
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 2012

Vector coprocessor sharing techniques for
multicores: performance and energy gains
Spiridon Florin Beldianu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Beldianu, Spiridon Florin, "Vector coprocessor sharing techniques for multicores: performance and energy gains" (2012).
Dissertations. 326.
https://digitalcommons.njit.edu/dissertations/326

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Fdissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/326?utm_source=digitalcommons.njit.edu%2Fdissertations%2F326&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

VECTOR COPROCESSOR SHARING TECHNIQUES FOR MULTICORES:

PERFORMANCE AND ENERGY GAINS

by

Spiridon Florin Beldianu

Vector Processors (VPs) created the breakthroughs needed for the emergence of

computational science many years ago. All commercial computing architectures on the

market today contain some form of vector or SIMD processing.

Many high-performance and embedded applications, often dealing with streams

of data, cannot efficiently utilize dedicated vector processors for various reasons: limited

percentage of sustained vector code due to substantial flow control; inherent small

parallelism or the frequent involvement of operating system tasks; varying vector length

across applications or within a single application; data dependencies within short

sequences of instructions, a problem further exacerbated without loop unrolling or other

compiler optimization techniques. Additionally, existing rigid SIMD architectures cannot

tolerate efficiently dynamic application environments with many cores that may require

the runtime adjustment of assigned vector resources in order to operate at desired

energy/performance levels.

To simultaneously alleviate these drawbacks of rigid lane-based VP architectures,

while also releasing on-chip real estate for other important design choices, the first part

of this research proposes three architectural contexts for the implementation of a shared

vector coprocessor in multicore processors. Sharing an expensive resource among

multiple cores increases the efficiency of the functional units and the overall system

throughput. The second part of the dissertation regards the evaluation and

ii

characterization of the three proposed shared vector architectures from the performance

and power perspectives on an FPGA (Field-Programmable Gate Array) prototype. The

third part of this work introduces performance and power estimation models based on

observations deduced from the experimental results. The results show the opportunity to

adaptively adjust the number of vector lanes assigned to individual cores or processing

threads in order to minimize various energy-performance metrics on modern vector-

capable multicore processors that run applications with dynamic workloads. Therefore,

the fourth part of this research focuses on the development of a fine-to-coarse grain

power management technique and a relevant adaptive hardware/software infrastructure

which dynamically adjusts the assigned VP resources (number of vector lanes) in order to

minimize the energy consumption for applications with dynamic workloads. In order to

remove the inherent limitations imposed by FPGA technologies, the fifth part of this

work consists of implementing an ASIC (Application Specific Integrated Circuit) version

of the shared VP towards precise performance-energy studies involving high-

performance vector processing in multicore environments.

VECTOR COPROCESSOR SHARING TECHNIQUES FOR MULTICORES:

PERFORMANCE AND ENERGY GAINS

by

Spiridon Florin Beldianu

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Engineering

Department of Electrical and Computer Engineering

May 2012

Copyright © 2012 by Spiridon Florin Beldianu

ALL RIGHTS RESERVED

.

APPROVAL PAGE

VECTOR COPROCESSOR SHARING TECHNIQUES FOR MULTICORES:

PERFORMANCE AND ENERGY GAINS

Spiridon Florin Beldianu

Dr. Sotirios G. Ziavras, Dissertation Advisor Date

Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member Date

Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Durgamadhab Misra, Committee Member Date

Professor of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, Committee Member Date

Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Alexandros V. Gerbessiotis, Committee Member Date

Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Spiridon Florin Beldianu

Degree:	 Doctor of Philosophy

Date:	 May 2012

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2012

• Master of Science in Electrical Engineering,
"Gheorghe Asachi" Technical University, Iasi, Romania, 2002

• Bachelor of Science in Electrical Engineering,
"Gheorghe Asachi" Technical University, Iasi, Romania, 2001

Major: 	 Computer Engineering

Presentations and Publications:

Beldianu, S. F., and Ziavras, S.G., "Performance-Energy Optimizations for Shared
Vector Accelerators in Multicores" submitted to IEEE Transactions on
Computers, 2012.

Beldianu, S. F., and Ziavras, S.G., "ASIC Implementation of a Shared Vector Processor,"
to be submitted.

Beldianu, S. F., and Ziavras, S.G., "Multicore- based Vector Coprocessor Sharing for
Performance and Energy Gains," accepted for publication, ACM Transactions on
Embedded Computing Systems, 2012.

Beldianu, S. F., Dahlberg, C., Steele, T., and Ziavras, S.G., "Versatile Design of Shared
Vector Coprocessors for Multicores" re-submitted to Elsevier M icroprocessors
and Microsystems: Embedded Hardware Design after a minor revision.

iv

v

Beldianu, S. F., and Ziavras, S.G., “On-chip Vector Coprocessor Sharing for Multicores,”

Parallel, Distributed and Network-Based Processing (PDP), 19th Euromicro

International Conference on, pp. 431-438, 9-11 Feb. 2011.

Beldianu, S.F., Rojas-Cessa, R., Oki, E., and Ziavras, S.G., “Scheduling for input-queued

packet switches by a re-configurable parallel match evaluator,” Communications

Letters, IEEE , vol. 14, no. 4, pp. 357-359, April 2010.

Beldianu, S.F., Rojas-Cessa, R., Oki, E., and Ziavras, S.G., ”Re-Configurable Parallel

Match Evaluators Applied to Scheduling Schemes for Input-Queued Packet

Switches,” Computer Communications and Networks, (ICCCN 2009)

Proceedings of 18th International Conference on , pp. 1-6, 3-6 Aug. 2009.

vi

To my Family, with Love and Gratitude.

Familiei mele, cu multă dragoste și recunoștință.

vii

ACKNOWLEDGMENT

In the first place, I would like to express my deepest appreciation to my adviser,

Dr. Sotirios Ziavras for being my mentor throughout my PhD research process. As my

adviser, he guided and motivated me to find and pursue my research topic. Through long

and daily talks in his office during the first semesters I was able to identify an original

and innovative research direction. His extraordinary skills to inspire new and original

ideas, his in depth knowledge in a vast number of areas and ability to provide up to date

valuable references guided me throughout my entire research. Also, I would like to thank

him for his time, energy and patience in reviewing my entire text work.

I would like to thank Dr. Roberto Rojas-Cessa for serving in my dissertation

committee and also for giving me the opportunity to work on another research topic

(scheduling in packet switches). Also, I would like to extend my special thanks to

Dr. Durga Misra, Dr. Edwin Hou and Dr. Alexandros V. Gerbessiotis for serving as

members in my dissertation committee. Dr. Misra’s VLSI courses and Dr. Hou’s

Computer Algorithms course have been of great value to me.

Moreover, I am truly indebted and thankful to the ECE Department at NJIT. My

work as TA and PhD student would not have been possible without the Teaching

Assistant Award granted by the ECE Department.

Further thanks go to the staff of the office for international students, the staff of

graduate studies, and the staff of the ECE Department for their advice, help and support

with administrative matters during my PhD studies and work as Teaching Assistant.

viii

Additionally, I would like to thank my friends, Vlad, Roxana, Ciprian and Viorica

for all the great and unforgettable moments we shared together during these years.

Finally, I would like to express my deepest gratitude to my Family - for their

support and understanding. I am deeply grateful to my wonderful parents, Georgeta and

Spiridon, for their unconditional support and for always being there for me, and to my

sister and my brother, Mariana and Liviu for being so close to me (geographically and,

the most important, emotionally). My final and special acknowledgment goes to my love

and best friend, my wife Oana for her patience and support throughout these years.

ix

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ...…............................………………..…………………………. 1

 1.1 Multithreading and Multiprocessing ………..…..……………………………... 1

 1.2 Related Work on Vector Processors…………………………………….…... 6

 1.2.1 Modern Vector Processor Architectures …………………………..….... 6

 1.2.2 Vector Processors for High Performance Computing (HPC) …………... 9

 1.2.3 Emerging SIMD and Vector Architectures …………...……………….... 11

 1.3 Motivation and Objectives ...…….......…………………………………….…... 14

2 VECTOR COPROCESSOR SHARING …...………………………………………. 21

 2.1 VP Sharing Techniques …...…………………………..……………………….. 21

 2.1.1 Coarse-grain Temporal Sharing (CTS) .……………………………….... 23

 2.1.2 Vector Lane Sharing (VLS) …………..……………….…...………….... 24

 2.1.3 Fine-grain Temporal Sharing (FTS)……………….……………….... 25

 2.2 VP Sharing Architecture ………………………………………………………. 26

 2.2.1 VP Scheduler ...……………………...……………………..………….... 36

 2.2.2 Additional Architectural Features ...……………………….……….….... 43

 2.3 Resource Consumption and Resource Scalability…………………….……. 47

3 APPLICATIONS …..………………………….…………………………………… 52

 3.1 Software Implementation …………….……………...…………….………...… 52

 3.2 Benchmarks ...………….……………………………………………………..... 54

x

 TABLE OF CONTENTS

(Continued)

Chapter Page

4 ANALYSIS OF PERFORMANCE AND POWER RESULTS ...…..……………... 59

 4.1 Evaluation Procedure ...……………………………………………………...… 59

 4.2 Performance and Power Results ...………………………………………….….. 60

 4.3 Performance Scalability ...….………………...…………………………...…… 72

 4.4 Guaranteed Quality of Service………………………………………..…… 74

 4.5 Conclusions ..………..……………………………………………...….............. 76

5 PERFORMANCE AND POWER CHARACTERIZATION …..……..……….…... 77

 5.1 Performance Model …………………………………………..…....................... 77

 5.2 Dynamic Power Model ..…………...………….……………..…....................... 81

 5.3 Static Power Estimation……….………...……….………..…....................... 87

 5.4 Energy Performance Trade-off Preliminaries ………………..…....................... 88

6 PERFORMANCE-ENERGY OPTIMIZATIONS FOR SHARED VECTOR

ACCELERATOR IN MULTICORES ………...……….………..….........................

94

 6.1 Related Work ………………………………………………………………….. 95

 6.2 Total Energy Minimization ……………………………………………………. 98

 6.2.1 Dynamic Power Gating with Static Information (DPGS) ………………. 100

 6.2.2 Adaptive Power Gating with Profiled Information (APGP) ……………. 102

 6.3 Simulation Model and Experimental Setup …………………………………… 108

 6.3.1 Simulation Model ………………………………………………………. 108

 6.3.2 Experimental Setup ……………………………………………………... 109

 6.4 Experimental Results and Discussion …………………………………………. 111

xi

TABLE OF CONTENTS

(Continued)

Chapter Page

 6.5 Energy-Performance Trade-off Mechanism …………………………………… 115

 6.6 Conclusions ……………………………………………………………………. 118

7 ASIC IMPLEMENTATION OF THE VECTOR PROCESSOR ………………….. 120

 7.1 FPGA to ASIC Design Transition …………………………………………….. 120

 7.2 ASIC Design Flow …………………………………………………………….. 122

 7.3 Design Exploration …………………………………………………………….. 126

 7.4 ASIC Implementation Results ………………………………………………… 129

 7.5 Per VRF Bank Dynamic Power Gating ……………………………………….. 137

 7.6 Energy Minimization with Quality of Service ………………………………… 138

 7.7 Conclusions ………………………………………………………………….… 139

8 CONCLUSIONS AND FUTURE WORK……………………………………... 141

 8.1 Conclusions .…….……………………………………….…...…....................... 141

 8.2 Future Work ..……….……………...………………………...…....................... 144

REFERENCES ………………………………………………………………………... 149

xii

LIST OF TABLES

Table Page

2.1 Load/Store (LDST) Instructions Summary …………..………….………………. 33

2.2 ALU Instructions Summary ………....………………..…………………………. 33

2.3 Examples of Vector Length and Number of Registers ………………………….. 35

2.4 VP Control Instructions Summary ………………………………………………. 39

2.5 Examples of Transition for Scheduler States ……………………………………. 41

2.6 Resource Consumption in the Virtex-6 XC6VLX130T FPGA Device for a

Configuration of Eight Lanes and Eight Memory

Banks …………………………………………….……………………………….

48

4.1 Performance Comparison for 32-tap FIR ……………………………………...... 62

4.2 Performance Comparison for 32-point Complex FFT.…………………………... 62

4.3 Performance Comparison for Matrix Multiplication...…………………………... 63

4.4 Performance Comparison for LU Decomposition ……………………………..... 63

4.5 Performance Comparison for Sparse Matrix Vector Multiplication (Eight Lanes

and Eight Memory Banks Configuration); Sparse Matrix is bcsstk13;

Utilization and Time is Averaged Over one Dense Row (2003

Elements)…………………………………………………………………………

64

4.6 Average Execution Time (µs) for the 32-tap FIR Routine with Various

Statistical Average Stall Ratios (VL=128; Unrolled Three Times) ……………...

64

4.7 Power Comparison for 32-tap FIR ………………………………......................... 67

4.8 Power Comparison for 32-point Complex FFT ………………………………... 68

4.9 Power Comparison for MM ..…………………………………............................. 68

4.10 Power Comparison for LU Decomposition …………………………………....... 68

4.11 Power Comparison for Sparse Matrix Vector Multiplication (Eight Lanes and

Eight Memory Banks Configuration); Sparse Matrix is bcsstk13; Utilization and

Time is Averaged over One Dense Row (2003 Elements) ………………………

69

xiii

LIST OF TABLES

(Continued)

Table Page

4.12 Advantages and Disadvantages of the VP Sharing Schemes ……..…………….. 71

5.1 Dynamic Power Model Equations ………………………………………………. 84

5.2 Mean Absolute Error for Dynamic Power Estimation …………………………... 85

5.3 Static Power Breakdown for a 8×8 VP Design on XC6VLX130t Device

(Internal Supply Voltage Relative to Ground is 1V; Junction

Temperature is 85° C) ……………………………………………………………

87

6.1 Time and Energy Overheads for PGC State Transition …………………………. 109

6.2 Absolute and Relative Thresholds for APGP Implementation ………………….. 110

7.1 VP Components Replaced for the FPGA to ASIC Transition ………………….. 121

7.2 VRF and Vector Memory Area and Power Consumption Figures for a

Frequency of 1.0 GHz (CACTI 6.0 for a Feature Size

of 40nm) ………………………………………………………………………….

122

7.3 Description of Various TSMC High Performance 40nm Process

Corners (PC) ……………………………………………………………………..

126

7.4 Maximum Working Frequency for the Main VP Components .………………… 129

7.5 Area and Power Results for Each VP Component, and Total VP Area for

Various Configurations. The Standby Power is the Power Consumption when

the VP is Idle (it Involves Leakage Power). The Maximum Power for Each

Component Includes the Standby Power. The Percentage Figures are Relative to

the First Module in the Hierarchy; i.e., ALU and LDST. The Power

Consumption is Measured at 1.0 GHz Clock Frequency. The Total VP Area

Includes the Vector Memory and One Equivalent Gate Comprises Four

Transistors [TSMC 40nm, 2011] ………………………………………...............

130

7.6 Performance and Power Comparison for Various Application Kernels Running

on the ASIC Implementation of the VP with Eight Lanes and Eight Memory

Banks. The Applications are Presented in Chapter 3 (nu - no loop unrolling; u1-

loop unrolled once). The Power Consumption is Measured After the System

Reaches a Steady State ………………………………………………………......

133

7.7 Comparison of Power Coefficients for the FPGA (from Table 5.1) and ASIC

Implementation ………………………………………………………..................

135

xiv

LIST OF TABLES

(Continued)

Table Page

7.8 Mean Absolute Error for Dynamic Power Estimation of the ASIC

Implementation. The w Weights are Detailed in Table 5.1 ……………………..

135

7.9 Number of VRF Banks Required by Each Scenario ……………………………. 137

7.10 Power Efficiency Comparison with Other Streaming Processors ………………. 140

xv

LIST OF FIGURES

Figure Page

1.1 Lane based modern Vector Processor ………….……..……………….………… 8

1.2 Source code and the produced vector instructions (VL is 256 and the scalar

instructions are omitted for simplicity) …………………………………….…….
8

2.1 VP sharing contexts: (a) Coarse-grain temporal (CTS) sharing; (b) Vector lane

sharing (VLS); and (c) Fine-grain temporal sharing (FTS). Each lane contains a

fixed number of pipeline stages; colored boxes show the busy pipeline stages in

each lane and white boxes are unused pipeline stages (pipeline bubbles) ……..

27

2.2 Architecture of the FPGA-based VP sharing prototype (PLB: Xilinx Processor

Local Bus, used mostly for data transfers via DMA control; FSL: Xilinx Fast

Simplex Link) ……………………………………………………………………

28

2.3 M vector lanes shared between two MicroBlaze processors (FSL serves as the

instruction path between a MicroBlaze and its associated Vector Controller,

through the Scheduler; BRAM: Xilinx Block RAM; each MUX in the figure is

part of the respective lane) ……………………………………………………….

29

2.4 Vector lane architecture …...……………………………………………………. 32

2.5 State Examples for the Scheduler (each cell in the figure contains the state of the

corresponding lane: which VC it is assigned to, the total number of lanes

assigned to that VC, and the lane index) …………………………………………

38

2.6 Scheduler to MicroBlaze reply word in response to a VP_REQ ……………….. 38

2.7 Scheduler algorithm …………………………………………………………….. 40

2.8 Main MicroBlaze routine for CTS, FTS and VLS sharing ……………………… 42

2.9 CTS vector sharing MicroBlaze routine ………………………………………… 43

2.10 The configuration state of each lane after instructions 0 and 1 are executed (top

row) and after instructions 2 and 3 are executed (bottom row). Each lane

configuration state contains (in each cell from top to bottom): VC ID(s)

indicating from which VC the lane receives instructions; number of total lanes

forming the VP; the lane index; per VC (VC0 or VC1) number of elements from

each vector register in the lane; per VC mask bit required to mask the last

operation of any instruction in each lane for vector lengths which are not

multiple of number of lanes …………………………………………….………..

45

xvi

LIST OF FIGURES

(Continued)

Figure Page

2.11 Vector Lane architecture to support QoS and two VP instructions per cycle. The

modifications from the baseline architecture are colored in gray ……….….……

48

2.12 Resource scaling for a vector processor with a number M of lanes equal with 2,

4, 8, 16 and 32 on XC6VLX130T FPGA device. Number of memory bank

equals the number of lanes and the crossbar has the size M×M. All the numbers

are normalized to the 2 lanes configuration numbers ……………………………

49

2.13 Maximum Frequency after synthesis for a Vector Processor with 2, 4, 8, 16 and

32 number of lanes on XC6VLX130T FPGA device. Number of memory bank

equals the number of lanes and the fully connected crossbar has size M×M …..

50

3.1 FSL used with the Vector Processor …………………………………………….. 53

3.2 (a) DMA transfer utilities and (b) implementation of a FIR kernel …………….. 55

4.1 Evaluation Procedure ……………………………………………………………. 59

4.2 Relative power reduction of different Xilinx Virtex FPGA families (taken from

Xilinx wp298 white paper [Xilinx wpp, 2009]) …………………………………

69

4.3 FIR routine for 2, 4, 8, 16 and 32 lanes configuration. Each application consists

in sharing context, Vector Length, unroll type (nu=no unroll; u3=unrolled three

times), and with or without VMADD instruction extension ……………………

72

4.4 FFT routine for 4, 8, 16 and 32 lanes configuration. Each application consists in

sharing context, Vector Length, and unroll type (nu=no unroll; u1=unrolled

once) ……………………………………………………………………………...

72

4.5 MM routine for 2, 4, 8, 16 and 32 lanes configuration. Each application consists

in sharing context, Vector Length, and unroll type (u1=unrolled once) ………..

73

4.6 LU decomposition routine for 2, 4, 8, 16 and 32 lanes configuration. Each

application consists in sharing context, Vector Length, unroll type (nu=no

unroll), and with or without VDIV instruction extension ………………………

73

4.7 Relative performance of high priority and low priority threads on a VP with a

number M of lanes between 2 and 32 (M memory banks): (a) two FIR VL=64,

u3; (b) FIR VL=64 u3 & SpMV_k1 VL=64 u1; (c) two SpMV_k1 VL=64 u1

(u1 – loop unrolled once; u3-loop unrolled three times) ………………………..

75

xvii

LIST OF FIGURES

(Continued)

Figure Page

5.1 Execution of a) two data dependent instructions; b) three instructions without

data dependencies.

78

5.2 Estimated and actual ALU utilization for FIR 32 with VL=64 and loop unrolled

3 times (13ALUSU  1.5CTS

ALUIP  3.0FTS

ALUIP ) ………………………………………..

80

5.3 Estimated and actual LDST utilization for SpMV (kernel 1) VL=64 and loop

unrolled one time (8LDSTSU  1.3CTS

LDSTIP  1.9FTS

LDSTIP ) ……………………………..

81

5.4 Dynamic power breakdown (in mW) for a Vector Processor with eight lanes and

eight memory banks running different application kernels ……………………..

82

5.5 a) ALU power consumption vs. ALU utilization (()exe exe i ii
K K w); b) VRF

power consumption vs. ALU and LDST utilization …………………………….

83

5.6 Memory Crossbar (MC) and Vector Memory (VM) power consumption vs.

LDST utilization …………………………………………………………………

83

5.7 Performance-Energy scalability opportunities in a lane-based VP system.

Speed-up is displayed in black lines and static energy in red lines. Static power

is shown in a doted blue line and its offset is caused by VP hardware

components that do not scale (VC, MC, VM, buses, etc.) ……………………….

88

5.8 Normalized energy consumption for a workload of 10K FP operations for

various kernels (normalization is with respect to the 2x16 configuration; nu - no

loop unrolling, u1- loop unrolled once) …………………………………………

91

6.1 Hardware support for DPGS scheme. In DPGS, the Power Gate (PG) Register is

configured by software. ST: Sleep Transistor (Header or Footer) ………………

101

6.2 Interrupt routines to handle DPGS ……………………………………………… 101

6.3 Hardware support for APGP scheme. In APGP, the PG Register is configured

by the PG Controller. The VP Profiler aggregates the utilizations from both

VCs. ST: Sleep Transistor (Header or Footer) …………………………………..

104

xviii

LIST OF FIGURES

(Continued)

Figure Page

6.4 PG Controller (PGC) state machine and PGC registers for state transitions under

APGP. INT, PW and CFG are transitional VP (i.e., non-operating) states. 4L,

8L and 16L are stable VP operating states that represent the 4-, 8- and 16-lane

VP configurations. ML is a PGC state with M active lanes, {0,4,8,16}M  ; INT is

a PGC state where the PGC asserts an interrupt and waits for an Interrupt

Acknowledge (INT_ACK); PW is a PGC state where some of the VP lanes are

powered-up/down; CFG is a PGC state where the Scheduler is reconfigured to a

new VP state. Threshold registers are fixed during runs and utilization registers

are updated for every profile window. The registers store 8-bit integers. The Vld

bit is used to show that the utilization register U
M

, with M= 4, 8 or 16, for the

M-lane VP configuration does not contain an updated value ……………………

105

6.5 Example of state transitions upon a VP event …………………………………... 107

6.6 VP threads issued by each scalar core with embedded idle times. Each thread

contains 1000 segment runs. Each segment contains 10,000 kernel runs. A solid

line shows the time spent by the core to issue the entire code for the

corresponding kernel workload …………………………………………………

110

6.7 Normalized execution time (a, c, e) and normalized energy consumption (b, d, f)

where the majority of kernels in a thread have low ALU utilization, for various

idle periods. The ratio of low to high utilization kernels in a thread is 4:1. E_st

and E_dyn are the energy consumptions due to static and dynamic activities,

respectively. “2x” means two scalar CPUs of the type that follows in

parentheses, such as “(1cpu_4L)” which means one CPU having a dedicated VP

with four lanes. Whenever CTS or FTS shows, it implies two CPUs with VP

sharing …………………………………………………………………………....

113

6.8 Normalized execution time (a, c, e) and normalized energy consumption (b, d, f)

for threads with mixed utilization kernels, for various idle periods. The ratio of

low to high utilization kernels in a thread is 1:1 …………………………………

114

6.9 Normalized execution time (a, c, e) and normalized energy consumption (b, d, f)

for threads dominated by high utilization kernels, for various idle periods. The

ratio of low to high utilization kernels in a thread is 1:4 ………………………..

115

6.10 Normalized energy vs. normalized execution time for threads dominated by low

utilization kernels. The idle period is in the range [5000, 10000] VP clock

cycles …………………………………………………………………………….

116

xix

LIST OF FIGURES

(Continued)

Figure Page

6.11 Normalized energy vs. normalized execution time for threads dominated by

mixed utilization kernels ……………………………………..…………………..

116

6.12 Normalized energy vs. normalized execution time for threads dominated by

high utilization kernels …………………………………………………………...

117

6.13 Routine to minimize the energy consumption for a given kernel or pair of

kernels requiring minimum performance. This routine runs continuously after a

VP event …………………………………………………………………………

118

7.1 Synopsys front-end design and power analysis flow ……………………………. 123

7.2 Power consumption of the VP Lane execution unit for the ADD/SUB, MUL and

MISC operations under various activity rates. FP ADD/SUB - Single Precision

Floating Point Add/Subtract; FP MUL - Single Precision Floating Point

Multiply; FP MISC - Single Precision Floating Point Absolute, Negate, Move

and IntraLane Shift operations; NO CG - No Clock Gating support during

synthesis; CG - with Clock Gating support during synthesis; STANDBY PWR -

Power consumption when no operation is performed. The lane execution unit is

implemented in the 40 nm TSMC process with VDD=1.21V and low voltage

threshold. The power consumption is measured at 1 GHz clock frequency and

after the system reaches a steady state of operations …………………………….

125

7.3 Pareto trade-off curves for the ALU module within a lane involving: (a)

performance and area; (b) performance and power. Details for the PC_01 to

PC_04 process corners are shown in Table 7.3 ………………………………….

128

7.4 VP lane area breakdown. A lane has four VRF banks, each one containing 128

32-bit elements …………………………………………………………………..

131

7.5 Power breakdown (in mW) for a Vector Processor with eight lanes and eight

memory banks running different application kernels. Even if contained in each

VP component, the leakage and clock distribution network power consumption

are displayed separately. The power consumption is measured at 1.0 GHz clock

frequency ……………………………………………………………...................

132

7.6 Area (a) and Power consumption (b) for an N×N VP crossbar switch, where N

is the number of masters. The crossbar contains the arbiters and the logic that

supports shuffle operations. The design is synthesized to meet the constraint of

1 GHz for the clock frequency. The power consumption is extracted under

maximum LDST utilization ……………………………………………………...

136

xx

LIST OF FIGURES

(Continued)

Figure Page

7.7 PG Controller state machine update for QoS support. MU (0) and MU (1) are the

monitored utilizations corresponding to VC0 and VC1 respectively and reqU (0)

and reqU (1) are the required utilizations for each thread ………………………..

139

xxi

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

CMP Chip Multi-Processor

CPU Central Processing Unit

CTS Coarse-grain Temporal Sharing

DLP Data Level Parallelism

DMA Direct Memory Access

DSP Digital Signal Processor

EPI Energy Per Instruction

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

FTS Fine-grain Temporal Sharing

GPU Graphical Processing Unit

HPC High Performance Computer

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

MB MicroBlaze

MC Memory Crossbar

MM Matrix Multiplication

PLB Processor Local Bus

QoS Quality of Service

SaaS Software as a Service

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SMT Simultaneous Multithreading

SPM Scratch Pad Memory

SpMV Sparse Matrix Vector multiplication

TLB Translation Lookaside Buffer

xxii

VC Vector Controller

VLIW Very Long Instruction Word

VLS Vector Lane Sharing

VLSI Very Large Scale Integration

VM Vector Memory

VP Vector Processor

VRF Vector Register File

1

CHAPTER 1

INTRODUCTION

1.1 Multithreading and Multiprocessing

The two important techniques for throughput-oriented computing are multithreading and

multiprocessing.

Multithreading is used to increase the instruction level parallelism (ILP) handled

by superscalar processors since it stalled more than a decade ago. Due to the difficulty of

further speeding up an ILP-constrained single thread or program most computer systems

actually multi-task multiple threads or programs. This technique improves the overall

system throughput by increasing the average number of executed Instructions Per Cycle

(IPC). The basic hardware multithreading scheme, namely coarse-grain, consists of

switching one stalled thread with another one that is ready to execute [Kurihara et al.,

1991; Agarwal, 1992]. The thread switch takes less than a few clock cycles (usually one)

and the active thread does not share the functional pipeline with any other thread. The

extra hardware cost is the replicated program registers and some control registers (that

form the context). Quick context switching can potentially hide long latency stalls and

increase the overall throughput and utilization of a processor’s resources. Interleaved

multithreading (fine-grain multithreading) takes advantage of the relative independence

between threads and allows switching processor’s context in any cycle [Horowitz et al.,

1994]. In a given cycle a processor issues instructions from one of the threads, and in the

next clock cycle it switches to a different thread context and issues instructions from the

new thread. The primary advantage of interleaved multithreading is that it can better

tolerate short latency stalls and increase the overall throughput. In addition to coarse-

http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Instruction_level_parallelism

2

grain needs, hardware support consists of labeling each instruction with a thread ID,

increasing the number of registers, and also incorporating larger caches and Translation

Lookaside Buffers (TLB) in order to minimize the conflicts between different threads.

The most efficient type of multithreading, which is currently deployed in most of

the desktop and server microprocessors, is Simultaneous Multithreading (SMT) [Tullsen

et al., 1995; Eggers et al., 1997]. SMT alleviates limited per thread instruction level

parallelism by allowing superscalar processors to issue instructions from multiple threads

in every CPU cycle. The extra hardware support is rather minimal as compared with

interleaved multithreading, and shared resources such as L1/L2 caches and TLBs have to

be adjusted appropriately to accommodate larger numbers of active threads. Most of the

current processing units are either high-end chip multiprocessors with SMT cores (e.g.,

Intel i3/5/7, with 2 or 4 threads per core; AMD Opteron series with 2 to 4 threads per

core; IBM Power7 with 4 threads per core) or embedded single-core SMTs (e.g., Intel

Atom Z series with two threads per core). A more aggressive approach, i.e., Thread-Level

Speculation [Oplinger et al., 1999; Wang et al., 2002], allows the compiler to

optimistically generate parallel threads even if the threads are not eventually proved to be

independent. Minimal hardware support is needed to track at runtime data dependences

between speculative threads, to buffer the speculative state and to recover from a failed

speculation [Colohan et al., 2007].

Multiprocessing refers to the use of multiple central processing units (CPUs)

coupled together in a computer system. There are many variations on the definition of

multiprocessors. If not explicitly stated otherwise, the one that this work refers to is

multiple CPUs on a single die, i.e., Chip Multi-Processors (CMPs) in a single VLSI chip.

3

Instead of focusing on super-scalar processors, processor designers have recently

increased core counts for CMPs. The emergence of multicores is caused mainly by:

(i) The fast evolution of VLSI technologies, such that the ever increasing number

of transistors per unit area, made it possible to accommodate multiple cores on a

single die (Moore’s Law).

(ii) Memory Wall: The CPU performance has increased much faster than the

memory performance, and now the memory performance becomes the

bottleneck in many applications. Traditional Symmetric Multi-Processor (SMP)

systems share the memory bandwidth among processors, further reducing the

performance. For these systems, the traditional way to improve the memory

performance by incorporating many levels of even larger caches has reached the

point of diminishing returns.

(iii) Frequency Wall: To accommodate more threads and keep the frequency high,

SMT requires deeper pipelines. Increasing the length of the pipeline increases

the chances of resource conflicts in the instruction stream that will stall the

pipeline or will cause a high cost for missed branches, thus reaching the point of

diminishing returns [Chishti and Vijaykumar, 2008].

(iv) Power Wall: As the SMT processor tries to accommodate more threads and

increase the frequency, the power consumption per operation increases

dramatically as compared with CMP. More threads in SMT require a larger

register file, larger data and address caches (TLBs) and more complex control

logic. This comes at the cost of dynamic power and, more recently substantially

increased leakage power (due to larger area), with no substantial performance

improvement as the number of threads increases. It has been shown [Sasanka et

al., 2004] that as the number of simultaneous threads per core increases, the

Energy Per Instruction (EPI) at the same performance point gets higher than the

EPI for a CMP. The main cause is contention for limited resources among

threads that produces extra cache and TLB misses and, thus, more energy

consumption for the same IPC. Also, increasing the operational frequency in a

SMT processor increases the power consumption due to at least two factors: (a)

4

a higher frequency requires either increasing the voltage supply level (Vdd) or

decreasing the threshold voltage (Vth); as the dynamic power is proportional to

the square of Vdd, the active power will eventually increase quadratically; (b)

the static power also increases linearly with Vdd and decreases exponentially

with Vth [Butts and Sohi, 2000]. Some decisions can be made that minimize the

amount of interaction between threads. This minimization is accomplished by

choosing threads that access different regions of the cache or different

computational resources [Kihm et al., 2005].

(v) Small time to market pressure and reduced cost requirements necessitate the

reuse of off-the-shelf uni-processor IPs when building multiprocessors. The new

IP for multicores consists of the glue logic (interconnection) and minimal

verification primarily focusing on the interconnection logic. It is much easier to

replicate already tested cores than just improving a single out-of-order

superscalar core.

(vi) The emergence of the Software as a Service (SaaS) paradigm [Wang et.al,

2011], is now deployed in datacenters. Amdahl’s Law is often replaced by

Gustafson’s law [Gustafson, 1988] which states that problems with large and

repetitive data sets can be efficiently parallelized (they have a high DLP or data

level parallelism).

Since the mid 2000’s designers have increased the number of cores per chip rather

than focusing on single-core performance. However, a new limit on multicore scaling

will soon make this approach less useful, thus creating a transistor utility economics wall

in relation to underutilized resources (called dark silicon). A recent study, that takes into

consideration the device, core and CMP scaling models, showed that regardless of chip

organization and topology, a large area of the chip will have to be powered down

[Esmaeilzadeh et al., 2011]. For example, at 22 nm (to be available soon), the study

suggests that 21% of a chip must be off, and this number grows to more than 50% with 8

nm. Moreover, according to their unified model, in the next decade only an average

5

speedup of eight will be possible for common parallel workloads; this will yield a

substantial gap (up to 24) between the expected and actual performance; ideally, each

newer generation silicon technology node is currently expected to double the

performance.

