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ABSTRACT

MATHEMATICAL MODELS OF COMBUSTION
AT HIGH PRESSURE

by
Daniel Fong

In this dissertation, we develop new mathematical theories of flame propagation that

are valid at elevated, or extreme, pressures. Of particular interest is the regime of

burning in which the pressure exceeds the critical pressure of the species undergoing

chemical reaction. Fluids and flames are known to behave differently under these

extreme conditions as opposed to atmospheric pressure. The focus of this dissertation

is to investigate these differences by deriving reduced models that contain the unique

features.

In the first part of this dissertation, we analyze the structure of laminar diffusion

flames at high pressure in the limit of large activation energy for the particular

configuration of a steady flame in counterflow. We consider a dense fluid in which

normal Fickian diffusion of the fuel is limited, and thermal diffusion, i.e., the Soret

effect, is the dominant mechanism for fuel mass transport. Temperature and species

profiles, as well as flame temperature and location, are determined as a function of

Damköhler number and Soret diffusion coefficient. In particular, we find that oxidant

is entirely consumed by the flame, while some fuel leaks through. For light fuels, the

fuel profile is found to have a local peak on the oxidant side as a result of thermal

diffusion. Our analysis includes a description of extinction phenomenon, including

explicit criteria in terms of the Soret diffusion coefficient, ratio of temperature of the

two streams, and the Damköhler number at extinction.

In the second part of this dissertation, we derive an asymptotic theory of laminar

premixed flames in high density fluids in the limit of large activation energy. The

model is intended to provide insights into the structure and dynamics of deflagration



waves in high pressure, dense fluids where normal Fickian diffusion is limited. In

such cases, particularly under conditions exceeding the thermodynamic critical point

of the fluid, the primary mode of species transport is through thermal diffusion,

i.e., the Soret effect. Such a model for diffusive transport is considered, and we

derive a model with an explicit dependence on the Soret effect for a one-step overall

reaction. The density is assumed sufficiently high to adopt a constant density formu-

lation. The local reaction-diffusion structure is found to be fundamentally different

from that of an ideal gas with Fickian diffusion, which results in new conditions

relating the equations for thermal and mass transport in the bulk flow. The model

is used to investigate the basic structure of planar flames, as well as their stability.

Stability boundaries are identified that mark the transition from planar to either

steady, spatially periodic structures, or time-dependent modes of propagation. The

combined effects of the Soret diffusion coefficient and Lewis number are discussed.

Furthermore, a weakly nonlinear analysis of the derived model is carried out, resulting

in a modified Kuramoto-Sivashinsky (K-S) equation, accounting for effects of Soret

Diffusion. Linear stability analysis shows that the flame front is unstable with respect

to long-waves in a range of Soret diffusion coefficient that corresponds to no and weak

Soret effect. However, there exists a range of Soret diffusion coefficient for which a

flame front is unconditionally stable.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objective

Combustion is very important in many aspects of our everyday life; our world is

driven by the need to produce energy to manufacture products, for transportation

(automobiles, trains, jet aircrafts, and even rockets), to heat homes and buildings, to

incinerate hazardous wastes, and to produce electricity. A common source of energy

in each of these applications is combustion, a chemical process in which a fuel reacts

rapidly with oxidizer and gives off heat.

Some of the applications mentioned above, e.g., automobiles, jet aircrafts, and

rockets have one thing in common; they employ combustion as a source of power

and operate at pressures in the range of 5 to hundreds of atmospheres, which exceed

the thermodynamic critical point of many species, e.g., hydrocarbons, undergoing

combustion. Combustion under such conditions is more efficient, and can take place

under more fuel-lean conditions, thereby reducing harmful emissions. As fossil fuels

become more scarce, and attention is given to reducing emissions, engines of the

future will operate at still higher pressures to exploit these benefits.

Figure 1.1 shows an example of a pressure-temperature phase diagram, which

summarizes the effect of temperature and pressure on a substance. Every point in

this diagram represents a possible combination of temperature and pressure for the

system. The diagram identifies four distinct regions, which represent the solid, liquid,

gas, and supercritical fluid (SCF) phases of the substance. A SCF, often referred to

simply as a fluid, is any substance at a temperature and pressure above its critical

point. The curves represent the temperatures and pressures where two phases coexist

in equilibrium, e.g., the gas and liquid phases coexist along the boiling curve. By

1
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increasing both temperature and pressure (moving upwards) along the boiling curve,

then the liquid becomes less dense due to thermal expansion and the gas becomes

more dense as the pressure rises. Eventually, the densities of the two phases converge

and become identical, and the boiling curve comes to an end at the critical point.

What truly characterizes the supercritical state is that there is no distinction between

gas and liquid phases [21]. In this regime, the fluid density is closer to that of a

liquid than gas, and cross-diffusion effects are known to be significant in numerous

applications. In particular, the effective mass diffusivity becomes null at the critical

point and the Soret effect (thermal diffusion), i.e., diffusive mass transport as a result

of temperature gradients, becomes dominant [21, 20].
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Figure 1.1 Typical pressure-temperature phase diagram of a substance.

There are many useful applications of SCF, but among the most important are

industrial extraction and purification. The advantage of SCF is the liquid-like density

which promotes solubility, and the gas-like viscosity and diffusivity make extraction

and purification faster under supercritical conditions. For instance, supercritical fluids
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have been used: for the decaffeination of green coffee beans, for the extraction of hops

for beer production, for the production of essential oils and pharmaceutical products

from agricultural products, for the separation of biological fluids, for bioseparation,

to enhance oil recovery in mature oil fields, for recovery of organics from oil shale,

for production of biodiesel, for pollution control, for dry cleaning, and many other

applications.

However, this is a relatively new area for theoretical combustion research. Despi-

te the recognized importance of the use of these combustors that actually operate

in this regime. Most existing theoretical studies of flames are not able to describe

this phenomenon. They are only appropriate to describe conditions at atmospheric

pressure. Under such conditions, Fickian diffusion, i.e., molecular diffusion due

concentration gradients, is the dominant mode of mass transport within the flame

structure.

The objective of this dissertation is the development of new models for diffusion

and premixed flames that incorporates features of flames that are relevant at high

pressure. Asymptotic and perturbation methods, supplemented by numerical methods,

are used to analyze the structure and dynamical properties of such flames. There are

two main parts in this dissertation: 1) to examine the basic structure and dynamics

of diffusion flames at high pressure, 2) to derive an asymptotic model of laminar

premixed flames in high density fluids. The derived model is then employed to

investigate the basic structure of planar flames, as well as their stability. Furthermore,

a nonlinear partial differential equation, which describes the evolution of the disturbed

flame front in high density fluids is derived. Finally, a linear stability analysis of the

evolution equation for the flame front is carried out.
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1.2 Mathematical Modeling and Activation Energy Asymptotics of

Combustion Phenomena

Combustion science has been studied for centuries in order to better understand

how to produce energy in a more efficient way. It is an interdisciplinary subject

which involves challenging theoretical analysis, experiments and resource-intensive

numerical simulations. Therefore, it is essential to have researchers with different

backgrounds to work on this fascinating and complicated science. From a theoretical

standpoint, the equations that govern combustion processes are the conservation

equations of fluid dynamics, temperature and mass transport coupled to chemical

kinetics. These nonlinear equations represent a balance between convection, diffusion

and reaction. In many practical situations, these processes occur over different

temporal and spatial scales. Consequently, a great deal of modern combustion theory

has been developed through the use of multi-scale analysis, a standard tool of applied

mathematicians, to extract reduced models that retain the essential physics of a given

combustion process.

The theoretical study of combustion really took off with the discovery of the

technique known as large activation energy asymptotics to resolve the highly nonlinear

Arrhenius reaction rate term that appears in the governing equations. The origin of

this technique dates back to 1938 where Frank-Kamenetskii [52] introduced approxi-

mations based on large activation energy to construct a steady-state thermal theory

of spontaneous combustion. Around the same time, Zel’dovich exploited the modern

singular perturbation theory which led to his early contributions to deflagration

theory (equivalent to use of large activation energy asymptotics) [52]. Over the last

40 years, researchers have expanded on this approach to formally derive mathematical

models that describe a wide variety of practical combustion processes. In particular

the basic structure of premixed flames and diffusion flames have been analyzed, as

well as ignition, extinction, flame-flow interactions, and instabilities. Surveys of all
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these many studies can be found in several books that have been published in the

last 25 years, e.g., [6, 29, 42, 50]. These books all emphasize the contributions of

singular perturbation methods as one of the most important theoretical tools to

advance combustion science. Given that this discussion extends earlier theory, it

is appropriate to review many of these advances, which typically describe condition

at atmosphere pressure. We will begin with premixed flames, then follow by diffusion

flames. In addition, we describe new features that arise at high pressure and how

these new features may be incorporated into the next generation of flame theory.

1.2.1 Mathematical Models of Premixed Flames

A premixed flame is a wave-like phenomena in which a chemically reacting flame front

tends to propagate into, and consume, the unburned mixture where fuel and oxidizer

are mixed at the molecular level. The flame front is often considered as a moving

interface that separates two regions: the unburned fresh mixture region, where the

temperature is low enough such that no chemical reaction has yet occurred; and the

burned region, where the flame front has passed through.

The hydrodynamic model is used to describe large flames whose thickness is

much smaller than the characteristic length scale of the flow field. When viewed on

this length scale, the whole flame, where all transport processes and chemical reaction

take place, is relatively thin. The flame may then be considered as a moving surface,

which regard as the flame front. This class of model is appropriately used to study

long wave instabilities for which the wavelength of a disturbance is much larger than

the diffusion length.

On the other hand, the diffusional-thermal model is employed when the flame

thickness is of the same order of magnitude as the characteristic length scale of the

flow field, i.e., diffusion and convection are of comparable magnitude. When viewed on

this length scale, the flame is like under a magnifying glass, where we can examine the
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flame structure more closely to investigate the effect of diffusional-thermal interactions

on the flame front.

The earliest theoretical studies of premixed flames were given by Landau [27]

and Darrieus [12], often referred to as the hydrodynamic model. They treated the

flame as a surface of moving density discontinuity, separating the unburned (high

density) region from the burned (light density) region, thus ignoring diffusion. The

fluid flow on either side of the flame is governed by the incompressible Navier-

Stokes equations. In order to relate the fluid variables on either side, the Rankine-

Hugoniot relations, expressing the conservation of mass, momentum and energy across

the discontinuity were imposed. To close the problem, a constant flame speed,

the rate of diffusion transport of heat from the flame front to the cold unburned

mixture, was prescribed relative to the incoming flow. However, in contrast to

experimental observations, the Darrieus-Landau model predicted that a plane flame

is unconditionally unstable due to the thermal expansion across the flame (density

differences between the unburned region and burned region). It was believed that

the effects of diffusion in the flame structure could potentially stabilize the flame. A

few years later, Markstein [33] proposed that the flame speed should be a function of

curvature of the flame front. Thus, he modified the flame speed equation to include

a linear dependence of curvature and introduced a phenomenological parameter to

account for this dependence. He showed that curvature can indeed stabilize the flame

under perturbations of sufficiently short wavelength, provided this new parameter

was positive.

Matalon and Matkowsky [36], and Clavin and Williams [9] derived a model

of flames as gasdynamic discontinuities for Near-Equidiffusional Flames (NEFs) –

heat and mass diffuse at near equal rates. They considered the effect of flame on

hydrodynamics through gas expansion. By analyzing the internal structure of the

flame, they derived a set of jump conditions relating the fluid variables on the burned
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and unburned regions. Matalon, Cui and Bechtold [34] later extended this model

by using a two-reactant scheme, with arbitrary reaction orders, as well as variable

transport coefficients. The resulting models are valid for flame of arbitrary shape in

general fluid flows.

At the opposite end of the spectrum, a consistent mathematical derivation of

a diffusional-thermal model was first proposed by Matkowsky and Sivashinsky [37].

This type of model is derived in the limit of large activation energy, so that the reaction

zone confined to a narrow boundary layer which can be resolved asymptotically.

The method of matched asymptotic is employed to analyze each region separately

and matching relates the variables across the reaction zone. Thus, the nonlinear

reaction rate term is effectively replaced by jump conditions. In addition to the

realistic large activation energy assumption, these models also consider weak thermal

expansion, in order to decouple the heat and mass transport equations from the

hydrodynamic equations. Consequently, this type of model is sometimes referred

to as the constant density approximation model. In addition, this has been used

to derive various type of evolution equation for the flame front [47, 48]. Recently,

Antoniou, Bechtold and Matalon [1] derived a new diffusional-thermal model for near-

stoichiometric premixed flames in a two-reactant mixture. The derivation is carried

out similar to the one-reactant model, by considering the limit of large activation

energy, which enables an analytical resolution of the nonlinear reaction rate terms, and

weak thermal expansion, which decouples the heat and mass transport equations from

the hydrodynamic equations. They concluded that it is possible along a corrugated

flame to have regions burning fuel-lean while neighboring regions burn fuel-rich.

Furthermore, they provided a description of the extinction characteristics, showing

that the flame response depends significantly on which of the two species is ultimately

consumed at the reaction zone.
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We have just briefly discussed two classes of models of laminar premixed flames:

1) the hydrodynamic model which considers the effect of the flame on the flow field,

but ignores the effect of flow field on the flame, and 2) the diffusional-thermal model

accounts for the effect of the flow field on the flame, but the effect of the flame on

the flow field is suppressed.

However, all of these existing models mentioned above are only valid at atmosph-

eric pressure. Therefore, it is necessary to develop a new model to account for these

new features that arise at high pressure, which will be presented in Chapter 2. The

objective of this dissertation is to examine these new features within the context of

a diffusional-thermal model. While the hydrodynamic type model is not appropriate

to capture these new features since the events taking place are on a smaller length

scale. Hence, it will not be employed in this dissertation but a brief description has

been given here for completeness.

1.2.2 Mathematical Models of Diffusion Flames

In the broadest sense a diffusion flame is defined, see Williams [50], as any flame in

which the fuel and oxidant initially are separated before entering into the combustion

chamber; the term is synonymous with non-premixed combustion. The simplest

mathematical description of diffusion flames dates back to Burke and Schumann

[7], who introduced infinitely fast-chemistry limit, commonly referred as Burke–

Schumann limit of complete combustion. They considered the reaction zone confined

to an infinitely thin sheet located where stoichiometric condition is achieved, and

separating the fuel and oxidant. Their theory has successfully approximated the

flame temperature, flame location and fuel consumption. Due to the over simplified

reaction rate, their theory is not able to provide extinction criterion and reactants

leakage.
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A seminal contribution to the analysis of diffusion flames is due to Liñán [30],

who derived the general asymptotic theory of steady diffusion flames with Fickian

diffusion in a counterflow with unity Lewis numbers. In the limit of large activation

energy, the chemical reaction zone confined to a thin reactive boundary layer, when

viewed on the much larger diffusion scale, is a moving reaction sheet. His theory

provides a complete description of non-premixed combustion: 1) a nearly frozen

ignition regime, in which temperature and species concentrations gradients are small,

2) a partial burning regime, where both reactants cross the reaction zone, 3) a

premixed flame regime, in which one of the reactants leaks through the reaction

zone, and 4) a diffusion flame regime, where both reactants in the reaction zone are

small. In addition, his analysis includes extinction and ignition criteria.

All of these models have been used extensively to analyze the basic structure

of premixed [1, 4, 5, 36, 34, 37, 45] and diffusion flames [30], as well as ignition

[28, 35], extinction [28, 25], flame-flow interactions [48], and instabilities of flames

[8, 23, 24, 26]; but they have one thing in common – they are only appropriate to

describe conditions at atmospheric pressure.

