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ABSTRACT 

SYNTHESIS, MOLECULAR AND SOLID STATE STRUCTURES, AND 

MAGNETIC PROPERTIES OF SANDWICH LANTHANIDE 

PHTHALOCYANINES LACKING C-H BONDS 

 

by 

Wycliffe A. Graham 

 

A new class of sandwich phthalocyanine (Pc) compounds without C-H bonds was 

synthesized and characterized. They are the bis[octakis(perfluoro i-C3F7) 

octakis(perfluoro)phthalocyaninato(2−)]M(III) complexes, formulated as (F64Pc)2MH, M 

= Tb, Dy, Lu, Y.   Single molecular magnetic (SMM) behavior  in the (F64Pc)2TbH and 

(F64Pc)2DyH  complexes was confirmed through slowed relaxation response  of their 

magnetization in an applied time varying magnetic field  during alternating current (AC) 

magnetic testing in the range 2 - 50 K.   The energy barrier to magnetic reversal, ∆ = 215 

cm
−1

  and the pre-exponential factor, τ0
−1 

= 2.7 x 10
7
 s

−1
 were estimated for the undiluted 

(F64Pc)2TbH  with direct current bias magnetic field (Hdc) of 1000 Oe applied.  

Undiluted (F64Pc)2DyH gave estimated  values of  ∆ = 31 cm
−1

 and τ0
−1 

= 1.6 x 10
5
 s

−1
 at 

Hdc = 500 Oe.  These respective values are within the range observed for the 

unsubstituted Tb and Dy analogues.  Magnetic hysteresis testing at 0.04 K exhibited 

hysteresis in both of these complexes.  Magnetic circular dichroism (MCD) tests on 

(F64Pc)2Tb frozen in acetone at 1.8-1.9 K exhibited a “butterfly shaped” hysteresis which 

appeared to depend on the oxidation state of the complex  and which also provided 

evidence of quantum tunneling of magnetization.   The chemical tuning of the Pc 

macrocycle of these complexes through the replacement of the H atoms with the electron 

withdrawing fluorine atom and i-C3F7 group has created additional functionalities.  



Thermal analysis in the forms of thermogravimetric analysis and differential scanning 

calorimetry showed the complexes to be stable up to 450°C in air and N2.   Cyclic 

voltammetry revealed four reduced   and one oxidized states, the oxidized state occurring 

at > 1.2 V, showing the complexes’ resistance to oxidation. The (F64Pc)2MH compounds 

derive their uniqueness as [(F64Pc)2M]
− 

 sandwich phthalocyanine complexes with 

exceptional thermal and oxidative stability. 
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1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Rationale 

Research in molecular magnetism can be defined as the discipline which conceives, 

realizes, studies and uses new molecular materials bearing new but predictable magnetic 

and other physical properties.
[1]

  This new and exciting discipline is one in which 

chemists and other interdisciplinary scientists are designing molecular assemblies with 

many varied properties so that they may eventually be part of multifunctional and 

possibly, miniature devices.   One of these properties is magnetic bistability which 

describes a magnetic core that can be in either of two possible states of magnetization (≥ 

2 “stable” magnetic states are desired).  Other properties include transparency, optical 

changes (linear and/or nonlinear), semi-conductivity, magnetostrictive response, 

biocompatibility, solubility, redox activity, magneto-optic response, large polarizabilities 

and low density.
[2]

   From an engineering viewpoint, the high magnetic susceptibilities 

and magnetizations that can be achieved with these materials are balanced by the 

possibility of their fabrication and processiblity at low temperature and with low 

environmental contamination.  For organic or organometallic magnets, modulation and/or 

tuning of properties via chemical manipulation presents a promising developmental 

pathway. In fact, since the development of molecular magnetism, not only known 

quantum effects have been associated with some of these new materials, but other new 

attributes and effects have also been discovered.   
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 Molecular magnets are more varied in composition than traditional bulk magnets. 

They can be composed of charge transfer and metal complexes, radical salts, neutral 

radicals and polymers with unpaired spins.
[3]

   They can be classified into four main 

categories, namely inorganic magnets, organic-inorganic magnets, organic magnets and 

molecular clusters.  Single Molecular Magnets (SMMs) are molecular magnets in which 

each molecule behaves as a magnet.  They are potential candidates for the preparation of 

high capacity magnetic storage and quantum computing devices.  

 The thrust of the work presented here is to use the versatile and tunable 

phthalocyanine (Pc) ring with the paramagnetic lanthanide (Ln) center in designing 

multifunctional SMMs. This idea is not new. Several of the sandwich lanthanide 

phthalocyanines (Pc2Ln) have been reported to have SMM behavior; these include both 

the un-substituted Pc2Ln
[4]

   and substituted Pc′2Ln.
[5]

      Furthermore, magnetic behavior 

has been reported in the binuclear lanthanide phthalocyanines, Pc3Ln2 
[6]

  and tetra-butyl 

ammonium (TBA) salts of the Pc2Ln anions such as TBA[Pc2Ln].
[7]

      

 It has been reported
[8]

 that lanthanide(III)-Pc molecules showing SMM behavior 

have large axial magnetic anisotropies and the ligand field of the lanthanide ion controls 

the anisotropy.
[9]

    The sandwich lanthanide perfluorophthalocyanine complexes are 

being synthesized for two main reasons: 1)  To investigate the effect of “tuning” the Pc 

ring with electron-withdrawing F atoms on these complexes’ crystal structure, thereby 

modifying their solubility, robustness, optical, surface and redox properties;    2) to 

influence the crystal field around the Ln
3+

 ion thereby improving their SMM properties.  

It is anticipated that a change in the magnetic behavior of these complexes will improve 

the SMM properties along with their other attributes such as the solubility and robustness. 
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1.2 Specific Goals 

The primary goal of this project was to synthesize Pc complexes suitable for the 

development of multifunctional SMMs from fluorine substituted lanthanide 

phthalocyanines and/or compounds derived from them.   While compounds of the type 

Pc2Ln, Pc3Ln2,  [Pc2Ln]
−
M

+
 and [Pc2Ln]

+
M

−
 are known, their perfluorinated  analogues, 

(F64Pc)2Ln,  (F64Pc)3Ln2,  [(F64Pc)2 Ln]
−
M

+
 and [ (F64Pc)2 Ln]

+
M

−
 , (M

− 
= anion, M

+
 = 

cation), to the best of my knowledge, are not known.  Halogenation is critical in 

depressing frontier orbitals’ energies and thus stabilizes the F64Pc
•−

 radical anion, if 

present, in (F64Pc)2Ln complexes,
[10]

 while also tuning intermolecular, steric and 

magnetic interactions. Synthesis, characterization and identification of the magnetic 

properties, particularly the SMM behavior of these fluorinated compounds were the 

primary goals.  Secondary goals included spectroscopic characterization, redox and 

magnetic circular dichroism studies, and comparison of experimental observations with 

calculated results from Density Functional Theory (DFT).  The target molecules were the 

bis[octakis(i-C3F7) octakis(perfluoro)phthalocyaninatoM(III)] abbreviated as (F64Pc)2M  

(M= Tb, Dy, Y, Lu). Their typical structure is shown in Figure 1.1. 

 

1.3  Phthalocyanines 

The invention of phthalocyanines was accidental.  In 1907, two scientists Braun and 

Tcherniac first produced this blue solid when they heated o-cyanobenzamide.
[11]

     At the 

Imperial Chemical Industries, Scotland, in 1928, another accidental synthesis occurred 

which energized industrial applications of phthalocyanines. The phthalocyanines were 

then used as dyes, paints, colors for metal surfaces, fabrics and plastics.
[12]

     Professor 
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Reginald P. Linstead was the first elucidate its structure the decade of the 1930s.   He 

went on to name this class of compounds “phthalocyanine” by the combination of two 

prefixes: “phthal” to emphasize the association with various phthalic acid derivatives and 

Greek “cyanine” for blue.
[13-19]

    

 
 

Figure 1.1 Structure of (F64Pc)2Tb. 

  

 Phthalocyanine is a highly symmetrical, planar conjugated system consisting of 

an 18 π electron aromatic macrocycle made up of four iminoisoindoline units. The 

general structure is shown in Figure. 1.2. It bears some resemblance to the naturally 

occurring porphyrin ring system, but phthalocyanines are not found in nature. It is 

unlikely that phthalocyanines would ever be produced in nature because the absence of 

their principal precursors. Phthalocyanines have been prepared in the laboratory from 
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phthalonitriles,
[20-23]

    phthalimides, phthalic anhydrides,
[24]

 diiminoisoindolines,
[25]

 and 

phthalic acids
[26]

  as the starting materials.  The center may consist of two hydrogen 

atoms or a metal.  A metal from every group of the periodic table has been used and up to 

40 different metals have been used in the center.  The four benzene rings allow for up to 

sixteen sites of substitution possible in phthalocyanines.   

 

N

N

N

N N

N

N
N

M

 

 Figure 1.2  The phthalocyanine ring with metal center, M. 

 

1.4  Lanthanides and Yttrium 

The general chemistry of the lanthanide elements has been extensively covered in many 

standard textbooks in organic chemistry.  The lanthanides comprise the group of elements 

from La to Lu in the periodic table.  They are characterized by the gradual filling of the 

4f sub-shell.  The electronic configurations of the neutral atoms show some irregularities, 

particularly for the stable 4f
7
 configurations found in Eu and Gd.  The trivalent cations of 
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the lanthanides however, show strict regularity, all having the 4f
n
5d

0
6s

0
 electronic 

configuration.
[27]

    

 The chemistry of yttrium is usually reported with that of the lanthanides because 

it lies above lanthanum in group 3 of the periodic table.  It has no 4f electrons, but forms 

a +3 ion with the Kr noble gas core and the size of both its atomic and ionic radii are 

comparable to Tb and Dy.  It is also generally found in nature along with the lanthanides 

and resembles the Tb(III) and Dy(III) compounds in its compounds.
[28]

   The absence of 

4f electrons and the closed shell of Y(III) ion means the metallic core of its compounds 

are diamagnetic in nature and they therefore provide a good comparative study of 

magnetic phenomena in the lanthanides. 

 The characteristic oxidation state of the lanthanides is the +3, but the +2 oxidation 

state is also important with   the Eu
+2

 and Yb
+2

 being the most stable of the di-positive 

ions.  Although higher oxidation states occur, they are not usual.  Cerium forms a stable 

+4 species in aqueous solution.  Dy, Tb, Pr, and Nd also form the +4 species.
[29]

    

 There is a reduction in atomic size with an increase in atomic number in the 

lanthanides, the so called lanthanide contraction. 
[30]

  This trend is even more apparent in 

the radii of the trivalent ions. The reduction in size is due to the poor shielding of the 4f 

electrons as the nuclear charge increases.  

 The electrons responsible for the properties of the lanthanide ions are the 4f 

electrons and the 4f orbitals are effectively shielded from the influence of external forces 

by the overlying 5s
2
 and 5p

6
 shells.

[28]
   The result is that the electronic states arising from 

the various 4f 
n
 configurations are not significantly affected by  surrounding ions and do 

not vary much for a given ion in all its compounds. 
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 The Russell-Saunders
[28, 31]

 coupling gives a good approximation for the 

electronic states of the 4f 
n
 configurations.  Spin-orbit coupling is present in lanthanide 

ions with non-zero orbital angular momentum.  The spin-orbit couplings are also very 

large.  This result in most of the lanthanide ions having ground states with well-defined 

values of total angular momentum, J, and the next lowest J state at energies many times 

the product of Boltzmann constant and temperature (kT).   The magnetic susceptibilities 

and magnetic moments are for most part calculated from the well defined ground state 

and are in good agreement with experiment.  For the lanthanides, the external fields do 

not either appreciably split the free ion terms or quench orbital angular momentum.
[28]

      

In forming complexes the lanthanides have a preference for coordination numbers greater 

than 6.  The most common co-ordination numbers of the Ln
3+

 ions are 8 and 9.
[28]

   
 
 

 

1.5 Molecular Magnets 

Traditionally, magnetic materials are bulk materials based on atoms with d or f orbital 

based spin sites and has extended network bonding in three dimensions. Molecular 

magnets are associated with new phenomena that are not associated with traditional 

magnets.  Some of these include macroscopic quantum tunneling, quantum coherence, 

quantum hysteresis, and magnetic bistabilities within the clusters, large 

magnetorestriction, magnetoresistance, and magnetocaloric effects to name a few.
[32-39]

 

Recently, molecule based magnets and particularly single molecular chased magnets have 

gained prominence due to their many attributes.
[2]

 These include large spin, small size, 

intrinsic memory effect
[40]

, semiconductivity, flexibility, low density, self assembly
[4]

 and 

the Kondo effect.
[41]
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 Four of the main classes of molecular magnets are inorganic magnets, organic-

inorganic magnets, organic magnets and molecular clusters.   Inorganic magnets include 

Fe
III

4[Fe(CN)6]3  15H2O, which is a mixed valence compound containing the iron ions in 

two different oxidation states.  In addition to its long range ferromagnetic ordering it is 

important due to its optical properties.
[42]

     

 The combination of transition metal complexes and organic radicals forming 

organometallic compounds has produced several organic-inorganic magnets.
[43-45]

    

These compounds are developed using a paramagnetic center being the transition metal 

or rare earth ion, and an organic radical.
[3, 43]

    Miller and his team successfully produced 

ferromagnets exceeding the magnetization of iron metal with Curie’s temperature (Tc) at 

room temperature using the tetracyanoethylene (TCNE) anion bound to various metal 

ions.
[45-47]

     They produced compounds such as [Fe(C5Me5)2][TCNE]  with Tc of about 

4.8 K and a V(TCNE)xY(solvent) which has a Tc of 400 K.
[43-45, 47]

                 
 
     

 The development of a purely organic molecular magnet provides exciting 

possibilities because apart from being magnetic, the molecule would also have properties 

specific to the organic compounds.  These organic based compounds will have the metal 

ion absent and will derive magnetism solely from the spins of the electrons from the s and 

p orbitals.
[39, 42]

   While these types are not in the scope of the present project, it may be 

possible to isolate metal-free isomers during the synthesis procedure. 

 Molecular clusters include those molecules than contain a finite number of 

magnetic centers which may display high spin values in their ground state.
[37, 38]

    The 

Mn12-Acetate complex formulated as [Mn12O12(CH3COO)16(H20)4] 2CH3COOH4H2O  

is an example of this class of molecules. This molecule contains eight Mn
III

, and four 
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Mn
IV

  ions which are antiferromagnetically coupled and six molecules of solvation (four 

H2O and two CH3COOH).  The crystal’s unit cell has a ferromagnetic core consisting of 

Mn12O12 clusters.  The clusters in different unit cells are separated from each other by 

nonmagnetic acetate ligands, coordinated water, and other non-interacting molecules of 

solvation.
[35, 37, 38, 43]

        
 
    

 Molecular magnets have several potential uses, including the use in high capacity 

magnetic storage media
[40, 48, 49]

 and quantum bits (qubits) applicable to quantum 

computers.
[50, 51]

 

 

1.6 Lanthanide Phthalocyanines 

1.6.1 General Types of Lanthanide Phthalocyanines 

Three general subgroups of the lanthanide phthalocyanines derivatives are known.  They 

are the lanthanide monophthalocyanines, the bisphthalocyanines and the dilanthanide tris-

phthalocyanines.
[52]

   For the monophthalocyanines, the Ln
3+

 is coordinated to one 

dianionic tetradentate phthalocyanine ligand and can have axial ligands which are mono-

anionic and can be either mono- or bi-dentate.  Other neutral ligand(s) can then complete 

coordination environment which is often 8. 

 The bisphthalocyanine, sometimes called the double-decker or sandwich 

complexes consists of two of Pc ligands.  For the Ln
3+

 ion, one of the Pc ligands is 

dianionic and the other can be radical anionic.  It has been argued that some of the 

lanthanides may form the Ln
4+

 and is instead coordinated to two dianionic  Pc ligands.
[53]

      

 The dilanthanide tris-phthalocyanines have two metal cations sandwiched 

between three Pc rings.  This would make the regular Pc ligands dianionic.  Several 
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variations in the double deckers and triple deckers are possible.
[52]

  For example, 

sandwich complexes have been synthesized with dissimilar Pc rings.  That is, each ring 

has different substituents attached to it, and such bisphthalocyanines have been called 

heteroleptic.  Dilanthanide tris-phthalocyanines, with the same two cations are referred to 

as homonuclear and with different cations, heteronuclear.  These triple deckers can also 

be heteronuclear and heteroleptic. 

 

1.6.2 Synthesis Methods 

 

There have been several reported methods for the preparation of bisphthalocyanines.  A 

popular method of synthesis is the solid state reaction of the substituted or un-substituted 

o-phthalonitriles and the lanthanide salt such as the as the acetate.  These reactions are a 

template reaction resulting in cyclic tetramerization of the phthalonitrile using the metal 

center.
[54]

   Reported difficulties with purifying the products of the solid state reaction, 

probably led to the development of solution reactions in which cyclotetramerization of 

the phthalonitrile occurred in alcohol with the presence of a strong organic base such as 

1,8-diazabicyclo-[5,4,0]-undec-7-ene (DBU)
[55, 56]

 or in dimethylethanolamine.
[56]

     The 

sandwich molecules can also be prepared from metal insertion into the metal free 

phthalocyanine analogues.
[57]

   There are several established methods for the synthesis of 

metal free phthalocyanines.  These also involve the cyclotetramerization of the respective 

phthalonitrile and include methods such as the cerium promoted synthesis,
[58]

    lithium 

metal in alcohol (followed by acid work-up),
[59]

   and the use of ionic liquids such as 

1,1,3,3-tetramethylguaninidinium trifluoracetate (TMGT).
[60]

    

 The synthesis of the heteroleptic double deckers poses a greater challenge.  It can 

be achieved by the reaction of one LnPc′ and the phthalonitrile necessary for the second 
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substituted lanthanide phthalocyanine ring  (Pc″), forming the (Pc′)Ln( Pc″) complex.  

The reaction of an alkali metal salt, with two different macrocycles and the lanthanide 

salt produces the heteroleptic as well as homoleptic species.
[61, 62]

    
 

 

1.6.3 Oxidized and Reduced Bisphthalocyanines 

 

The lanthanide phthalocyaninate anions, [(Pc2 Ln)]
−
 was first made by Konami et al.

[63]
   

This synthesis method used was cyclic tetramerization of phthalonitrile in the presence of 

the lanthanide salt and sodium carbonate.  Separation of the sodium salts Na[Pc2Ln] and 

the addition of NBu4Br yielded the TBA salts NBu4[Pc2Ln].  The sandwich compound 

has been reduced with hydrazine in the presence of tetrabutylammonium perchlorate and 

it yielded NBu4[Pc2Ln].
[64]

        

 The oxidized double decker [Pc2Ln]
+
 species has been reportedly synthesized as 

the compound SbCl6[Pc2Ln].   This complex is expected to contain two Pc radical anionic 

macrocycles.
[65]

     The synthesis and characterization of the SbCl6
−
 precursor has been 

reported.
[66, 67]

    

 The first triple decker containing only the Pc macrocycle reported was the Pc3Y2 

synthesized as a side product in the synthesis of Pc2Y by Kasuga in 1986.
[68]

   Since then 

triple decker lanthanide phthalocyanines have been reported synthesized and 

characterized.  These include both the homonuclear-homoleptic
[62, 69-71]

    and homo-

nuclear-heteroleptic
[61, 72]

   as well heteronuclear-heteroleptic species.
[6]

       The triple 

decker complexes are composed of three dianionic ligands and two trivalent lanthanide 

ions.
[6]

   Oxidation of these complexes via electron loss from the macrocycles have been 

achieved forming compounds such as the [Pc3Ln2]
+
M

−
.
 
 Several species have been 

synthesized and characterized.
[73-75]
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1.6.4 Deposited Films  

 

The bisphthalocyanines have been deposited on several different substrates using 

different deposition techniques in which electronic semiconductor devices and optical 

coatings were the major applications.    The deposition techniques included Langmuir 

Blodgett films,
[76-81]

    sublimed films,
[82, 83]

  spin coating,
[84]

 molecular beam expitaxy,
[85]

   

and an electrophoretic deposition technique.
[84]

      Langmuir Blodgett technique for film 

deposition of phthalocyanines appears to be most popular because according to Jones et 

al.,
[76]

  the technique promises better control over film thickness than the traditional 

methods of vacuum sublimation and spin coating.  Bai et al.,
[84]

 claims that 

electrophoretic deposition is a low cost and rapid method of film deposition compared to 

the others. 

 

1.6.5 Magnetism in Sandwich Lanthanide Complexes 

 

Some Pc2Ln have also been reported to have ferromagnetic and/or antiferromagnetic 

ground states due to strong magnetic interaction between the lanthanide f electrons and 

phthalocyanine radical electron.
[86]

  2D self-assembly of the substituted terbium 

bisphthalocyanine on Highly Oriented Pyrolytic Graphite (HOPG) has been reported.
[4]

     

A lanthanide polymeric coordination compound [Tm
III

(hfac)3(NITPhOPh)]∞ has been 

reportedly synthesized and belongs to a group of so called 1D single chain magnets 

family.
[87]

 Magnetism on the reduced and oxidized species of the lanthanide 

phthalocyanine complexes has been investigated.
[65, 88]

   
 

Some of the triple decker 

lanthanide phthalocyanines have been shown to exhibit antiferromagnetic and 

ferromagnetic interactions between the f electrons of the lanthanides.
[6]

   Several of the 



13 

 

 

reduced species of the double decker lanthanide phthalocyanines and the neutral species 

of some dilanthanide trisphthalocyanines have exhibited SMM behavior.
[89-91]

   

 

1.6.6 Applications of Some Lanthanide Phthalocyanines 

The general phthalocyanines have many applications, but there are some specific 

applications for the lanthanide double and triple decker phthalocyanines.  These are 

electrochromic displays,
[78-80, 92, 93]

 conducting materials,
[94]

   sensors,
[95]

 field effect 

transistors,
[96, 97]

 optical nonlinear materials,
[98]

  Liquid crystalline molecular semi-

conductors,
[99, 100]

  and molecular electronic components for information storage and 

processing.
[101]

     

 

1.7 Summary 

 

The survey of the literature on lanthanide phthalocyanines indicates a wealth of diverse 

research areas with many new products being synthesized and characterized.  This adds 

to many actual and potential applications of lanthanide phthalocyanines.  While there are 

many substituted lanthanide monophthalocyanines, bisphthalocyanines and dilanthanide 

trisphthalocyanines synthesized, to the best of our knowledge, there are no published 

examples of the lanthanide phthalocyanines containing the nearly complete surrounding 

of the center by fluorine atoms attached to the Pc macrocycle.   The possibility of 

improved Pc magnets and their research and commercial applications shows it to be a 

prime area of research.   
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CHAPTER 2 

EXPERIMENTAL 

 

2.1 Overall Synthesis Method and Purification 

The synthesis of the desired fluorine substituted lanthanide phthalocyanines was done in 

several steps.  These were; 

 

1. Synthesis of phthalonitrile precursor. 

 

2. Microwave assisted synthesis of lanthanide and yttrium phthalocyanine mixtures. 

 

3. Separation and individual purification of targeted lanthanide phthalocyanine 

molecules. 

 

4. Preparation of crystals for X-ray and other testing. 

 In order to assist in the characterization and analysis of the (F64Pc)2MH 

complexes, the known, un-substituted, bis(phthalocynaninato)yttrium(III) complex, Pc2Y 

was synthesized. It was synthesized using a modification of a method by Sleven et al.
[56]

   

In the method, phthalonitrile was reacted with 1/8 part of yttrium(III) acetate hydrate and 

½ part of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 1-hexanol.  In this synthesis, the 

one electron reduced species, [Pc2Y]
−
 and the monophthalocyanine YPcLn  (where L = 

neutral monodentate or bidentate ligands and n = 2 or 3) were produced in the reaction. 

 

2.2 Reagents  

All the solvents and chemicals were ACS grade with the exception of the chloroform 

used for liquid chromatography, which was technical grade.  The following chemicals 

were obtained from Fisher Scientific; ethyl acetate, C4H8O2, (99.9%); Hexanes, C6H14, 

(99.8%), containing 4.2%, methyl pentanes; chloroform, CHCl3, (containing 0.75% 
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ethanol as preservative), technical grade; acetone, C3H6O, (99.6%),; toluene, C6H5CH3; 

methyl ethyl ketone, C4H8O, (99.8%); n-amyl alcohol, CH3(CH2)3CH2OH, (99.6%);  

reagent alcohol, histological grade of a mixture of ethanol, methanol and isopropyl 

alcohols; methanol, CH3OH (99.85%), anhydrous silica gel, grade 60, 70-230 mesh.      

 Fluorotrichloromethane, CFCl3, (99%). ACS, NMR standard; terbium (III) acetate 

hydrate, Tb(C2H3O2)3•xH2O, 99.9%; dysprosium (III) acetate hydrate, 

Dy(C2H3O2)3•xH2O, (99.9%); Cesium fluoride, CsF, (99%) were obtained from Sigma-

Aldrich Inc. 1-hexanol, CH3(CH2)4CH2OH, (99%) was obtained from Alfa Aesar.  

Acetonitrile, C2H3N, (99.5%), ACS grade was obtained from Acros Organics.  

Tetrafluorophthalonitrile, C8F4N2, (98.0%), ACS grade was obtained from TCI America.  

Hexafluoropropene, C3F6, (98.5%), ACS grade was obtained from Synquest Labs Inc.    

 

2.3 Synthesis of Phthalonitrile Precursor Perfluoro-(4,5 di-isopropyl phthalonitrile) 

Perfluoro-(4,5 di-isopropyl phthalonitrile), (PFPN) was synthesized using a method by 

Gorun et al.
[102]

    It is the reaction of 1,2-dicyano-3,4,5,6-tetrafluorobenzene  (otherwise 

called tetrafluorophthalonitrile, (TFP)) and 1,1,2,3,3,3-hexafluoro-1-propene (also known 

as hexafluoropropene) in  acetonitrile n the presence of excess CsF.  The structural 

equation for the reaction is given in Figure 2.1. 

 

Figure 2.1 Synthesis of  perfluoro-(4,5 di-isopropyl phthalonitrile). 
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 TFP (1.000 g, 0.50 mmol) and anhydrous CsF (0.7 g, 4.6 mmol) were added to a 

Fisher-Porter bottle under anhydrous conditions.  The Fisher-Porter bottle and its contents 

were evacuated and dry nitrogen added.  Seventy mL of acetonitrile previously dried by 

refluxing over dry CaCl2, was added to the Fisher-Porter bottle under a nitrogen 

atmosphere and the bottle and its contents cooled to −78°C.  At this temperature, an 

excess of hexafluoropropene (20 mL, 0.24 mol) was added.  The cooling bath was then 

removed allowing the reaction to warm to room temperature. 

 The reaction was stirred for an additional 45 minutes at room temperature before 

venting and quenching in 150 mL of saturated brine.   The mixture was extracted with 

ethyl acetate and the desired PFPN isomer was separated using flash chromatography.  

Liquid chromatography was carried out on a 25.4 mm diameter column using 63-300 

micron silica gel with a mobile phase of toluene/hexanes (1:5) to give a 30% yield. 