Scaling the performance and energy could be achieved by:

(i) Scaling the off-chip memory bandwidth capacity and the overheads associated

with the process of moving data [Rogers et al., 2009].

(ii) Reducing the energy overheads associated with useful operations [Horowitz et

al., 2011]. This further requires reducing the energy overheads on the

instruction path and the instruction memory hierarchy.

The first requirement could be addressed by using a heterogeneous memory

hierarchy, that is, by employing memories that are not fully cacheable but rather

explicitly managed. This category includes Scratch Pad Memories (SPM) or Local Stores

(LS) [Flachs et al., 2005]. SPM reduces the energy consumption by almost 40% and the

area by 34% for applications with regular memory accesses [Banakar et al., 2002;

Milidonis et al., 2009]. Unlike caches, it is the programmer’s responsibility (possibly

with the help of the compiler) to explicitly manage data transfers between the main

memory and the SPM. The applications that can fully use SPM are scientific and

multimedia (streaming) applications where data movement could be managed explicitly

and uniformly between off-chip memory and stream processors. Applications that have a

low degree of parallelism could be mapped to scalar cores such that the memory transfers

can make use of the cache [Kudlur et al., 2008].

The second problem could be addressed by using more specialized cores for each

task based on heterogeneous computing. This category includes ASIC custom designs

6

specialized for a single application, like video compression and encryption engines,

Vector Processors (VP) operating in the Single Instruction Multiple Data (SIMD) mode,

Graphical Processing Units (GPUs) operating in the Single Instruction Multiple Threads

(SIMT) mode, and Digital Signal Processors (DSPs).

1.2 Related Work on Vector Processors

Vector code offers a compact, predictable, single-threaded programming model, with the

possibility for loop unrolling to be performed directly at the hardware level under branch

prediction. Moreover, the already compiled vector object code can directly benefit from

new implementations even if some rescheduling is required for optimal performance on

new SIMD micro-architectures. In recent years, SIMD extensions have become

ubiquitous. Even scalar processors on the market today contain them in some form. Since

the focus of this work is the vector processor architecture, an overview of this

architecture is presented in the following sections. Section 1.2.1 presents the architecture

of a modern vector processor, Section 1.2.2 presents an overview of high performance

applications and vector processors used in supercomputers and Section 1.2.3 presents the

emerging SIMD architectures targeting embedded applications.

1.2.1 Modern Vector Processor Architectures

Vector Computers created the breakthrough needed for the emergence of computational

science. The vector architecture was first fully exploited with Cray-1 in 1976 [Russell,

1978]. Cray had a register file with eight vector registers which held 64 64-bit words each

and achieved a peak performance of 240 MFLOPs. In the 1980s NEC introduced its first

vector system (SX-2) which was an improved version of Cray-1. The vector processor

7

simultaneously performed mathematical operations on multiple data elements from an

array, called vector, by instructions named vector instructions. A modern vector

processor falls into the SIMD category, and usually consists of a scalar unit and a vector

unit as shown in Figure 1.1. The scalar unit is similar to an ordinary pipelined scalar

processor which executes scalar instructions for control functions, the unvectorizable part

of the operating system and application code. The vector unit consists of vector registers,

pipelined arithmetic unit(s) and a pipelined Load/Store unit (L/S). Most of the modern

vector processors implement a register-bank scheme for the vector register file (VRF)

[Asanovic, 1998]. By interleaving vector register storage across multiple banks, the

number of ports required on each bank can be reduced. A separate interconnection

network connects banks and arithmetic pipeline ports. In effect, all of these bank

partitioning schemes reduce the connectivity between element storage and arithmetic unit

ports. As depicted in Figure 1.1, in a lane based modern Vector Processor, a single vector

register (VR0) with length VL can be low interleaved across M lanes resulting into VL/M

elements from each vector register in a single lane. A vector lane is an independent vector

subunit containing its own bus interfaces, processing units and vector registers; during its

operation it does not compete for resources with any other lane, except for external

accesses going to the same memory modules. As a note, the maximum number of

elements to be held in a vector register, Maximum Vector Length, is 64 in Cray-1 and

256 in the NEC SX systems. The pipelined arithmetic units from each lane usually

implement Add, Multiply, Divide, Logical and Shift operations in a pipelined fashion, in

which the vector data are input from vector registers and the results are output every

clock cycle into the vector registers.

8

Scalar CORE

Scalar

Regs

Scalar

Pipeline

M
0

VL-M

VR 0

...

VR (P-1)

...

+,-, x, /, logic, misc

L/S 0

Interconnection Network

Banked Memory

M+1
1

VL-M+1

VR 0 VR (P-1)

...

+,-, x, /, logic, misc

L/S 1

2M-1
M-1

VL-1

VR 0 VR (P-1)

...

+,-, x, /, logic, misc

L/S M-1

...

Lane 0 Lane 1 Lane M-1

Figure 1.1 Lane based modern Vector Processor architecture.

Vectorization is the process of converting a computer program to a sequence of

vector instructions for executing on a vector processor. Figure 1.2 shows a for loop in C

code and the produced vector instructions. The vector length is 256 and each vector

instruction processes 256 elements.

for (i=0; i<256; i++) {

A(i)=B(i)+C(i)*D(i);

}

VLD VR0,C ; VR0 <- (C)

VLD VR1,D ; VR1 <- (D)

VMUL VR2,VR0, VR1 ; VR2 <- VR0*VR1

VLD VR3, B ; VR3 <- (B)

VADD VR4, VR2, VR3 ; VR4 <- VR2*VR3

VST VR4, A ; VR4 -> (A)

Figure 1.2 Source code and the produced vector instructions (VL is 256 and the scalar

instructions are omitted for simplicity).

9

1.2.2 Vector Processors for High Performance Computing (HPC)

Computer modeling and simulations of physical phenomena and engineered systems have

become widely spread in supporting theory and experimentation. High Performance

Computers (HPC) are used in weather and climate research, bioscience, energy, military,

automotive and many other engineering fields.

Introduced in 2002, the Cray-X1 vector supercomputer has a hierarchical design

with the basic building block being the multi-streaming processor (MSP), which is

capable of 12.8 GF/s for 64-bit operations (or 25.6 GF/s for 32-bit operations). Each MSP

contains four single-streaming processors (SSPs), each with two 32-stage 64-bit floating-

point vector units and one two-way super-scalar unit. The SSP uses two clock

frequencies, 400 MHz for the scalar core and 800 MHz for the vector units. Each SSP is

capable of 3.2 GF/s for 64-bit operations [Dunigan et al., 2005]. The NEC SX-9

processor runs at a frequency of 3.2 GHz and has 8 vector pipes (or lanes), each having

two multiply units and two addition units; this results in a peak vector performance of

102.4 GF/s [Kobayashi et al., 2009]. For non-vectorized code, there is a scalar processor

that runs at half the speed of the vector unit, i.e., 1.6 GHz. The NEC SX family is the

only classic vector architecture which is still deployed in current supercomputers. The

other major vendors (Cray, Fujitsu, Hitachi) have discontinued their (dedicated) vector

product lines and adopted commodity scalar-based multiprocessors. Most of the Cray

supercomputers are using AMD Opteron cores, Fujitsu adopted a SPARC architecture for

its fastest supercomputer in the world as of November 2011 (K supercomputer with

SPARC 64 VIIFX cores), and Hitachi adopted IBM POWER7 cores in its latest SR1600

supercomputer. Instead of improving a vector architecture with high time, design and

http://en.wikipedia.org/wiki/Gigahertz
http://en.wikipedia.org/wiki/FLOPS

10

verification costs, supercomputer vendors started to use widely spread CMPs as the basic

building block. The main reasons for CMP-based supercomputing are generality,

scalability, low time to market and cost effectiveness. However, it has been reported that

there is an increasing gap between the theoretical peak performance and the sustained

system performance for High End Computing systems of major US high-end computing

centers [Federal HPC Rep, 2004]. In other words, the commodity-based scalar systems

have difficulty obtaining the high computation efficiency in the execution of real

scientific and engineering applications. And, on top of that, the energy efficiency

(MFLOPs/Watt) has been decreased dramatically. On the other hand, vector

supercomputers achieve high sustained performance and high computation efficiency in

various scientific and engineering applications [Oliker et al., 2008; Musa, 2009].

As a consequence, two distinct supercomputer architectures have emerged

recently. The first one is hybrid, and one of its incarnations is the IBM Roadrunner. The

hybrid design has in each node an IBM PowerXCell 8i attached to an AMD Opteron

CMP [Barker et al., 2008]. The IBM PowerXCell architecture comprises one general

purpose core (PPE), and eight special streaming processor elements (SPE) for floating

point operations. The vectorized code is mapped to SPEs and the scalar part of the

applications runs either on the Opteron or the PPE. This is an example of reducing the

gap between sustainable and peak performance in modern supercomputers. Also, the

IBM Cell-based supercomputers have been reported to be some of the most power

efficient supercomputers [Green 500 List, 2011]. The second architecture contains

heterogeneous CPU-GPU nodes, that is, a low latency scalar-based architecture (Intel i7,

Intel Xeon, AMD Opteron) combined with a high processing throughput SIMT

http://en.wikipedia.org/wiki/Opteron
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point

11

architecture (NVIDIA or ATI Graphic Processor Units - GPU) [Nickolls and Dally,

2010]. The second fastest supercomputer in the world and the one in the 13th place in the

green list (as of Nov 2011) belongs to this category. As its building block, it contains an

Intel Xeon X5670 2.93 GHz processor and an Nvidia Tesla M2050 general purpose GPU

(GPGPU) as the accelerator for high intensive parallel tasks; it reaches a maximum peak

performance of 2.5 PetaFlops with around 4MW power consumption [Top 500 List,

2011].

As a conclusion, the supercomputing architectures are going back to a form of

SI(MD/MT) in order to support high performance throughput with low power and area

costs.

1.2.3 Emerging SIMD and Vector Architectures

In a SMT superscalar, more and more area and, obviously power, is consumed by

complex structures required to support speculative, out-of-order superscalar execution

(for instruction fetch, decode, register renaming, and control of the instruction window

components, including speculation recovery). More area/power budget assigned to the

instruction data-path and less to the processing core (functional units) leaves less room

and power budget to the integer and floating processing data paths. On the contrary, the

vector processor approach has more resources allocated to functional units which prove

to be more efficient in terms of performance and energy for a broad class of applications

[Lemuet et al., 2006; Who et al., 2008]. It has been shown recently that SIMD-based

accelerators can handle regular and irregular DLP efficiently and still retain

programmability [Krashinky et al. 2008; Lee et al., 2011]. Also, SIMD architectures are

http://en.wikipedia.org/wiki/Nvidia_Tesla

12

more area and energy efficient than multi-scalar based microarchitectures, even for fairly

irregular DLP.

VIRAM [Kozyrakis and Patterson, 2003b], SODA [Lin et al. 2006] and AnySP

[Woh et al., 2010] are single-chip vector microprocessors, and their instruction sets

support a comprehensive set of vector operations. Vector microprocessors have been

shown to be more effective in embedded media applications than superscalar and VLIW

processors [Kozyrakis and Patterson, 2002]. Also, a 2-dimensional (matrix-oriented)

SIMD extension was developed in [Sanchez et al., 2005]. Due to recent advances in

programmable devices that have increased substantially their logic cell densities, some

Field-Programmable Gate Array (FPGA) based soft vector processors have been

proposed as well [Yang and Ziavras, 2005; Cho et al. 2006; Yiannacouras et al. 2008; Yu

et al. 2009]. An automated co-design tool chain in [Hagiescu and Wong, 2011] produces

SIMD hardware accelerators and appropriate software for performance and energy gains.

The VEGAS soft vector architecture in [Chou et al., 2011] is attached to a single soft

Nios II/f Altera processor. It comprises a parameterized number of vector lanes, a

scratchpad memory and a crossbar network for shuffle vector operations.

Multimedia (MMX) and streaming SIMD extensions (SSE1-4, AVX) are

currently popular in commercial microprocessor architectures. They have been shown to

provide a significant boost for a few key multimedia applications without requiring much

silicon area. The most advanced SIMD extension, the Intel AVX [Yuffe et al., Intel,

2011], increased the vector length to eight elements (from four in previous

implementations) for the single precision floating point format. However, these

extensions have several disadvantages compared to a more comprehensive vector

13

approach: (i) the vectors are short; therefore, each instruction caries a small amount of

data-path work. This requires high instruction issue bandwidth in order to keep the SIMD

pipelines busy and consumes additional energy on the instruction path; (ii) memory

load/store operations have to be aligned to 16 (32 in Intel AVX) bytes boundaries, and

(iii) the data transfers between extended registers and the main memory are performed

via a cache. In low-end mobile devices the most common architecture is ARM NEON

[Rintaluoma and Silven, 2010]. The SIMD data path width is 128 bits (four single

precision floating point elements) and it is designed to provide acceleration for mobile

multimedia applications with low power budgets.

A multithreading technique for a vector processor architecture was first

introduced by Espasa and Valero [Espasa and Valero, 1997] assuming a Cray C3400

vector machine model. The work shows that multiple threads can increase the utilization

of memory ports and the overall throughput while also and hiding long memory access

latencies. However, since their baseline vector architecture is modeled after the Convex

C3400, the model assumes one vector pipeline only (i.e., one lane) and restrictive

memory model. In [Rivoire et al., 2006] a Vector Lane Threading (VLT) architecture is

introduced. It partitions the vector lane space among multiple threads and is suitable for

applications with small vector lengths (a VL that is less than the number of lanes) that

cannot take advantage of a wide Vector Processor. The finest granularity is one vector

thread per lane, i.e., the vector length is one. Each thread (in a lane partition) requires

separate control signals with substantial overheads that can become unbearable as the

number of threads increases. Also, in any single lane only one thread (context) exists at

any time.

14

In [Sasanka et al., 2007] an All Levels of Parallelism (ALP) model is presented; it

is based on a conventional superscalar model with SMT and SIMD (MMX and SSE2

extensions) capabilities. The SIMD architecture is enhanced with SIMD vectors and

streams (SVectors/SStreams). The application model builds a new data structure on top

of the SIMD word, namely it creates a record or Stream Vector. Stream Vectors are

implemented directly in the L1 cache allowing compute SIMD instructions to directly

access them using existing data paths, without additional loads and stores. Even if this

architecture applies well to an existing SSE extension it still retains the drawbacks of

SIMD instructions with short vector lengths for compute operations and the usage of a

cacheable memory in streaming applications.

1.3 Motivation and Objectives

Many high-performance and embedded applications dealing with streams of data cannot

efficiently utilize dedicated vector processors for various reasons. Firstly, individual

programs often display limited percentage of vector code due to substantial flow control

or involved operating system tasks. The utilization of an available VP is then proportional

to the vectorized part of the code; therefore, the rest of the time the VP will be idle

[Azevedo and Juurlink, 2009]. Secondly, even with substantial vector code, the needed

vector length may often vary across applications or within a single application, as in

multimedia [Woh et al., 2010]. Thirdly, several applications have many data

dependencies within sequences of instructions, a problem exacerbated further without

loop unrolling or other compiler optimization techniques [Gerneth, 2010]. And, finally,

as the computational intensity (the ratio of arithmetic operations to memory references)

decreases, the utilization of the functional units goes down. The computational intensity

15

depends on the application and the memory hierarchy [White et al., 2005]. Moreover, for

a given application, as the number of nodes increases in a scalable system, the

computational efficiency per node decreases and also its utilization. Fewer computational

resources are utilized and the need arises to adaptively adjust the active resources. Such

limitations deter efforts to sustain high SIMD utilization, especially for superpipelined

floating-point units (FPUs).

For example, Cray X1 achieves a sustained performance of 30% of its peak

performance for sparse matrix based applications, 65% for dense matrix multiplication

based applications and almost 50% for FFT based applications. The main cause is the

limited off-chip memory bandwidth [Cray X1 Rep., 2004]. Also, a more recent vector

supercomputer, the shared-memory NEC SX-9 vector system achieved a sustained rate of

68.8% of its peak performance for Earthquake (dense MM kernel), 55% for Turbulent

Flow and Antenna (Fast Fourier Transform), and around 17% for LandMine, Turbine and

Plasma (sparse kernels with irregular memory accesses) applications [Soga et al., 2009].

To sustain a low bandwidth requirement per flop, NEC SX-9 adds a software controllable

on-chip cache, the Assignable Data Buffer (ADB), similar to SPMs. In 1993 vector

supercomputers occupied 67% of the positions on the TOP500 list; however, as stated in

Section 1.2.1, the number of vector supercomputers has decreased over the years, and

GPP-based (AMD Opteron, Intel Xeon, IMB Power) clusters have dominated the

TOP500 list. In systems with standard and scalar cores, it is even harder to achieve high

efficiency (sustained performance over peak performance ratio) for SIMD pipelines,

especially for non-unit stride and irregular scatter/gather operations. For scientific

applications, these processors demonstrate a very low utilization of functional units.

16

Thus, either the SIMD units that reside in scalar processors or the vector pipelines

controlled by scalar cores are highly underutilized.

Therefore, actual SIMD/vector architectures need:

(i) High utilization of the SIMD/vector pipelines. This could be achieved in two

ways: (a) from the software perspective: a level of ILP and/or DLP parallelism

that can provide a level of SIMD instruction throughput which will produce

high utilization of the vector units, and (b) from the hardware perspective: to

share expensive resources, such as VP lanes, between multiple cores in order to

aggregate the SIMD instruction streams and produce high throughput on the

data path. Allocating silicon area to an SIMD resource which is tightly coupled

to a single core leaves less room for dynamic scheduling options in a multicore

system while also consuming substantial leakage power as a percentage of the

core’s power budget.

(ii) Flexible vector length (VL) as per application (kernel) needs; that is, dynamic

VL per thread transparent to the programmer. As stated previously, issuing the

same instruction multiple times to perform identical jobs is not efficient since

this consumes power on the instruction path and also requires frequent branch

implementation with its associated overheads. Therefore, there is a requirement

to adjust the vector length to the application needs.

(iii) Quality of Service (QoS) at the hardware level. Sharing expensive SIMD units

among multiple threads requires QoS such that each thread that utilizes the units

gets the desired level of throughput.

(iv) Performance-power tradeoff. Some vector applications may require low energy

consumption with no time constraints; others may have performance as the first

priority. Thus, there is a need to create a framework that adjusts the used vector

computing resources based on given performance-energy constraints.

(v) Reduced impact of the static power on the total energy budget. Static power due

to leakage currents will become an even larger source of power consumption in

future technologies. The shrinking of transistors yields increased static power

17

contribution to the total energy consumption [Keating et al., 2007]. Particularly,

for the 45nm technology generation and beyond, leakage power consumption

catches up with, and sometimes dominates dynamic power consumption. Thus,

as the number of resources/cores working in parallel increases, the consumed

static energy increases almost linearly. However, the actual performance does

not scale correspondingly and, as a consequence, the contribution of the static

energy to the total energy budget increases. Additionally to static power, there is

another power component that is consumed even when the device does not

perform any useful operation; i.e., clock network power. Combined, these two

components form the standby power (also known as idle power or no-load

power).

(vi) VP sharing designs for multicores that can facilitate runtime resource and power

management involving a good balance of performance and energy consumption.

In contrast, a dedicated VP per core leaves much less room for runtime power

management. Such management for shared VPs should introduce small timing

and energy overheads. The objective should be the development of efficient

power-gating techniques in relation to VP lane sharing. Existing rigid SIMD

architectures cannot tolerate efficiently dynamic application environments with

many cores that may require the runtime adjustment of assigned vector

resources in order to operate at desired energy/performance levels that change

frequently.

To simultaneously alleviate these drawbacks of rigid lane-based VP architectures

while also releasing on-chip real estate for other important design choices, the first

objective of this research is to propose three architectural contexts for the implementation

of a shared vector coprocessor in a multicore environment. Sharing an expensive resource

among multiple cores will increase the efficiency of functional units and the overall

throughput. As presented is Figure 1.1, the baseline VP architecture is lane-based with a

banked vector register file. Coarse-grain temporal sharing (CTS) consists of temporally

18

multiplexing sequences of vector instructions ideally arriving from different threads.

However, providing a per-core exclusive access to the vector resources does not

maximize their utilization. Derived from GPP-based SMT architectures, Fine-grain

Temporal Sharing (FTS) consists of spatially multiplexing individual instructions issued

by different scalar processors in order to increase the utilization of the vector units.

Finally, Vector-Lane Sharing (VLS) consists of simultaneously allocating distinct vector

lanes or collections of them to distinct scalar cores.

A second objective regards the evaluation and characterization of the three shared

vector architectures from the performance and power perspectives. The performance and

energy consumptions for these coprocessor sharing contexts are evaluated by

implementing several floating-point applications on an FPGA-based prototype. A

performance model for these coprocessor sharing contexts is presented as well as a power

estimation model based on observations deduced from experimental results. These

models suggest several techniques to increase the performance or reduce the energy

consumption:

(i) Increase the data-level parallelism by increasing the vector length.

(ii) Increase the instruction-level parallelism at compile time by loop unrolling or

other techniques.

(iii) Use multiple threads in a multiprocessor environment to increase the vector

coprocessor utilization.

(iv) If none of the above is possible, adjust the VP resources in order to minimize a

given energy/performance metric.

19

The analysis shows that technique (iii) can be superior to the former two

combined. Therefore, the lack of adequate data-level parallelism in an application can be

overcome by sharing the coprocessor resources among many cores.

The results show the necessity to create a HW/SW framework that adaptively

adjusts the size of the vector processor in order to minimize the total energy consumption

on a modern vector processor that runs applications with dynamic workloads. Therefore,

the third objective is to develop an energy consumption estimation model and, based on

this model, a hybrid fine-to-coarse grain power gating (PG) technique and relevant

adaptive HW/SW support. Two approaches are possible: (i) at static time, apriori

information about the application that needs to run (utilization, level of data/instruction

parallelism, etc.) could be used by the SW to estimate the number of lanes for which the

energy is minimized; and, (ii) at runtime, using embedded performance and/or energy

counters that monitor the utilization of the lanes, a decision on how to shrink/enlarge the

VP (i.e., adjust the number of lanes) has to be taken as fast as possible and with minimal

energy impact. The energy metric can be used when the device is battery powered and

there is no constraint on performance. However, this metric does not allow trade-off

between power and delay. The energy delay product favors performance over energy and

also measures the quality of a CMOS design [Sengupta and Saleh, 2007; Martin et al.,

2001]. Therefore, a performance-energy tradeoff mechanism which gives priority to

performance at the expense of more energy consumption is also introduced as part of this

objective.

20

Finally, the fourth objective of this work is to implement the VP hardware design

in ASIC using Synopsys design flow tools. Moving the entire FPGA-based design to an

ASIC implementation will face a few challenges:

(i) Changing the proprietary IP cores, such as BRAMs and floating point units,

with SRAM blocks and custom IPs.

(ii) Optimizing the ASIC design for speed and power in a given technology.

(iii) Evaluating different design options and the impact of their static energy and

other standby components on the total energy budget.

(iv) Modeling performance and power.

This thesis is organized as follows. Chapter 2 presents the VP sharing architecture

in detail and its implementation on an FPGA device. Chapter 3 describes the software

development process and presents popular vector-dominant floating-point applications

used to test out VP architecture. Performance, power and energy results are presented in

Chapter 4 and are followed by a comparative analysis. Chapter 5 describes performance

and power models, and introduces the opportunity to trade the energy and performance.

Chapter 6 introduces two energy minimization techniques and a performance-energy

trade-off mechanism. The ASIC implementation and relevant results are presented in

Chapter 7. Finally, Chapter 8 draws conclusions and presents future work objectives.

21

CHAPTER 2

VECTOR COPROCESSOR SHARING

The main difference of this work from [Kozyrakis and Patterson, 2003b; Woh et al.,

2010; Yu et al., 2009] consists of introducing (a) an architecture for lane based vector

coprocessor design that can integrate mechanisms for the coarse-grain and fine-grain

mixing of threads issued by one or multiple cores, (b) configurable vector lanes that can

be grouped for assignment to distinct cores in a manner that eliminates internal resource

conflicts, as well as (c) configurable vector register length. The main objective, as

compared with all previous aforementioned works where just one thread can use the

entirety of the VP resources, is to provide a hybrid VP architecture framework for sharing

the vector coprocessor among multiple scalar cores. This architecture is even more

suitable for shared-bus multicores, the current focus of commercial multicore technology.

The rest of the chapter is organized as follows. Section 2.1 presents the details of

three basic vector-sharing architectures. Section 2.2 presents VP sharing architecture in

detail, and Section 2.3 presents resource consumption and synthesis frequency figures.

2.1 VP Sharing Techniques

In order to increase the overall utilization and throughput of a VP embedded into a

multicore chip, a mechanism must be developed for its simultaneous sharing by multiple

cores. The terms scalar processor and core processor will be used interchangeably from

now on. Sharing could also support multithreading inside the VP with the threads coming

from one or more applications. Unlike VP architectures for single cores which are

22

designed with a fixed SIMD width (i.e., vector register size) aiming to service one

application at a time, this work proposes adaptive VP sharing for multicores in order to

support multiple-SIMD execution relying on thread-level parallelism (TLP). This design

approach can maximize the VP utilization and throughput for two reasons:

(i) Different cores often handle different vector lengths, thus not being able to

individually utilize dedicated VP resources fully. Also, applications have

different natural vector lengths. Actual general purpose SIMD machines provide

low vector length (4 for Single Precision Floating Point (SFFP) on ARM Neon

and 8 for Intel AVX on the Sandy Bridge architecture [Rintaluoma and Silven,

2010; Yuffe et al., Intel, 2011]). Issuing multiple instructions to perform the

same job is not efficient since this consumes power on the instruction path and

also introduces unnecessary branches. Therefore, a better way is needed to

adjust the vector length to the application needs is a requirement.

(ii) Different vector kernels in the same or different applications often have diverse

VP-based computation needs [Woh et al., 2010].

To simultaneously alleviate these drawbacks of rigid VPs while also releasing on-

chip real estate for other important design choices, this thesis proposes adaptive VP

sharing for multicores that integrates three basic VP sharing architectures, namely

coarse-grain temporal (CTS) sharing, fine-grain temporal sharing (FTS), and vector

lane sharing (VLS) [Beldianu and Ziavras, 2011a]. This paper investigates power/energy

consumption, and does not present any performance and power estimation models that

could be used by the runtime system to fine-tune VP sharing at runtime (based on the

needs of individual applications, or collections of them simultaneously competing for VP

resources). VP system is implemented in the SystemVerilog high-level language and only

performance benchmark results were recorded. In [Beldianu and Ziavras, 2011b] an

improved VP sharing integration is presented, that, besides several architectural

23

improvements and new vector instructions, is implemented on an FPGA and is

synthesized in VHDL. The implementation of various benchmarks on the target Xilinx

FPGA device yields accurate figures for performance and power, thus leading to

important conclusions about such versatile VP sharing systems. Also, a highly accurate

performance and power estimation models is introduced. The rest of the chapter

introduces the proposed VP sharing techniques and presents the details of VP sharing

architectures.

2.1.1 Coarse-grain Temporal Sharing (CTS)

CTS sharing consists of temporally multiplexing the execution of sequences of vector

instructions or threads containing them. A scalar processor takes exclusive control of the

entire VP, and then releases it by executing a lock and unlock instruction, respectively. It

runs a thread to completion or until it stalls due to a resource conflict (e.g., DMA access

conflict). Such a stall forces thread switching for the VP. Figure 2.1 (a) shows how the

CTS is performed; at any given time all lanes are processing only SIMD instructions

issued by one scalar processor. CTS can alleviate the low utilization in a VP environment

with an exclusive scalar core in cases where long sequences of scalar code are interleaved

with long sequences of vector code (e.g., parallel programs which contain critical

sections that need to be run on CPUs). No duplication of the vector register file is needed

and only simple scheduling is required. Average utilization will be improved but the

instantaneous utilization will not; thus, programs that need VP resources most of the time

will not take advantage of this technique. Note that this context may be required also for

kernels (programs) that need to run at full speed with no interference from other

instruction streams coming from the other CPUs.

24

2.1.2 Vector Lane Sharing (VLS)

VLS lane sharing assumes a divisible VP consisting of independent vector lanes with

their own execution units. A vector lane is an independent vector subunit containing its

own bus interfaces, processing units and vector registers; during its operation it does not

compete for resources with any other lane, except for external accesses going to the same

memory modules. VLS facilitates the simultaneous allocation of distinct vector lanes, or

collections of them, to distinct scalar processors for seamless processing. Based on the

chosen set of vector-lane allocation and scheduling policies, a hardware scheduler

external to the lanes determines at runtime how to group together vector lanes to meet the

requirements of applications running on the cores. Therefore, if multiple cores

simultaneously share the VP space, each core can use exclusive lanes forming a small-

sized VP (as compared to the full-sized VP that comprises all of the lanes, say M). This

technique is somehow similar with Vector Lane Threading from [Rivoire et al., 2006].

However, the main difference is that presented architecture does not provide a separate

control bus for every lane partition (or sub-VP); instead, the lane is controlled by issuing

the appropriate instructions to the assigned lanes. Figure 2.1 (b) shows one example of

the VLS context. A VP with eight lanes in the figure is split into two VPs with four lanes

each. Similar to CTS, at any given time a lane processes only instructions coming from a

single CPU. However, an increase in the utilization is expected by increasing the number

of elements per vector register.

Assuming a VP with M lanes, a fixed number of K elements in the VRF of each

lane, and a vector length VL in an application that uses all the lanes, Equation 2.1 shows

the number of vector registers (VREGs) available to the application.

25

M

VREGs K
VL

 (2.1)

Since for a given architecture the number K of VRF elements in each lane is

fixed, by reducing the number of lanes assigned to an application in the VLS mode either

the number of vector registers or the VL has to be reduced. For programs requiring a

substantial number of registers VL may need to be decreased. VLS proves useful when

the degree of vectorization in an application running on a core is moderate, thus not

requiring the full VP coprocessor space, or when the vector length required is less than

the total number of available lanes. Also, VLS could be extended to cases where a VP

subset simultaneously handles multiple threads issued by the same or different cores.

2.1.3 Fine-grain Temporal Sharing (FTS)

FTS sharing involves spatial (i.e., resource-based) multiplexing of vector instructions

coming from different threads running on the same or different scalar processors. In the

former case, the scalar runs in the SMT mode. A scalar issues an SIMD instruction in a

given VP clock cycle according to a chosen arbitration scheme, the simplest one being

round robin. The benefit of this approach is that the VP instantaneous utilization will be

increased since data hazards do not exist between instructions issued by different threads

or processors, and the VP resource idle times due to data transfers are eliminated or

reduced. In FTS, vector instructions coming from different cores or threads can

simultaneously execute in the same VP using the same pipelined resources (e.g., adder,

multiplier, LDST unit). As shown in Chapter 4, this type of VP sharing provides the best

performance and energy savings. Figure 2.1 (c) shows an example of two instructions

issued by different CPUs coexisting inside the lane pipelines. One CPU issues

26

instructions with VL=32 and the other one with VL=16. According to the Equation 2.1,

since two register contexts have to exist in each lane, the VRF resources have to be

increased in order to allow two threads to run simultaneously.

2.2 VP Sharing Architecture

In order to validate the FTS, CTS and VLS vector-sharing contexts, the VP system is

prototyped on a Xilinx FPGA device. Initially the design targeted a Virtex-5

XC5VLX110T FPGA device and later on it is ported to a Virtex-6 XC6VLX130T device.

In order to avoid confusion, for all the subsequent chapters and sections, the appropriate

device will be mentioned explicitly. The design consists of two scalar processors, an 8-

way data-path partitioned VP with an 8-way vector memory load/store unit for parallel

data memory accesses, a VP-memory interconnecting crossbar, and an 8-bank low-order

interleaved on-chip vector memory. MicroBlaze, a 32-bit embedded RISC soft core

provided by Xilinx, forms each scalar; it employs the Harvard architecture and uses the

FSL interface to connect with up to eight coprocessors [Xilinx Inc., 2010b]. Instructions

issued to VP use a 32-bit FSL bus. Since the Xilinx EDK (Embedded Development Kit)

tool kit limits the operating frequency of MicroBlaze to 125 MHz, without loss of

generality the entire design is optimized for this target frequency.

27

24
16
8
0

25
17
9
1

...

...

31
23
15
7

VC0 VC1

Lane 0 Lane 1 Lane 7

MB0 (exclusive access) MB1 (exclusive) MB0 (exclusive access) MB1 (exclusive)

V
P

_
R

E
Q

time

V
P

_
R

E
L

V
P

_
R

E
Q

V
P

_
R

E
L

(a)

28

4
0

29

5
1

30

6
2

31

7
3

12

0

13

1

14

2

15

3

VC0 VC1

Lane 0 Lane 7

MB0 (4 lanes)

MB1 (4 lanes)

V
P

_
R

E
Q

time

V
P

_
R

E
L

V
P

_
R

E
Q

V
P

_
R

E
L

Lane 4Lane 3

(b)

24
16
8
0

8
0

25
17
9
1

...

...

...

...

31
23
15
7

15
7

VC0 VC1

Lane 0 Lane 1 Lane 7

MB0 (ALL lanes)

MB1 (ALL lanes)

V
P

_
R

E
Q

time

V
P

_
R

E
L

V
P

_
R

E
Q

V
P

_
R

E
L

(c)

Figure 2.1 VP sharing contexts: (a) Coarse-grain temporal (CTS) sharing; (b) Vector

lane sharing (VLS); and (c) Fine-grain temporal sharing (FTS). Each lane contains a

fixed number of pipeline stages; colored boxes show the busy pipeline stages in each lane

and white boxes are unused pipeline stages (pipeline bubbles).

28

Memory Crossbar (MC)

Vector Memory (VM)

MicroBlaze 1

PLB BUS

Vector Processor (VP)

MicroBlaze 0

DMADDR Controller

to DDR memory

FSL FSL

Figure 2.2 Architecture of the FPGA-based VP sharing prototype (PLB: Xilinx Processor

Local Bus, used mostly for data transfers via DMA control; FSL: Xilinx Fast Simplex

Link).

