − xn and rmn = |rmn|. The input data consists of the source

locations xn, the charge strengths qn, the dipole strengths pn, and the orientation

vectors dn (n = 1, · · · , N). The output data consists of the quantities Pm(q, p,d)

and Fm
i (q, p,d), which we will refer to as potentials and fields, respectively.

In practice, the FMM makes use of an adaptive hierarchical oct-tree as a data

structure, refined until each leaf node contains only O(1) sources. If we consider a

particle with index m that lies in a leaf node B, then we denote the nearest neighbors

of m by nborlist(m). These are the sources (distinct from m) that lie either in B or

in a leaf node adjacent to B. (See [48] and the references therein for a more thorough

discussion.) The harmonic FMM splits the above sums into a local part and a far
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part:

Pm(q, p,d) = Pm
loc(q, p,d) + Pm

far(q, p,d), (3.4)

Pm
loc(q, p,d) =

∑
n∈nborlist(m)

qn

rmn
+

∑
n∈nborlist(m)

(dn · rmn)pn

r3mn
, (3.5)

Pm
far(q, p,d) =

∑
n/∈nborlist(m)

qn

rmn
+

∑
n/∈nborlist(m)

(dn · rmn)pn

r3mn
. (3.6)

Analogous definitions hold for the fields Fm
i .

The number of sources in nborlist(m) is O(1) and Pm
loc, F

m
i,loc are both evaluated

directly. The far field contributions Pm
far and Fm

i,far, on the other hand, are evaluated

via multipole and local expansions. The overall complexity of the harmonic FMM is

O(N). One convenient feature of the FMM is that the local and far field calculations

are uncoupled. This makes it straightforward to modify the code so that it only

computes the far field contributions Pm
far and Fm

i,far, which will be convenient below.

Turning now to the RPY tensor and the corresponding fast multipole method

(RPYFMM), we again split the sums (3.1) into two parts:

umi = umi,loc + umi,far =
∑

n∈nborlist(m)

+
∑

n/∈nborlist(m)

. (3.7)

For the sake of simplicity, we assume that 2a is sufficiently small compared with the

dimensions of a leaf node that all interactions with rmn < 2a fall into the local part

umi,loc, which is evaluated directly. Thus, it remains to consider the calculation of the

far field contributions to D(xm,xn)v under the assumption that |xm−xn| ≥ 2a. This

we accomplish through a decomposition into four separate harmonic potential and

field evaluations.
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We first rewrite the ijth entry Dij(x
m,xn) for |xm − xn| ≥ 2a with (2.15) as

follows:

Dij(x
m,xn) = C1

(
δij

|xm − xn|
+

(xi − yi)(xj − yj)
|xm − xn|3

)
+ C2

(
δij

|xm − xn|3
− 3(xi − yi)(xj − yj)

|xm − xn|5

)
(3.8)

= C1

(
δij

|xm − xn|
− (xj − yj)

∂

∂xi

1

|xm − xn|

)
+ C2

∂

∂xi

xj − yj
|xm − xn|3

,

where C1 = kBT
8πη

, C2 = kBTa
2

12πη
.

Using this expression for Dij(x
m,xn), we obtain

umi,far =
∑

n/∈nborlist(m)

3∑
j=1

Dij(x
m,xn)vnj

=
∑

n/∈nborlist(m)

3∑
j=1

[
C1

(
δij
rmn
− (xmj − xnj )

∂

∂xmi

1

rmn

)
+ C2

∂

∂xmi

xmj − xnj
r3mn

]
vnj

=
∑

n/∈nborlist(m)

C1

(
vni
rmn
−

3∑
j=1

xmj
∂

∂xmi

vnj
rmn

+
∂

∂xmi

xn · vn

rmn

)
+ C2

∂

∂xmi

vn · rmn
r3mn

= C1

∑
n/∈nborlist(m)

vni
rmn
− C1

3∑
j=1

xmj
∂

∂xmi

∑
n/∈nborlist(m)

vnj
rmn

+
∂

∂xmi

 ∑
n/∈nborlist(m)

C1(x
n · vn)

rmn
+

∑
n/∈nborlist(m)

C2(v
n · rmn)

r3mn

 .

(3.9)

Comparing this with (3.3) and (3.6), we have

umi,far = C1P
m
far(vi, 0, 0)− C1

3∑
j=1

xmj F
m
i,far(vj, 0, 0) + Fm

i,far(C1(x · v), C2,v). (3.10)

In short, to compute umi,far, we need to call the harmonic FMM four times, using

the source locations {xn}. For the first three calls (i = 1, 2, 3), we let {v1i , · · · , vNi }

as charge strengths. For the fourth call, we let {C1x
1 · v1, · · · , C1x

N · vN} be the

charge strengths, {C2, · · · , C2} be the dipole strengths, and {v1, · · · ,vN} be the

dipole orientation vectors. In the last call, only the fields are required on output.
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Algorithm 1 Fast Multipole Method for the Rotne-Prager-Yamakawa Tensor

Comment: Given a precision requirement ε, source locations {x1, · · · ,xN}, vector

source strengths {v1, · · · ,vN}, constants C1, C2, and a, compute the Rotne-

Prager-Yamakawa tensor vector product defined in (3.1).

1: for j = 1 : 3 do

2: Call the harmonic FMM with tolerance ε and charge strengths {v1j , · · · , vNj }.

Compute the far field part of the potentials and fields.

3: end for

4: Call the harmonic FMM with tolerance ε, charge strengths {C1x
1 ·v1, · · · , C1x

N ·

vN}, dipole strengths {C2, · · · , C2}, and dipole orientation vectors {v1, · · · ,vN}.

Compute the far field part of the fields only.

5: Compute the far part umi,far according to (3.10).

6: Call the harmonic FMM to reconstruct the nborlist.

7: Compute the local part umi,loc directly using (2.10) and (2.11).

8: Add umi,loc and umi,far to obtain umi (i = 1, 2, 3, m = 1, · · · , N) and if necessary,

compute the relative error by comparing the result with the exact result obtained

via direct computation on a few sampling points.
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In Table 3.2, we report the average timing results TN for computing the N

particle hydrodynamic interactions via the RPYFMM in [49]. The first column

contains the number of particles. The second column contains the relative error with

the direct summation as the reference result; when N is large, the error is computed

over 200 randomly chosen points. The third column contains the CPU time of the

computation in seconds. In these experiments, we require 4-digit accuracy.