 

2.4  Synthesis of Bis[octakis(perfluoro i-C3F7) octakis(perfluoro) 

phthalocyaninato]Metal(III) Complex, (F64Pc)2MH.  (M = Tb, Dy, Lu,Y) 

 

Perfluoro-(4,5 di-isopropyl phthalonitrile) crystals (300 mg, 0.60 mmol),   

M(CH3COO)3∙xH2O, (60 mg, 0.15±0.03 mmol) and 5 drops of 1-hexanol were added to a 

glass reaction tube.   A teflon coated stirrer was then placed in the tube which was closed 

before placing in a CEM Discover microwave reactor.  The reactants were ramped at a 

rate of 18°C/min to a temperature of 180°C and then held at this temperature for 15 

minutes.   During this time, the pressure varied between 20 and 50 psi.  At the end of this 

period, the reaction products were cooled to room temperature before venting and 

dissolving in ethyl acetate.  Excess toluene was then added to the mixture to precipitate 

most of a blue solid which contains the target product.  Both precipitate and filtrate were 
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then dried and each gel filtered with a filter funnel utilizing 60-200 µm silica gel and a 

60% ethyl acetate/hexanes mixture which removes the initial brown impurities and any 

un-reacted phthalonitrile.  The mixture was then changed to 20% then 35% 

acetone/chloroform to remove green and blue fractions respectively.  The blue fraction 

was then further purified by flash chromatography on 60-200 µm silica gel column using 

the same train of solvent mixtures.  Final product purification was achieved by liquid 

chromatography on 60-300 µm silica using 20% acetone/chloroform mixture followed by 

precipitation from an acetone solution with toluene.  The precipitate was dried yield a 

blue powder. 

 The product (F64Pc)2MH  was then crystallized from the 35% acetone/chloroform 

mixture, methyl ethyl ketone or methyl ethyl ketone/toluene by slow evaporation at room 

temperature to produce purple/bronze cuboid crystals.  Currently, the yields using this 

method are as follows; 

 Bis[octakis(i-C3F7) octakis(perfluoro)phthalocyaninato]lutetium(III), [1] or 

(F64Pc)2LuH,  yield, 16 mg (5%):  

 

 Bis[octakis(i-C3F7) octakis(perfluoro)phthalocyaninato]yttrium(III), [2] or 

(F64Pc)2YH, yield, 35 mg (12%):  

 

 Bis[octakis(i-C3F7) octakis(perfluoro)-phthalocyaninato] terbium(III), [3] or  

(F64Pc)2TbH, yield, 36 mg (12%): 

 

 Bis[octakis(i-C3F7) octakis(perfluoro)phthalocyaninato] dysprosium(III), [4]  or  

(F64Pc)2DyH,  yield, 31 mg (10 %). 
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Figure 2.2 Synthesis of the bis[octakis(perfluoro i-C3F7) octakis(perfluoro) 

phthalocyaninato]Metal(III) molecule, (F64Pc)2MH.  (M = Tb, Dy, Lu,Y). 

 

 

2.5 Synthesis of Bis[phthalocynaninato]Yttrium(III) Complex, Pc2Y 

Phthalonitrile (500 mg, 3.9 mmol) was added to yttrium(III) acetate hydrate (130 mg, 

0.49 mmol) in 50 mL round bottom flask.   The solvent, 1- hexanol (15 mL) was added to 

the flask and stirred before DBU ( 300 mg,  2.0 mmol) was added.  The entire assembly 

was then refluxed at 165°C for 24 hours.   The reaction products were then removed from 

the flask with a minimum of chloroform and precipitated three times by adding an excess 

of hexanes.  Excess hexanes were removed from the filtrate.  The crude product was then 

fractionated by flash chromatography on neutral alumina using a 95% chloroform and 5% 

methanol (v/v) mixture as the mobile phase.  A green fraction, which was the desired 

product, was the first to elute from the column followed by a blue green fraction.  

Repeated chromatography of the green fraction was done to remove traces of the 
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impurities.  The yield of bis(phthalo-cynaninato)yttrium(III), Pc2Y, was 61 mg  (11%).  

The identity of this neutral Pc2Y complex was confirmed by UV-Vis, NIR
[103]

 and mass 

spectroscopy (Appendix A).   

 

Figure 2.3   Synthesis of bis(phthalocynaninato)yttrium(III), Pc2Y. 

 

2.6 Summary  

Four new perfluoro sandwich and one known sandwich phthalocyanine compounds were 

made from their respective precursor phthalonitriles.    The results are summarized on 

Table 2.1.  

 Accompanying the synthesis of the desired (F64Pc)2MH complexes were some by-

products whose empirical formula were not ascertained.   Attempts were made to purify 

and characterize three of these byproducts.  They were a blue green compound [2-1], a 

green substance [2-2], and a dark green compound [2-3].   The green substance, [2-2] 
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sticks to the silica gel and frequently a 1:1 mixture of acetone/chloroform or 

acetone/ethanol was required for its removal.   

 

Table 2.1 Summary of Bis(phthalocynaninato)M(III) Complexes Synthesized 

 

Empirical 

Formula  

Short 

Formula  

Formula  

Weight  

Purity  Yield 

(%) 

Symbol used in 

Thesis 

C112F128N16LuH (F64Pc)2LuH 4177.08  >95%* 5 [1] 

C112F128N16YH (F64Pc)2YH 4091.02  >95%* 12 [2] 

C112F128N16TbH (F64Pc)2TbH 4161.04  >95%* 12 [3] 

C112F128N16DyH (F64Pc)2DyH 4164.61  >95%* 10 [4] 

C64H32N16Y Pc2Y 1113.95  >95%† 11 Pc2Y 

* Purity estimated from the absence of peaks from other substances in the 
19

F NMR 

spectrum (in acetone-D6) of a solution obtained from crystallized material.  See Appendix 

C.  

† Purity estimated from UV-Vis spectra.  This is not a new complex. 

 

 The purification of the (F64Pc)2MH was complicated by [2-3] which was eluted at 

the same rate from the liquid chromatography column.  This [2-3] compound was 

removed by repeated precipitation in toluene from a solution of (F64Pc)2MH in acetone. 

Repeated flash chromatography of the blue compound was carried out using only the 

20% and 35% acetone/chloroform mixtures to remove traces of the other products and 

impurities.  The blue (F64Pc)2MH product was observed as two fractions which were 

separated by the 20% acetone/chloroform mixture on the silica gel liquid chromatography 

column.  The fraction which crystallized easily was the second purple/bluish product and 

it was collected and tested for the presence of green impurities in the filtrate after 

precipitating from an acetone solution with excess toluene.    

 The synthesis of the (F64Pc)2MH  complexes was hampered by the inability to use 

DBU as a catalyst to aid in cyclotetramerization.  DBU reacted with the precursor 

perfluoro-(4,5 di-isopropyl phthalonitrile) and appeared to destroy it.   Another base 
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dimethyl ethanol amine (DMEA) was also tried and it too destroyed the precursor during 

the test.  As a result, the use other organic bases such as 1,5-diazabicyclo[4.3.0]non-5-ene  

(DBN), bis(trimethylsilyl)amine (also known as hexamethyldisilazane, or HMDS) and 

other amines were not attempted.    

 Yields were also affected by the many different compounds formed during the 

synthesis reaction.  It is known that this type of reaction results in the formation of 

monophthalocyanines, metal free phthalocyanine, in addition to reduced and possible 

oxidized forms of the sandwich complexes.
[53, 104]

 The microwave reaction leaves a 

fraction of the phthalonitrile unreacted and causes some of its fragmentation.  In 

particular in the reaction, [2-2] appears to be very surface active and sticks to the 

glassware and probably the products as well because it is present in each purification 

step.  These factors made separating the desired products via fractionation in flash 

chromatography particularly inefficient.    The pathway using metalation of the metal-

free phthalocyanines was not very successful as it did not give improved yields.   

  The microwave assisted synthesis described herein gave the best results after 

attempting metal insertion using the metal free monoisomer, regular refluxing in 1-

hexanol, solid state testing in a closed glass ampoule and solid state testing in an open 

container with thermal heating.   When time, energy and yields were considered, 

microwave assisted synthesis approximately doubled the efficiency relative to the other 

methods.  
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CHAPTER 3 

STRUCTURE AND SPECTROSCOPIC PROPERTIES  

OF (F64Pc)2MH COMPLEXES (M = Y, Lu) 

 

3.1 Overview 

The complexes (F64Pc)2LuH and (F64Pc)2YH  are closed shell and were designed to 

precede the study of the Tb and the Dy analogues that are the main candidates for 

applications as molecular magnets.    Their study should help in the elucidation of the 

properties of the F64Pc ligand in the sandwich environment.  In particular, it may allow a 

comparison of the interactions of the unpaired 4f electrons in the case of the Dy and Tb 

analogues with (F64Pc)2LuH which has all spin paired electrons in the ground state and 

with (F64Pc)2YH which has no 4f electrons. Furthermore, the closed shell complexes also 

provide a more manageable set of conditions in the application of Density Functional 

Theory (DFT) studies.  The closed shell property will also be exploited as a probable 

diamagnetic matrix for a future study of the dilute mixtures of the paramagnetic [3] and 

[4] complexes.  Dilute mixtures are sometimes required to differentiate between SMM 

and ferromagnetic/ferri-magnetic properties when hysteresis is obtained from AC 

magnetic studies. The dilution separates the molecules thus making it improbable that 

any slowed relaxation to the changing magnetic field is due to long range order. 

The lutetium(III) ion is the smallest of the lanthanides and its synthesis is 

important in comparing differences due to the central ion size.  As a bisphthalocyanine, 

Lu(III) complexes have found several applications in electronics.
[78, 80, 93, 96, 97, 99]

    Its 

synthesis, in this study, may also have secondary benefits in providing a complex with 

enhanced   electronic and electrochromic properties. This enhancement is considered   
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because of the incorporation of the strong electron withdrawing fluorine substituents on 

the Pc ring.   The electronic properties of these phthalocyanine complexes are not in the 

scope of this study. 

The effect of the fluorines on the phthalocyanine macrocycle will also be assessed 

by comparing some of the properties of the regular, un-substituted Pc2Y, with   those of 

the (F64Pc)2MH.  The yttrium complex was chosen again because of closeness of the size 

of its Y(III) ion to that of the Tb(III) and the Dy(III) ions in addition to its closed shell 

electronic structure and lack of 4f electrons. 

 

3.2 Mass Spectroscopy 

The data for the Mass Spectroscopy (MS) of the complexes was provided by staff at 

Bremen University in Germany.  It was carried out using their Applied Biosystems 

Voyager-DE STR MALDI-TOF mass spectrometer. The test method selected was the 

Matrix Assisted Laser Desorption/Ionization, Time of Flight (MALDI-TOF).  This 

method was chosen from the other methods such as Electrospray Ionization (ESI) and 

Electron Impact (EI) because it results in less fragmentation of the complexes and is 

better suited for large organic and organometallic complexes.  In general, MS machines 

have three modules: An ion source, a mass analyzer and a detector.  In MALDI, a laser 

beam is used to achieve ionization. The analyte is usually mixed with a solvent and 

matrix material before being placed on a plate.   The function of the matrix is two-fold: It 

protects the molecule from destruction or excessive fragmentation by the laser and 

facilitates vaporization and ionization of the materials.  Two common mass analyzers for 

MALDI are time of flight (TOF) and Fourier Transform Ion Cyclotron Resonance 
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(FTICR) analyzers.  They determine the mass to charge (m/z) ratio of the ions arriving at 

the detector.  FTICR has a higher resolution than TOF mass analyzers.  Calibration of the 

mass spectrometer is achieved by external or internal calibration using a material of 

known m/z ratio and fragmentation pattern.   In internal calibration, the calibrant is mixed 

with analyte, solvent and matrix on the MALDI plate, while for external calibration the 

calibrant, matrix and solvent are used to calibrate the machine separately.  The MALDI 

spectrometer can be tuned to be operated in the positive or negative ion mode. 

 The   complexes [1] and [2], synthesized as described in Section 2.4 were tested 

using the matrix α-cyano-4-hydroxycinnamic acid, (CCA) and formulated as 

HOC6H4CH=C(CN)CO2H dissolved in acetonitrile.   The machine was calibrated 

externally.  Mass spectral data is shown on Table 3.1.   Mass spectroscopy data for these 

two complexes were collected with the machine operating in the negative ion mode.  No 

useful data was observed for the positive ion mode.  This was unfortunate because there 

was the possibility that the complexes could be the neutral species and thus the 

observance of the [M+2H]
+
 species would definitely  confirm that a [M-H]

−
 ion was

 

observed rather than a M
−
 ion for the m/z results.  The fluorinated ring substituents 

caused the lack of the positive ion mode. Data for the positive mode were obtained for 

the Tb and Dy complexes and are shown in Chapter 4.  

 

  Table 3.1 Mass Spectroscopy Data for (F64Pc)2LuH and (F64Pc)2YH 

Complex 

(empirical 

formula) 

[M
−
]    

calculated  

(m/z) 

[M-H]
−
 

calculated  

(m/z) 

 Observed 

(m/z) 

Mass
a
 

Accuracy 

(ppm) 

Comment 

C112F128N16YH 4090.7615 4089.7537 4089.9135 39.07 [M−H]− 

C112F128N16LuH 4176.7964 4175.7886 4175.8476 14.13 [M−H]− 

  Spectral data is shown for the most abundant peak in the patterns.  aThe mass accuracy 

  is based on the [M−H]−
 calculated m/z values. 
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 A comparison of the calculated and observed isotopic patterns is shown in Figure 

3.1, while other MS plots and isotopic patterns are found in Appendix A.  The calculated 

patterns coincide for two peaks only: the most abundant and the second most abundant 

peaks for both complexes.  This may be due to the lower resolution of the TOF mass 

analyzer and the large masses of the complexes. 
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Figure 3.1 Comparison of the isotopic patterns of [C112F128N16Y]
–
 and [C112F128N16Lu]

–
. 

 

3.3 X-ray Diffraction 

Single crystal X-ray diffraction was carried out on complexes [1] and [2] in order to 

determine their structures.  The X-ray data was collected on a Bruker Apex II CCD X-ray 

diffractometer equipped with a variable-temperature nitrogen cold stream using graphite-

monochromatic  CuK\α  radiation (λ = 1.54178 Å). The diffractomer is located at the 

Chemistry Department of Rutgers’ University Newark campus.  Single crystals were 

obtained from the slow evaporation of mixture of acetone/chloroform (35%/65%) at 

room temperature.  Table 3.2 summarizes the crystal data for the [1] and [2].  Detailed 

data and results can be found in Appendix B. 
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 The X-ray crystallographic data did not fully support the empirical formula 

obtained in the MS. The MS data suggested that the complexes could be formulated as 

([F64Pc]
2–

)2[M
3+

]H
+
 and based on this, the proton is missing from the structure.  In fact, 

there was an on-going controversy as to its existence. At one time, it was thought that the 

neutral species had this proton and not the π radical Pc ligand.  Even in the use of a soft 

technique such as MALDI, a proton may be easily removed in the MALDI plasma during 

the acceleration of the ions by the electromagnetic field towards the field-free “time of 

flight” chamber of the mass analyzer.  On large macromolecules of this type it is also 

difficult locate this proton in X-ray crystallography. 

 The X-ray structure confirms the sandwich type geometry of the (F64Pc)2MH 

complexes and the staggered conformation of the [F64Pc]
2–

 ligands with respect to each 

other.   The central metal ion has coordination number of eight with each unit cell having 

four molecules. The [1] and [2] complexes are iso-structural.  The tetragonal structure of 

the (F64Pc)2MH is shown in Figure 3.2. 

 The planes formed by the four coordinating isoindoline N atoms (4N planes) are 

separated by 2.70 and 2.77 Å for [1] and [2] respectively.  These values are in the 2.68-

2.70 and 2.72-2.79 Å range observed for other Lu and Y sandwich complexes.
[105]

   The 

metal coordination spheres are distorted square anti-prisms.  Metal--N distances, listed as 

pairs of trans bonds are also similar to those of non-fluorinated analogues, viz. 2.380(4), 

2.394(4) and 2.411(3), 2.421(3) with averages of 2.387 and 2.416 for [1] and [2] 

respectively.  The  twist angles, (Figure 3.2) of 32.0  0.5°, however, indicate a 10° shift 

toward the eclipsed configuration in comparison with the unsubstituted sandwiches, for 

which the twist angles  are  42° (45° for a perfectly staggered complex).  This shifts, 
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given the similarity of Metal--N as well as the 4N inter planar distances with those of the 

unsubstituted double-deckers, appear counterintuitive considering that, everything else 

being equal, steric bulkiness disfavors eclipsed configurations.  

 

                 Table 3.2 X-ray Crystallography Data for (F64Pc)2LuH and (F64Pc)2YH 

Empirical Formula C112 F128 N16 Y C112 F128 N16Lu 
Formula weight 4090.19 4176.25 

Temperature, K 253(2) 100 

Wavelength, Å 1.54178 1.54178 

Crystal system Tetragonal Tetragonal 

Space group P4/ncc P4/ncc 

Unit cell dimensions   

     a,  Å 27.4142(4) 27.1399(4) 

     b,  Å    27.4142(4) 27.1399(4) 

     c,  Å                           24.3774(10) 23.7987(10) 

α= β= γ 90° 90° 

Volume,  Å3 18320.6(8) 17529.5(8) 

Z 4 4 

Density (calc.), g/cm3 1.483 1.582 

F(000) 7900 8028.0 

R1 0.0732 0.0820 

R2 0.2226 0.2319 

Crystal size, mm3 0.42 x 0.41 x 0.23 0.47 x 0.41 x 0.20  

θ range for data 

collection 

3.22 to 67.58° 4.61 to 57.39°. 

Refinement method   Full-matrix least-

squares on F2 

Full-matrix least-squares 

on F2 

Goodness-of-fit on F2  1.058 1.115 

 

 

 

  The i-C3F7 groups appeared to be "nesting", favoring the eclipsed configurations. 

Notably, the absence of substituents could render the energy differences between the 

eclipsed and staggered configurations small, probably allowing intermolecular 

interactions to dictate the formation of a quasi-staggered Pc2Ln complex.
[106]
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                (a)                                                   (b)                                              (c)  

 

 

 

 

 

 

 

                        (d)                                                                             (e)   

Figure 3.2   Single crystal X-ray structural characterizations of the tetragonal (F64Pc)2Lu 

and (F64Pc)2Y.  a) View perpendicular to the 4-fold axis.  b) Molecular structure viewed 

along the 4-fold axis. Metal center, orange, van der Waals representation; C, black, N, 

blue, N8 coordination sphere: ball and stick representation; F, green, van der Waals 

representations. c) Columnar stacking viewed along the a axis.   d) Packing diagram 

viewed along the c axis.   e) The distortion of the square-prismatic MN8 chromophore by 

the twist angle.  

 

 

 


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 The usual Pc rings convex shapes was noted, but the convexity may not be 

symmetrical.  A proposition is presented to quantify the convexity by estimating the radii 

of curvature, Ri, of circles circumscribed to triangles defined by the geometric centers of 

two opposite benzene rings and those of the 4N planes, shown in Figure 3.3.  Ri is com-

puted as Ri=ABBCAC/4K, where K= s(s-AB)(s-AC)(s-BC)]
1/2

 and s=(AB+BC+ AC)/2.  

   

 

Figure 3.3  Definition of the four radii of curvature, Ri of the two F64Pc
2−

 rings.   (a) The 

geometric centers of the benzene rings, A and B, and the coordinating isoindole Nitrogen 

atoms, C. (b) Representation of the ACB triangle defined by the three geometric centers, 

using an abbreviated Pc ring and the atomic coordinates from the X-ray structure of 

(F64Pc)2M.  Color code: C: black; N: blue; Metal center: orange. (c) The circumscribed 

circle and its radius, Ri. M stands for Metal.  The curvature radii, Ri, i = 1- 4, may not be 

equal, depending on the distortions of each Pc ring. 
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 Thus, each complex, which exhibits a 4-fold symmetry axis, is characterized by 

two independent radii, one for each face of the Pc ring.  The associated spheres 

approximate F-lined pockets, Figure 3.3 b, a, viewed as Non-Covalent Interaction Space 

(NCIS) which might accommodate other molecules.  The sphere radii for each Pc face 

are: [1]: 18.6, 19.5; [2]: 17.9, 18.4; averages: 19.0 and 18.2 Å, respectively.  

 The radii are independent of the degree of rotation of the 8 benzene rings around 

their centers, measured by the  angle made by the bond that links the two benzene ring C 

atoms that bear the i-C3F7 groups with the 4N plane. The  values, 1 for each Pc face of 

the tetragonal complexes are: [1]: 4.3, 7.9; [2]: 3.5, 8.0.  Both the convexity, asymmetry 

and, especially,  asymmetry suggest that the two Pc(2−) rings of each complex are not 

perfectly equivalent.  This non-equivalency provides a weak yet notable support for the 

presence of a proton (on a non-coordinating N), a notoriously difficult identification via 

X-ray diffraction, exacerbated by the 4-fold disorder.
[53, 107, 108]

 

 Support for the asymmetry of the complexes was provided in Density Functional 

Theory (DFT). Both DFT and Time Dependent Density Functional Theory (TDDFT) 

calculations carried out on [1] and [2] by Liao et al.,
[109]

 and presented in a draft 

manuscript.   In their work, they modeled geometric structures and calculated electronic 

and vibration spectra, Mulliken charge distribution, dipole moment, vertical ionization 

potential, vertical electron affinity and binding energy.  Calculated properties for Pc2Y 

and (FnPc)2Y (n=16,32,64) were carried out based on the X-ray structure as seen without 

an axial H.  The relative energy differences between D4d and C4v structures for Pc2Y and 

(FnPc)2Y (n=16,32) were also computed in order to assess which would be the lower 

energy structure.   It was shown that the molecules would adopt the lower energy C4v 
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symmetry and not higher D4d.    Indeed this was supported by the 32° twist angle 

measured by for the [1] and [2].   

 Following from the geometrical structure optimization calculations on the non- 

protonated forms of sandwich complexes above, calculations were also done for the 

Pc2YH and (FnPc)2YH (n=16,32) and (F32Pc)2LuH.  Due to the considerable computing 

effort required to model the (F64Pc)2MH  complexes, and based on results of initial 

calculations of the non protonated forms showing  good consistency, no calculations were 

done for the (F64Pc)2MH.    The results are shown on Figure F.1 in Appendix F and they 

show that all the defined co-ordinate distances indicate asymmetry due at least in part to 

the axial proton.  In particular the Metal--N distances of the for opposing rings are 2.296, 

2.573 Ǻ for (F32Pc)2LuH and 2.338, 2.611Ǻ for (F32Pc)2YH.   The Pc ring with the axial 

H has the longer distance and although this was also observed for the experimental X-ray 

structures of [1] and [2], their quality was inadequate to provide a statistically true 

difference at the 95% confidence limits. 

 

3.4 Nuclear Magnetic Resonance (NMR) Spectroscopy 

3.4.1 NMR Introduction 

In organic chemistry, NMR spectroscopy provides a very powerful technique for the 

characterization of molecules.  In the absence of an X-ray structure, NMR can provide 3-

D structural information for any molecule provided that it contains NMR active nuclei.   

NMR active nuclei that have intrinsic spin include 
1
H, 

13
C, 

19
F and 

31
P.  They possess a 

magnetic moment, μ and angular momentum ħI.  Spin is quantized and each of these 

nuclei posses І = ½.   The magnetic moment is given by the equation:      
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μ = γ ħI (3.1) 

where γ is the gyromagnetic ratio, ħ = 
 

  
 and h is planks constant. 

 In a magnetic field these nuclei posses 2I+1 spin states and since I = ½, There are 

two spin states, referred to as the magnetic quantum numbers ml.  The allowed values of 

ml are I, I−1, I−2,…..−I.   For these molecules ml takes values of ±½ in the presence of a 

magnetic field as shown in Figure 3.4. This applied magnetic field removes the 

degeneracy by interacting with the nucleus, thereby splitting the energy level.  The 

energy of interaction between field and nuclei is given by; 

 E = −μB0 (3.2) 

and since μ = γ ħI   

   
    

  
    

(3.3) 

 NMR active nuclei will resonate at characteristic frequencies,    when they are 

placed in a magnetic field.   Signal intensity, resonant frequency and absorption energy 

are all proportional to magnetic field strength, B0.  The local environment of the nuclei 

affects the value of the resonant frequency.  This change in the value of the resonant 

frequency is referred to as a chemical shift. The direct relationship between B0 and both 

the fundamental frequency and its shift, enables this shift to be converted to a 

dimensionless value.   Chemical shift is normally reported in parts per million (ppm) and 

found from the equation: 
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(3.4) 

   

Figure 3.4 Splitting of the energy level of an NMR active nucleus of spin I = ½ in a 

magnetic field B0. 

 

 

 A NMR test generates a spectrum which shows the positions, shape and size of 

the chemical shifts.  The chemical shifts carry information about the environment of the 

nuclei.  Active NMR nuclei may couple in a process called scalar coupling which is 

really a form of spin-spin coupling of the nuclei.  The source of this coupling is the 

interaction of nuclei with different spin states through chemical bonds of the molecule 

and as a result the signal splits.  Coupling to n equivalent (spin ½) nuclei splits the signal 

into n+1 multiplets with intensity ratios following Pascal triangle.   The spacing between 

the lines of these multiplets is known as the coupling constant and when given in Hz, it is 

independent of the magnetic field and frequency.  The coupling constant J is given by the 

equation: 
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J =      (3.5) 

where the chemical shift, δ is given in ppm and the frequency, ν0 is given in MHz. 

 The splitting of the signal into lines with equal intensity due to nuclei with 

slightly different intensities and that result in a symmetrical signal following the Pascal 

triangle is an example of first order multiplets, in which chemical shift is represented by 

the center of the array.  However,   in a situation where Δδν0/J < 10, second order effects 

may be seen as the patterns are no longer symmetrical.  Second order effects also provide 

valuable information in the interpretation of the structure of organic molecules.  

3.4.2  
19

F and 
1
H NMR  

Solution 
19

F and 
1
H NMR spectroscopy data was collected at NJIT on Bruker ARX 300 

machine interfaced to a computer using the Xwin NMR software.  
19

F data was collected 

relative to the NMR reference standard fluorotrichloromethane, CFCl3, (99%).  The X-

ray structure failed to show the presence of the proton and therefore it was hoped that 
1
H 

NMR would show the presence of this proton and provide some insight into its 

environment, thereby elucidating its attachment on the complex.     
19

F NMR was carried 

out to assist in the verification of the structure and glean information on the environment 

of the fluorine atoms.  Initial results of the 
19

F spectra confirmed the presence of the 

fluorine atoms in the structure and integration of the lines revealed an approximate 6:1:1 

ratio of primary aliphatic, to aromatic to tertiary aliphatic fluorines.  The 
19

F NMR 

spectra also revealed a broad “hump” feature stretching between −135 to −205 ppm, on 

which the tertiary aliphatic fluorine signal sits.   The 
19

F spectrum of [2] is shown in 

Figure 3.5 while that of [1] is shown in Appendix F. 
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 The 
19

F NMR of the closed shell (F64Pc)2MH complexes shown in Table 3.3 have 

similar chemical shifts to those of PcF64Zn, probably indicating the diamagnetic nature of 

the central metal ion.  However, the spectra of [1] and [2] however contains two 

significant differences from the spectrum PcF64Zn.  They are the presence of the hump 

feature and a doublet which occurs for the primary F in (F64Pc)2YH. 