Figure 2.2 presents the complete system prototype that is implemented on this

Virtex-5 FPGA using the Xilinx ISE tools. The Vector Processor (VP), Memory Crossbar

(MC), Vector Memory (VM) and Vector Memory Controller (VMC) are custom IPs

modeled in VHDL, and the rest of the system is generated using the Xilinx EDK tool,

version 12.3. The VP basic structure conforms to the VIRAM lane-based architecture

[Kozyrakis and Patterson, 2002; 2003a; and 2003b] that is proposed to connect to a single

core. The vector lane space in the design can be partitioned among multiple cores, as

needed. This adaptable structure can be used to assign varying numbers of vector lanes to

the cores throughout execution based on individual application needs, as per the VLS

design choice. Each vector lane contains a subset of the elements from a larger vector

register, one FPU and a memory load/store (LDST) unit.

29

Memory Crossbar (MC)

BRAM

Bank 0

Vector

Controller 0
Vector

Controller 1
Scheduler

...

...

FSL 0

InstrPath

FSL 1

Ctrl Ack

Path

Control & configuration signals to

VCs and Lanes

PLB Interface

PLB BUS

MicroBlaze 0 MicroBlaze 1

InstrPath

Vector Memory Controller (VMC)

Lane 0

Vector

Registers

LDST unit

Vector

Flag

Registers

FPU

Instr FIFOs

Lane 1

Vector

Registers

LDST unit

Vector

Flag

Registers

FPU

Instr FIFOs

Lane M

Vector

Registers

LDST unit

Vector

Flag

Registers

FPU

Instr FIFOs

Instr to Lanes

FSL 0

Ctrl Ack

Path FSL 1

InstrPath

Instr Ctrl

Path

…

Arb 0

BRAM

Bank 1

BRAM

Bank L

Arb 1 Arb L

Figure 2.3 M vector lanes shared between two MicroBlaze processors (FSL serves as the

instruction path between a MicroBlaze and its associated Vector Controller, through the

Scheduler; BRAM: Xilinx Block RAM; each MUX in the figure is part of the respective

lane).

30

Figure 2.3 shows the overall structure for vector lane sharing. Initially the FPGA-

based prototype had M=8 lanes and L=8 memory banks (the whole section assumes this

configuration). The LDST unit from each lane can operate with or without a vector stride,

and can also carry out indexed memory accesses using the crossbar going to the memory.

The crossbar allows for concurrent accesses from LDST units to distinct memory banks

and also provides round-robin arbitration when many LDST units are accessing the same

memory bank.

A distinct Vector Controller (VC) is attached to each scalar processor from which

it receives instructions. Such instructions can be of two types:

(i) Vector instructions to move and process data, which are forwarded to vector

lanes, and control instructions which are forwarded to the Scheduler.

(ii) Control instructions are used for communications between scalar processors and

the Scheduler, for purposes such as acquiring VP resources and the current

status of the VP.

The scalar processor always receives an acknowledgement word in response to a

control instruction. The VC forms a pipeline with two clock cycles latency, where the

first stage is used for decoding, and the second stage is used for hazard detection and

register renaming. All three types of data hazard (i.e., RAW, WAR and WAW) are

resolved in the latter stage. Also, in this stage the VC requests from the Scheduler access

to the instruction bus in order to broadcast the vector instruction to the vector lanes. It is

the Scheduler’s responsibility to arbitrate between requests coming from both VCs and to

acknowledge the one that will get access to the instruction bus. After decoding and

hazard detection, the VC broadcasts the vector instruction to its assigned lanes by

pushing it with the appropriate vector element ranges into small instruction FIFOs located

31

in the respective lanes. The Scheduler handles the control instructions coming from the

scalar processors. Based on requests from the cores, the Scheduler properly configures

the vector lanes. Also, as mentioned previously the Scheduler is responsible for

arbitrating on concurrent requests coming from both VCs; control signals for the

instruction bus are then asserted based on the arbitration decision.

As Figure 2.4 shows, the lane has a LDST unit (left side) and an FPU (right side).

Similar to VIRAM, the LDST unit works with the MC memory crossbar. As mentioned,

it can operate with or without a vector stride, and can also carry out indexed memory

accesses using the crossbar going to the memory. Additional features are added in this

implementation: vector element load/store instructions, where just one element from the

vector is loaded or stored, and shuffle instructions to transfer elements between different

lanes using a communication pattern stored in any vector register. For shuffle

instructions, the LDST unit computes the target lane and destination element, and the

data is transferred via the MC crossbar using the data path for standard memory accesses.

The MC Arbiter is designed to distinguish between memory and shuffle transfers in order

to forward properly the data to the appropriate destination. Table 2.1 presents the LDST

instructions supported in the current implementation.

The initiation latency to fill-up the pipeline is 8, 13 and 8 clock cycles for a

LDST, add-subtract/multiply and any other ALU instruction, respectively. The ALU in

the current design contains 6-stage multiply and add single-precision FPUs. The latency

parameters are provided by the Xilinx IP Core Generator and meet the requirements for a

125 MHz design frequency. The rest of the cycles, up to 13, are distributed as follows:

the VC pipeline has two stages, one for hazard detection, and one for register renaming,

32

scheduling and issue to lanes; the lane instruction FIFOs consume one cycle; lane

decoding, operand fetching and issue to execution units takes two clock cycles mainly

caused by the latency of BRAMs; the result buffers involve one cycle; finally, one clock

cycle is taken for the lane to inform the hazard detection mechanism in the VC about

instruction completion. Without loss of generality, the FPU can execute single-precision

floating-point addition, subtraction and multiplication, and can also evaluate the absolute

and negate operations.

VRF

LDST Queue ALU Queue

LDST

Fetch SM

to Memory

Crossbar

from Memory

Crossbar

L/S WB

VC0 Instruction

Bus

ALU Decode &

Fetch
ALU

Fetch SM

VFRF

ALU WB

SM
WB Stage Arbiter

EXECUTION

UNITS

Result

Buffer

Result

Buffer

Result

Buffer

El & Indx

Addr

Addr Gen

Stage 1

Addr Gen

Stage 2

LDST

decode

Ctrl

Request

Ctrl

Address WrData

Mem Indx

2R Ports

2R Ports

1W Port

1W Port

+/- X

NEG

ABS

MOVE

VC1 Instruction

Bus

Figure 2.4 Vector lane architecture.

As shown in Figure 2.4, the LDST and ALU instructions involve separate paths.

Therefore, it is possible to have concurrent execution of LDST and ALU instructions as

long as there is no data dependence between them. LDST instructions are always

33

executed and committed in order. ALU instructions are issued in order but might commit

out of order due to different pipeline depths in the execution units. However, this does

not violate data dependencies since instructions that execute at the same time in a lane

have no data dependence.

Table 2.1. Load/Store (LDST) Instructions Summary

 Details Initiation Latency

(cycles)

VLD

VST

Unit stride Vector Load and Store instructions

8

VLDS

VSTS

Stride Vector Load and Store instructions. Stride could take

values up to 1024.

8

VLDX

VSTX

Indexed Vector Load and Store instructions.

8

VELLD

VELST

Element Load and Store instructions.

8

VSHFL

Vector Shuffle instructions. The instruction takes 3

parameters: destination vector register, source vector register

and vector register containing permutation information.

8

Table 2.2 ALU Instructions Summary

Instruction Details Initiation Latency

(cycles)

VMUL

VADD

VSUB

Vector-Vector Multiplication.

Vector-Vector Addition.

Vector-Vector Subtraction.

13

VMULS

VADDS

VSUBS

Vector-Scalar / Scalar-Vector Multiplication.

Vector-Scalar / Scalar-Vector Addition.

Vector-Scalar / Scalar-Vector Subtraction.

13

VMOV

VNEG

VABS

Vector move instruction.
Vector negate instruction.

Vector absolute instruction.

8

VFLD

VFMOV

VFNEG

Load Vector Flag from Scalar instruction.

Vector Flag move instruction (from scalar to Vector).

Vector Flag complement instruction.

8

Since it is possible to have two different functional units writing back the results

to VRF in the same clock cycle, the ALU write port contains a write back arbiter which

arbitrates between multiple requests from different functional units result buffer. Table

2.2 summarizes the ALU instructions supported in current implementation. Each lane

assigned to a VC informs it upon instruction completion and the entire SIMD instruction

34

is considered completed by the VC when all the lanes have completed this step. Each

SIMD instruction is labeled by the VC with a unique tag, and dedicated signaling from

the lane to its assigned VC informs the latter about the completion of the instruction.

The elements corresponding to one vector register are distributed across multiple

lanes in low-order interleaved fashion (also called folding), and the number of elements

from a vector register corresponding to one lane is configurable. Each instruction

consumes a start-up latency plus a number of cycles equal to the number of elements

stored in the lane’s vector register minus one. An instruction without dependencies

consumes in the LDST or ALU unit a number of pipeline cycles equal to the size of the

vector register used in the lane. Each lane contains a multi-ported Vector Register File

(VRF) with 512 32-bit locations efficiently implemented with Xilinx FPGA 36Kbit

BRAMs (Block RAMs). Each of the LDST and ALU units requires two reads and one

write per clock cycle. Therefore, the memory has two write and four read ports (2W/4R),

and is implemented by doing replication (2×) and multi-pumping with a double frequency

[LaForest and Steffan, 2010]. In order to simultaneously support all three sharing

contexts in the same architecture, each lane contains four configuration registers which

are updated at runtime by the Scheduler. These are:

(i) The first register contains the VC ID to which the lane is assigned. This is used

by the lane to inform the appropriate VC on instruction completion.

(ii) The second register contains the number of lanes assigned to the particular VC

to which this lane is assigned. This register is updated when switching between

the CTS/FTS and VLS operating contexts, and is necessary in order to compute

the correct address for memory transfers and shuffle operations.

(iii) The third register contains the fixed lane ID (or lane index).

35

(iv) The fourth register contains the number of elements from a vector register

which are located in the same lane.

Since the VRF memory within each lane has fixed size, as per Equation 2.1,

increasing the number of elements in a vector register will automatically decrease the

number of available registers. Table 2.3 presents some valid combinations of the vector

length and the number of available vector registers. It is a software decision to tune the

vector length and the available number of registers in order to optimize the execution

time and/or power consumption for a specific task. Besides the VRF memory in each

lane, there is a Flag Vector Register File (FVRF) memory which contains 512 1-bit

elements. Each bit is used as a mask for conditional execution of vector instructions on

the corresponding element in the VRF.

Table 2.3 Examples of Vector Length and Number of Registers

Configuration

Elements per

register (1 lane)

Vector

Length

Number of

available

registers

8 lanes 4 32 32

8 lanes 8 64 32

8 lanes 16 128 16

8 lanes 32 256 8

4 lanes 4 16 32

4 lanes 8 32 32

4 lanes 16 64 16

4 lanes 32 128 8

The Vector Memory (VM) contains eight low-order interleaved Xilinx BRAM

banks for a total capacity of 64 Kbytes (8 banks x 8 Kbytes per bank). Without crossbar

conflicts in accessing the VM banks, eight 32-bit data transfers can be performed on each

clock cycle using the eight LDST units, giving a peak bandwidth of 32Gbs with a design

frequency of 125 MHz. Of course, this bandwidth will double with an expanded design

for double-precision floating-point operations and respective data transfers. Each BRAM

36

is a true dual-port memory; one port is used for data transfers between the VM and the

VP’s register file, and the second port is used for data transfers between I/O controllers

and the VM through the PLB interface. Therefore, this architecture supports concurrency

and yields high bandwidth for data transfers involving the VM.

2.2.1 VP Scheduler

The Scheduler controls the working context for the entire VP. Based on the chosen

working state, the Scheduler provides configuration signals to all lanes and VCs. The

signals for a particular lane provide information about: a) which VC the vector lane is

assigned to, being VC 0, VC 1 or both; b) the total number of lanes assigned to the VC,

including this particular lane; c) the offset/index of the lane in the lane array assigned to

that VC; and d) the number of elements from a vector register which are located in this

lane. The information from the first configuration signal (i.e., configuration a) is used by

the lane to notify the appropriate VC of instruction completion, and the information

derived from configurations b), c) and d) is used by the lane’s LDST unit to properly

translate addresses for memory accesses and shuffle operations. The configuration signals

provided to the VC by the Scheduler configure the former to work either in the exclusive

context (i.e., one thread arriving from one scalar processor) or in the lane-sharing context

(i.e., two distinct threads arriving from the two scalar processors).

Figure 2.5 shows some of the possible states for the Scheduler; each cell in the

figure contains the state of the corresponding lane: which VC it is assigned to, the total

number of lanes assigned to that VC, the lane index, and the number of elements from a

vector register in that lane. STATE1 is similar to CTS in which all eight lanes are

assigned only to MB0 through VC0 and the Vector Length is 4×8=32. In STATE2, both

37

scalar processors have access to all eight lanes using FTS sharing; the value of VL is

8×8=64 with the application running on both MicroBlazes. In STATE3, each VC has

M=4 lanes assigned to it; the VL value for the application running on MB0 and MB1 is

16 and 32, respectively. Finally, STATE4 has four idle lanes and four lanes assigned to

VC1, and the VL value is 64.

Each MicroBlaze can use a set of four indivisible instructions to communicate

with the Scheduler. These are VP_REQ, VP_REL, VP_GETSTAT1 and

VP_GETSTAT2; in response, the Scheduler always replies with a message. For a core to

get access to the entire VP or to a subset of its lanes, the VP_REQ instruction is used.

This instruction contains two parameters: i) vl_size, which indicates the required vector

length (i.e., the number of vector elements in a vector register). vl_size can take the

values: 4, 8, 16, 32, 64, 128 and 256; and ii) perf_req, a three-bit field which indicates the

performance requirements, thus distinguishing among eight priority levels. However,

without loss of generality, in current implementation this field assumes two active values:

perf_req=3’b000 corresponds to a low priority/performance application; and

perf_req=3’b111 represents high priority. Based on the current VP state, any other

pending VP requests, and the details of the current request, the Scheduler decides to grant

a scalar processor request or not, and informs the requesting processor accordingly. In the

extreme case where VP_REQ instructions arrive from both scalar processors in the same

clock cycle, the Scheduler will reply to both of them but will positively acknowledge

only one. For example, Figure 2.6 shows the reply word in response to a VP_REQ

instruction. For a successful request, the Scheduler will reply with the acquired VL value

38

and the acquired performance fields. In the case of an unsuccessful request, the Scheduler

will transmit the available VL value and the currently available highest priority.

Lane L0 L1 L2 L3 L4 L5 L6 L7

STATE1

VC0
8

0

4

VC0
8

1

4

VC0
8

2

4

VC0
8

3

4

VC0
8

4

4

VC0
8

5

4

VC0
8

6

4

VC0
8

7

4

STATE2

VC0/1

8

0

8

VC0/1

8

1

8

VC0/1

8

2

8

VC0/1

8

3

8

VC0/1

8

4

8

VC0/1

8

5

8

VC0/1

8

6

8

VC0/1

8

7

8

STATE3

VC0

4

0

4

VC0

4

1

4

VC0

4

2

4

VC0

4

3

4

VC1

4

0

8

VC1

4

1

8

VC1

4

2

8

VC1

4

3

8

STATE4

Idle

Idle

Idle

Idle

VC1

4

0
16

VC1

4

1
16

VC1

4

2
16

VC1

4

3
16

Figure 2.5 State Examples for the Scheduler (each cell in the figure contains the state of

the corresponding lane: which VC it is assigned to, the total number of lanes assigned to

that VC, and the lane index).

31 28 27 17 16 14 13 1 0 0

OP_CODE Acquired VL/

Maximum Avail VL

Acq PERF /

Avail Perf

RSVD SUCC

Figure 2.6 Scheduler to MicroBlaze reply word in response to a VP_REQ.

In response to the VP_GETSTAT1 instruction, the Scheduler will reply with the

following information: status of VC1 and VC0 (idle or busy), number of lanes assigned

to VC1 and VC0, and performance status of VC1 and VC0. In response to the

VP_GETSTAT2 instruction, the Scheduler will reply with: status of VC1 and VC0 (idle

or busy) and Vector Length assigned to VC1 and VC0. The VP_REL instruction is used

to free all the VP resources previously acquired by a scalar processor. Table IV

summarizes the control instructions.

39

Table 2.4 VP Control Instructions Summary

Ctrl. Instruction Details

VP_REQ Request for resource allocation.

VP_REQ Request for release of allocated resources.

VP_GETSTAT1 Request for VL status.

VP_GETSTAT2 Request for Lanes, Performance and Power status reply.

In current VP prototype, three types of software-based adaptation are facilitated to

take advantage at runtime of any available VP resources: (a) at the core-run software

level, where the core changes at runtime the routine that implements a needed vector

kernel based on the available VP resources (the routines may be parameterized by vector

length or performance level); (b) closer to the VP level, the Scheduler is able to

appropriately configure the working context of the VP based on its current state and the

current set of requests coming from the scalar cores; and (c) at the lane level, where the

Scheduler can configure some of the vector lane parameters (e.g., the number of elements

per vector register contained in a vector lane).

Based on its current state and the request parameters, the Scheduler decides if any

resources are available and replies with a successful or unsuccessful acknowledge

message. Based on this information and the application routines that it has to run, the

scalar processor makes the final decision on the number of lanes to acquire. To avoid the

duplication of stored code, generic parameterized routines may be developed (e.g.,

routines with such parameters as the vector length, number of registers to be used, etc.).

Figure 2.7 shows the current algorithm run by the Scheduler, and Table 2.5

presents some examples of Scheduler state transition based on a request coming from one

of the scalar processors. Under CTS each vector kernel in a thread runs to completion

before releasing all the VP resources. In VLS context the scheduler gives equal priority to

40

competing threads by assigning the same number of exclusive VP lanes to each thread. In

FTS the scheduler can accommodate simultaneously multiple threads in any given cycle

as long as they need different VP resources; when competing for the same ALU or LDST

unit, the scheduler applies round-robin arbitration per unit. Since the main objective here

is to demonstrate the viability of VP sharing among cores and threads, for the sake of

brevity the development of very sophisticated scheduling schemes will become a future

research objective. Also, as experimental results dictate in Chapters 4 and 5, the specific

configuration to be chosen could be driven by power/energy and performance tradeoffs.

Figure 2.7 Scheduler algorithm.

In current implementation, under CTS only one VC can issue an instruction to

vector lanes at any time. In the FTS context, both VCs can issue simultaneously

instructions to the lanes. The lane execution pipeline is capable of processing

if 8 lanes IDLE {

 if req_perf=low {

 assign 4 lanes to VC;

 VL=requested_VL;

 REPLY=SUCC;

 }

 if req_perf=high {

 assign 8 lanes to VC;

VL=requested_VL;

REPLY=SUCC;

}

}

if 4 lanes IDLE {

 assign 4 lanes to VC;

 VL=requested_VL;

REPLY=SUCC;

}

if all 8 lanes BUSY {

 if requested_VL = current_VL {

assign 8 lanes to VC;

VL=requested_VL;

REPLY=SUCC;

 } else {

REPLY=UNSUCC;

 }

}

41

simultaneously instructions issued by both scalar processors since multiple vector

instructions can simultaneously reside in the pipeline. Under these circumstances, FTS

requires vector register renaming because the scalar processors must be assigned distinct

vector registers. Usually small- and medium-scale SIMD machines are currently used as

stream processors. Data can be streamed into the VM of VP-based structure using the

DMA capability; the program then operates on this data using the VM as a data

workspace, and the results are streamed back to the main memory using again DMA

control. This data streaming can occur simultaneously with arithmetic computations.

Table 2.5 Examples of Transition for Scheduler States

Scheduler

state

Request

parameters

Reply Scheduler next

state

all 8 lanes IDLE MB0 req

req_vl=64

req_perf=high

SUCC

VL=64

perf=high

8 lanes assigned

to VC0

VL=64

els per lane=8

all 8 lanes IDLE MB0 req

req_VL=128

req_perf=low

SUCC

VL=128

perf=low

8 lanes assigned

to VC0

VL=128

els per lane=32

all 8 lanes

assigned to VC0

VL=64

MB1 req

req_VL=64

req_perf=high

SUCC

VL=64

perf=high

8 lanes assigned

to VC0/1

VL=64

MB1 req

req_VL=128

req_perf=high

UNSUCC

8 lanes assigned

to VC0

VL=64

4 lanes assigned
to VC0

VL=64

MB1 req
req_VL=128

req_perf=high

SUCC
VL=128

perf=low

4 lanes assigned
to VC0

4 lanes assigned

to VC1

Figure 2.8 shows how the main routine of a MicroBlaze is developed for

CTS/FTS and VLS sharing, and Figure 2.9 shows steps 2.1 to 2.3 for CTS sharing. Just

before a thread becomes active, the software may clear all vector registers using a VP

clear instruction. Another possibility is to implement additional hardware to support a

local reset controlled by the Scheduler and triggered when the VP space is exclusively

42

acquired by one of the scalar processors. When the scalar processor finishes the vector

routine, it releases the coprocessor by issuing a VP_REL instruction.

Figure 2.8 Main MicroBlaze routine for CTS, FTS and VLS sharing.

Prior to this instruction the MicroBlaze code makes sure that no vector register is

dirty; also, the state of the vector processor for the respective MicroBlaze program is

saved back into the memory. Therefore, the state of the VP must be saved before the VP

is released in a shared environment.

Under FTS, vector instructions received from both scalar processors share the VP

resources. This context resembles fine-grain multithreading in superscalar processors,

and increased throughput is expected because there are no data dependencies between

instructions coming from different processors.

Under VLS, if the req_perf value is low (req_perf=3’b000), the Scheduler splits

the VP into two distinct lower-sized VPs with each one having its own vector length. For

example, if MB0 requests a VL=32 with req_perf=low and MB1 requests a VL=64 with

req_perf=low, the final state of the Scheduler will be: four lanes assigned to VC0 with 8

elements per lane from the same vector register and four lanes assigned to VC1 with 16

STEP 1.1 Lock DMA resource

STEP 1.2 Transfer data from DDR to Vector Memory (VM)

STEP 1.3 Unlock DMA resource

STEP 2.1 Acquire VP resources

STEP 2.2 Call VP routine to process data from VM

STEP 2.3 Release VP resources

STEP 3.1 Lock DMA resource

STEP 3.2 Transfer processed data from VM to DDR

STEP 3.3 Unlock DMA resource

43

elements per lane from the same vector register. Then, the VP will serve simultaneously

two threads of different vector lengths.

Figure 2.9 CTS vector sharing MicroBlaze routine.

2.2.2 Additional Architectural Features

During the architecture development new architectural features were added. This section

summarizes the updates added to the already presented baseline architecture.

Different vector lengths per CPU. In FTS context sharing each CPU can request

for any vector length that is a power of two. This requires duplicating the configuration

register that keeps the number of elements per lane and adding to each instruction a field

(bit) indicating the VC number.

AnyVectorLength support allows any scalar core to require a vector length that is

between 0 and VL-1 (called, from now on, aVL). A new control instruction is added, that

is VP_ANY_REQ. This feature has several advantages:

(i) Avoids strip-mining of loops with known number of iterations (for loops) since

the aVL value could match exactly the number of loop iterations.

STEP 2.1

while (ack != IDLE) { //wait until the VP is idle

VP_REQ ack; // Scheduler returns a positive or negative reply;
}

STEP 2.2

 VLD VR0, A; // Processor starts using the VP; loads

 //the vector register (A is address in Vector Memory)
 …

 VST VR4, B; // Processor finishes the routine;

 // saves the vector result

 // (B is address in Vector Memory)
STEP 2.3

VP_REL ack; // Unlock the VP resources and receives

 // a reply if successful or not;

44

(ii) It could fit a natural vector length that is not a power of two. For example, in the

Gaussian elimination algorithm the number of nonzero elements in the rows that

needs to be processed decreases gradually from the width of the matrix down to

one.

The Scheduler is responsible for reconfiguring appropriately in each lane the

register that keeps the number of elements per lane. Also, for each lane configuration

space, a mask bit per VC is required to disable the last operation of any instruction in

each lane for vector lengths which are not multiple of the total number of lanes. For

example, Figure 2.10 shows the state of each lane after a VP_REQ instruction and after a

VP_ANY_REQ instruction in a VP having eight lanes. Any instruction prior to

VP_ANY_REQ will be executed with the old vector length and the instruction following

it will have the new vector length. AnyVectorLength does not change the hazard detection

mechanism; still, the detection of all hazards is done on vector registers with VL vector

length.

Quality of Service (QoS) support. The goal of scheduling is to provide the desired

utilization to each thread that issues VP instructions. Managing VP instruction streams

(VP threads) with different priorities is a daunting challenge. The main reason is that

scheduling instructions coming from different threads may require different vector

lengths and different throughputs. Scheduling at the instruction level may result in an

unbalanced utilization. In the baseline FTS sharing context, the round robin policy at the

instruction level implemented in the Scheduler is used to control the lanes. This scheme

works quite well and provides fair utilizations to the threads when the vector lengths of

instructions issued by both VCs are equal; but not so well in other cases.

45

CPU 0:

0: VP_REQ VL=64

...

2: VP_ANY_REQ VL=37

...

CPU 1:

1: VP_REQ VL=32

...

3: VP_ANY_REQ VL=18

...

VC0/1

8

0

8

1

4

1

L0

VC0/1

8

1

8

1

4

1

L1

VC0/1

8

2

8

1

4

1

L2

VC0/1

8

3

8

1

4

1

L3

VC0/1

8

4

8

1

4

1

L4

VC0/1

8

5

8

1

4

1

L5

VC0/1

8

6

8

1

4

1

L6

VC0/1

8

7

8

1

4

1

L7

VC0/1

8

0

5

1

3

1

VC0/1

8

1

5

1

3

1

VC0/1

8

2

5

1

3

0

VC0/1

8

3

5

1

3

0

VC0/1

8

4

5

1

3

0

VC0/1

8

5

5

0

3

0

VC0/1

8

6

5

0

3

0

VC0/1

8

7

5

0

3

0

Figure 2.10 The configuration state of each lane after instructions 0 and 1 are executed

(top row) and after instructions 2 and 3 are executed (bottom row). Each lane

configuration state contains (in each cell from top to bottom): VC ID(s) indicating from

which VC the lane receives instructions; number of total lanes forming the VP; the lane

index; per VC (VC0 or VC1) number of elements from each vector register in the lane;

per VC mask bit required to mask the last operation of any instruction in each lane for

vector lengths which are not multiple of number of lanes.

Also, since the ALU and LDST instructions coming from both VCs are stored in

the same lane’s circular FIFO, one instruction issued by one CPU may slow down or

block the execution of an instruction coming from the other CPU independent of the

arbitration policy. Therefore, the following modifications are done in order to support

cycle-based arbitration logic at the lane level:

(i) Per VC ALU and LDST instruction FIFOs in each lane. In order to reduce the

impact of duplicating the hardware resources allocated to lane instruction FIFOs

the number of FIFO locations is reduced by half. In the baseline

implementation, each ALU or LDST FIFO stores a maximum of 8 instructions;

46

in the updated architecture, each VC ALU or LDST FIFO can store up to 4

instructions. In all simulations this modification has no impact on performance

since the total maximum number of ALU or LDST instructions that can reside

in a lane is still 4+4=8. This modification resembles the hardware support for

virtual channels introduced in [Dally, 1992].

(ii) A round robin or strict priority arbitration logic at the lane level. In the ALU

and LDST units a simple arbitration logic is added to arbitrate in each cycle

which instruction element gets executed. This solution introduces flexibility to

control individual thread performance (i.e., it satisfies thread quality of service

at the expense of adding more complex arbitration logic).

Figure 2.11 shows additions to the lane. The Round Robin (RR) arbiter can be

configured by Scheduler (as per software request) to work in the strict priority mode

(SP); that is, always the arbiter will always choose the high priority instruction element to

be executed; else, if no high priority instruction exists in the instruction FIFO, the low

priority instruction element will get access to the lane execution pipeline. Additional

flexibility could be supported by adding a weighted round robin logic. However, this will

add additional logic delay to the instruction path for an FPGA implementation, but might

be a good design choice in an ASIC design. Therefore, each instruction stream will have

a separate path to the execution stages in LDST and ALU units. In the FTS context and

the SP mode, a high priority thread could potentially have the same performance as if it

running in the single thread configuration (CTS mode) assuming there is no contention

on the Memory Crossbar on IO instructions. This case appears if in each lane a LDST

instruction occupies a number of pipeline slots equal to the number of elements in the

vector register corresponding to that lane. Contention may occur in programs with strided

and indexed load/stores and shuffle operations.

47

2.3 Resource Consumption and Resource Scalability

The VHDL design is also synthesized using Xilinx ISE 12.3 synthesis flow for the Xilinx

Virtex-6 XC6VLX130T FPGA device. The Virtex-6 FPGA is built using a 40 nm state-

of-the-art copper process technology, and contains a column-based architecture

comprising logic slices, 36-Kbit block RAMs (BRAMs - RAMB36_EXP), DSP slices

(DSP48E) and many I/O hardwired IPs [Xilinx, 2011]. Each logic slice can implement

functions using four 6-input look up tables (LUTs) and four flip-flops; the LUTs can also

be configured to realize dual-output 5-input LUTs. A LUT is a 64-bit memory capable of

realizing any of 32 or 64 functions. The DSP48E slice is based on a 25x18 bit multiplier

and a 48-bit adder/subtractor/accumulator. As a note, the VLX130T FPGA fabric is

equivalent with approximately one million ASIC gates.

Table 2.6 shows resource consumption figures for the VP and VM in the Virtex

XC6VLX130T FPGA device. Note that a vector lane contains a LDST unit, an ALU unit,

a VRF and a FVRF; the VP contains eight lanes, two VCs and one Scheduler. Except for

the last row in the table, the percentage values are shown relative to the total design

resource consumption. As expected, most of the design is occupied by ALU units. Each

lane consumes 1066 LUTs and 3642 registers (i.e., 12.4% and 11.3%, respectively, of the

entire design), and the device consumption collectively by the VC and Scheduler is less

than 4%. The overall device consumption by the VP and VM is 8833 LUTs and 32106

registers, which represent 11.1% and 20%, respectively, of the VLX130T resources. The

rest of the FPGA resources can be used for the realization of scalar processors, buses,

DMAs, I/O controllers and other IPs.

48

VRF

LDST Queue ALU Queue
VC0

L/S Fetch

SM

to Memory Crossbar from Memory Crossbar

LDST WB

2 Tclk delay

(relative to Rdy)

VC0 Instruction Bus

ALU Decode &

Fetch

ALU Fetch

SM

+/-

A clks

latency

x

M clks

latency

NEG

ABS

MOV

(1 Clk)

V FLAG REG

FILE

ALU WB SM WB Stage Arbiter

Misc. = NEG,

ABS, MOVE

EXECUTE UNITS

Result

Buffer

Result

Buffer

Result

Buffer

El & Indx

Addr

Addr Gen

Stage 1

Addr Gen

Stage 2

L/S decode

Ctrl

Request

Ctrl

Address WrData

Mem Indx

2R Ports

2R Ports

1W Port

1W Port

LDST Queue
VC1

ALU Queue
VC1VC0

VC1 Instruction Bus

RR/SP Arbiter RR/SP Arbiter

Figure 2.11 Vector Lane architecture to support QoS and two VP instructions per cycle.

The modifications from the baseline architecture are colored in gray.

Table 2.6 Resource Consumption in the Virtex-6 XC6VLX130T FPGA Device for a

Configuration of Eight Lanes and Eight Memory Banks

 FFs LUTs BRAMs DSP48E1

VP (8LANES) 30310 (94%) 8518 (96%) 8 24

LANE 3642 (11.3%) 1066 (12.4%) 1 3

LDST unit 1156 (3.6%) 114 (1.3%) - 1

ALU unit 2343 (7.3%) 873 (10.1%) - 2

VRF 107 (<1%) 3 (<1%) 1 -

FVRF 27 (<1%) 16 (<1%) - -

CFG 12 (0.04%) 2 (~0%) - -

VC 489 (1.5%) 71 (<1%) - -

Scheduler 277 (0.8%) 80 (1%) - -

VM (8 MEM BANKS) 1796 (7.7%) 315 (3.8%) 16 -

VP+VM (% out of XC6VLX) 32106 (20%) 8833 (11.1%) 24(9%) 24(5%)

Total XC6VLX130T 160,000 80,000 264 488

49

(a)

(b)

Figure 2.12 Resource scaling for a vector processor with a number M of lanes equal with

2, 4, 8, 16 and 32 on XC6VLX130T FPGA device. Number of memory bank equals the

number of lanes and the crossbar has the size M×M. All the numbers are normalized to

the 2 lanes configuration numbers.

Figures 2.12 (a) and (b) show the usage of FPGA primitives for a vector processor

with a number of lanes and memory banks between 2 and 32. As observed, resources

scale linearly with the number of lanes except for the MUXF8 primitive from Figure 2.12

(b). This component is inferred by the Memory Crossbar and, as expected, scales

quadratically with the number of lanes (especially for the 16×16 or 32×32 crossbar).

Therefore, it is natural to assume that all resources scale linearly with the number of lanes

0

5

10

15

20

Number of Lanes

F
P

G
A

 R
es

o
u

rc
es

INV

LUT1

LUT2

LUT3

LUT4

LUT5

LUT6

LUT6_2

0 2 4 8 16 32

0 2 4 8 16 32
0

10

20

30

40

50

60

70

80

90

Number of Lanes

F
P

G
A

 R
es

o
u

rc
es

MUXCY

MUXF7

MUXF8

XORCY

FFs

RAMs

DSP48E1

50

except for those inferred by the crossbar. The same conclusion is expected to hold for an

ASIC implementation. Also, even if they have low contribution to the total budget, some

components of the design have fixed resources for any number of lanes: VCs, the

Scheduler, and the interface between VM and the main bus (PLB).

Figure 2.13 Maximum Frequency after synthesis for a Vector Processor with 2, 4, 8, 16

and 32 number of lanes on XC6VLX130T FPGA device. Number of memory bank

equals the number of lanes and the fully connected crossbar has size M×M.