Table 3.2 Relative Error and Timing Results of RPYFMM

N relative error TN

500 1.29675e-08 0.124006

1000 2.50972e-06 0.244021

2000 3.59364e-06 0.312022

4000 7.37061e-06 0.556034

8000 1.62885e-05 2.54818

10000 1.98404e-05 3.01224

100000 3.21268e-05 33.5138

1000000 3.46643e-05 331.919

Remark 3.2.1. Here we use the publicly available software package FMM3DLIB at

http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html for the harmonic FMM. This

package is reasonably fast but not highly optimized. It assumes, for example, that

all charge strengths are complex, and uses “point-and-shoot” translation operators

instead of the diagonal translation operators of [48]. Optimization along these lines

would yield a factor of 2-3 acceleration at low precision and an order of magnitude

or more at high precision.
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3.3 Numerical Results

Here we present some timing results for the Rotne-Prager-Yamakawa Tensor by

kernel-independent and harmonic FMMs. All calculations were carried out on a

laptop computer with 2.53 GHz CPU and 1.89 GB memory.

Table 3.3 Timing results for uniform distribution in a cube.

N Prec TKIFMM TRPY FMM TDirect EKIFMM ERPY FMM

10000 3 2.71617 3.01224 8.00117 5.06958e-06 1.98404e-05

100000 3 31.5622 33.5138 680.052 2.34039e-05 3.21268e-05

1000000 3 317.968 331.919 69604.3 9.21691e-05 3.46643e-05

10000 6 10.8847 3.22422 7.99995 8.33041e-08 1.20964e-08

100000 6 100.278 47.8955 720.059 4.06636e-07 2.35994e-08

1000000 6 895.072 605.893 70807.4 1.92014e-06 2.66861e-08

10000 9 28.5351 5.15633 8.00128 2.86116e-09 7.26890e-10

100000 9 265.397 78.2052 719.992 6.08592e-09 1.85852e-09

1000000 9 2087.01 924.901 70007.5 2.66637e-08 2.01941e-09

Tables 3.3 and 3.4 show the results for computing Dv using different methods

for a uniform distribution in a cube, and a nonuniform distribution on a sphere,

respectively. In each of these tables, the first column contains the number of particles.

The second column contains the number of digits requested from the FMM. The third

column contains the time required by the kernel-independent FMM (KIFMM) in [3].

The fourth column contains the time required by the harmonic FMM (RPYFMM) in
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Table 3.4 Timing results for nonuniform distribution on a sphere.

N Prec TKIFMM TRPY FMM TDirect EKIFMM ERPY FMM

10000 3 2.13213 1.75611 8.00016 2.11836e-05 1.98755e-05

100000 3 16.3694 21.9493 720.057 9.41318e-05 2.76244e-05

1000000 3 162.386 194.984 70404.2 4.55086e-04 2.83529e-05

10000 6 12.8128 4.32432 7.99995 2.74212e-07 1.85629e-08

100000 6 48.4713 56.6241 680.082 1.67471e-06 1.31362e-07

1000000 6 329.897 534.750 70401.4 4.89467e-06 3.41533e-07

10000 9 75.7567 7.76053 8.00091 6.31121e-09 1.30443e-08

100000 9 194.802 99.4217 720.058 2.73113e-08 7.51752e-08

1000000 9 752.019 891.092 70404.2 6.84249e-08 3.07682e-07
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[49]. The fifth column contains the time required by the direct computation (which

is obtained by extrapolating the time needed for twenty direct calculations). And the

last two contain the relative l2 error returned by the KIFMM and the RPYFMM,

where the relative l2 error is calculated by comparison with the direct calculations at

twenty randomly selected source points.

Remark 3.3.1. We observe that both the KIFMM and the RPYFMM scale approximately

linearly, O(N), as expected. The timings are somewhat erratic due to the fact that

the adaptive FMM builds a different data structure for each precision for each source

distribution.

Remark 3.3.2. Unlike the approach based on the KIFMM in [3], which requires nine

scalar FMM calls, the RPYFMM requires only four scalar harmonic FMM calls, so

that any improvements to the harmonic FMM itself will automatically speed up the

RPYFMM. At same time, both of the FMMs can compute Dv, but the RPYFMM

also could easy to get the calculation of the following sums:

∂umi
∂xnk

=
N∑
n=1

3∑
j=1

∂Dij(x
m,xn)

∂xnk
vnj , i = 1, 2, 3, m = 1, · · · , N. (3.11)

Where the KIFMM requires twenty-seven scalar FMM calls, the RPYFMM still

requires only four scalar harmonic FMM calls. It is very useful and more efficient in

other kinds of simulation.



CHAPTER 4

FAST ALGORITHMS FOR GENERATING RANDOM

DISPLACEMENT VECTORS

4.1 Algorithm I: Lanczos Method with Chebyshev-Davidson Method

plus Chebyshev Spectral Approximation

The Chebyshev polynomial approximation for the square root matrix has been applied

to the Brownian dynamics simulation by some researchers. Fixman [5] seems to be the

earliest one to propose this method. It has been used later by other researchers (see,

e.g., [25, 6]). Our contributions to this problem are that we have rigorously shown that

the number of terms needed in the Chebyshev approximation depends logarithmically

on the desired precision, and linearly on the square root of the condition number of

the tensor, and that we have used the fast multipole method to reduce the complexity

of the algorithm from O(N2) to essentially O(N).

4.1.1 Estimating the Extreme Eigenvalues of D

We use the Lanczos method [50] combined with the FMM to estimate the largest

and smallest eigenvalues of D. Starting from an arbitrary vector v, the Lanczos

method successively computes Dv,D2v, · · · , Dkv, constructs an orthogonal basis Qk

for the Krylov subspace Kk = span{v,Dv, · · · , Dkv}, and forms a much smaller k×k

tridiagonal matrix Tk = QT
kDQk using three term recurrence. It then applies any

standard algorithm to compute the eigenvalues and corresponding eigenvectors of Tk

and take λmax(D) ≈ λmax(Tk). During this process, the most expensive step, i.e., the

calculation of Djv (j = 1, · · · , k) is done via the FMM. The computational cost of

other steps is negligible since they involve much smaller matrices. Thus the overall

complexity of the algorithm is O(kN), where N is the size of D and k is the number

of Lanczos steps.