   

 

    Table 3.3 
19

F NMR Spectra of (F64Pc)2LuH and (F64Pc)2YH  in Acetone D6 Compared  

    with That of  F64PcZn 

 

Complex Primary Aliphatic CF3 shifts, 

(ppm)  and J (Hz) 

Aromatic F 

shifts, ppm 

Tertiary 

Aliphatic CF 

shifts, ppm 

(F64Pc)2YH (−71.5, −71.8),     
 
(J=80) −103.5 −165.0 

(F64Pc)2 LuH −71.4 −103.7 −165.0 

F64PcZn
[110]

 −71.3 −103.8 −164.6 

Figure 3.5 
19

F NMR spectra of (F64Pc)2YH in acetone D6  showing broad feature. 
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 The primary aliphatic fluorines (d, CF3, 6F) of [2] appear as an unsymmetrical 

doublet at the existing resolution of the test method.  The chemical shifts and intensities 

of the doublet are −71.5 ppm, 396 and −71.8 ppm, 421.    The exact nature of the split is 

currently difficult to elucidate because of the absence of additional data from 2D and 

other types of NMR analysis.  While there is usually weak spin-spin coupling for 
1
H over 

three bonds
[111]

, this is not necessarily the case for 
19

F NMR in some perfluorinated 

compounds.
[112]

  Perfluorinated chains of certain aliphatic perfluorinated compounds have 

shown a difference in that 
4
J(F,F) coupling is generally larger than 

3
J(F,F) or 

5
J(F,F) 

values.
[112-114]

   

 In the sandwich Pc environment, the steric interaction between the i-C3F7 moieties 

and between the CF3 groups may result in hindered rotations, hence forming rotamers.  

Rotation of the CF3 groups around the C-C bond may change the environment of the F 

atoms as they may occupy a more cis or trans orientation.  Furthermore, the curvature of 

the Pc rings indicates intra-molecular steric interactions between the bulky i-C3F7 groups.  

This steric interaction should result in hindered rotation of especially the i-C3F7 groups 

around the Ar-C bond. This rotation should also make the tertiary aliphatic F move closer 

to each other resulting in changes in their interactions.   A rotation of one of the i-C3F7 

about its  Ar-C bond will make the primary aliphatic Fs  of adjacent i-C3F7 not only move 

closer but may cause a cogwheel motion (Figure 4.1) resulting in a rotation of the ring 

which will change the twist angle momentarily.   The molecule should then relax from 

this higher energy position back to equilibrium position.  While the exact nature of the 

hump feature is not known, the action of the rotamers may be a factor in its observance.  
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 Analysis of the packing of the molecules in the single crystal using the Mercury 

2.4 ® software
[115]

 shows that the short van der Waals contacts are between molecules of 

different stacks, but in solution these effects may be lost.  Solid state NMR would also 

present an interesting study. 

   In order to the obtain accurate NMR 
19

F peak integrals of [1] and [2], a 

background correction had to be manually applied through Spinworks® software
[116]

 

which removes the hump feature.  The 
19

F NMR spectrum of [1] with background 

correction is shown in Figure 3.6.   

 The 
1
H proton NMR was carried out in for (F64Pc)2MH complexes in the solvents 

CDCl3, acetone D6 and acetonitrile D3.  In all three cases no signal was observed for the 

presence of a proton attached to pyrolle nitrogen (N-H).  Spyroulias et al.
[117]

, reported 

the N-H proton in high field in the region of −8.73 for the 
1
H NMR of  Lu

(III)
H(TPP)2 and 

Lu
(III)

H(TPP)(OEP)  in CDCl3. They reported differences in the UV-visible spectrum of 

these porphyrin complexes between CH2Cl2 and DMF.   The differences were attributed 

to differences between the protonated and deprotonated forms.
[118]

  In more basic solvents 

such as DMF and pyridine, it was reported that the deprotonated form exists.  Despite the 

differences between the porphyrins and phthalocyanines, it was expected that the 

(F64Pc)2MH would have similar behavior. 
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Figure 3.6  
19

F NMR spectrum of (F64Pc)2LuH in acetone D6 with background correction 

showing the calculated peak integrals.  

 

 

   No 
1
H signal was observed in either basic or less basic solvents.   In addition, 

there was no observable difference in the UV-visible spectra between solutions of the 

complexes in protic solvents such as methanol or basic solvents such as pyridine, except 

for solvent dependent shifts in peak positions. The absence of the signal is being 

attributed to the presence of the strong electron withdrawing fluorine atoms on the ring, 

possible diminishing the effect the field on the proton on the ring of these homoleptic 

complexes. 
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3.5 Vibration Spectroscopy 

3.5.1 Theory 

Vibrations in chemical bonds can be excited by electromagnetic radiation in the Infrared 

(IR) region (2-40 μm) of the electromagnetic spectrum.  IR spectroscopy which measures 

these vibrations is a powerful method utilized in the characterization of organic 

molecules. The atom groups in molecules can vibrate in modes such as bending, 

symmetrical and anti-symmetrical stretching, scissoring, torsions, wagging, twisting and 

rocking.  Cyclic and ring type molecules can also exhibit a breathing mode.  It is also 

common for combinations (or coupling) of some of these so called normal modes to 

occur.  The motion of the atoms of molecules which include translation, vibration and 

rotation correspond to the 3N degrees of freedom of the atom in a molecule. For example, 

if one considers the H2O molecule with three atoms, then there are symmetric and 

asymmetric stretching of the O-H bonds and a symmetric scissoring bending of the H-O-

H structure in addition to the three rotations and three translations.  For such non linear 

molecules with, n=3, (n = number of atoms) there are n−1 stretching vibrations and 2n−5 

bending vibrations.
[119]

  This accounts for 3n−6 IR frequencies bands in this molecule.  In 

general, the numbers of IR absorptions are calculated by subtracting from the 3N 

translational degrees of freedom of the collections of atoms, the sum of the 3N rotational 

degrees of freedom for the molecule.  This results in 3n−6 absorptions for non-linear 

molecules and 3n−5 for linear molecules.  

 The energy of the absorbed IR radiation is usually expressed in as: 

  
  

 
  

(3.6) 
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In reporting the IR spectra chemists may report in μm, but it is customary for them to 

report in wavenumbers,    with units of cm
−1

.  Wavenumber is defined as:      
  . The 

spectrum of the resonant absorption is usually reported in percent transmission (%T) 

versus   .   The stretching and other vibrations between two atoms can be described by the 

classical harmonic oscillator with,   
 

 
        .  Vibrational frequencies are 

therefore given by; 

  
 

  
 
 

 
 

(3.7) 

Where k  is the force constant in units  of N/m, 

           μ is the  reduced mass, 
)( 21

21

mm

mm


 for two atoms, 

          ν is the frequency of the vibration (   
  ) 

 

 Vibration motion is quantized and thereby follows rules of quantum mechanics.  

The allowed transitions are given by the expression,          , with n = 1, 2, 3,…. 

 An irradiated molecule will have IR active absorption bands that result from 

changes in the dipole moment of the molecule during vibrations. As a result, polar 

molecules with groups such as F, OH and C=O bond are highly IR active.  When the 

vibrations result in a cancellation of the dipole moment in a symmetrical, linear molecule 

such as O=C=O, that vibration in the molecule is not IR active.   

 

3.5.2 IR Spectroscopy   

IR data was collected on a Perkin Elmer Instruments Spectrum One FT-IR Spectrometer 

interfaced to a Dell OptiPlex GXI Pentium III computer using the Spectrum Version 

3.02.00 software.  The samples were prepared using KBr pellets.  The bisphthalocyanine 
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complexes have 258 atoms therefore the spectra is expected to have many lines.  It has 

been reported that the IR spectroscopic techniques reveal that the frequencies of pyrrole 

stretching, isoindole breathing, isoindole stretching vibrations, aza stretching vibrations, 

and coupling of pyrrole and aza stretching vibrations depend on the rare earth ionic size, 

shifting to higher energy along with the lanthanide contraction due to the increased ring–

ring interaction across the lanthanide series.
[120]

  There is only one proton on the ring, but 

its location is uncertain. However, signals should be obtained from the stretching, 

bending and wagging of the C-F bonds on the benzene rings and on the i-C3F7 moiety. 

The IR peaks occurring in the region 1800-700 cm
−1

 for the (F64Pc)2LuH, (F64Pc)2YH 

and Pc2Y is shown in Figure 3.7.  The IR peaks occurring in the region 1800-700 cm
−1

 

for the (F64Pc)2LuH, (F64Pc)2YH and Pc2Y is shown in Figure 3.7.  Initial assignments 

based on the literature 
[5, 120-123]

 are set out in Table 3.4: 

 

  Table 3.4 Infrared Peaks and Initial Assignments for (F64Pc)2YH, (F64Pc)2YH and Pc2Y 

Complex and Some Absorptions 

(cm
-1

) 

Assignments 

(F64Pc)2 LuH (F64Pc)2 YH Pc2Y  

730m, 730s 733s Pc ring breathing 

753m 752m 768m  

967s 967s 884m  
1094s 1094s 1062s Coupling of isoindole deformation and aza stretching 

  1115s Isoindole breathing coupled with  C–H bending 

1170s 1170s  Symmetric C-F stretch 

1249vs 1247vs  Anti-symmetric C-F stretch 

  1322vs Pyrrole stretching (marker for π radical ligand) 

1352w 1352w 1364s  

1384w 1384w 1384m  

1454w 1453w 1449s  

1490w 1485w 1489w Isoindole stretching 

1637m 1632m 1628s Benzene ring stretch 

1747w 1745w 1718w Benzene ring stretch 

   Legend:  vs = strongest absorption, s = strong,  m = medium, w = weak, b = broad. 
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 There is great interest in the region between 1300 and 1460 cm
-1

 due to reports 

that three dominant vibrations occur in this region for the neutral Pc2Ln
[104, 124]

 and that 

the most intense of these bands occurring ca. 1313-1322 cm
-1

 is characteristic of the π 

radical ligand.
[125]

  These vibrations that red shifted with decreasing Ln
3+

 size [La to Lu] 

are metal dependent and  are assigned to C-N and C-C stretching vibrations of the inner 

(CN)8  Pc ring.
[124]

   An intense vibration occurred as a very strong absorption for the 

reference Pc2Y complex at 1322 cm
-1

, but none was observed in this region for [1] and 

[2].   The absence of this band in [1] and [2] is attributed to absence of an F64Pc
•–

 in these 

complexes.  It appears unlikely that its absence is due to the strong electron withdrawing 

fluorine groups because the tetrakis-substituted and the octakis-substituted lanthanide 

bisphthalocyanines have been reported to generally have the strong band appearing at 

around 1320 cm
-1

.  A difference is that for  the oxyalkyl substituted species, the intensity 

of this band decreases while the band appearing at 1377 cm
-1

 gains in intensity.
[52]

 

 The [Pc2Ln]
−
  anions have the principal metal dependent IR bands located around 

492, 878, 1398 and 1474 cm
−1

.  A strong  absorbing metal independent band appears at 

1329 cm
-1

 in the spectra of [Pc2Ln]
−
  anions.

[125]
  Weis and Fischer

[52]
  propose that this 

band is related to the presence of the two dianionic phthalocyanine ligands and suggests 

further that the absence of this band in the neutral Pc2Ln supports the delocalization of 

the unpaired electron over both rings on the IR time scale.  If this was not the case, this 

band would be present in the neutral lanthanide bisphthalocyanine complexes.  This 

strong absorbing band was not found in the IR spectra of [1] and [2].  It was unexpected 

because of the proposed presence of the F64Pc
2–

 and metal independence of the vibration.  

 Asymmetric and symmetric C-F stretching has been assigned to the absorptions at 
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248 and 1170 cm
-1

 respectively.  IR tables and charts of fluorinated organic 

compounds
[126]

  indicate that Ar-F occurs at  1200 – 1100 cm
-1

 due to  ring and C-F 

stretch and  occurs at 420 – 375 cm
-1 

due  to in-plane C-F deformation vibration.   These 

tables further indicate that poly-fluorinated compounds have a series of very intense 

bands in the region 1360-1090 cm
-1

 due to the strong coupling of C-F and C-C stretching 

vibrations.   While there are several bands in this region it is difficult to assign them to C-

F vibrations due to the presence of other characteristic vibrations from the F64Pc
2–

 ring. 

 

Figure 3.7 IR spectra of (F64Pc)2LuH, (F64Pc)2YH and Pc2Y from KBR discs. 

 

 Amine N-H have characteristic stretch vibrations in the range 3300-3500 cm
−1

 

and bending vibrations at 1600 cm
−1

.
[127]

  The N-H pyrrole of vibrations [1] and [2] are 
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expected to be close to these values. In fact IR N-H stretching  of pyrrole containing 

compounds have been reported in the range 3316-3335 cm
−1 

using KBr discs.
[128]

 

 The IR spectra of both [1] and [2] showed a strong, broad peak at 3446±1 cm
−1

.  

The peak due to the N-H stretch is expected to be a single, weak peak, and if it occurs in 

[1] and [2], it could be swamped by this peak, most likely generated by the O-H stretch 

from the practically unavoidable presence of moisture in the KBr discs.  Similarly, a 

broad, medium to weak absorption occurred between 1628-1637 cm
−1 

in the complexes.  

Again, this absorption encompasses the region where the benzene ring stretch of the 

phthalocyanine ring occurs.
[120]

  The occurrence of IR absorptions due to N-H stretch and 

bending [1] and [2] requires additional supporting methods such the use of DFT.   

 

3.6 Electron Spin Resonance 

3.6.1 Theory 

Electron Spin Resonance (ESR) or electron paramagnetic resonance is one of a series of 

resonance techniques utilized in the study of materials which have energy absorption 

effects that are associated with changing the spin angular momentum of electrons and 

nuclei.  Other members of this spectroscopy family include NMR, Magnetic Resonance 

Imaging (MRI), Nuclear Quadrupole Resonance (NQR) and Ferromagnetic Resonance 

(FMR).
[129]

  In chemistry ESR is a valuable characterization tool for studying or 

identifying paramagnetic species such as organometallic complexes containing transition 

metals, and organic and inorganic free radicals.  These chemical species have one or 

more unpaired electrons.  Paramagnetic materials develop an induced magnetization 

intensity which is greater than that of the applied magnetic field, B0.  Although they 
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contain permanent magnetic dipoles with little or no interaction, they lose their 

magnetization on removal of B0.  

 The absorption spectra from ESR involve the species which are excited during the 

application of B0.  An electron has spin S = ½ and a magnetic moment, μe and thus will 

be aligned parallel or anti-parallel with B0.  The magnetic moment is given by: 

             (3.8) 

where ge=2.0023, and is the electron g-factor for a free atom,     = the electronic Bohr 

Magneton and      the dimensionless electron spin vector.  The g-factor is the ratio of the 

magnetic moment to the angular momentum.  The electronic Bohr Magneton,    is 

defined as          and is closely related to the spin magnetic moment of a free 

electron.  S is a quantum number used to represent the electron spin angular momentum. 

The axial interaction of the magnetic field with the magnetic moment, called the Zeeman 

Interaction,      results in an energy separation which can be expressed by the following 

Hamiltonian:
[130]

 

                    (3.9) 

The Zeeman Effect is the breaking of degeneracy in atomic energy levels due to the 

interaction between the magnetic moment of an atom and an external magnetic field.  The 

splitting is described in Figure 3.8. The energy separation ΔE, between the populations 

aligned parallel and anti-parallel with the applied magnetic field falls within the 

microwave energy radiation band, typically with frequencies in the range 3.5-95 GHz.  

Most ESR instruments achieve resonance using a single microwave frequency and 

sweeping the magnetic field to obtain resonance.  Since the upper energy and lower 
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energy levels relative to the magnetic quantum numbers are given by Eβ=          and    

Eα = −         respectively, then: 

 

 

             (3.10) 

where ν is the frequency of microwave energy.   

 

 

 

Figure 3.8  Energy level diagram for an isolated electron in a magnetic field B0 and the 

corresponding absorption spectrum and first derivative ESR spectrum. 
[131]

  

   

 The Zeeman interaction is just one of the interactions that the unpaired electrons 

experience.  Here, molecular and atomic orbitals containing an electron experience a 

contribution to paramagnetism due to the electron motion in the orbital which has angular 
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momentum L.  The two interactions are known as spin-orbit coupling and orbital 

magnetic field interactions.   

 These two interactions results in a deviation of the ge value from the free-electron 

value and also adds anisotropy which means that the value of ge will depend on the 

orientation of the crystalline material with the applied magnetic field.  In fact, single 

crystals are generally used to measure a g┴ and g║.     The spin-orbit coupling gives rise 

to a spin-orbit constant and anisotropic    tensor in the Hamiltonian for the effect of spin-

orbit coupling.   Nuclei may possess a non-zero spin due to the spin of their nucleons.  

The coupling interaction of the magnetism of the electron and that of these nuclei is 

referred to hyperfine coupling and it also adds a term to the overall Hamiltonian.  The 

hyperfine coupling tensor,   , may have alignment with one or more of the principal axes 

of    depending on the point group of the molecule.   Molecules with multiple unpaired 

electrons may undergo interactions with the electric field of neighboring atoms due to the 

geometry of the structure or the crystal or ligand field.  Splitting of a degenerate 

electronic ground state may result in the absence of a magnetic field, the so called “Zero 

Field Splitting” (ZFS).  ZFS results in line splitting of the ESR spectrum.  The interaction 

results in addition to the total Hamiltonian, a field splitting fine structure tensor,   .  

 In ESR, four different magnetic interactions may occur which can influence the 

behavior of electrons in a magnetic field  They are;
[130]

 

a) the Zeeman interaction,      

b) the nuclear hyperfine interaction,        

c) the electrostatic quadrupole interaction,      

d) the zero-field splitting if S >½,      
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The Hamiltonians for each effect are shown in equations 3.11-3.15; 

                                  (3.11) 

where λ, the spin-orbit coupling constant,    the dimensionless spin vector and g, the 

effective g-value; and 

            (3.12) 

where    is the hyperfine coupling tensor and    the nuclear spin vector. 

           (3.13) 

where    is the quadrupole coupling tensor 

 

 

            (3.14) 

with the fine structure tensor   ;  The Hamiltonian for HFS is;
[131-133]

 

         
     

      

 
      

    
   

(3.15) 

where D denotes the axial fine structure parameter and E describes the orthorhombic fine 

structure parameter.  The total Hamiltonian then becomes 

                                  (3.16) 

   

3.6.2 Instrumentation 

The microwave instrumentation for ESR spectra consist of four important parts.
[134]

  

These are;   

1. The supply of microwaves.  In the Bruker EMX this is controlled by the 

microwave bridge assembly which supplies, detects and controls microwave 
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radiation.  

 

2. A sample cavity which receives microwaves via a waveguide and reflects the 

waves back to the detector,  

 

3. Electromagnets at 90° to the cavity which supply the magnetic field.  A small 

magnetic field oscillating magnetic field is superimposed on the sample cavity via 

modulation coils.  (i.e. via the Hall probe field controller). 

 

4. A detector diode also contained in the microwave bridge assembly in the EMX.  

 

 

3.6.3  ESR Spectra of (F64Pc)2LuH and (F64Pc)2YH 

 

Electron spin resonance was carried out at the City University of New York (CUNY) on 

their Bruker EMX EPR spectrometer series (9.5 GHz) EPR machine with magnetic field 

at 0.3300 T and wavelength (cavity dimensions) of 0.86 cm.   The machine is a 

continuous wave electron spin resonance (CW-ESR) type.  Samples were tested in 

powder form using Wilmad LabGlass® 4 mm outer diameter thin walled quartz tubes 

135 and 250 mm long.  Low temperature measurements were obtained using a glass 

Dewar cooled with liquid nitrogen. 

 Solutions dissolved in chloroform and acetone failed to give a signal at room and 

liquid nitrogen temperatures.  Symmetrical second derivative ESR signals with structure 

were obtained in the solid state, with average g values of 2.004.  The results are shown in 

Table 3.5 and plots of the spectra in Figure 3.9.   No signal was expected from the 

samples because the central metal (M
3+

) ions are closed shell (no unpaired electrons) and 

the F64Pc
2–

 ligands are not expected to have radical electrons. The presence of impurities 

from contamination of [3] and [4] is being ruled out because [3] gave no signal and [4] 

gave a signal which was very noisy and did not resemble the ESR signal of either [1] or 

[2].  Contamination with iron and other magnetic impurities was unlikely because these 
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would result in a signal in solution (or in suspension in the case of insoluble species such 

as magnetite).   

 

 Table 3.5  ESR Data for (F64Pc)2LuH and (F64Pc)2YH in the Solid State 

Complex Gyromagnetic 
ratio, g value 

Temperature (K) FWHW 
(G) 

 Average 
Field (G) 

(F64Pc)2YH 2.0037 295 6.6  3470 

(F64Pc)2YH 2.0042 77 7.4  3355 

(F64Pc)2LuH 2.0038 295 6.6  3470 

(F64Pc)2LuH 2.0039 77 7.4  3355 

 

 

 In the calculation of the g value of [1] and [2], the simplified Equation 3.10 was 

used.  The symmetry of the line shape indicates absence of any large effects other than of 

the Zeeman interaction.   It was not possible to measure g┴ and g║ due to absence of large 

crystals and the limits of the existing EPR machine.    

 

 

Figure 3.9 ESR spectra showing symmetry and structure: a) Spectrum of (F64Pc)2YH  

and; b) Spectrum of (F64Pc)2LuH. 
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 The g value was greater than that of the free electron (ge = 2.0023) indicating the 

presence of other interactions.  The point group of these complexes is C1 (no symmetry) 

therefore if the    and    tensors exist, they should be non co-incident and the ESR 

symmetry is triclinic.
[130]

  If however, one considers [1] and [2] to have the idealized 

higher C4v symmetry then, Axx=Ayy≠Azz and gxx=gyy≠gzz, the tensor axes are all co-

incident and the ESR symmetry could be axial.  

 The structure of the line outside of the main peaks has not been interpreted at this 

time.   

 

3.7 Magnetism 

3.7.1 Diamagnetism, Paramagnetism, Ferromagnetism and Antiferromagnetism 

At the macroscopic level, magnetism of a sample is measured as molar magnetism, Mm 

and molar susceptiblity χM.  Several forms of magnetism have been classified with the 

four most common types being diamagnetism, paramagnetism and ferromagnetism and 

anti-ferromagnetism.  This classification is based on measured values of χ as a function 

of temperature and applied magnetic field.  

 Diamagnetism arises because of the magnetic field which is induced by the 

applied magnetizing field, H from circular motion of spin paired electrons.   This 

generated field opposes H.  According to Langevin, the diamagnetic susceptibility is 

directly proportional to the number of bonded electrons and the sum of the squared values 

of the average orbital radius. It is given by the equation:  

      
   

 

    
   

    
 

 

 
(3.17) 
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All materials exhibit diamagnetism. 

Paramagnetism, however, results from the presence of unpaired electrons which 

in the absence of H have no permanent magnetization.  On the application of H, the 

magnetic moments of the species with unpaired electrons align with the field increasing 

the magnetization of the sample.   The Curie law describes the relationship between χM 

and temperature, T.  At fixed applied H and high temperature, χM is inversely proportional 

to T. It is given by:  

   
 

 
 

(3.18) 

where C is the Curie constant.  

 This equation applies to magnetically dilute samples where interaction between 

ions and molecules is minimized.  In many real systems, this is not the case and there are 

indeed interactions between units that cause neighboring magnetic moments to become 

aligned or paired.  This deviation from the Curie law is compensated for in the Curie-

Weiss law.  The Curie-Weiss Law is given by: 

   
 

   
 

(3.19) 

 A plot of χM
−1 vs. T is in the Curie Law approximates to an intercept on T axis at 

the origin.   For the Curie-Weiss Law, this intercept is non-zero, with a negative value of 

θ indicating anti-ferromagnetism and a positive value, ferromagnetism. 

 Ferromagnetism and anti-ferromagnetism are forms of cooperative magnetism.  In 

ferromagnetism there is spin alignment from dipole-dipole interaction of adjacent 

atoms/species, while in anti-ferromagnetism there is spin pairing from the dipole-dipole 

interactions.  The relative amount of spin alignment and spin pairing leads to various 
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degrees of ferrimagnetism.  The relationship of χ with T for these classifications is shown 

in Figure 3.10. 

 

 Table 3.6  Units, Conversions and Values for Physical Quantities of Magnetic  

  Measurements
[135]

 

 

Quantity cgs -emu units
‡
 SI units  Conversion 

Magnetic moment emu, erg/G Am2, J/T* 1 J/T =103 emu, erg/G 

Inductance or magnetic flux 

density 

Gauss (G) T 1T = 104 G 

Magnetic field strength  or 

magnetizing field (H) 

Oersted (Oe) A/m 1 A/m = 4π x 10-3 Oe 

Volume magnetization (M) emu/cm3 A/m 1 A/m = 10-3 emu/cm3 

Permeability of free-space, μ0 1 G/Oe 4πx10-7 H/m  

Molar Susceptibility, χm emu/mol, cm3/mol m3/mol 1cm3/mol = 4π x 10-6 m3/mol 

Intensity of magnetization, I emu/cm3 T 1 T=1/4π x 104 emu/cm3 
‡  

emu are electromagnetic units of cgs system, and are often used interchangeably to represent some  

   magnetic units 

* 1 Am2 = 1J/T 
  

 Magnetism data is presented in either the MKS or cgs units.  The cgs system of 

units is still very popular for describing magnetic parameters.  Table 3.6 gives some 

units, conversions and values for magnetic materials.  

  Van Vlecks equation for paramagnetism, Equation 3.36 reduces to the Curie law 

under the conditions stipulated.  It is given (in cgs units) as: 

  
    

     
 

   
 

(3.20) 

where      is the Bohr Magneton number (effective magnetic moment) and   
    

 

  
.  

For transition metals and particularly lanthanides, the orbital contribution to the magnetic 

moment is appreciable and thereby modifies      and the g values of the species.  In this 

case the      (spin-orbit case) is given by: 

              (3.21) 
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with J = L+S. 

 The gyromagnetic ratio, g value can be estimated in this case by; 

    
                    

       
 

(3.22) 

 

 

 

Figure 3.10  Temperature dependence of ferromagnetic, paramagnetic and 

antiferromagnetic behavior .  TC = Curie Temperature and TN = Néel Temperature.
[136]

   

 

3.7.2 Theory 

Magnetism refers to the response of a material when placed in a magnetic field.  

Historically, this response was described mainly through a mechanical movement such as 

attraction, repulsion or torsion.  These macroscopic responses are however, driven by 

interactions at the atomic or sub-atomic level with the applied magnetic field.   The 

material responds because magnetism is induced inside winthin it by the applied field; it 

is said to be magnetized.  In classical physics, the magnetic moment or magnetic dipole 



55 

 

 

moment, μ is the strength of the magnetic source.  It can be defined in terms of a bar 

magnet as the product of the pole strength and the displacement between them.  That is:   

       (3.23) 

where p is pole strength, x is displacement and μ has units of J/T.   Uniform magnetic 

fields, H can be created within current carrying coils.  The magnetic moment within a 

planar loop is given by the product of the current i and the area vector   , such that: 

      (3.24) 

and in this case, μ has units of Am
2
.  Rotating or gyrating charged objects such as 

electrons, protons and even large galactic objects have a magnetic moment. 

 A substance placed in a magnetizing field, H will experience a magnetic induction 

B which is the sum of the H and the contribution of the intensity of magnetization of the 

material itself, M such that; 

        (3.25) 

 The relationship between B and H is defined by B = μ0H, where μ0 is the permeability of 

free-space and has value of 4π x10
-7

 Henry/meter.   The ratio M/H is also defined as the 

magnetic susceptibility, χ.  Inside of a linear isotropic material, B, H and M have the 

same direction and χ and μ are scalers and unitless. In this case, μ is the permeability of 

the material and takes values depending on how the material interacts with the H.  In 

anisotropic materials     and     are 3x3 matrices called the permeability and magnetic 

susceptibility tensors respectively.  Thus,         and        .  The matrices are related 

by the Equation 3.26: 

           (3.26) 
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where I3 is the 3x3 identity matrix.  The above classical explanation of the magnetic 

permeability and susceptibility of a substance contrasts somewhat with the quantum 

mechanical approach.
[137]

  This leads to a general equation relating the magnetic 

susceptibility of an atom to the energies of the various energy states that the atom 

occupies.   In this approach μ and χ are defined as: 

    
  

  
 

 

(3.27) 

and  
 

   
 

 

  

  
 

(3.28) 

 

where μz = the component of the magnetic moment in the field (z) direction and  E = the 

energy of the spin and orbital angular momenta of the atom with the field, depending on 

H. 