This dissertation is organized as follows. In Chapter 1, we give the motivation,

objective and present a review of the relevant literature. In Chapter 2, we discuss

the new features that arise in high pressure and what has been incorporated into our

theory. In Chapter 3, we examine the asymptotic structure of laminar diffusion flames

at high pressure in the limit of large activation energy for the particular configuration

of a steady flame in counterflow. In addition, we study how the new effect that

arises at high pressure affects the species concentration profiles, flame temperature

and location, as well as the extinction phenomenon. In Chapter 4, we derive an

asymptotic theory of laminar premixed flame in high density fluids in the limit of large

activation energy. We then use this new model to investigate the new effect on the

structure of a steady planar flame. We also examine the linear stability of the planar
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flame and identify neutral stability boundaries that mark the transition from a stable,

uniform, state to either non-planar or non-steady modes of propagation. In addition, a

weakly nonlinear analysis is carried out, resulting in a modified Kuramoto-Sivashinsky

equation, accounting for effects of Soret Diffusion. Finally, in Chapter 5, conclusions

are given.



CHAPTER 2

MODELING OF COMBUSTION PHENOMENA AT HIGH PRESSURE

It should be mentioned again that all of the existing models presented in the previous

chapter are only really appropriate to describe combustion systems operate at atmosp-

heric pressure. However, in reality, as discussed above, a lot of these systems operate

at much higher pressures, including pressure exceeding the critical pressure. This

regime presents many new challenges as the fluid are markedly different. Fluids

are known to take on peculiar properties under extreme conditions. For example,

they tend to have gas-like viscosity and fluid-like densities. Mass diffusivity tends to

diminish in very dense mixtures and diffusive mass transport as result of temperature

gradients, the Soret effect, becomes significant.

2.1 Equation of State

At high pressures, it is well known that the behavior of real gases changes dramatically

from that predicted by the ideal gas law

P =
RoT

V
(2.1)

where P is the pressure, T is the temperature, Ro is the universal gas constant and

V is the molar volume. The van der Waals equation,

P =
RoT

V − b −
1

V 2
(2.2)

where a and b are the van der Waals constants, was introduced with a correction

term which can better illustrate the behavior of real gases. There are numerous

number of more complex and realistic equations of state (EOS) based on the van

der Waals equation, such as the Redlich-Kwong, the Soave-Redlich-Kwong and the

11
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Peng-Robinson (P-R). P-R EOS is commonly used because of its wide application in

the field of high pressure, particularly, when the pressure is sufficiently higher than

the atmospheric pressure. Recently, Harstad, Miller and Bellan [22] have presented a

computationally efficient form of the P-R EOS that is pretty accurate even at pressure

exceeding the critical pressure. Thus, many recent studies have adopted the cubic

P-R EOS to predict real gas behavior [19, 18, 20, 21, 38, 39, 40, 41]. The P-R EOS

is given by

P =
RoT

V − b −
a(T )

V 2 + 2V b− b2
(2.3)

where a is now a function of temperature and b is still a constant. For the sake of

brevity, all details are omitted, but are reported in Miller et. al. [15] and Harstad et.

al. [22].

2.2 Viscosity and Heat Capacity

Figure 2.1 is a schematic illustration showing an isotherm (T > Tc) of the kinematic

viscosity of a substance as a function of reduced pressure. We observe that the

kinematic viscosity is a monotonically decreasing function of pressure. Furthermore,

we also observe that it remain fairly constant at pressure sufficiently higher than its

critical pressure. Figure 2.2 is a schematic which shows the heat capacity at constant

pressure as a function of reduced pressure. We can see that the heat capacity changes

significantly (becomes infinite) near the critical pressure (Pr ≈ 1). Nevertheless,

it remain fairly constant at pressure sufficiently greater than its critical pressure.

Therefore, in our formulation, it is reasonable to make the assumption that the

viscosity and the specific heat at high pressure are constant.

2.3 Chemical Reaction Kinetics

It is very complicated to incorporate chemistry effectively into the study of reacting

flow. A serious problem arises when one considers a direct approach to compute a
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Figure 2.1 Schematic of the kinematic viscosity of a substance as a function of
reduced pressure.
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Figure 2.2 Schematic of the heat capacity at constant pressure as a function of
reduced pressure.
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realistic chemical kinetic mechanism since it often involve hundreds of species and

thousands of reaction steps. Therefore, modern numerical simulations often consider

the use of reduced chemistry models such that only a relatively small number of

species and reactions are retained. We note that considerably less is known about

detailed combustion chemistry at high pressure as compared to atmospheric pressure.

Thus we have chosen to adopt a one-step reaction as a start toward modeling flames

at high pressure, which has been used effectively to describe combustion phenomenon

for 50 years. We are also guided by recent numerical studies of flames at high pressure

[21, 22, 24] that have employed Arrhenius rate laws with good success. Nevertheless,

this is an area that requires further investigation, both in terms of modeling and

experimentation.

2.4 Diffusion

Conventional theories of flames usually consider ordinary gasses in which Fickian

diffusion, i.e., molecular diffusion due to concentration gradients, is the dominant

mode of mass transport within the flame structure. However, kinetic theory of

gasses demonstrates cross-diffusion effects usually small at low pressure. The role of

cross-diffusion on combustion at atmospheric pressure has been assessed in a number

of theoretical and computational studies of both premixed [17, 16, 13, 14, 51] and

diffusion [44, 49, 10, 43, 2] flames. The conclusions of each of these studies emphasize

that the Soret effect, i.e., diffusion of mass as a result of temperature gradient, may be

significant in many applications, especially for species that are very light or very heavy.

Dufour effects, i.e., diffusion of heat caused by concentration gradients, are generally

found to be negligible in most practical applications. Although most of the studies

cited above are computational, there have been several notable theoretical investi-

gations of these effects. Garćıa-Ybarra and Clavin [17] included weak cross-diffusion

effects in their large activation energy theory and showed that they significantly



15

alter the thermo-diffusive stability limits for premixed flames. Garćıa-Ybarra, et

al. [16] extended that theory to include thermal expansion, and concluded that Soret

diffusion, as well as weak variations in other gas properties, modify flame dynamics

by altering Markstein lengths. Arias-Zugasti and Rosner [2] analyzed a diffusion

flame in counterflow in the limit of infinitely fast chemistry, in which they accounted

for Soret transport of the fuel species, and obtained analytical expressions for flame

temperatures and locations. This configuration is relevant in certain air-breathing

engines in which temperatures may exceed the critical temperature of fuel, but not

that of oxidant.

Mathematical models of flames at high pressure are relatively scarce. Daou

and Rogg [11] studied convective burning of fuel pockets at supercritical pressures,

in a model that assumed constant transport properties and an ideal gas equation

of state. Margolis and Johnston [32] proposed a model of supercritical premixed

flames to describe Supercritical Water Oxidation (SCWO), a process involving the

chemical conversion of toxic wastes by injecting a stream of oxidant into a supercritical

fuel/water mixture, and allowing combustion to take place. Recognizing that the

effective mass diffusivity of species is greatly reduced in the transcritical regime, they

assumed zero mass diffusivity. Later, an Arrhenius representation for effective mass

diffusivity was adopted in models of both premixed [31] and diffusion [3] flames.

More recently, Harstad and Bellan [19, 18] have presented a generalized form of

diffusion fluxes that remain valid over a wide pressure range. They demonstrated that

consideration of non-equilibrium thermodynamics requires that heat and mass flux

vectors include gradients of concentration, temperature and pressure. Furthermore,

their derivation reveals a mass diffusion factor, a thermodynamic parameter that

approaches unity at low pressure, and is reduced at high pressure, approaching zero

at the critical point [20, 39, 40]. That model has since been used extensively in

computational studies concerning both non-reacting [38, 39] and reacting [41, 15]
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supercritical fluids, as well as the behavior of supercritical drops for different sets of

binary species at large ranges of pressure [19, 18, 21].

2.4.1 Thermal Diffusion

Soret effect also called Ludwig-Soret effect, or thermo diffusion is a phenomenon in

which particles experience a force in the direction of temperature gradient in mixtures.

This phenomenon is first predicted by Ludwig and experimentally demonstrated by

Soret more than a century ago.

Soret diffusion, i.e., the transport of species as a result of temperature gradient

is very different from the familiar Fickian diffusion, which postulates that the species

goes from regions of high concentration to regions of low concentration, with a

magnitude that is proportional to the concentration gradient. Conversely, Soret

diffusion allows species to move up or down the temperature gradient as to equalize

the internal energy distribution.
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Figure 2.3 Schematic of species transport due to Soret effect. The arrows indicate
the direction of fuel transport. The solid and dashed arrows represent negative and
positive Soret diffusion coefficient, respectively.
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The Soret diffusion coefficient for lighter fuel, e.g., hydrogen, is typically negative,

so thermal diffusion tends to transport the fuel into the reaction zone, i.e., fuel moves

from cold to hot region. On the other hand, for heavy fuel, e.g., hydrocarbons, the

Soret diffusion coefficient is positive, suggesting fuel is being transported away from

the reaction zone, i.e., from hot to cold region. Figure 2.3 is a schematic which shows

the directions of species transport as a result of temperature gradient. We note that

this effect is relatively small at low pressure, but becomes significant at high pressure.

In some cases, it may become the dominant mechanism of the transport of fuel.

2.4.2 Transport Processes

As mentioned earlier, the transport terms enter into the conservation equations for

reacting flow comprised of terms that are proportional to gradients of temperature

T , concentration Xi and pressure P :

Ĵj,T = ĴTj,T + ĴX1
j,T + · · ·+ Ĵ

XN−1

j,T + ĴPj,T , (2.4)

and

Ĵj,Xk
= ĴTj,Xk

+ ĴX1
j,Xk

+ · · ·+ Ĵ
XN−1

j,Xk
+ ĴPj,Xk

, (2.5)

where subscript j denotes the vector component, subscript T denotes heat, subscript

Xk denotes the species i, and the superscripts represent the thermodynamic gradient.

For the sake of brevity, the explicit form of diffusion fluxes are shown after the

assumptions in the next section are made. See, e.g., [21, 41], for derivation and

discussion.

2.5 Modeling Assumptions

In the present study, we adopt Harstad and Bellan’s formulation for diffusion fluxes

which includes gradients of concentration, temperature and pressure. Figure (2.4)
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shows the critical points for various species in a pressure vs. temperature plot. It is

seen that the critical pressure for the oxidant is higher than the critical pressure for

all the fuel. Therefore, we assume that the mass diffusivity of the fuel is negligible

as compared to thermal diffusivity such that Soret transport is dominant, while the

oxidant is an ideal, gas, which undergoes Fickian diffusion. Furthermore, we neglect

Dufour effects, and assume small Mach number so that pressure-gradient induced

transport is ignored. Under these conditions, the effective mass diffusivity is weak

relative to thermal diffusion, and thus Soret diffusion is the dominant molecular

transport mechanism for the fuel species in our theory. In the limit of large activation

energy, the flame structure is comprised of outer advective-diffusive layers on either

side of an inner reaction layer. As a result of this transport mechanism employed

in our study, the reaction zone exhibits a balance between advection, Soret diffusion

and reaction of fuel.
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CHAPTER 3

NEW THEORY OF DIFFUSION FLAMES AT HIGH PRESSURE

3.1 Formulation

We consider a combustion system in which fuel and oxidant are brought together

separately into the combustion chamber. The fuel is assumed to be in a fluid state,

in which Soret transport is dominant, while the oxidant is assumed to be an ideal

gas, which undergoes Fickian diffusion. This scenario has relevance to a number of

practical applications, including SCWO and burning in certain internal combustion

engines. Furthermore, we assume the chemical reaction is modeled by a one-step

global irreversible reaction

νYMY + νXMX → Products,

where Mi are the chemical symbols, and νi are the stoichiometric coefficients for

species i, with the subscripts Y, X denoting fuel and oxidizer, respectively. The

chemical reaction is assumed to be of Arrhenius type with an overall activation energy

Êa and a pre-exponential factor A, and the reaction rate Ω therefore of the form

Ω̂ = Aρ̂2 ŶOŶF
WOWF

e−
Êa
RoT̂ , (3.1)

where ρ̂ is the fluid density, Wi is the molecular weight of species i and Ro the gas

constant.

The governing equations for temperature, T̂ and mass fractions of fuel and

oxidant, X̂ and Ŷ are coupled to the equations of fluid mechanics are

∂ρ̂

∂t̂
+∇ · (ρ̂V̂) = 0, (3.2)

ρ̂

(
∂V̂

∂t̂
+ V̂ · ∇̂V̂

)
= −∇P̂ + µ

(
∇̂2V̂ +

1

3
∇̂(∇̂ · V̂)

)
, (3.3)

19
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ρ̂cp

(
∂T̂

∂t̂
+ V̂ · ∇̂T̂

)
+ ∇̂ · (ĴT ) = Q̂Ω̂, (3.4)

ρ̂

(
∂X̂

∂t̂
+ V̂ · ∇̂X̂

)
+ ∇̂ · (ĴX) = −νXWXΩ̂, (3.5)

ρ̂

(
∂Ŷ

∂t̂
+ V̂ · ∇̂Ŷ

)
+ ∇̂ · (ĴY ) = −νYWY Ω̂ (3.6)

where V̂ is the velocity field (we assume two streams have equal velocity), P̂ is the

pressure, Q̂ is the heat release, µ is the dynamic viscosity, cp is the specific heat, and

Wi is the molecular weights, respectively, of species i.

The generalized flux vectors, ĴT , ĴX and ĴY are comprised of terms that are

proportional to gradients of temperature, concentration and pressure. However, we

will restrict our analysis to zero Mach numbers, in which case pressure-induced

diffusion may be ignored. We further assume a dilute mixture in which both species

appear in relatively small quantities relative to an abundant inert, so that the

remaining terms in the diffusive flux vectors have the form:

ĴT = −
(
λ+ ρ̂D̂αIKαBKR

oŶ
W̄

WY

)
∇T̂ + ρ̂D̂αDY

αIKR
oT̂

W̄

WY

∇Ŷ (3.7)

ĴX = −ρ̂D̂XαBKX̂
1

T̂
∇T̂ + ρ̂D̂XαDX

∇X̂ (3.8)

ĴY = −ρ̂D̂Y αBK Ŷ
1

T̂
∇T̂ + ρ̂D̂Y αDY

∇Ŷ (3.9)

Here W̄ is the average molecular weight of the mixture, and the quantities αIK , αBK

and αDi
are thermodynamic parameters whose explicit forms can be found in [19].

The parameter αIK has been estimated to be very small over a wide range of pressures,

including sub- and super-critical regimes. As a result, Dufour effects are negligible,

and heat conduction proceeds according to Fourier’s law. The first term in ĴX and
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ĴY corresponds to Soret diffusion, while the second corresponds to Fickian diffusion.

We note the presence of the mass diffusion factor, αDi
, which has a value of unity

at low pressures, but is reduced at high pressures. On the other hand, the Soret

coefficient, αBK is small at low pressures, but may attain order one values at high

pressures. Furthermore, this coefficient is typically positive at high pressures for most

hydrocarbon species, but may assume negative values for light fuels, cf. [38].

To further simplify the mathematical aspects of the problem, we assume that the

specific heat cp and thermal conductivity of the mixture λ, and the mass diffusivities

of the fuel D̂Y and oxidizer D̂X are all constant. Furthermore, we assume viscous

effects to be negligible.

Equations (3.2) - (3.6) must be supplemented by appropriate initial and boundary

conditions reflecting the way in which the fuel and oxidant are brought together

separately into the combustion chamber. In addition, the temperature and concen-

tration of the fuel stream may be different than the temperature and concentration

of the oxidant stream. Generally, initial and boundary conditions could vary suffi-

ciently depending on the particular configuration, e.g., jet diffusion flame, counterflow

diffusion flame, liquid fuel drop and burned-generated spherical diffusion flame. In

the present study, we have chosen to examine the structure of counterflow diffusion

flames.