Figure 2.13 displays the maximum frequency after synthesis for a VP design

configured to have 2, 4, 8, 16 or 32 lanes. For the 2 and 4 lane configurations, the critical

path lies in the vector lane logic; more explicitly, it involves the vector register file

because this component runs at double the speed, i.e., 250 MHz. Starting with the 8-lane

configuration, the crossbar becomes the timing bottleneck. For more than 16 lanes, other

solutions for access to memory banks can be implemented in order to keep the working

frequency high. The lane access to the memory banks follows the Uniform Memory

Access (UMA) memory model and there are two solutions to scale the design:

2 4 8 16 32
0

146

199

228
239

No Of Lanes

S
y

n
.
M

a
x

 F
r
e
q

u
e
n

c
y

 (
M

H
z
)

51

(i) The first design option is to implement a non-blocking multistage switch; this

will increase the working frequency but will affect the latency of accesses.

However, since the VP is a throughput oriented machine, the performance

impact is expected to be minimal.

(ii) The second design option is to change the memory model to a Non-uniform

Memory Access (NUMA); i.e., different access latencies for different memory

banks. This option stems from the fact that the memory accesses in most of the

current applications are frequently unit-strided. If the vector memory addresses

for simultaneous memory accesses are distinct for the M lanes in a M×M

configuration of the VP, the lane with index n will access in this unit-stride

mode only the memory bank with index n. In these cases, lane accesses in the

unit-stride mode will have minimal latency; however, non-strided and indexed

accesses will potentially have increased latencies. Application Software should

be aware of these particular architectural features and should favor memory

accesses aligned to M element boundaries.

52

CHAPTER 3

APPLICATIONS

In order to evaluate VP design and prove the usefulness of the sharing schemes, a set of

applications must be developed. Ideally, the processor should be evaluated using full-

size, end-user applications running within the environment of a complete product.

However, such an evaluation is rarely possible since it requires a full software-hardware

co-design. Instead, processor designers evaluate and compare processors using a

benchmark suite; i.e., a short collection of applications of interest. This chapter describes

the software development process in Section 3.1 and some of the key benchmarks in

Section 3.2.

3.1 Software Implementation

Software implementation requires handwritten or inline assembly code, translating vector

instructions with a modifed GNU assembler (gasm). Researchers have investigated the

auto-vectorization capability of gcc, but have not yet used it successfully [Yiannacouras,

2009]. Instead of an auto-vectorization compiler, the SW implementation uses C macros

exclusively to emit Microblaze custom instructions on demand without modifying gcc.

The custom instructions are Microblaze instructions that are communicated using Fast

Simplex Link (FSL) channels.

53

MicroBlaze

Register

file

Custom HW Accelerator

(Vector Processor)

FSLx

// Configure or request resources from HW Accelerator

cput Ra, FSLx //put ctrl instruction on FSLx

// Wait for acknowledge

cget Rb, FSLx

// Send to Accelerator instruction or/and operands

put Rc, FSLx

put Rd, FSLx

Figure 3.1 FSL used with the Vector Processor.

The FSL channels are dedicated uni-directional point-to-point 32-bit data

streaming interfaces. In Figure 3.1 the put instruction from the MicroBlaze ISA is used

to transfer information from a general-purpose register to an FSL port. The get

instruction is used to transfer data in the opposite direction. Both instructions come in

four flavors: blocking data, non-blocking data, blocking control, and non-blocking

control. The FSL control instructions cput and cget are used by MicroBlaze to

communicate with the control part of the VP, i.e., the Scheduler. This method is similar

to extending the ISA with custom instructions, but has the benefit of not making the

overall speed of the processor pipeline dependent on the custom function. Also, there are

no additional requirements on the software tool chain associated with this type of

functional extension. The macros are more readable, and the system is much simpler to

program because the user does not need to track the scalar values as register numbers.

Instead, the user tracks only the memory addresses and vector register numbers needed to

form the VP instructions.

Some convenience routines are implemented to simplify the programming of the

VP. These routines are implementing the kernels needed to benchmark the VP and also

useful DMA data transfers. The VP architecture comprises a memory model (Vector

Memory) that is not cacheable. The same memory model paradigm is used in the Cell

54

processor [Chen et al., 2007] with a Local Memory in each processing element and in

most of the embedded systems that make use of such called SPM [Marongiu et al., 2011].

This simple design has several practical advantages and is particularly profitable in the

embedded domain. SPM requires up to 40% less energy and 34% less area than cache

[Banakar et al., 2002], and provides better performance than cached systems for

applications with regular memory accesses. Unlike caches, it is the programmer’s

responsibility in VP system (possibly with the help of the compiler) to explicitly manage

data transfers between the main memory and the Vector Memory using DMA transfers.

Figure 3.2 (a) shows the declaration of two functions used to transfer data

between VM and the main memory. DMA_Transfer_Blocking() stalls the execution

of the CPU until the entire transfer is completed, and DMA_Transfer_NonBlocking()

initiates the DMA transfer and resumes execution in parallel with the data transfer.

Except in cases where synchronization between data transfers and the VP instruction

streams is required, non-blocking version is used in order to overlap DMA transfers with

VP execution. Figure 3.2 (b) presents the implementation of a Finite Impulse Response

(FIR) function where the FIR size and the vector length VL are input parameters. The

development of libraries where the vector length is passed as a parameter introduces

flexibility and portability to the programmer.

3.2 Benchmarks

The software routines were implemented using the Xilinx Platform Studio (XPS) and

Xilinx Software Development Kit (SDK) [Xilinx SDK, 2011], and compiled with

MicroBlaze gcc (mb-gcc).

http://forums.xilinx.com/t5/EDK-and-Platform-Studio/mb-gcc-and-xmd/td-p/45392

55

void DMA_Transfer_NonBlocking(void *Src_Addr, void *Dst_Addr, u32 ByteCount);

void DMA_Transfer_Blocking (void *Src_Addr, void *Dst_Addr, u32 ByteCount);

(a)

void fir_outprod_v01(Xfloat32 *CoefPtr, Xfloat32 *Addr_Src_in, \

 Xfloat32 *Addr_Dest_in, \

 u32 FirSize, u32 ElemCount, u32 VectorLength) {

...

 for (chunk_indx=0; chunk_indx < ElemCount/VectorLength; chunk_indx++){

...

for (n=0; n < FirSize/4; n++) {

..

_VLD(VREG_01, VF_0, Addr_Src+4*n); // load VREG_01

_VLD(VREG_02, VF_0, Addr_Src+4*n+1); // load VREG_02

...

_VADD(VREG_MAC, VREG_MAC, VREG_03, VF_0);

...

}

_VST(VREG_MAC, VF_0, Addr_Dest);

 ...

 Addr_Src = Addr_Src + VectorLength;

 Addr_Dest = Addr_Dest + VectorLength;

 }

...

}

(b)

Figure 3.2 (a) DMA transfer utilities and (b) implementation of a FIR kernel.

Five vector intensive programs, namely 32-tap FIR filtering, 32-point decimation-

in-time radix-2 butterfly FFT, 1024x1024 dense matrix multiplication (MM), LU

decomposition, and Sparse Matrix Vector Multiplication (SpMVM) were tested on VP

architecture. The routines for the VP were hand-coded, trying to improve the instruction

throughput by using data prefetch via load instructions. Figure 2.8 from Chapter 2 shows

how the main routine of each MicroBlaze processor is built for CTS sharing. With FTS

and VLS sharing, there is no exclusive access to the VP, so STEPs 2.1 and 2.3 are

removed; that is, a request for VP resources can be granted without waiting for the VP to

be idle. Except for LU decomposition, each MicroBlaze uses its own partition in the VM,

56

and there are no data dependencies between threads running on the two processors. In

order to have exclusive access to the single DMA module, the Mutex IP core provided by

Xilinx is used. The lock and unlock procedures for the DMA module require locking and

unlocking the Mutex, respectively. For an in-depth evaluation of the architecture, for

each benchmark several performance-power scenarios are created; this involves loop

unrolling, different vector lengths and instruction rearrangement optimizations.

32-tap FIR filtering (FIR32) is implemented using the outer product [Sung and

Mitra, 1987] that avoids the reduction operation. Using a loop of 32 iterations and a given

vector length for the VL, VL results are computed at the end of the loop. 45 FIR

scenarios were produced for various combinations of: (i) CTS, FTS and VLS VP sharing

contexts; (ii) vector lengths of 32, 64, 128 and 256; (iii) no loop unrolling, or unrolling

once or three times; and (iv) instruction rearrangement optimization. All vector memory

accesses are unit-strided.

FFT on 32 elements is implemented using a five-stage butterfly; each stage

involves complex multiply and add vector operations, and a shuffle operation. 12

scenarios were produced for various combinations of: (i) CTS, FTS and VLS contexts;

(ii) vector lengths of 32 and 64; (iii) no loop unrolling or unrolling once; and (iv)

instruction rearrangement optimization. Since the number of vector registers for FFT is

more than 16, in a 8-lane configuration of the VP, the maximum vector length cannot be

greater than 64 (see Table 2.3). The VP routines contain indexed loads with deterministic

index and shuffle operations with deterministic non-unit stride patterns (butterfly).

MM is based on the same procedure as FIR filtering using Single-precision real

Alpha X Plus Y (SAXPY) in a loop to obtain one row result at the end of the loop; 21

57

scenarios were produced for combinations of: (i) CTS, FTS and VLS contexts; (ii) vector

lengths of 32, 64, 128 and 256; (iii) no loop unrolling or unrolling once; and (iv)

instruction rearrangement optimization.

LU decomposition consists of generating the L and U matrices from a dense

128×128 matrix using the Doolittle algorithm [Golub and Van Loan, 1996]. As the

number of nonzero elements decreases, the value of VL is successively decremented

using AnyVL support during Gaussian elimination, starting with 128 and then becoming

64, 32 and 16. Therefore, the time for LU decomposition depends on the execution times

for VL between 128 and 1. Three scenarios were produced corresponding to the CTS,

FTS and VLS contexts. Under FTS and VLS, the workload is split evenly between the

two MicroBlaze processors.

Sparse Matrix Vector Multiplication (SpMV) is implemented using the data in the

Compressed Row Storage (CSR) format and consists of two stages. In the first stage

(named SpMV_k1) the array values are multiplied with the corresponding elements from

the vector and in the second stage (named SpMV_k2) addition along each row is

performed. In order to speed-up the addition stage, the rows of the sparse matrix were

stored in increasing order of their number of non-zero elements. The Load Index

instruction is intensively used in both stages (the index vector has random values

corresponding to the column position in the sparse matrix). Therefore, the non-uniform

access of the LDST units to VM banks produces contention in the crossbar such that the

crossbar throughput never reaches 100%. This case is similar with Head of Line (HOL)

blocking in input buffered switches. Thus, as the number of lanes M increases, the LDST

throughput of each lane is expected to decrease. As M goes to infinity, the throughput

58

goes to 58.6% for uniform random I/O patterns [McKeown, 1999]. However, usually,

better throughput is obtained because besides the load index instructions there are unit-

stride load/store instructions in the LDST instruction stream.

59

CHAPTER 4

ANALYSIS OF PERFORMANCE AND POWER RESULTS

Sharing a Vector Processor in a multicore system as an accelerator for computation-

intensive tasks could greatly increase the overall throughput through DLP and TLP at low

area and power costs. The evaluation procedure and results to support this argument are

shown in this chapter.

Section 4.1 presents the evaluation procedure; Section 4.2 presents relevant

performance, power and energy results for popular vector-dominant floating-point

applications and it is followed by a comparative analysis. Section 4.3 analyzes the

performance scalability. Section 4.4 presents the quality of service results as per Section

2.2.2 and the Chapter ends with conclusions summarized in Section 4.5.

4.1 Evaluation Procedure

Figure 4.1 Evaluation Procedure.

Figure 4.1 displays the evaluation methodology used to evaluate the VP sharing contexts.

Execution times and the utilization of lane units were obtained with ModelSim

60

simulations using the RTL system model. The Xilinx XPower tool [Xilinx Inc., 2010a] is

then used to calculate the dynamic power dissipation based on data stored in the

simulation record files (.vcd files recording the switching activities of all the logic and

wires in the FPGA, which are generated by ModelSim during the timing simulations with

the place-and-route netlist). Static power is computed based on total static (also called

quiescent) power of the entire FPGA device and the percentage of resource occupied by

the implemented design:

_ _

_ _ _

VP FPGA

ST ST

Design Resources Count
P P

Total FPGA Resources Count
 (4.1)

To obtain realistic power figures, the timing simulations employed real floating-

point input data. In all power calculations, all the design nets were matched; i.e., toggle

information is extracted from all the nets in the netlist. Besides the execution times under

various scenarios, figures for the average utilization of the ALU and LDST units (per

vector lane) are also produced. The ALU average utilization is defined as the average

number of results produced by a lane’s arithmetic and logic execution unit in 100 clock

cycles, and the LDST utilization is the average number of data words sent or received to

or from the MC crossbar in 100 clock cycles. The peak performance of a unit has a

utilization of 100.

4.2 Performance and Power Results

All the performance and power results from this section were obtained for the Virtex-5

FPGA device. Tables 4.1-4.5 show the ALU and LDST utilization and performance

results in reference to the execution time for various configurations of the

61

system: a) one scalar processor working without the VP and the DMA unit, and all data

and instructions are pre-stored in the on-chip local memory; b) two scalar processors

working without the VP and the DMA unit, and all data and instructions are pre-stored in

the on-chip local memory; c) a scalar processor using exclusively the VP and the DMA

unit (this represents CTS); d) two scalar processors working with the VP in the FTS

context and the shared DMA unit; e) two scalar processors working with the VP in the

VLS context and the shared DMA unit (each MicroBlaze acquires four lanes); and, for

fair comparisons across platforms, f) 3.2 GHz Intel Xeon SL7DX (Nocona) processor in

a commercial PC running the same algorithmic implementation as the scenarios except

that the vectorized code is replaced with sequential C code (standard); the compilation is

done using the O3 option with no vectorization (no SSE extensions); and g) the same

Xeon processor running optimized routines with the FFTW library for FFT [Frigo and

Johnson, 2005], Intel Integrated Performance Primitives (IPP) [Intel IPP, 2010] for FIR

and LU factorization and Math Kernel (MKL) [Intel MKL, 2011] libraries for matrix

multiplication; the compilation is done using the O3 option with SSE3 vector extensions.

For each one of the c), d) and e) configurations, the results for three distinct scenarios that

combine different vector lengths with loop unrolling are presented. For FIR filtering, the

results are shown in ns per dot product. For FFT, the results are in µs per 32-point

complex FFT operation, and for MM the results are in µs for the calculation of a single

element in the product matrix. Besides the total execution time for the LU decomposition

of a 128×128 dense matrix, Table 4.4 shows the time to process one single row for

various vector lengths. Since recording a .vcd file for an entire LU decomposition task is

impractical due to its size, Table XIV shows the power and energy dissipation for one

62

processed row in Gaussian elimination. The SpMVM kernel uses bccsstk13 matrix from

the Matrix Market [Mtx Market, 2007] as input data, and the performance and energy

results are presented per resulting vector (averaged over 2003 SPFP elements).

Table 4.1 Performance Comparison for 32-tap FIR

 Average utilization (%) Execution Time (ns) Speedup

 ALU LDST

One MB w/o VP N/A N/A 4060 1

Two MB w/o VP N/A N/A 2030 2

CTS

VL=32; no loop unrolled 17.51 8.86 371.25 10.93

VL=128; no loop unrolled 39.24 19.94 165.56 24.52

VL=128; unrolled three times 83.31 42.51 78.31 51.85

FTS

VL=32; no loop unrolled 34.97 17.70 186.01 21.83

VL=128; no loop unrolled 75.66 38.24 85.98 47.22

VL=128; unrolled three times 99.71 50.67 65.19 62.27

VLS

VL=32; no loop unrolled 27.68 14.09 234.12 17.34

VL=128; no loop unrolled 49.51 25.29 131.28 30.92

VL=128; unrolled three times 89.89 45.71 72.21 56.22

FTS
VL=4; unrolled three times

9.47 4.74 685.11 5.92

VLS 10.94 5.83 593.24 6.84

GPP Xeon - standard N/A N/A 340.08 11.94

GPP Xeon - IPP library N/A N/A 9.23 439.87

Table 4.2 Performance Comparison for 32-point Complex FFT

 Average utilization (%) Execution Time (µs) Speedup

 ALU LDST

One MB w/o VP N/A N/A 160.01 1

Two MB w/o VP N/A N/A 80.01 2

CTS

VL=32; no loop unrolled 43.29 23.38 3.264 49.02

VL=32; unrolled once 65.10 34.78 2.172 73.66

VL=64; unrolled once 78.92 43.09 1.782 89.78

FTS

VL=32; no loop unrolled 76.28 42.39 1.844 86.76

VL=32; unrolled once 87.20 46.44 1.618 98.89

VL=64; unrolled once 89.45 48.60 1.573 101.72

VLS

VL=32; no loop unrolled 62.74 35.11 2.192 72.99

VL=32; unrolled once 74.23 41.60 1.848 86.58

VL=64; unrolled once 79.18 44.56 1.701 94.06

GPP Xeon - standard N/A N/A 100.01 1.60

GPP Xeon - FFTW N/A N/A 0.312 512.85

For FIR, FFT, MM and SpMV in the VLS and FTS contexts, both scalar

processors run the same routine. For all benchmarking scenarios under CTS that keep the

VP active throughout execution, the performance is independent of the number of

63

involved cores and threads. Compared to the classic implementation where a VP is

always tied to the same scalar processor, the advantage of CTS in a multicore

environment is that VP ownership can change dynamically for more robust application

realization.

Table 4.3 Performance Comparison for Matrix Multiplication

 Average utilization (%) Execution Time

(µs)

Speedup

 ALU LDST

One MB w/o VP N/A N/A 130.90 1

Two MB w/o VP N/A N/A 65.45 2

CTS

VL=32; no loop unrolled 20.37 20.70 10.09 12.97

VL=32; unrolled once 33.94 34.50 6.03 21.71

VL=128; unrolled once 68.30 69.51 3.01 43.49

FTS

VL=32; no loop unrolled 40.59 41.29 5.055 25.89

VL=32; unrolled once 67.09 68.20 3.048 42.95

VL=128; unrolled once 97.32 98.91 2.114 61.92

VLS

VL=32; no loop unrolled 33.83 34.34 6.086 21.51

VL=32; unrolled once 53.51 54.45 3.791 34.53

VL=128; unrolled once 81.88 83.40 2.494 52.48

GPP Xeon - standard N/A N/A 20.56 6.36

GPP Xeon - MKL library N/A N/A 0.651 201.38

Table 4.4 Performance Comparison for LU Decomposition

 Average utilization (%) Execution

Time (µs)

per row of size

VL

Execution

Time (µs)

for entire LU

dec.

Speedup

 ALU LDST

One MB w/o VP N/A N/A N/A 1,034,340 1

Two MB w/o VP N/A N/A N/A 517,170 2

CTS

VL=16 4.73 5.34 0.632

5,137 201.35
VL=32 9.88 10.36 0.632

VL=64 20.11 20.42 0.632

VL=128 40.44 40.54 0.632

FTS

VL=16 8.32 8.54 0.312

2,568 402.78
VL=32 18.74 21.08 0.316

VL=64 39.93 41.36 0.316

VL=128 81.05 82.30 0.316

VLS

VL=16 8.70 11.11 0.316

3,522 293.68
VL=32 19.05 21.03 0.316

VL=64 39.62 41.05 0.316

VL=128 53.86 54.95 0.472

GPP Xeon - std N/A N/A N/A 89,060 11.62

GPP Xeon (IPP) N/A N/A N/A 587 1762.08

64

Table 4.5 Performance Comparison for Sparse Matrix Vector Multiplication (Eight

Lanes and Eight Memory Banks Configuration); Sparse Matrix is bcsstk13; Utilization

and Time is Averaged Over one Dense Row (2003 Elements)

 Average utilization (%) Execution Time

(µs)

Speedup

 ALU LDST

One MB w/o VP - - 59,018 1

Two MB w/o VP - - 29,509 2

CTS SpMV_k1 VL=32 nu
SpMV_k2 VL=32 nu

9.35 20.90 3,378 17.48

FTS SpMV_k1 VL=32 nu

SpMV_k2 VL=32 nu
18.22 39.39 1,711 34.49

VLS SpMV_k1 VL=32 nu

SpMV_k2 VL=32 nu
14.79 33.11 2,020 29.22

GPP Xeon - standard - - 8,401 7.025

Table 4.6 Average Execution Time (µs) for the 32-tap FIR Routine with Various

Statistical Average Stall Ratios (VL=128; Unrolled Three Times)

 Average stall ratio (%)

0 25 50 75 100

One CPU with VP

VL=128; unrolled three times.

78.31 98.25 117.78 137.55 157.42

CTS 78.31 78.54 79.19 86.95 92.07

FTS 65.19 69.84 76.11 83.15 91.61

VLS 72.21 73.86 78.44 85.01 92.81

From these performance results the following conclusions can be made:

i) The best performance is provided by FTS followed by VLS and CTS;

ii) A higher VL value increases the data-level parallelism, and therefore the

performance.

iii) Loop unrolling increases the utilization of the units and also the overall

performance.

iv) With a low utilization of the units the speedup doubles from CTS to FTS (see

VL=32 without loop unrolling for FIR, FFT, MM and LU); moreover, if the

utilization from each thread is less than 50%, the speedup of FTS almost

doubles as compared to CTS.

v) For kernels with a high utilization of the lane units in the CTS mode, FTS can

provide a speedup of 1.2 to 1.5 as compared to CTS. This is caused by the fact

that FTS achieves close to 100% utilization (peak performance) and the VP can

no longer accommodate more instructions in its pipeline.

65

vi) Thread-level parallelism can provide higher speedup than data-level parallelism

and loop unrolling (for FFT, FTS with VL=32 and without loop unrolling yields

almost the same performance as CTS with VL=64 and the loop unrolled once).

Therefore, the lack of data-level parallelism and inadequate compiler

optimization (loop unrolling) for an application can be alleviated by

simultaneously processing an additional thread.

vii) LU decomposition exhibits low utilization for low vector lengths. This is caused

by the scalar code run by MicroBlaze that involves one floating-point division

and two memory accesses per processed row; it can fully overlap VP code runs.

As a consequence, two scalar processors in the FTS context provide a speedup

of two as compared to the CTS context. This is a good example of applications

where the fraction of sequential code is substantial and the utilization of the VP

accelerator is low. Thus, adding threads from two or more processors will

increase the speedup almost linearly for the same VP resources.

There are cases where VLS can provide better results than FTS. Table 4.1

presents a scenario where each core issues instructions for FIR kernels requesting vector

length smaller than the number of VP lanes. Since in VLS four exclusive lanes are

assigned to each core, all eight lanes will be used. In FTS, four lanes will be idle in each

execution cycle since all eight lanes simultaneously receive the same vector instruction.

Therefore, for small vector sizes FTS forces several lanes to be idle, thus yielding

performance inferior to VLS. CTS will perform worse than both since only one thread

that utilizes half of the lanes is active in each cycle. Contrary to FTS, however, a thread

that enters the VP under CTS completes execution without any interruption as long as all

dependencies can be resolved internally. As compared to Xeon standard routines, FTS

provides a speed-up between 5 (for FIR) and 63 (for FFT) despite the much lower

operating frequency of the FPGA-based prototype. On the other hand, highly optimized

routines running on Xeon outperformed all VP sharing schemes. However, if the

66

execution times are translated into clock cycles for fairness since FPGA implementations

run at much lower clock frequencies, then the best FTS-based scenario for FIR32

consumes just 8.15 clock cycles as compared to 29.54 cycles for Xeon; these numbers are

averages for a single FIR32 run obtained after running a large number of consecutive

FIR32 routines. In this case, the FTS-based cycle speedup is 3.62. The best FTS-based

scenario for a complex FFT32 routine consumes 196 clock cycles while Xeon takes 998

cycles, for a speedup of 5.09. The 1024×1024 matrix-multiplication FTS scenario takes

262.75 cycles as compared to 2080 cycles for the respective optimized MKL matrix

function running on Xeon, for a resulting 7.92 speedup. Finally, 321,078 clock cycles are

taken by FTS to compute LU decomposition as compared to 1,878,411 cycles on Xeon,

for a 5.85 speedup. Therefore, with the performance is expressed in clock cycles, the VP

sharing techniques demonstrate 3.62-7.92 speedups compared to optimized Xeon runs.

In many cases, a thread may stall at various times. Stalls may occur during the

execution of a single or multiple threads running on a single core with a dedicated VP, or

during the execution of threads running on multiple cores sharing a VP. Table 4.6 shows

the average execution time for scenarios where each core runs FIR routines of random

size interleaved with stalls of random duration. The stall ratio is defined as the ratio

between the average duration of a stall and the average time that the routine utilizes the

VP. Without stalls (i.e., the ratio is zero), CTS provides the same performance as a single

core attached to a VP with the same total number of lanes (eight in the prototype); FTS

gives the best performance. As the stall ratio increases, the performance between CTS

and a single core with a VP increases. Also, the performance numbers for CTS and VLS

approach that of FTS and become almost identical for a stall ratio of 100%.

67

Table 4.7 Power Comparison for 32-tap FIR

 Dynamic Power (mW) Energy (nJ)

nJ/FLOP VP VP, Crossbar

and Memory

Dynamic Total

One MB w/o VP N/A 225.37 380.78 5.951

CTS

VL=32; no loop unrolled 92.02 114.19 42.39 190.89 2.982

VL=128; no loop unrolled 185.43 225.66 37.36 120.14 1.877

VL=128; unrolled three

times
398.40 479.28 37.53 68.85 1.075

FTS

VL=32; no loop unrolled 182.37 220.98 41.10 115.50 1.804

VL=128; no loop unrolled 359.56 432.74 37.21 71.61 1.118

VL=128; unrolled three

times
474.41 567.82 37.01 63.09 0.985

VLS

VL=32; no loop unrolled 140.84 187.76 43.96 137.61 2.150

VL=128; no loop unrolled 238.09 319.13 41.89 94.41 1.475

VL=128; unrolled three

times
429.01 554.97 40.07 68.96 1.077

CTS VL=32; no loop unrolled

4 lanes used; other 4 lanes are

power gated.

69.50 93.51 43.76 148.59 2.325

The dominant cause of dynamic power consumption is the charging and

discharging of parasitic capacitance within the device as it manipulates or moves data

during computation. Static power, dominated by the gate and sub-threshold leakage

currents, increases as transistor shrinks, and is a major concern at 40 and 45nm. Smaller

channel lengths and thinner oxide gates make it easier for current to "leak," either across

the channel region or through the gate oxide of the transistor. As can be seen in Figure

4.2, starting with 90nm technology node, the reduction in leakage power is less than the

reduction in dynamic power [Xilinx wpp, 2009]. Static power is becoming an important

component on the total energy budget and the power results confirm that the contribution

of static power to total power budget is between 32% and 80%.

68

Table 4.8 Power Comparison for 32-point Complex FFT

 Dynamic Power (mW) Energy (nJ)

nJ/FLOP VP VP, Crossbar

and Memory

Dynamic Total

One MB w/o VP N/A 8562.13 14687.38 22.949

CTS

VL=32; no loop unrolled 195.66 233.59 762.40 2068.01 3.231

VL=32; unrolled once 279.46 330.07 716.91 1585.71 2.477

VL=64; unrolled once 337.21 398.79 710.64 1423.44 2.224

FTS

VL=32; no loop unrolled 344.96 405.14 747.07 1484.46 2.319

VL=32; unrolled once 390.97 456.32 738.32 1385.52 2.164

VL=64; unrolled once 395.12 460.97 725.11 1352.72 2.113

VLS

VL=32; no loop unrolled 302.43 356.43 781.29 1658.09 2.590

VL=32; unrolled once 347.54 406.09 750.45 1489.65 2.327

VL=64; unrolled once 352.23 429.24 730.14 1410.53 2.203

CTS VL=32; no loop unrolled

4 lanes used; other 4 lanes are

power gated.

147.87 178.30 781.66 1763.68 2.755

Table 4.9 Power Comparison for MM

 Dynamic Power (mW) Energy (nJ)

nJ/FLOP VP VP, Crossbar and

Memory

Dynamic Total

One MB w/o VP N/A 7806.88 12817.73 6.258

CTS

VL=32; no loop unrolled 131.68 166.22 1677.16 5713.16 2.789

VL=32; unrolled once 234.75 296.69 1787.85 4198.25 2.049

VL=128; unrolled once 433.28 555.02 1671.16 2875.68 1.404

FTS

VL=32; no loop unrolled 263.99 332.86 1682.61 3704.60 1.808

VL=32; unrolled once 482.95 610.20 1859.89 3079.08 1.503

VL=128; unrolled once 621.84 793.65 1668.25 2509.05 1.225

VLS

VL=32; no loop unrolled 222.48 311.86 1897.98 4332.38 2.115

VL=32; unrolled once 386.59 513.59 1947.02 3463.42 1.691

VL=128; unrolled once 508.44 668.76 1667.89 2665.49 1.301

Table 4.10 Power Comparison for LU Decomposition

 Dynamic Power (mW) Energy (nJ) per row

processed

nJ/FLOP

VP VP, Crossbar

and Memory

Dynamic Total

One MB w/o VP

 (row length 128)

N/A 2559.51 4473.54 17.473

CTS

VL=16 37.10 46.03 29.09 281.89 8.809

VL=32 68.54 85.46 52.01 306.81 4.794

VL=64 130.33 164.71 104.09 356.89 2.788

VL=128 250.37 317.69 200.78 453.58 1.771

FTS

VL=16 68.59 87.24 27.21 152.01 4.750

VL=32 105.12 132.95 48.01 168.41 2.631

VL=64 198.56 252.94 85.92 206.32 1.611

VL=128 371.26 471.15 192.88 275.28 1.075

VLS

VL=16 64.24 89.82 28.74 156.74 4.898

VL=32 114.05 157.59 49.79 176.19 2.763

VL=64 214.53 290.38 91.76 218.16 1.704

VL=128 311.84 422.28 203.31 388.11 1.515

69

Table 4.11 Power Comparison for Sparse Matrix Vector Multiplication (Eight Lanes and

Eight Memory Banks Configuration); Sparse Matrix is bcsstk13; Utilization and Time is

Averaged over One Dense Row (2003 Elements)

 Dynamic Power (mW) Energy (nJ)/Vector Result nJ/FLOP

 VP VP, Crossbar

and Memory

Dynamic Total

CTS
SpMV_k1 VL=32 nu

SpMV_k2 VL=32 nu
35.13 51.04 172,278 1,537,900 9.167

FTS
SpMV_k1 VL=32 nu

SpMV_k2 VL=32 nu
67.34 104.11 177,944 862,344 5.141

VLS
SpMV_k1 VL=32 nu

SpMV_k2 VL=32 nu
58.45 89.46 179,780 987,780 5.888

Figure 4.2 Relative power reduction of different Xilinx Virtex FPGA families.

Source: Xilinx white paper wp298 [Xilinx wpp, 2009].

The power Tables 4.7-4.11 show that:

(i) The lowest dynamic energy is provided by FTS followed by CTS and VLS,

with the values having a small dispersion.

(ii) However, if static power is included, the advantage of FTS and VLS is

substantial, especially for low average utilization (see the FIR benchmark for

CTS, FTS, and VLS with VL=32 and no unrolling).

(iii) Adding a new core that runs a thread has almost the same performance gain and

total energy consumption as doubling the data-level parallelism and unrolling

the loop once (see FFT under CTS with VL=64 and loop unrolled once as

compared to FFT under FTS with VL=32 and without loop unrolling).

70

(iv) Under similar LDST utilization, the MC crossbar and VM dynamic power

consumption is higher in VLS than in any other VP sharing context. This is

because of high contention in the crossbar due to the presence of two LDST

threads corresponding to two distinct VPs, with no synchronization for

accessing the VM. Similar behavior has been observed for SpMV scenarios;

under the same LDST utilization, the dynamic power consumption of the

crossbar increases for sparse scenarios as compare with FIR and MM.

Tables 4.7-4.11 also contain energy figures for a MicroBlaze without the VP. The

conclusion is that the best VP sharing scheme consumes 5 to 16 times less energy per

operation than MicroBlaze. The power analysis the Xeon general-purpose processor is

not included since it has very high power consumption (103 Watts) and is not suitable for

high-performance embedded applications.

VP sharing in FTS with an increased number of cores requires either more vector

controllers, one per core, or the capability of a controller to handle multiple threads

coming from many attached cores. Simulations for the latter approach where each core in

the prototype emulates a dual-threaded microprocessor are carried out. This approach

suffices for current systems that normally contain less a dozen cores. The FTS results

show high throughput for threads with low VL and no loop unrolling because in this case

FTS can accommodate the simultaneous execution of multiple threads, thus increasing

the VP throughput. However, if individual threads have high utilization of VP resources,

it will be difficult to accommodate simultaneously more threads under FTS. For example,

the overall throughput of FIR with VL=128 and no loop unrolling is increased by about

20% with four threads compared to two threads. On the other hand, with loop unrolling

FTS cannot easily facilitate additional threads for FIR since the utilization per thread is

already 83%. VLS can facilitate better scalability if the lanes are assigned to the threads

71

in a manner similar to the allocation of pages in virtual memory implementations.

However, a study must be made of lane fragmentation and interconnection problems. To

further improve scalability for increased numbers of cores, the design of suitable

networks to interconnect cores to vector controllers is needed.

Table 4.12 Advantages and Disadvantages of the VP Sharing Schemes

 CTS VLS FTS

Advantages

Simple to implement.

No per instruction

scheduling.

Can take advantage of

stalls in VP routines to

increase the average

utilization.

No per instruction scheduling.

Increases utilization (due to

increased number of elements

per lane corresponding to one

vector register).

Increases the overall
throughput.

Increases instantaneous

utilization by mixing

VP instructions from

two or more cores in

any lane.

Low energy per

operation.

Disadvantages

Low throughput since the

instantaneous utilization

does not increase (still one

thread runs at any time).