 For a system of non-interacting particles the equation by Van Vleck may be 

developed.  The magnetization intensity, I, can be obtained by considering that each 

system may be in a number energy levels. Using a Boltzmann distribution function, I can 

be given by: 

  

         
  

     

      
  

     

 

 

(3.29) 

 

 The molar susceptibility    can therefore be given as: 
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(3.30) 

 

 The expansion of the Ei energy level into a power series gives expressions such 

that       
     

   
     

   
           and      

   

  
    

   
    

   
     .    

Substitution of these expansions into equation 3.30 gives an equation for the second 

expression as a power series in H.  An assumption is made that the exponentials 

involving the terms    
   

 and     
   

 are much smaller than kT.   If it is also assumed 

that there is no residual moment in the absence of a magnetic field and the terms    
   

 

and     
   

 are expanded and an approximation made by neglecting all terms containing 

second orders of H, the fundamental expression for the molar susceptibility χM is 

expressed as:   

    

     
   

 
 

      
   

       
  

 

  
   

      
  

 

  
   

 

(3.31) 

This is the fundamental Van Vleck equation; to solve it, one needs to know the quantities 

  
   

,   
   

 and   
   

.   Theoretically, Van Vleck’s equation can be used when the 

eigenvalues   
   

 and eigenfunctions n of the Hamiltonian are known at H=0, (zero field 

condition).   The Hamiltonian for this energy is: 

    
    

   
  (3.32) 
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where    is wavefunction of the i
th

 energy level   
   and     is the operator in the zero 

applied field condition.  In a scenario where the applied magnetic field is small enough to 

cause a perturbation in   
 , this will result in a change in both the wavefunction and 

energy.  Perturbation theory can therefore be used to approximate the new energies.  The 

change in energy along the z-axis may be given by:  

     
       

      
    

       
   

 

  
    

 

  

 
(3.33) 

which neglects the additional term in H
2
 (due to diamagnetism).  The summation runs 

over the i
th

 level with   
    

 , knowing   
  and replacing    with the Zeeman operator 

                   where Lk and Sk are the orbital and spin momenta of electron 

k respectively, calculates for   
   

 and    
   

.   They are given by:  

  
   

     
        

   (3.34) 

    

  
   

  
    

        
   

 

  
    

 

  

 
(3.35) 

 

A more simplified form of the Van Vleck equation is obtained when all energies Ei are 

linear in H and the second-order Zeeman coefficients   
   

vanish.  It is given by: 

 

   
     

    
       

   
     

          
   

     

 

(3.36) 
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3.7.3 The Super Conducting Quantum Interference Device (SQUID) 

The SQUID is one of the most sensitive magnetic measuring devices available.   Its 

sensitivity is in the order of 10
-14

 T.
[138]

  SQUIDs utilize the Josephson junction to 

measure the magnetic moment of the sample.
[139]

  They work by utilizing the interaction 

between magnetic flux and the Josephson junction.  The sample’s magnetic flux 

modulates the current passing through the Josephson junction which is detected by the 

system’s electronic apparatus.
[140]

  

The Josephson junction is composed of two superconductors separated by a thin 

insulating layer.
[141]

   Its function is based on quantum mechanics and involves the 

concept of a quantum of magnetic flux passing through the superconductor.  The 

superconducting current is carried by a Cooper electron pair.
[142]

  This electron pair which 

is formed by electron phonon interactions can tunnel across a junction.  The DC 

Josephson Effect is when a direct current passes the insulator without being driven by an 

external electromagnetic field (i.e., tunneling).  In general at certain fixed voltages, the 

junction may carry a direct current whilst acting as a highly sensitive frequency to 

voltage converter.
[140]

  It is this voltage that can be detected, amplified and characterized 

in the application of SQUIDs in magnetometers.   

 A commercial SQUID magnetometer such as those produced by Quantum 

Design® consists of four main components.
[143]

  They are: (a) superconducting magnet 

(b) superconducting detection coil which is coupled inductively to the sample; (c) a 

SQUID connected to the detection coil; (d) superconducting magnetic shield.  Magnetic 

measurements are carried out in the SQUID by moving the sample through the second-

order gradiometer.   The sample’s magnetic moment induces an electric current in the 
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pick-up coil system.  The magnetic flux change in the pick-up coils changes the persistent 

current in the detection circuit.   Changes in the current in the detection coils produce 

variations in the SQUID output voltage which are proportional the magnetic moment of 

sample.  Figure 3.11 shows an example of  a gradiometer superconducting detection coil 

in a Quantum Designs ®  SQUID MPMS XL5. 

 

Figure 3.11 The configuration and location of the second-order gradiometer 

superconducting detection coil.  The coil sits outside the sample space within the liquid 

helium bath.
[143]

   

 

 

3.7.4  Direct Current Magnetism   

Direct Current (DC) magnetism was carried out on microcrystalline samples of the 

complexes using the SQUID MPMS-XL magnetometer at Argonne National Laboratory 

and the raw data provided.  Longitudinal moment was measured for hysteresis at 

temperatures of 5 K, 50 K, 100 K, 150 K, 200 K, 250 K, and 200 K.  The Zero Field 
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Cooled-Field Cooled (ZFC-FC) test also was carried out between 2 K and 300 K.  

Carrying out the ZFC-FC at low magnetic field helps to identify any special magnetic 

features in the sample such as irreversibility due to ferromagnetic behavior.
[143]

  The data 

from the SQUID was processed and the molar magnetization, Mm and the molar 

susceptibility, χM were calculated.   In general, magnetization per unit volume obtained is 

corrected for background (sample capsule).  This is achieved by obtaining the magnetism 

of the empty capsule under the same conditions under which the sample is tested.  The 

longitudinal moment of the capsule is then subtracted from that of the corresponding 

sample.    Then    
   (uncorrected for diamagnetism) is calculated using the expression;   

  
    

                           

                             
 

(3.37) 

The diamagnetic susceptibility contribution to the measured value was calculated using 

Pascal’s constants.
[144]

  Pascal suggested that the diamagnetism of a molecule can be 

estimated by summing the diamagnetic susceptibility of every atom χDi and λi of every 

bond.  The molar diamagnetic susceptibility of the molecule is   : 

           

  

 
(3.38) 

where χDi and λi are known as Pascal constants.  The values of  these Pascal’s constants 

were obtained from standard tables.
[145]

   Diamagnetic susceptibilities of [1] and [2] were 

obtained by using the base value of the Pc ring
[144]

 from which the hydrogen atoms were 

removed and replaced by the F atoms and i-C3F7 moiety. The diamagnetic susceptibility 

of the neutral Pc2Y was obtained from the literature value of H2Pc.   

 The hysteresis magnetic test on [1] and [2] at 5 K did not reveal any 

irreversibility.  Hysteresis of the [2] is shown in Figure 3.12 and that of [1] is shown in 
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Appendix D.  The hysteresis curves in Figure 3.12(a) that are based on the magnetic 

moment of the raw sample, shows diamagnetism. However when the samples were 

corrected for the standard diamagnetic contributions (Figure 3.12(b)) both samples were 

observed to be weakly paramagnetic.  

 

Figure 3.12 Temperature dependent hysteresis of (F64Pc)2YH; a) Magnetic moment of 

raw sample. b) Molar magnetization, M of sample corrected for diamagnetism. 

  

 

  Complex [1] exhibited higher values of molar magnetization at 5 K and above. 

Magnetic susceptibility calculations were done for the complexes on the ZFC-FC test 

carried out between 2 K and 300 K.  The results showed very weak magnetism of [1] and 

[2] compared to literature values of the Pc2Y complex.  These results are shown in Figure 

3.13 as plots of  χM vs. T and χMT vs. T. 
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Figure 3.13  Molar magnetic susceptibility χM  and χMT versus temperature, T  plots of 

(F64Pc)2LuH and (F64Pc)2YH for the ZFC-FC tests. 

 

 An attempt to fit the χM vs. T of [1] and [2] to the Curie-Weiss law using a non-

linear, Levenberg-Marquardt fit was not successful.   The plots of the χM
−1 vs. T did not 

produce the straight line expected for a Curie-Weiss law behavior.  Additional 

calculations for the effective magnetic moment µeff and χMT were done for the 

complexes, and plotted against T, but neither of parameters obeyed the Curie-Weiss law.  

 The failure of the magnetism data of [1] and [2] to fit the Curie-Weiss law 

prompted the search for a fit to other models.  Attempts were made to fit the magnetic 

susceptibility data to four other models.  Initially, the Bleaney-Bower
[146]

 model for 

dimers was applied. Three other models namely Fisher’s
[147]

, Bonner-Fisher
[148]

, and  
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Rueff
[149]

 which are solutions to Heisenberg’s 1D infinite chain of S=½ spins were later 

applied.  The data could not be satisfactorily fit to any of these models.   The suggestion 

in the ESR test that the presence of signal was due to paramagnetic impurities was 

investigated.   A model was then developed on the basis that the impurities were non-

ferrous and were oxidation states of the [(F64Pc)2M] produced during the synthesis and/or 

purification processes.  The amount of impurities was expected to be small, probably no 

more than about 5%.   This meant that the impurities would be diluted in the sample.  

However, since the nature of the dispersion was unknown, one could not rule out the 

existence of the impurities in aggregations (such as large crystallites). These impurities 

may therefore obey the Curie-Weiss law.  While there may be more than one impurity, in 

this first instance, only one was considered.   

 The molar magnetic susceptibility    is independent of mass of the sample; 

therefore values obtained from it are a measure of the magnetization of the magnetic 

species. In the case of the [(F64Pc)2M]
n±

 (M=Lu and Y) and n = 0,1,2  series,  their 

magnitude should depend on concentration of species with π-radical electrons.  Since the 

   vs. T plot could not fit the Curie-Weiss model, it was fitted to model which included 

Curie-Weiss plus a term which is independent of temperature.  The equation for the 

model was: 

    
 

   
    

(3.39) 

where χ0 is a term which is independent of temperature and represents the difference 

between measured  and the Curie-Weiss contribution to χM.   The data fitted this model 

appropriately and the results are shown in Table 3.7 
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          Table 3.7  Results of the Non Linear Fit on the χM Data Using Equation 3.39 

 

Complex Curie Const., 

C 

Weiss Const.,  

θ (K) 

χ0 R-Value 

(F64Pc)2YH 0.0031 −0.28 0.000613 0.99677 

(F64Pc)2LuH 0.0039   0.65 0.001016 0.99851 

 

 The χM vs. T data shows Curie constants that are more than two orders smaller 

than 0.37 cm
3
•K/mol, the value calculated for spin only system with an S = ½.  This 

translates to a 0.8% of the paramagnetic impurity in [2] and 1.1% of paramagnetic 

impurity in [1] based on the reduced χM.  An approximate 100% increase in the χM would 

result in an effective magnetic moment of 1.73 BM.   The relative values of χM vs. T for 

experimental [1] and [2] and simulated Pc2Y, and 2% of a [(F64Pc)2M]
0
 are shown in 

Figure 3.14. 

 

Figure 3.14  Plots of experimental χM vs. T of (F64Pc)2YH and (F64Pc)2LuH and 

simulated Pc2Y and 2% [(F64Pc)2M(III)]
0
 samples. 
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 A re-arrangement of the equation 3.37 gives the equation: 

  
         

 

   
 

(3.38) 

 where    
  is the susceptibility of the paramagnetic impurity without the temperature 

independent term.  A plot of   
  vs. T has a near perfect non-linear fit of the Curie-Weiss 

law.  It is known that the product   
   vs. T can reveal whether a sample has simple 

paramagnetic, ferromagnetic or anti-ferromagnetic behavior.  Figure 3.15 shows the 

nature of the plots in each case. 

 

Figure 3.15  Shapes of the χMT vs. T curves for various kinds of magnetic 

interactions.
[150]

  

 

 

 Results from Table 3.7 showed the Weiss constant to be negative for [2] but 

positive for [1].  This would suggest that the presence of anti-ferromagnetic interactions 

in the impurities in [2] and ferromagnetic interaction for the [1] impurities.   This finding 

was further assessed by plotting two sets of curves.   They are the χM′T vs. T and the χM′−1 

vs. T curves.  The plots are shown in Figure 3.16. 



67 

 

 

 

Figure 3.16  Plots of χM′T vs. T  and χM′−1 vs. T showing the weak ferromagnetic 

interaction for the paramagnetic impurity, 
Lu

para in (F64Pc)2LuH and the weak 

antiferromagnetic interaction of the paramagnetic impurity, 
Y
para for (F64Pc)2YH at low 

temperature. 

 

 The plot of χM′T vs. T shows an anti-ferromagnetic interaction for the 
Y
para and 

ferromagnetic interaction for the 
Lu

para.  In the plot of χM′−1 vs. T, linear regression of the 

data resulted in a Weiss constants θ = −0.27 K for 
Y
para and θ = 0.78 K for 

Lu
para 

respectively.  The existence of neutral sandwich phthalocyanine Y and Lu complexes 

with similar magnetic behavior has been documented:
[151]

 the anti-ferromagnetic neutral 

Pc2Y
[152]

 and the ferromagnetic Pc2Lu.
[153]

  However, while these results point to the 

possibility of π-radical electron(s), the oxidation states of these paramagnetic impurities 

have not yet been verified.    
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 The small temperature independent term was introduced to account for possible 

errors in the use of the calculated diamagnetic correction value and measurement errors 

due to the low magnetism of the samples.  In fact, Vogt et al.
[154]

 reported that increasing 

the quality of the samples in their measurement of the van Vleck’s temperature 

independent paramagnetism (TIP) led to a reduction in the value of χ0.  TIP is the 

phenomenon where materials with closed shell ground states still exhibit a χM which is 

paramagnetic and independent of temperature.
[155]

  This TIP or van Vleck paramagnetism 

is said to originate from the coupling of ground states and excited states through a 

magnetic field if there is spin-orbital coupling.
[156]

  The use of Equation 3.39 therefore 

assists in accounting for errors in measurement process.  Furthermore, non zero values of 

χ0 were obtained for both (F64Pc)2YH and (F64Pc)2LuH while it has been reported that 

TIP values for the heavier lanthanide compounds are negligible,
[137, 154]

 or zero in the case 

of Lu
3+

 compounds.
[137]

  This makes it unlikely that χ0 observed in the cases of [1] and [2] 

was due to van Vleck’s paramagnetism alone.  Further comment on the value of χ0 should 

await higher precision testing of pure samples of [1] and [2].   

  This small value of the paramagnetism in samples of [1] and [2] would explain 

why there is an ESR signal in the solid state. The nature of these impurities will be 

further examined in Chapter 6 where the redox properties of the (F64Pc)2MH will be 

studied. 
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3.8 Electronic Spectra 

The electronic spectra of the lanthanide bispthalocyanines have been the subject of 

several investigations. 
[53, 55-57, 82, 95, 151, 157]

 They have been known to exist in three distinct 

colored species; blue, green and red, both for those produced chemically and for those 

electro-generated.  The potential applications of these materials have resulted in a several 

theoretical electronic spectra studies.   In this thesis, both the UV-visible and NIR regions 

are of interest due to the possible presence of the F64Pc
•−

 π radical species. The F64Pc
•− 

π- 

radical species produces several marker bands in these regions.  

 

3.8.1 UV-Visible Spectra 

UV-Visible spectrum was done on a Cary 50 Bio UV-visible Spectrophotometer 

interfaced to a Dell Dimension XPS T450 computer and collected using the Cary Win-

UV software.    Samples for UV-visible spectroscopy were tested in 1.0 and 0.1 cm 

quartz cuvettes.   UV-visible spectra of the both the [1] and [2] complexes was carried 

out in several polar solvents, typically between 300 and 1000 nm.   The solvents included 

acetone, chloroform, pyridine and methanol.  Their solution color depends on the 

concentration.    When the concentration is dilute (ca. 4 mg/L), the solution is purple.  As 

the concentration increased, the color appeared blue.   The spectra were essentially 

similar in all the solvents with small changes in position of the peak wavelength, λmax in 

the observed bands.  No aggregation was observed as the concentrated solutions gave 

identically shaped curves.  The aggregation studies typical of the (F64Pc)2MH is shown  

in Figure 3.17.   Verification of the lack of aggregation was probed via the Lambert-Beer 

law using the six observed peaks in the spectrum.  Straight lines were observed for the 

plots of absorbance vs. concentration for concentrations up to 149 μmol/L, the maximum 
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concentration allowed before the onset of peak distortion by the measuring apparatus.  A 

plot of the Lambert-Beer aggregation is probe is shown in Figure E.3   The UV-visible 

spectra of the complexes are shown in Appendix E.  The list of peaks and their 

corresponding extinction coefficients as recorded in the experimental spectra are shown 

in Table 3.8. 

 

Figure 3.17 Aggregation studies of (F64Pc)2YH in methanol showing lack of aggregation.  

The spectra is typical of the (F64Pc)2MH. 

 

 

 The bisphthalocyanines have a π conjugated system of about 18 electrons, the 

amount depending on the charge of the complex.  This system leads to intense 

absorptions in the UV-Visible region.  The UV-visible region is characterized by two 

main absorption bands.   They are the called the Q and B (Soret) bands.  Both bands are 

assigned to π→π* allowed transitions arising from the π conjugated system.  The Q band 
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transitions are centered in the 640 - 690 nm region, while the B band is centered in the 

320 – 350 nm region.
[12, 53, 95, 104]

  While these two bands are generally found in all the 

bisphthalocyanines, there are two transitions that have been historically considered as 

marker bands for the neutral bisphthalocyanine species.    These bands occur at 460-500 

nm and 880 – 900 nm due to intramolecular charge transfer between the two rings.
[158]

  

These bands will be referred to as the blue vibronic (BV) and red vibronic (RV), 

respectively.
[10]

 

 

Table 3.8 Peaks in the UV-Visible Spectra of (F64Pc)2LuH and (F64Pc)2YH in Methanol 

Complex λmax (nm) and Extinction Coefficient [logε] (L•mol
-1

•cm) 

(F64Pc)2YH 877,[4.13] 682,[5.07] 549,[4.78] 431,[4.58] 383,[4.95] 338,[4.97] 

(F64Pc)2LuH  918,[4.00] 687,[5.15] 546,[4.73] 433,[4.58] 385,[4.94] 340,[5.01] 

  

 The number, intensities and position of the various bands are influenced by 

factors such as the size of the central metal ion, the number and nature of the substituents 

and the redox state of the complexes.
[52]

  There is general blue shifting of the Q band with 

a decrease in the ionic radii of the central lanthanide cation.   

      Complexes [1] and [2] share some of the flagship bands found in the spectra of the 

neutral molecules.    This was surprising because the current literature did not reveal any 

[Pc2Ln(III)]
–
 complexes with any of the two [Pc2Ln]

0
 marker bands located around 450 

nm and 900 nm.   The similarities and differences are shown on the comparative UV-

visible spectra which included the NIR region of 800-1000 nm for Pc2Y and (F64Pc)2YH 

in Figure 3.18.   The (F64Pc)2MH is a one electron reduced  complex from the neutral 

molecule.  This reduction should cause a split in the Q-band which should be replaced by 

two weaker bands, one which is blue shifted and the other red shifted relative to the 
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neutral complex.
[56, 57, 68, 159]

.  The BV and RV bands were reported absent from the UV-

visible spectra of reduced species and explained by the absence of the π radical Pc
•−

 in the 

one electron reduced complex.
[52]

  The presence of minute quantities of impurities of the 

neutral species (~1%) cannot have extinction coefficient necessary to be observed with 

such large absorbance in the experimental UV-visible results. 

 

Figure 3.18  UV-visible spectra of Pc2Y and (F64Pc)2YH in chloroform.  Both the Q and 

B bands are red shifted in (F64Pc)2YH relative to Pc2Y. 
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3.8.2 Deconvolution and TDDFT Analysis of Electronic Spectra of (F64Pc)2LuH and   

         (F64Pc)2YH 

 

The experimental UV-visible spectra contain peak (λmax) positions which are a linear 

combination of more than one band (overlapping) and will also contain errors due to 

machine noise.  In order to further analyze the spectra, deconvolution was carried out 

using the open source deconvolution software Fityk®
[160]

.  The Levenberg-Marquardt 

least squares method was utilized and data was fit to the Gaussian model in the cases of 

[1] and [2] and to a Voigt model in the case of  Pc2Y.   The Pc2Y spectrum was best fitted 

to the Voigt model  and this supported a suggestion  that Voigt curves may have more 

success modeling deeper, narrower absorption bands.[161]  

 The deconvolution process itself is not perfect.  Analysis of the experimental 

spectra depends on several initial guesses as to which peaks (or bands) are present and 

also on the mathematical model is used.  The experimental electronic spectra have a 

wavelength precision of 2 nm.  The deconvolution process will also result in shifts in 

some previously overlapped peak positions.   Furthermore, it was found that both the 

absorbance intensities of the experimental spectra and sequencing of the tasks in the 

deconvolution process seem to affect the final result.  

 The results of deconvolutions presented represent many trials, and as such, there 

were some peaks which appear in all deconvolution trials (common bands) for all the 

complexes and they are highlighted on the deconvoluted spectra.  There is a high 

probability that these common bands make up the final shape of the experimental spectra.  

The other bands show too many variations or they appear at the edge of the spectrum so 

their existence and/or λmax has a lower probability.  The deconvoluted spectrum of [2] is 

shown in Figure 3.19, while that of [1] and the details of both are shown in Appendix E. 



74 

 

 

 

Figure 3.19  Deconvoluted UV-Visible (and NIR 800-1000 nm) spectrum of (F64Pc)2YH 

in methanol. 

 

 

 Support for the spectra deconvolution was sought from the TDDFT calculations 

carried out by Liao et al.
[109]

  In the electronic spectra1 analysis, excitation energies in eV 

and oscillator strengths, f, were calculated from electronic transitions between atomic 

orbitals in several probable electronic energy states.  The corresponding wavelengths of 

the excitation energies were calculated and compared with the bands obtained from the 

deconvoluted experimental electronic spectra.  An attempt was also made to assign the 

spectral bands as named in VanCott et al.
[162]

 and is customarily used.   The tabulated 

comparison is presented on Table 3.9  
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Table 3.9 Comparison of the Calculated Excitation Energies (E
exc

) and Oscillator 

Strengths (f) of (F32Pc)2MH (M=Y, Lu) with the Deconvoluted Experimental Electronic 

Spectra of (F64Pc)2YH and (F64Pc)2LuH 

 
State Contribution (%) E

exc
, (eV)     f E

exc
, (nm) Band* Expt. Spectra 

  

 
 

YF32 LuF32  YF32 LuF32    [2] 

(nm) 

[1] 

(nm) 

1
1
E 92 (48a2 → 108e) 0.97 0.95 0.0004 1281 1308 IV - - 

2
1
E 50 (47a2 → 108e);  

38 (48a2 → 109e) 

1.35 1.33 0.007 921 935 RV 877 915 

3
1
E 39 (47a2 → 108e);  

38 (48a2 → 109e);  

12 (47a2 → 109e) 

1.74 1.73 0.654 714 718 Q1 776 801 

4
1
E 75 (47a2→ 109e);  

14 (48a2→ 109e) 

1.82 1.84 0.1158 683 676 Q2 684 688 

5
1
E 97 (53b1 → 108e) 1.93 1.95 0.0164 644 637 Q3 676 664 

6
1
E 93 (52b1→ 108e) 2.06 2.06 0.0966 603 603 Q4 608 - 

7
1
E 72 (53b2 → 108e);  

26 (52b2 → 108e) 

2.22 2.13 0.0746 560 584 Q5 559 - 

8
1
E 73 (52b2 → 108e); 

 22 (53b2 → 108e) 

2.27 2.28 0.1208 548 545 Q6 548 548 

10
1
E 97 (53b1 → 109e) 2.38 2.4 0.0158 522 518 Q7 522 - 

13
1
E 69 (52b1 → 109e);  

22 (46a2 → 108e) 

2.51 2.51 0.1438 495 495 Q8 - 495 

16
1
E 88 (53b2 → 109e) 2.59 2.59 0.043 480 480 BV - - 

17
1
E 84 (61a1 → 108e) 2.63 2.61 0.0208 473 476 BV - - 

20
1
E 86 (51b1 → 108e) 2.74 2.73 0.022 454 455 BV - - 

23
1
E 48 (51b2 → 109e);  

34 (45a2 → 108e) 

2.93 2.94 0.0378 424 423 B1 434 438 

26
1
E 34 (46a2 → 109e);  

34 (61a2 → 109e) 

3.03 3.04 0.0324 410 409 B2 415 421 

31
1
E 76 (102e → 63a1) 3.20 3.21 0.0604 388 387 B3 386 388 

41
1
E 56 (59a1 → 109e) 3.53 3.51 0.408 352 354 - - - 

45
1
E 41 (58a1 → 109e);  

24 (106e→ 54b2) 

3.66 3.67 0.2074 340 339 N 337 346 

YF32, (F32Pc)2YH;  LuF32,(F32Pc)2MH 

* Spectral band assigned.  

 

 Table 3.9 shows some excitation transitions with strong f values which are not 

observed in the deconvoluted spectra of [1] and [2] and alternatively some with low f 

values which that are undoubtedly observed experimentally and contained in the 

deconvoluted spectra.  The most prominent of these being the transitions in the RV band, 

which is normally absent from the one electron reduced species, but showed up 

prominently in both the experimental and its deconvoluted spectra.  In fact, the intensity 

of its absorbance is greater than that of Pc2Y.  In addition, it is some 20 nm blue shifted 
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compared to the RV band in Pc2Y in contrast to a general red shifting of the other bands 

in the (F64Pc)2MH electronic spectra.   

 Both methods indicated the absence of transitions in the BV band and general red 

shifting of the B, Q and N bands relative to Pc2Y.  The B and N bands were shifted 

approximately 60 nm and the main Q band approximately 20 nm.   Of the eight common 

bands shown on Figure 3.20, the band at around 610 nm is missing from [1], but it 

appears to be obscured in main Q band.  It appears in the TDDFT electronic spectral 

model. 

 A small broad band which occurs at around 780 nm in the deconvoluted spectra 

appears to be the small satellite peak expected from the split of the main of the main Q 

band on the one electron reduction of the neutral species.  Kasuga et al.
[68]

, called this 

band the X-band and reported that it shifted to longer wavelengths on reduction of the 

size of the central metal ion.  This shift observed and reported in Table 3.11 where it 

shifted from 776 nm in [2] to 801 nm in [1].  They also reported that this band was absent 

from the neutral species and it was also not seen in the deconvoluted spectrum of the 

neutral Pc2Y, shown in Figure 3.20.   The deconvolution also revealed the structure of the 

broadened main Q band in [1] and [2].    

 The narrow, sharp main Q band of Pc2Y contrasts with the broad one on the 

(F64Pc)2MH.  Non equivalent macrocycles due to the presence of the proton appears to be 

responsible for the difference in the shape. 
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Figure 3.20 Deconvoluted UV-Visible spectrum of Pc2Y in chloroform. 

   

 The argument for the non equivalence of the macrocycles in the (F64Pc)2MH is 

weakly supported by the experiment structure calculations and strongly supported by the  

DFT structure optimization calculations. Previous studies to locate the proton was done 

on the protonated bisporphyrin complexes with the conclusion that the proton was 

thought to be ligated to the four pyrolle nitrogens on one of the macrocycles,
[117]

  and this 

is supported by the present calculations by Liao et al.
[109]

  It could well be the case for the 

(F64Pc)2MH otherwise the two macrocycles on these homoleptic complexes should be 

equivalent leading to a sharp main Q band, similar to the case of the F64PcZn
[110]

 or the 

Pc2Y.   