3.2 Counterflow Diffusion Flames at Elevated Pressure

To examine the basic structure of diffusion flames in dense fluids, we consider a thin

flame residing in counterflowing streams of fuel and oxidant, as shown in Figure 3.1.

The fuel is assumed to be a fluid, in which Soret transport is dominant, while the

oxidant stream is an ideal gas that undergoes Fickian diffusion. This configuration

is chosen for analytical simplicity, as it admits steady, one-dimensional solutions

(We note that counterflow diffusion flames are often use experimentally due to its
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Figure 3.1 Schematic of a counterflow diffusion flame.

simplicity). We remark that Arias-Zugasti and Rosner [2] studied the same geometry

with Burke-Schumann infinitely fast chemistry which is different than what we consider

here, finite-rate chemistry. The density is assumed sufficiently high to adopt a

constant density formulation, and thus we impose the flow field V = −k̂(ẑ,−ŷ),

where k̂ is the strain rate. For such a flow, it is possible for the combustion field to

be uniform in the y-direction, with the flame located at ẑ = ẑf .

The governing equation for temperature and species concentrations, (3.4) - (3.6)

under above assumptions can be simplified to

−ρ̂cpk̂ẑ
dT̂

dẑ
= − d

dẑ
(ĴT ) + Q̂Ω̂ (3.10)

−ρ̂kẑ dX̂
dẑ

= − d

dẑ
(ĴX)− νXWXΩ̂ (3.11)

−ρ̂kẑ dŶ
dẑ

= − d

dẑ
(ĴY )− νYWY Ω̂ (3.12)
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with the boundary conditions

T̂ → T̂−∞; X̂ → X̂−∞; Ŷ → 0 as ẑ → −∞ (3.13a)

T̂ → T̂+∞; X̂ → 0; Ŷ → Ŷ+∞ as ẑ → +∞ (3.13b)

3.3 Nondimensionalization

The first step in analyzing the solution is to nondimensionalize the problem. Lengths

are scaled with respect to the diffusion length, lD =
√
λ/(ρ̂cpk̂), and temperature is

nondimensionalized with respect to its value far upstream on the oxidant side, T̂−∞.

We also scale the fuel and oxidant variables based on their respective fresh stream

values. Upon introducing the nondimensional variables:

z =
ẑ

lD
, T =

T̂

T̂−∞

X =
X̂

X̂−∞
, Y =

Ŷ

Ŷ+∞

our system of equations becomes

−zdT
dz

=
d2T

dz2
+ qΩ (3.14)

−zdX
dz

= Le−1
X

d2X

dz2
− φΩ (3.15)

−zdY
dz

= Le−1
Y

d

dz

[
αBK

Y

T

dT

dz
+ αDY

dY

dz

]
− Ω (3.16)

with the boundary conditions

T → 1; X → 1; Y → 0 as z → −∞ (3.17a)

T → β; X → 0; Y → 1 as z → +∞ (3.17b)
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where the Lewis number

Lei =
λ

ρ̂ĉpD̂i

(3.18)

is the ratio of thermal diffusivity to mass diffusivity, the scaled temperature

β =
T̂+∞

T̂−∞
(3.19)

of the fuel stream, the mixture strength

φ =
Y0

νYWY

X0

νXWX

(3.20)

is the ratio of the fuel mass fraction supplied at the fuel boundary to the oxidizer

mass fraction supplied at the oxidizer boundary normalized by the stoichiometric

proportions and the heat release

q =
Q̂Y0

ĉpT̂−∞νYWY

. (3.21)

Finally, the dimensionless reaction rate term Ω has the form

Ω = D̂XY exp

{−1

εT

}
(3.22)

where the inverse of the dimensionless activation energy

ε =
RoT̂−∞

Ê
(3.23)

is generally very small in most combustion systems, and the Damköhler number

D̂ =
νY ρX̂0

kWX

Â (3.24)

is the ratio of flow time to reaction time tends to very large. In the limit of large

activation energy, equation (3.22) shows that the reaction is exponentially small. In

order to retain the reaction, we can employ the technique of large activation energy
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asymptotics to rescale the Damköhler number as

D̂ = D̄ε−2 exp

{
1

εTf

}
(3.25)

where D̄ = O(1) is the reduced Damköhler number. Therefore, with such scaling, the

reaction rate term is appreciable only when T is sufficiently close to Tf , and vanishes

when T < Tf .

Solutions will now be constructed to the above system for negligible effective

fuel mass diffusivity, αDY
→ 0, in the limit of large activation energy, ε � 1. For

convenience, we will consider unity Lewis number for the oxidant, i.e. Le−1
x = 1,

and define the modified Soret and mass diffusion coefficients αs = Le−1
Y αBK , αD =

Le−1
Y αDY

.

3.4 Flame as a Boundary Layer

Figure 3.2 Schematic illustration of the structure of a diffusion flame which shows
the boundary layer (reaction zone) and outer regions (convection-diffusion zone).
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The reaction zone is confined to an infinitely thin sheet around the flame location zf ,

separating fuel and oxidizer streams in the limit of large activation energy. Moreover,

the reaction rate Ω in equation (3.22) is exponentially small and can be ignored when

the temperature is less than the flame temperature in the limit of large activation

energy E. Therefore, reaction is only appreciable when the temperature is very close

to the flame temperature, in particular within O(ε).

The system of equations (3.14) - (3.16) for temperature and mass fractions

are quite complicated, but under large activation energy asymptotics the effects of

reaction are concentrated in a narrow layer near the flame location. Hence, our

strategies for solving the system of equations then will be to treat the reaction zone

as a boundary layer where gradients are steep and a balance between diffusion and

reaction is maintained. Furthermore, in the outer regions on either side of the flame

sheet (boundary layer), reaction is negligible and a balance between convection and

diffusion is achieved. The structure of the flame is schematically shown in Figure 3.2.

We can then use the method of matched asymptotics to analyze each region separately

and matching will relate the solutions in the outer regions across the reaction zone.

This procedure will provide a composite solution that is valid everywhere in the flow

field.

3.5 The Outer Region

In the large activation energy limit, reaction is confined to a narrow zone of O(ε),

separating fuel and oxidant streams. On either side of this layer, there is only a

balance between diffusion and convection since temperature gradient is constant,

Soret effect therefore is negligible in these regions. Hence, the leading order chemistry-

free governing equations are

−z dT
dz

=
d2T

dz2
(3.26)
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−zdX
dz

=
d2X

dz2
(3.27)

−zdY
dz

= αs
d

dz

[
Y

T

dT

dz

]
(3.28)

with the boundary conditions

T → 1; X → 1; Y → 0 as z → −∞, (3.29a)

T → β; X → 0; Y → 1 as z → +∞. (3.29b)

The outer solutions for temperature and oxidizer concentration are given by

T =


1 + A0

[
2− erfc

(
z√
2

)]
, z < zf

β +B0erfc
(

z√
2

)
, z > zf

, (3.30)

X =


1 + C0

[
2− erfc

(
z√
2

)]
, z < zf

D0 + εD1erfc
(

z√
2

)
, z > zf

. (3.31)

To leading order in ε the constants in these expressions are given by

A0 =
Tf−1

2−E , B0 =
Tf−β
E

, C0 = −1
2−E , and D0 = 0

where we have defined

E = erfc(zf/
√

2),

and Tf and zf are the flame temperature and location, respectively. The solution for

fuel concentration is obtained by integrating equation (3.28), which yields

Y = exp

{∫ z

∞

[
αs

Tz
T

(z + Tz
T

)

z + αs
Tz
T

]
dz

}
, for z > zf . (3.32)
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One obtains a similar expression for Y to the left of the flame sheet z < zf , but it

is also necessary to account for a boundary layer of thickness O(αD) in this region

to satisfy the boundary condition far upstream on the oxidant side. The boundary

layer analysis is presented in Appendix A and the resulting profiles will be presented

shortly. It is important to note that oxidizer is entirely consumed to leading order,

while there is generally an O(1) amount of fuel passes through the flame remain

unburned. This result in a jump in fuel concentration across the reaction layers and

is typically the case when convective diffusive balance is achieved in the reaction zone,

[32].

An integration of enthalpy variables across the reaction zone provide two

relations for the flame temperature Tf and flame location zf :

Tf = β +
E

2

{
1 +

q

φ
− β

}
, (3.33)

γ = Y +(1− αγm)− Y − (1− αγ(m− 1)) , (3.34)

where

γ =

√
2

π

e−z
2
f/2

zf (2− E)φ
, α =

αsq

Tf
,

and

m =
1 + q/φ− Tf

q/φ

is the ratio of heat flux to the fuel side to the total flux away from the flame.

The amount of fuel entering the reaction zone, denoted by Y + in equation (3.34) is

obtained by evaluating equation (3.32) at z+
f . To leading order in ε, all quantities are

now known as a function of flame temperature Tf , flame location zf , and the amount

of fuel passes through the reaction zone remain unconsumed Y −. Equations (3.33)

and (3.34) provide two relations for the flame temperature and flame position as a
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function of the unburned fuel which is yet to be determined. Hence, it is necessary to

analyze the reaction zone structure which will provide a relation between the amount

unburned fuel Y − and the Damköhler number D̂.
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Figure 3.3 Flame temperature, Tf , as a function of the amount of unconsumed
fuel, Y − for several values of the modified Soret diffusion coefficient, αs.

Flame temperature, Tf and flame location, zf as a function of the amount of

unconsumed fuel, Y −, as determined from equation (3.33) and (3.34) are shown in

Figures 3.3 and 3.4 for several values of the modified Soret diffusion coefficient αs with

φ = 1, q = 5, β = 1 + q/2φ. Curves are shown for Soret coefficients in the range

−Tf
q
≤ αs (−1 ≤ α), for which the structure problem, to be discussed in the next

section, has physical solutions. We observe that flame temperature decreases as the
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Figure 3.4 Flame location, zf , as a function of the amount of unconsumed fuel, Y −

for several values of the modified Soret diffusion coefficient, αs.
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Figure 3.5 Flame temperature, Tf , as a function of the temperature of the fuel
stream to the oxidant stream ratio, β for several values of the modified Soret diffusion
coefficient, αs.
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Figure 3.6 Flame location, zf , as a function of the temperature of the fuel stream to
the oxidant stream ratio, β for several values of the modified Soret diffusion coefficient,
αs.
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amount of unconsumed fuel is increased, while the flame retreats further upstream

on the fuel side. We anticipate that the value Y − → 0 corresponds to an intense

burning limit, characterized by large Damköhler number. Figures 3.5 and 3.6 show

flame temperature, Tf and flame location, zf as a function of the temperature of the

fuel stream to the oxidant stream ratio, β for several values of αs, computed for the

intense burning limit, Y − = 0, with φ = 1 and q = 5. Note that β = 1 when the

temperatures of the two supply streams are equal, and β = 1 + q/φ corresponds to

the case in which the temperature of the fuel stream is equal to the adiabatic flame

temperature, T = Ta = 1+q/φ. We also note that the temperature on the fuel stream

is always larger than or equal to the temperature on the oxidant stream, therefore

β ≥ 1. All results will be shown for this range of β. When αs = 0, Soret effects are

absent, and the flame structure is determined by a balance between advection and

reaction. In this case, the flame resides at the same location, zf ∼ .506 for all values

of β. When Soret effects are present, αs 6= 0, the flame is seen to reside closer to the

oxidant stream when αs < 0, and further upstream when αs > 0. We also observe

that the flame location always approaches the value zf ∼ .506 as β → 1 + q/φ. As

shown in Figure 3.5, Tf = Ta = β when β = 1 + q/φ for all values of αs, while for

lower values of β, Tf decreases with increasing values of αs.

Typical profiles of temperature, T and species concentrations are shown in

Figures 3.7 and 3.8 for several specified values of the amount of unconsumed fuel

Y −. The value of β is 1 in Figure 3.7 and 1 + q/φ in Figure 3.8, with q = 5, φ = 1

and αs = −0.2 in both Figures. (We remark that the curves in the region z < zf

were computed using the MATLAB boundary value solver bvp4c with a very small

value of αD = 0.001 in order to resolve the narrow mass-diffusive boundary layer in

this region.) In general, the temperature achieves its maximum value at the reaction

sheet, although T ≡ Ta for all z > zf when β = 1 + q/φ, as shown in Figure 3.8. The

oxidant is entirely consumed to leading order, while some fuel may pass through the
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Figure 3.7 Profiles of temperature, T and species concentrations, X, and Y, with
temperature of the fuel stream to the oxidant stream ratio, β = 1, heat release, q =
5, fuel to oxidant ratio, φ = 1, modified Soret diffusion coefficient, αs = −0.2 and
several values of the amount of unconsumed fuel, Y −. Profiles for T and X are only
shown for the single case Y − = 0.
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Figure 3.8 Profiles of temperature, T and species concentrations, X, and Y, with
temperature of the fuel stream to the oxidant stream ratio, β = 1 + q/φ, heat release,
q = 5, fuel to oxidant ratio, φ = 1, modified Soret diffusion coefficient, αs = −0.2
and several values of the amount of unconsumed fuel, Y −. Profiles for T and X are
only shown for the single case Y − = 0.
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Figure 3.9 Profiles of temperature, T and species concentrations, X, and Y with
temperature of the fuel stream to the oxidant stream ratio, β = 1, heat release, q =
5, fuel to oxidant ratio, φ = 1, amount of unconsumed fuel, Y − = 0.2 and several
values of the modified Soret diffusion coefficient, αs. Profiles for T and X are only
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Figure 3.10 Profiles of temperature, T and species concentrations, X, and Y with
temperature of the fuel stream to the oxidant stream ratio, β = 1 + q/φ, heat release,
q = 5, fuel to oxidant ratio, φ = 1, amount of unconsumed fuel, Y − = 0.2 and several
values of the modified Soret diffusion coefficient, αs. Profiles for T and X are only
shown for the single case αs = −0.4.



38

reaction zone unburned. The fuel concentration profile is seen to achieve a localized

peak on the oxidant side of the reaction zone. This is a result of competing effects of

advection, that wants to transport the fuel further toward the stagnation plane, and

the Soret effect, which has a tendency to distribute the fuel back toward the peak

temperature location. As seen in these Figures, an increase in Y − causes the flame

to move further upstream on the fuel side.

Figures 3.9 and 3.10 show the same profiles as in Figures 3.7 and 3.8, but with

Y − fixed and varying αs. For the same amount of unconsumed fuel, the flame moves

closer toward the oxidant stream when the Soret coefficient is decreased.

The above profiles were all generated by specifying Y −, the amount of fuel

left unconsumed by the reaction. However, this quantity, and hence Tf and zf , are

functions of the Damköhler number. Thus, in order to completely construct our

response curves, it is necessary to resolve the reaction zone structure.

3.6 The Reaction Zone

The species concentration profiles in the outer regions presented in the previous

section indicate that the oxidizer is entirely consumed to leading order, while there is

an O(1) amount of fuel enters into the reaction zone. This suggests an inner structure

with similarities to Liñán’s “premixed regime” - the flow is frozen on the oxidizer side,

and the flow is near-equilibrium on the fuel side are separated by an infinitely thin

reaction zone [30]. The temperature and concentration profiles are given to all orders

by equations (3.30) - (3.32). In the fuel stream, we expand the coefficients B0 and

D0 in equations (3.30) - (3.31) in a power series in ε to account for the small amount

of oxidant that may leak through.