33
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We summarize the above algorithm in Algorithm 2.

Algorithm 2 Estimating the eigenvalue upper bound using the Lanczos method and

FMM
1: Generate a random vector v and normalize it v1 = v/‖v‖.

2: Set v0 = 0, β1 = 0, tol = 10−3 and p = 12.

3: for k = 1, 2, ..., p do

4: Use FMM to compute Dvk and set wj = Dvk − βkvk−1.

5: Compute αk = wk · vk.

6: Set wk = wk − αkvk and βk+1 = ‖wk‖.

7: Set vk+1 = wk/βk+1.

8: if k ≥ 4 then

9: Construct a tridiagonal matrix Tk with the diagonals equal to (α1, · · · , αk)

and super- and sub-diagonals equal to (β2, · · · , βk).

10: Use any standard method to compute the eigenvalues µ1 ≤ · · ·µk and

associated eigenvectors z1, · · · , zk of Tk.

11: Compute Ubk = λmax(Tk).

12: if |Ubk − Ubk−1|/Ubk−1 < tol then

13: Set λmax(D) = Ubk, and return.

14: end if

15: end if

16: end for

17: Set λmax(D) = λmax(Tp) and λmin(D) = λmin(Tp).

Algorithm 2 is fairly effective in estimating the largest eigenvalue of D. Indeed,

the size of the tridiagonal matrix Tk is usually very small. We found that k ≤ 5 is

suffcient to achieve 3-digit accuracy for our numerical experiments. However, though

it can also be used to estimate the smallest eigenvalue of D with λmin(D) = λmin(Tk),
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it is not effcient. In order to estimate the smallest eigenvalue of D effciently, we use

a simplifed Chebyshev-Davidson method developed in [51].

Algorithm 3 Estimating the eigenvalue lower bound using the Chebyshev-Davidson

method and FMM
1: Use Algorithm 2 to obtain estimates about the smallest and largest eigenvalues

of D and denote them by a and b, respectively.

2: Generate a random vector v and normalize it v = v/‖v‖.

3: Set c = (a+ b)/2 and e = (b− a)/2.

4: Use FMM and the Chebyshev recurrence relation to compute Av,A2v, · · · , Akv

with A = Tl
(
D−cI
e

)
.

5: Form a N × k matrix B = [v, Av,A2v, · · · , Akv].

6: Do QR decomposition for B so that B = Q̃kR.

7: Form a k × k matrix T̃k = Q̃T
kDQ̃k.

8: Find the eigenvalues of T̃k using any standard eigensolver.

9: Set λmin(D) ≈ λmin(T̃k).

The basic idea of our algorithm is as follows. We first use Algorithm 2 to obtain

a rough estimate of λmin(D) (which is always greater than the exact value of λmin(D))

and an accurate estimate of λmax(D). We will denote them by a and b correspondingly.

Now, instead of considering the Krylov subspace Kk = span{v,Dv, · · · , Dkv}, we

will consider the transformed Krylov subspace Kk = span{v,Av, · · · , Akv}, where

A = Tl
(
D−cI
e

)
. Here Tl is the Chebyshev polynomial of degree l, c = (a + b)/2

and e = (b − a)/2. It is well known that Chebyshev polynomials are bounded by

1 on [−1, 1], but grow very fast outside [−1, 1]. Thus, Tl((x − c)/e) is bounded by

1 on [a, b], but grows quickly outside [a, b]. Therefore, the purpose of the above

transformation is to map the smallest eigenvalue of D to the largest eigenvalue of A.

The simplified Chebyshev-Davidson algorithm then constructs an orthogonal basis
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Q̃k for K̃k, computes the eigenvalues of T̃k = Q̃T
kDQ̃k, and set λmin(D) ≈ λmin(T̃k).

The algorithm is summerized as Algorithm 3.

The overall complexity of the Algorithm 3 is O(dN), where N is the size of D

and d = l(k + 1). In our numerical experiments, we found that l = 2 and k = 4 are

generally suffcient to achieve 3-digit accuracy for λmin(D), where d = 10. However

the cost of computational time for λmin(D) is much more than λmax(D).

4.1.2 Chebyshev Spectral Approximation for Computing Matrix Square

Root

We now consider the Chebyshev polynomial approximation for the square root of D.

First, we have the following lemma concerning the Chebyshev polynomial approximation

for the simple square root function
√
x on [a, b] with a > 0.

Lemma 4.1.1. Let yj = b+a
2

+ b−a
2

cos( (2j+1)π
2n+2

) , j = 0, 1, · · · , n be the transformed

Chebyshev points on [a, b]. Suppose that pn(x) is the polynomial interpolating
√
x on

yj, j = 0, 1, · · · , n. Then for x ∈ [a, b],

|
√
x− pn(x)| = O

((√
κ− 1√
κ+ 1

)n)
as n→∞, (4.1)

where κ = b/a.

Proof. We first use a linear transformation to transform [a, b] back to [−1, 1]. That

is,
√
x =

√
b+ a

2
+
b− a

2
z (4.2)

and x ∈ [a, b]⇐⇒ z ∈ [−1, 1]. According to Theorem 2.2.1, we have

|
√
b+ a

2
+
b− a

2
z − pn(z)| = O(e−n(φ(z0)+log 2)) as n→∞, (4.3)

where φ(z) = log |z−
√
z2−1|
2

and z0 is the closest singular point of the complex function√
b+a
2

+ b−a
2
z to [−1, 1].
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Now the closest singular point of
√

b+a
2

+ b−a
2
z to [−1, 1] is obviously the branch

point of this square root function. That is, z0 = − b+a
b−a . Thus, we have

e−n(φ(z0)+log 2) = e
−n
(
log
|z0−
√

z20−1|
2

+log 2

)

=

b+ a

b− a
+

√(
b+ a

b− a

)2

− 1

−n

=

κ+ 1

κ− 1
+

√(
κ+ 1

κ− 1

)2

− 1

−n

=

(
κ+ 1 +

√
4κ

κ− 1

)−n

=

(√
κ+ 1√
κ− 1

)−n
=

(√
κ− 1√
κ+ 1

)n
.

(4.4)

Substituting (4.4) into (4.3), we obtain the desired result (4.1).

We are now ready to state our main analytical result.