High energy per operation,

especially for kernels with

low VP utilization.

A single thread uses a lane.

Crossbar dynamic power higher

due to potential contentions.

Complex task to assign lanes,
especially if more than two

cores share the VP. It can result

to lane fragmentation problems

for VPs with large numbers of

lanes.

Needs arbitration (the

complexity increases if

more than two cores

share the VP).

Requires register

renaming.

May give worse results

than VLS when the

vector length is less

than the number of

lanes.

Table 4.7 (last row) also shows the power and energy figures when a scalar

processor issues VP instructions to four lanes. If the static power for the other four lanes

is ignored, the total energy consumption is lower as compared to using all eight lanes

(CTS with VL=32 and without an unrolled loop). Thus, under low utilization the energy

consumption due to the static power is substantial; it then becomes imperative to decrease

the number of active lanes and power gate the idle ones. Even if the actual FPGA

technologies do not facilitate power gating, next chapter discuses the finding of optimum

72

number of lanes for given LDST and ALU utilizations that minimizes the total energy

consumption. Finally, Table 4.12 summarizes the advantages and disadvantages of the

VP sharing schemes.

4.3 Performance Scalability

In order to analyze the scalability of the proposed VP-sharing schemes, four of the

applications are benchmarked for VP configurations with 2, 4, 8, 16 and 32 lanes

[Beldianu et al., 2011c]. Also, just for performance evaluation purposes, the design

supports also a parameterized implementation where the execution unit can instantiate a

fused floating point multiply-add (MADD) or floating point divide unit. Since the FPU

has only two read ports to VRF, the third operand in the multiply-add instruction is

always a scalar supplied by one of the scalar processors thorough FSL channel.

Figure 4.3 FIR routine for 2, 4, 8, 16 and

32 lanes configuration. Each application

consists in sharing context, Vector Length,

unroll type (nu=no unroll; u3=unrolled

three times), and with or without VMADD

instruction extension.

Figure 4.4 FFT routine for 4, 8, 16 and 32

lanes configuration. Each application

consists in sharing context, Vector Length,

and unroll type (nu=no unroll;

u1=unrolled once).

2 4 8 16 32
0

10

20

30

40

50

Number of Lanes

S
p

ee
d

u
p

CTS, 32, nu

VLS, 32, nu

FTS, 32, nu

CTS, 128, u3

VLS, 128, u3

FTS, 128, u3

CTS, 128, u3, MADD

VLS, 128, u3, MADD

FTS, 128, u3, MADD

4 8 16 32
1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Lanes

S
p

ee
d

u
p

CTS, 32, nu

CTS, 32, u1

VLS, 32, nu

VLS, 32, u1

FTS, 32, nu

FTS, 32, u1

73

Figure 4.5 MM routine for 2, 4, 8, 16 and

32 lanes configuration. Each application

consists in sharing context, Vector Length,

and unroll type (u1=unrolled once).

Figure 4.6 LU decomposition routine for

2, 4, 8, 16 and 32 lanes configuration.

Each application consists in sharing

context, Vector Length, unroll type

(nu=no unroll), and with or without VDIV

instruction extension.

Figures 4.3 to 4.6 show that the FTS scheme scales better than CTS and VLS.

Also, the application scales better with increasing data parallelism caused by high vector

length and loop unrolling. Additionally, conclusions can be summarized:

(i) For the FIR application, the fused multiply-add MADD instruction extension

increases the speedup with almost 60% compared to the corresponding schemes

without MADD.

(ii) In LU decomposition, all schemes without the VDIV extension provide the

same performance with 8, 16 and 32 lanes in the configuration. However, the

inclusion of division in the FPUs allows the offloading of the scalar processors,

thus improving the performance as the number of lanes increases. It can be

observed that FTS with VDIV provides almost 100% improvement in the 32-

lane configuration as compared to FTS without the VDIV extension.

(iii) It should be also emphasized that for applications with low parallelism

increasing the number of lanes does not improve the performance.

2 4 8 16 32
0

2

4

6

8

10

12

Number of Lanes

S
p

ee
d
u

p

CTS, 32, u1

VLS, 32, u1

FTS, 32, u1

CTS, 128, u1

VLS, 128, u1

FTS, 128, u1

2 4 8 16 32
0

2

4

6

8

10

12

Number of Lanes

S
p

ee
d
u

p

CTS, 128, nu

VLS, 128, nu

FTS, 128, nu

CTS, 128, nu, VDIV

VLS, 128, nu, VDIV

FTS, 128, nu, VDIV

74

4.4 Guaranteed Quality of Service

In the FTS context, the application layer may require guaranteed QoS for a high priority

(HP) critical thread. In Section 2.2.2 HW support for guaranteed quality of service is

presented. Figure 4.7 shows the obtained relative performance of a high priority thread

when it shares the VP resources in the FTS mode for different numbers of VP lanes (M

lanes and M memory banks). The normalized speedup is defined as the ratio between the

execution time of the thread when it runs in the CTS mode (by itself - that is, one thread

running at full speed) and the execution time when it runs in the FTS sharing context. A

maximum value of one shows that the HP thread runs unaffected by the low priority

thread (guaranteed quality of service). Three scenarios are presented:

(i) Two FIR threads: the quality of service is guaranteed for the HP thread. With no

contention on the crossbar, the low priority (LP) thread will access the

remaining pipeline slots and, at 16 lanes, will have the same performance as the

HP thread.

(ii) FIR for the HP thread and SpMV_k1 for the LP thread; Due to I/O non-uniform

access patterns exhibited by the sparse kernel, some of the LDST pipeline slots

are wasted due to crossbar contentions. Thus, the LP thread will “slow down”

the HP thread up to 5% for some lane configurations.

(iii) Putting together two sparse threads will affect the speed-up of the HP thread by

10-13% for 8 to 32 lanes. Also, as the number of lanes increases, the throughput

of the HP thread is more affected (as per Section’s 2.2.2 conclusion). One

solution to alleviate contention on the crossbar is to use a number L of banks

greater than the number of lanes. Statistically, the probability of contention will

decrease as the M/L the ratio decreases.

75

 (a)

 (b)

 (c)

Figure 4.7 Relative performance of high priority and low priority threads on a VP with a

number M of lanes between 2 and 32, and M memory banks: (a) two FIR VL=64, u3; (b)

FIR VL=64 u3 & SpMV_k1 VL=64 u1; (c) two SpMV_k1 VL=64 u1 (u1 – loop unrolled

once; u3-loop unrolled three times).

76

4.5 Conclusions

Finally, it is pertinent to summarize the main conclusions of the results presented in this

chapter:

(i) The utilization of the lane units and, as a consequence the total consumed

energy, can be improved by: increasing the vector length; unrolling the loop

and, thus, increasing the instruction parallelism; or accommodating more than

one instruction stream in the lane’s functional pipelines.

(ii) The FTS context provides the best performance and energy gains followed by

VLS and CTS.

(iii) Extending the VP ISA with multiply-add and division instructions increases

substantially the performance of the applications that can make use of them.

(iv) Under low utilization the energy consumption due to the static power is

substantial; it then becomes imperative to decrease the number of active lanes

and power gate the idle ones in order to reduce the impact of leakage.

(v) In the FTS context, a high priority thread may run unaffected by its counterpart

as long as the memory accesses to memory banks are uniform and unit-strided.

77

CHAPTER 5

PERFORMANCE AND POWER CHARACTERIZATION

The ultimate objective is to develop a robust runtime framework that can make highly

accurate predictions at runtime about performance and energy figures for various VP

assignments to applications. Vector lanes could then be assigned effectively to resource-

competing threads in ways that could minimize thread execution times, maximize thread

throughput, minimize energy consumption for guaranteed performance or independent of

performance (e.g., for battery-operated devices), etc. To this extent, there is a need for

highly accurate models for performance and power prediction.

Section 5.1 presents the performance model, and Sections 5.2 and 5.3 present the

dynamic and static power models respectively. Finally, Section 5.4 shows the opportunity

of trading the energy for performance.

5.1 Performance Model

As stated in Section 2.2, each ALU or LDST instruction finishes in
/ /ALU LDSTSU VL M

clock cycles after it leaves the hazard detection stage in the VC. VL is the vector length,

/ALU LDSTSU is the start-up latency of ALU/LDST units and M is the number of lanes that

receive this instruction. The instruction start-up time directly depends on the pipeline

depth of the control stages and the functional unit implementing that instruction. In

current implementation, for a LDST instruction with no contention in the crossbar the

start-up time is eight clock cycles. For floating-point operations the start-up time is 13

clock cycles for multiply and add, and eight clock cycles for the rest of the instructions.

78

Figure 5.1 shows how SIMD instructions are executed in each lane in two distinct

cases: a) consecutive instructions with data dependence such that in
/ /ALU LDSTSU VL M

clock cycles only /VL M results are produced; and b) all instructions issued to lanes have

no data dependence such that results are produced in each clock cycle. The average

utilization of the ALU or LDST unit can be conveniently defined as the average number

of ALU results produced or the average number of data transfers via the memory

crossbar, respectively, in
/ /ALU LDSTSU VL M clock cycles. The number of results is the

product of the average number of instructions
/ALU LDSTIP ready for execution (i.e., the

average number of ALU or LDST instructions issued to VP lanes in
/ /ALU LDSTSU VL M

cycles) and /VL M (i.e., the number of elements in each lane to be processed with an

SIMD instruction). Equation 5.1 computes the ALU and LDST utilization.

/

/

/

/ / 1

ALU LDST
ALU LDST

ALU LDST

ALU LDST ALU LDST

VL
IP

IPMU
VL M

SU SU
M VL

 

 

 (5.1)

Start-up Cycles VL/M Cycles

(a)

Start-up Cycles VL/M Cycles

(b)

Figure 5.1 Execution of a) two data dependent instructions; b) three instructions without

data dependencies.

79

Ideally, peak performance is achieved when there is no contention on the memory

crossbar and
/ / / 1,ALU LDST ALU LDSTIP SU M VL   which represents the maximum

instruction parallelism needed to fully utilize (saturate) one of the units. The utilization of

the ALU and LDST units can be increased by:

(i) Increasing the vector length VL.

(ii) Reducing the number of lanes assigned to a VC.

(iii) Increasing the average instruction-level parallelism
/ALU LDSTIP ; or

(iv) Reducing the start-up time.

The first option could be used whenever possible. However, there are applications

with low or difficult to identify data parallelism. The second option increases the

utilization of the units but degrades the overall performance since each VP instruction

takes more time to execute. Instruction-level parallelism can be increased via loop

unrolling and multithreading that involves two or more scalar processors. Improving the

start-up time may not be an option, especially for FPGAs, since it involves reducing the

pipeline depth of the VP, and therefore the design frequency.

The utilization of a unit in a lane can be estimated at runtime as a function of the

average instruction throughput
/ALU LDSTIT (i.e., the average number of vector instructions

issued in 100 clock cycles) and the number of vector elements used per lane (i.e., VL/M),

as per Equation 5.2. This could be implemented easily by embedding appropriate

hardware counters (profilers) in the design. Actually, utilization figures presented in this

work were obtained by using Equation 5.2 for observation periods representing 1000 runs

of the same kernel.

/ / /ALU LDST ALU LDSTU IT VL M  (5.2)

80

Finally, the execution time of a specific kernel is proportional to the inverse

product of the ALU utilization in each lane and the number of lanes, as per Equation 5.3.

ker nelK is a constant dependent on the workload required for that kernel (for example, the

number of FIR points computed, the number of FFTs, etc) and
ALUM U is the overall

sustained performance of the VP.

 ker nel
exec

ALU

K
t

M U



 (5.3)

Figure 5.2 Estimated and actual ALU utilization for FIR 32 with VL=64 and loop

unrolled three times (13,ALUSU  1.5,CTS

ALUIP  3.0FTS

ALUIP ).

Figures 5.2 and 5.3 display the estimated and actual utilization for a FIR kernel

with VL=64 which is loop unrolled 3 times and for SpMV_k1 with VL=64 and loop

unrolled once. For the FIR kernel, the ALU utilization is displayed; since SpMV_k1

exhibits higher utilization for the LDST unit, the LDST utilization is plotted for this

kernel. The model applies well for the FIR kernel. Even, if not shown here, the same

behavior is observed for I/O uniform patterns: MM and LU kernels. However, for

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

110

No Of Lanes

A
L

U
 U

ti
liz

a
ti
o

n
 (

%
)

U
ALU

, CTS, Actual

U
ALU

, CTS, Estimated

U
ALU

, FTS, Actual

U
ALU

, FTS, Estimated

81

SpMV_k1 the model matches the actual data only for low percentages of utilization; for

high utilization the behavior of random accesses to the crossbar is not straightforward to

model. Also, the maximum value of the LDST utilization that can be obtained is around

92%.

Figure 5.3 Estimated and actual LDST utilization for SpMV (kernel 1) VL=64 and loop

unrolled one time (8,LDSTSU  1.3,CTS

LDSTIP  1.9FTS

LDSTIP ).

5.2 Dynamic Power Model

The dynamic Power model presented in this section is based on the activity rate of the

design. It resembles the activity-based strategy for estimating the average power

dissipation of hard DSP and multiplier blocks embedded in FPGAs [Choy et al., 2006]. In

the VP architecture, the activity rate comprises the utilization of the ALU and LDST

units which further translates into instruction and data throughput. It is obtained by

implementing timing simulations for many scenarios with each kernel. The model

assumes a fixed combination of Voltage, Frequency and Technology, and is easy to

extend since only constants change. These constants in the model are functions of the

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

110

No Of Lanes

L
D

S
T

 U
ti
liz

a
ti
o

n
 (

%
)

U
LDST

, FTS, Estimated

U
LDST

, FTS, Actual

U
LDST

, CTS, Estimated

U
LDST

, CTS, Actual

82

Frequency, Voltage, Technology, Temperature, etc. Also, it should be mentioned that all

the power figures are extracted from timing simulations with the Virtex-6 FPGA placed-

and-routed netlist.

Figure 5.4 Dynamic power breakdown (in mW) for a Vector Processor with eight lanes

and eight memory banks running different application kernels.

Figure 5.4 shows the power breakdown gathered from simulations on an 8×8 VP

running different applications. As can be depicted, the FIR and FFT kernels exhibit a high

dynamic power consumption for the arithmetic units and the register file. The MM, LU

and Sparse kernels have high utilization of the LDST units and, thus, high power for the

LDST controller and memory banks. Also, as can be observed in the LU case, kernels

with high vector length and, as a consequence low instruction throughput, have small

power consumption in the VCs (see LU) as compared to the total power consumption.

Figure 5.5 (a) shows a linear dependence between the ALU dynamic power

consumption and the ALU utilization (that actually represents the ALU activity rate).

Also, as shown in Figure 5.5 (b), the number of accesses to VRF is proportional to

0

50

100

150

200

250

300

VC0+VC1

VM_MC

LDST_CTRL

ALU_CTRL

VRF

ALU MISC

FP MUL

FP ADD_SUB

83

2LDST ALUU U  ; in most of the cases, a LDST instruction has one access to VRF, either

Read or Write; an ALU instruction has one or two Reads and one Write (a fine grain

model could be further developed). Therefore, the VRF dynamic power consumption is

modeled as having a linear dependence on the average VRF utilization expressed as

(2)ALU LDSTU U .

(a)

(b)

Figure 5.5 a) ALU power consumption vs. ALU utilization (
()exe exe i ii

K K w); b) VRF

power consumption vs. ALU and LDST utilization.

Figure 5.6 Memory Crossbar (MC) and Vector Memory (VM) power consumption vs.

LDST utilization.

0 50 100 150
0

10

20

30

40

50

K
exe

*U
ALU

A
L
U

 u
n
it
 P

o
w

e
r

(m
W

)

FIR

FFT

MM

LU

SpMV-k1

0 20 40 60 80 100
0

5

10

15

20

25

30

(2*U
ALU

+U
LDST

)/3 (%)

V
R

F
 P

o
w

e
r

(m
W

)

FIR

FFT

MM

LU

SpMV-k1

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

U
LDST

(%)

M
C

 &
 V

M
 P

o
w

e
r

(m
W

)

FIR

FFT

MM

LU

SpMV-k1

84

The LDST unit requires a complex power model; however, the LDST power can

be freely expressed as a linear function of the LDST utilization. Moreover, as Figure 5.6

shows, the MC and VM dynamic power consumption also shows an almost linear

dependence on the LDST utilization. The small errors are caused by fine grain effects

like different memory access patterns, especially in the VLS context and SpMV, and

different toggling rates in netlist signals due to the randomness of the data used in

simulations.

Table 5.1 Dynamic Power Model Equations

Component Model Details

Instruction Queues
and ALU controller _ _ _

INTSR DATA

ALU CTRL ALU CTRL ALU ALU CTRL ALU

M
P K U K U

VL
 

Dynamic Power depends on the
instruction throughput and data

throughput.

ALU Execution

units _ () () ()

()

ALU EXE exec i exec i exec i

i i

ALU exe i i

i

P P K U

U K w

  



 



1;i

i

w 

iw is the fraction of the ALU

utilization that targets the

floating-point execution unit i.

Instruction Queues

and LDST
controller

INTSR DATA

LDST LDST LDST LDST

M
P K K U

VL

 
  
 

Dynamic Power depends on the

instruction throughput and data
throughput.

Vector Register

File
 2VRF VRF ALU LDSTP K U U  The power is a linear function

of data throughput

Vector Controller
 VC VC TH VC ALU LDST

M
P K I K U U

VL
  

Exhibits a linear dependence on

vector instruction throughput

THI .

Memory Banks and

Crossbar _ _MEM BANKs MEM BANK LDST

M
P K U

L


Extended to VPs with M lanes

and L memory banks.

Sparse matrix or VLS scenarios

consume more power than in
CTS and FTS in the arbiters

due to contentions and non-

uniform accesses to the

crossbar.

Table 5.1 summarizes the power model equations for all VP design components.

All Ks are constant coefficients measured in mW per percent of utilization (mW/%).

These equations apply if the utilization is the same for all the lanes. Otherwise, the power

85

consumption for each lane has to be computed separately according to its own ALU and

LDST utilization figures. Using a linear approximation method the values for the K

coefficients are found. They are shown in Table 5.2 along with the mean absolute

estimation error for the VP, and collectively for the VP, MC and VM. The utilization of

the lane units can be used to estimate the dynamic power consumption within a 10%

confidence interval.

The total dynamic power for M lanes and L memory banks can be expressed as:

 

_

_ _ _

2

2

D

TOTAL VC LANE MEM BANKs

VC ALU CTRL ALU EXE LDST VRF MEM BANKs

P P MP LP

P M P P P P LP

   

    
 (5.4)

Table 5.2 Mean Absolute Error for Dynamic Power Estimation

_ / /ADD SUB MUL MISCw w w Mean Absolute Error (%)

VP VP, MC and VM

FIR 0.48/0.48/0.04 6.83 7.89

FFT 0.36/0.36/0.27 8.98 10.43

MM 0.5/0.5/0 6.29 7.74

LU 0.5/0.5/0 8.72 9.76

SpMVM_k1 0/0.99/0.01 7.98 10.11

SpMVM_k2 0.96/0/0.4 10.20 13.72

OVERALL 8.16 9.95

By linear approximation (/ %W)

_ 28INTSR

ALU CTRLK 

_ 18DATA

ALU CTRLK 

_ 215ADD SUBK 

71MULK  (uses DSP48E1)

18MISCK 

34INTSR

LDSTK 

55DATA

LDSTK 

34VRFK 

240VCK 

_ 147MEM BANKK 

For a given kernel application, the ratio /LDST ALUU U  is constant and the total

dynamic power can be estimated by Equation 5.5.

86

 

 

 

_ ()

_

_

1
2 1

1 2

D DATA

TOTAL ALU VC ALU CTRL exe i i

i

DATA

LDST VRF MEM BANKs

INSTR INSTR

ALU ALU CTRL LDST

P MU K K K w
VL

K K K

M
MU K K

VL



  




    



    

 



 (5.5)

Consequently, the total dynamic energy consumed for a given workload can be

obtained by Equations 5.3 and 5.5.

 

 

 

_ ()

_

_

1
2 1

1 2

D D

TOTAL EXEC

DATA

EXEC VC ALU CTRL exe i i

i

DATA

LDST VRF MEM BANKs

INSTR INSTR

EXEC ALU CTRL LDST

E P t

K K K K w
VL

K K K

M
K K K

VL



  



 


    



    

 


 (5.6)

Assuming a given kernel application with fixed VL and M=L, the following

conclusions can be made:

(i) The first part in the right hand term is constant.

(ii) The second part increases linearly with M. However, M has a small impact on

dynamic energy because the scaling factor is small; especially if VL is high (for

example, for FIR, VL=64, loop unrolled three times:

(324.5 1.03)D

EXECE K M  ). This conclusion is intuitive: the number of

instructions for a given workload is the same but the number of lane controllers

that process this stream increases with M.

(iii) For the same VP architecture and for the same kernel application, it is pertinent

to assume that the dynamic energy will be almost constant for any number of

lanes.

Some deviations from the model could be discussed also:

87

(iv) The dynamic power of the crossbar and instruction buses may not scale linearly

with crossbar size. As the number of masters and slaves for an all-to-all switch

increases, the wires are longer and dissipate more energy per atomic transfer.

This will produce a model for energy that is not constant but it is rather a

function of , 0M    .

(v) Kernel applications with conditional execution may exhibit different power

profiles for different lanes. However, if the condition flags are randomly

distributed across lanes (and vectors), the energy consumption for each lane will

be the same on average. Conditional execution is exercised by the FFT kernels.

As a consequence, as also observed in Figure 5.5 (b), the actual dynamic power

of VRF is under the linear curve (circled scenarios).

(vi) The same conclusion as in (ii) but for cases where any VL (aVL) is not a

multiple of number of lanes.

5.3 Static Power Estimation

Static power measurements on the FPGA require adjustments to account for the fact that

different configurations of the VP design do not fully utilize the FPGA device.

Accordingly, the static power consumption (also called quiescent power) reported by the

Xilinx XPower is scaled by the fraction of the core FPGA resources used by the design.

Table 5.3 shows the static power breakdown for a 8×8 VP design implemented on the

XC6VLX130t device. On top of leakage power, there is a dynamic power component

produced by FPGA’s clock tree that cannot be clock gated by the Xilinx synthesis tools.

This component is constant and is consumed independent of the VP activity (idle

dynamic power).

Table 5.3 Static Power Breakdown for a 8×8 VP Design on XC6VLX130t Device

(Internal Supply Voltage Relative to Ground is 1V; Junction Temperature is 85° C)

Component Static Power (mW)

Total XC6VLX130t 1544

Entire VP, VM, MC and VC 270

VP Lane 25

VM, MC and VC 70

88

Similarly with leakage power case, VP clock tree power is scaled by the fraction

of the core FPGA resources used by the design. Quantitatively, it counts for less than

10% of the leakage power consumption, and is incorporated in Table 5.3 numbers for

static power.

5.4 Energy Performance Trade-off Preliminaries

In order to analyze, model and implement an efficient lane-based flexible VP, the spaces

that may represent potential opportunities for Energy-Performance gains have to be

identified as accurately as possible.

Figure 5.7 Graphing performance-energy scalability opportunities for a lane-based VP

system. The speed-up is represented by black lines and the static energy by red lines. The

static power is shown in a dotted blue line and its non-zero offset for zero lanes is due to

VP hardware components that do not scale (VC, MC, VM, buses, etc.). The vertical axes

for the speed-up and static energy are shown in the linear scale.

89

Figure 5.7 plots in a single graph the performance and static energy scalability for

a lane-based VP assuming two distinct cases of data parallelism; i.e., low and high data-

level parallelism (DLP). Additionally, the static power is shown in a dotted blue line.

Speed-up curves are drawn according to Amdhal’s Law that shows the upper bound on

the performance for a VP and a given level of DLP. Besides the leakage power, the static

power may also reflect dynamic power oriented components that are independent of the

workload (i.e., they are present independent of the VP activity). Usually, these dynamic

power components are mainly resulting from the clock distribution tree that cannot be

gated and the clock gating components. Static power is consumed when the VP is idle;

that is, when no operation is performed. In order to compute the total power budget, the

static power is added to the dynamic power that is consumed when some workload exists

in the VP. As discussed in Section 5.2, for a given kernel, the dynamic energy consumed

to perform a given task (fixed number of operations) is constant or almost constant for

any number of VP lanes, and it is not shown in Figure 5.7.

As depicted in Figure 5.7, three major opportunities can exist in optimization

studies:

(i) The static energy impact could be minimized by increasing the DLP (as per the

blue arrows). This approach was taken in Chapter 4 and the results show that the

overall performance is increased while the energy can be reduced by following

any of these steps, or their combinations, that can effectively increase the

overall parallelism: (a) increasing ILP - loop unrolling; (b) increasing DLP -

vector length; or (c) increasing TLP – sharing (governed by Gustafson’s law).

(ii) The static energy, and thus the total energy, could be minimized by adjusting

the number of VP lanes (as per the search spaces represented by the gray

boxes). It can be seen that the optimal number of lanes varies with the DLP, and

this number increases as the parallelism increases. For cases that have a low

90

DLP, it becomes imperative to tune the VP system in order to reach the optimal

number of lanes; otherwise, a non-optimal point will increase substantially the

static energy. Additionally, the offset of the static power caused by VP

hardware components that do not scale (VC, MC, VM, buses, etc.) influences

the optimal number of lanes. As a consequence, when more VP components that

do not scale are added (the same components are present for any VP size), the

optimal point will move towards the right; i.e., the minimum energy will be

achieved for a higher number of lanes.

(iii) A trade-off mechanism can be developed to adjust the VP size on the right side

of an optimal point (search spaces represented by the green arrows). This will

give priority to higher performance at the expense of additional static energy

consumption. It must be noted also that, the static energy penalty is lower for

applications with high DLP due to shorter execution times (solid red line above

the respective green box) as compared with applications having low DLP

(dashed red line above the respective green box). This is a very good reason to

enforce optimization opportunity (i), whenever possible. Additionally, VP or

SIMD systems should be forbidden to enter in the regions located to the left of

the green boxes where the energy and performance penalties are both very

substantial.

The last two opportunities are discussed in more detail and also tackled in Chapter

6. However, in this section some performance-energy figures are presented for the FPGA

implementation in order to justify the analytical discussion in this section.

As deduced from Equation 5.6, for a given kernel application the dynamic energy

model shows almost constant behavior for any VP model with M lanes and L memory

banks. For this section, the original 16×16 configuration (16 lanes and 16 memory banks)

is configured in any of the following combinations: 2 lanes × 16 memory banks, 4×16,

8×16, and 16×16. The Hardware update is done by disabling the write enable signal for

the lane instruction queues of inactive lanes. Also, the configuration fields are

91

appropriately configured in each lane as per Section 2.1. Also, the static power

corresponding to the inactive lanes can be removed from the total power budget in

Equation 5.7. The Vector Controllers, Crossbar and memory banks are always active.

  16 (16) 2,4,8,16M LANE

ST ST STP P M P M    (5.7)

(a) FIR32 VL=64, nu, FTS

(b) LU VL=64, nu, CTS (1 thread)

(c) FFT VL=32, nu & LU VL=64 nu; FTS

(d) FFT VL=64, u1, FTS

Figure 5.8 Normalized energy consumption for a workload of 10K FP operations for

various kernels (normalization is with respect to the 2x16 configuration; nu - no loop

unrolling, u1- loop unrolled once).

Current commercial FPGA technologies do not support power gating or driving a

part of the FPGA fabric to a low consumption standby power state. However, over the

last several years, various power gating techniques for FPGAs have been proposed to

92

mitigate the impact of subthreshold and gate leakage currents. In [Rahman et al., 2006] a

design methodology to determine the granularity of power gating for FPGAs is presented.

However, the sleep transistors are controlled in the FPGA configuration space, allowing

power gating only during the bit-stream generation (statically controlled) or by using

partial reconfiguration. More flexible solutions have been proposed in [Ishihara et al.,

2011] where the logic clusters can be selectively powered-down at run-time either

autonomously or dynamically from the FPGA logic itself [Bsoul et al., 2010].

Figure 5.8 shows the normalized total energy consumption for various application

kernels running a fixed workload of 10,000 SPFP operations. As can be seen, the

minimal energy is obtained at different configurations. At one extreme, as Figure 5.8 (b)

displays, the minimum total energy for the LU decomposition kernel is provided by the

2×16 configuration (close to the 4×16) configuration and the 16×16 configuration

consumes 2.4 times more energy. The reason is that, as per Section 4.3 and Figure 4.6,

the LU performance remains the same starting with the 8×16 configuration regardless the

number of lanes added to the system. More static power is consumed due to additional

lanes but the execution time remains the same. As a reminder, LU exhibits this

performance behavior due to stalls caused by the scalar division and memory accesses.

Therefore, for these types of applications that provide low utilization and no (or low – see

Figure 5.8(a)) performance scalability, the optimal number of lanes that minimizes the

total energy will be small. On the other hand, if the kernels scale well with number of

lanes, as is the case of FFT with VL=64 in Figure 5.8 (c), the total energy drops as the

number of active lanes is increased. Therefore, it becomes imperative to provide a

93

methodology to change at runtime the size of the Vector Processor as the workload

changes dynamically.

94

CHAPTER 6

PERFORMANCE-ENERGY OPTIMIZATIONS FOR SHARED VECTOR

ACCELERATOR IN MULTICORES

For the majority of applications that use a dedicated vector coprocessor per processor

core, its resources are not highly utilized due to the lack of sustained sequences of vector

instructions, and/or the presence of limited data-level parallelism. Also, under low

coprocessor utilization static power dominates the total energy consumption. Based on

these observations, this chapter targets high resource utilization for vector coprocessors

associated with multicores in order to enhance the performance, while also reducing the

impact of static energy consumption. Chapter 2 proposes a robust design framework for

vector coprocessor sharing in multicore environments that targets these objectives. This

chapter further enhance the vector coprocessor sharing framework by proposing two

power gating (PG) techniques that can dynamically control the width of the shared

coprocessor based on the utilization of vector lanes [Beldianu and Ziavras, 2012]. Results

for several floating-point intensive benchmarks run on an FPGA-based prototype show

that the proposed PG techniques reduce the energy needs by 30-35% with negligible

performance reduction as compared to a multicore with the same amount of hardware

resources where, however, each core is attached to its own dedicated vector coprocessor.

Additionally, a performance-energy tradeoff mechanism is introduced, which gives

priority to performance gains at the expense of higher energy consumption; the results

show a performance gain of 18% with an increase in the energy consumption

by 13-22 %.

95

Related work is discussed in Section 6.1. Energy minimization is discussed in

Section 6.2. It is followed in Section 6.3 by a simulation model and a description of the

experimental setup. Experimental results are presented in Section 6.4 and an energy-

performance trade-off mechanism is presented in Section 6.5. Conclusions follow in

Section 6.6.

6.1 Related Work

Static power will become a larger source of consumption in future technologies due to

reduced feature sizes and increased transistor counts [Keating et al., 2007]. Starting with

the 45nm technology, leakage power consumption catches up with, or surpasses, dynamic

power consumption. However, the sustained performance does not normally follow this

upward trend, primarily because of decreases in the average transistor utilization from

load imbalances that become preeminent at finer resource levels. A new limit on scaling

will eventually arise creating a transistor utility economics wall. A study employs device,

core and CMP (chip multiprocessor) scaling models to show that, regardless of the

multicore organization, a large area on future chips will have to be frequently powered

down [Esmaeilzadeh et al., 2011]. At 22 nm, 21% of a chip on the average should be

powered down; it grows to more than 50% at 8 nm. Moreover, according to this unified

model an average speed-up of just eight will be possible in the next decade for common

parallel workloads; it will result in a substantial gap (up to 24) between the expected (as

per Moore’s Law) and actual performance figures.

Leakage power has increasingly become a substantial component of the total

energy consumption of silicon chips. Studies have shown that the leakage power is

responsible for more than 40% of the overall power dissipation for the 90nm technology

96

node [Kao et al., 2002] and can exceed the 50% figure at 65nm and below [Kim et al.,

2003; Scogland et al., 2010]. Besides CMOS process solutions, various techniques have

been proposed to reduce the leakage power. These techniques either trade-off increased

performance for reduced static energy consumption, or completely turn-off circuit

components by gating the ground or the voltage supply (the latter approach is called

power gating). Dynamic Voltage and Frequency Scaling (DVFS) is a power consumption

limiting technique that reduces the clock frequency and/or the supply voltage [Hong et

al., 1999]. Since the dynamic power dissipation is proportional to the operating frequency

and the square of the supplied voltage, the reduction in dynamic power dissipation can

then become very substantial. However, DVFS becomes less beneficial for leakage

dominant components, such as SRAM caches or large register files [Wang and Mishra,

2011]; therefore, its effectiveness with future multicores is highly questionable. Multiple

threshold CMOS circuits can be used to deal with the leakage problem in low voltage,

low power and high performance applications. Several such CMOS circuit design

techniques have been introduced, such as multi-threshold voltage CMOS [Anis et al.,

2003] and variable threshold CMOS [Hiramoto and Takamiya, 2000]. This work does not

use DVFS or techniques involving multiple thresholds to lower or trade energy

consumption but they could still be complementary to proposed schemes for even higher

gains in energy consumption.

Additional elaboration on power gating is pertinent to work presented in this

thesis. Power gating was initially proposed to reduce the static power of static RAM

(SRAM) cells in cache memories. A fine-grain technique for an embedded processor uses

a sleep instruction to power gate individual functional units [Roy et al., 2009]. When an

97

instruction subsequently decoded needs to use a sleepy functional unit, the latter is waken

up to become ready before the instruction reaches the execute stage. An ultrafine-grain

power gating scheme for on-chip routers individually controls the power supply to each

router component (e.g., virtual-channel buffer, virtual-channel multiplexer, crossbar

multiplexer and output latch) based on the present workload [Matsutani et al., 2011].

However, as the granularity becomes too fine, the power gating technique becomes less

effective due to the large overheads introduced by the control circuitry and the power

supply network. A coarse-grain per-core power gating architecture for multicore

processors allows software to turn on and off individual cores as the utilization varies for

datacenter workloads [Leverich et al., 2009].