To examine the structure of the reaction zone, we introduce the stretched spatial

coordinate

ξ =
z − zf
ε

, (3.35)
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and the expansion for the temperature and species concentration

T ∼ Tf + εθ(ξ) + · · · ,

X ∼ 0 + εx(ξ) + · · · ,

Y ∼ y(ξ) + εy1(ξ) + · · · .

so that the local equations take the form:

d2θ

dξ2
= −qD̄xyeθ/T 2

f (3.36)

d2x

dξ2
= φD̄xyeθ/T 2

f (3.37)

zf
dy

dξ
+
αs
Tf

d

dξ

[
y
dθ

dξ

]
= D̄xyeθ/T 2

f . (3.38)

The matching conditions are derived by expanding the outer solution as a Taylor

series about z = zf in terms of the inner variable, ξ, to yield

T (z = zf + εξ) ∼ T±0 + ε

(
dT±0
dz

ξ + T±1

)
+ · · · , (3.39)

X(z = zf + εξ) ∼ X±0 + ε

(
dX±0
dz

ξ +X±1

)
+ · · · , (3.40)

Y (z = zf + εξ) ∼ Y ± + ε

(
dY ±

dz
ξ + Y ±1

)
+ · · · . (3.41)

where we have used the notation T±0 = T0(0±).

Matching to the outer solution written in terms of the stretched coordinate ξ provides

the relations

θ ∼


A0Γξ, ξ → −∞

T+
1 −B0Γξ, ξ → +∞

, (3.42)
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x ∼


C0Γξ, ξ → −∞

X+
1 , ξ → +∞

, (3.43)

y ∼


Y −, ξ → −∞

Y +, ξ → +∞
(3.44)

where Γ =
√

2/π exp{−z2
f/2}, T+

1 = B1E, X+
1 = D1E, Y + is the amount of fuel

entering the reaction zone, and Y − is the amount of fuel remain unconsumed.

The local enthalpy equation corresponding to the oxidizer species can be

integrated to yield the following expression for x explicitly in terms of θ:

θ +
q

φ
x = −B0Γξ. (3.45)

Similarly, a linear combination of equations (3.36) and (3.38) can be directly integrated

to determine y0 in terms of θ, namely

dθ

dξ
+

(
qzf + α

dθ

dξ

)
y = A0Γ. (3.46)

We can now insert equations (3.45) and (3.46) into equation (3.36) to provide a single

equation for the local temperature perturbation. Upon making the transformation

θ = T 2
f (−ϕ−mη), ξ =

T 2
f

qzfγ
η

our system of equations becomes

d2ϕ

dη2
=
D
4
ϕye−ϕ−mη (3.47)
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y =
Y + (1− αγm) + γdϕ/dη

1− αγ(dϕ/dη +m)
, (3.48)

with the boundary conditions

dϕ

dη
∼


−1, η → −∞

0, η → +∞
(3.49)

where the further reduced Damköhler number is given by

D =
4T 2

f φD̄
(qzfγ)2

. (3.50)

In addition, matching provides the limiting values

lim
η→−∞

(ϕ+ η) = 0, (3.51)

lim
η→+∞

ϕ =
q

φT 2
f

X+
1 , (3.52)

with the latter condition determining the oxidizer leakage across the reaction zone.

In general, the solution to equations (3.47) - (3.49) are computed numerically in

order to resolve the local structure and also determine the eigenvalue D (the reduced

Damköhler number) in terms of other parameters. In the limit γ → 0, Liñán’s

“premixed regime” structure for ideal gases is recovered, which occurs under very

rich conditions, for example as φ→∞ or zf →∞.

This system can be integrated exactly when the scaled fuel temperature is equal

to the adiabatic flame temperature, β = Ta = 1 + q/φ, in which case m = 0, and

T = Ta for all z > zf as shown in Figures 3.8 and 3.10. As a result of constant

temperature for all z > zf , the value of the fuel concentration entering the reaction

zone is determined from equation (3.32), Y + = 1 (Y0 ≡ 1 for all z > zf ), and our
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system of equations reduces to

d2ϕ

dη2
=
D
4
ϕ

(
1 + γ dϕ

dη

1− αγ dϕ
dη

)
e−ϕ (3.53)

with the boundary conditions

dϕ

dη
∼


−1, η → −∞

0, η → +∞
(3.54)

along with

lim
η→−∞

(ϕ+ η) = 0, (3.55)

lim
η→+∞

ϕ = 0 (3.56)

which is identical to the limiting values that describe the reaction zone structure in

premixed flames. We note that dϕ
dη

= 0 as η → +∞ implies that ϕ = 0 as η → +∞

for consistency with the differential equation (3.53). This condition also implies that

there is no leakage of oxidant across the reaction zone. We integrate the above

equation and impose the boundary conditions to obtain

D =
4

µ
, (3.57)

where

µ =
−2γ

αγ + 2(1 + α) {1 + ln |1− γ|/γ} . (3.58)
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We remark that the above system (with m = 0) is translationally invariant in η,

and thus the profile in the structure is known only to within an arbitrary constant.

However, as demonstrated by Liñán [30], this constant can be calculated by requiring

bounded solutions in an expansion for small m, and then passing to the limit m→ 0.

To analyze this limit we expand ϕ in a power series in m with the leading order

solution given by equations (3.53) - (3.58) above. We also expand the Damköhler

number

D = D0(1 +mD1 + · · · ), (3.59)

where D0 is given by equation (3.57) and the requirement that solutions be bounded

at O(m) leads to the following expression for the Damköhler number correction:

D1 =
4

D0

{
α +

α

γ
ln(1− γ)− (Y +

1 − αγ)

[
α + 1

γ(1− γ)
+
α

γ
+

1 + 2α

γ2
ln(1− γ)

]}

−
∫ ∞
−∞

ϕ0
dϕ0

dη
e−ϕ0 η dη. (3.60)

For γ � 1, this expression yields D1 = −1.344 + γ[(α + 1)1.965 − α/2] + · · · , thus

obtaining Liñán’s result as γ → 0.

An explicit representation for Damköhler number D̂ as a function of flame

position zf can be obtained by inserting equations (3.50) and (3.57) into (3.25), and

yields

D̂ =
(qzfγ)2

ε2T 2
f φµ

exp

{
1

εTf

}
. (3.61)

We note that m = 0 corresponds to the temperature of the fuel stream to the oxidant

stream ratio β is equal to the adiabatic flame temperature Ta, i.e., β = 1 + q/φ. We

can readily see that the flame temperature is constant from equation (3.33), hence

response curves of flame temperature are not shown here. Response curves of zf
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Figure 3.11 Flame location, zf as a function of Damköhler number, D̂ for several
values of the modified Soret diffusion coefficient, αs, with fuel to oxidant ratio, φ =
1, and heat release, q = 5.
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vs. D̂ are shown in Figure 3.11 for several values of the modified Soret diffusion

coefficient αs, with φ = 1. Flame position decreases monotonically with Damköhler

number, and asymptotes to a finite value zf ∼ .506 as burning intensity increases.

Along these response curves we can identify a weak burning limit γ → 0, zf →

∞, Y − → 1, D → 2, with minimal fuel consumption, and an intense burning limit,

γ → 1, zf → .506, Y − → 0, D → ∞, in which fuel is entirely consumed. Physical

solutions, corresponding to positive values of the local mass fraction, only exist for

the range of values −1 < α. For α < −1, the large magnitude of the Soret effect

inhibits mixing of fuel with oxidant, such that reaction cannot be sustained.

In general, to compute solutions to equations (3.47) - (3.49) for arbitrary β, it

is convenient to write

D =
4

µ
e−nm, (3.62)

and make the translation η → η − n so that our system becomes

µ
d2ϕ

dη2
= ϕye−ϕ−mη (3.63)

y =
Y + (1− αγm) + γdϕ/dη

1− αγ(dϕ/dη +m)
, (3.64)

with the boundary conditions

dϕ

dη
∼

 −1 η → −∞

0 η →∞
. (3.65)

In addition, matching provides the conditions

lim
η→−∞

(ϕ+ η) = n, (3.66)

lim
η→+∞

ϕ =
q

φT 2
f

X+
1 , (3.67)
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Figure 3.12 Flame location, zf as a function of Damköhler number, D̂ for several
values of the modified Soret diffusion coefficient, αs, with fuel to oxidant ratio, φ = 1,
heat release, q = 5, and temperature of the fuel stream to the oxidant stream ratio,
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which determine the burning rate eigenvalue, i.e., the Damköhler number, and the

amount of oxidant leakage, respectively. We note that comparing the expansion in

equation (3.59) for small m to equation (3.57) reveals that n ∼ −D1, as m→ 0. The

above boundary value problems, equations (3.63) - (3.65) were solved using nonlinear

shooting with Newton’s Method and fourth-order Runge-Kutta method.

Figures 3.12 and 3.13 show the flame location zf , and flame temperature Tf ,

respectively, as a function of Damköhler number D̂, for several values of the modified

Soret diffusion coefficient αs > −Tf/q, with q = 5, φ = 1.0 and β = 1+q/2. Note that

for a given D̂, there exists two solution branches. Figure 3.13 shows all curves exhibit

a high temperature branch corresponding to large Damköhler numbers, and a turning

point, indicating extinction, at a finite value of D̂. Only the high temperature branch

is physical, as it corresponds to increasing temperatures with increasing reaction

strength. Thus, the flame profiles shown in Figures (3.7) - (3.10) are for the physical

branch only. From Figure 3.12, the turning point is seen to shift further toward the

oxidant stream as the value of the Soret coefficient is decreased. This suggests that

Soret diffusion enables flames in light fuels to withstand greater strain rates before

extinguishing (We note that the Damköhler number is inversely proportional to the

strain rate).

3.7 Concluding Remarks

We have analyzed the asymptotic structure of a laminar diffusion flame residing in

a counterflow of a fluid fuel stream and a gaseous oxidant. The oxidant undergoes

Fickian diffusion, while the fuel diffuses primarily as a result of temperature gradients,

i.e., the Soret effect. We adopt a constant density approximation, and pursue a large

activation energy limit. As a result of our novel transport mechanism, appropriate for

high pressure and/or density, the local structure equations are substantially different

from those discovered by Liñán for ideal gas streams. Temperature and concentration
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profiles are determined, and the fundamental flame properties of flame temperature

and location are found explicitly as a function of Soret diffusion coefficient, ratio of

temperature of the two streams, and the Damköhler number.

Our model predicts that the flame resides on the fuel side of the stagnation

plane, although it moves closer to the oxidant stream as the Soret coefficient assumes

negative values of larger magnitude. The exact solution of the structure problem,

for the case when the temperature of the fuel supply stream equals the adiabatic

flame temperature (β = 1 + q/φ), shows a monotonic decreases in flame position

with Damköhler number. However, for lower values of fuel stream temperature,

computation of the local structure problem determines explicit extinction conditions,

characterized by turning points in response curves of flame location and temperature

as a function of Damköhler number.



CHAPTER 4

NEW THEORY OF PREMIXED FLAMES IN HIGH DENSITY

FLUIDS

4.1 Formulation

Consider a homogeneous premixed combustible mixture, consisting of two reactants.

The fuel F is assumed to be in supercritical condition, while the oxidant O is assumed

to be an ideal gas. The reaction proceeds according to

νFMF + νOMO → Products,

where Mi are the chemical symbols, and νi are the stoichiometric coefficients for

species i.

The governing equations for temperature T̂ and species mass fractions X̂, and

Ŷ are coupled to the conservation of mass and momentum equations are

ρ̂cp

(
∂T̂

∂t̂
+ V̂ · ∇̂T̂

)
− ∇̂ · (λ∇̂T̂ ) = Q̂Ω̂, (4.1)

ρ̂

(
∂ŶO

∂t̂
+ V̂ · ∇̂ŶO

)
− ∇̂ · (ρ̂DO∇̂ŶO) = −νOWOΩ̂, (4.2)

ρ̂

(
∂ŶF

∂t̂
+ V̂ · ∇̂ŶF

)
− ∇̂ ·

(
ρ̂DFαBK ŶF

∇̂T̂
T̂

+ ρ̂DFαDF
∇̂ŶF

)
= −νFWF Ω̂, (4.3)

∂ρ̂

∂t̂
+∇ · (ρ̂V̂) = 0, (4.4)

ρ̂

(
∂V̂

∂t̂
+ V̂ · ∇̂V̂

)
= −∇P̂ + µ

(
∇̂2V̂ +

1

3
∇̂(∇̂ · V̂)

)
(4.5)

50
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where ρ̂ is the fluid density, V̂ is the velocity field, P̂ is the pressure, αD is the mass

diffusion factor, αBK is the Soret diffusion factor, λ is the thermal conductivity, Q̂ is

the heat release, µ is the dynamic viscosity, cp is the specific heat, and Di, and Wi

are the mass diffusivities, and molecular weights, respectively, of species i.

Reaction proceeds at a rate that obeys the Arrhenius law with an overall

activation energy Êa and a pre-exponential factor A, and thus the reaction rate term,

Ω̂ has the form,

Ω̂ = Aρ̂2 ŶOŶF
WOWF

e−
Êa
RoT̂ , (4.6)

with Ro the gas constant.

4.2 Nondimensionalization

The governing equations can be nondimensionalized by using the adiabatic flame

speed, S0
f and thermal thickness, lD = λ/ρ̂cpS

0
f , as the characteristic velocity and

length, respectively. The time scale is chosen to be lD/S
0
f . All other variables are

scaled with respect to their values in the fresh mixture, which are denoted by the

subscript u. Upon introducing the nondimensional variables

x =
x̂

lD
, t =

t̂

lD/S0
f

,

YO =
ŶO

ŶO,u
, YF =

ŶF

ŶF,u
, T =

T̂

T̂u
,

V =
V̂

S0
f

, ρ =
ρ̂

ρ̂u
, P =

P̂

P̂u
,

our system of equations become

ρ

(
∂T

∂t
+ V · ∇T

)
−∇2T = qΩ, (4.7)
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ρ

(
∂YO
∂t

+ V · ∇YO
)
− Le−1

O ∇2YO = −Ω, (4.8)

ρ

(
∂YF
∂t

+ V · ∇YF
)
− Le−1

F ∇ ·
(
αBKYF

∇T
T

+ αDF
∇YF

)
= −1

φ
Ω, (4.9)

∂ρ

∂t
+∇ · (ρV) = 0, (4.10)

ρ

(
∂V

∂t
+ V · ∇V

)
= − 1

γM2
a

∇P + Pr

(
∇2V +

1

3
∇(∇ ·V)

)
, (4.11)

where

q =
Q̂ŶO,u

cpT̂uνOWO

(4.12)

is the dimensionless heat release. Additional dimensionless parameter in the above

system of equations are the Lewis number

Lei =
λ

ρ̂cpD̂i

(4.13)

is the ratio of thermal diffusivity of the mixture to mass diffusivity of species i, the

equivalence ratio

φ =
ŶF,u/νFWF

ŶO,u/νOWO

(4.14)

is the ratio of the mass fraction of the fuel to oxidizer in the fresh mixture to their

stoichiometric ratio, the Prandtl number

Pr =
µcp
λ

(4.15)

is the ratio of viscous to thermal effects, the Mach number

Ma =
S0
f√

γP̂u/ρ̂u

(4.16)
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is the ratio of the speed of the flame to sound and γ is the ratio of specific heats. The

reaction rate term on the right-hand side of (4.7) - (4.9) has the form

Ω = Dρ2YOYF exp

{
βT 2

a

q

(
1

Ta
− 1

T

)}
(4.17)

where D is the Damköhler number, a ratio of the flow time to the chemical time,

given by

D =
λνOŶF,uA
cp(S0

f )
2WF

e−βTa/q. (4.18)

The Zel’dovich number

β =
E

RoT̂ 2
a

(T̂a − T̂u) (4.19)

is a nondimensional measure of the temperature sensitivity of the reaction rate (Note:

The small parameter in activation energy asymptotics is the reciprocal of the

Zel’dovich number). Here T̂a is the adiabatic flame temperature, which in dimen-

sionless form is expressed as Ta = 1 + q.