 The red shifting of the main Q and B bands of the (F64Pc)2MH  complexes 

relative to their un-substituted  Pc2Y counterpart is being attributed to the F and i-C3F7 



78 

 

 

substituents.  Electron withdrawing groups are known to cause this effect.
[95, 163, 164]

  This 

contrasts with RV band that is blue shifted relative to Pc2Y.  Again, this appears 

anomalous because the shifting of these bands usually follows the trends in the Q and B 

bands.  Of note, however, band Q6 of [1] and [2] in Table 3.11 which is a vibronic 

component of the main Q band (Q2) appears to blue shift as the main Q band red shifts 

relative to Pc2Y.  

 The presence of the UV-visible bands related to both the neutral and anionic 

complexes in the (F64Pc)2MH are probably due to the low symmetry  of these 

bispthalocyanines.   The complexes are neither of true D4d, or C4v symmetry point groups.  

Rather the point symmetry is C1.  This symmetry group along with the distortions of the 

F64Pc
2‾

 ring from planarity has apparently resulted in several transitions that are not 

normally allowed in higher symmetries being allowed. DFT/TDDFT studies have indeed 

indicated that this may be the case.
[10, 109]

 Kahlal et al.
[10]

  report that although there is 

general agreement between the experiment and calculations, the case of the oxidized and 

reduced species is not as good as the neutral molecule.  They attribute this to solvent and 

counter-ion effects, and indicate that the experimental peak wavelength (λmax) values of 

complexes such as the [Pc2Lu]
+
 and [Pc2Lu]

-
  could be easily indexed to calculated 

transitions. They are associated with the same excitations as the neutral form.  The 

calculated values of their [LuPc2]
+/0/-1

 do show peaks similar to the BV and RV values 

obtained from our (F64Pc)2MH.  Several of the excitations are forbidden but are 

vibronically allowed.   
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3.8.3 NIR Spectra   

 

The NIR of spectra of the (F64Pc)2MH complexes were conducted on a Cary 500 UV-

vis/NIR spectrophotometer machine in the wavelength range 800-2400 nm in chloroform 

and methanol.  The machine is located at Rutgers University, Newark, NJ.  NIR spectra 

of [1] and [2] are shown in Figure 3.21 along with that of Pc2Y.   The one electron 

reduced species are not expected to have any bands in NIR region because of the 

perceived absence of the π-radical phthalocyanine ligand.   Whereas the neutral Pc2Y 

shows the band at 917 nm (RV) and bands at around 1260, 1410 and 1540 nm,  the so 

called intervalence (IV) bands, the  (F64Pc)2MH only exhibited  one peak  which has 

already been  assigned to the RV band.  The absence of the IV band is predicted for the 

reduced [Pc2Ln]
−
 species.

[9]
  Its presence in the neutral species in the 1100-1600 nm 

region is attributed to the HOMO-SOMO transition and sometimes with charge transfer 

between macrocycles.  In C4v symmetry, the proposed transition is 1a2 →2a2, ( π→π*) 

lies around 1300 nm and agrees with experiment.  This fully supports delocalized nature 

of unpaired electron.   

 To assist in the interpretation of these spectra, the NIR spectrum of the PC2Y was 

de-convoluted to help identify specific transitions.  The de-convoluted spectrum shown in 

Figure 3.22 (b) exhibited all the peaks previously observed, albeit with slight deviations.  

Tests were also conducted up to wavelengths of 2400 nm in ethanol and methanol but no 

peaks were observed for [1] and [2]. 

 The TDDFT calculations done by Liao et al., Table 3.12, indicate very low 

oscillator strength for [1] and [2] which also supports its absence in the experimental 

spectra.     
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Figure 3.21 (a) NIR spectra of (F64Pc)2YH, (F64Pc)2LuH and Pc2Y in chloroform.  The 

split in the spectra at ca. 1400 nm is due to instrument error in background subtraction. 

(b) Deconvoluted spectrum of Pc2Y. 

 

3.9 Thermal Analysis 

Thermal analysis encompasses a group of techniques that are used to analyze the impact 

of temperature changes on a material.  They are generally based upon the detection of 

changes in the enthalpy or the specific heat of a sample with temperature.   The supply of 

heat to a sample in a specific physical state normally results in a predictable change in 

temperature and enthalpy governed by its specific heat capacity.   Although a constant 

value is often reported for the specific heat capacity of a substance, it often changes 

slowly with temperature.   Abrupt changes are usually the result of phenomena such as 
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changes in state (melting, boiling etc.), crystallization, glass transition, chemical reactions 

or decomposition.    Techniques included in thermal analysis are: 

 Differential Scanning Calorimetry, DSC 

 Dynamic Adiabatic Calorimetry, 

 Differential Thermal Analysis, DTA 

 Thermogravimetric Analysis, TG 

 Thermomechanical Analysis, TMA 

 Dynamic Mechanical Thermal Analysis, DMTA 

 Dielectric Thermal Analysis. 

 

3.9.1  Thermogravimetric Analysis (TGA) 

TGA is a measure of the quantity and the rate of change of mass of a substance as a 

function of temperature or time in a controlled environment.  The test is usually 

conducted as one of several procedures to determine the thermal stability of the 

substance, typically up to a temperature of 1000ºC.  TGA is a versatile characterization 

tool and can be used to provide information about materials that exhibit a mass loss 

during testing.  The information includes thermal stability, oxidative stability, effects of 

corrosive or reactive environments, moisture and volatiles content and composition of 

multi-component systems. 

 Thermo-gravimetric analysis (TGA) was done at NJIT on a Perkin Elmer Pyris 1 

TGA machine equipped with The Thermal Analysis Gas Station (TAGS) which allows 

control of the gas flow and switching through Pyris software.  Both a nitrogen and air 

atmospheres were available during the test.  Tests were conducted on [1] and [2] both in 
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atmospheres of air and nitrogen gas.  The rate of heating was 5ºC/minute from 30ºC up to 

500ºC.  Figure 3.22 shows thermal analysis. 

  

Figure 3.22 TGA of (F64Pc)2YH and (F64Pc)2LuH in air. 

 

    The samples began to show large weight loss at about 330ºC.   Separate heating 

under a vacuum up to 285ºC confirmed that the samples actually began to sublime slowly 

at this temperature.  The absence of burnt residue at the end of the test in both air and 

nitrogen gas atmospheres indicate resistance of the samples to thermal breakdown.  
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3.9.2  Differential Scanning Calorimetry 

DSC measures the difference in the quantity of heat required to raise the temperature of a 

sample and a reference as a function of temperature.   The sample and reference are 

placed in identical environments such that they are maintained at the same programmed 

temperature throughout the experiment.  The temperatures are measured by temperature 

measuring transducers, such as a platinum resistant thermocouple. A feedback control 

system is programmed so that the temperatures of both thermometers are compared and 

the electrical energy supplied to each heater adjusted so that they maintain the same 

programmed temperature.   Differences in heat flow between the sample and reference 

are measured.  Under these conditions, the rate of change of temperature is dependent on 

the rate of heat absorption and the sample’s specific heat.  A smooth change in the rate of 

heat absorbed by the sample is obtained unless there is some thermal event that occurs 

during the heating (or cooling) cycle which causes a significant change in the specific 

heat of the sample and an abrupt change in heat absorption rate.  Events such as changes 

in state, (melting, sublimation), crystallization, decomposition and glass transition are 

examples of such events.  The results are usually plot on a DSC curve which is plot of 

heat flow versus temperature.  A typical DSC curve is shown in Figure 3.24.   DSC has 

applications area such as purity analysis, characterization of substances, quality control in 

the polymers, determination of oxidative stability and drug analysis.    
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Figure 3.23 Typical DSC curve showing features. The graph shows exothermic thermal 

transitions as a positive peak, referred to in DSC graphs as “Exo Up”. 

 

 DSC tests were carried out on a TA Instruments Q100 V9.8 Build 296 DSC 

machine located at the University of Medicine and Dentistry of New Jersey, Newark, NJ. 

Samples of [1] and [2] were heated in non-hermetically sealed aluminum cans in an 

atmosphere of nitrogen up to a temperature of 500ºC.  The heating ramped at 10.00 

°C/min. The thermograms of the results of the DSC tests in Figures 3.25 and 3.26 show 

two main thermal events in the region 300-340ºC and around 490ºC.  In the 140-300ºC 

region, [1] shows two first order thermal transitions while [2] to shows one.  Since the 

experiments were done with the DSC machine set at “Exothermic up”, the valleys in the 
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curves are endothermic transitions suggesting a possible onset of changes in state.  The 

heating of (F64Pc)2MH up to 300ºC in order to determine their melting points in previous 

experiments did not result in their melting.  Attempts to sublime them under vacuum up 

to 285ºC did not result in melting either.  The complexes are not expected to show two 

sublimation points so the 1
st
 order endothermic thermal transition occurring at 241ºC in 

[2] is likely due to changes in the crystal structure of the complex. This could be in the 

form of a change of the space group or even a change in the twist angle of the 

macrocycles to a higher energy arrangement. It is unlikely that they are due to the 

presence of impurities from substances such as [2-2] or [2-3] due to their predicted low 

concentrations.  This may also be the case for [1] that has two similar 1
st
 order thermal 

transitions at 170ºC and 221ºC.   

 

Figure 3.24 DSC thermogram of (F64Pc)2YH.  
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 Both [1] and [2] show 1
st
 order endothermic thermal transitions at 300ºC and 

337ºC which show some consistency with the TGA tests.  Despite the different rates of 

heating between the two tests, TGA exhibits large mass loss at around 330ºC and DSC 

data shows an endothermic 1
st
 order transition in the region 300ºC-370ºC. It is therefore 

likely that these DSC thermal transitions represent sublimation. 

 The thermal event at ~490ºC is sharp and is another 1
st
 order endothermic thermal 

transition.  It is not a sublimation of [1] and [2] because it has been established that 

sublimation occurred before.  The UV-visible spectra in methanol of the materials 

remaining after the DSC test show changes (Figure 3.27) which suggest a change in the 

composition of the materials.   

 

Figure 3.25 DSC thermogram of (F64Pc)2LuH. 
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 Examination of the DSC graph of [1] shows that the highest temperature event 

occurs at a slightly higher temperature than [2] and while the remains of [2] formed a 

green solution, that of [1] was predominantly blue.   The origin of the other features on 

the DSC graphs has not been elucidated.  

   Interestingly, complex [2] that apparently completed its event centered at 491°C 

gave a spectrum with a split Q-band similar to that of the triple decker Pc3M2 

complexes.
[70, 94, 165]

   The blue remains of [1] have produced UV-visible spectrum which 

appears to be a mixture of the sample compound and its thermally transformed state.  An 

analysis of the spectra shown on Figure 3.26 will reveal the absence of the BV and RV 

bands in the new product(s). 

 

Figure 3.26 UV-visible spectra of remains of the (F64Pc)2MH samples in the DSC test 

dissolved in methanol. 
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 Further, the band occurring at about 550 nm has been blue shifted to 535 nm and 

the B band is no longer split.  It is unlikely that the products formed are the 

monophthalocyanines, F64PcM or the free base F64PcH2 exclusively, because their UV-

visible spectra are different.    

 The conditions in the non-hermetically sealed aluminum can in the DSC test 

probably mirrored the solid state conditions under which the triple deckers can be formed 

from the double decker.  The first triple deckers were synthesized under solid state 

conditions at high temperature ~ 300°C by Kirin et al.
[94]

  If the (F64Pc)3M2 species are 

present, then a way may have finally been found to synthesize the these compounds.  

Their synthesis have been elusive for quite some time as it was attempted based on the 

metalation of the double decker complex using the Ln(OAc)3•nH2O in the presence of the 

free base and 1,1,1 trichlorobenzene. 

 

3.10 Summary 

The characterization of the closed shell (F64Pc)2MH complexes,  M=Y, Lu revealed that 

the first representatives of this new class of bis[octakis(perfluoro i-C3F7) 

octakis(perfluoro)phthalocyninato]M(III) complexes, can be formulated as [(F64Pc
2-

)]2[M
3+

][H
+
].  Although single crystal X-ray diffraction did not reveal the presence of the 

proton due to the complexes’ large mass, it was partially confirmed via mass 

spectroscopy.  DFT analysis done elsewhere via geometric structure optimization of the 

said X-ray structures has revealed asymmetry in the structure supporting the differences 

in experimental atomic bond lengths which could not be confirmed because most of them 
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were within the limits of experimental error.  The weak magnetism observed in DC 

magnetometry of the microcrystalline solids was shown to be due to an approximate 1% 

impurity of paramagnetic species present in the sample.  The complexes are otherwise 

diamagnetic in keeping with fact that the central M[III] ions in [1] and [2] have closed 

shells and the ligands having no unpaired electrons.  This small paramagnetic impurity 

was confirmed by the observance of a symmetrical ESR signal of the microcrystalline 

solid with g = 2.004.    The absence of the ESR signal in solution also supports the 

presence of the impurity which probably disappears on protonation or counter-effects in 

solution.  Fluorine-19 NMR in acetone D6 exhibited an approximate 6:1:1 ratio of 

primary aliphatic, to aromatic to tertiary aliphatic flourines. They had the same 

approximate chemical shifts of the diamagnetic F64PcZn occurring at   −71 (6F, CF3), 

−104 (1F, Ar-F) and −165 (1F, CF).  This further supported the diamagnetism of the 

complexes.  The axial proton proposed to be attached to a pyrrole N was not observed in 

1
H NMR spectroscopy.    IR spectroscopy revealed the presence of the CF3 groups and 

vibrations typical of the phthalocyanine ring.   The marker transmission of the π-radical 

electron of the neutral species, expected as a strong, sharp peak in the region 1314-1322 

cm
-1

 was absent.  There were no peaks in the IV band (1000-1600 nm) of the NIR spectra 

in keeping with their observed absence in the one electron reduced lanthanide 

bisphthalocyanine complexes.   Thermal analysis confirmed the robustness of the 

complexes through resistance to thermal decomposition up to at least 450ºC.  UV-visible 

spectroscopy exhibited a split B band at ca. 340 and 387 nm   and a relatively broad Q 

band at ca. 684 nm, both of which are red shifted relative to their un-substituted 

analogues.   In addition, vibronic components of the Q-band appear at around 780 nm, 
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610 nm, 550 and 500 nm.  The presence of bands in the RV region of the electronic 

spectra (~ 880 nm) which are reported characteristic of the neutral species of the 

bisphthalocyanines, is anomalous because it has not been reported in the literature.  

However, this band in RV region was found to be blue shifted, while the B and Q bands 

red shifted.  This is also uncharacteristic of the general trend in the shifts in the electronic 

spectroscopy of Pc complexes on substitution with electron withdrawing groups.   

Literature theoretical electron spectroscopy and TDDFT studies have shown that this 

band may belong to vibronically allowed transitions, therefore it may be observed as well 

in the one electron reduced complexes.   Herein it is that reported that the first set of 

fluorine substituted [(F64Pc)2M]
−
  complexes exhibiting peaks in the RV region  of the 

electronic spectra of Y and lanthanide bisphthalocyanines.   
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CHAPTER 4 

STRUCTURE AND SPECTROSCOPIC PROPERTIES  

OF (F64Pc)2LnH COMPLEXES (Ln = Tb, Dy) 

 

4.1 Overview 

A primary objective of this dissertation is to synthesize and characterize perfluoro 

substituted bisphthalocyanines which have potential applications as multifunctional 

single molecular magnets.  The best known lanthanide metals which are candidates for 

this application are terbium, dysprosium and holmium and erbium because of the 

presence of large numbers of unpaired electrons in the ground state of their free ions.   

The presence of spin orbit coupling inthese metals is also important as it increases the 

values of their effective magnetic moments. 

Terbium and dysprosium bisphthalocyanines were reported as having single 

molecular magnetic behavior and the decision was therefore made to use these metals for 

a first evaluation of the effect of electron withdrawing groups on the magnetism and other 

properties of the complexes. 

This chapter covers the structure and the spectroscopic properties of the 

(F64Pc)2TbH, [3] and the (F64Pc)2DyH, [4] complexes.  It also examines similarities and 

differences between these and the properties of the closed shell Y and Lu analogues. 

 

4.2 Mass Spectroscopy 

The challenges in accurately determining the empirical formula and the oxidation state of 

the complexes necessitated the conduct of the mass spectroscopy of [3] and [4] in both 

the positive and negative modes, using different matrixes and calibration methods.  The 
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MALDI-TOF was the ionization method utilized for these samples.  In general the 

internal calibration methods give a better accuracy than the external calibration method in 

this mode.  This was also observed in Table 5.1 where alpha-cyano-4-hydrocinnamic acid 

(CCA) was used in the positive mode with PEG4000 as the internal standard.   A mass 

accuracy of 17 and 6 ppm for (F64Pc)2TbH and (F64Pc)2DyH,  respectively were obtained.  

The matrix 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile 

(DCTB) has been purported to be a relatively soft  aprotic matrix compared to other polar 

matrices and this is evidenced by a highly unlikely protonation of the analytes.
[166]

  When 

DCTB was used in the positive mode for the (F64Pc)2DyH complex, two Na+ ions were 

adducted with the apparent  loss of a proton.  Both modes appear to support the present 

protonated form of the complexes in forming the [M-H]
−
 species in the negative mode 

and the [M+H]
+
 species in the positive mode in the MALDI-TOF  test method. 

 

Table 4.1 Mass Spectroscopy Data for (F64Pc)2TbH and (F64Pc)2DyH Using the MALDI-

TOF Method 

 

Complex 

(empirical 

formula) 

Mode, and 

Matrix 

  

 

Calculated 

Peak   

(m/z)  

 Observed 

Peak 

(m/z) 

Mass
a
 

Accuracy 

(ppm) 

Comment 

C112F128N16TbH  Neg, DCTB  4159.7732  4159.56 51  [M-H]− 

C112F128N16TbH  Pos, CCA 4161.7888 4161.86 17 [M+H]+ 

C112F128N16DyH Neg, DCTB 4163.7763 4163.74 9 [M-H]− 

C112F128N16DyH Pos, CCA 4165.7920 4165.82 6 [M+H]+ 

C112F128N16DyH Pos, DCTB 4209.7559 4209.36 95 [M-H+2Na]+ 

      Key: Neg = Negative, Pos = Positive.  

 

 Challenges were reportedly experienced in trying to generate positively charged 

ions for this procedure.  In fact, no structurally valuable result was obtained for the closed 

shell (F64Pc)2MH (M=Y, Lu) using the CCA matrix in the positive mode.  The ability of 
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the (F64Pc)2LnH  complexes  to form the positively charged (adducted) species during the 

MALDI-TOF method is probably linked to some interaction with 4f electrons of the 

lanthanide.   This was also supported by the reduction of their effective magnetic moment 

from that of the free ion in the DC magnetometry test (Chapter 5).  In general the 

calculated isotopic patterns of complexes were similar to the experimentally observed 

values.  The differences were attributable to the large size of the complexes and the lower 

accuracy of the TOF mass analyzer compared to the FT-ICR.  The observed and 

calculated patterns are compared for the negative modes in Appendix A.  

 

4.3 X-ray Diffraction 

Single crystal X-ray diffraction was also carried out on the (F64Pc)2LnH complexes.  The 

crystals were obtained from the slow evaporation of mixture of acetone/chloroform 

(35%/65%) at room temperature. The crystals grew as dark bronze cuboids.  Table 4.2 

summarizes the crystal data for  (F64Pc)2TbH and (F64Pc)2DyH.  Details can be found in 

Appendix B. 

 The X-ray crystallographic data did not fully support the empirical formula.  For 

these molecules, the assumed the ionic formula ([F64Pc]
2–

)2[Ln
3+

]H
+
 could not be 

supported by the structure due to the missing proton.  It was again assumed that the 

difficulty in locating this proton was due to the large size of the macromolecule and the 

test procedure.  The (F64Pc)2TbH complex is polymorphic.  It was found to crystallize in 

two different space groups.   It crystallizes into the same P4/ncc space group as [1] and 

[2], but it also forms the P21/c space group which will be designated as [3′].  It formed 

the two different space groups in the same solvent system.  Different solvent systems 
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were tried such as acetone/toluene, acetone, methyl ethyl ketone, methyl ethyl 

ketone/toluene but the other complexes did not form the P21/c group.  The different 

crystal system is thought to be due to the amount of solvent left in the crystal the 

conditions under which the crystallization process took place.   

 

  Table 4.2 X-ray Crystallography Data for (F64Pc)2TbH and (F64Pc)2DyH 

 

Empirical 

Formula 

C112 F128 N16 Dy C112 F128 N16Tb C112 F128 N16Tb 

Formula weight 4163.60   4160.20 4160.20 

Temperature, K 300  100(2) 100(2) 

Wavelength, Å 1.54178 1.54178 1.54178 

Crystal system Tetragonal Tetragonal Monoclinic 

Space group P4/ncc P4/ncc P21/c 

Unit cell dimensions    

     a,  Å 27.1967(12) 27.5107(4) 20.6911(6)    

     b,  Å    27.1967(12) 27.5107(4) 20.9584(7) 

     c,  Å                           23.553(2) 23.6687(9) 36.6961(12) 

     α   90° 90° 90° 

     β 90° 90° 95.539(2)   

     γ 90° 90° 90° 

Volume,  Å3 17421.596 17913.4(8) 15839.0(9) 

Z 4 4 2 

Density (calc.), g/cm3 1.594  1.543 1.763  

F(000) 8040.0  8004 8097.0 

R1 0.0945 0.1128 0.0752 

wR2 0.2855  0.3120  0.2096 

Crystal size, mm3 0.12 x 0.13 x 0.16  0.20 x 0.20 x 0.15 0.25 x 0.23 x 0.14 

θ range for data 

collection 

4.60 to 54.96°  3.22 to 67.58º 3.01 to 67.63° 

Refinement method   Full-matrix least-

squares on F2 

Full-matrix least-squares 

on F2 

Full-matrix least-

squares on F2 

Goodness-of-fit on F2  

 

1.311  1.140 1.093 

  

 

 Several geometric parameters were also calculated for [3], [3′] and [4] from their 

X-ray structures. They are summarized on Table 4.3.  The two complexes with the P4/ncc 

space group will be considered first.  The reduction of Ct(4N)--Ct(4N) distance  with the 

smaller Ln
3+

 ion was observed as expected because the smaller dysprosium ion formed a 

complex with a smaller Ct(4N)--Ct(4N).  An analysis of the Metal--N bond lengths 
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revealed two different set of values, one set being longer than the other, representing the 

asymmetry caused by non-equivalent F64PcH and F64Pc ligands.  This asymmetry was 

also observed in the radius of curvature of the F64Pc rings.  The curvature was measured 

as the convexity of the F64Pc rings and defined as the sphere of radii, Ri, in the model 

presented in Figure 3.3. The data shows a non equivalence of the rings.   The F64PcH ring 

is expected to have less curvature due to its longer metal to pyrrole nitrogen bonds.  

  

  Table 4.3 Some Geometrical Parameters of (F64Pc)2LnH  

 
 [3] [3′] [4] 

Ct(4N)--Ct(4N),  Å 2.81 2.83 2.79 

Metal--N,            Å 2.426(6), 2.433(6). 

Average: 2.430 (6) 

2.436(4), 2.436(4). 

Average: 2.436(4) 

2.417(6), 2.421(6). 

Average: 2.419(6) 

Ri                        Å    19.5, 19.9. 

Average: 19.7 

19.5, 14.4 

Ave.: 16.9 

29.4, 18.4 

Ave.: 23.9 

20.2, 20.4 

Average: 20.3 

 º 32 29 32 

γ º 4.5, 7.8 5.2, 7.5 3.9, 7.6 

  Ct(4N)--Ct(4N);  Distance between the planes formed by the 4 coordinating pyrolle nitrogens. 

  Metal--N;   Distance between central metal ion and the 4 coordinating pyrolle nitrogens. 
  Ri ;  Sphere of radii for each Pc face. 

   º; Twist angle between opposing phthalocyanine rings, measured from eclipsed position. 

  γ º; Angle made by the bond that links the two benzene ring C atoms that bear the i-C3F7 groups with the  

  4N plane.  

 

 The monoclinic [3′] is unlike the tetragonal phase in that the molecules are no 

longer parallel but almost perpendicular, occurring in pairs whose 4N planes makes an 

87.6° angle, Figure 4.1(b).  Peripheral i-C3F7 groups of one molecule penetrate the 

fluorine-lined NCIS of the other molecule, up to the van der Waals contacts not only with 

other F, but also with C and N atoms of the macrocycle. This architecture leads to a more 

compact packing, the solvent-accessible volume being 22%, ~2/3 of that of tetragonal 

phases.  The arrows of Figure 4.1(c) mark the reduced symmetry of the monoclinic [3'] 

compared with the tetragonal [3], Figure 4.1(d), for which a 4-fold axis is present.  

Interestingly, the cogwheel-type alignment of the two rings is in opposite directions, each 
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coordinating F64Pc(2−) ring being chiral.  Constructing fluorinated, chiral spintronics 

devices is an intriguing possibility.  

  

 

Figure 4.1   Single-crystal X-ray structural characterizations of [3']  a monoclinic F64Pc-

based double-decker metal complex. a) Packing diagram. b) Partial packing diagram 

showing the van der Waals contacts as black dashed lines and the atoms involved as ball-

and-stick representations. c) Half of the molecular structure (one Pc ring) viewed along 

the C4 axis. The arrows connect the tertiary F atoms that are above the plane of the ring 

with those that are below it.  d) Schematic representation of the tetragonal phase viewed 

along the 4-fold axis.  The arrows indicate the alignment direction of the tertiary F atoms 

for the two Pc rings, color-coded in blue and red. 
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 At molecular-level, [3'] adopts an even more eclipsed configuration,  = 29° vs. 

32° for the tetragonal [3]. The curvature radii are now non-equivalent within each Pc ring 

of [3']: 19.5, 14.4 and 29.4, 18.4 Å, respectively.  The averages, 16.9 and 23.9 Å reflect 

the greater intramolecular distortions in [3'] relative to [3], undoubtedly due to 

intermolecular interactions.  It was noted that most sandwich complexes do not form 

columnar stacks, this architecture requiring long-chain substituents that induce liquid 

crystalline mesophases.
[167]

 It thus appeared that the i-C3F7 groups could simulate to a 

certain extent, the effects of longer alkyl groups. However, the establishment of a trend 

must await a larger i-C3F7 database. 

 

 

4.4 Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectroscopy was carried out on the (F64Pc)2LnH complexes in several polar 

solvents including, acetone D6, acetonitrile D3,  pyridine D5 and chloroform D.  
19

F NMR 

was done in order to confirm the presence of the CF3, aromatic F and the primary 

aliphatic F groups.   
1
H NMR was carried out to try to confirm the presence of the proton 

on the complex.  Neither of these techniques was successful in presenting any new data 

except the chemical shifts of the complexes.   The high paramagnetism of the central 

lanthanide ion interfered with the tests.  The chemical shifts associated with the three 

fluorine groups were observed but an integration of the peaks to confirm the 6:1:1 ratio of 

primary aliphatic F to aromatic F to tertiary aliphatic F failed.  The results of the NMR 

shifts are presented on Table 4.4.   
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           Table 4.4 
19

F NMR of (F64Pc)2LnH Complexes in Acetone D6 

Complex Primary Aliphatic CF3 shifts, 

(ppm)  and J (Hz) 

Aromatic F 

shifts, ppm 

Tertiary 

Aliphatic CF 

shifts, ppm 

(F64Pc)2TbH  −82.1  −119.3  −193.0 

(F64Pc)2 DyH  −77.4  −97.3 −180.3        

 

  

 All the respective chemical shifts of [3] were observed further upfield from those 

of the [4] by −4.7, −22.0 and −12.7 ppm for the CF3, Ar-F and aliphatic CF signals 

respectively, signifying their slightly different chemical environment in solution.  The 
19

F 

NMR spectra of (F64Pc)2LnH also exhibited the broad “hump” feature on which the 

tertiary aliphatic fluorine signal sits.    Plots of the 
19

F spectra of [3] and [4] are shown in 

Appendix C. 