Some work has been done on finding the optimal number of active cores that

minimizes the energy consumption for a given task. A theoretical study determines the

optimal number of cores that minimizes the energy consumed by a parallel algorithm on a

shared-memory architecture [Korthikanti and Agha, 2010]. The results suggest a

divergence of power and performance scalability for parallel algorithms. Nevertheless,

even if the optimal number of cores is derived for a few parallel applications, no runtime

framework capable of adjusting the number of active cores for a dynamic workload is

presented. An analytical model involving energy and performance for a chip

multiprocessor finds the number of cores that maximize the power savings while meeting

a given level of performance [Li and Martinez, 2005]. It also shows that the power

savings increase with more processors, up to a point where any savings stagnate and

eventually recede. Other theoretical works on energy minimization for many-core

systems could be found in [Woo and Lee, 2008; Cho and Melhem, 2008]. An instruction-

98

level energy prediction mechanism [Wang and Ranganathan, 2011] estimates statically

the number of active streaming multiprocessors (SMs) that minimize the dynamic energy

for CUDA workloads on an Nvidia GPU [Nvidia CUDA, 2011]. The static power is

completely ignored and the optimization framework is based on the number of active

SMs rather than on the number of active CUDA cores within an SM. These rigid

architectures cannot tolerate efficiently dynamic application environments with many

cores that may require the runtime adjustment of assigned vector resources in order to

operate at desired energy/performance levels that change frequently.

In contrast to all of these works, the efforts rely on information which is extracted

at static time or gathered at runtime by embedded hardware counters. This information is

used to dynamically change the number of active lanes in a shared vector coprocessor in

order to minimize the overall impact of static power. The dynamic energy consumption

depends basically on the application itself, therefore every effort is simultaneously made

to maximize the utilization of the resources within the active lanes. Static information can

be extracted for the application using standard program profilers embedded in software

development environments for the scalar cores; e.g., GNU gprof, Intel VTune Amplifier

XE, etc. On the other hand, the hardware profilers use special registers to monitor the

utilization of instruction paths within the vector lanes; they have very low cost and need

very little information to extract the utilization of vector lanes (e.g., vector length,

number of active lanes and, optionally, operation type to monitor).

6.2 Total Energy Minimization

From Section 5.4 it can be concluded that the optimal number of lanes that minimizes the

total energy is small for applications with low performance scalability. On the other hand,

99

if the performance of a kernel scales well with the number of lanes, as is the case for FFT

with VL=64 in Figure 5.7c, then the total energy drops as the number of active lanes is

increased. Therefore, it becomes imperative to provide a methodology to change at

runtime the number of active lanes in the VP as the workload changes dynamically in

order to minimize the overall energy consumption without inadvertently affecting the

performance. This is the ultimate objective of this work.

By combining Equations 5.3, 5.6 and 5.7, the total energy consumption of a VP

with M active lanes and L memory banks is given by Equation 7.

 

 
ker

()

()

L LANE LANE

TOTAL exec D ST ST OFF

L LANE LANE

ST ST OFFD

nel M

ALU

E t P P L M P P

P L M P P
E K

MU

      
 

  


 (6.1)

where M

ALUU

is the ALU utilization for the M×L VP configuration.

It is safe to assume from Equation 5.6 that the dynamic energy is almost constant

independent of M. This should be expected of a good coprocessor design since the

dynamic energy consumption will then rely almost exclusively on the actual amount and

type of work in the application itself. Therefore, minimizing the total energy implies the

minimization of the static energy as a function of M. The optimal value of M is then

given by:

 

min

()
arg min

L LANE LANE

ST ST OFF

M
M ALU

P L M P P
M

MU

    
  

  
 (6.2)

where is the set of permissible values for M.

100

6.2.1 Dynamic Power Gating with Static Information (DPGS)

Each time a VP event occurs (i.e., a scalar core requests or releases VP resources that will

change the workload profile), apriori information is used to compute the optimal number

of lanes that minimizes the energy consumption for the requested or active task(s). Since

the static power variables from Equation 6.2 are fixed for a given VP architecture, the

only information required is the utilization M

ALUU for all permissible values of M. A simple

and very efficient, but not necessarily highly accurate way, of acquiring this information

at static time will be to employ offline simulations of single kernel executions and

combinations involving any pair of kernels that the VP may have to simultaneously run in

the future (since two vector threads arriving from the two cores may have to be run

simultaneously). Static information can be extracted for the application using standard

program profilers embedded in software development environments for the scalar cores;

e.g., GNU gprof, Intel VTune Amplifier XE, etc. A more effective way is described later

in the next section. To speed-up this process, a look-up table can be created to contain the

optimum value of M for every possible pair of kernels (,),where ,i j i j   and  is

the set of all possible kernels that can be run simultaneously on the VP, including also the

idle kernel.

Figure 6.1 presents hardware extensions to the VP architecture that can support

software controlled DPGS power gating. The hardware support consists of a power gate

sequencer to be configured by software and other specific power gate elements (sleep

transistors and isolation cells). This software can be implemented in the form of operating

system (OS) routines for Power Management (OSPM) running on one of the processors

in the multicore environment or can be realized by a dedicated Power Control Unit (PCU;

101

e.g., Intel7 Nehalem). Figure 6.2 shows the details of these OS or PCU-driven interrupt

routines, along with the relevant routine run by cores that acquire VP resources.

PG

Sequencer

S
W

 I
N

T
E

R
F

A
C

E

P
G

R

e
g

is
te

r

..
.

..
.

to Lane 0 Sleep Trans.

to Lane (M-1) ST

to Lane (L-1) ST

Figure 6.1 Hardware support for DPGS scheme. In DPGS, the Power Gate (PG) Register

is configured by software. ST: Sleep Transistor (Header or Footer).

Figure 6.2 Interrupt routines to handle DPGS.

The main disadvantage of this scheme is the fact that obtaining at static time the

combined utilization of VP units for any possible pair of simultaneously running vector

kernels is impractical and often inaccurate since the kernels may start executing with

previously unknown phase delays. Also, it assumes that all possible vector kernels that

OS or PCU-driven interrupt routine run upon a VP event (i.e., any scalar core releases or acquires the

VP)

1. Based on the active kernels running on the VP, new kernel request, utilization table and

Equation 8, compute the optimum number of lanes M for the VP.

2. If the state of the VP doesn’t need any change, then EXIT; else, go to step 3.
3. Stop the Scheduler to receive any new VP acquiring requests.

4. Assert a software interrupt to the scalar CPUs that have VP resources acquired.

5. Wait for ACK signals from all the CPUs.

6. Reconfigure the PG register.

7. Enable the Scheduler to receive new requests and EXIT.

Scalar CPU interrupt routine in response to an OS/PCU-initiated change

1. Finish the inner loop of the kernel, and save the results or dirty vector registers in the

memory.

2. Release VP resources (VP_REL).

3. Send an ACK signal to OS/PCU.
4. Attempt to acquire VP resources (VP_REQ) and wait until the Scheduler acknowledges the

request.

5. Restore the saved vector registers and EXIT.

102

may be encountered at run time are known apriori. This assumption does not allow the

power efficient implementation of previously unknown vector-oriented tasks. An option

is to approximate the overall utilization of VP lanes with a function that involves the unit

utilizations of individual kernels obtained when run by themselves without any

interference from other kernels. However, due to the intrinsic behaviors of individual

kernels and the aforementioned phase delays, finding such a generic function independent

of the involved kernels becomes a Herculean task. The second scheme, namely APGP,

eliminates the need of DPGS to estimate kernel utilization information at static time by

incorporating hardware profilers that can extract accurate utilization information for

vector lane units at run time. The extra hardware needed for the profilers and the

associated control circuit is minimal.

6.2.2 Adaptive Power Gating with Profiled Information (APGP)

Using embedded hardware profilers at run time, the utilization of individual VP units can

be measured precisely in a perpetual effort to minimize the energy consumption. A

decision can then be made by specialized control hardware in order to determine if the

current number of active lanes should be changed or not. The following theorem can be

used to find the optimal number of lanes that minimizes the energy consumption at run

time based on the instantaneous utilization of the VP units.

Theorem 1. If the total energy consumption for a given application kernel in the

M-lane VP configuration is smaller than the total energy consumption in the N-lane

configuration, then the following inequality holds:

 /

M

ALU
M NN

ALU

U
RTh

U
 (6.3)

103

where M

ALUU and N

ALUU are the ALU utilizations of the kernel for the M-lane and N-lane

configurations, respectively;
/M NRTh is a constant independent of the application running

on the VP, and depends on M and N. Additionally, if M>N then
/ 1M NRTh  .

Proof: From M N

T TE E and Equation 6.1, the following inequality follows:

   
ker ker

() ()L LANE LANE L LANE LANE

ST ST OFF ST ST OFFM N

D nel D nelM N

ALU ALU

P L M P P P L N P P
E K E K

MU NU

     
  

According with Equation 5.6 and conclusions drawn in Section 5.2, i.e., M N

D DE E

, the above inequality then becomes:

 
 

()

()

L LANE LANEM
ST ST OFFALU

N L LANE LANE
ALU ST ST OFF

P L M P PU N

U M P L N P P

  


  
 (6.4)

where the right hand term is
/M NRTh . For M>N, M N

ALU ALUU U since the lane ALU

utilization will decrease or, in the best case stay constant, when the number of VP lanes

increases. Thus,
/ 1M NRTh  . Perfect performance scalability is reached when

M N

ALU ALUU U .▄

After a VP event, in order to evaluate the inequality in Equation 6.3 the profiled

unit utilizations for at least two VP configurations are required. To accomplish this task,

this work proposes a dynamic scheme in which the state of the VP is changed

successively in the right direction (i.e., increasing or decreasing number of lanes) until

the optimum VP state is reached. Since for most of the benchmark scenarios the

minimum energy consumption results for  4,8,16M  , the runtime framework is

104

developed based on the four VP states shown in the set: {all lanes are gated so the VP is

idle (0L), 4 lanes active (4L), 8 lanes active (8L), 16 lanes active (16L)}.

PG Controller

VC0
VC0

Profiler

Scheduler

VC1
VC1

Profiler

V
P

P
ro

fi
le

r

CPU0 INT / INT_ACK

P
G

 S
e

q
u

e
n

c
e

r

..
.

..
.

P
G

 R
e

g
is

te
r

CPU1 INT / INT_ACK

to Lane 0 ST

to Lane (M-1) ST

to Lane (L-1) ST

Figure 6.3 Hardware support for APGP scheme. In APGP, the PG Register is configured

by the PG Controller. The VP Profiler aggregates the utilizations from both VCs. ST:

Sleep Transistor (Header or Footer).

Figure 6.3 shows the hardware (HW) components that support APGP. Each VP

profiler is attached to a VC, and monitors the ALU and LDST utilizations by the

respective vector kernel. It captures the average ALU utilization based on the instruction

stream that flows through the VC over a given time window, as per Equation 5.2. The

implementation is simple, consisting of an IIR (infinite impulse response) filter with a

sample rate of 256 cycles according to 256 256

4

next prev

ALU ALU n nU U U U    , where 256

nU and 256

4nU 

are the cumulative numbers of operations in the lane’s ALU in the last 256 cycles and in

the [1024, 1279] cycle frame, respectively.

105

0L

INT

8L

4L
16L

PW
CFG

INT
CFG

PW

U
8
<ATh8->4

U
8
/U

4
<RTh8/4INT_ACK

U
8
>ATh8->16

U
16

/U
8
>RTh16/8

INT_ACK

U
16

<ATh16->4

U
16

/U
8
<RTh16/8

U
4
>ATh4->8

U
8
/U

4
>RTh8/4

PGC registers:ATh4->8 ATh8->4 ATh8->16 ATh16->8

RTh8/4 RTh16/8

U
4

U
8

U
16

Vld Vld Vld

PW
VP Idle

VP Idle

PW

PW

VP Idle

VP Req

PW

PW

INT

INT

CFG

CFG

INT_ACK

INT_ACK

Figure 6.4 PG Controller (PGC) state machine and PGC registers for state transitions

under APGP. INT, PW and CFG are transitional VP (i.e., non-operating) states. 4L, 8L

and 16L are stable VP operating states that represent the 4-, 8- and 16-lane VP

configurations. ML is a PGC state with M active lanes, {0,4,8,16}M  ; INT is a PGC state

where the PGC asserts an interrupt and waits for an Interrupt Acknowledge (INT_ACK);

PW is a PGC state where some of the VP lanes are powered-up/down; CFG is a PGC

state where the Scheduler is reconfigured to a new VP state. Threshold registers are fixed

during runs and utilization registers are updated for every profile window. The registers

store 8-bit integers. The Vld bit is used to show that the utilization register U
M

, with M=

4, 8 or 16, for the M-lane VP configuration does not contain an updated value.

Simulations show that a profile window of 1024 clock cycles with a sample rate

of 256 cycles gives an accurate estimation of the average utilization for all kernels

presented in Section 3.2. The HW PG Controller aggregates the utilizations produced by

both threads (using the VP profilers) and implements the PG Controller state machine

shown in Figure 6.4. The proposed scheme is based on two types of thresholds: (i) the

absolute threshold
M NATh 

 which is used when the ratio /M N

ALU ALUU U is not available for

the current kernel combination and MN represents the transition from the M-lane to the

N-lane VP configuration, and (ii) the relative threshold RThM/N computed in Equation 10.

The relative threshold RThM/N is used for comparison when the utilization for both

configurations with M and N lanes is profiled and stored in appropriate registers.

106

Absolute thresholds are empirically chosen such that, for a given ALU utilization, the

probability that the current VP configuration state will be kept is minimum if a VP

configuration with lower energy consumption state exists. In other words, the absolute

threshold will enable the PG Controller to initiate a state transition if there is a probability

greater than zero that the current state does not yield the minimum consumption. For

example,
8 16ATh 

 is chosen such that the following condition is true for the probability

8

8 16(16 min) 0ALUP U ATh L energy  . RTM/N is less than one since it is a ratio of ALU

utilizations with M and N lanes, respectively, and M>N. Also, the upper bound on ATh is

one since it represents a utilization figure. Besides the above mentioned thresholds, the

PG Controller contains the utilization registers  , 4,8,16 ,M

ALUU M  (one for each VP

configuration) which are updated at run time by the profilers.

The proposed scheme for APGP power gating works as follows. After a VP

request or release event that may potentially change the utilization figures and, thus, the

optimum configuration, the utilization registers are reinitialized. The Vld bit in Figure 8

is used to show that the utilization register MU , with M= 4, 8 or 16, for the M-lane VP

configuration does not contain an updated value. If the VP is initially idle (0L), the PG

Controller (PGC) will power up eight lanes and will enter the 8L VP state. The reason to

move the PGC from the 0L directly to the 8L configuration (that is, bypassing the 4-lane

configuration) is that, statistically, 8L has the highest probability to be the optimum

energy state for the set of scenarios used in the experiments. The VP will use data from at

least a single profile window in order to update the utilization for this configuration. If

one of the inequalities based on the absolute threshold is satisfied, the controller will

initiate a transition to another state. A profile window is the time window in clock cycles

107

for which the utilization of lane’s ALU is monitored. After each profile window, the

utilization register corresponding to the current state is updated.

8L4L 16L

U
4
>ATh4->8

U
8
>ATh8->16

U
16

/U
8
<RTh16/8

U
8
/U

4
>RTh8/4

Figure 6.5 Example of state transitions upon a VP event.

A transition between two stable VP operating states involves the following steps

and three transitional VP non-operating states:

1. INT state: stop the Scheduler to receive any new VP acquire requests and send a

hardware interrupt to the scalar CPUs that have VP resources acquired.

2. PW state: after ACKs from all CPUs are received, configure the PG Sequencer

for a new VP power state.

3. CFG state: reconfigure the Scheduler with the new number of lanes and enable it

to acknowledge new VP acquire requests.

The CPUs run the interrupt routine in Figure 7. In the new state, the utilization

register will be updated after a profile window; if one of the inequalities is met, it will

initiate a new transition. As discussed earlier, the inequality may be based on the relative

threshold if the ratio /M N

ALU ALUU U is available; otherwise, it will rely on the absolute

threshold. Figure 6.5 shows an example of state transitions upon a VP event. Initially the

VP is in the 4L state and will move to the 8L state because, after a full profile window,

the utilization is greater than the absolute threshold
4 8ATh 

. Subsequently, the VP state

will transit to 16L and will then return to the 8L state due to relative threshold inequality.

According to the state machine in Figure 8 up to three transitions are necessary to reach

the minimum energy consumption state. Therefore, in order to avoid multiple transitions

108

that will increase the time and energy overheads, after each VP event a maximum of three

state transitions are allowed. The resources consumed by the HW profilers and the PGC

account for less than 1% of the total resources occupied by the VP. Also, since the PGC

events are scarce, simulations with different scenarios showed that the dynamic power

consumption of the PGC is insignificant as compared to the VP’s dynamic power.

6.3 Simulation Model and Experimental Setup

6.3.1 Simulation Model

In order to prove the benefits of the proposed energy-saving schemes, a simulator that

models the execution of VP threads for different execution configurations is developed.

The simulation model is based on performance and power figures gathered from RTL and

netlist simulations, as described in Section V. The model contains the information

necessary to compute the execution time and energy consumption for any combination of

kernels (,)i j  running in any possible VP state. Each kernel
i

or combination of

kernels (,)i j  is represented by the utilization(s)  M

iU  ,  M

jU  and the total power

(,)M

i jP   when the
i and j kernels run on the VP, for all possible values of

 4,8,16M  . These values are obtained after performance and power simulations as per

Section V.B. The ALU utilization  M

iU  is used to compute the execution time for each

kernel and (,)M

i jP   is used to compute the energy consumption. Also, the model

accounts for all the time and energy overheads incurred due the state transition processes.

Table 6.1 summarizes the time and energy overheads taken into account by the

model. Since the lane implementation is almost eight times bigger than a floating-point

109

multiply unit in [Roy et al., 2009] which is power gated in one clock cycle, the model

assumes that a VP lane will wake up in 8 clock cycles. Also, a conservative approach is

considered, where one lane is powered up/down at a time by the PG Sequencer in order

to avoid excessive currents in the power net. The VP components that are not powered

off or power on during state transition consume static energy as usual.

Table 6.1 Time and Energy Overheads for PGC State Transition

 Time overhead (cycles) Energy overhead

Call interrupt routine 20 (for MicroBlaze) Based on actual runs

Save vector registers (M-

lane configuration) _ _ *
VL

No dirty vregs
M

No_dirty_vregs = number of vector

registers that need to be

saved/restored.

Time overhead × [(Dynamic power

to store the vector registers) +

(Static power)]

Power up (one lane at a

time)

8×(No of lanes to be powered up)

[Roy et al., 2009]

20×(Time overhead)×(Static power

when the lane is ON) [Roy et al.,

2009]

Power down (one lane at a

time)

0 (8 cycles)× (Static power when the

lane is ON) [Roy et al., 2009]

Acquire VP and restore the

vector registers (N-lane

configuration)

10 _ _ *
VL

No dirty vregs
N



Startup of 10 cycles to acquire the VP.

Also, cycles to restore the dirty

registers.

Time overhead × [(Dynamic power

to load the vector registers) +

(Static power)]

6.3.2 Experimental Setup

In order to expose the VP to dynamic workloads, benchmarks composed from random

threads running on the scalar cores are created. Each thread has VP busy periods (i.e.,

vector kernels targeting the VP) and VP idle periods, as shown in Figure 10. These are

realistic scenarios since during idle periods the core is often busy either with memory

transfers or executing a critical section of the program. A thread busy period is uniquely

denoted by a kernel
i

and a workload expressed in a random number of floating-point

operations; a thread idle period is described in terms of a random number of VP clock

cycles. Ten fundamental vector kernels were used to create these scenarios. More

110

specifically, two versions of each benchmark kernel in Section IV were first produced,

one having relatively low ALU utilization while the other has higher ALU utilization.

The workload of each kernel, which is expressed as a random number of operations, is

uniformly distributed between chosen limits, in such a way that enough data exists in the

Vector Memory for processing without the need for additional DMA transfers (this is

valid for any present kernel). With the inclusion also of an idle kernel to this set of ten

fundamental kernels, 55 unique pairs of kernels, plus 10 scenarios with a single kernel

active on one core only, were produced. Table 6.2 shows the absolute and relative

thresholds for APGP. Although not shown in Table 6.2, in the 8L configuration only two

scenarios that do not have this state as the optimum energy state have an ALU utilization

in the interval [50, 60]%.

Segment 0

Segment 1

Segment 1

Segment 0

CPU 0

CPU 1

i j p

i j pm s q

m s q

Figure 6.6 VP threads issued by each scalar core with embedded idle times. Each thread

contains 1000 segment runs. Each segment contains 10,000 kernel runs. A solid line

shows the time spent by the core to issue the entire code for the corresponding kernel

workload.

Table 6.2 Absolute and Relative Thresholds for APGP Implementation

Threshold Value

ATh 4->8 50%

ATh 8->16 60%

ATh 8->4 50%

ATh 16->8 72%

RTh8/4 0.6739

RTh16/8 0.7581

111

Simulation results were produced for the following combinations:

(i) 2 CPUs (i.e., cores), each one having exclusive access to a VP with the same

fixed number of lanes (4 and 8), and all lanes of a VP are power gated during

idle periods.

(ii) 2 CPUs sharing a VP with a fixed number of lanes (4, 8 or 16) under CTS; all

VP lanes are power gated when both VP threads are idle.

(iii) 2 CPUs sharing a VP under CTS and DPGS (for selective per lane power

gating).

(iv) 2 CPUs sharing a VP under CTS and APGP (for selective per lane gating).

(v) 2 CPUs sharing a VP with a fixed number of lanes (4, 8 or 16) under FTS; all

VP lanes are power gated when both VP threads are idle.

(vi) 2 CPUs sharing a VP under FTS and DPGS (for selective per lane gating).

(vii) 2 CPUs sharing a VP under FTS and APGP (for selective per lane gating).

6.4 Experimental Results and Discussion

Figure 6.7 displays the breakdown of the normalized execution time (in reference to the

first execution scenario with two scalar CPUs, each attached to its dedicated 4-lane VP)

and the normalized energy consumption for the execution of the same benchmark, where

the majority of vector kernels in the threads have low ALU utilization. The ratio between

low and high utilization kernels in a thread is 4:1. This figure assumes idle periods

between consecutive vector kernels in a thread which are expressed in VP clock cycles

and are uniformly distributed in the ranges [1000, 4000], [5000, 10000] and [10000,

30000].

Some conclusions can be drawn:

(i) FTS sharing generally produces the lowest energy consumption. For a given VP

sharing policy, this being CTS or FTS, the application of DPGS or APGP brings

112

the overall energy consumption to a minimum compared to scenarios that do not

incorporate such an intelligent power gating approach.

(ii) Except for two cases, namely 2x(1cpu_8L) and 2cpu_16L_FTS, FTS sharing

with DPGS or APGP minimizes the execution time as well. To their advantage,

however, the latter pair of power-gating schemes also consume 30-35% and 18-

25% less energy as compared to 2x(1cpu_8L) and 2cpu_16L_FTS, respectively.

(iii) Scenarios with two scalar CPUs, each with its own dedicated VP (i.e., the 2x

scenarios), yield lower execution time than the CTS sharing schemes because

CTS does not sustain a high utilization across all the functional units within a

lane.

(iv) Usage of DPGS or APGP to CTS sharing reduces the energy consumption

compared to the 2x scenarios. As the idle period between successive kernels

decreases, the CTS technique becomes less effective as shown in Figures 6.8e

and 6.8f; for example, just a 5% gain in energy consumption for DPGS-driven

CTS with a slow down of 70% as compared to 2x(1cpu_4L).

(v) Finally, the time and energy overheads caused by state transitions are negligible,

and therefore cannot be shown in Figures 6.7 to 6.9. The total time overheads

have an upper bound of 0.3% of the total execution time for DPGS and 0.7% for

APGP; the energy overheads are upper bounded by 0.23% of the total energy

consumption for DPGS and 0.57% for APGP.

Figure 6.8 shows the normalized execution time and energy consumption for

threads containing kernels with mixed utilization figures, such that the ratio between low

and high utilization kernels in a thread is 1:1 (i.e., they appear with the same probability).

FTS under DPGS or APGP yields the minimum energy while the performance is better

than FTS with eight lanes. Figure 6.9 shows the normalized execution time and energy

consumption for threads dominated by high utilization kernels, where the ratio between

low and high utilization kernels is 1:4. As the number of kernels providing high

113

utilization increases, the portion of time spent in the 16L state increases for FTS under

the DPGS and APGP schemes. As a consequence, the performance of the proposed

power-gating schemes is better than the one provided by a fixed VP with eight lanes, and

approaches the performance of the 16L FTS-driven configuration.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.7 Normalized execution time (a, c, e) and normalized energy consumption (b, d,

f) where the majority of kernels in a thread have low ALU utilization, for various idle

periods. The ratio of low to high utilization kernels in a thread is 4:1. E_st and E_dyn are

the energy consumptions due to static and dynamic activities, respectively. “2x” means

two scalar CPUs of the type that follows in parentheses, such as “(1cpu_4L)” which

means one CPU having a dedicated VP with four lanes. Whenever CTS or FTS shows, it

implies two CPUs with VP sharing.

114

As expected, the energy consumption is reduced drastically with FTS and DPGS

or APGP power gating as compared to all other scenarios in the figure.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.8 Normalized execution time (a, c, e) and normalized energy consumption (b, d,

f) for threads with mixed utilization kernels, for various idle periods. The ratio of low to

high utilization kernels in a thread is 1:1.

115

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.9 Normalized execution time (a, c, e) and normalized energy consumption (b, d,

f) for threads dominated by high utilization kernels, for various idle periods. The ratio of

low to high utilization kernels in a thread is 1:4.

6.5 Energy-Performance Trade-off Mechanism

The proposed power-gating approaches minimize the overall static energy consumption

in all these cases that do not assume any performance constraints. Additionally, a trade-

off mechanism could be used to utilize DPGS or APGP power gating schemes in order to

increase the performance at the expense of an increased energy consumption. More

specifically, in order to reduce the average execution time per thread, the absolute and

116

relative thresholds are changed in such a way that more kernels can run in a VP state that

involves more active lanes.

Figure 6.10 Normalized energy vs. normalized execution time for threads dominated by

low utilization kernels. The idle period is in the range [5000, 10000] VP clock cycles.

Figure 6.11 Normalized energy vs. normalized execution time for threads dominated by

mixed utilization kernels.

To demonstrate the viability of such a performance-vs.-energy trade-off approach,

Figures 6.10 to 6.12 plots the normalized energy versus the normalized speed-up for a set

of thresholds obtained by multiplying the original thresholds with a scale factor s that lies

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Normalized Speed-up

N
o

rm
al

iz
ed

 E
n

er
g

y

2cpu-DPGS-FTS

2cpu-APGP-FTS

2cpu-4L-FTS

2cpu-8L-FTS

2cpu-16L-FTS

s=1.4

s=1

s=0.5

0.7 0.8 0.9 1 1.1 1.2
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Normalized Speed-up

N
o

rm
al

iz
ed

 E
n

er
g

y

2cpu-DPGS-FTS

2cpu-APGP-FTS

2cpu-4L-FTS

2cpu-8L-FTS

2cpu-16L-FTS

s=1.4

s=1

s=0.5

117

between 0.5 and 1.4. Based on the data from these figures, the lower limit of s (i.e., 0.5)

is chosen such that DPGS and APGP achieve close to the maximum possible

performance, which is given by FTS when all 16 lanes are used (2cpu-16L-FTS).

Figure 6.12 Normalized energy vs. normalized execution time for threads dominated by

high utilization kernels.

To simplify the process without loss of generality, the same scaling factor is used

for all the thresholds, and the simulations are conducted for threads with idle periods in

the range [5000, 10000] cycles. For FTS sharing and DPGS-driven power gating, the

maximum performance is reached for s=0.5; the configuration is obviously for 16L.

APGP follows closely the behavior of DPGS with a small deviation as s approaches 0.5.

As depicted in Figure 6.10 for threads dominated by low utilization kernels, the

performance can be increased by as much as 18% with an increase in the energy

consumption by 22%. As shown in Figures 6.11 and 6.12, similar performance

improvements can result for threads containing kernels with mixed or high utilization,

when an energy increase of 17% and 13%, respectively can be tolerated. On the other

hand, both the performance and energy degrade for values of s greater than one.

0.6 0.7 0.8 0.9 1 1.1 1.2
0.9

0.95

1

1.05

1.1

1.15

Normalized Speed-up

N
o

rm
al

iz
ed

 E
n

er
g

y

2cpu-DPGS-FTS

2cpu-APGP-FTS

2cpu-4L-FTS

2cpu-8L-FTS

2cpu-16L-FTS

s=1

s=0.5

s=1.4

118

Therefore, it is not desirable to slow down the VP below a certain level (similar to what is

called critical speed for the DVFS technique [Jejurikar et al., 2004]) in order to avoid

simultaneous deterioration in the energy consumption and performance.

Accordingly, a mechanism can be developed to change the absolute and relative

thresholds at runtime. Figure 6.13 sketches such an algorithm that minimizes the energy

consumption for a given kernel or pair of kernels requiring minimum performance (i.e.,

minimum value for *MIN M

ALU ALUU M U).

Figure 6.13 Routine to minimize the energy consumption for a given kernel or pair of

kernels requiring minimum performance. This routine runs continuously after a VP event.

6.6 Conclusions

This chapter proposes two energy reduction techniques that employ power gating to

dynamically control the width of a shared vector coprocessor (VP) based on lane

utilization. The motivation is that a rigid VP architecture shared by multiple cores in a

dynamic environment cannot adjust its resources at runtime in order to achieve desired

energy-performance levels. The power estimation model introduced in Chapter 5

suggests that, for a given vector kernel or combination of kernels, the dynamic energy

does not vary substantially due to fixed workloads. Consequently, two power-gating

techniques are proposed to control the number of active VP lanes in order to minimize

Update s to minimize the total energy for a given level (min

ALUP). of the overall performance.

1. 1;s 

2. wait for a profile window;

3. if * M MIN

ALU ALUM U U {

0.05s s  ; // decrement s in steps of 0.05;

update all thresholds ATh and RTh according to the new s;

1 * ;sATh ATh s

1 * ;sRTh RTh s

}

4. go back to step 2.

119

the static energy. The first technique, DPGS, uses apriori information of lane utilizations

to choose the optimal number of lanes that minimizes the energy consumption for known

kernels. APGP uses embedded hardware utilization profilers in order to make runtime

decisions about VP resizing. To find each time the optimal number of lanes that minimize

the energy consumption, the current state of the VP is changed sequentially until an

optimum VP state is reached for the current workload. Floating-point intensive

benchmarking on an FPGA prototype show that these techniques reduce the total energy

by 30-35% while maintaining performance comparable to a multicore with the same

amount of VP resources, where each core has exclusive access to its own dedicated VP.

Additionally a trade-off mechanism is developed to increase the performance at

the expense of increased energy. This allows an increase in performance of about 18%

while increasing the energy consumption by 22% for scenarios with low utilization

kernels and by 13% for scenarios with high utilization kernels. Also, the work can be

extended to find the optimal scaling factor s that minimizes the energy under a given

performance constraint.

Finally, this work could be a starting point in developing a framework that

minimizes the energy consumption within a single streaming multiprocessor in a GPU

Fermi architecture [Nvidia CUDA, 2011] by adjusting at runtime the number of active

CUDA cores based on the present workload (i.e., warp throughput, etc). Memory

bounded applications will benefit mostly since the cores will be underutilized. Of course,

this will require a few changes in the PTX ISA and GPU architecture; e.g., support for

dynamic power gating of individual CUDA cores and dynamic adjustment of the number

of threads in a warp.

120

CHAPTER 7

ASIC IMPLEMENTATION OF THE VECTOR PROCESSOR

As presented in Chapter 4, pre-silicon prototyping was initially carried out on Virtex 5

and 6 FPGAs. The current chapter presents the ASIC (Application-Specific Integrated

Circuit) implementation of the Vector Processor (VP). Section 7.1 shows the conversion

details for the FPGA to ASIC transition. Section 7.2 presents the Synopsys design flow

used to implement and analyze the design, and Section 7.3 details the decision process of

choosing a specific process corner. Section 7.4 shows the obtained results and Section 7.5

draws the conclusions of this Chapter.

7.1 FPGA to ASIC Design Transition

In order to implement the Vector Processor in ASIC, some of the Xilinx IP (Intellectual

Property) cores, which are particular to the FPGA implementation, have to be replaced.

Table 6.1 shows the VP components replaced for the FPGA to ASIC transition, along

with some details. The Add/Subtract and Multiply components are replaced with designs

taken from Open Cores [Open Cores, 2012] and customized/optimized to have a latency

of six clock cycles. Also, the Synopsys DesignWare library offers floating point support.

However, like in the case of the Xilinx IPs, these IPs are encrypted and their

customization for different cycle latencies is done directly by the synthesis tool. As

compared with non-encrypted IPs these modules do not perform too well for deep

pipelines (due to high clock latencies), especially when the clock gating feature is

121

enforced. Therefore, the ASIC implementation uses the in-house built custom floating

point modules.

Table 7.1 VP Components Replaced for the FPGA to ASIC Transition

Component

FPGA ASIC

SPFP

ADD/SUBTRACT

Xilinx IP core

6 cycles latency

OpenCores [Open Cores, 2012] IP in-house

customized and optimized, or Synopsys

DesignWare IP.

6 cycles latency

SPFP

MULTIPLY

Xilinx IP core

6 cycles latency

OpenCores IP in-house customized and

optimized, or Synopsys DesignWare IP.

6 cycles latency

Vector Register File

Bank

Xilinx Block RAM

512 32-bit elements

4 Read and 2 Write ports

Latch-based Register File - for simulations.

CACTI model [Muralimanohar et al., 2012] -

for area/delay/power analysis.