4.3 Analysis of Planar Flame Structure in High Density Fluids

The objective in this section is to obtain a relation for the Damköhler number and

the laminar flame speed, also known as the laminar burning velocity. We adopt

the constant density approximation, and thus the temperature and mass transport

equations are completely decoupled from the equations of fluid dynamics. We consider

a steady, planar flame travels in the negative x-direction at unit speed in the laboratory

frame, so that the fresh, unburned mixture is approached as x → −∞ and the

burned mixture is approached as x → +∞. For convenience, we will consider unity

Lewis number for the oxidant, and define the modified Soret diffusion coefficient

αs = Le−1
F αBK . We note that Fickian diffusion is insignificant in high pressure,

αDF
� 1, therefore we let αDF

= 0 for simplicity.
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In the limit β → ∞, the reaction rate term is confined to a narrow boundary

layer in the flow field separating the unburned and burned mixture. On either side

of this boundary layer, reaction can be ignored and equations (4.7) - (4.9) are now

chemistry-free,

dT

dx
− d2T

dx2
= 0, (4.20)

dYO
dx
− d2YO

dx2
= 0, (4.21)

dYF
dx
− αs

d

dx

(
YF
T

dT

dx

)
= 0, (4.22)

with the boundary conditons

T → 1; YO → 1; YF → 1, x→ −∞, (4.23)

T → Ta; YO → 0, x→ +∞. (4.24)

The differential equation for the fuel is only first order, thus we can only impose one

boundary condition.

The outer solution on either side of the reaction zone can be expanded in the

form

T = T (0) + β−1T (1) + · · · ,

YO = Y
(0)
O + β−1Y

(1)
O + · · · ,

YF = Y
(0)
F + β−1Y

(1)
F + · · · .

Since we have adopted constant density approximation, it is common to consider

weak thermal expansion q � 1. We introduce the expansion

T (0) = 1 + qτ,
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to obtain

dτ

dx
− d2τ

dx2
= 0, (4.25)

with the boundary condition

τ =


0, x < 0

(Ta − 1)/q, x > 0.

(4.26)

The solutions of the above system in the outer region is given by

τ =


ex, x < 0

1, x > 0

, (4.27)

Y
(0)
O =


1− ex, x < 0

0, x > 0

, (4.28)

Y
(0)
F =


(1− αex)−1, x < 0

Y
(0)
F (0+), x > 0

, (4.29)

where α = αsq/Ta and Y
(0+)
F will be determined by matching to the inner solution.

In order to achieve balance between reaction and Soret diffusion in the reaction

zone, it is necessary to allow an O(1) amount of fuel enters into the reaction zone.

To examine the internal structure of the reaction zone, we make the stretching

transformation

x = β−1ξ,

and introduce the expansions

T = Ta + β−1qθ + · · · ,
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YO = β−1yO + · · · ,

YF = yF + · · · ,

so that the local equations take the form:

d2θ

dξ2
= −ΛyOyF e

θ, (4.30)

d2yO
dξ2

= ΛyOyF e
θ, (4.31)

−dyF
dξ

+ α
d

dξ

(
yF
dθ

dξ

)
=

1

φ
ΛyOyF e

θ, (4.32)

where Λ = Dρ2/β2. At the interface between zones, we enforce the matching

conditions obtained by expanding the coefficients of the outer asymptotic solutions

as a Taylor series about x = 0 expressed in terms of ξ, matching coefficients of powers

of β−1, we obtain

T (x = β−1ξ) ∼ T (0)(0±) + β−1

(
dT

dx

(0)

(0±)ξ + T (1)(0±)

)
+ · · · , (4.33)

YO(x = β−1ξ) ∼ Y
(0)
O (0±) + β−1

(
dY

(0)
O

dx
(0±)ξ + Y

(1)
O (0±)

)
+ · · · , (4.34)

YF (x = β−1ξ) ∼ Y
(0)
F (0±) + β−1

(
dY

(0)
F

dx
(0±)ξ + Y

(1)
F (0±)

)
+ · · · . (4.35)

Thus, matching to the outer solution provides the local relations

θ =


ξ + T (1)(0−), ξ → −∞

0 + T (1)(0+), ξ → +∞
, (4.36)
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yO =


−ξ + Y

(1)
O (0−), ξ → −∞

0 + Y
(1)
O (0+), ξ → +∞

, (4.37)

yF =


(1− α)−1, ξ → −∞

Y
(0)
F (0+), ξ → +∞

. (4.38)

The local enthalpy equation corresponding to the oxidant species can be integrated

to yield the following expression for yO explicitly in terms of θ. Upon matching to

both the burned side ξ → +∞ and the unburned side ξ → −∞, yield

θ + yO = 0. (4.39)

Similarly, a linear combination of equations (4.30) and (4.32) can be directly integrated

to determine yF in terms of θ. Matching to the burned side ξ → +∞, yields

dθ

dξ
+ φ

{
− yF + α

(
yF
dθ

dξ

)}
= −φY (0)

F (0+). (4.40)

Finally, matching to the unburned side ξ → −∞, yield

Y
(0)
F (0+) = 1− 1/φ. (4.41)

We now solve for yO and yF in equation (4.39) - (4.41), respectively, to obtain

yO = −θ, (4.42)

and

yF =
Y

(0)
F (0+) + (1/φ)dθ/dξ

1− αdθ/dξ . (4.43)
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These may now be inserted into equation (4.32) to provide a single equation for the

local temperature perturbation,

d2θ

dξ2
= Λθ

(
Y

(0)
F (0+) + (1/φ)dθ/dξ

1− αdθ/dξ

)
eθ. (4.44)

Now we can multiply equation (4.44) by dθ/dξ to obtain the first integral

φ

{
1

2

(
φY

(0)
F (0+) +

dθ

dξ

)(
α

(
3φY

(0)
F (0+)− dθ

dξ

)
+ 2

)
−

φY
(0)
F (0+)

(
1 + αφY

(0)
F (0+)

)
ln

∣∣∣∣φY (0)
F (0+) +

dθ

dξ

∣∣∣∣
}

= Λ
((
θ − 1

)
eθ
)

+ const.

By applying the matching conditions yield an expression for the burning rate eigenvalue,

Λ, namely

Λ = −αφ
2

+ φ
(

1 + α(φ− 1)
)(

1− (φ− 1) ln
( φ

φ− 1

))
. (4.45)

Using equations (4.18) and (4.45), the flame speed can be expressed as

S0
f =

{
λνOAρ2

cpWF

β−2Λ−1ŶF,u

}1/2

e−βTa/2q, (4.46)

and thus the Damköhler number can be written as

D =
β2Λ

ρ2
. (4.47)

We note the above solutions are valid for −∞ < α < 1. For larger values of

α, the transport of fuel away from the reaction sheet toward the unburned region

(the Soret effect) exceeds the rate at which convection delivers fuel toward the flame.

Characteristic profiles of reduced temperature and species concentrations are shown

in Figures 4.1 and 4.2 for several values of α. The value of α is negative in Figure 4.1
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diffusion coefficient, α < 0.
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and positive in Figure 4.2, with φ = 1 in both Figures (When stoichiometric condition

is being assumed, by equation (4.41), we deduce that Y
(0)
F (0+) = 1− 1/φ = 0).

Figure 4.1 shows three different values of α. When α < 0, the tendency of Soret

effect is to diffuse more rapidly towards the higher temperature region. As a result,

larger negative value of α shows that the local fuel concentration decreases.

The profile in Figure 4.2 illustrates the accumulation of excess fuel immediately

ahead of the reaction sheet. For α > 0, thermal diffusion causes the fuel to diffuse

in the direction opposite that of the incoming flow, creating a peak in the local fuel

profile upstream of the reaction sheet.

We note that temperature and oxidant mass fraction are continuous through

the flame, while the fuel suffers a jump discontinuity as a direct result of limited

mass diffusion. We note that this jump is in the outer profile only. The analysis of

the reaction zone, which led to the above model, demonstrates that fuel undergoes

rapid and complete consumption within the reaction zone, and the composite profile

is indeed continuous.

The burning rate eigenvalue Λ as a function of the equivalence ratio φ is plotted

in Figure 4.3 for several values of α. We observe that Λ decreases monotonically with

φ for all α, and asymptotes to a finite value as φ→∞. We note that the curve shifts

up for negative value of α, indicating higher value of Λ, which means smaller value

of flame speed. Whereas when α is positive the curve shifts down, suggesting smaller

value of Λ which corresponds to larger value of flame speed. In general, the trend is

as α increases, the burning rate eigenvalue decreases, therefore the adiabatic flame

speed increases.
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4.4 Generalized theory of Multidimensional Flame Structure in High

Density Fluids

In this section we generalize our theory for flames of arbitrary shape. The equations

for thermal and mass transport are coupled to the equations of hydrodynamics. But

the two sets of equations can be decoupled by considering weak thermal expansion

q � 1. For convenience, we will consider unity Lewis number for the oxidant

Le−1
O = 1− β−1l, (4.48)

and define the modified Soret and mass diffusion coefficients αs = Le−1
F αBK , αD =

Le−1
F αDF

Thus, the governing equations that we shall consider are

ρ

(
∂T

∂t
+ V · ∇T

)
−∇2T = qβ2ΛYOYF exp

{
βT 2

a

q

(
1

Ta
− 1

T

)}
, (4.49)

ρ

(
∂YO
∂t

+ V · ∇YO
)
−(1−β−1l)∇2YO = −β2ΛYOYF exp

{
βT 2

a

q

(
1

Ta
− 1

T

)}
, (4.50)

ρ

(
∂YF
∂t

+ V · ∇YF
)
− ∇ ·

(
αsYF

∇T
T

+ αD∇YF
)

=

− β2 1

φ
ΛYOYF exp

{
βT 2

a

q

(
1

Ta
− 1

T

)}
. (4.51)

It is convenient in our formulation to introduce the enthalpy function for the oxidant

HO = T + qYO. (4.52)

An equation for HO can be written that is free of the nonlinear reaction rate term,

and when equation (4.52) is used to eliminate YO in favor of HO we obtain

ρ

(
∂HO

∂t
+ V · ∇HO

)
−∇2HO = −β−1l∇2(HO − T ). (4.53)

Temperature gradients behind the flame are assumed small, i.e., O(β−1), and corre-

sponding only an O(β−1) amount of oxidant can leak through.
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In the limit β →∞ the reaction zone is confined to a moving narrow reactive-

diffusion boundary layer, which we regard as the flame front. In cartesian coordinates,

the flame front can be described by the function

x− f(y, z, t) = 0, (4.54)

such that x < f corresponds to the unburned mixture, and x > f to the burned

mixture. The outer solution on either side of the flame, x = f(y, z, t) is sought in the

form of a power series in β−1, i.e.

ρ = ρ(0) + β−1ρ(1) + · · · ,

T = T (0) + β−1T (1) + · · · ,

HO = H
(0)
O + β−1qhO + · · · ,

YF = Y
(0)
F + β−1Y

(1)
F + · · · .

These are inserted into above system of equations and at leading order we obtain the

following transport equations on either side of the flame zone

ρ(0)

(
∂T (0)

∂t
+ V · ∇T (0)

)
−∇2T (0) = 0, x < f, (4.55)

T (0) = 1 + q, x > f, (4.56)

ρ(0)

(
∂Y

(0)
F

∂t
+ V · ∇Y (0)

F

)
−∇ ·

(
αsY

(0)
F

∇T (0)

T (0)
+ αD∇Y (1)

F

)
= 0, x 6= f. (4.57)

Proceeding to O(β−1), we obtain

ρ(1)

(
∂T (0)

∂t
+ V · ∇T (0)

)
+ρ(0)

(
∂T (1)

∂t
+ V · ∇T (1)

)
−∇2T (0) = 0, x 6= f, (4.58)



65

ρ(0)

(
∂hO
∂t

+ V · ∇hO
)
−∇2hO = l∇2T (0), x 6= f. (4.59)

In order to properly relate the solutions of these equations across the flame zone it is

necessary to analyze the reaction zone structure.

It is convenient to adopt a coordinate system attached to the flame front by

introducing

ξ = x− f(y, z, t), y = y, z = z, t = t,

such that ξ < 0 refers to the unburned region, and ξ > 0 to the burned region. In

this new coordinate system, the derivative with respect to time and the gradient are

written as

∂

∂t
→ ∂

∂t
− ft

∂

∂ξ
,

∇ →
(
∂

∂ξ
,
∂

∂y
− fy

∂

∂ξ
,
∂

∂z
− fz

∂

∂ξ

)
,

the convective and the Laplacian operators take the form

∂

∂t
+ V · ∇ =

∂

∂t
− ft

∂

∂ξ
+ V ·

(
∂

∂ξ
,
∂

∂y
− fy

∂

∂ξ
,
∂

∂z
− fz

∂

∂ξ

)
,

∇2 = (1 + f 2
y + f 2

z )
∂2

∂ξ2
+

∂2

∂y2
+

∂2

∂z2
− (fyy + fzz)

∂

∂ξ
− 2fy

∂2

∂ξ∂y
− 2fz

∂2

∂ξ∂z
.

In the reaction zone, we stretch the spatial variable

ξ = β−1ζ

and seek inner solutions of the form

T = Ta + β−1θ + · · · ,

HO = Ta + β−1qψ + · · · ,
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YO = β−1qyO + · · · ,

YF = yF + · · · .

These expansions are substituted into equation (4.49), (4.53), and (4.51) and at

leading order we obtain the following equations in the reaction zone

−N2∂
2θ

∂ζ2
= qΛyOyF e

θ/q (4.60)

∂2ψ

∂ζ2
= 0 (4.61)

(u− v⊥ · ∇f − ft)
∂yF
∂ζ
−N2αs

Ta

∂

∂ζ

(
yF
∂θ

∂ζ

)
= −1

φ
ΛyOyF e

θ/q (4.62)

where N =
√

1 + |∇⊥f |2 is the surface normal. Solutions to these equations must

match to the outer solutions of equations (4.55) - (4.59).