 No proton peaks were observed in any of the solvents used for 1H NMR.  This 

was anticipated because the proton shifts were not observed in the diamagnetic analogues 

[1] and [2]. 

 

4.5 IR Spectroscopy  

The IR spectroscopy of [3] and [4] was carried out using solid state KBR discs.  The 

KBR disks were made up of approximately a 2% weight of sample.    As with [1] and [2] 

complexes the spectra obtained revealed   frequencies that could be assigned to pyrrole 

stretching, isoindole breathing, isoindole stretching vibrations, aza (C-N) stretching 

vibrations, and coupling of pyrrole and aza stretching vibrations.  There is still 

uncertainty regarding the locations of vibrations of the proton on the ring.  However, 

signals should be obtained from the stretching, bending and wagging of the   C-F bonds 
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on the benzene rings and on the i-C3F7 moiety. The initial assignments based on 

literature
[5, 120-123]

 are set out in Table 4.5: 

 

               Table 4.5  Infrared Peaks and Initial Assignments for  (F64Pc)2TbH and  

               (F64Pc)2 DyH 

 

Complex and Some Absorptions 

in cm
-1

. 

Assignments 

(F64Pc)2 TbH (F64Pc)2 DyH  

730m, 717m,  730m,717m  

753m 753m  

967s, 982s,   967s, 982s  

1094s, 1056w 1094s, 1056w Coupling of isoindoline deformation and  

1170 s 1170s Symmetric CF stretch 

1248vs 1249vs Anti-symmetric CF stretch 

 1385w, 1340w  

1375w 1399w  

1454w 1454w  

1487w 1490w Isoindole stretching 

1638m 1651w Benzene ring stretch 

1749w 1749w Benzene ring stretch 

     Legend:  vs = strongest absorption, s = strong,  m = medium, w = weak, b = broad 

 

Figure 4.2  IR spectra of (F64Pc)2TbH, (F64Pc)2DyH from KBR discs. 
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 An examination of Table 4.4 and Figure 4.2 shows the absence of the very intense 

band in the range 1314-1322 cm
-1

 that is characteristic of the radical species and which is 

due to pyrolle stretching.
[120]

   

 

4.6 Electron Spin Resonance 

ESR was conducted on the dry microcrystalline solids of the [3] and [4].  No signal was 

obtained from [3].  It was assumed that a small, approximate 1% paramagnetic species 

was present in the samples, similar to the cases of [1] and [2] and thus signal should be 

observed.  A very noisy signal was observed in the case of   [4] with a g value of 2.003.   

 Trojan et al.
[86]

 noted that no signal was observed from Pc2Tb at room temperature 

and attributed this to interactions between the unpaired 4f electrons of the metal core and 

the radical electron.  In the case of the Pc2Tb, the interaction was anti-ferromagnetic 

leading to no observed signal.  In the case of the Dy, complex it was found that there was 

an anti-ferromagnetic interaction at low temperature (ca. 2-60 K) and a ferromagnetic 

interaction at high (room) temperature.  The ESR was carried out at high temperature and 

thus a signal was observed.  

  

4.7 UV-Visible Electronic Spectra 

The UV-Visible spectra of the both the [3] and [4] were carried out in several solvents, 

typically between 300 nm and 1000 nm.  The solvents included acetone, chloroform, 

methanol and ethanol.  Technically, wavelengths above 800 nm are considered to be in 

the NIR region. The spectra are essentially similar in all the solvents with slight changes 
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in the positions of λmax in the observed bands as was the case for [1] and [2]. The 

observed spectra of [3] and [4] complexes are shown in Figure 4.4. 

 The peak positions as read from observed spectra and their respective extinction 

coefficients are set out in Table 4.6.   Shoulders have been omitted from the spectra as 

they will be examined in the deconvoluted spectra using FityK® software.  The B and Q 

bands were red shifted relative to their un-substituted analogues while the  RV band is 

blue shifted. As it was with [1] and [2], it was anomalous because there is a general trend 

in the red shifting of the UV-Vis peaks when substitutents are placed on the Pc ring. That 

is, these main bands tend to shift the same way.   The excitations responsible for the 

bands in the UV-visible spectra are expected to be the same as for [1] and [2] except for 

minor shifts due to instrument error and size of the central metal ion.   The largest 

deviations in the peak wavelength (λmax) occurs in the RV band with λmax of [3] being the 

shortest and [1] the longest; a difference of approximately 58 nm.  In general, λmax of the 

bands for [1] occurs at longer  λmax relative to [2]-[4].    (F64Pc)2LuH, [1], has the smallest 

central metal ion.  The differences between the other bands are too close to call because 

the readings are only accurate to 2 nm. 

 

Table 4.6  UV-Visible Spectra of (F64Pc)2TbH and (F64Pc)2DyH in Methanol 

 

Complex Peaks (nm) and Extinction Coefficient [log ε] (L•mol
-1

•cm) 

(F64Pc)2TbH 860 [4.13] 681,[5.01] 552,[4.79] 429,[4.58] 383,[4.96] 339,[4.96] 

(F64Pc)2DyH 869,[4.11] 680 [5.00] 549,[4.78] 428,[4.54] 384,[4.90] 339,[4.92] 

 

 The deconvoluted spectra of [3] and [4] contain similar peaks to [1] and [2] .  The 

presence of the band in the RV region which is characteristic of the neutral Pc2Ln species 

was again surprising.  The presence of the both the neutral and reduced species in 
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solution is unlikely because of the expectation that the peaks responsible for the IV bands 

would also be present.  In fact, the reduction of the (F64Pc)2LnH in methanol using 

hydrazine hydrate produces peaks in the IVB region.  That is, the [F64Pc ]Ln
3+

[F64Pc
3

] 

species appeared to be formed and the π radical [F64Pc
3

] apparently being responsible 

for the peaks appearing in the IV  band.    

 

Figure 4.3  UV-visible spectra of  (F64Pc)2TbH and (F64Pc)2DyH in methanol. 

 

 Furthermore, neither the protonation nor the deprotonation of  [1]-[4] was found 

to be solvent dependent since polar protonated solvents such as  methanol did not give a 

radically different UV-visible spectra from weakly basic solvents such as pyridine.  That 

is, no evidence a reaction such as in Equation 4.1was observed. 

   )()()()( 264

)(

264 IIILnPcFHIIILnPcF HPyridine
 (4.1) 
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 It appears, therefore,  that only the protonated form exists in solution and not both 

forms as suggested by Spyrolias et al.
[117]

  for [1]-[4]. 

 

Figure 4.4  Deconvoluted electronic  spectrum of (F64Pc)2TbH in  methanol. 

  

 As was found with [1] and [2] the common bands identified were similar, and the 

BV band was still absent.  The common bands were at approximate λmax of 880, 760, 610, 

520, 433, 415, 386 and 339 nm.  The specific values are listed on Table 4.7.   It appears 

that most of the excitations identified in the TDDFT calculations of Liao et al.
[109]

   can 

be applied to [3] and [4].   
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              Table 4.7 Comparison of the Deconvoluted UV-Visible Spectra of  

              (F64Pc)2TbH and (F64Pc)2DyH and Proposed  Band Assignments  

 

(F64Pc)2TbH 

   λmax (nm) 

 (F64Pc)2DyH 

  λmax (nm)   

 Proposed Band 

Assignment  

860 871 RV 

756 764 Q1 

681 682 Q2 

680 682 Q2 

643 644 Q3 

611 608 Q4 

559 554 Q5 

549 547 Q6 

532 515 Q7 

433 434 B1 

415 415 B2 

386 387 B3 

342 342 N 

339 340 N 

  

 

 

 There was striking consistency in the location of the B bands in all four 

complexes suggesting that these may not be metal dependent but rather depend mainly on 

the F64Pc
2−

 ring. The shortcomings of the deconvolution method were again evident in 

variations shown especially in the region of the Q2 band.  While it agrees in principle 

with some of the results of the TDDFT calculations, there were several peaks in the Q 

Band region where it was challenging to know their exact locations.  That is, repeated 

deconvolution of the same data shifted bands in this Q2 region to different absorbances 

and λmax. 

 No bands were observed in the IV region of the electronic spectrum of [3] and [4]. 
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4.8 Thermal Analysis 

Thermal analysis of [3] and [4] included TGA and DSC.  TGA was carried out in 

atmospheres of both air and nitrogen gas.  The rate of heating was 10ºC/minute from 

20ºC up to 500ºC and then sample was held at 500ºC for 30 minutes.   The complexes 

began to show weight loss at about 270ºC.   Separate heating under a vacuum up to 

285ºC confirmed that the samples began to sublime at this temperature.  The absence of 

burnt residue at the end of the test in both air and nitrogen gas atmospheres suggests the 

absence of their thermal breakdown.   Figure 4.5 shows the TGA graph of weight % vs. 

temperature for [3] and [4].  The examination of the samples using DSC provided further 

information as to their stability.  

 

Figure 4.5 TGA plots of (F64Pc)2TbH and (F64Pc)2DyH in air.  
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 DSC was carried out on [3] and [4] in an atmosphere of nitrogen gas and heated to 

a temperature of 500ºC.  The heat flow vs. temperature graphs show four main events. 

The 1
st
 order thermal transition commencing at about 273°C and peaking at 312ºC for [3] 

was interpreted to represent the onset of sublimation.  Similarly for [4], this 1
st
 order 

thermal transition commenced at 276ºC and peaked at 323ºC.  This is supported by the 

TGA graphs and other sublimation tests.   The two thermal events occurring at lower 

temperatures may be due to events such changes in the crystalline structure or 

intramolecular conformation.   The origin   of the 1
st
 order thermal endothermic event at 

ca. 490°C appears to be related to the breakdown of the double layer structure (i.e loss of 

a ring) and or the formation of the triple layer structure based on split Q in the Q-Band 

seen in the UV-Vis of the residue of the material used for the test.   

 

Figure 4.6 DSC of (F64Pc)2TbH in N2 gas between 20ºC and 500ºC. 
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Figure 4.7 DSC of (F64Pc)2DyH in N2 gas between 20ºC and 500ºC 

 

 The color of the methanol solution made from the recovered residue of the DSC 

test was green.  The split Q-band of this type along with the absence of the BV and RV 

bands is known to be associated with the triple layer form i.e the trisphthalocyanines.
[68, 

94]
  The UV-visible spectrum of the DSC residue of (F64Pc)2DyH is shown in Figure 4.8.  

The Q band normally found at 682 nm on the unheated material appears to split into two 

peaks, one red shifted to 692 and the other blue shifted to 637 nm.  In addition, the peak 

previously appearing at 550 nm either disappeared or was blue shifted to 529 nm with 
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lower intensity.  The band normally occurring at about 340 nm appeared to be 

undisturbed.   

 

 

Figure 4.8  UV-visible spectra of remains of the (F64Pc)2DyH sample in the DSC test                    

dissolved in methanol.  

 

4.9 Summary 

As in the case of the (F64Pc)2LuH  and (F64Pc)2YH, the properties of the (F64Pc)2LnH (Ln 

= Tb, Dy) are strongly influenced by the F atoms and the i-C3F7 groups attached to the Pc 

ring and less so the central metal ion.  The non-magnetic properties are similar to [1] and 

[2] and small variations can be attributed to the lanthanide contraction.  The paramagnetic 

core of the (F64Pc)2LnH appears to affect both the ESR and the NMR results.  
19

F NMR 

signals were obtained, but only the chemical shifts could be used to confirm the presence 
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of the primary aliphatic (CF3), aromatic (Ar-F) and the tertiary aliphatic (C-F) fluorines.  

Peak integrals appeared to be distorted by the paramagnetic metal core, and that limited 

the structural information could be gleaned from the values.  The chemical shifts of all 

fluorines in the CF3, Ar-F and C-F moieties were shifted further upfield compared to 

shifts for [1] and [2], with complex [3] had the more negative values compared to [4].   

The absence of an ESR signal in [3] is consistent with literature findings
[168]

 but 

their explanation may not be the same as in this case.  In the cases of [1] and [2], the 

explanation forwarded is that the signal came from an approximate 1% paramagnetic 

impurity of the radical species, suggesting that the ligand carries the unpaired electron 

responsible for the signal.   In the case of [3], if a similar quantity of paramagnetic 

impurity is present, then it appears that its unpaired electron is coupling anti-

ferromagnetically with the unpaired electrons in the Tb
3+

 core of the paramagnetic 

impurity at room temperature.  An ESR signal is obtained for [4] and here it is assumed 

that the interaction in the paramagnetic impurity between the Dy
3+

 unpaired 4f electrons 

and the radical ligand is ferromagnetic at high temperature as indicated by Trojan et al.
[86]

  

The protonated form, (F64Pc)2LnH of the complexes as the stable form is 

supported by the UV-Vis data, NMR, IR and X-ray spectroscopy. 
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CHAPTER 5 

MAGNETOMETRY   

of (F64Pc)2LnH COMPLEXES (Ln = Tb, Dy) 

 

5.1 Overview 

The magnetic properties of materials can be probed by several techniques. These include 

NMR,  EPR,  Neutron Diffraction,
[169, 170]

 MCD
[171, 172]

, Muon Spin Relaxation (μSR)
[173, 

174]
, Magnetic Force Microscopy,

[175, 176]
 and DC and AC magnetometry.  Investigation of 

the structural and magnetic properties of large molecular clusters is complex and requires 

the use of many different techniques. Calculations of the energy levels of large clusters 

include techniques of elastic neutron scattering and polarized neutron scattering.  They 

often provide both magnetic and structural information on the specimen.  NMR, EPR and 

μSR are referred to as resonance techniques and their use depend on many factors 

relating to the nature of the sample and which magneto, energy, or spin dynamics data is 

required.
[177]

 

   DC magnetism is a popular method of carrying out the initial magnetic 

characterization, as was done for [1] and [2].   The so called Zero Field Cooled-Field 

Cooled (ZFC-FC) test when carried out at relatively low magnetic field may detect 

certain magnetic effects due to irreversibility such as ferromagnetism.
[178]

  The ZFC-FC 

test involves a cooling of the sample in to a low temperature, typically 2-5 K in a zero 

magnetic field.  At this lowest temperature, a single value of the DC magnetic field is 

then applied to the sample as its temperature is raised to the highest temperature, 

typically 300-400 K during which the magnetization is measured, (the ZFC portion).  The 

temperature is the again lowered to the previous low temperature at the same DC 
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magnetic field and the sample’s magnetization is then measured either on cooling, or 

when it is being warmed up to the high temperature, (the FC part of the procedure).   In 

DC magnetism measurements, the sample’s magnetization can be measured as a function 

of the magnetic field, M(H) at constant temperature to also detect hysteresis.  During DC 

magnetic testing, the equilibrium value of the magnetization is measured. 

 While DC magnetism may produce important information on a sample’s magnetic 

properties such as its ferromagnetism, anti-ferromagnetism, and the presence or absence 

of a Curie-Weiss behavior, it is still very limited. Other important magnetic 

characteristics such as spin glass phenomena, superparamagnetism, magnetic phase 

transitions and superconductivity may not be detected.  Such phenomena may be detected 

in AC magnetometry.  In AC magnetometry, a time varying field, H(t) is usually 

superimposed on a small DC magnetic field.  This results in the induction of a time 

dependent magnetic moment, Mac(H) in the sample.   This H(t) is the driving frequency, 

ω and it can be shown that: 

    
  

  
        

(5.1) 

where dM/dH is the susceptibility, χ.  Under conditions where ω is small, the DC moment 

will follow (approximately), the AC moment of the sample.  However, for certain 

samples, there may be a lag of the sample’s magnetization behind that of the driving 

magnetic field.  The sample is then said to exhibit a dynamic response.  The 

magnetization response is often described as the χ and the phase lag angle φ.  These two 

parameters are used to then describe an in-phase susceptibility χ′, and an imaginary, or 

out-of-phase susceptibility, χ″.  They are related to the χ and φ by the expressions; 
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         (5.2) 

         (5.3) 

 χac can therefore be expressed as: 

                      (5.4) 

The magnitude of χ is then              and φ = arctan(χ″/χ′).  χ′, is called the 

magnetic dispersion.  As the limit of low AC frequency approaches that of DC 

magnetometry, χ′ is the slope of M(H).
[178]

  

 Dissipative processes in the sample are represented by the imaginary component 

χ″.   Many interesting phenomena can be probed by AC magnetometry.   Manipulation of 

parameters, χ′, χ″, ω, temperature (T), H in plots such as χ′T vs. T,  χ″/ χ′ vs T, χ vs. H and 

χ″ vs. T can reveal information about a sample’s magnetic properties.   For example, a 

nonzero imaginary susceptibility in ferromagnetic materials can indicate irreversible 

domain wall movement or absorption due to a permanent moment.  Additionally, both χ' 

and χ" are very sensitive to thermodynamic phase changes, and are often used to measure 

transition temperatures.
[178]

 A plot of a series of χ" vs. χ'  referred to as a Cole-Cole 

diagram, is an Argand diagram
[179]

 and it forms a semicircle if only one relaxation 

process occurs.
[180]

  A Cole-Cole (or Nyquist) diagram may be described as a plot of 

imaginary vs. real components (Argand diagram) of the response of frequency dependent 

devices/materials.   The Cole-Cole model is relaxation model and is based on the original 

generic equations developed by the Coles.
[181, 182]
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5.2 Molecular Magnetism 

Molecular magnetism is generally regarded as the phenomenon whereby the magnetism 

in a substance is attributed to single molecules or ions, each behaving as a magnet in 

contrast to traditional bulk magnets such as ferromagnets where the magnetism is 

produced by cooperating molecular/atomic units.   Single Molecular Magnets (SMMs) 

represent a “bottoms up” approach to nanomagnetism.
[183]

   Molecular magnets exhibit 

many properties of bulk magnets but they also exhibit new phenomena some of which are 

quantum related such as Quantum Tunneling of Magnetization (QTM),
[91, 184-186]

 quantum 

coherence/decoherence,
[2, 187]

 quantum phase interference,
[188]

 staircase hysteresis 

loops
[186, 188]

 and temperature independent relaxation.
[189, 190]

  

 The criteria for molecules to exhibit SMM behavior varies, but in general they 

should be  macro or supra-macromolecules, have a total high spin and have high 

magnetic anisotropy.  Magnetic anisotropy may be caused by Zero Field Splitting (ZFS) 

and is said to have profound effects on magnetic properties.   ZFS is the removal of spin 

microstate degeneracy for systems with S > ½ in the absence of an applied field.  The 

removal of this degeneracy is a consequence of molecular electronic structure and/or spin 

density distribution.
[191]

  The “D” parameter is associated with axial ZFS and for odd 

electron systems, removes the microstate degeneracy and produces Kramer’s doublets.  

Understanding ZFS is essential for the rational design of SMMs because the energy 

barrier separating the +ms and –ms microstates is equal to |S
2
D|.

[191]
  A high magnetic 

anisotropy implies an easy axis of magnetization (usually referred to a longitudinal or z-

axis).  An application of a magnetic field along z, Bz, causes a shift in the potential 
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wells.
[192]

  Figure 5.1 shows the potential wells, microstates and the shift in the one of the 

wells. 

 Magnetic relaxation is a process which involves a system at an equilibrium state 

going to new equilibrium state after perturbation.  The time between the two equilibrium 

states is called relaxation time.
[193]

  The application of a time varying magnetic field as in 

AC susceptibility provides this perturbation.  For bulk magnets, the hysteresis is 

associated with alignment of, and growth of domains with the AC magnetic field and 

results from long range order.   

 

Figure 5.1 Double-well potential of a uniaxial spin, tilted on the application of a 

magnetic field.   One of the wells represents a spin up and the other a spin down.  The 

different levels      corresponds to the magnetic quantum numbers, the eigenvalues for 

the Sz.
[194]

 Differences between the energy levels is approximately 10 cm
−1

. 
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 SMMs can be considered as super paramagnetic particles approaching nano-sized 

particles whose spins are so strongly bound by exchange interaction energy that they act 

as single spin.    For classical bulk magnets, the relaxation is thermal in nature.   Classical 

magnetic behavior is observed in SMM at sufficiently low temperatures where they 

exhibit hysteresis. The presence of steps in the hysteresis loops at certain values of the 

magnetic field is evidence of QTM.
[185]

 An example of an SMM is the M12 class of 

compounds formulated with a core of [Mn
III

10Mn
II

2O16Cl2] of which 

[Mn12O8Cl4(O2CPh)8(hmp)6]  (hmp is from 2-(hydroxymethyl) pyridine) is a member.
[195]

  

This class of high spin transition metal compounds with S=10 are famous for exhibiting 

the phase lag and QTM in a time varying magnetic field.  In some SMMs, the relaxation 

may be a hybrid of both thermal and quantum processes.   This was unexpected because 

according to semi-classical theoretical work, at some temperature called the crossover 

temperature, Tc the system was expected to relax strictly by thermal dynamics.  The result 

is the occurrence of tunneling at temperatures into the regime that semi-classical theories 

would predict purely thermal dynamics. 

 The semi classical concept of tunneling often involves a particle escaping from a 

metastable potential well as shown in Figure 5.2, with inadequate energy to overcome the 

potential barrier.  The particle therefore tunnels through the barrier instead of climbing 

over it.    
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Figure 5.2 Thermally assisted resonant tunneling process for Mn12 type molecules under 

the action of an applied magnetic field along the easy axis.  The different      levels for 

an S = 10 system are shown.
[185]

 

 

  

 A SMM with anisotropy gives the magnetization vector a preferred direction, 

known as the easy axis.  The Hamiltonian which may have the most relevance to this 

molecule is:
[185]

 

      
     

             (5.5) 

where D and A are anisotropy constants originating primarily from crystal and molecular 

fields, H ′  contains the terms that do not commute with Sz and is thus responsible for 

tunneling.  In zero external magnetic field, the magnetization minima and maxima are 

aligned parallel and anti-parallel with the z – axis and flipping between these extremes 

requires overcoming a barrier of,       
     

 .  The height of the barrier can be 

reduced by the applied field.  As the temperature is raised, the system attains the thermal 
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energy to activate the magnetization over the potential barrier and due to the much 

shortened relaxation time, paramagnetic behavior is observed. 

  The SMM behavior discovered in bis(phthalocyaninato) complexes of Tb, Dy, 

and Ho
[91, 184]

  has been reported to have a fundamentally different mechanism from  that 

of the transition metal SMM such as Mn12.    Whereas molecules such as Mn12 exhibit 

QTM between different substates |Sz|, these [Pc2Ln] molecules manifest QTM between 

the entangled states              of the electron and nuclear systems.
[196]

  This is coupling of 

the moments of electron spin, orbital angular and nuclear spins by the perturbation of 

hyperfine and nuclear quadrupole interactions.   Takamatsu et al.
[197]

 indicated that the 

ligand field splitting itself is insufficient to explain the staircase structures at μ0H = 0.  

They found it necessary to include the interaction of the 4f
8
 electrons and the I = 3/2 

nuclear spin of the nucleus of the Tb(III) central ion.  They carried out a numerical 

analysis which included the ligand field, LF term, the hyperfine interaction term, AhfJ·I 

and the nuclear quadrupole interaction term     
            .   The inclusion of the 

nuclear quadrupole term was necessary to explain the occurrence of steps that were not 

equidistant in the [Pc2Tb]
− 

ion. The case of the Dy complex exhibited greater 

complications with the presence of seven naturally occurring isotopes with only the  

161
Dy and 

163
Dy having I = 5/2, while all the others have I = 0.   
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Figure 5.3 (a) Nuclear quadrupole interactions and hyperfine interactions represented by 

Zeeman energy diagrams calculated with terms, Ahf = 0.0173 cm
−1

 and P =0.010 cm
−1

. 

(b)  QTM shown by steps in the hysteresis loop at 0.04 K for a single crystal of 

[(Pc2Tb0.02Y0.98]
−
 · TBA

+
  measured at 0.001 T/s.

[88]
 

 

  

 According to Kramer’s theorem of spin parity, no tunneling should occur for the 

isotopes with I = 0 and they should not contribute to the step structure.  Ishikawa
[88]

 also 

reported that in the tunnel splitting, the gaps for the Tb complex are two orders of 

magnitude larger than for the Dy complex and it may explain why no clear steps are seen 

where μ0H ≠ 0.  The coupling of the half integer spins of the nuclei (I = 5/2) and 4f
9
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electronic (J =13/2) to generate integer spins produce the necessary avoided crossings and 

lead to the main step seen at μ0H = 0 for the Dy complex.  

 

 

5.3 DC Magnetism in (F64Pc)2LnH (Ln = Tb, Dy) 

Magnetism of [3] and [4] was first confirmed by conducting DC magnetometry tests on 

the oven dried powdered samples using the SQUID MPMS-XL magnetometer at 

Argonne National Laboratory.  The ZFC-FC test at static magnetic field of 10 Oe was 

conducted between 2 and 300 K.   The samples were also subject to hysteresis testing by 

reversing the DC magnetizing field between −50,000 Oe and 50 000 Oe at temperatures 

of 2, 5, 50, 100, 200 and 300 K.   Repeat DC magnetometry testing was carried out at 

Rowan University, New Jersey on their SQUID MPMS-VSM magnetometer.  The ZFC-

FC was done at 100 Oe and 5000 Oe between the temperatures 5 and 300 K.  Similarly, 

the samples were subjected to hysteresis testing by reversing the DC magnetic field 

between 50,000 Oe and −50,000 Oe at a temperature of 5 K.   

 Results of both tests revealed a Curie-Weiss paramagnetic behavior of the 

samples.   No special magnetic features were revealed either at DC magnetic fields of 10 

Oe, 100 Oe or 5000 Oe for the ZFC-FC tests.  No hysteresis was observed during DC 

magnetic hysteresis testing, suggesting the absence of long range order such as would be 

observed in ferromagnetism or ferrimagnetism.   Saturation was observed at low 

temperature hysteresis testing (5 K) but no remanence point or coercive field was 

observed.  Plots of the hysteresis tests are shown in Figure 5.4. 
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Figure 5.4  Hysteresis testing of (F64Pc)2TbH and (F64Pc)2DyH in DC magnetic field.  

 

 The 1/χM vs. T and μeff vs. T was plotted for DC magnetism at 10 Oe and 5000 Oe 

for both complexes and are shown in Figures 5.5 and 5.6. 
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Figure 5.5   Plot of μeff and χM
−1

 vs. T for (F64Pc)2TbH and (F64Pc)2DyH at DC magnetic 

field of 5000 Oe. 

 

 

 Both curves exhibit anti-ferromagnetic behavior at low temperature manifested by 

a negative Weiss temperature.  The μeff and θ are 8.9 BM and −2.4 K and 10.1 BM and 

−5.8 K respectively for [3] and [4] at DC magnetic field of 5000 Oe.  The results of 

testing in the 10 Oe DC magnetic field are 8.9 BM and −1.6 K and 10.7 BM and −2.7 

observed for [3] and [4]. Overall, μeff lie within range of 9.1-9.7 and 9.0-10.7 BM, 

respectively, observed for Tb
3+

 and Dy
3+

 sandwich complexes.
[193, 198]
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Figure 5.6   Plot of  μeff and χM
−1

 vs. T for (F64Pc)2TbH and (F64Pc)2DyH at dc magnetic 

field of 10 Oe. 

 

 

 

5.4 Sub-Kevin Hysteresis Magnetic Testing. 

In order to further assess the magnetism of [3] and [4], samples were subjected to 

hysteresis testing at low temperature.  The magnetic tests were carried out on the 

undiluted samples at sub-kelvin temperatures (0.04 K – 1.1 K) on the micro-SQUID 

magnetometer at Institut Néel, CNRS, France by Dr. Wolfgang Wernsdorfer and co-

workers and the data provided.  This was the first test of SMM behavior of [3] and [4].   