128 32-bit elements per bank; the VRF

within each lane has 4 banks.
4 Read and 2 Write ports

Vector Memory

Bank

Xilinx Block RAM

8 KBytes

2 Read/Write ports, 32-bit width

CACTI model - for power analysis

LDST Address

Computation

Xilinx DSP block for

multiplication

Synopsys DesignWare Basic Block

multiplier inferred during synthesis

Xilinx Block RAMs from the Vector Register File are replaced with latches

inferred by the synthesis tool from a behavioral description. However, big register files

like those used in Vector Processors require Static Random Access Memory (SRAM) to

retain the register state. The Synopsys and TSMC (Taiwan Semiconductor Manufacturing

Company) libraries do not provide the SRAM models for feature sizes lower than 90 nm

and the solution is to use CACTI 6.0 [Muralimanohar et al., 2012] to characterize/extract

the area, delay and power figures for VRF. Similarly, CACTI is used to extract the area,

time and power parameters for the Vector Memory banks. Table 6.2 shows all the

parameters for the VRF and Vector Memory SRAM block given by CACTI for a design

frequency of 1 GHz and a feature size of 40nm.

122

Additionally, in order to test the ASIC version of the VP and also run netlist

simulations, the rest of the VP environment (i.e. the Microblaze scalar cores, the PLB

bus, and the DMA and Memory Controller) are replaced by a Verilog testbench that is

capable of issuing VP instructions and moving data to/from the Vector Memory.

Table 7.2 VRF and Vector Memory Area and Power Consumption Figures for a

Frequency of 1.0 GHz (CACTI 6.0 for a Feature Size of 40nm)

Component

Details

Vector Register File bank 4 Read ports/ 2 Write ports (6 ports totally)

128 32-bit elements (2 KBytes)

VDD: 1.061 V

Access time (ns): 0.9096

Total read dynamic energy per read port (nJ): 0.00192
Total read dynamic power per read port at max freq (mW): 4.177

Total standby leakage power per bank (mW): 2.098

Total area (µm2): 28017.44

Vector Memory bank 2 Read/Write ports

2048 32-bit elements (8 KBytes)

VDD: 0.661V

Access time (ns): 0.8069

Total read dynamic energy per read port (nJ): 0.00316

Total read dynamic power per read port at max freq (mW): 7.763

Total standby leakage power per bank (mW): 3.102

Total area (µm2): 82835.40

7.2 ASIC Design Flow

The hierarchical design flow is followed with the application of standard EDA tools.

Synopsys VCS-MX [Synopsys VCS-MX, 2011] is used for simulation and verification of

the RTL design and the netlist produced by synthesis. The Synopsys Design Compiler

[Synopsys DC, 2011; Synopsys DC Optim., 2011] is used for synthesis and Synopsys

Prime Time [Synopsys PX. 2011] is used for timing and power analysis.

Figure 7.1 shows the Synopsys front-end design and power flow. It comprises the

following steps [Beldianu, 2012]:

(i) Simulation of the RTL description logic using Synopsys VCS-MX for

123

performance purposes.

(ii) Synthesis using the Synopsys Design Compiler.

(iii) Simulation of the netlist produced by synthesis using Synopsys VCS-MX.

(iv) Analysis of the power consumption for the implemented design using Synopsys

Primetime-PX that involves stimuli provided by the testbench.

RTL

.vhd

Design

Constraints

.tcl

Synopsys

VCS-MX

Synopsys

Design

Compiler

TSMC

Library

.db, .lib

Delay info

.sdf

Netlist

.v

Constraints

.sdc

Synopsys

VCS-MX

Activity

.saif

Synopsys

PrimeTime-

PX/SX

Power

Performance

TSMC

Library

.v

RTL sim

Netlist sim

Wire Load Model

<10% error estim.

Figure 7.1 Synopsys front-end design and power analysis flow.

124

The synthesis process involving the Design Compiler comprises at least the

following steps:

(i) Specify the working libraries. The link, target, symbol, and synthetic libraries

for the Design Compiler should be specified. The link and target libraries are

technology libraries that define the semiconductor vendor’s set of cells and

related information, such as cell names, cell pin names, delay arcs, pin loading,

design rules, and operating conditions. The symbol library defines the symbols

for schematic viewing of the design. In addition, synthetic libraries specify the

DesignWare Synopsys IPs that will be inferred during synthesis.

(ii) Read the design. Reading the design consists of loading all the VHDL/Verilog

design files into the Design Compiler environment.

(iii) Define design environment. This step defines operating conditions

(manufacturing process, temperature, and voltage), loads, drives, fanouts, and

wire load models. Wire load modeling consists of estimating the effect of wire

length and fanout on the capacitance, resistance, and area of nets. The Design

Compiler uses these physical values to calculate wire delays and circuit speeds.

Additionally, the PrimeTime-PX power estimator uses these models to estimate

the power consumption of the wire parasitics. Wire load models are based on

statistical information collected from each technology process and are

developed by every Semiconductor vendor. The models include coefficients for

capacitance, resistance, and area per unit length, and a fanout-to-length table for

estimating net lengths (the fanout number determines the wire length).

(iv) Set design constraints. Constraints define the design goals for timing (clocks,

clock skews, input delays, and output delays) and area (maximum area). The

Design Compiler will try to meet these goals, but no design rules are violated by

the process.

(v) Optimize the design. This is the actual step where synthesis is done.

(vi) Analyze and Resolve Design Problems. The Design Compiler can generate

numerous reports comprising results of design synthesis and optimization; for

125

example, area, constraint, and timing reports. These reports could be used to

analyze and resolve any design problems or to improve the synthesis results.

(vii) Save the Design Database. The design can be saved in various formats

(Verilog/VHDL netlist file or design data file .ddc). Additionally, a Standard

Delay Format (SDF) back-annotation file is saved that contains all the delay

information of the cells and nets used during the gate-level simulation.

Figure 7.2 Power consumption of the VP Lane execution unit for the ADD/SUB, MUL

and MISC operations under various activity rates. FP ADD/SUB - Single Precision

Floating Point Add/Subtract; FP MUL - Single Precision Floating Point Multiply; FP

MISC - Single Precision Floating Point Absolute, Negate, Move and IntraLane Shift

operations; NO CG - No Clock Gating support during synthesis; CG - with Clock Gating

support during synthesis; STANDBY PWR - Power consumption when no operation is

performed. The lane execution unit is implemented in the 40 nm TSMC process with

VDD=1.21V and low voltage threshold. The power consumption is measured at 1 GHz

clock frequency and after the system reaches a steady state of operation.

Power estimation with Primetime-PX requires the following inputs: (i) the netlist

generated by the synthesis process; (ii) the Switching Activity Interchange Format

0 10 20 30 40 50 60 70 80 90 100
0

5.4

10

13.7

20

25

Activity Rate (%)

P
o

w
e

r
(m

W
)

FP ADD/SUB - NO CG

FP MUL - NO CG

FP MISC - NO CG

STANDBY PWR - NO CG

FP ADD/SUB - CG

FP MUL - CG

FP MISC - CG

STANDBY PWR - CG

126

(.SAIF) file generated during the gate-level simulation; (iii) the Synopsys design

constraints; e.g., time constraints and the wire load model; and (iv) the vendor’s

technology libraries.

The RTL VHDL/Verilog models use clock gating extensively throughout the VP

design and automatic clock gating capabilities provided by the Design Compiler to

capture most of the remaining clocked elements. Thus, the power consumption associated

with the clock distribution network can be substantially reduced. Figure 7.2 shows the

benefits of clock gating for floating point execution units within a vector lane. The

standby power consumption (i.e., the power consumption when no operation is

performed) can be reduced by 60% when clock gating is enforced.

7.3 Design Exploration

The ASIC implementation targets the 40 nm TSMC High Performance process [TSMC

40nm, 2011]. The 40nm process provides more than twice the density at the same leakage

level and more than a 40 percent speed improvement compared to TSMC's 65nm process.

The High Performance process targets PC (personal computer), networking, and wired

communication applications, and offers Multi-Voltage support with Low, Nominal and

High Voltage thresholds (Vt).

Table 7.3 Description of Various TSMC High Performance 40nm Process Corners (PC)

Process corner

Description

PC_01
Process: 40 nm

Vendor: TSMC

High Performance non-well biased
with UPF (Unified Power Format)

and Multi-Voltage support

Temperature: 125 °C

VDD: 1.21 V

Voltage Threshold: Low

PC_02
VDD: 1.21 V

Voltage Threshold: Normal

PC_03
VDD: 1.21 V

Voltage Threshold: High

PC_04
VDD: 0.99 V

Voltage Threshold: Low

127

By changing the timing constraint on the VP blocks, the Design Compiler

produces different logic topologies, synthesis mappings and gate sizes that trade-off

area/power and delay. Designs synthesized with tight delay constraints use more

aggressive mappings and larger gates, resulting in higher area and power figures. Figures

7.3a and 7.3b show the Pareto trade-off curves between performance and area/power

consumption of the ALU data-path design module for different process corners that are

listed in Table 7.3. Presenting the results in a trade-off oriented manner involving

area/power and performance provides a more complete picture of the design exploration

space to designers. The overall trade-off space spans approximately 4.5× in performance,

from about 0.44 to 2 GFLOP/s, and 8× in power, from about 7.6 mW to 60 mW.

Additionally, some conclusions can be made:

(i) For a given process corner, the area and power increase as the performance

requirement increases.

(ii) Area Pareto points for the high speed process (1.21 V and Low Vt) dominate

other Pareto process points even for low performance values.

(iii) At low performance, the low speed process corners dominate the high speed

process corners in terms of power. For example, at 0.66 GFLOP/s, PC_03

dominates PC_01 and PC_02.

(iv) Finally, only PC_04 is able to provide a performance greater than 1.1 GFLOP/s

since the other process corners are not able to meet these requirements.

According to conclusion iv, in order to provide throughputs over 1.1 GFLOP/s,

the process corner adopted throughout the rest of the Chapter is PC_01 (that is, TSMC

40nm High Performance with VDD=1.21V and Low Vt).

128

Figure 7.3 Pareto trade-off curves for the ALU module within a lane involving: (a)

performance and area; (b) performance and power. Details for the PC_01 to PC_04

process corners are shown in Table 7.3.

2 1 0.66 0.5 0.4 0.33
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x 10
4

Throughput (GFLOP/s)
(a)

A
re

a
 (

u
m

2
)

PC_01: VDD=1.21 V, Low Vt

PC_02: VDD=1.21 V, Nom Vt

PC_04: VDD=0.99 V, Low Vt

PC_03: VDD=1.21 V, High Vt

2 1 0.66 0.5 0.4 0.33
0

10

20

30

40

50

60

Throughput (GFLOP/s)
 (b)

P
o

w
e

r
(m

W
)

PC_01: VDD=1.21 V, Low Vt

PC_02: VDD=1.21 V, Nom Vt

PC_04: VDD=0.99 V, Low Vt

PC_03: VDD=1.21 V, High Vt

129

7.4 ASIC Implementation Results

This section presents the timing, area and power results for the ASIC implementation of

the Vector Processor.

Table 7.4 shows the maximum frequency for the main components of the VP

given by synthesis for the TSMC 40 nm High Performance process. The wire load model

chosen throughout the entire synthesis process is “TSMC512K_Lowk_Conservative“,

which is the most conservative load model; therefore, the maximum frequencies could be

potentially improved further. The critical path delay for a lane corresponds to the floating

point multiply module. However, a careful design with increased pipeline depth could

further increase the maximum frequency.

Table 7.4 Maximum Working Frequency for the Main VP Components

Component

Max

Frequency

(GHz)

ALU

ALU_CTRL 2.08

ALU_ADD/SUB 1.98

ALU_MUL 1.78

LDST LDST_CTRL 1.97

VC 2.12

Table 7.5 shows detailed area and power results for all the VP components. As

depicted in Figure 7.4, more than three quarters of the lane area is occupied by the four

SRAM banks used to implement VRF. Overall, only 13.7% of the VP area is taken by

custom logic; the rest of the design is occupied by memory blocks within the VRF and

Vector Memory. These results conform with other embedded designs [Balfour, 2010],

where most of the chip area is occupied by regular SRAM. On the other hand, more than

66% of the power consumption is caused by the ALU and LDST units.

130

Table 7.5 Area and Power Results for Each VP Component, and Total VP Area for

Various Configurations. The Standby Power is the Power Consumption when the VP is

Idle (it Involves Leakage Power). The Maximum Power for Each Component Includes

the Standby Power. The Percentage Figures are Relative to the First Module in the

Hierarchy; i.e., ALU and LDST. The Power Consumption is Measured at 1.0 GHz Clock

Frequency. The Total VP Area Includes the Vector Memory and One Equivalent Gate

Comprises Four Transistors [TSMC 40nm, 2011]

Component
Area (µm

2
) Power (mW)

 Leakage Standby Max

ALU

20659
(100%)

2.756 9.504 31.3

ALU_CTRL
1951

(9.4%)
0.236 2.713 4.58

ALU_ADD/SUB
5482

(26.5%)
0.717 2.311 21.20

ALU_MUL
8126

(39.3%)
1.212 2.817 14.70

ALU_MISC
1271

(6.2%)
0.144 0.239 3.62

ALU_vc0_q
1571

(7.6 %)
0.177 0.308 0.617

ALU_vc1_q
1571

(7.6 %)
0.182 0.308 0.617

LDST

7213.35

(100 %)
0.884 6.307 12.31

LDST_CTRL
4081.91

(56.6 %)
0.66 5.68 11.21

LDST_vc0_q
1563.0879

(21.7 %)
0.177 0.307 0.758

LDST_vc1_q
1558.32

(21.6 %)
0.182 0.312 0.758

VRF - Latch based

(one bank)
35637 3.891 3.891 8.979

VRF - SRAM (CACTI)

(one bank)
28017 2.098 2.098

2.098+

4.177/port

VC 3076 0.341 1.553 3.61

Scheduler 2427 0.281 1.134

Crossbar Switch 14196 1.017 8.369 14

Vector Memory - SRAM

(one bank)
82835 3.102 0

3.102+

7.763/port

 TOTAL VP AREA Gate Count

VP 2×2 0.466 mm2 1166638

VP 4×4 0.911 mm2 2276331

VP 8×8 1.798 mm2 4495745

VP 16×16 3.573 mm2 8934571

VP 32×32 7.125 mm2 17812148

131

Figure 7.4 VP lane area breakdown. A lane has four VRF banks, each one containing

128 32-bit elements. The power consumption is measured at 1.0 GHz clock frequency.

Figure 7.5 shows the power consumption breakdown gathered from simulations

of an 8×8 VP running various applications. As can be depicted, the FIR and FFT kernels

exhibit higher dynamic power consumption for the ALU unit as compared with the LDST

unit. The MM, LU decomposition and sparse matrix-vector multiplication kernels

demonstrate high utilization of the LDST unit, and, thus, high power for the LDST

controller and the Vector Memory banks. These conclusions are similar with the ones

drawn in Section 5.2. Additionally, the dynamic power model for the ASIC design

conforms to the dynamic power model developed in Section 5.2 and presented in Table

5.1. As in Chapter 5, the model assumes a fixed combination of Technology Process,

Voltage, Frequency and Temperature, and is easy to extend since only constants change.

1%

4%
6%

1%

1%

1% 3%

1%

1%

81%

ALU-CTRL

ALU-ADDSUB

ALU-MUL

ALU-MISC

ALU- vc0_q

ALU- vc0_q

LDST-CTRL

LDST- vc0_q

LDST- vc1_q

VRF (4 banks)

132

The leakage power is between 13.39% and 19.24% of the total power

consumption for FIR32 and sparse matrix-vector multiplication kernel, respectively. One

major power consumer is the clock distribution network even when the VP is idle. This

power is produced by Flip-Flops (FFs) that cannot be clock gated, the clocking gates

inferred by the synthesis tool when the clock gate option is enforced, and the wires

associated with these cells

Figure 7.5 Power breakdown (in mW) for a Vector Processor with eight lanes and eight

memory banks running different application kernels. Even if contained in each VP

component, the leakage and clock distribution network power consumption are displayed

separately. The power consumption is measured at 1.0 GHz clock frequency.

The clock power could be reduced by decreasing the number of FFs in the design;

that is, by reducing the pipeline stages in the arithmetic units and controllers. If the

leakage power contribution could be reduced by increasing the circuit speed to the

0

50

100

150

200

250

300

350

400

450

Crossbar SW

VM

VC0+VC1

VRF

LDST_CTRL

ALU_CTR

ALU MISC

FP MUL

FP ADD_SUB

CLK NET

LEAKAGE

133

maximum working frequency, the clock network power will not since it is proportional to

the clock frequency. A possible solution is to use, on top of fine-coarse clock gating

implemented by synthesis tool, architecture-level clock gating, i.e., coarse-grained on-off

control for clocks that feed whole design units which are not used for some periods of

time (more than 4-10 clock cycles). Overall, the standby power is 162 mW and accounts

for 38% to 54% of the total power consumption. In the best case, as depicted in Table

7.6, the standby power accounts for 33% of the total power consumption (see the MM

FTS scenario). These numbers conform to power data for idle periods of 40/45 nm

streaming processing systems [Radeon HD5450, 2010].

Table 7.6 Performance and Power Comparison for Various Application Kernels Running

on the ASIC Implementation of the VP with Eight Lanes and Eight Memory Banks. The

Applications are Presented in Chapter 3 (nu - no loop unrolling; u1- loop unrolled once).

The Power Consumption is Measured After the System Reaches a Steady State

 Average

utilization

(%)

Execution

Time

(µs)

Dynamic

Power

(mW)

Total

Power

(mW)

Dynamic

Energy

(nJ)

Total

Energy

(nJ)

nJ/FLOP

 ALU LDST

FIR32

VL=128 nu

CTS 39.24 19.94 0.0207 106.21 268.53 2.19 5.55 0.086

FTS 75.66 38.24 0.0107 204.78 367.10 2.20 3.94 0.061

VLS 49.51 25.29 0.0164 134.00 296.32 2.19 4.86 0.075

FFT32

VL=32 nu

CTS 43.29 23.38 0.408 89.64 251.96 36.57 102.80 0.160

FTS 76.28 42.39 0.230 157.95 320.27 36.40 73.82 0.115

VLS 62.74 35.11 0.274 129.91 292.23 35.59 80.07 0.125

MM

VL=128 u1

CTS 68.3 69.51 0.376 221.67 383.99 83.40 144.47 0.070

FTS 97.32 98.91 0.264 315.86 478.18 83.46 126.36 0.061

VLS 81.88 83.4 0.311 265.75 428.07 82.84 133.45 0.065

LU

VL=128 nu

CTS 36.17 36.53 0.079 116.357 278.67 8.683 20.796 0.081

FTS 72.05 72.92 0.0395 231.781 394.10 8.634 14.680 0.057

VLS 47.23 47.67 0.059 151.936 314.25 8.641 17.873 0.070

SpMV_k1

VL=32 u1

CTS 9.35 38.2 422.25 68.53 230.85 28937 97477 0.581

FTS 18.22 73.39 213.87 133.54 295.86 28562 63278 0.377

VLS 14.79 60.11 252.52 108.40 270.72 27372 68358 0.407

Table 7.6 shows the performance, power and energy consumption for various

execution scenarios. The same conclusions as in Section 4.2 hold also here. From the

power perspective, the main two conclusions are:

134

(i) For a given application, the lowest dynamic energy is almost the same for all

sharing contexts.

(ii) However, if the standby power is included, the advantage of FTS and VLS is

substantial, especially for low average utilization (see the SpMV benchmark).

Additionally, from Figure 7.2 the energy per FLOP for the floating point units is

around 20pJ/FLOP at the most (SPFP multiply unit). Table 7.6 shows that the best energy

consumption achieved by the overall VP system is 61 pJ/FLOP. The rest of the 41 pJ or

more are spent to supply data (controllers, VRF and memory) and instructions (VCs,

instruction queues and instruction processing).

Using a linear approximation method, the values of the K coefficients for the

dynamic power model can be found like in Section 5.2. They are shown in Table 7.7

along with the coefficients obtained previously for the FPGA implementation. If the

FPGA coefficients are scaled to the ASIC frequency, then there is a 3× to 20× gap

between the FPGA and ASIC implementations. The smallest gap is for the multiply FP

unit because the Xilinx IP multiply core encompasses DSP48E slices. These are low

power high speed ASIC multiply-add macros.

Table 7.8 shows the mean absolute error for the dynamic power model. The

utilization of the lane units can be used to estimate the dynamic power consumption

within a 5% confidence interval. Even if not shown here, the highest error deviation is

given by the ALU and LDST controllers. The rest of the components have almost a linear

dependence between the dynamic power and utilization. VRF and VM are not included

since the dynamic power consumption is based on SRAM CACTI models. Also, the FFT

kernels exhibit a higher error caused by conditional execution. As stated in Section 5.2,

135

the actual dynamic power of VRF and ALU for the FFT kernels is under the linear

estimation curve.

Table 7.7 Comparison of Power Coefficients for the FPGA (from Table 5.1) and ASIC

Implementation

 FPGA

(µW/%)

125MHz

FPGA (µW/%)

Scaled to 1GHz

ASIC (µW/%)

1GHz

ASIC/FPGA

gap

ALU
 _

INTSR

ALU CTRLK 28 224 12.64 17.72×

_

DATA

ALU CTRLK 18 144 18.78 7.66×

_ADD SUBK 215 1720 112.93 15.23×

MULK 71 568 182.91 3.10×

MISCK 18 144 33.6 4.28×

LDST

INTSR

LDSTK 34 272 18.08 15.04×

DATA

LDSTK 55 440 55.37 7.94×

VRF
VRFK

34 272 120 2.26×

VC
VCK 240 1920 98.15 19.56×

VM
_MEM BANKK 147 1176 57.43 20.47×

Table 7.8 Mean Absolute Error for Dynamic Power Estimation of the ASIC

Implementation. The w Weights are Detailed in Table 5.1

_ / /ADD SUB MUL MISCw w w Mean Absolute Error (%)

FIR 0.48/0.48/0.04 3.45

FFT 0.36/0.36/0.27 7.38

MM 0.5/0.5/0 3.64

LU 0.5/0.5/0 2.97

SpMVM_k1 0/0.99/0.01 4.03

OVERALL 4.29

Finally, Figures 7.6a and 7.6b focus on the area and power scalability of the

Crossbar Switch. This module is the only component in VP that is not linearly scalable.

As can be seen, the area and power scales quadratically with the number of VP lanes. For

sizes bigger than 16, the area scales more than quadratically because of the tight timing

constraints (see section 7.3). For these cases, custom interconnect fabrics can be used

[Who et al., 2011; Satpathy et al., 2011]. In [Satpathy et al., 2011] a 32×32 64-bit fully

136

connected crossbar is implemented in 65 nm. The frequency of 1026 MHz provides a

total throughput of 2.1 Terabits/s consuming less than 500 mW of power and occupying

an area of 0.35 mm
2
.

Figure 7.6 Area (a) and Power consumption (b) for an N×N VP crossbar switch, where N

is the number of masters. The crossbar contains the arbiters and the logic that supports

shuffle operations. The design is synthesized to meet the constraint of 1 GHz for the

clock frequency. The power consumption is extracted under maximum LDST utilization.

2 4 8 16 32
10

3

10
4

10
5

10
6

Crossbar Size
 (a)

A
re

a
 (

u
m

2
)

2 4 8 16 32
10

0

10
1

10
2

10
3

Crossbar Size
 (b)

P
o

w
e

r
(m

W
)

137

7.5 Per VRF Bank Dynamic Power Gating

For the ASIC implementation, the lane VRF can be split into multiple banks. Individual

banks can be powered down if they are not used. The total number of needed VRF banks

to be used collectively by a pair of applications in the FTS context is given by

Equation 7.1:

 0 0 1 1
NoVRegs NoVRegs

_
VL VL

No Banks
M K M K

    
       

 (7.1)

where    is the ceiling function,
iVL ,and NoVRegsi

 are the vector length and the

number of vector registers requested by application i, for i=0 or 1; M is the number of

lanes and K is the number of elements in each bank. For example, the current ASIC

implementation has a VRF with four banks and K=128 elements in each bank; Table 7.9

shows the number of banks required by some scenario when the number of active VP

lanes is eight.

Table 7.9 Number of VRF Banks Required by Each Scenario

Scenario Number of

required banks

CTS, FIR, VL=64, u3, NoVRegs=11 1

FTS, FIR, VL=64, u3, NoVRegs=11 2

FTS, FIR, VL=256, u3, NoVRegs=11 4

FTS, FIR, VL=256, u3, NoVRegs=11

 & FIR, VL=64, u3, NoVRegs=11

3

FTS, FFT, VL=32, nu, NoVRegs=21 2

FTS, FFT, VL=64, nu, NoVRegs=21 4

FTS, MM, VL=64, nu, NoVRegs=7 2

CTS, LU, VL=128, u1, NoVRegs=6 1

As a consequence, the standby power of a lane (i.e., the leakage power plus the

clock network power) will change with VP size changes in order to minimize the energy

138

consumption. Considering a relative threshold (
/2M MRTh) between the configurations

with M and 2M lanes, the lane’s standby power is:

M-lane configuration :  _() ()L VRF BANK LANE LANE

SB SB SB OFFP M TB B P L M P P    

2M-lane configuration :  _2 (/ 2) (2)L VRF BANK LANE LANE

SB SB SB OFFP M TB B P L M P P    

where TB is the total number of banks from VRF and B is the number of active banks in

the M-lane configuration. Therefore,
/2M MRTh becomes:

 
 

_

/2 _

() ()2
*

2 (/ 2) (2)

L VRF BANK LANE LANE

SB SB SB OFF

M M L VRF BANK LANE LANE

SB SB SB OFF

P M TB B P L M P PM
RTh

M P M TB B P L M P P

    


    
 (7.2)

This gives a slight advantage to higher-lane configurations since less power is

consumed due to the capability of powering down more memory banks.

7.6 Energy Minimization with Quality of Service (QoS)

In Section 6.2 the overall energy is minimized without taking into consideration a

minimum level of performance required by the application. This section deals with

minimizing the energy consumption given a performance constraint. That is, an

application i (received from CPU i) will require a minimum performance level which, at

the lane level, can be translated into a minimum utilization figure (_

VCi

ALU MINU).

0 0 1 1

_ _

min()

subject to and VC VC VC VC

ALU ALU MIN ALU ALU MIN

E

U U U U




 

Based on each application request, it is the responsibility of the VP hardware

manager, which includes the PG Controller, to decide how to resize the VP or to change

139

the weight of the Weighted Round Robin (WRR) Arbiter inside each lane (see Section

2.2.2).

There are two ways to achieve the required performance:

(i) Give more priority to a thread that does not currently meet its performance

requirement.

(ii) If (i) does not provide the required performance for both threads, resize the VP

by increasing the number of lanes.

Figure 7.7 shows part of the state machine displayed in Figure 6.4. The absolute

threshold transition condition is appended with new conditions that assure the required

QoS for each thread.

ML(M/2)L (2M)L

U
(2M)

/U
M
>RTh(2M)/M

 U
M
/U

(M/2)
<RThM/(M/2)

and U
M
(0) >U

req
(0)

and U
M
(1) >U

req
(1)

or

[U
M
(0) <U

req
(0) and U

M
(1) <U

req
(1)]

 U
M
(0) <U

req
(0) and U

M
(1) >U

req
(1)

or

U
M
(0) >U

req
(0) and U

M
(1) <U

req
(1)

c
h

a
n

g
e

 w
e

ig
h

ts

Figure 7.7 PG Controller state machine update for QoS support. MU (0) and MU (1) are

the monitored utilizations corresponding to VC0 and VC1, respectively, and reqU (0) and
reqU (1) are the required utilizations for the two threads.

7.7 Conclusions

This chapter presents the ASIC implementation of the Vector Processor. The FPGA to

ASIC transition details are presented along with the Synopsys design flow, and time/area

and power results. The main conclusions are:

140

(i) The dynamic power model developed in Section 5.2 also applies to the ASIC

implementation with a produced error within a 5% confidence interval.

(ii) The standby power component, i.e., the power consumption when the VP is

idle, accounts for more that 33% of the total power consumption; it can reach

more than 55% when the utilization is low. The major component of the standby

power consumption is the clock distribution network that cannot be gated.

(iii) For a given application, the lowest dynamic energy is almost the same for all

sharing contexts. However, if the standby power is included, the advantage of

FTS and VLS is substantial, especially under low average utilization (see the

SpMV benchmark).

Just for the sake of comparison, Table 7.9 compares the peak performance,

maximum power and power efficiency for several systems implemented in the 40 nm

technology.

Table 7.10 Power Efficiency Comparison with Other Streaming Processors

 Peak Performance

(Single-Precision)

GFLOPs

Total Power (W)

GFLOPs/W

This work (8 Lanes VP) 8 0.480 16.66

Nvidia GeForce G210M GPU 72 14 5.14

AMD Radeon HD 5450 GPU 104 19.1 5.44

Nvidia Quadro 1000M GPU 268.8 45 5.97

Nvidia Tesla C2050 GPU 1030 238 4.32

IBM BlueGene/Q (65 nm)

Supercomputer with 65,536

processors

170×103 85,000 2.01

Therefore, this ASIC work provides the best efficiency among well known

streaming processors. However, it should be mentioned that in this comparison the power

consumed by the buses, DMAs, off-chip memories and other components is not taken

into account in the proposed system. However, this will not change the VP power model

but rather will reduce the power efficiency of the system.

141

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This thesis presents a VP design methodology that can realize three architectural contexts

for the implementation of shared vector coprocessors in multicores, in order to efficiently

utilize silicon resources. Additionally, an energy minimization mechanism is developed.

The central motivation of this work is to develop VP architectures that can yield high

utilization of resources with low energy budgets.

Chapter 2 proposes three VP sharing architectures in detail and presents their

implementation on an FPGA device. The first sharing architecture, coarse-grain temporal

sharing (CTS) consists of temporally multiplexing sequences of vector instructions

ideally arriving from different threads. However, providing a per-core exclusive access to

the vector resources does not maximize their utilization. Fine-grain temporal sharing

(FTS) consists of spatially multiplexing individual instructions issued by different

threads, in order to increase the utilization of the functional units. Finally, vector-lane

sharing (VLS) consists of simultaneously allocating distinct vector lanes or collections of

them to distinct cores/threads. VLS provides better performance and energy results with

kernels that have vector lengths smaller that the total number of lanes. Also, a guaranteed

Quality-of-Service support for the VP is presented; more specifically, the Scheduler

assigns coprocessor resources based on the priorities of the active threads.

Chapter 4 evaluates the performance and energy consumption for these

coprocessor sharing contexts by implementing several floating-point applications

(presented in Chapter 3) using an FPGA-based prototype. FTS exhibits the biggest

142

speedup and smallest energy consumption; it is followed by VLS. Moreover, under low

resource utilization FTS doubles the speed-up and reduces the energy consumption by as

much as 50% as compared to the case where a core (and its threads) has exclusive access

to the vector coprocessor.

Chapter 5 presents performance models for these coprocessor sharing contexts as

well as power estimation models based on observations deduced from the experimental

results. These models suggest several techniques to increase the performance or reduce

the energy consumption:

(i) Increase the data-level parallelism by increasing the vector length.

(ii) Increase the instruction-level parallelism at compile time by loop unrolling or

other techniques.

(iii) Use multiple threads in a multiprocessor environment to increase the vector

coprocessor utilization.

The analysis shows that the last technique can be superior to the former two

combined. Therefore, the lack of adequate data-level parallelism in an application can be

overcome by sharing the coprocessor resources among many cores and their threads.

Chapter 6 proposes two energy reduction techniques that employ power gating

to dynamically control the width of a shared VP based on lane utilization. The motivation

is that a rigid VP architecture shared by multiple cores in a dynamic environment cannot

adjust its resources at runtime in order to achieve desired energy-performance levels.

Based on a power estimation model introduced in Chapter 5 which suggests that, for a

given vector kernel or combination of kernels, the dynamic energy does not vary

substantially due to fixed workloads, this work proposes two power-gating techniques to

control the number of active VP lanes in order to minimize the static energy. The first

143

technique, DPGS, uses apriori information of lane utilizations to choose the optimal

number of lanes that minimizes the energy consumption for known kernels. APGP, on

the other hand, uses embedded hardware utilization profilers in order to make runtime

decisions about VP resizing. To find each time the optimal number of lanes that minimize

the energy consumption, the current state of the VP is changed sequentially until an

optimum VP state is reached for the current workload. Floating-point intensive

benchmarking on an FPGA prototype shows that proposed techniques reduce the total

energy by 30-35% while maintaining performance comparable to a multicore with the

same amount of VP resources, where each core has exclusive access to its own dedicated

VP. Additionally a trade-off mechanism is developed to increase the performance at the

expense of increased energy. This allows an increase in the performance by about 18%

while increasing the energy consumption by 22% for scenarios with low utilization

kernels and by 13% for scenarios with high utilization kernels. Also, the work can be

extended to find the optimal scaling factor s (i.e., thresholds multiplying factor) that

minimizes the energy under a given performance constraint.

Finally, Chapter 7 presents the ASIC implementation of the VP. The FPGA to

ASIC transition details are presented along with the Synopsys design flow and time/area

and power results. The main conclusions are:

(i) The dynamic power model developed in Section 5.2 applies as well to the ASIC

implementation with an error within a 5% confidence interval.

(ii) The standby power component, i.e., the power consumption when the VP is

idle, accounts for more that 33% of the total power consumption; it can reach

more than 55% when the utilization is low. The major component of the standby

power consumption is the clock distribution network that cannot be gated.

(iii) For a given application, the lowest dynamic energy is almost the same for all

144

sharing contexts. However, if the standby power is included, the advantage of

FTS and VLS is substantial, especially under low average utilization (e.g., the

SpMV benchmark).

(iv) The proposed VP provides a power efficiency of 16.66 GFLOPs/W, which is

very high compared to commercial high-performance GPUs and

supercomputers.