The matching conditions are derived by expanding the assumed form of the

outer solution in terms of the inner variable, ξ = β−1ζ, to yield

T (ξ = β−1ζ) ∼ T (0)(0±) + β−1

(
∂T (0)

∂ξ
(0±)ζ + T (1)(0±)

)
+ · · · , (4.63)

YO(ξ = β−1ζ) ∼ Y
(0)
O (0±) + β−1

(
∂Y

(0)
O

∂ξ
(0±)ζ + Y

(1)
O (0±)

)
+ · · · , (4.64)

YF (ξ = β−1ζ) ∼ Y
(0)
F (0±) + β−1

(
∂Y

(0)
F

∂ξ
(0±)ζ + Y

(1)
F (0±)

)
+ · · · , (4.65)

Since temperature gradient and mass fraction of oxidizer behind flame is small, we

deduce that

∂T (0)

∂ξ
(0+) = 0, (4.66)

Y
(0)
O (0+) = 0, (4.67)
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and thus the matching conditions become

θ =


∂T (0)/∂ξ(0−)ζ + T (1)(0−), ζ → −∞

T (1)(0+), ζ → +∞
, (4.68)

qψ =


(
∂T (0)/∂ξ(0−) + ∂Y

(0)
O /∂ξ(0−)

)
ζ + T (1)(0−) + qY

(1)
O (0−), ζ → −∞

T (1)(0+), ζ → +∞
,

(4.69)

yF =


Y

(0)
F (0−), ζ → −∞

Y
(0)
F (0+), ζ → +∞

. (4.70)

Equation (4.61) can be readily be integrated to yield

ψ = hO(0+) = hO(0−) (4.71)

which implies that the outer solution hO of equation (4.59) must be continuous across

the reaction zone. Also, we note that the leading order outer temperature profile must

be continuous at the reaction zone, i.e. T (0)(0+) = T (0)(0−) = Ta. Thus,

[
T (0)

]
ξ=0

= 0 (4.72)

[
hO
]
ξ=0

= 0 (4.73)

An expression for the jump in the gradient of the outer solution hO can be derived

by a single integration of equation (4.59) across the reaction zone, yielding[
∂hO
∂ξ

]
ξ=0

+
l

q

[
∂T (0)

∂ξ

]
ξ=0

= 0 (4.74)

The local enthalpy equation corresponding to the fuel species (equation (4.60) + qφ

(4.62)) can be directly integrated to yield the following expression for yF explicitly in
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terms of θ. Upon matching to the burned side, ζ → +∞, yields

N
∂θ

∂ζ
− qφSyF + αφNyF

∂θ

∂ζ
= −qφSY (0)

F (0+). (4.75)

where

S =
u− v⊥ · ∇f − ft√

1 + |∇⊥f |2

is the flame speed (justification will be presented shortly) and α = qαs/Ta. Matching

to the unburned side, ζ → −∞, yields

qφS
(
Y

(0)
F (0+)− Y (0)

F (0−)
)

= −N
(

1 + αφY
(0)
F (0−)

) ∂T (0)

∂ξ
(0−). (4.76)

Since temperature gradient is assumed to be small behind the flame, ∂T (0)/∂ξ(0+) =

0, we can now write this in the form of jump condition for the outer solution Y
(0)
F ,

namely

qφS
[
Y

(0)
F

]
ξ=0

= N
(

1 + αφY
(0)
F (0−)

)[∂T (0)

∂ξ

]
ξ=0

. (4.77)

Recall the local enthalpy variable corresponds to the oxidant is

qψ = θ + qyO. (4.78)

We now solve for yF and yO in equation (4.75) and (4.78), respectively, to obtain

yF =
SY 0

F (0+) + (N/qφ)∂θ/∂ζ

S − (αN/q)∂θ/∂ζ
, (4.79)

and

yO =
qψ − θ
q

. (4.80)

These may now be inserted into equation (4.60) to provide a single equation for

the local temperature perturbation. Upon making the transformation θ → qθ, our
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equation takes the form

−N2∂
2θ

∂ζ2
= Λ(ψ − θ)

{
SY

(0)
F (0+) + (N/φ)∂θ/∂ζ

S − αN∂θ/∂ζ

}
eθ. (4.81)

Now we can multiply equation (4.81) by ∂θ/∂ζ to obtain the first integral.

αφN2

2

(
∂θ

∂ζ

)2

− φNS
(

1 + αφY
(0)
F (0+)

) ∂θ
∂ζ

+φ2S2Y
(0)
F (0+)

(
1 + αφY

(0)
F (0+)

)
ln

∣∣∣∣φSY (0)
F (0+) +N

∂θ

∂ζ

∣∣∣∣ = Λ
((
ψ−θ+1

)
eθ
)

+const.

(4.82)

Matching to the burned side, ζ → +∞, yields

φ2S2Y
(0)
F (0+)

(
1 + αφY

(0)
F (0+)

)
ln
∣∣∣φSY (0)

F (0+)
∣∣∣ = ΛehO(0+) + const (4.83)

where hO(0+) = T (1)(0+)/q. Similarly, matching to the unburned side, ζ → −∞,

gives second expression

αφN2

2q2

(
∂T (0)

∂ξ
(0−)

)2

−
(

1 + αφY
(0)
F (0+)

) φNS
q

∂T (0)

∂ξ
(0−)

+φ2S2Y
(0)
F (0+)

(
1 + αφY

(0)
F (0+)

)
ln

∣∣∣∣φSY (0)
F (0+) +

N

q

∂T (0)

∂ξ
(0−)

∣∣∣∣ = const. (4.84)

The above expressions can now be used to write a jump condition for the outer

temperature gradient, namely

αφN2

2q2

[(
∂T (0)

∂ξ

)2
]
ξ=0

−
(

1 + αφY
(0)
F (0+)

) φNS
q

[
∂T (0)

∂ξ

]
ξ=0

−φ2S2Y
(0)
F (0+)

(
1 + αφY

(0)
F (0+)

)
ln

∣∣∣∣∣1 +
N

qφSY
(0)
F (0+)

∂T (0)

∂ξ
(0−)

∣∣∣∣∣ = ΛehO(0+).

(4.85)

The problem has now been reduced to solving the outer transport equations

(4.55) - (4.57) and (4.59) subject to the jump conditions (4.72) - (4.74), (4.77) and
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(4.85). In particular, the local analysis has revealed that the temperature T (0) and

enthalpy function corresponds to hO are continuous across the reaction zone, while

their gradients suffer a discontinuity. Moreover, the effect of high pressure gives rise to

a completely new balance in the reaction zone, namely, a balance between convection,

Fickian diffusion, Soret diffusion and reaction has to be achieved. As a result, there

is an order one jump in the fuel mass fraction across the reactions zone. The local

analysis has also revealed a new jump condition for the fuel species, which has a

dependence on the Soret diffusion coefficient α, equivalence ratio φ, the flame speed

S and also the chemistry. This is a crucial difference from previous models as we will

see in the next section. By exploiting the limit of large activation energy, we have

essentially replaced the nonlinear reaction rate term that appeared in the original

equations by a localized heat source on the flame-front, namely, ΛehO(0+).

These jump conditions can now be generalized by first considering that all

transport processes and chemical reaction are confined to a moving surface

F (X, t) = x− f(y, z, t) = 0. (4.86)

called the flame front, separating the unburned mixture F < 0 from the burned

mixture F > 0. On the surface

dF

dt
= Ft +∇F · dX

dt
= 0 (4.87)

where dX/dt is the velocity of the surface. The unit surface normal to the flame front

pointing toward the burned mixture is given by

n =
∇F
|∇F | =

(1,−fy,−fz)√
1 + |∇⊥f |2

, (4.88)

and thus the normal velocity of the surface is given by

dX

dt
· n = − Ft

|∇F | =
ft√

1 + |∇⊥f |2
. (4.89)
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We can now write the flame speed

S = V · n +
Ft
|∇F | =

u− v⊥ · ∇f − ft√
1 + |∇⊥f |2

(4.90)

where V is evaluated just ahead of the flame front, i.e., at x = f(−). The normal

derivative in terms of the transformed coordinate ξ is given by

∂

∂n
= n · ∇ = N

∂

∂ξ
−N−1

(
fy
∂

∂y
+ fz

∂

∂z

)
. (4.91)

where the surface normal N =
√

1 + |∇⊥f |2 = |∇F | can be written in terms of the

surface F . Since there are no jumps in the transverse components, y and z, directions

it follows that

N

[
∂

∂ξ

]
=

[
∂

∂n

]
. (4.92)

Thus our jump conditions can be written in the generalized coordinate-free form

[
T (0)

]
= 0, (4.93)

[
hO

]
= 0, (4.94)

[
∂hO
∂n

]
+
l

q

[
∂T (0)

∂n

]
= 0, (4.95)

qφS
[
Y

(0)
F

]
=
(

1 + αφY
(0)
F (−)

)[∂T (0)

∂n

]
, (4.96)

αφ

2q2

[(
∂T (0)

∂n

)2
]
−
(

1 + αφY
(0)
F (+)

) φS
q

[
∂T (0)

∂n

]

−φ2S2Y
(0)
F (+)

(
1 + αφY

(0)
F (+)

)
ln

∣∣∣∣∣1 +
1

qφSY
(0)
F (+)

∂T (0)

∂n
(−)

∣∣∣∣∣ = ΛehO(+). (4.97)
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Here we use the notation (−) and (+) to denote the location ahead and behind the

flame front.

4.5 Diffusional-Thermal Instability of Planar Flames in High Density

Fluids

Although we have succeeded in simplifying the nonlinear reaction rate terms appearing

in the original governing equations, solutions of the resulting model are still difficult

to obtain due to the coupling of the hydrodynamics and transport processes. We can

assume the density changes across the flame are small, and thus the temperature and

mass transport equations are decoupled from the hydrodynamics equations. This is

a rather crude approximation from a physical standpoint, but it has been proven to

be useful to gain qualitative insights in theoretical combustion. In this way we can

study the effect of the flow field on the flame, but the effect of the flame on the flow

field is suppressed.

When the constant density approximation is adopted. It is common to consider

weak thermal expansion q � 1. We introduce the expansion

T (0) = 1 + qτ + · · · ,

ρ(0) = 1 + qRo + · · · ,

Y
(0)
F = yf ,

hO = ho.

which are inserted into equations (4.55) - (4.57) and (4.59) and jump conditions (4.93)

- (4.97) to yeild

∂τ

∂t
+ V · ∇τ −∇2τ = 0, F < 0, (4.98)
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τ = 1, F > 0, (4.99)

∂ho
∂t

+ V · ∇ho −∇2ho = l∇2τ, F 6= 0, (4.100)

∂yf
∂t

+ V · ∇yf − α∇ · (yf∇τ) = 0, F 6= 0, (4.101)

[
τ
]

= 0, (4.102)

[
ho
]

= 0, (4.103)

[
∂ho
∂n

]
+ l

[
∂τ

∂n

]
= 0, (4.104)

φS
[
yf

]
= (1 + αφyf (−))

[
∂τ

∂n

]
, (4.105)

αφ

2

[(
∂τ

∂n

)2
]
− (1 + αφyf (+))φS

[
∂τ

∂n

]

−φ2S2yf (+) (1 + αφyf (+)) ln

∣∣∣∣1 +
1

φSyf (+)

∂τ

∂n
(−)

∣∣∣∣ = Λeho(+) (4.106)

where S = Ft

|∇F | + V · n.

This model will now be used to study the dynamic behavior of a planar flame

in a uniform flow field and assuming stoichiometric condition φ = 1 . Thus, under

such condition, by equation (4.41), we deduce that yf (0+) = Y
(0+)
F = 1 − 1/φ = 0.

In addition, the last two jump conditions are now simplified and are given by

S
[
yf

]
= (1 + αyf (−))

[
∂τ

∂n

]
, (4.107)

α

2

[(
∂τ

∂n

)2
]
− S

[
∂τ

∂n

]
= Λeho(+). (4.108)
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With the prescribed flow field V = (1, 0, 0), we deduce the flame speed S =

(1− ft)/N , a steady one dimensional solution of the above system is given by

f s = 0, (4.109)

τ s =


ex, x < 0

1, x > 0

, (4.110)

hso =


−lxex, x < 0

0, x > 0

, (4.111)

ysf =


(1− αex)−1, x < 0

0, x > 0

. (4.112)

We now suppose that the steady, planar flame are slightly perturbed such that

the solutions are written as the sum of the steady basic solution and the infinitesimal

disturbance:

f = f s + εf̃ , (4.113)

τ = τ s + εχ̃, (4.114)

ho = hso + εψ̃, (4.115)

yf = ysf + εϑ̃, (4.116)

where ε is a small parameter. Solutions of the perturbed quantities are sought in the

normal mode form

χ̃ = χ(x)exp(ik1y + ik2z + ωt), (4.117)
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ψ̃ = ψ(x)exp(ik1y + ik2z + ωt), (4.118)

ϑ̃ = ϑ(x)exp(ik1y + ik2z + ωt), (4.119)

f̃ = Aexp(ik1y + ik2z + ωt), (4.120)

where ω is the complex growth rate and k =
√
k2

1 + k2
2 is the wavenumber of the

disturbance. If there are any values of ω having positive real part for any k, then

the perturbation will grow in time, and the steady flame structure is unstable. The

expressions (4.117) - (4.120) are then inserted into equations (4.98) - (4.104), (4.107)

and (4.108). The resulting linearized system are

χ′′ − χ′ − (ω + k2)χ = 0, x < 0, (4.121)

χ ≡ 0, x > 0, (4.122)

ψ′′ − ψ′ − (ω + k2)ψ = −l(χ′′ − k2χ), x 6= 0, (4.123)

ϑ′ +

(
ω − αex
1− αex

)
ϑ =

(
α2ex

(1− αex)3

)
χ′ +

(
α

(1− αex)2

)
(χ′′ − k2χ), x < 0,

(4.124)

ϑ ≡ 0, x > 0, (4.125)

[
χ
]

= A, (4.126)

[
ψ
]

= −lA, (4.127)

l
[
χ′
]

+
[
ψ′
]

= −lA, (4.128)

∂f̃

∂t
= −(1− α)f̃ − χ̃′(0−) + (1− α)2ϑ̃(0−), (4.129)
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(2− α)
[
χ′
]

+ Λψ(0+) + (1− α)2ϑ(0−) = 2A(1− α). (4.130)

where Λ = 1−α/2. Here the jump conditions are to be evaluated at the unperturbed

location x = 0. We seek solution with Re(ω) > 0, and boundedness is imposed at

x→ ±∞.

The solution of the above linearized system is given by

χ =


c1e

r1x, x < 0

0, x > 0

, (4.131)

ψ =


c2e

r1x + lA(r2
1 − k2)(r1 − r2)−1xer1x, x < 0

c3e
r2x, x > 0

, (4.132)

ϑ =


−Ae−x(e−x − α)ω−1(I1 + I2), x < 0

0, x > 0

(4.133)

where I1 and I2 are

I1 = α2r1

∫ x

−∞
e(r1−1)x′(e−x

′ − α)−ω−2dx′, (4.134)

I2 = α(r2
1 − k2)

∫ x

−∞
e(r1−1)x′(e−x

′ − α)−ω−1dx′, (4.135)

respectively, and r1 and r2 are given by

r1,2 =
1

2

(
1±

√
1 + 4(ω + k2)

)
(4.136)

such that Re(r1) > 0 and Re(r2) < 0. The constants can be determined by applying

the jump conditions (4.126), (4.127), and (4.128) to yield:

c1 = −A, (4.137)
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c2 = c3 + lA, (4.138)

c3 = lA (r1 − r2)−2 (r1 − r2 − r2
1 + k2

)
, (4.139)

and by applying jump condition (4.130) yields the last relation to determine the

growth rate

c3 =
2

2− α
{

2A(1− α)− (1− α)2ϑ(0−)
}
− 2Ar1. (4.140)

Manipulating equations (4.139) – (4.140) leads to a cubic integro-algebraic dispersion

relation for the growth rate ω:

64ω3 +
{

192k2 + 32 + 8l − l2 + 16(1− Γ)(l + 4Γ)
}
ω2

+
{

2(2 + 8k2 + l)(1 + 12k2) + (1− Γ)
{

4l(3 + 4k2) + 32Γ(1 + 4k2)
}}
ω

+(2 + 8k2 + l)2k2 + (1− Γ)
{

2l(1 + 4k2) + Γ(2 + 8k2)2
}

= 0, (4.141)

where

Γ =
1− α
2− α

{
2 + (1− α)ω

(
I1(0−) + I2(0−)

)}
.

In general, for nonzero α, this integro-algebraic equation must be computed

numerically. However, the limiting case, α = 0 (Γ = 1) yields the following explicit

relation for ω:

64ω3 +
{

192k2 + 32 + 8l − l2
}
ω2 +

{
2(2 + 8k2 + l)(1 + 12k2)

}
ω

+(2 + 8k2 + l)2k2 = 0. (4.142)
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Figure 4.4 Neutral stability boundaries for α = 0.
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This is the diffusion-less limit in which fuel is transported through the flame by

convection only. Thus it is the same as previous expressions derived for diffusional-

thermal model [46].

The neutral stability boundaries of the above dispersion relation, determined

by setting Re(ω) = 0 when α = 0, are shown in Figure 4.4. There exists a range of

Lewis number

−2 < l < 4(1 +
√

3) (4.143)

for which planar flames are stable to disturbances of all wavelength. The left boundary

is given by l = −2 − 8k2, and it is commonly referred to as the cellular boundary

because Im(ω) = 0 as well. As l decreased below −2 the plane flame will lose stability

to a stationary cellular structure. Along the right stability boundary, Im(ω) 6= 0, and

thus the planar flame will lose stability to pulsations or traveling waves.