Theorem 4.1.2. Suppose that pn(x) is the polynomial interpolating
√
x on the scaled

and shifted Chebyshev points yj = λmax(D)+λmin(D)
2

+ λmax(D)−λmin(D)
2

cos( (2j+1)π
2n+2

), j =

0, 1, · · · , n. Then

‖
√
D − pn(D)‖2 = O

((√
κ− 1√
κ+ 1

)n)
as n→∞, (4.5)

where ‖ · ‖2 is the matrix 2-norm and κ = λmax(D)/λmin(D) is the 2-norm condition

number of D. Thus, the degree of the polynomial satisfies the following relation:

n = O

(√
κ log

1

ε

)
as κ→∞, (4.6)

where ε is the prescribed precision.
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Proof. Let the eigenvalue decomposition of D be D = OΛOT with O an orthogonal

matrix and Λ the eigenvalue matrix. Then
√
D = O

√
ΛOT and pn(D) = Opn(Λ)OT .

Thus, we have

‖
√
D − pn(D)‖2 = ‖

√
Λ− pn(Λ)‖2 = O

((√
κ− 1√
κ+ 1

)n)
as n→∞, (4.7)

where the first equality follows from the fact that the 2-norm is invariant under the

orthogonal transformation and the second equality follows from (4.1). This shows

that in order to achieve a prescribed precision ε for the polynomial approximation,

we need

n = O(log ε/ log

(√
κ− 1√
κ+ 1

)
)

= O(log ε/ log

(
1− 2√

κ

)
)

= O(
√
κ log

1

ε
), as κ→∞.

(4.8)

Remark 4.1.3. The error estimate (4.5) for the polynomial approximation of the

square root matrix is very similar to that of the Conjugate Gradient (CG) method

(see, for example, page 299 in [52]) for solving a linear system. Thus, the above

theorem shows that computing
√
Ab via the Chebyshev polynomial approximation

takes about the same number of operations as computing A−1b via the CG method.

We now present some details about computing
√
Dv using the Chebyshev

spectral approximation of
√
D. Let pn(x) be the Chebyshev polynomial approximation

of the scalar function
√
x over the range [λmin, λmax]. Then pn(x) can be expressed as

pn(x) =
n∑
k=0

ckT̃k(x), (4.9)



39

where the expansion coefficients ck are given by

ck =
2

n

n∑
l=1

√
xlT̃k(xl), (4.10)

xl =
λmax(D) + λmin(D)

2
+
λmax(D)− λmin(D)

2
cos(

(2l + 1)π

2n+ 2
), (4.11)

and the scaled and shifted Chebyshev polynomials T̃k satisfy the following recurrence

relation

T̃0 = 1,

T̃1(x) = tax+ tb,

T̃l+1(x) = 2(tax+ tb)T̃l(x)− T̃l−1(x)

(4.12)

with

ta =
2

λmax − λmin
,

tb = −λmax + λmin
λmax − λmin

.

(4.13)

Obviously, we have

pn(D) =
n∑
k=0

ckT̃k(D), (4.14)

and thus

pn(D)v =
n∑
k=0

ckT̃k(D)v =
n∑
k=0

ckvk, (4.15)

where vk (k = 0, 1, · · · , n) can be computed via the following recurrence relation:

v0 = v,

v1 = taDv0 + tbv0,

vk+1 = 2(taDvk + tbvk)− vk−1.

(4.16)
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Here the FMM is applied to calculate Dvk at each step. Thus the complexity of

computing pn(D)v is O(nN), with n the degree of the approximating Chebyshev

polynomial and N the size of the matrix D.

We now summarized our algorithm as follows.

Algorithm 4 Chebyshev spectral approximation I for computing
√
Dv

STEP 1. Precomputation stage

a. Use Algorithm 2 and Algorithm 3 to estimate λmax(D) and λmin(D).

b. Compute the Chebyshev coefficients ck (k = 0, 1, · · · , n) and determine

the degree of the Chebyshev expansion n so that it has the prescribed precision ε

for
√
x on [λmin(D), λmax(D)].

STEP 2. Computation of the matrix square root

a. Use recurrence relation (4.16) and FMM to compute vk, k = 1, · · · , n.

b. Compute pn(D)v =
∑n

k=0 ckvk and set
√
Dv ≈ pn(D)v.

Obviously, the precomputation stage requires O((m+ d)N) operations with m

the number of Lanczos steps and d depends on the parameter set in Chebyshev-

Davidson method. For Brownian dynamics simulation, the second step requires

O(nN) operations with n the degree of the approximating Chebyshev polynomial for
√
D. Thus, the total computational cost is O((m+ d+ n)N) for Brownian dynamics

simulation. In general, since m and d are usually very small numbers in practice (say,

m less than 5 and d = 10), and n is proportional to
√
κ as shown in Theorem 4.1.2,

the computational cost of our algorithm is O(
√
κN).

4.2 Algorithm II: Safeguarded Lanczos Method plus Chebyshev

Spectral Approximation

4.2.1 Estimating the Extreme Eigenvalues of D

Note that there is no need to obtain a very accurate estimate of the extreme eigenvalues

of D since what we really need is an interval [a, b] which contains all the eigenvalues
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of D but not far from [λmin, λmax]. Thus, two or three digits of accuracy suffices for

our purpose. We can also observe that the cost of computational time for λmin(D)

from the Chebyshev-Davidson method is much more than λmax(D).

To simplify the overall algorithm and reduce the computational time, we use

the safeguarded Lanczos method in [7] combined with the FMM to estimate the

extreme eigenvalues of D. As with the plain Lanczos method [50] above, we form

a k × k tridiagonal matrix Tk = QT
kDQk and apply any standard algorithm to

compute the eigenvalues and corresponding eigenvectors of Tk. Finally, the estimates

of the extreme eigenvalues of D are given by λmax(D) ≈ λmax(Tk) + |eTk zk|βk+1,

λmin(D) ≈ λmin(Tk) − |eTk z1|βk+1, respectively. Here ek is the kth column of the

k × k identity matrix, zk is the eigenvector associated with the largest eigenvalue of

Tk, z1 is the eigenvector associated with the smallest eigenvalue of Tk, and βk+1 is the

last subdiagonal element of Tk+1. During this process, the most expensive step, i.e.,

the calculation of Djv (j = 1, · · · , k) is done via the FMM. The computational cost

of other steps is negligible since they involve much smaller matrices. Thus the overall

complexity of the algorithm is O(kN), where N is the size of D and k is the number

of Lanczos steps.