As a final conclusion, a lane-based rigid SIMD environment exposed to

applications with diverse computational intensities (i.e., ratios between sustained

computation and memory bandwidth) may produce energy profiles that may deviate from

the minimum energy consumption. Thus, per application resizing of the VP size (i.e.,

varying the number of lanes and/or the number of arithmetic/LDST units within a lane)

and/or the contained data storing resources (i.e., Vector Register File size and/or Vector

Memory size) leading to states that can achieve minimal energy consumption will be a

great advantage for future green SIMD/SIMT architectures. For example, memory-bound

applications (i.e., having low computational intensity, like SpMV) may require limited

computational resources that may be translated into a small number of lanes for energy

minimization. On the other hand, applications with high computational intensity (e.g.,

FIR and MM) may minimize their energy consumption by increasing the VP size in

number of lanes (increasing computational capability).

8.2 Future Work

There are many possible extensions and applications for the VP-based concepts and

architectures presented in this dissertation.

CTS-FTS sharing scheme for multicore scalability. Future research should

investigate the maximum number of thread/core contexts that can practically coexist in a

145

VP lane. In order to support VP access from more than two CPUs, two solutions can be

derived: (i) a complete FTS context where the lane hardware supports more than two

threads at a time; (ii) a mixed CTS-FTS scheme where any two out of N CPUs have

simultaneous access to the VP at any given time.

Increasing further the number of scalar cores that have simultaneous access to a

VP-based architecture using FTS may not always be a wise choice. Increasing

substantially the number of thread/core contexts at the lane level will cause considerable

hardware overheads and, more important, energy overheads associated with the

arbitration logic to schedule threads, as well as to handle per thread storage and logic.

According to the Equation 5.6 (second right hand term), adding more logic in VP lane

instruction path will produce a larger deviation from the constant dynamic energy model,

that is, a considerable part of dynamic energy (consumed for a given task) will increase

linearly with number of lanes. Additionally, each scalar core or thread comes with its

own contribution to the shared memory bandwidth connecting the off-chip memory and

the Vector Memory. Scaling the design to include more than four cores will put a lower

limit on the per core/thread available bandwidth which, eventually, will translate in per

thread low utilization of the ALU units.

Since in most cases (as shown in Chapter 4) two threads are capable of utilizing

properly the lane resources, the latter (ii) solution seems more practical. Therefore, VP

access could be granted to only two processors at a time. The number of VCs will still be

two but the interconnection network between CPUs and VCs will increase accordingly.

Dynamically sizing the Vector Memory in terms of number of banks. In

Chapter 6 the energy minimization techniques were based on changing the number of

146

active lanes within a VP while keeping the same number of memory banks. For

applications that require low Vector Memory footprint and have regular memory access,

reducing the number of memory banks will not have significant impact on the

performance while at the same time it will reduce the leakage power associated with the

unnecessary memory blocks. A few questions have to be answered:

(i) How many banks have to be affected during power down/up based on the

application’s profiled information. Normally, the number of active banks has to

exceed the number of active lanes. Otherwise, even in the case of a regular unit-

stride memory access the utilization will be significantly affected.

(ii) When to modify the size of the Vector Memory. Changing the number of banks

may require saving and restoring the VM data using the main memory. This is a

time consuming task especially if it is applied to a large number of banks. The

best solution is probably to perform this operation at the boundaries of large

parallel regions for which the VM does not contain many live values.

Compiler support for transfers between VM and main memory. Being a

ScratchPad Memory, the Vector Memory has to be explicitly managed by the

programmer. Building compiler support to automate memory allocation, and transfers

between the VM and main memory will facilitate ease of programming. Some of the

existing heterogeneous memory management schemes [Avissar et al., 2001; Sjodin and

Platen, 2001; Udayakumaran et al., 2006] could be adapted to realize this objective.

New Applications and ISA support. New high-performance embedded

applications could be developed for performance and energy gains along with new

instruction set architecture (ISA) support. For example, the VP instruction set could be

enhanced with an instruction that enables intra-lane permutations. It will require some

new features in the ALU unit and will be similar in functionality to a VMOVE instruction

147

with an involved index register that results in intra-lane vector element exchanges. In

conjunction with the existing inter-lane permutation support (vector shuffle operation),

the new ISA feature will be beneficial to applications with deterministic permutation

patterns that do not require remote accesses. Therefore, permutations in programs will be

divided into two categories: intra-lane and inter-lane permutations. Intra-lane

permutations will have the advantage of being non-blocking, and will be implemented

with a smaller execution latency and energy consumption. For example, FFT could

benefit from this new feature since some of the butterfly permutation stages could be

completely mapped to intra-lane permutations (of course, as long as the number of lanes

is a power of two, which is the common practice).

Any Number of Vector Lanes. In order to support finer granularity processes

that can promote better effectiveness of the energy minimization mechanism proposed in

Chapter 6, the VP could be composed of any number of vector lanes; that is, this number

may not always be a power of two. This approach is reasonable since, theoretically, the

number of lanes that minimizes the energy consumption could take any value, depending

on the application and the energy characteristics of the underlying hardware. However,

additional hardware support that will increase the complexity of the lane is required. For

example, one of the hardware enhancements will center around correct address alignment

and computation in the LDST unit that will require a modulo-operation circuit where the

divisor could be any number within a given range of numbers. Of course, as stated earlier

in this paragraph, some applications may not require this new feature or may be slowed-

down if the VP has a number of vector lanes which is not power of two.

148

Thread Scheduling toward Energy Minimization. In this research the VP

resources are acquired by scalar cores immediately after a request, if VP resources are

available. Future work may investigate and evaluate policies that allow the system to

identify the best time to acknowledge a VP request in order to minimize the energy

consumption and to meet the required Quality of Service. The decision will be based on

the existing state of the VP and the concurrent acquire requests coming from all scalar

cores.

Resize SIMD/SIMT resources towards a cool system. Another approach,

somehow different than the energy minimization technique, is to reduce the power

consumption density in a region of a chip populated by SIMD/SIMT resources.

According to Equation 5.1, as the number of lanes (M) increases, the instantaneous

utilization of the lane decreases and, thus, the power consumption/density. Therefore, one

way to cool down hot spots, i.e., spots with high power consumption/density, is to

increase the number of VP lanes. Further investigations could be done on the relation(s)

between the number of active VP lanes, Temperature, and the performance of

applications that are running at any instant time.

149

REFERENCES

Agarwal, A. 1992. “Performance tradeoffs in multithreaded processors,” Parallel and

Distributed Systems, IEEE Transactions on, vol. 3, no. 5, pp. 525-539, Sep. 1992.

Anis, M., Areibi, S., and Elmasry, M. 2003. “Design and optimization of multithreshold

CMOS (MTCMOS) circuits,” IEEE Trans. Computer-Aided Design Integrated

Circuits Systems, vol. 22, no. 10, pp. 1324-1342, Oct. 2003.

Asanovic, K. 1998. “Vector Microprocessors,” PhD thesis, University of California at

Berkeley, 1998.

Avissar, O., Barua, R., and Stewart, D. 2001. “Heterogeneous memory management for

embedded systems,” In Proceedings of the 2001 international conference on

Compilers, architecture, and synthesis for embedded systems (CASES '01), ACM,

pp. 34-43, New York, USA, 2001.

Azevedo, A. and Juurlink, B. 2009. “Scalar processing overhead on SIMD-only

architectures,” In Proceedings of 20th IEEE International Conference on

Application-specific Systems, Architectures and Processors. IEEE, pp. 183-190,

2009.

Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., and Marwedel, P. 2002.

“Scratchpad memory: Design alternative for cache on-chip memory in embedded

systems,” in CODES ’02: Proceedings of the 10th International Symposium on

Hardware/Software Codesign. New York, NY, USA: ACM, pp. 73-78, 2002.

Balfour, J. 2010. “Efficient embedded computing,” PhD Thesis, Stanford, May 2010

(Figure 2.1).

Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., and Sancho, J.C.

2008. “Entering the petaflop era: The architecture and performance of

Roadrunner,” In Proceedings of the 2008 ACM/IEEE conference on

Supercomputing (SC '08), IEEE Press, Piscataway, NJ, USA, Article 1, 11 pages.

Beldianu, S. F. and Ziavras S. G., 2011a. “On-chip vector coprocessor sharing for

multicores,” Parallel, Distributed and Network-Based Processing (PDP), 19th

Euromicro International Conference on, pp. 431-438, 9-11 Feb. 2011.

Beldianu, S. F. and Ziavras S. G. 2011b. “Multicore-based vector coprocessor sharing for

performance and energy gains,” accepted for publication, ACM Transactions on

Embedded Computing Systems, 2012.

Beldianu, S. F., Dahlberg C., Steele, T. and Ziavras, S. G. 2011c. “Versatile design of

shared vector coprocessors for multicores,” re-submitted to Microprocessors and

Microsystems: Embedded Hardware Design after a minor revision.

Beldianu, S.F. 2012. “A complete RTL to Timing/Area/Power tutorial with Synopsys

Tools,” Technical Report, NJIT, 2012.

150

Beldianu, S.F., and Ziavras, S.G. 2012. “Performance-Energy Optimizations for Shared

Vector Accelerators in Multicores” submitted to IEEE Transactions on

Computers, 2012.

Bsoul, A.A.M., Wilton, S.J.E. 2010. “An FPGA architecture supporting dynamically

controlled power gating,” Field-Programmable Technology (FPT), 2010

International Conference on, pp. 1-10, Dec. 2010.

Butts, J.A., and Sohi, G.S. 2000. “A static power model for architects,” Microarchitecture

(MICRO-33) Proceedings. 33rd Annual IEEE/ACM International Symposium,

pp. 191-201, 2000.

Chishti Z. and Vijaykumar T. N. 2008. “Optimal power/performance pipeline depth for

SMT in scaled technologies,” IEEE Trans. Comput., vol. 57, no. 1, pp. 69-81,

January 2008.

Chen T., Raghavan R., Dale J. N., and Iwata E. 2007. “Cell broadband engine

architecture and its first implementation: a performance view,” IBM J. Res. Dev.,

vol. 51, no. 5, pp. 559-572, 2007.

Cho, J., Chang, H., and Sung, W. 2006. “An FPGA based SIMD processor with a vector

memory unit,” In Proceedings of IEEE International Symposium on Circuits and

Systems, IEEE, pp. 525-528, 2006.

Cho, S., and Melhem, R. 2008. “Corollaries to Amdahl's Law for Energy,” IEEE

Comput. Archit. Lett., vol. 1, pp. 25-28, January 2008.

Chou C.H., Severance A., Brant A.D., Liu Z., Sant S., and Lemieux G. 2011. “VEGAS:

soft vector processor with scratchpad memory,” In Proceedings of the 19th

ACM/SIGDA international symposium on Field programmable gate arrays

(FPGA '11), pp. 15-24, ACM, New York, NY, USA, 2011.

Choy, N. C. K., Wilton, S. 2006. “Activity-based power estimation and characterization

of DSP and multiplier blocks in FPGAs,” Field Programmable Technology, 2006.

FPT 2006, IEEE International Conference on, pp. 253-256, Dec. 2006.

Colohan, C.B., Ailamaki, A.C., Steffan, J.G., and Mowry, T.C. 2007. “CMP Support for

Large and Dependent Speculative Threads,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 18, no. 8, pp. 1041-1054, Aug. 2007.

Cray X1 2004, “Cray X1 Evaluation Status Report,” Cray Inc, 2004.

Dally, W.J. 1992. “Virtual-channel flow control,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 3, no. 2, pp. 194-205, Mar 1992.

Dunigan, T.H., Vetter, J.S., White, J.B., and Worley, P.H. 2005, “Performance evaluation

of the Cray X1 distributed shared-memory architecture,” Micro, IEEE, vol. 25,

no. 1, pp. 30-40, Jan.-Feb. 2005.

Eggers, S., Emer, J., Levy, H., Lo, J., Stamm, R., and Tullsen, D. 1997. “Simultaneous

multithreading: A platform for next-generation processors,” IEEE Micro, vol. 17,

no. 5, pp. 12-19, September 1997.

151

Esmaeilzadeh H., Blem E., Amant R.S., Sankaralingam K., and Burger D. 2011. “Dark

silicon and the end of multicore scaling,” In Proceeding of the 38th annual

international symposium on Computer architecture (ISCA '11), ACM, New York,

NY, USA, pp. 365-376, 2011.

Espasa, R., Valero, M. 1997. “Multithreaded vector architectures,” High-Performance

Computer Architecture, Third International Symposium on, pp. 237-248, 1-5 Feb

1997.

Federal HPC Rep 2004. “High-end computing revitalization task force - Federal Plan for

High-End Computing,” Technical report, Executive Office of the President,

Office of Science and Technology Policy, May 2004. Report of the High-End

Computing Revitalization Task Force.

Flachs, B., Asano, S., Dhong, S.H., Hofstee, H.P., Gervais, G., Kim, R., Le, T., Liu, P.,

Leenstra, J., Liberty, J., Michael, B., Oh, H.J., Mueller, S.M., Takahashi, O.,

Hatakeyama, A., Watanabe, Y., Yano, N., Brokenshire, D.A., Peyravian, M.,

Vandung T., and Iwata, E. 2005. “The microarchitecture of the synergistic

processor for a Cell processor”, ISSCC 2005 Digest of Technical Papers, Feb.

2005, pp. 134-135, 2005.

Frigo, M., and Johnson, S. G. 2005. “The design and implementation of FFTW3,” In

Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.

Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L., and Tullsen, D.M. 1997.

“Simultaneous multithreading: a platform for next-generation processors,” IEEE

Micro, vol. 17, no. 5, pp. 12-19, September 1997.

Gerneth, F. 2010. “FIR filter algorithm implementation using Intel SSE instructions:

optimizing for Intel Atom architecture,” Software White Paper on Intel Embedded

Design Center, http://download.intel.com/design/intarch/papers/323411.pdf, (link

accessed Jan. 2011).

Golub, G. H. and Van Loan, C. F. 1996. “Matrix computations 3rd Ed,” Johns Hopkins,

Baltimore, USA, 1996.

Green 500 2011, “The green 500 supercomputers list - November 2011,”

http://www.green500.org/lists/2011.

Gustafson, J. L. 1988. “Reevaluating Amdahl's law,” Communications of the ACM vol.

31, no. 5, pp. 532-533, 1988.

Hagiescu, A. and Wong, W.F. 2011. “Co-synthesis of FPGA-based application-specific

floating point SIMD accelerators,” In Proceedings of the 19th ACM/SIGDA

international symposium on Field programmable gate arrays (FPGA '11), ACM,

pp. 247-256, New York, USA, 2011.

Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B.C.,

Richardson, S., Kozyrakis, C., and Horowitz, M. 2011. “Understanding sources of

inefficiency in general-purpose chips,” Communications of the ACM, vol. 54, no.

10, October 2011.

152

Hiramoto T., and Takamiya, M. 2000. “Low power and low voltage MOSFETs with

variable threshold voltage controlled by back-bias”, IEICE Trans. Electr., vol.

E83, no. 2, pp. 161-169, 2000.

Hong, I., Kirovski, D., Qu, G., Potkonjak, M., and Srivastava, M.B. 1999. “Power

optimization of variable-voltage core-based systems,” IEEE Trans. Computer-

Aided Design Integrated Circuits Systems, vol. 18, pp. 1702-1714, 1999.

Intel IPP 2010. “Integrated Performance Primitives for Intel architecture - Reference

manual,” Intel Corp., Dec. 2010. http://software.intel.com/en-us/articles/intel-ipp.

Intel MKL 2011. “Intel Math Kernel Library reference manual,” Intel Corp., Dec. 2011.

http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation.

Ishihara, S., Hariyama, M., and Kameyama, M. 2011. “A low-power FPGA based on

autonomous fine-grain power gating,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 19, no. 8, pp. 1394-1406, Aug. 2011.

Jejurikar, R., Pereira, C., and Gupta, R.K. 2004. “Leakage aware dynamic voltage scaling

for real-time embedded systems,” Design Automation Conference, pp. 275-280,

2004.

Kao, J., Narendra, S., and Chandrakasan, A. 2002. “Subthreshold leakage modeling and

reduction techniques,” IEEE/ACM Int. Conf. Computer-Aided Design, NY, pp.

141-148, 2002.

Keating, M., Flynn, D., Aitken,R., Gibsons, A., and Shi, K. 2007. “Low power

methodology manual for system on chip design,” Springer Publications,

NewYork, USA, 2007.

Kihm J., Settle, A., Janiszewski, A., and Connors D.A. 2005. “Understanding the impact

of inter-thread cache interference on ILP in modern SMT processors,” The

Journal of Instruction Level Parallelism (JILP), vol. 7, June 2005.

Kim, N.S., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J.,

Kandemir, M., and Narayanan, V. 2003 “Leakage current: Moore’s law meets

static power,” Computer, vol. 36, no. 12, pp. 68-75, 2003.

Kobayashi, H., Egawa, R., Takizawa, H., Okabe, K., Musa, A., Soga, T., and Shimomura,

Y. 2008. “First experiences with NEC SX-9,” in M. Resch et al., editors, High

Performance Computing on Vector Systems, pp. 3-11. Springer-Verlag, 2008.

Korthikanti, V.A., and Agha, G. 2010. “Towards optimizing energy costs of algorithms

for shared memory architectures,” 22nd ACM Symp. Paral. Alg. Arch., NY,

2010, pp. 157-165.

Kozyrakis, C. and Patterson, D. 2002. “Vector vs. superscalar and VLIW architectures

for embedded multimedia benchmarks,” In Proceedings of 35th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 283-293, 2002.

Kozyrakis, C. and Patterson, D. 2003a. “Overcoming the limitations of conventional

vector processors,” SIGARCH Comput. Archit. News, vol. 31, no. 2, pp. 399-409,

2003.

153

Kozyrakis, C. and Patterson, D. 2003b. “Scalable, vector processors for embedded

systems,” IEEE Micro., vol. 23, no. 6, pp. 36-45, 2003.

Krashinsky, B., Batten, C., Hampton, M., Gerding, S., Pharris, B., Casper, J., Asanovic,

K. 2004. “The vector-thread architecture,” Micro, IEEE, vol. 24, no. 6, pp. 84-90,

Nov.-Dec. 2004.

Kudlur, M. and Mahlke, S. 2008. “Orchestrating the execution of stream programs on

multicore platforms,” SIGPLAN, no. 43, pp. 114-124, May 2008.

Kuon, I., Rose, J. 2007. “Measuring the gap between FPGAs and ASICs,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26,

no. 2, pp. 203-215, Feb. 2007.

Kurihara, K., Chaiken, D., and Agarwal, A. 1991. “Latency tolerance through

multithreading in large-scale multiprocessors,” In Proceedings of the International

Symposium on Shared Memory Multiprocessing, pp. 91-101, April 1991.

LaForest, C.E., and Steffan, J. G. 2010. “Efficient Multi-Ported Memories for FPGAs,”

In Proceedings of 18th annual ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pp. 41-50, ACM, Monterey, CA, 2010.

Laudon, J., Gupta, A., and Horowitz M. 1994. “Interleaving: a multithreading technique

targeting multiprocessors and workstations,” In Proceedings of the sixth

international conference on Architectural support for programming languages and

operating systems (ASPLOS-VI), pp. 308-318, ACM, New York, NY, USA,

1994.

Lemuet, C., Sampson, J., Francois J., and Jouppi, N. 2006. “The potential energy

efficiency of vector acceleration,” SC 2006 Conference, Proceedings of the

ACM/IEEE, pp. 73-90, Nov. 2006.

Lee, Y., Avizienis, R., Bishara, A., Xia, R., Lockhart, D., Batten, and Asanovic, K. 2011.

“Exploring the tradeoffs between programmability and efficiency in data-parallel

accelerators,” In Proceeding of the 38th annual international symposium on

Computer architecture (ISCA '11), pp. 129-140, ACM, New York, NY, USA,

2011.

Leverich, J., Monchiero, M., Talwar, V., Ranganathan, P., and Kozyrakis, C. 2009.

“Power management of datacenter workloads using per-core power gating,” IEEE

Comput. Archit. Lett., vol. 8, no. 2, pp. 48-51, July 2009.

Li J., and Martinez, J.F. 2005. “Power-performance considerations of parallel computing

on chip multiprocessors,” ACM Trans. Arch. Code Optim., pp. 397-422, Dec.

2005.

Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C., and

Flautner, K. 2006. ”SODA: A low-power architecture for software radio,” In

Proceedings of the 33rd Annual International Symposium on Computer

Architecture. IEEE, pp. 89-101, Boston, MA, 2006.

154

Marongiu, A., and Benini, L. 2012. “An OpenMP compiler for efficient use of distributed

Scratchpad Memory in MPSoCs,” in Computers, IEEE Transactions on, vol. 61,

no. 2, pp. 222-236, Feb. 2012.

Martin, A.J., Nystroem, M., and Penzes, P. 2001. “ET2: A metric for time and energy

efficiency of computation,” Tech. Rep. CaltechCSTR: 2001.007, Caltech

Computer Science, 2001.

Matsutani, H., Koibuchi, M., Ikebuchi, D., Usami, K., Nakamura, H., and Amano, H.

2011. “Performance, area, and power evaluations of ultrafine-grained run-time

power-gating routers for CMPs,” IEEE Trans. Comp.-Aided Des. Integr. Circuits

Sys., vol. 30, no. 4, pp. 520-533, 2011.

McKeown, N., Mekkittikul, A., Anantharam, V., and Walrand, J. 1999. “Achieving

100% throughput in an input-queued switch,” Communications, IEEE

Transactions on, vol. 47, no. 8, pp. 1260-1267, Aug 1999.

Milidonis, A., Porpodas, V., Alachiotis, N., Kakarountas, A.P., Michail, H.,

Panagiotakopoulos, G., Goutis, C.E. 2009. “Low-power architecture with scratch-

pad memory for accelerating embedded applications with run-time reuse,”

Computers & Digital Techniques, IET, vol. 3, no. 1, pp. 109-123, January 2009.

Mtx Market 2007, “Matrix market,” http://math.nist.gov/MatrixMarket/ (link accessed

June 2011).

Muralimanohar, N., Balasubramonian, R., and Jouppi, N. 2007. “Optimizing NUCA

organizations and wiring alternatives for large caches with CACTI 6.0,” In

Proceedings of the 40th Annual International Symposium on Microarchitecture,

pp. 3-14, December 2007.

Muralimanohar, N., Balasubramonian, R., and Jouppi, N. 2012. “CACTI 6.0: A Tool to

Understand Large Caches,” Technical Report, HP Laboratories, 2012.

Musa, A. 2009. “High performance memory architecture for vector processors,” PhD

Thesis, Tokyo Univ., January 16, 2009.

Nickolls, J., Dally, W.J. 2010. “The GPU computing era," Micro, IEEE, vol. 30, no. 2,

pp. 56-69, March-April 2010.

Nvidia CUDA 2011. “NVIDIA’s next generation CUDA compute architecture: Fermi,”

White Paper, Nvidia Corp., Santa Clara, 2011.

Oliker, L., Canning, A., Carter, J., Shalf, J., and Ethier, J. 2008. “Scientific application

performance on leading scalar and vector supercomputing platforms,” The

International Journal of High Performance Computing Applications vol. 22, no. 5,

pp. 103-112, 2008.

Open Cores 2012, http://opencores.org/, March 2012.

Oplinger, J. T., Heine D. L., and Lam M. S. 1999. “In search of speculative thread-level

parallelism,” In Proceedings of the 1999 International Conference on Parallel

Architectures and Compilation Techniques (PACT '99). IEEE Computer Society,

pp. 303-310, Washington, DC, USA, 1999.

155

Radeon HD5450 2010. “AMD Radeon HD5450 Series Specifications,” AMD Comp.

Oct. 2010. http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-

5000/hd-5450-overview/pages/hd-5450-overview.aspx#2.

Rahman, A., Das, S., Tuan, T., and Trimberger, S. 2006. “Determination of power gating

granularity for FPGA fabric,” Custom Integrated Circuits Conference, 2006,

CICC '06, IEEE, pp. 9-12, 10-13 Sept. 2006.

Rintaluoma, T., and Silv n, O. 2010. “SIMD performance in software based mobile video

coding,” Embedded Computer Systems (SAMOS), 2010 International Conference

on, pp. 79-85, 19-22 July 2010.

Rivoire, S., Schultz, R., Okuda, T., Kozyrakis, C. 2006. “Vector Lane Threading,”

Parallel Processing (ICPP 2006) International Conference on, pp. 55-64, 14-18

Aug. 2006.

Rogers, B.M., Krishna, A., Bell, G.B., Vu, K., Jiang, X., and Solihin, Y. 2009. “Scaling

the bandwidth wall: challenges in and avenues for CMP scaling,” In Proceedings

of the 36th annual international symposium on Computer architecture (ISCA '09).

ACM, pp. 371-382, New York, NY, USA, 2009.

Roy, S., Ranganathan, N., and Katkoori, S. 2009. “A framework for power-gating

functional units in embedded microprocessors,” IEEE Trans. Very Large Scale

Integration Systems, vol. 17, no. 11, pp. 1640-1649, Nov. 2009.

Russell, R.M. 1978. “The CRAY-1 computer system,” Commun. ACM, vol. 21, no. 1,

pp. 63-72, January 1978.

Sanchez, F., Alvarez, M., Salami, E., Ramirez, A., and Valero, M. 2005. “On the

scalability of 1- and 2-dimensional SIMD extensions for multimedia

applications,” In Proceedings of IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), IEEE, pp. 167-176, 2005.

Sasanka, R., Adve, S.V., Chen, Y.K., and Debes, E. 2004. “The energy efficiency of

CMP vs. SMT for multimedia workloads,” In Proceedings of the 18th annual

international conference on Supercomputing (ICS '04), pp. 196-206, ACM, New

York, NY, USA.

Sasanka, R., Li M.L., Adve, S.V., Chen, Y.K, and Debes, E. 2007. “ALP: Efficient

support for all levels of parallelism for complex media applications,” ACM Trans.

Archit., vol. 4, no. 1, Article 3, March 2007.

Satpathy, S., Dreslinski R., Ou, T., Sylvester, D., Mudge, T., and Blaauw, D. 2012

“SWIFT: A 2.1Tb/s 32x32 Self-Arbitrating Manycore Interconnect Fabric,”

Symposia on VLSI Technology and Circuits, Kyoto, Japan, June 2011.

Scogland, T., Lin, H., and Feng, W.-C. 2010, “A first look at integrated GPUs for green

High-Performance Computing,” Journal of Computer Science, Research and

Development, Springer, vol. 25, no. 3-4, pp. 125-134, 2010.

Sengupta, D., and Saleh, R. 2007. “Generalized Power-Delay Metrics in Deep Submicron

CMOS Designs,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 26, no. 1, pp. 183-189, Jan. 2007.

156

Sjodin, J., and Platen, C.V. 2001. “Storage allocation for embedded processors,”

Compiler and Architecture Support for Embedded Computing Systems, ACM, pp.

15-23 New York, USA, 2001.

Soga, T., Musa, A., Shimomura, Y., Egawa, Y., Itakura, K., Takizawa, H., Okabe, K.,

and Kobayashi, H. 2009. “Performance evaluation of NEC SX-9 using real

science and engineering applications,” In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis (SC '09). ACM, New

York, NY, USA, Article 28, 12 pages, 2009.

Sung, W., and Mitra, S. K. 1987. “Implementation of digital filtering algorithms using

pipelined vector processors,” Proceedings of the IEEE. IEEE, vol. 75, no. 9, pp.

1293-1303, 1987.

Synopsys VCS-MX 2011. “VCS MX/VCS MXi User Guide vF-2011.09-SP2,” Synopsys

Inc., Dec. 2011.

Synopsys DC 2011. “Design Compiler User Guide vF-2011.09-SP2,” Synopsys Inc.,

Dec. 2011.

Synopsys DC Optim. 2011. “Design Compiler Optimization Reference Manual vF-

2011.09-SP2,” Synopsys Inc., Dec. 2011.

Synopsys PX 2011. “PrimeTime PX User Guide vF-2011.12,” Synopsys Inc., Dec. 2011.

Synopsys LP 2011. “Synopsy Low Power Flow User Guide vF-2011.09,” Synopsys Inc.,

Dec. 2011.

Top 500 List 2011. “Top 500 Supercomputers List,” November 2011.

http://www.top500.org/

TSMC 40nm 2010. “TSMC Standard Cell Library tcbn40lpbwplvt,” TSMC Comp.,

2010.

Tullsen, D.M., Eggers, S.J., and Levy, H.M. 1995, “Simultaneous multithreading:

Maximizing on-chip parallelism,“ Computer Architecture Proceedings., 22nd

Annual International Symposium on, pp. 392-403, 22-24 June 1995.

Udayakumaran, S., Dominguez, A., and Barua, R. 2006. “Dynamic allocation for scratch-

pad memory using compile-time decisions,” ACM Trans. Embed. Comput. Syst.,

vol. 5, no. 2, pp. 472-511, May 2006.

Wang, W., and Mishra, P. 2011. “System-wide leakage-aware energy minimization using

dynamic voltage scaling and cache reconfiguration in multitasking systems,”

IEEE Trans. Very Large Scale Integration Systems, pp. 1-9, March 2011.

Wang, Y., and Ranganathan, N. 2011. “An instruction-level energy estimation and

optimization methodology for GPU,” IEEE 11th Int. Conf. Comp. Inf. Tech., pp.

621-628, Aug.-Sept. 2011.

Wang, H., Wang, P., Weldon, R.D., Ettinger, S.M., Saito, H., Girkar, M., Liao, S.S., and

Shen J. 2002. “Speculative precomputation: Exploring use of multithreading

technology for latency,” Intel Tech. J., vol. 6, no. 1, Feb. 14, 2002.

157

Wang, X., and Wang Y. 2011. “Coordinating power control and performance

management for virtualized server clusters,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 22, no. 2, pp. 245-259, Feb. 2011.

White, B. S., McKee, S., de Supinski, B., Miller B., Quinlan, D., and Schulz, M. 2005.

“Improving the computational intensity of unstructured mesh applications,”

InProceedings of the 19th annual international conference on Supercomputing

(ICS '05). ACM, pp. 341-350, New York, USA, 2005.

Who, M., Satpathy, S., Dreslinski, R., Kershaw, D., Sylvester, D., Blaauw, D., and

Mudge, T. 2011. “Low power interconnects for SIMD computers,” Proceedings

Design, Automation and Test in Europe, DATE 11, Grenoble, France, pp. 600-

605, March 2011.

Woh, M., Lin, Y., Seo, S., Mudge, T., and Mahlke, S. 2008. “Analyzing the scalability of

SIMD for the next generation software defined radio,” Acoustics, Speech and

Signal Processing, 2008 (ICASSP 2008) IEEE International Conference on, pp.

5388-5391, March 31 2008-April 4 2008.

Woh, M., Seo, S., Mahlke, S., Mudge, T., Chakrabarti, C., and Flautner, K. 2010.

“AnySP: Anytime anywhere anyway signal processing” IEEE Micro., vol. 30, no.

1, pp. 81-91, 2010.

Woo, D.H., and Lee, H.-H.S. 2008. “Extending Amdahl's Law for Energy-Efficient

Computing in the Many-Core Era,” IEEE Computer, vol. 41, no. 12, pp. 24-31,

Dec. 2008.

Xilinx Inc. 2010a. “XPower Estimator User Guide. Xilinx,”

www.xilinx.com/support/documentation /user_guides (link accessed July 2011).

Xilinx Inc. 2010b. “MicroBlaze Processor Reference Guide, 2008,”

http://www.xilinx.com/support/ documentation/sw_manuals/mb_ref_guide.pdf

(link accessed Sept. 2011).

Yang, H., and Ziavras S. 2005. “FPGA-based vector processor for algebraic equation

solvers,” In Proceedings of IEEE International Systems-On-Chip Conference.

IEEE, pp. 115-116, Herndon, VA, 2005.

Yiannacouras, P., Steffan, J.G., and Rose, J. 2008. “VESPA: Portable, scalable, and

flexible FPGA-based vector processors,” In Proceedings of International

Conference on Compilers, Architecture and Synthesis for Embedded Systems.

ACM, pp. 145-166, Atlanta, GA, 2008.

Yiannacouras, P., Steffan, J.G., and Rose, J. 2009. “Data parallel FPGA workloads:

Software versus hardware,” Field Programmable Logic and Applications,

International Conference on, pp. 51-58, Aug. 31-Sept. 2 2009.

Yu, J., Eagleston, C., Chou, C. H.-Y., Perreault, M., and Lemieux, G. 2009. “Vector

processing as a soft processor accelerator,” ACM Transactions on Reconfigurable

Technology and Systems, vol. 2, no. 2, Article 12, 34 pages, June 2009.

Yuffe, M., Knoll, E., Mehalel, M., Shor, J., Kurts, T. 2011 “A fully integrated multi-

CPU, GPU and memory controller 32nm processor,” Solid-State Circuits

158

Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, pp.

264-266, 20-24 Feb. 2011.

Xilinx 2009. “Xilinx white paper: Power consumption at 40 and 45 nm”, Xilinx Inc.

2009.

Xilinx SDK 2011. “Xilinx Software Development Kit Help,” Xilinx Inc., 2011.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/SDK_doc/in

dex.html (link accessed Dec. 2011).

Xilinx 2011. “Virtex-6 family overview,” Xilinx Inc., 2011.

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf (link

accessed Dec. 2011).

Xilinx MicroBlaze 2011. “MicroBlaze processor reference guide Embedded

Development Kit EDK 12.3,” Xilinx Inc., 2011.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 2012

	Vector coprocessor sharing techniques for multicores: performance and energy gains
	Spiridon Florin Beldianu
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Untitled
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Vector Coprocessor Sharing
	Chapter 3: Applications
	Chapter 4: Analysis of Performance and Power Results
	Chapter 5: Performance and Power Characterization
	Chapter 6: Performance-Energy Optimizations for Shared Vector Accelerator in Multicores
	Chapter 7: ASIC Implementation of the Vector Processor
	Chapter 8: Conclusions and Future Work
	References

	List of Tables (1 of 3)
	List of Tables (2 of 3)
	List of Tables (3 of 3)

	List of Figures (1 of 6)
	List of Figures (2 of 6)
	List of Figures (3 of 6)
	List of Figures (4 of 6)
	List of Figures (5 of 6)
	List of Figures (6 of 6)

	List of Abbreviations (1 of 2)
	List of Abbreviations (2 of 2)