Clear evidence of hysteresis was observed for both samples.  Results of these tests are 

shown on Figures 5.7 and 5.8.   
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Figure 5.7 Enlargement of hysteresis loops of (F64Pc)2TbH at 0.04 K. M = 

magnetization, Ms = saturated magnetization and μ0H is the magnetic field.  

 

 Analysis of the data from Figures 5.7 and 5.8 shows the larger hysteresis curves 

indicating slower response as the frequency was increased. The steep fall in the 

magnetization at field μ0H = 0, in the case of [4], was due to the smaller energy gaps of 

the multiplets and the presence of seven isotopes of Dy and is in keeping with previous 

observations. 
[88, 91]

 It showed a lower remenance response than in [3], which does not fall 

as sharply at μ0H = 0.  No evidence of quantum tunneling of magnetization was observed 

for either of the complexes.   This was probably due to the use of undiluted samples. 

Analyses of the X-ray structures of the complexes show columnar stacking in which the 
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molecular units are effectively isolated from each other within each stack.  However, the 

separation between the stacks is within the the van der Waals radii of the atoms and 

interactions are therefore possible as was also observed by the presence of a non-zero 

Curie- Weiss value in the DC magnetism of the complexes.   

 

 

Figure 5.8 Enlargement of hysteresis loops of (F64Pc)2DyH at 0.04 K. M = 

magnetization, Ms = saturated magnetization and μ0H is the magnetic field. 

 

 Ishikawa et al.
[7]

  has shown that the slowed response to the time varying 

magnetic field for the unsubstituted [Pc2Ln]
0
 and [Pc2Ln]

−
  complexes is not due to range 

order, but is a response of the SMM behavior brought on by uniaxial anisotropy.  The AC 
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magnetic results obtained for [3] and [4] are similar to the response of the unsubstituted 

analogues and this is strong evidence for SMM behavior in these complexes. 

 

5.5 AC Magnetism  

After SMM behavior has been observed in magnetic materials, an important measure is 

the relaxation time, τ, of the material.  This can be measured directly or indirectly.  Direct 

measurements include μSR and indirect measurements include the use of AC magnetism.  

The time varying applied magnetic field can be specified by its angular driving 

frequency, ω or in cycles per second, Hz. When ω << τ
−1

, the magnetization is always in 

equilibrium over the time scale of the experiment. The measured susceptibility is the 

same as the static susceptibility and is called the isothermal susceptibility, χT.  If ω >> τ
−1

 

then the magnetic system is effectively isolated from the surroundings and an adiabatic 

susceptibility, χS is measured, which is smaller than χT.
[199]

  A dynamic susceptibility can 

be expressed as: 

      
     

      
        

         

      
 

(5.6) 

The real part of the susceptibility is dispersion and the imaginary part is absorption.  The 

Bloch’s equation for magnetization along a longitudinal axis for these complexes may be 

expressed as:
[7]

  

     

  
  

 

 
               

(5.7) 

where H(t) is the time varying magnetic field.  This equation gives the result for χ″ which 

can be used experimentally to obtain peak values at which a blocking temperature, Tb 

may occur.  It is given by: 
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(5.8) 

A plot of χM″/χM versus temperature, T gives a graph in which τ coincides with 1/ω at a 

peak temperature of which corresponds to      
          , yielding the relaxation 

time.  A plot of relaxation time against the temperature within a specified range will yield 

the exponential dependence of the Arrhenius law given by: 

      
    

 
   

(5.9) 

where    is the attempt time and ∆ is the energy barrier for reorientation to the magnetic 

field.   The equation can be manipulated in several ways, but it was made into a linear 

equation as natural logarithms and given by: 

             
      

 

  
  

(5.10) 

  

The actual plot in this case was ln(τ
−1

) versus 1/T with a slope of ∆/k.   

 

5.6 AC Magnetism of (F64Pc)2TbH Above 2 K 

AC magnetism data was collected on a sample of [3] using the SQUID-XL magnetometer 

by collaborators Ishikawa and co-workers at Osaka University, Japan.    The sample was 

subjected to a driving AC field, (H(t)) of amplitude 3.9 Oe, under as much as three 

different DC static magnetic fields, (Hdc) of 0, 1000 and 3000 Oe.  Temperature 

dependence and frequency dependence data was generated from these tests. 

 The   
  and   

  response of to changes in temperature at driving frequencies of 1 

kHz, 100 Hz, 10 Hz and 1Hz for Hdc of  1000 Oe is shown in Figure 5.9.  Slowed 

relaxation response to the oscillating magnetic field was observed and exhibited by the 
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peaks in    
  and   

 .  These AC susceptibility peak positions showed a general increase 

in temperature with increase in H(t) and fell within the range 7 to 43 K.  There was an 

approximate increase of 4 K for each peak position in    
  when moving from Hdc of 

1000 Oe to 3000 Oe.   Increases in the peak positions of    
  were also observed between 

these said Hdc, but they were less consistent and varied between 1 and 5 K.   No clear 

AC susceptibility peaks were observed for Hdc = 0.  This was probably due to the sample 

not being diluted and suggests that interactions with neighboring (F64Pc)2TbH molecules 

has some impacts on the phase lag. 

 

Figure 5.9 Plot of the temperature response of χ” (solid lines) and χ' (line + symbol) to 

the AC magnetism of (F64Pc)2TbH at static bias magnetic field of 1000 Oe.  

  

 

 Figure 5.10 shows a plot of   
     vs. T. The positions of   

       

representing the peak out-of-phase component of the AC susceptibility, occurring at 40, 



128 

 

 

33, 19 and 8 K for ac frequencies of 10
3
, 10

2
, 10 and 1 Hz, respectively.  These values are 

within the range of 40, 32 and 15 K for AC frequencies of 10
3
, 10

2
, 10 Hz obtained from 

the anionic [Pc2Tb]
−
[TBA]

+
.
[88]

  An estimate of the pre-exponential factor (1/τ0) and the 

phenomenological barrier height to magnetic moment reversal were done for both the 

tests, where Hdc of 3000 and 1000 Oe were applied.  Ishikawa et al.
[7, 89]

  carried out 

similar testing on both the diluted and undiluted samples and reported that the    
     

peaks for 10, 100 and 997 Hz shifted to higher temperatures or remained unchanged on 

dilution.  

  

Figure 5.10  Plot of    
     vs temperature for (F64Pc)2Tb for DC field bias of 3000 Oe 

showing the peak out-of-phase components at 40, 33, 19 and 8  K for AC frequencies of 

10
3
, 10

2
, 10 and 1 Hz, respectively. 

 

 

 For the undiluted samples, they obtained values of 28, 34, and 40 K respectively 

compared to those of the undiluted sample of 16, 32 and 40 K.    This compares with both 
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the sets of results obtained from [3] which were 15, 29 and 37 K and 19, 34 and 40 K for 

Hdc fields of 1000 and 3000 Oe, respectively.   The difference between the results for 

diluted and undiluted samples was attributed to the presence of intermolecular 

interactions between [Pc2Tb]
−
 which shorten the relaxation time in the lower  temperature 

range.  This appears to be the case with [3] and as was shown with the [Pc2Tb]
−
  species, 

the slowed magnetization relaxation of the  [(F64Pc)2Ln]
−
 is an intrinsic SMM property  

rather than the result of  intermolecular interactions and long range order.
[200]

 

 

Figure 5.11 Plots of the natural logarithm of the relaxation times ln(1/τ) for the driving 

frequencies 10
3
, 10

2
, 10 and 1 Hz versus the reciprocal of the temperature, Tb, occurring 

at  peak   
     values.   Straight lines are drawn to represent the two points on each plot 

which represent temperatures above 25 K where the two phonon Orbach process occurs. 

 

Ishikawa et al.
[200]

 also explained the relaxation process of the lanthanide ions.   

The relaxation mechanism was perceived in a different manner from that of Mn12 or Fe8 

molecules.  They formulated it as the exchange energy processes between the 
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paramagnetic ions and phonon radiation which are induced by the modulation of the 

crystal or ligand field under the action of lattice vibrations.  Three major processes were 

considered between the two lowest substates:  (1) a direct process which involves the 

absorption or emission of a phonon with the same energy separation between the spin up 

and spin down states generated by either Zeeman interaction, ligand field potential or 

both; (2) the Raman process where a phonon is scattered by the spin system based on the 

rules of Raman scattering and; (3) the two phonon Orbach (spin-lattice relaxation) 

process involving excited states of the relaxation ion.  Of the three processes, the 

presence of a dominant Orbach process meant that the energy barrier to magnetization 

relaxation, ∆, can be estimated via an Arrhenius type analysis as shown in Equation 5.10.  

Plots of ln(1/τ) versus 1/Tb should yield a straight line.  Ishikawa et al.
[200]

  found that the 

plot was not an exact straight line.  The high temperature data obtained with frequencies 

997 to 10 Hz for the diluted sample of [Pc2Tb]
−
 formed a straight line and corresponded 

to temperatures above 25 K. The two-phonon Orbach process is dominant in range 25 ≤ 

T≤ 40 K and was thus determined to be the dominant process in this temperature range.   

The data below this temperature range was not found to fit this regime and was assigned 

the direct or Raman process. 

 An Arrhenius analysis carried out on the AC magnetometry data of (F64Pc2)TbH 

is plotted in Figure 5.11.  Due to the use of undiluted sample, only two points remained in 

the temperature range 25 ≤ T≤ 40 K.  Nevertheless, the two points were used to plot 

graphs of AC data with Hdc of 1000 and 3000 Oe.  The results of the Arrhenius analysis 

from Figure 5.11 for Hdc of 3000 Oe, are 1/τ0 = 3.3 x 10
8
 s

−1
, with the energy barrier, ∆ = 

300 cm
−1

, while for Hdc of 1000 Oe, the results are 1/τ0 = 2.7 x 10
7
 s

−1
 and the energy 
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barrier, ∆ = 215 cm
−1

.  These results span some earlier literature values (∆ = 230 cm
−1

 

and 1/τ0 = 5.0 x 10
7
 s

−1
).

[7, 88]
  for the [Pc2Tb]

−
 complex. 

 Figure 5.12 shows the ground state multiplets of some [Pc2Ln]− complexes.  In 

addition, the large energy difference between the two lowest substates of the Tb complex 

is indicative of a strong uniaxial anisotropy along the C4 axis.  This anisotropy is one of 

the requirements of SMM behavior. 

 

 

Figure 5.12 The ground state multiplets of  [Pc2Ln]−TBA
+
. (Ln = Tb, Dy, Ho, Er, Tm, 

Yb).
[88]

   

 

 

 The value of  ∆ was revised by Ishikawa et al.
[198]

 in their paper in which they 

used solution 
1
H NMR and AC magnetometry to determine the ligand-field parameters of 

the some [Pc2Ln]TBA ( Ln = Tb
3+

, Ho
3+

, Er
3+

, Tm
3+

 and Yb
3+

) complexes.  Based on the 
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energy difference between the two lowest sub-levels of about 400 cm
−1

, ∆ should be 

closer to this value.   

 In a study of the spin dynamics of the [Pc2Tb]
−
 through solid state  

1
H NMR, 

Branzoli et al.
[201]

 confirmed the high temperature phonon assisted transitions among the 

crystal field levels, in general agreement with previous literature results.  The activation 

barriers in the processes were, however, found to be higher, with values ranging from 640 

cm
−1

 for diamagnetically diluted samples to 584 cm
−1

 for the undiluted.  The said authors 

found that at cryogenic temperatures, the barrier to magnetization reversal and tunneling 

rates changed from sample to sample.  The diamagnetically diluted [Pc2Tb]
−  

molecules 

appeared to be affected by the samples magneto/thermal history.  This finding has 

implications for the matrix arrangements around  [Pc2Tb]
−  

which can alter the splitting of 

the crystal field levels, its symmetry and hence its spin dynamics.   The higher 

temperature Orbach processes were also found to be present in neutral [Pc2Tb]
0 

 

molecules when probed with μSR and 
1
H NMR.  The barrier between the ground and the 

first excited states was similar to that of  [Pc2Tb]
−   

diluted in a TBA matrix (640 cm
−1

) 

and the relaxation time was close to  0.1 ms at temperatures under 50 K.
[174]

  The increase 

in the temperature of about 10 K at which the neutral species showed slowed relaxation 

to AC magnetometry for the neutral [Pc2Tb]
0
  above the  [Pc2Tb]

−  
was earlier 

established.
[7]
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5.7 AC Magnetic Testing of (F64Pc)2DyH 

Temperature dependent magnetism data was collected for Hdc of 0, 1000, 2000 and 3000 

Oe at  H(t) of 1, 10, 100 and 1000 Hz.  The amplitude of the AC driving frequency was 

3.9 Oe.  Temperature dependent plots of χ′M vs. T and for χ″M vs. T   at these frequencies 

were done.  The delayed relaxation (hysteresis) was observed by peaks in the curves of 

the four frequencies occurring at lower temperatures compared to [3].  No peaks were 

observed at Hdc = 0 Oe and this was attributed to the use of the undiluted samples and 

the amplitude of the driving frequency.  These AC susceptibility peak positions showed a 

general increase in temperature with increase in Hdc and fell within the range 2 to 9 K.  

The higher frequencies of 1 kHz and 100Hz exhibited little change with increased Hdc 

while the lower frequencies showed an approximate 2 K decrease in each peak position in  

  
  when moving from the Hdc  of 1000 Oe through to 3000 Oe.   Changes in the peak 

positions of    
  for the higher frequencies were similar and only an approximate 1 K 

temperature change was observed for the two lower frequencies when moving from the 

Hdc of 1000 Oe through to 3000 Oe.  More detailed AC magnetic data on [4] is shown in 

Appendix D. 

A more detailed analysis of the frequency dependent plots,  χ′M vs. f  and  χ″M vs. f 

was carried out.  The frequency range was 0.1 Hz to 10 kHz at temperatures of 2, 3, 4, 5, 

6, and 7 K. Hdc was 0, 500, 1000, 2000 and 3000 Oe. Within the temperature range, there 

was a general shifting to higher frequencies for the lower temperature   
  peaks with 

increase of Hdc from 500 to 3000 Oe.  The effect was divergence of the temperatures 

towards the range of frequencies 20<f<300 Hz. 
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The frequency dependency data was used to carry out an Arrhenius analysis with 

peaks Tb, at 2, 3, 4, 5, 6, and 7 K.  As with data from [3], an undiluted sample was used 

and peaks for the four Hdc were plotted.  The graph of ln(1/τ) vs. 1/Tb was plotted and is 

shown in Figure 5.13.  The graph showed that as the Hdc was reduced the relationship 

shifted from being convex towards being linear, as was expected in the Arrhenius 

analysis.  An approximation based on the predicted diluted sample and an Hdc = 0 Oe 

was made by plotting the three points on the graph at Hdc = 500 Oe.   This approximation 

gave a τ0
−1

 of 1.6 x 10
5
 s

−1
 and a ∆ = 31 cm

-1
.  It compares to the literature value of ∆ = 

30 cm
-1 

and τ0
−1

 = 3.0 x 10
5
 s

−1
 for [Pc2Dy]

−
.
[200]

 

 

 
Figure 5.13 Plots of the natural logarithm of the relaxation times ln(1/τ) for the 

frequencies associated with temperatures 2, 3, 4, 5, 6, and 7 K and versus the reciprocal 

of the temperature, occurring at  peak   
     values.  The straight line (black) was 

drawn to approximate the diluted sample with Hdc = 0 Oe, from which Δ and τ0
−1

 were 

estimated. 
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Despite not having AC magnetic data on the diluted sample, the properties of the 

[4] showed several other properties in common with the [Pc2Dy]
−
.  It was reported that 

the   
     peaks shifted to slightly higher temperatures on dilution, but to a lesser extent 

than in the case of the [Pc2Tb]
−
.
[200]

 The peaks for the undiluted sample were located at 

4.5, 7, and 11.5 K while for the diluted sample, they shifted to 5.5, 7.5 and 12 K for AC 

frequencies of 10, 100 and 997 Hz, respectively.   The Arrhenius analysis result of Δ = 31 

cm
−1

 is general agreement with the energy difference between lowest and second lowest 

sublevels of Pc2Dy. Furthermore, the approximation of the straight line on all the points 

on the lnτ
−1

 vs. 1/Tb graph appears reasonable because previously, all points were found 

to lie on a straight line indicating that the Orbach process was again dominant but in the 

entire temperature range, 12 to 3 K.
[200]

  The reduction in the value of ∆ for [Pc2Dy]
−
  

relative to the Tb complex was reported as due to the lower energy of the substate 

through which the two phonon relaxation process takes place.
[200]

   

Special frequency dependence tests of Hdc were carried out at 2 K.  Hdc was 

varied in steps of 50 Oe from 0 to 200 Oe and in steps of 100 Oe up to 2000 Oe.  The 

plots examined the frequency dependence of both   
  and   

  peaks.    The graphs on 

Figure 5.14 showed that between Hdc of 0 Oe and 100 Oe peak position of   
  shifted 

from 1000 Hz to about 7 Hz.   There was then a slower shift of the peak   
  position to a 

minimum of about 0.3 Hz at at Hdc = 800 Hz.   The   
  position then converged within 

the frequency band 0.4 Hz to 4 Hz for a further increase in Hdc up to 2000 Oe.   

 The   
  curves exhibited a general falling off in magnitude as the frequency was 

increased.   Increasing Hdc resulted in curves starting to fall at lower frequencies with a 

convergence in a frequency band approximately between 0.1 and 10 Hz.   Professor 
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Ishikawa (email communication)
[202]

 noted that he had never observed this phenomenon 

before. 

 

  

                                (a)                                                                (b)   

  

                              (c)                                                                (d)  

Figure 5.14 The frequency dependence at both   
  and   

  peaks of (F64Pc)2DyH at 

varied Hdc at a temperature of  2 K. 
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5.8  DC Magnetism of (F64Pc)2TbH and (F64Pc)2DyH at 5% Dilution in Eicosane 

 

The DC magnetism of [3] and [4] was measured in a dilute 5% (mol/mol) frozen solution 

of eicosane, C20H42. A DC magnetic field of 500 Oe was applied between the 

temperatures of 1.8 and 300 K.    Plots of χM vs. T, χM
−1

 vs. T and the effective magnetic 

moment, μeff vs. T were done for both complexes and are shown on Figure 5.15. 

  

Table 5.1 Curie-Weiss Constants and Magnetic Test Results 

 

Complex C (emu∙K/mol) θ (K) μeff (BM) R 

(F64Pc)2TbH 

(F64Pc)2DyH 

10.88 

13.03 

−2.29 

−0.53 

9.33 

10.2 

0.9997 

0.9999 

 

 

 A Levenberg-Marquardt (LMA) non-linear least squares algorithm was used to fit 

the Curie-Weiss (C-W) law on the plot χM vs. T, while a linear regression was done on the 

χM
−1

 vs. T.  While the LMA minimizes this function, experience with it in this context, is 

that it tends to underestimate the values of constants C and θ in the C-W law relative to 

the linear regression.  This happens because the linear regression model has a goal of 

adjusting the values of slope and intercept to find the line that best predicts y from x in a 

sample of  x,y  data.  More precisely, the goal of linear regression is to minimize the sum 

of the squares of the vertical distances of the points from the line.
[203]

 Alternatively, the 

LMA algorithm is an iterative technique that locates the minimum of a function that is 

expressed as the sum of squares of nonlinear functions.  That is, it is a numerical solution 

to the problem of minimizing a function.
[204, 205]

   This highlights the differences in how 

each algorithm treats the data.  Additionally, LMA treats the raw data herein, while the 

linear regression operates on the reciprocal of the susceptibility vs. temperature. 
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 The results of the linear regression on χM
−1

 vs. T are, therefore, presented on Table 

5.1. 

 

Figure 5.15 Plots of DC magnetic testing of a 5% (mol/mol) dilution of (F64Pc)2TbH and 

(F64Pc)2DyH in eicosane.  The left scale represents χM vs. T while the right scale 

represents  χM
−1

 vs. T. 

 

 The values C, θ and μeff lie within the range previously obtained. Examination of 

the plot of μeff vs. T., Figure 5.16, reveals that curve for [3] follows a regular path with 

    increasing with an increase in temperature and then approaches a limiting value.   

However, the curve for [4] increases more rapidly with temperature, reaches a maximum 

and then begins to decrease.  This observed μeff vs. T behavior of [4] is being interpreted 

as an  initial anti-ferromagnetic behavior at low temperature (up to about 30 K) which 

then changes to ferromagnetic behavior at higher temperature and at >150 K, the thermal 

action begins to reduce the ferromagnetic behavior as it approaches 300 K, hence the 

reduction in μeff.  A similar behavior of Pc2Dy was reported by Trojan et al.
[86]
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Figure 5.16 Plots of DC magnetic tests of a 5% (mol/mol) dilution of (F64Pc)2TbH and 

(F64Pc)2DyH in eicosane showing the effective magnetic moment, μeff vs. temperate. 

 

 

  

5.9 Summary 

DC magnetization studies revealed that both (F64Pc)2TbH, [3] and (F64Pc)2DyH, [4]  

exhibited an antiferromagnetic Curie-Weiss behavior with no special observed features 

such as spin-glass behavior.  The ZFC-FC test carried at low DC magnetic field (10 Oe) 

and higher field (5000 Oe) within the temperature range 2-300 K produced similar 

results.  On an average, the μeff and Weiss constants, θ were found to be 8.9 BM and −2.0 

K and 10.4 BM and −4 K for [3] and [4], respectively.  DC magnetism results of tests 

carried out on the diluted samples of [3] and [4] supported these results except for the θ 

value of [4] which was only −0.53.  These values are within the range reported for one 

electron reduced Tb and Dy sandwich lanthanide complexes reported elsewhere.
[86, 198]
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 Results of the AC magnetization studies in the range 2-50 K revealed   
     

peak temperatures of   19, 33 and 40 K similar to literature values.  The energy barrier to 

magnetization relaxation was consistent with literature values within the temperature 

range 25≤T≤40 K.  The source of slow magnetization relaxation of these classes of 

molecules has been reported to be influenced by the ligand field.    The complexes’ 

ligand field induces a splitting of the electronic sub-structures making an Orbach 

relaxation process possible.  Sub-states formed from this splitting gives rise to a series of 

“spin up” and “spin down” states.  The ground multiplet of the Tb complex is J = 6 and 

splitting and the lowest Jz sub-states are Jz = ± 6 corresponding to the maximum and 

minimum states.  The energy barrier, and the pre-exponential factors obtained for [3] was 

in the range ∆ = 200-300 cm
-1 

and τ0
−1 

= 3.0 x 10
8
-2.8x10

7
 s

−1 
and for [4],  τ0

−1
 = 1.6 x 10

5
 

s
−1 

and a ∆ = 31 cm
-1

.  These values are in the range obtained for the respective 

unsubstituted 
[
Pc2Tb]

−
 and [Pc2Dy]

−
 analogues using similar test methods. 

 Magnetization studies carried out on these complexes in the sub-kelvin 

temperature range (0.04 – 1.1 K) on the micro-SQUID machine, revealed hysteresis with 

AC magnetic field rates between 0.001 T/s and 0.280 T/s.  Both [3] and [4] exhibited 

slowed response to the changing magnetic fields, characteristic of the behavior of the 

SMMs previously studied in this class of materials 

 Close examination of the sub-kelvin temperature magnetic hysteresis of [3] and 

[4] did not reveal the staircase hysteresis loops which are known to accompany (QTM). 

This is believed to be due to the use of the undiluted samples in the test.    Dispersing 

these molecules in the appropriate matrix to increase the distance between the molecular 

units should allow the observance of QTM. 
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 The AC magnetic testing of [4] exhibited some anomalous results. The χM
′′
 vs. f 

plot peaked at a frequency which shifts to lower value as temperature was raised. 

Interestingly, with Hdc = 0, the shift of the peak of χM
′′
 vs. f appeared as if was almost 

temperature independent at around 100 Hz.  More detailed AC magnetic testing at 2.0 K, 

with Hdc varying between 50-100 Oe, revealed that the χM
′′
 peaks seemed to converge 

within a small frequency range of about 0.4 Hz to 4 Hz at Hdc ~ 2000 Oe. 
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CHAPTER 6 

MCD AND REDOX  PROPERTIES  

of (F64Pc)2LnH COMPLEXES (Ln = Tb, Dy) 

 

6.1 Overview 

Electroanalytical methods are a subset of techniques in analytical chemistry.  The 

techniques include potentiometry, voltammetry and coulometry.   Common to all of these 

methods is the setting up of an electrochemical cell in which current or potential 

difference of an analyte contained in the cell is measured.
[206, 207]

  In potentiometry, the 

difference in potential between electrodes is measured while in coulometry the amount of 

matter transformed during an electrolysis reaction is measured by quantifying the charge 

through current measurements. Voltammetry is used to obtain information about the 

analyte by measuring the current while the applied potential is varied.
[208]

 

There are several variants of the voltammetric techniques.  These include Cyclic 

Voltammetry, (CV) Linear Sweep Voltammetry, Polarography, Differential Pulse 

Voltammetry, (DPV) Staircase Voltammetry and Anodic or Cathodic Stripping 

Voltammetry.  In analytical chemistry, CV and DPV are among the prominent methods 

for analyzing the redox properties of substances.   

 

6.2 Cyclic Voltammetry 

Voltammetry experiments investigate the half cell reactivity of an analyte by obtaining 

current information on the cell while sweeping the applied voltage.  The electrochemical 

cell generally has a set-up which involves three electrodes called the working, auxiliary 

and reference electrodes.  The working electrode makes contact with the analyte which is 
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usually in the form of an aqueous or non-aqueous solution or a solvent.   The tasks of 

applying the controlled potential to the working electrode and then to balance the charge 

due to electrochemical activity at its interface are shared between the auxiliary and 

reference electrodes.  Control and measurement of the potential on the working electrode 

is done by the reference electrode which does not allow the passage of a current.  The 

reference electrode is a half cell with known reduction potential and it therefore acts as a 

potential reference.  Electrochemical activity at the working electrode will result in an 

observed current.  The auxiliary electrode can then vary its potential within the range to 

achieve this observed current which can effect oxidation or reduction of the supporting 

electrolyte or solvent (analyte).  This three electrode system is the base system used in 

voltammetry for obtaining current and voltage information.  A schematic of the three 

electrode system is shown in Figure 6.1. 

 

Figure 6.1. Three-electrode setup: (1) working electrode; (2) auxiliary electrode; (3) 

reference electrode. 
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 Different electrodes can be tuned for specific systems and ranges. Working 

electrodes must be an electronic conductor and be electrochemically inert. Common 

materials used for the working electrodes in voltammetry include gold, platinum, 

mercury and glassy carbon.  During use, materials may be adsorbed onto the surface of 

the working electrode and cause degradation of its performance.  These electrodes should 

be cleaned regularly to remove the deposits.   

 The reference electrode is required have a constant potential.  The passage of a 

current through this electrode or changes in temperature will cause changes in potential.  

Concentration of the filling electrolyte can also affect the potential of the cell. These are 

minimized by having high input impedance for the reference electrode and using a 

constant temperature apparatus during testing, and proper storage of the electrode to 

maintain concentration of the electrolyte as necessary.  Common reference electrodes 

include the calomel consisting of Hg/Hg2Cl2 and the silver/silver chloride (Ag/AgCl).  

The Standard Hydrogen Electrode, (SHE) is considered the standard electrode from 

which the other electrodes are referenced.   

 The auxiliary electrode typically provides a surface for a redox reaction to balance 

the one occurring at the surface of the working electrode and normally does not need any 

special care, but its surface area must match or be larger than that of the working 

electrode.  It is commonly made from platinum wire. 