We summarize the above algorithm in Algorithm 5.

Remark 4.2.1. We observe that the number of Lanczos steps is usually less than 8

in most of our testing cases. We would also like to remark here that [7] actually

provides several safeguard terms with different convergence properties. We have used

Equation 2.6 in [7] since we find that it has the best performance for our problem.

4.2.2 Chebyshev Spectral Approximation for Computing Matrix Square

Root

Here we also use the Chebyshev spectral approximation to compute
√
Dv. However,

we observed that when v is a normally distributed random vector with mean zero,
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Algorithm 5 Estimating the eigenvalue bounds using the safeguarded Lanczos

method and FMM
1: Generate a random vector v and normalize it v1 = v/‖v‖.

2: Set v0 = 0, β1 = 0, tol = 10−3 and p = 12.

3: for k = 1, 2, ..., p do

4: Use FMM to compute Dvk and set wj = Dvk − βkvk−1.

5: Compute αk = wk · vk.

6: Set wk = wk − αkvk and βk+1 = ‖wk‖.

7: Set vk+1 = wk/βk+1.

8: if k ≥ 4 then

9: Construct a tridiagonal matrix Tk with the diagonals equal to (α1, · · · , αk)

and super- and sub-diagonals equal to (β2, · · · , βk).

10: Use any standard method to compute the eigenvalues µ1 ≤ · · ·µk and

associated eigenvectors z1, · · · , zk of Tk.

11: Compute Ubk = λmax(Tk) + |eTk zk|βk+1, Lbk = λmin(Tk)− |eTk z1|βk+1.

12: if |Ubk − Ubk−1|/Ubk−1 < tol then

13: Set λmax(D) = Ubk, λmin(D) = Lbk and return.

14: end if

15: end if

16: end for

17: Set λmax(D) = λmax(Tp) + |eTp zp|βp+1, λmin(D) = λmin(Tp)− |eTp z1|βp+1.
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as is the case of Brownian dynamics simulations, we could combine the step of

estimating extreme eigenvalues of D with the step of computing pn(D)v to reduce

the computational cost. To be more precise, we could use exactly the same vector

v to estimate the extreme eigenvalues of D. Obviously, the Lanczos iteration will

generate a sequence of orthonormal vectors q1, · · · , qm which form a basis for the

Krylov subspace Km = span{v,Dv, · · · , Dmv}. But T̃k(D)v (k = 1, · · · ,m) are also

in the same Krylov space Km. Thus, T̃k(D)v (k = 1, · · · ,m) can be obtained by

using q1, · · · , qm and solving a small linear system of size m.

After using Lanczos iteration, we obtain a sequence of orthonormal vectors

q1, q2, · · · , qm, qm+1 and form a m×m tridiagonal matrix

Tm = QT
mDQm =



α1 β1

β1
. . . . . .

. . . . . . βm−1

βm−1 αm


. (4.17)

Then from the Equation 36.6 in [34], we have

DQm = Qm+1Sm, (4.18)

where

Qm = [q1 q2 · · · qm]n×m

Qm+1 = [q1 q2 · · · qm qm+1]n×(m+1)

Sm =


α1 β1

β1
... ...
... ... βm−1

βm−1 αm

βm

 =

 Tm

0 · · · 0 βm


(m+1)×m

(4.19)

Let

Qm = CmPm (4.20)
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where Pm is anm×m upper triangular matrix and Cm = [T̃0(D)v T̃1(D)v · · · T̃m−1(D)v].

We are trying to determine Pm by induction. First,

Q1 = q1 =
v

||v||
= C1P1 = vp11 ⇒ P1 = p11 =

1

||v||
(4.21)

By induction, suppose we already find Pm, now we try to find Pm+1. Combining

(4.18) and (4.20), we have

DCmPm = Cm+1Pm+1Sm (4.22)

Since by (4.16) the T̃i(D)v follows

DT̃0(D)v = 2aT̃1(D)v + bT̃0(D)v

DT̃l(D)v = aT̃l+1(D)v + aT̃l−1(D)v + bT̃l(D)v

(4.23)

with a = 1/2ta and b = −tb/ta. So

DCmPm = D[T̃0(D)v T̃1(D)v · · · T̃m−1(D)v]Pm

= [T̃0(D)v T̃1(D)v · · · T̃m−1(D)v T̃m(D)v]RmPm

(4.24)

where

Rm =


b a
2a b a

a
... ...
... ... ...

... ... a
a b
0 a


(m+1)×m

(4.25)

Substituting (4.24) to (4.22), we have

Cm+1RmPm = Cm+1Pm+1Sm (4.26)

Since the columns of Cm+1 are linearly independent, then

RmPm = Pm+1Sm (4.27)
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We already found Pm at this stage, let

Pm =

 ~p1
~p2
...
~pm


m×m

and RmPm =


~r1
~r2
...
~rm
~rm+1


(m+1)×m

(4.28)

where ~pi is the ith row of Pm, ~ri is the ith row of RmPm. Then (4.27) becomes

~r1
...

~rm

~rm+1


=



~p1 p1,m+1

...
...

~pm pm,m+1

0 pm+1,m+1


 Tm

0 · · · 0 βm



⇒



~r1 = ~p1Tm + p1,m+1[0 · · · 0 βm]

...

~rm = ~pmTm + pm,m+1[0 · · · 0 βm]

~rm+1 = pm+1,m+1[0 · · · 0 βm]

(4.29)

In (4.27), only pi,m+1 are unknowns, we can obtain

p1,m+1 = [(~r1 − ~p1Tm)m]/βm

...

pm,m+1 = [(~rm − ~pmTm)m]/βm

pm+1,m+1 = [(~rm+1)m]/βm

(4.30)

This means we can determine Pm+1 from Pm. Since m is a small number of the

Lanczos steps, by Qm = CmPm, we can find all T̃1(D)v, T̃2(D)v, · · · , T̃m(D)v. The

expensive step of computing the first m vectors Dvk (k = 1, · · · ,m) is avoided.

Remark 4.2.2. The algorithm above do not work for the Chebyshev-Davidson method,

since it computes Av instead of Dv, where A = Tl
(
D−cI
e

)
.