Stability boundaries computed for several specified values of α ≤ 0 are shown

in Figures 4.5 and 4.6. We can see from Figure 4.5, the general shape of both neutral

stability curves are the same and do not appear to differ very much for small negative

values of α (α� 1 and α < 0). We note that both boundaries slowly shift to the right

as the value of α decreases. In addition, it is worth mentioning that for sufficiently

large negative values of α, the cellular branch can be extended into the regime of

LeO > 1 as shown in Figure 4.6. We note that light fuels, e.g., hydrogen typically

has values of α < 0, and the present theory suggests that cellular instability may be

observed even when LeO > 1.

Figure 4.7 shows similar stability boundaries as in Figures 4.5 and 4.6, but for

values of α ≥ 0. Similarly, for small positive α (α � 1 and α > 0), both boundaries

are relatively immobile and the general shape holds the same shape as α = 0. We

note that both boundaries also shift to the right as the value of α increases. However,

the cellular boundary cannot cross the k−axis, suggesting cellular instability can only



80

be observed for LeO < 1. We will now carry out a nonlinear analysis to trace the

evolution from planar to cellular flames as the left stability is crossed.
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Figure 4.5 Neutral stability boundaries for α ≤ 0, α = 0, -0.1, -0.2 and -0.5. The
arrows indicate decreasing values of α.
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Figure 4.6 Neutral stability boundaries for α ≤ 0, α = 0, -5, -10 and -20. The
arrows indicate decreasing values of α.
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Figure 4.7 Neutral stability boundaries for α ≥ 0, α = 0, 0.1 and 0.9. The arrows
indicate increasing values of α.
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4.6 Evolution Equation for the Perturbed Flame Front in High Density

Fluids

In this section, we will derive a nonlinear partial differential equation that describes

the evolution of the flame front in the vicinity of the cellular stability boundary. For

simplicity we will first consider the planar flame in two-dimension. The linear stability

analysis revealed that the flame first lose stability to long-wave disturbances (k → 0)

at l = lc.

We first define a small parameter ε by

ε = (l − lc)/lc. (4.144)

Along the cellular boundary we have the relation

(2 + 8k2 + l)2k2 + (1− Γ)
{

2l(1 + 4k2) + Γ(2 + 8k2)2
}

= 0 (4.145)

where

Γ =
1− α
2− α

{
2 + (1− α)ω

(
I1(0−) + I2(0−)

)}
,

and it follows that

k2 ∼ l − lc = O(ε) (4.146)

where

lc = −2(1− α)

2− α
(
2− ln(1− α)

)
. (4.147)

Let us assume that the characteristic amplitude of the disturbed flame front is of

O(ε),

F = εf.
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Equation (4.146) suggests that we introduce scaled variable for the time and spatial

variable as

t1 = ε2t, η =
√
εy.

Solutions of all quantities are sought in the form of a power series in ε, i.e.

f = f s + ε(F 0 + F 1 + · · · ), (4.148)

τ = τ s + ε2(χ0 + χ1 + · · · ), (4.149)

h = hso + ε2(ψ0 + ψ1 + · · · ), (4.150)

y = ysf + ε2(ϑ0 + ϑ1 + · · · ), (4.151)

where the steady state solutions are given by equations (4.109) - (4.112). It is

convenient to adopt a coordinate system attached to the flame front by introducing

ξ = x− f(η, t1), η = η, t1 = t1.

The above expressions are inserted into equations (4.98) - (4.104), (4.107), and (4.108)

and expanded for small ε to yield systems of equations to be solved at each order.

At O(ε2), the appropriate system has the form

∂χ0

∂ξ
− ∂2χ0

∂ξ2
= −F 0

ηη

dτ s

dξ
, ξ < 0, (4.152)

χ0 = 0, ξ > 0, (4.153)

∂ψ0

∂ξ
− ∂2ψ0

∂ξ2
= lc

∂2χ0

∂ξ2
− lcF 0

ηη

dτ s

dξ
− F 0

ηη

dhso
dξ

, ξ < 0, (4.154)

∂ψ0

∂ξ
− ∂2ψ0

∂ξ2
= 0, ξ > 0, (4.155)



85

∂

∂ξ

((
1− αdτ

s

dξ

)
ϑ0

)
= α

{
∂

∂ξ

(
ysf
∂χ0

∂ξ

)
− F 0

ηηy
s
f

dτ s

dξ

}
, ξ < 0, (4.156)

ϑ0 = 0, ξ > 0, (4.157)

At ξ = 0, the following jump conditions must be satisfied:

[
χ0
]

= 0, (4.158)

[
ψ0
]

= 0, (4.159)

lc

[
∂χ0

∂ξ

]
+

[
∂ψ0

∂ξ

]
= 0, (4.160)

2

[
∂χ0

∂ξ

]
+ ψ0(0+) + Λ−1(1− α)2ϑ0(0−) = 0 (4.161)

where Λ = (2 − α)/2. The perturbation quantities χ0, ψ0 and ϑ0 must vanish as

ξ → −∞ and must be bounded as ξ → +∞. Hence

χ0 → 0; ψ0 → 0; ϑ0 → 0, ξ → −∞, (4.162)

χ0, ψ0, ϑ0 bounded, ξ → +∞. (4.163)

The solution of the O(ε2) system is given by

χ0 =


F 0
ηηξe

ξ, ξ < 0

0, ξ > 0

, (4.164)

ψ0 =


−lcF 0

ηη(1 + ξ2)eξ, ξ < 0

−lcF 0
ηη, ξ > 0

, (4.165)
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ϑ0 =


F 0
ηη

(
α(1− αeξ)−2(1 + ξ)eξ + (1− αeξ)−1 ln(1− αeξ)

)
, ξ < 0

0, ξ > 0

.

(4.166)

The above solution clearly is a function of the perturbed flame front location F 0 and

the modified Soret diffusion coefficient α. However, we have yet to determine an

equation for the perturbed flame front F 0. In order to do this, it is necessary to go

to the next order in our perturbation scheme.

The next order, O(ε3) system is simply an inhomogeneous form of the O(ε2)

system and has the form

∂χ1

∂ξ
− ∂2χ1

∂ξ2
=
∂2χ0

∂η2
+
(
F 0
t1

+ (F 0
η )2 − F 1

ηη

)dτ s
dξ

, ξ < 0, (4.167)

χ1 = 0, ξ > 0, (4.168)

∂ψ1

∂ξ
− ∂2ψ1

∂ξ2
= lc

∂2χ1

∂ξ2
+ lc

∂2χ0

∂ξ2
+ lc

∂2χ0

∂η2
+
∂2ψ0

∂η2
− lc

(
F 0
t1

+ (F 0
η )2
)
eξ

−lc
(
F 0
t1

+ (F 0
η )2 − F 0

ηη − F 1
ηη

)
ξeξ, ξ < 0, (4.169)

∂ψ1

∂ξ
− ∂2ψ1

∂ξ2
=
∂2ψ0

∂η2
, ξ > 0, (4.170)

∂

∂ξ

((
1− αdτ

s

dξ

)
ϑ1

)
= F 0

t1

dysf
dξ

+ α

{
∂

∂ξ

(
ysf
∂χ1

∂ξ

)
+ ysf

∂2χ0

∂η2

−F 1
ηηy

s
f

dτ s

dξ
+ (F 0

η )2 ∂

∂ξ

(
ysf
dτ s

dξ

)}
, ξ < 0, (4.171)

ϑ1 = 0, ξ > 0, (4.172)

At ξ = 0, the following jump conditions must hold:[
χ1
]

= 0, (4.173)
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[
ψ1
]

= 0, (4.174)

lc

[
∂χ1

∂ξ

]
+

[
∂ψ1

∂ξ

]
= −lc

[
∂χ0

∂ξ

]
, (4.175)

2

[
∂χ1

∂ξ

]
+ ψ1(0+) + Λ−1(1− α)2ϑ1(0−) = (F 0

η )2. (4.176)

The perturbation quantities χ1, ψ1 and ϑ1 must vanish as ξ → −∞. Hence

χ1 → 0; ψ1 → 0; ϑ1 → 0, ξ → −∞. (4.177)

The solution of the O(ε3) system is given by

χ1 =


−
(
F 0
t1

+ (F 0
η )2 − F 0

ηηηη − F 1
ηη

)
ξeξ − 1

2
F 0
ηηηηξ

2eξ, ξ < 0

0, ξ > 0

, (4.178)

ψ1 =



−lc
(
F 0
ηη + 5F 0

ηηηη + F 1
ηη

)
eξ + lc

(
F 0
t1

+ (F 0
η )2 + 3F 0

ηηηη

)
ξeξ

+lc

(
F 0
t1

+ (F 0
η )2 − F 0

ηη − 3
2
F 0
ηηηη − F 1

ηη

)
ξ2eξ

+1
2
lcF

0
ηηηηξ

3eξ, ξ < 0

−lc
(
F 0
ηη + 5F 0

ηηηη + F 1
ηη

)
− lcF 0

ηηηηξ, ξ > 0

, (4.179)

ϑ1 =


α(1− αeξ)−2

((
F 0
ηηηη + F 1

ηη

)
eξ −

(
F 0
t1

+ (F 0
η )2 − F 1

ηη

)
ξeξ − 1

2
F 0
ηηηηξ

2eξ
)

+(1− αeξ)−1
(
F 0
ηηηη

∫ ξ
−∞ ln(1− αeξ̄)dξ̄ + F 1

ηη ln(1− αeξ)
)
, ξ < 0

0, ξ > 0

.

(4.180)

Nontrivial solutions exist provided that the flame front location F 0 satisfies the partial

differential equation

F 0
t1

+ BF 0
ηη + CF 0

ηηηη +
1

2
(F 0

η )2 = 0 (4.181)
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where

B = − lc
2
, (4.182)

and

C = −1− 5lc
2

+ α(2− α)−1 + (1− α)(2− α)−1

∫ 0

−∞
ln(1− αeξ̄)dξ̄. (4.183)

The above equation can be generalized to three-dimensional

F 0
t1

+ B∇2F 0 + C∇4F 0 +
1

2
|∇F 0|2 = 0. (4.184)

We note that for the particular case, α = 0 (B = 1 and C = 4), we recovered the

Kuramoto-Sivashinsky (K-S) equation.

The coefficients B and C in equation (4.184) as a function of the modified Soret

diffusion coefficient, α, as determined from equation (4.182) and (4.183) is shown in

Figure 4.8. We note the solutions in the previous chapter are valid for −∞ < α < 1.

Without losing the capability to capture all the information, curves are only shown

for Soret coefficients in the range −20 < α < 1. We observe that both coefficients

B and C are positive in the range αc1 ≡ −6.389056 < α < 1 and approach zero as

α→ 1. Therefore, when α = 1 equation (4.184) reduces to

F 0
t1

+
1

2
|∇F 0|2 = 0. (4.185)

When α = 0, Soret effects are absent, and both coefficients B and C achieve their

maximum value, 1 and 4, respectively. Thus, we recovered the K-S equation, namely,

F 0
t1

+∇2F 0 + 4∇4F 0 +
1

2
|∇F 0|2 = 0. (4.186)

When α = αc1 , B ≈ 0 and Cc ≡ C ≈ 1.069194. Hence, equation (4.184) reduces to

F 0
t1

+ Cc∇4F 0 +
1

2
|∇F 0|2 = 0. (4.187)
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Figure 4.8 The coefficients B and C in equation (4.184) as a function of the modified
Soret diffusion coefficient, α, as determined from equations (4.182) and (4.183).
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We also observe that coefficient B is negative while C is positive in the range αc2 ≡

−11.033770 < α < αc1 . When α = αc2 , Bc ≡ B ≈ −0.450297 and C ≈ 0.

Consequently, equation (4.184) reduces to

F 0
t1

+ Bc∇2F 0 +
1

2
|∇F 0|2 = 0. (4.188)

Finally, in the range −∞ < α < αc2 , both coefficients B and C are negative.

We have shown there to be eight somewhat different cases depending on the

value of the parameter α in equation (4.184). Table 4.1 summarizes the coefficients

B and C, and the evolution equation for the perturbed flame front F 0 and its order

for these cases.

In some sense there actually are only three cases: if αc1 ≤ α ≤ 1, both

coefficients B and C are nonnegative; if αc2 ≤ α < αc1 , coefficient B is negative

and coefficient C is nonnegative; and if −∞ < α < αc2 , both coefficients B and C

are negative. Furthermore, we note that the evolution equation for the flame front

is fourth-order in the range: −∞ < α < αc2 and αc2 < α < 1. It is also worth

mentioning that the order of the flame front equation is reduced for two particular

choice of α, namely, it reduces to first-order and second-order when α = 1 and α = αc2 ,

respectively.
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Table 4.1 The Coefficients B and C, the Evolution Equation for the Flame
Front F 0 and its Order, for Soret Diffusion Coefficient in the Range −∞ <
α < 1 (αc1 = −6.389056, αc2 = −11.033770, Bc = −0.450297 and Cc =
1.069194).

α B C Evolution Equation for the Flame
Front

Order

1 0 0 F 0
t1 + |∇F 0|2/2 = 0 1

0 < α < 1 positive positive F 0
t1+B∇2F 0+C∇4F 0+|∇F 0|2/2 = 0 4

0 1 4 F 0
t1 +∇2F 0 +4∇4F 0 + |∇F 0|2/2 = 0 4

αc1 < α < 0 positive positive F 0
t1+B∇2F 0+C∇4F 0+|∇F 0|2/2 = 0 4

αc1 0 Cc F 0
t1 + Cc∇4F 0 + |∇F 0|2/2 = 0 4

αc2 < α < αc1 negative positive F 0
t1+B∇2F 0+C∇4F 0+|∇F 0|2/2 = 0 4

αc2 Bc 0 F 0
t1 + Bc∇2F 0 + |∇F 0|2/2 = 0 2

−∞ < α < αc2 negative negative F 0
t1+B∇2F 0+C∇4F 0+|∇F 0|2/2 = 0 4
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4.7 Linear Stability Analysis of the Evolution Equation for the

Perturbed Flame Front in High Density Fluids

In the previous section, we have derived a nonlinear evolution equation for the

perturbed flame front. Now, we will analyze the flame front equation, (4.184) by

following the usual procedure of a linear stability analysis. For simplicity we will only

consider the planar flame in two-dimension, namely,

F 0
t1

+ BF 0
ηη + CF 0

ηηηη +
1

2
(F 0

η )2 = 0 (4.189)

where

B =
1− α
2− α

(
2− ln(1− α)

)
, (4.190)

and

C = −1− 5lc
2

+ α(2− α)−1 + (1− α)(2− α)−1

∫ 0

−∞
ln(1− αeξ̄)dξ̄. (4.191)

There is an obvious basic state

F s = 0 (4.192)

which satisfies equation (4.189) and this corresponds to a disturbance-free planar

flame. We can now examine its linear stability by introducing a small perturbation

to the basic state, writing

F 0 = F s + εF̃ (4.193)

where ε is a small parameter. Now substitute the perturbed form (4.193) into equation

(4.189). At O(ε),

F̃ + BF̃ηη + CF̃ηηηη = 0. (4.194)

We now express F̃ in the form

F̃ = exp(ωt+ ikζ). (4.195)
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Substituting this into the linearized equation (4.194) to yield the following expression

for the growth rate

ω = Bk2 − Ck4. (4.196)

The neutral stability curves that separate stable from unstable solutions is

sketched in Figure 4.9, 4.10 and 4.11. We see that there is a range of α, namely,

αc2 < α < αc1 , such that the flame is stable to all disturbances as shown in Figure

4.9. Furthermore, we observe that there are two critical values, αc1 and αc2 , for which

the basic state first becomes linearly unstable.