We summarize the above algorithm in Algorithm 6.
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Algorithm 6 Chebyshev spectral approximation II for computing
√
Dv

STEP 1. Precomputation stage

a. Use Algorithm 5 with m steps to estimate λmax(D) and λmin(D).

b. Compute the Chebyshev coefficients ck (k = 0, 1, · · · , n) and determine

the degree of the Chebyshev expansion n so that it has the prescribed precision ε

for
√
x on [λmin(D), λmax(D)].

STEP 2. Computation of the matrix square root

a. Use result from Step 1.a to compute vk, k = 1, · · · ,m.

b. If n > m, use the recurrence relation (4.16) and FMM to compute vk,

k = m+ 1, · · · , n.

c. Compute pn(D)v =
∑n

k=0 ckvk and set
√
Dv ≈ pn(D)v.

The precomputation stage requires O(mN) operations with m the number of

Lanczos steps. For Brownian dynamics simulation, the second step requires O((n −

m)N) operations (using the algorithm above) with n the degree of the approximating

Chebyshev polynomial for
√
D if n > m and O(1) operations if n ≤ m. Thus the

total computational cost is O(max(m,n)N) for Brownian dynamics simulation. In

general, since m is usually a very small number in practice (say, less than 12) and

n is proportional to
√
κ as shown in Theorem 4.1.2, the computational cost of our

algorithm is O(
√
κN).

Remark 4.2.3. Obviously, Algorithm II has two improvements over Algorithm I: (1)

Using the Chebyshev-Davidson method to estimate the smallest eigenvalue costs much

more time than using the plain Lanczos method to estimate the largest eigenvalue

(in our practice, more than twice). The Safeguarded Lanczos Method can estimate

the largest and smallest eigenvalues of D together, it simplified the overall algorithm

and reduced the computational time. (2) In Algorithm II, we could combine the step

of estimating extreme eigenvalues of D with the step of computing pn(D)v. After
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solving a small linear system of size m, the expensive step of computing the first m

vectors Dvk (k = 1, · · · ,m) is avoided.

4.3 Algorithm III: Spectral Lanczos Decomposition Method

The degree of the Chebyshev approximation for the matrix square root depends on

√
κ, which could be very large if the condition number of the matrix is very large.

Algorithms I and II may be very inefficient in this case. So here we use the Spectral

Lanczos Decomposition Method (SLDM) [8] to avoid that problem. The SLDM is

based on the Lanczos method only. There is no need to estimate the largest and

smallest eigenvalues, and
√
Dv can be computed regardless of the condition number

κ of D.

Likewise, starting from an arbitrary vector v, the Lanczos method successively

computesDv,D2v, · · · , Dkv, constructs an orthogonal basisQk for the Krylov subspace

Kk = span{v,Dv, · · · , Dkv}, and forms a much smaller k × k tridiagonal matrix

Tk = QT
kDQk using three term recurrence. It then applies any standard algorithm to

compute
√
Tk, the square root matrix of Tk. Since D is a real symmetric n×n matrix

with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and
√
x is a function analytic on [λ1, λn], from

[8] we will have the approximation

√
Dv = ||v||Qk

√
Tke

(k)
1 (4.31)

with e
(k)
1 the first unit k-vector. This technique appeared in the literature from the

mid-eighties [53, 54, 55, 56, 57, 58, 59], and it can now be viewed as standard. During

this process, the most expensive step, i.e., the calculation of Djv (j = 1, · · · , k) is

done via the FMM. The computational cost of other steps is negligible since they

involve much smaller matrices. Thus, the overall complexity of the algorithm is

O(kN), where N is the size of D and k is the number of Lanczos steps.

We summarize the above algorithm in Algorithm 7.
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Algorithm 7 Estimating the matrix square root using the SLDM and FMM

1: Generate a random vector v and normalize it v1 = v/‖v‖.

2: Set v0 = 0, β1 = 0, tol = 10−3 and p = 12.

3: for k = 1, 2, ..., p do

4: Use FMM to compute Dvk and set wj = Dvk − βkvk−1.

5: Compute αk = wk · vk.

6: Set wk = wk − αkvk and βk+1 = ‖wk‖.

7: Set vk+1 = wk/βk+1.

8: if k ≥ 4 then

9: Construct a tridiagonal matrix Tk with the diagonals equal to (α1, · · · , αk)

and super- and sub-diagonals equal to (β2, · · · , βk) and construct matrix

Qk = [v1 v2 · · · vk].

10: Use any standard method to compute
√
Tk.

11: Compute Uk = ||v||Qk

√
Tke

(k)
1 .

12: if |Uk − Uk−1|/Uk−1 < tol then

13: Set
√
Dv = Uk, and return.

14: end if

15: end if

16: end for

17: Set
√
Dv = Up.
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Remark 4.3.1. Suppose U is the approximate value of
√
Dv by the SLDM, V is

the approximate value of
√
Dv by least squares procedure in the Krylov subspace

Kk(D, v) = span{v,Dv, · · · , Dkv}. For the Rotne-Prager-Yamakawa tensor, our

extensive numerical tests show that ||U −
√
Dv||2 ≤ ||V −

√
Dv||2. So this method

has enough accuracy.

Remark 4.3.2. The Spectral Lanczos Decomposition Method is an iterative method

and thus its convergence rate depends only on the spectrum ofD, while the Chebyshev

approximation tries to construct an approximation which is uniformly good on the

whole interval [λmin(D), λmax(D)]. Therefore, the SLDM may converge much faster

than the Chebyshev approximation when the condition number of D is large but its

eigenvalues are clustered. In general, since k is usually a very small number in our

numerical implements (say, less than 12), the computational costs of computing
√
Tk

and Uk are also small. Thus, the total computational cost is O(kN) for Brownian

dynamics simulation. Compared with Algorithms I and II, the SLDM does not need to

estimate the extreme eigenvalues, it has simplified the overall algorithm and reduced

the computational time.



CHAPTER 5

NUMERICAL RESULTS

A C++ and Fortran mixed code has been written implementing the algorithms

described in the preceding chapter. In this chapter, we present some numerical

experiments to check the accuracy and explore the applicable scope of the algorithms.

All of the programs are run on a laptop with 2.53 GHz CPU and 1.89 GB memory.

5.1 Condition Number and Terms Needed in Chebyshev Approximation

Though Theorem 4.1.2 shows that the number of terms n needed in the approximating

Chebyshev polynomial depends linearly on log(1
ε
)
√
κ, in practice it is better to simply

compute the necessary number of terms needed by comparing the approximation with

√
x on [λmin, λmax]. This will give a much more accurate estimate of the necessary

number of terms needed for a prescribed precision. And the computational cost of

this step is negligible compared with that of the other steps. In Table 5.1, we report

the number of terms needed in the Chebyshev polynomial approximation. The first

column indicates the desired precision ε. The first row indicates the condition number

κ of the matrix D.

Next, we observe that the overall complexity of our algorithm is O(
√
κN). Thus,

it is important to investigate the condition number κ of the tensor D for various

numbers N of particles and particle configurations. We assume that the particles are

contained in a box of side length L. The numerical results are summarized in Table

5.2, where the first column indicates the total number of Brownian particles, and the

first row indicates the ratio L/a with L the side length of the box and a the radius

of each particle.

Our numerical experiments show that the condition number of the tensor D is

small if very few Brownian particles are close to each other. Indeed, we observe that

50
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Table 5.1 Number of Terms Needed in Chebyshev Approximation to
Approximate

√
x on [a, b] with a > 0 and b

a
= κ. The first column indicates

the desired precision ε. The first row indicates the condition number κ.

ε\κ 2 10 100 1000 10000

10−3 3 4 7 8 8

10−4 4 7 12 17 18

10−6 5 12 28 54 79

10−9 9 22 57 137 297

Table 5.2 The Condition Number κ of the Tensor D. The first column
indicates the total number of particles N . The first row indicates the ratio
L/a with L the side length of the simulation box and a the radius of each
particle.

N\La 102 103 104 105

102 2.6627 1.25848 1.13958 1.12345

103 19.7834 2.28714 1.24435 1.13326

104 128.585 12.2358 2.21383 1.23047

105 1228.94 111.124 11.9808 2.20866

106 10649.1 1084.43 109.581 11.9612
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the condition number κ is roughly constant along the diagonals in Table 5.2. This

indicates that κ depends only on the “density” Na/L. When the density is low, the

condition number is small. And when the density is high, the condition number is

high. In practice, the density of the Brownian particles will be fairly low, hence the

condition number of the tensor D will be small, say, less than 200, and independent

of the total number of particles N in the simulation.

5.2 Algorithm I: Lanczos Method with Chebyshev-Davidson Method

plus Chebyshev Spectral Approximation

For Algorithm I, we have tested the performance of our algorithm with Na/L fixed

for various Ns. The average timing results for various particle configurations are

summarized in Table 5.3.

Table 5.3 Timing and Relative Error Results for Generating Random
Displacement Vectors by Algorithm I, Na/L = 1 is Fixed

N TLanc m TDavi κ n TCheb Ttotal error

103 0.356022 4 0.924058 2.23841 4 0.416026 1.69611 4.07816e-05

104 9.97262 4 24.9416 2.21096 4 10.0246 44.9388 4.11333e-05

105 125.960 4 314.501 2.20644 4 126.022 566.483 4.07739e-05

106 1266.13 4 3423.03 2.20386 4 1269.42 5958.58 3.08514e-05

In Table 5.3, the first column contains the total number of particles. The second

column contains the time needed (in seconds) for the Lanczos method. The third

column contains the number of Lanczos steps. The fourth column contains the time

needed for Chebyshev-Davidson method. The fifth column contains the condition

number of the tensor. The sixth column contains the number of terms needed in
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the Chebyshev approximation. The seventh column contains the computational time

of computing the Chebyshev approximations. The eighth column contains the total

computational time for computing
√
Dv. And the last column contains the relative

error of the computational result, where the relative error is defined as the average of∣∣∣V n
eval−Vtrue
Vtrue

∣∣∣ and ‖vn−vn−1‖
‖vn‖ with vn = pn(D)v the nth approximation of

√
Dv, vn−1 =

pn−1(D)v, V n
eval = vTn vn, and Vtrue = vTDv. The first term in the relative error serves

as a check with the true value
√
Dv, and the second term serves as a self consistency

check.

We have also tested Algorithm I for various particle configurations with L and

a fixed. The results with L = 1000 and a = 0.1 are reported in Table 5.4.

Table 5.4 Timing and Relative Error Results for Generating Random
Displacement Vectors by Algorithm I, with L = 1000 and a = 0.1

N TLanc m TDavi κ n TCheb Ttotal error

103 0.384024 4 0.888056 1.23428 3 0.316021 1.58810 1.17941e-06

104 9.95262 4 24.8456 2.21357 4 9.97262 44.7708 1.05025e-04

105 125.481 4 313.504 11.9944 6 188.640 627.625 7.70808e-04

106 1260.57 4 3149.75 109.258 16 5046.75 9457.07 7.69059e-04

5.3 Algorithm II: Safeguarded Lanczos Method plus Chebyshev

Spectral Approximation

For Algorithm II, we have tested the performance of our algorithm with Na/L fixed

for various Ns. The average timing results for various particle configurations are

summarized in Table 5.5.
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Table 5.5 Timing and Relative Error Results for Generating Random
Displacement Vectors by Algorithm II, Na/L = 1 is Fixed

N TLanc m κ n TCheb Ttotal error

103 0.596037 7 2.29495 4 0.032002 0.628039 3.36403e-04

104 17.5611 7 2.22923 4 0.036003 17.5971 3.11699e-04

105 221.146 7 2.19521 4 0.120007 221.266 2.49343e-04

106 2244.88 7 2.18724 4 1.34408 2246.22 2.40625e-04

In Table 5.5, the first column contains the total number of particles. The second

column contains the time needed for the Lanczos method. The third column contains

the number of Lanczos steps. The fourth column contains the condition number of

the tensor. The fifth column contains the number of terms needed in the Chebyshev

approximation. The sixth column contains the computational time of computing the

Chebyshev approximations. The seventh column contains the total computational

time for computing
√
Dv. And the last column contains the relative error of the

computational result, where the relative error is defined as before.

Table 5.6 Timing and Relative Error Results for Generating Random
Displacement Vectors by Algorithm II with L = 1000 and a = 0.1

N TLanc m κ n TCheb Ttotal error

103 0.660041 7 1.22813 3 0.032002 0.692043 6.51492e-04

104 17.8331 7 2.20676 4 0.040003 17.8731 3.88933e-04

105 220.958 7 12.2125 7 0.108007 221.066 5.02846e-04

106 2547.04 8 117.534 16 2565.53 5112.57 6.63551e-04
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We have also tested Algorithm II for various particle configurations with L and

a fixed. The results with L = 1000 and a = 0.1 are reported in Table 5.6.