Figure 4.10 shows the neutral stability curve in the range αc1 < α < 1 in more

detail. If α > αc1 , then there always exists a finite band of wave numbers that grow

exponentially. The length of this band of wave numbers increases as α increases and

reaches its maximum at α = 0. Then it decreases as α increases and terminates as

α → 1. Therefore, the flame front F is unstable for the perturbations characterized

by sufficiently large wavelengths.

On the other hand, if α < αc2 , then there is an infinite band of unstable

wavelengths as shown in Figure 4.11. We note that there is a turning point located

at k = 0.8936 and α = −37.5. Furthermore, the stable solutions region is to the left

of this stability boundary. As a result, for large negative value of α, the flame front

F is stable under small perturbations.
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4.8 Concluding Remarks

We have derived an asymptotic model of premixed flames propagating in high density

fluids, where the transport of fuel is primarily through thermal diffusion, while the

oxidant undergoes normal Fickian diffusion. Our model, (4.98) - (4.104), (4.107)

and (4.108) has an explicit dependence on Lewis numbers, LeO, equivalence ratio,

φ, and modified Soret diffusion coefficient, α. It is worth mentioning that the local

analysis of the reaction zone revealed that Soret effect gives rise to a completely new

balance within the flame structure, namely, a balance between convection, Fickian

diffusion, Soret diffusion and reaction has to be achieved. The model was used to

analyze the basic structure of steady planar flames in a uniform flow with high

density. The limited diffusion of fuel results in a discontinuous outer profile, and

a rapid consumption within the reaction zone. The Soret effect, in which the fuel is

transported toward the hot reaction zone, results in excess fuel mass concentrations

on the upstream side of the reaction sheet. In addition, we find that the adiabatic

flame speed increases as a function of the modified Soret diffusion coefficient.

We also examined the linear stability of the steady planar flame to arbitrary

disturbances. The derived dispersion relation for the growth rate of a disturbance

identifies a range of stable Lewis numbers and two distinct stability boundaries

(similar to the ordinary gas flame), one corresponding to a cellular branch and the

other to a pulsating regime. We have analyzed the effect of the Soret diffusion

coefficient on these boundaries. For positive and small negative values of α, it is

shown that a planar flame front is stable if the Lewis number corresponding to the

oxidant, LeO exceeds some critical value close to unity (but LeO < 1). For large

negative values of α, the cellular branch can be extended into the regime of LeO > 1,

suggesting that cellular instability may be observed in this regime. We note that light

fuels, e.g., hydrogen typically has value of α < 0, and the present theory suggests

that cellular instability may be observed even when LeO > 1.
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In addition, the model was used to derive a nonlinear partial differential equation

that describes the evolution of the flame front in the vicinity of the cellular stability

boundary. This new evolution equation has an explicit dependence on the modified

Soret diffusion coefficient, α and it can be reduced to the K-S equation in the limiting

case α = 0. We also carried out a linear stability analysis of the evolution equation.

We find that the flame front is unstable with respect to long-wave instability in a range

of Soret diffusion coefficient corresponds to no and weak Soret effect. Moreover, the

analysis reveals that the flame front is unconditionally stable for moderate Soret effect

and becomes unstable again under perturbations of sufficiently short wavelength.



CHAPTER 5

CONCLUSIONS

In the present work, we have used asymptotic and perturbations methods, supple-

mented by numerical methods to investigate the structure and dynamical properties

of flames at high pressure and/or high density fluids. As the work covers two distinct

topics, conclusions from each study are presented below.

5.1 Diffusion Flames

In Chapter 3, we have analyzed the asymptotic structure of a laminar diffusion

flame residing in a counterflow of a fluid fuel stream and a gaseous oxidant. The

oxidant undergoes Fickian diffusion, while the fuel diffuses primarily as a result of

temperature gradients, i.e., the Soret effect. We adopt a constant density approxi-

mation, and pursue a large activation energy limit. As a result of our novel transport

mechanism, appropriate for sufficiently high pressure and/or high density fluids, the

local structure equations are substantially different from those discovered by Liñán for

ideal gas streams. Temperature and concentration profiles are determined, and the

fundamental flame properties of flame temperature and location are found explicitly

as a function of Soret diffusion coefficient, ratio of temperature of the two streams,

and the Damköhler number.

Our model predicts that the flame resides on the fuel side of the stagnation

plane, although it moves closer to the oxidant stream as the value of the Soret

coefficient is decreased. Exact solution of the structure problem, for the case when

the temperature of the fuel supply stream equals the adiabatic flame temperature

(β = 1 + q/φ), shows a monotonic decreases in flame position with Damköhler

number. However, for lower values of fuel stream temperature, computation of the

local structure problem determines explicit extinction conditions, characterized by

99
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turning points in response curves of flame location and temperature as a function of

Damköhler number.

5.2 Premixed Flames

In Chapter 4, we have derived an asymptotic model of premixed flames propagating

in high density fluids, where the transport of fuel is primarily through thermal

diffusion, while the oxidant undergoes normal Fickian diffusion. Our model, (4.98)

- (4.104), (4.107) and (4.108) has an explicit dependence on Lewis numbers, LeO,

equivalence ratio, φ, and modified Soret diffusion coefficient, α. It is worth mentioning

that the local analysis of the reaction zone revealed that Soret effect gives rise to

a completely new balance within the flame structure, namely, a balance between

convection, Fickian diffusion, Soret diffusion and reaction has to be achieved. The

model was used to analyze the basic structure of steady planar flames in a uniform flow

with high density. The limited diffusion of fuel results in a discontinuous outer profile,

and a rapid consumption within the reaction zone. The Soret effect, in which the fuel

is transported toward the hot reaction zone, results in excess fuel mass concentrations

on the upstream side of the reaction sheet. In addition, we find that the adiabatic

flame speed increases as a function of the modified Soret diffusion coefficient.

We also examined the linear stability of the steady planar flame to arbitrary

disturbances. The derived dispersion relation for the growth rate of a disturbance

identifies a range of stable Lewis numbers and two distinct stability boundaries

(similar to the ordinary gas flame), one corresponding to a cellular branch and the

other to a pulsating regime. We have analyzed the effect of the Soret diffusion

coefficient on these boundaries. For positive and small negative values of α, it is

shown that a planar flame front is stable if the Lewis number corresponding to the

oxidant, LeO exceeds some critical value close to unity (but LeO < 1). For large

negative values of α, the cellular branch can be extended into the regime of LeO > 1,
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suggesting that cellular instability may be observed in this regime. We note that light

fuels, e.g., hydrogen typically has value of α < 0, and the present theory suggests

that cellular instability may be observed even when LeO > 1.

In addition, the model was used to derive a nonlinear partial differential equation

that describes the evolution of the flame front in the vicinity of the cellular stability

boundary. This new evolution equation has an explicit dependence on the modified

Soret diffusion coefficient, α and it can be reduced to the K-S equation in the limiting

case α = 0. We also carried out a linear stability analysis of the evolution equation.

We find that the flame front is unstable with respect to long-wave instability in a range

of Soret diffusion coefficient corresponds to no and weak Soret effect. Moreover, the

analysis reveals that the flame front is unconditionally stable for moderate Soret effect

and becomes unstable again under perturbations of sufficiently short wavelength.



APPENDIX A

INTERIOR LAYER ANALYSIS OF THE CHEMISTRY-FREE

EQUATION FOR FUEL CONCENTRATION

In this section, we will construct the asymptotic solution to the chemistry-free equation

for fuel concentration in the region z < zf . Let ()′ denotes the derivative of the

function, d
dz

(). Thus equation (3.16) can be written as

αDY
′′ + αs

(
Y
T ′

T

)′
+ zY ′ = 0 (A.1)

with the boundary conditions

Y =

 0, z → −∞

Y −, z → z−f

, (A.2)

where T = 1 + A[2− erfc(z/
√

2)], A = (Tf − 1)/(2− E) and E = erfc(zf/
√

2).

A.1 Outer Solution

The solution in this region can be expanded in powers of αD,

Y = Yout + αDY
1
out + · · · . (A.3)

Substituting the above expansion into equation (A.1), we obtain the leading order

equation (
z + αs

T ′

T

)
Y ′out + αs

(
T ′

T

)′
Yout = 0, (A.4)

and the outer solution is

Yout =


0, ∞ < z < z0

Y − exp

{∫ z
zf

[
αs

T ′
T

(ξ+T ′
T

)

ξ+αs
T ′
T

]
dξ

}
, z0 < z < z−f

, (A.5)
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where z0 = −αsT (z0)′/T (z0) is the singular point of equation (A.4).

The outer solution is not valid in the neighborhood of z0, the rapid transition

in this region is characteristic of an interior layer. Moreover, the outer solution is not

even continuous when z is near z0 for αs < 0. To determine the behavior near the

interior layer, it is require a new expansion. To obtain this interior layer expansion,

which together with the outer expansion will yield a composite expansion that is valid

everywhere.

A.2 Interior Layer

To investigate the interior layer, we introduce the stretched variable

z̄ =
z − z0

α
1/2
D

, (A.6)

expand T ′/T in terms of the stretched variable z̄ about z0

T ′

T
∼ T ′(z0)

T (z0)

{
1− α1/2

D z̄

(
z0 +

T ′(z0)

T (z0)

)}
, (A.7)

and expand the interior layer solution as

Y = Yin + α
1/2
D Y 1

in + · · · . (A.8)

Now, substituting equations (A.6) – (A.8) into equation (A.1) yields the leading order

problem (
z0 + αs

T ′(z0)

T (z0)

)
Y ′in = 0, (A.9)

We note that equation (A.9) is automatically satisfied by the fact that z0 = −αsT ′(z0)/T (z0).

Thus we have to go to the next order, O(α
1/2
D ) and the equation is

Y ′′in + az̄Y ′in + bYin = 0. (A.10)
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where

a = 1 + z2
0(1− α−1

s )

and

b = z2
0(1− α−1

s ).

The general solution of equation (A.10) can be written in terms of a linear combination

of the confluent hypergeometric function 1F1:

Yin(z̄) = c11F1

(
b

2a
,
1

2
,−a

2
z̄2

)
+ c2z̄1F1

(
a+ b

2a
,
3

2
,−a

2
z̄2

)
(A.11)

where c1 and c2 are arbitrary constants.

A.3 Matching

We can determine the unknown constant c1 and c2 in the first approximation of the

interior layer solution (A.11) by requiring that the inner solution matches with the

outer solution (A.5).

lim
z̄→−∞

Yin(z̄) = lim
z→z−0

Yout(z), (A.12)

lim
z̄→+∞

Yin(z̄) = lim
z→z+0

Yout(z). (A.13)

The matching conditions are derived by expanding the outer solution Yout (A.5) in

terms of the inner variable z̄, to yield

lim
z→z−0

Yout(z) ∼ 0, (A.14)

lim
z→z+0

Yout(z) ∼ Y −

(
α

1/2
D z̄

zf − z0

)p

, (A.15)
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where

p =
z2

0(1− αs)
αs − z2

0(1− αs)
.

Since a > 0 in equation (A.10), the asymptotic expansion of the inner solution Yin

(A.11) for large |z̄| is

Yin ∼
√
π
(a

2

)−b/2a{
c1

1

Γ
(
a−b
2a

) |z̄|−b/a + c2
1

Γ
(

2a−b
2a

) (a
2

)−1/2

z̄|z̄|−(a+b)/a

}
(A.16)

where Γ is the gamma function. Applying the matching conditions (A.12) and (A.13)

yield
√
π
(a

2

)−b/2a{
c1

1

Γ
(
a−b
2a

) − c2
1

Γ
(

2a−b
2a

) (a
2

)−1/2
}

= 0

and
√
π
(a

2

)−b/2a{
c1

1

Γ
(
a−b
2a

) + c2
1

Γ
(

2a−b
2a

) (a
2

)−1/2
}

= Y −

(
α

1/2
D

zf − z0

)p

from which it follows that

c1 =
Y −

2
√
π

(a
2

)b/2a
Γ

(
a− b

2a

)(
α

1/2
D

zf − z0

)p

(A.17)

and

c2 =
Y −

2
√
π

(a
2

)(a+b)/2a

Γ

(
2a− b

2a

)(
α

1/2
D

zf − z0

)p

. (A.18)

A.4 Composite Expansion

We have constructed the inner and outer asymptotic solutions in two different regions.

The last step is to combine the two solutions into a single expression. The basic idea

is to add expansions and then subtract the overlap part, i.e.

Ycomp = Yout + Yin − Yoverlap.

Thus, the leading order composite expansion for z0 ≤ z ≤ z−f is given by
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Ycomp ∼ Y − exp

{∫ z0

zf

[
αs

T ′

T
(ξ + T ′

T
)

ξ + αs
T ′

T

]
dξ

}

+
Y −

2
√
π

(a
2

)b/2a( α
1/2
D

zf − z0

)p

{
Γ

(
a− b

2a

)
1F1

(
b

2a
,
1

2
,−a

2

(z − z0)2

αD

)
+

(a
2

)1/2

Γ

(
2a− b

2a

)
(z − z0)

α
1/2
D

1F1

(
a+ b

2a
,
3

2
,−a

2

(z − z0)2

αD

)}

− Y −
(
z − z0

zf − z0

)p
, (A.19)

and for −∞ < z ≤ z0 is

Ycomp ∼
Y −

2
√
π

(a
2

)b/2a( α
1/2
D

zf − z0

)p

{
Γ

(
a− b

2a

)
1F1

(
b

2a
,
1

2
,−a

2

(z − z0)2

αD

)
+

(a
2

)1/2

Γ

(
2a− b

2a

)
(z − z0)

α
1/2
D

1F1

(
a+ b

2a
,
3

2
,−a

2

(z − z0)2

αD

)}
. (A.20)

Figures A.1 and A.2 shows the outer, inner and uniformly valid asymptotic

approximations to the solution for αD = 0.001, clearly showing the boundary layer

structure and how the uniformly valid solution captures both solutions regimes. The

value of αs is -0.4 in Figure A.1 and 0.4 in Figure A.2, with φ = 1, q = 5, β = 1+q/φ,

and Y − = 0.2.

The composite expansion gives a very good approximation to the numerical

solution in the region z < zf as shown in Figures A.3 and A.4. For comparison

purposes, the values used in Figures A.3 and A.4 are the same as the one used in

Figures A.1 and A.2.
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Figure A.1 Asymptotic solution of (A.1) showing interior layer near
z0 for αD = 0.001 with φ = 1, q = 5, β = 1 + q/φ, Y − = 0.2 and
αs = −0.4. The dotted curve corresponds to the outer solution (A.5).
The dashed curve corresponds to the inner solution (A.11). The solid
curve corresponds to the composite solution (A.19) and (A.20).
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Figure A.2 Asymptotic solution of (A.1) showing interior layer near
z0 for αD = 0.001 with φ = 1, q = 5, β = 1 + q/φ, Y − = 0.2 and
αs = 0.4. The dotted curve corresponds to the outer solution (A.5).
The dashed curve corresponds to the inner solution (A.11). The solid
curve corresponds to the composite solution (A.19) and (A.20).
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Figure A.3 The dashed curve corresponds to the composite solution
(A.19) and (A.20). The solid curve corresponds to the numerical
solution of (A.1). The differences between the composite and numerical
solution are so small that the two are almost indistinguishable. The
value of αD = 0.001 with φ = 1, q = 5, β = 1 + q/φ, Y − = 0.2 and
αs = −0.4.
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Figure A.4 The dashed curve corresponds to the composite solution
(A.19) and (A.20). The solid curve corresponds to the numerical
solution of (A.1). The differences between the composite and numerical
solution are so small that the two are almost indistinguishable. The
value of αD = 0.001 with φ = 1, q = 5, β = 1 + q/φ, Y − = 0.2 and
αs = 0.4.
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