5.4 Algorithm III: Spectral Lanczos Decomposition Method

For Algorithm III, we have tested the performance of our algorithm with Na/L fixed

for various Ns. The average timing results for various particle configurations are

summarized in Table 5.7.

Table 5.7 Timing and Relative Error Results for Generating Random
Displacement Vectors by Algorithm III, Na/L = 1 is Fixed

N k Ttotal error

103 4 0.372023 1.38721e-07

104 4 10.0486 1.91785e-05

105 4 128.596 6.80112e-04

106 7 2250.12 2.59537e-04

Table 5.8 Timing and Relative Error Results for Generating Random
Displacement Vectors by Algorithm III with L = 1000 and a = 0.1

N k Ttotal error

103 4 0.308019 1.22036e-07

104 4 10.1166 2.49304e-05

105 4 126.324 8.07139e-04

106 7 2240.19 4.24709e-04

In Table 5.7, the first column contains the total number of particles. The second

column contains the number of Lanczos steps. The third column contains the total
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computational time for computing
√
Dv. The last column contains the relative error

of the computational result, where the relative error is the same as defined before.

We have also tested Algorithm III for various particle configurations with L and

a fixed. The results with L = 1000 and a = 0.1 are reported in Table 5.8.

5.5 Comparison of the Algorithm I, II and III

Finally, the timing and relative error results by our three algorithms with Na/L = 1

fixed for various Ns are shown in Table 5.9. The first column contains the total

number of particles. Ti and errori, i = 1, 2, 3, denote the time required and the

relative error by Algorithms I, II and III.

Table 5.9 Timing and Relative Error Results for Generating Random
Displacement Vectors by Three Algorithm, Na/L = 1 is Fixed

N T1 error1 T2 error2 T3 error3

103 1.69611 4.07816e-05 0.628039 3.36403e-04 0.372023 1.38721e-07

104 44.9388 4.11333e-05 17.5971 3.11699e-04 10.0486 1.91785e-05

105 566.483 4.07739e-05 221.266 2.49343e-04 128.596 6.80112e-04

106 5958.58 3.08514e-05 2246.22 2.40625e-04 2250.12 2.59537e-04

The timing and relative error results by our three algorithms have also shown

various particle configurations with L and a fixed. The results with L = 1000 and

a = 0.1 are reported in Table 5.10.
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Table 5.10 Timing and Relative Error Results for Generating Random
Displacement Vectors by Three Algorithm with L = 1000 and a = 0.1

N T1 error1 T2 error2 T3 error3

103 1.58810 1.17941e-06 0.692043 6.51492e-04 0.308019 1.22036e-07

104 44.7708 1.05025e-04 17.8731 3.88933e-04 10.1166 2.49304e-05

105 627.625 7.70808e-04 221.066 5.02846e-04 126.324 8.07139e-04

106 9457.07 7.69059e-04 5112.57 6.63551e-04 2240.19 4.24709e-04



CHAPTER 6

CONCLUSION

We have presented three fast algorithms for generating random vectors whose spatial

correlation is determined by the hydrodynamic interactions, the Rotne-Prager-Yamakawa

tensor in particular.

First, we presented two fast multipole methods for computing Du. The first

FMM was the kernel indepedent FMM, which required 9 scalar FMM calls. The

second FMM, similar to the FMM for Stokeslet, decomposed the Rotne-Prager-

Yamakawa tensor into harmonic potentials and its derivatives, and thus required

only four harmonic FMM calls, which have been trivially modified so that the net

cost scaled like three harmonic interactions. Both FMMs reduced the computational

cost of Du from O(N2) to O(N) for an arbitrary N -particle configuration.

Second, for computing
√
Dv in Algorithm I, we used the Lanczos method with

the Chebyshev-Davidson method to estimate the extreme eigenvalues of D. Then

the Chebyshev spectral approximation was used for computing matrix square root.

In Algorithm II, we used the safeguarded Lanczos method to estimate the extreme

eigenvalues, it simplified the overall algorithm and reduced the computational time.

In the Chebyshev spectral approximation, we combined the step of estimating extreme

eigenvalues of D with the step of computing pn(D)v, the expensive step of computing

the first m vectors Dvk (k = 1, · · · ,m) was avoided. We observed that Algorithm II

achieved a factor of 2-3 speed-up as compared with Algorithm I. The complexity of

Algorithm I and Algorithm II are O(
√
κN) with κ the condition number of the tensor

and N the total number of Brownian particles.

Third, we observed that the degree of the Chebyshev approximation for the

matrix square root depends on the square root of the condition number of the

58
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matrix, which could be very large for certain matrices. For these cases, we developed

Algorithm III using the spectral Lanczos decomposition method. There was no need

to estimate the extreme eigenvalues, and
√
Dv could be computed regardless of

the condition number κ of D. The complexity of Algorithm III is O(mN), where

the m is the number of Lanczos steps. Our numerical experiments showed that

the SLDM is generally more effective than the Chebyshev approximation method,

which is currently the most widely used approach in Brownian dynamics simulation

community.

The work in this dissertation will be continued in several ways in the future.

• Our algorithms can be easily generalized to compute the matrix-vector product
√
Av for many other matrices when Av can be computed via fast algorithms such

as the fast multipole method. Thus, the algorithms are useful in many other

applications, including the statistical analysis with certain spatial correlations

and model reduction in dynamic control theory.

• For the RPYFMM, a further speed-up could be achieved if we grouped all

four harmonic FMM calls into a single routine (although this would require

more memory). This would avoid the repeated calculation of various special

functions (such as spherical harmonics).

• In Algorithm III, the complexity is O(mN), but the m may still depend on the

matrix. So we try to find the relationship or more information about it.

• Except this, a fast direct algorithm which compresses the square root matrix

(an idea similar to [60, 61]) would be developed for the matrix which has the

large condition number. This approach is currently under investigation and

results will be reported in the future.

• Currently we are working on the numerical simulation of Brownian dynamics

with the Rotne-Prager-Yamakawa tensor. Our algorithm can be utilized to
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accelerate the computation of the total displacement ∆xm in the Ermark-

McCammon algorithm. This work will be reported in a later publication.
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