  

6.2.1 Theory of Cyclic Voltammetry  

 

In cyclic voltammetry and the applied potential is swept at particular rate, v(t) 

commencing at an initial value of  Ei.  It is customary to sweep it in a negative direction 

initially to cause reduction, and at a predetermined value, it is switched in the positive 
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direction.  In the electrochemical cell, a reversible reaction involving a single electron is 

represented by: 

         (6.1) 

where M is the analyte.  The M
+
 has migrated to the electrode and in the case of 

reduction, for example, receives an electron from the electrode surface before diffusing 

away to the bulk solution.  Electric current at the surface of the working electrode is 

generated by the transfer of electrons from the electrode to the redox species.  In the 

absence of a redox couple, the electrode-solution interface acts as an electric double 

layer, and may be approximated to a parallel plate capacitor. 

 The current flow through the solution of the electrochemical cell is carried by the 

ions.  It is known as the Faradaic current and it depends on the kinetics of electron 

transfer and the rate at which the redox species diffuse to the electrode surface.  For the 

one electron transfer, (Equation 6.1) the kinetics of the electron transfer may be described 

by the Nernst equation on the assumption that the electron transfers are reasonably fast.  

The Nernst equation may be written as: 

      
  

  
  

    

   
 

(6.2) 

where E is the half-cell reduction-potential at the temperature of interest, E
0′

 is the 

standard cell potential at the temperature of interest, R is the universal gas constant:  R = 

8.314 472(15) J K−1
mol

−1
,  F is the Faraday’s constant: F = 9.648 533 99(24)×10

4
 Cmol

−1
, 

and n is the number of moles of electrons transferred in the cell reaction or half reaction. 

The Nernst equation can be reduced to the form in Equation 6.3 for a cell at 25°C with 

RT/F approximated to a constant 25.693 mV and the natural logarithm function changed 

to logarithm to the base 10.   The reduced form is: 
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(6.3) 

 The rate at which the ions diffuse through to the electrodes is described by Fick’s 

law for mass transfer by diffusion. It relates the distance from the electrode (x), time, (t) 

and reactant concentration, CM to the diffusion coefficient, DM.  That is: 

   

  
   

    

   
 

(6.4) 

 

6.3 Spectroelectrochemistry 

Spectroelectrochemistry may be best described as the combination of techniques of 

electrochemistry and spectroscopy in the study of the redox chemistry of organic, 

inorganic, biochemical and biological molecules.
[209, 210]

   It can follow changes in 

oxidation states of species at the electrode through spectroscopic measurements at the 

electrode/electrolyte interphase. In-situ spectroscopic techniques in spectro-

electrochemistry are varied but in general include UV-visible, IR, X-rays, magnetic 

resonance methods and microwave.  The electromagnetic radiations used in the 

techniques are detected/applied in various methods.  These methods include transmission, 

reflection, polarized light, and scattered light.
[211]

   

 

6.3.1 Transmission Type Experiments 

These types of experiments are based on the reduction in the intensity of a beam of light 

after it interacts with an electrochemical cell.  Application of this method depends on the 

transparency of the electrolyte to the range of wavelengths used. For water, UV radiation 

above 200 nm and all wavelengths of visible light are transmitted.  The absorbance, A is 

usually measured in these experiments and it is given by; 
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             (6.5) 

where α is the absorptance.  Light entering the interphase with intensity, I0 will be 

reflected, transmitted, scattered and absorbed.  The law of conservation of energy 

requires that the sum of these processes add up to unity:
[211]

 

           (6.6) 

where          ,         ,            , and           .  The light beam is 

usually applied perpendicular to the electrode surface in this case. 

 The heart of spectroelectrochemistry of this type lies in the use of Optically 

Transparent Electrodes (OTEs).  Optically transparent cells suitable for use in 

conventional UV-visible spectrometer can be made.
[209, 210, 212]

   In general, OTEs can be 

a thin metal film (such as Au or Pt) deposited on transparent substrate such as glass or 

quartz,
[213, 214]

 a glass plate coated with a thin film of optically transparent conducting 

material (such as Indium doped Tin Oxide (ITO)),
[215]

 micro meshes in which the mesh 

openings allow the passage of light, (e.g. gold mini grids) between transparent 

substrates,
[216-218]

  and thicker free standing metal meshes.
[211]

   Many new materials and 

assemblies have been developed for use as OTEs and Optically Transparent Thin-Layer 

Electrodes (OTTLEs) such as diamond and graphene based electrodes,
[219, 220]

hybrids,
[221]

 

colloidal materials deposited between substrates instead of mini grids,
[222]

 and emerging 

materials.
[223]

   

 The OTE is set up in the electrochemical cell either as a single working electrode 

or as a stack of working electrodes and is combined with a reference and auxiliary 

electrode usually in conventional set-up as in Figure 6.1.  During operations, the 

transmitted intensity is measured as a function of the potential.  This is used with other 
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parameters to calculate absorbance as the wavelength is varied in a UV-visible 

experiment. 

 

6.3.2 Reflectance Type Experiments 

In reflectance type spectroelectrochemical experiments, the intensity of the reflected 

beam is measured as a function of potential.   The reflectance is thus given by:
[211]

 

                 (6.7) 

where, E is potential.   The reflectance is measured at two potentials.  One of these is a 

reference potential and is ideally taken at a film free surface and the other at the potential 

at which a surface film is formed.  The normalized differential reflectance,            

is the plotted versus potential or wavelength.
[224]

   

 UV-visible differential reflection spectroscopy is a suitable method for 

investigating multilayer films of oxides or metals or monolayers of strongly absorbing 

molecules, atoms or ions.  It is useful for obtaining absorption spectra of molecular films 

as a function of the redox state of the film, which depends on electrode potential. 

 

6.4 Magnetic Circular Dichroism (MCD) 

6.4.1 Introduction to MCD 

Electromagnetic waves are transverse waves in which the energy travels  as oscillations 

of magnetic and electric fields oriented at 90° to each other.  In ordinary light, there is no 

preferential oscillation of the field vectors.  Maxwell’s theory predicts that light can be 

polarized since it is a transverse wave.  After passing through certain crystals such as 

tourmalines, ordinary light can emerge with oscillation of its electric field vector in one 
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plane.  The light is then said to be plane linearly polarized.  The electric vector actually 

remains in a plane containing the propagation direction. 

In general, the polarization can be linear, circular or elliptical.  The classification 

of the polarization depends on the orientation of the electric vector.  For monochromatic 

light, the amplitude of the vector changes sinusoidally with time. When light is circularly 

polarized, the tip of the electric vector describes a circular helix about the propagation 

direction. The amplitude of the vector is constant. The frequency of rotation is equal to 

the frequency of the light.  Elliptically polarized light differs from circularly polarized 

light in that although the vector also rotates about the propagation direction,   the 

amplitude of the vector changes so that the projection of the vector on a plane at right 

angles to the propagation direction describes an ellipse.  Circular polarization is a specific 

case of the more general elliptical polarization. 

In circular polarization, the electric field vector may rotate to the right or to the 

left.  As seen from the receiver of the light, the rotation may be termed as left-handed or 

right-handed and the polarization is described based on this handedness.  Dichroism in 

certain anisotropic materials is the property of having different absorption coefficients for 

light polarized in different directions.
[225]

  Circular dichroism is, therefore, the differential 

absorption of left- and right-circularly polarized light.  It is observed in solution of 

enantiomers.   The circular dichroism of a chiral molecule can in principle be used to 

determine its enantiomeric form, referred to as its absolute configuration.
[226]

 

Faraday first showed that optical activity could be induced in matter by the 

application of a magnetic field in the direction of the propagation.
[227]

 This led to the 

development of Magnetic Induced Circular Dichroism spectroscopy or simple Magnetic 
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Circular Dichroism (MCD).  MCD is the differential absorption of left and right 

circularly polarized light induced in a sample by the application of a magnetic field 

oriented parallel to the direction of light propagation.  MCD has currently found 

applications in macromolecules with metal centers such as proteins, phthalocyanines and 

metal porphyrins.
[228]

 

 

6.4.2  MCD  Theory 

MCD spectroscopy is based on the difference in absorption, ΔA of left circular polarized 

light (lcp) and right circular polarized (rcp).  That is:  

             (6.8) 

where Alcp = absorption of lcp and Arcp = absorption of rcp.   In dilute solutions, Beers 

law is applicable and ΔA may also be given by:
[226]

  

          (6.9) 

where Δε  is the difference in the extinction coefficients of lcp and rcp,  εlcp - εrcp; c is the 

solute molarity; and l is the sample’s path length in centimeters. 

 Electric dipole transitions selection rules for the rcp light  is a dipole moment of   

−1 and for +1 for lcp light.
[229]

  The MCD dispersion can be expressed as a function that 

is linear in the applied magnetic field strength B.
[230, 231]

 That is: 

  

 
       

      

  
      

  

  
       

(6.10) 

where γ is a collection of constants, k is the Boltzmann constant, T is the temperature, E 

is the energy of the incident radiation and  (E) is a band shape function. 

The constants A, B, and C are characteristic parameters specific to a given 

molecule and to a particular transition. It is customary to refer to the contributions in 
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Equation 6.10 containing A, B, and C as A-, B-, and C- terms, respectively.  The MCD 

intensity is proportional to three different contributions.  The B- and C- terms both show 

an absorption band shape in MCD.   However, the A- term corresponds to a signal with a 

derivative band shape.   The A and B terms are temperature independent, whereas MCD 

C- term intensity is temperature dependent. Figure 6.2 illustrates the different origins of 

the A-, B- and C- term mechanisms. 

  

 

Figure 6.2 MCD mechanisms (a) A-term, (b) B-term and (c) C-term.
[232]

 

  

 The intensity of the A- term arises as result of Zeeman splitting in the excited or 

ground degenerate states.  Zeeman splitting is usually small (a few cm
-1

 in energy) which 

results in almost a cancellation of the oppositely signed lcp and rcp light and results in a 

derivative band shape.  The observance of the B- term occurs when magnetic field 

induced mixing of the excited state, |J> with an energetically close intermediate state, |K> 

occurs.  It may also be observed in field induced mixing between the ground state, |A> 
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and an intermediate state, |K>.   A significant B- term intensity only arises if |K> is close 

in energy to either   |J> or   |A>.  Whereas it is necessary for the for the energy separation 

in |A> and |K> to be small enough to allow mixing, it should be large enough to prevent 

|K> from being thermally populated, otherwise this leads to C- term intensity. 

 The intensity of C- term arises from a degenerate ground state  which undergoes a 

Zeeman Effect splitting due to the applied magnetic field.  Because degenerate ground 

states are due to spin degeneracy, only paramagnetic compounds exhibit C- term signals.  

Increasing the applied magnetic field and lowering the temperature will result in 

increased C- term intensity up to the saturation limit.  The C- term is the most important 

MCD mechanism at low temperature.
[233-235]

 

The temperature and magnetic field dependent C-term intensity contains the 

complete information of the properties of the ground state including g values and zero-

field splitting parameters as well as the polarization of the electronic transitions. 

Experimentally, the C-term spectrum can be calculated from MCD raw data by 

subtraction of MCD spectra measured at different temperatures but with the same applied 

magnetic field.  A- and B- terms can be distinguished via their different band shapes.
[232]

 

 

6.4.3 MCD Studies of SMMs 

MCD has been shown to be an invaluable tool in the study of the properties of SMMs.  

The confirmation of SMM behavior in a molecule traditionally depends on techniques 

that use bulk samples in AC magnetometry.  This technique relies on the use of 

magnetically dilute samples in order to rule out long range order as the primary cause of 

magnetic hysteresis.  While these techniques can provide this information, there are 
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drawbacks in finding the correct diamagnetic dilution matrix, one which will not react or 

affect the properties of the material under test. 

 The potential application of SMMs in high density information storage media 

requires “spin up” and “spin down” states to persist in order to maintain the integrity of 

the stored information.   The application of a magnetic field provides a means of inducing 

or erasing electron spin polarization.   The use of optical methods of the reading the sign 

and extent of spin polarization and,  possibly, of creating or erasing spin polarization in 

SMMs has been investigated.
[236]

   Optical methods provide a highly sensitive and rapid 

way to read such information.  MCD spectroscopy on frozen solutions is also considered 

a powerful tool for studying SMMs because the electronic transitions are better resolved 

in the absorption spectrum compared to the spectra of unpolarized light.  The spin 

polarized ground state induced by the applied magnetic field is measured through the 

intensity and sign of absorption of circular polarized photons.  Manipulation of the 

selection rules and orientation of axial polarization can result in information from an 

isotropic sample which is wavelength, and hence orientation dependent.
[236]

 

 

6.5 Electrochemistry of (F64Pc)2Ln 

Electrochemistry of the sandwich phthalocyanine compounds have been studied 

extensively.
[237, 238]

 The studies included both homoleptic and heteroleptic complexes 

with a variety of different substituents.
[72, 239]

    Starting from the neutral complex, they 

have exhibited up to five reductions and two oxidation processes.   In general, the number 

of redox states, and their respective standard half potentials,    
  depend on the nature of 

subsituents on the macrocycles.
[238]

 During the synthesis of the (F64Pc)2MH complexes, 
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there were some anomalies such as the presence of a weak magnetism in the formulated 

diamagnetic complexes (F64Pc)2MH, (M=Lu, Y).  The presence of “magnetic impurities” 

was partially confirmed by an EPR signal of the microcrystalline powdered sample at 

room temperature.  The presence of iron based impurities was ruled out as the cause, 

thereby implying the possibility of reduced or oxidized states of the complexes.  It was, 

therefore, necessary to study their electrochemical behavior to help elucidate the nature 

of these impurities.  The assessment of the bulk reversibility of the electrochemical 

processes in solution was necessary to perform MCD measurements on the redox states 

of (F64Pc)2TbH in solution. 

 Redox measurements of the (F64Pc)2Ln were done at Institut de Ciència de 

Materials de  Barcelona, (CSIC)-CIBER-BBN Barcelona Spain, using the Princeton 

Applied Research VersaSTAT 3 potentiostat/galvanostat machine. The experiments were 

conducted by collaborators, Prof Veciana and co-workers and raw data was provided as 

well as some results in a draft manuscript.
[240]

   

 For the purposes of these electrochemical studies, the [(F64Pc)2Ln]
n

 series will be 

designated as 1Ln
 n

, with for example, the one electron reduced  [(F64Pc)2Tb]
−
 designated 

as 1Tb

.  Unless specified otherwise, potentials given in this section are V vs. SCE.  The 

redox properties of the complexes were studied by cyclic voltammetry for 0.5 M 

solutions of F64Pc2Ln (Ln = Tb, Dy and Lu) in acetone containing 0.1 M [TBA][PF6] as 

electrolyte. A total of five processes were observed for 1Tb, including one oxidation 

process at 1.58 V and four reduction processes at 0.14, −0.21, −0.67 and −1.10 V (see 

Figure 6.3). The processes at 0.14 and −0.21 V were found to be reversible, and those at 
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1.58, −0.67 and −1.10 were quasi-reversible.  Redox potentials for 1Lu and 1Dy are shown 

in Appendix G. 

 

Figure 6.3 Cyclic voltammograms at 100 mV s
−1

 of solutions of 1Tb in a 0.1 M 

electrolyte solution of tetrabutylammonium hexafluorophosphate in acetone.   

 

 The F atoms and the i-C3F7 moiety connected directly to the Pc macrocyles 

exhibit strongly electron withdrawing characteristics and have been shown to affect the 

redox behavior of monophthalocyanine F64PcZn
[241]

 relative to the unsubstituted PcZn.   

This has been confirmed by TDDFT studies
[109]

  in which Ionization Potential (IP) of the 

(F64Pc)2M  are lower than respective IPs of F64PcZn.   The inductive effect of the fluorine 

moieties has made the anionic redox states of the 1Ln series the more stable species.   
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[(F64Pc)2Ln]0 [(F64Pc)2Ln]

Ox1

1e-

Red1

1e-
[(F64Pc)2Ln]2

[(F64Pc)2Ln]3

1e- Red2

Red3

1e-

[(F64Pc)2Ln]4

Red4

1e-
[(F64Pc)2Ln]5

 

Figure 6.4 The one electron redox processes of (F64Pc)2Ln. Ox1 = 1
st
 oxidation process 

and Redn represents the n
th

 reduction process. 

 

 Starting from the neutral complex, the first oxidation potential, Ox1shown in 

Figure 6.4, is 1.5 V and the first reduction potential, Red1 is 0.14V.  These values of the 

redox potentials are between 1.2 and 1.5 V higher than those of the unsubstituted or 

alkoxy substituted analogues.
[238]

   

 The establishment of the redox potentials opened the possibility of 

electrogenerating the reduced species. This was done, and the reduced/anionic species 

were probed by spectroelectrochemistry at an optical transparent electrode.  Spectral 

changes of some 1Tb
n

 are shown in Figure 6.5.  Similar spectral changes for 1Dy
n

 and 

1Lu
n

 are shown in Appendix G.  

 On starting with ionic compound 1Tb

, the application of a potential of −0.25 V 

vs. Ag/AgCl the dianionic analogue 1Tb
2

 could be electrogenerated.  The observed 

electronic spectrum of 1Tb
2

 exhibited four main spectral features.  There was a gradual 

disappearance of the band at 682 nm in the Q-band region of the anionic species giving 

rise to a new band at 645 nm with a shoulder at 694 nm.  In the region between 440 and 

500 nm usually referred as the BV region, two new bands appeared at 452 and 495 nm.   

The BV region contains one of the “finger print” transitions due to the presence of the π-
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radical electron. The split B-band of 1Tb

 joins in a single broad band at 360 nm.  The 

fourth feature occurred in the NIR region where the band around 860 nm assigned to a 

vibronic transition of the split Q-band disappeared and a new band appeared at 920 nm, 

while an intervalence, (IV) band appeared around 1200 nm, consistent with a mixed 

valence state. 

 A one electron reduction of the 1Tb
2

 was obtained by the application of a 

potential of −0.70 V vs. Ag/AgCl to form the trianionic 1Tb
3

.  In the BV region of the 

observed electronic spectra of the 1Tb
3

, the intensity of the band at 452 nm experienced a 

strong increase in intensity while the band at 495 appeared unchanged.  In addition, the 

split in the Q-band widened and deepened with new peaks occurring at 620 and 697 nm.  

The BV region exhibited a diminishing of a single peak but with a general increase of 

broad intensity.  In addition, in the NIR region, the IV band at around 1200 nm 

disappeared while a new band appeared at 1500 nm. 

 An assessment of the clean electrogeneration of the reduced species was carried 

out by regenerating  1Tb
2

 and 1Tb

 through the successive application of potentials −0.2 

and −0.33 V vs. Ag/AgCl, respectively.  The bulk reversibility of the process was 

demonstrated by the identity of the spectra of the starting material and regenerated 

samples.  The isolated spectra of the three redox states are shown in Figure 6.6 
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Figure 6.5 Successive UV-visible spectra during the electrochemical conversions of a 

solution of 1Tb
-
 to 1Tb

2- 
applying a potential of -0.25 V vs. Ag/AgCl (top) and of 1Tb

2- 
to 

1Tb
3-

 applying a potential of -0.70 V vs. Ag/AgCl (bottom) in acetone with 0.1 M 

tetrabutylammonium hexafluorophosphate. 

 

   

 Chemical reduction of 1Tb

 to 1Tb

2
 by the use of the strong bases, hydrazine 

hydrate in methanol and KOH in methanol/acetone was carried out at NJIT.  The addition 

of any of these bases to the 1Ln

 results in a change in color from the blue to green.  UV-

visible spectra of this green product were similar to the ones produced by 

electrogeneration.  The spectrum of the 1Tb
2

 is shown in Figure 6.7.    This further 

supports the results of the spectroelectrochemical tests on the 1Tb. 
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Figure 6.6 UV. UV-visible absorption spectra of a solution of [(F64Pc)2Tb]
−
 in 0.1 M 

electrolyte solutions of tetrabutylammonium hexafluorophosphate in acetone, and of 

solutions of [(F64Pc)2Tb]
2−

 and [(F64Pc)2Tb]
3−

 generated electrochemically from it. 

 

Figure 6.7  Electronic spectra of 1Tb

 and 1Tb

2
 in methanol.  The reduction of was 

achieved by two drops of hydrazine hydrate (100%) placed in the 1.0 cm standard UV-

visible  cuvette. 
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 All four compounds,  [1]-[4] were able to be reduced in this way, producing 

essentially similar spectra with small differences due to the nature of the central metal 

ion. 

 

6.6 Electron Paramagnetic Resonance of (F64Pc)2LnH 

The anomalous results of the ESR obtained earlier at CUNY, particularly the presence of 

a signal from the solid state ESR spectra of [1] and [2] prompted further EPR studies in 

an environment where the possibility of electrogeneration could remove other oxidation 

states of the complexes. These were also carried out at Institut de Ciència de Materials de 

at Institut de Ciència de Materials de Barcelona.  For the 1Lu

 and 1Y


 complexes, the 

diamagnetic metal core meant that an EPR signal must be generated by an unpaired 

electron in the phthalocyanine ring, meaning one of these rings must contain a π-radical 

electron.   A repeat of the EPR test with [1] in acetone did not produce a signal at room 

temperature.  A frozen solution at 150 K consisting of a mixture of acetone and 0.2 M 

TBAPF6 exhibited a weak disonian signal at g = 2.0021, with a line width of ca. 9 G.    

 

Figure 6.8  EPR spectra of  [(F64Pc)2Lu]
−
 and  [(F64Pc)2Lu]

2−
 and the non electrolyzed 

sample containing a mixture of the two redox states. 
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 The EPR signal in the initial mixture could be correlated to the presence of traces 

of 1Lu
2

 in the sample and could be checked by UV-visible spectroscopy.  A subsequent 

electrolyzing of the sample at 0.6 V vs. Ag/AgCl for about 30 minutes ensured that a pure 

1Lu

 state was obtained which was EPR silent.   A sample solution of 1Lu

2
 was then 

prepared by bulk electrolysis at 0.3 V vs.  Ag/AgCl for one hour and a strong EPR signal 

with g = 2.0021 was obtained, with a disonian line shape and a line width of 

approximately 12 G. 

 These results confirm the initial assessment that the ESR signal from the 

powdered samples of [1] and [2] was due to small amount of non-ferrous paramagnetic 

impurities.  The strong disonian signal obtained previously at CUNY can probably be 

attributed to a larger concentration of the impurities in the solid state and the larger 

sample size.  

 

6.7 MCD of (F64Pc)2TbH 

The presence of slow relaxation to magnetization reversal in magnets during AC 

magnetism testing provides one piece of evidence of SMM behavior but it may also be 

the result of long range order.    Conducting the test on dilute samples can effectively 

separate the sample’s molecules/ions from each other.    Solids can be co-crystallized in 

compatible diamagnetic matrixes or frozen in solution.  MCD spectroscopy has been 

shown to be a powerful tool in the study of SMMs in dilute solutions.
[171, 236, 242]

  The 1Tb 

sample was chosen for testing because of its enhanced SMM properties.  A solvent glass 

with good optical properties was prepared from a dilute solution of 1Tb in acetone 

containing 0.8 M TBAPF6.  Solutions of 1Tb

, 1Tb

2
 and 1Tb

3
 were electrogenerated 
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from it at potentials of 0.37 V (to ensure electrolysis of the trace amounts of 1Tb
2

), −0.03 

and −0.47 V vs. SCE, respectively.  The electrogenerated samples were then injected into 

the MCD cell and frozen in liquid N2 prior to insertion into the spectrometer.  A 

comparison of the absorption spectra of the electrogenerated samples with that of the in-

situ at room temperature was used as the basis for a quality assessment.  The in-situ 

absorption spectra of the dilute frozen samples of 1Tb were found to correspond 

essentially to their room temperature spectra.  The only important difference observed 

was a splitting of the broad Q-band at 682 nm into two bands at 703 and 660 nm for 1Tb

 

which was attributed to a better resolution of the bands at low temperatures.    

 

 

Figure 6.9 MCD spectra of solutions of [(F64Pc)2Tb]
−
, [(F64Pc)2Tb]

2−
 and [(F64Pc)2Tb]

3−
 

at 3 K and 7 T in acetone with 0.8 M tetrabutylammonium hexafluorophosphate. 
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 The three electrogenerated samples were characterized by low temperature MCD 

and complex spectra were obtained as shown previously in Figure 5.9.  The MCD 

spectrum of 1Tb

 was dominated by two pseudo A-terms corresponding to the split Q-

band at 700 and 661 nm, and another pseudo-A term at 552 nm.  In 1Tb
2

, the band at 700 

nm gave rise to an absorption shaped MCD term while the band at 621 nm appeared as a 

pseudo-A term.   The Q-band of 1Tb
3

 yielded two absorption-shaped terms of opposite 

sign at 705 and 610 nm.  In the BV region of the electronic spectra, the π-radical band of 

both 1Tb
2

 and 1Tb
3

 exhibited temperature dependent negative MCD terms at 494 and 

488 nm respectively. 

 MCD was also used to probe the magnetism of the three samples, 1Tb

 , 1Tb

2
 and 

1Tb
3

  through magnetization experiments in solution at 1.8 K by monitoring their MCD 

terms.  In order to avoid errors due to significant distortion arising from the overlap of the 

different terms, reasonably well isolated terms were selected to record the magnetization 

hysteresis curves.   The MCD intensity was measured at 562, 494 and 705 nm for 1Tb

, 

1Tb
2

 and 1Tb
3

 respectively, while sweeping the applied magnetic field between ± 2 T at 

a sweep rate of 1 T/min.    Hysteresis was observed in all three substances and the curves 

are shown in Figure 6.10.  The MCD hysteresis curves of both 1Tb

 and 1Tb

3
 which were 

measured at 562 and 705 nm respectively, showed a “butterfly” hysteresis which is 

commonly observed for the sandwich species.  A narrowing of the hysteresis loops 

observed for μ0H < 0.1 T could be attributed to the occurrence of quantum tunneling of 

magnetization at small field values between the different             states in sandwich 

lanthanide complexes.
[91]

  This contrasted with the field dependent MCD intensity of the 

Q-band of 1Tb
2

 which exhibits an open loop without any notable narrowing close to 
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zero-field.  This tends to indicate a lower efficiency in the tunneling regime for 1Tb
2

 

when compared to the other redox states.   

 

 

Figure 6.10 Hysteresis curves of the normalized MCD intensity recorded at 1.8-1.9 K 

and at a sweep rate of 1 T.min
−1

 for [(F64Pc)2Tb]
−
 (top), [(F64Pc)2Tb]

2−
 (middle) and 

[(F64Pc)2Tb]
3−

 (bottom). 
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 The field dependent MCD intensity shares some similarities with earlier studies 

carried out on different redox forms of a lanthanide sandwich compound.
[171]

  In that 

case, where the MCD were recorded under similar conditions, the anionic and cationic 

sandwich complexes exhibited “butterfly” hysteresis while the neutral complex did not.   

Although different compounds were used in both sets of experiments, a trend seemed to 

emerge in which the odd electron states (i.e., +1, −1, and −3) exhibited butterfly-shaped 

hysteresis while the odd redox states such as 0 and −2 exhibited an open loop hysteresis.  

This coincided with the EPR-active species, which are those having unpaired electrons in 

Pc macrocycles.  It is suggesting that the radical nature of the ligands in the neutral and 

dianionic states of the sandwich compounds deactivates the tunneling regime during field 

MCD testing. 

 

6.8 Summary 

Electrochemical studies identified five redox processes for the (F64Pc)2M (M= Lu, Tb, 

Dy) complexes of which one is oxidation and other four are reduction starting from the 

neutral [(F64Pc)2M]
0
 complex.  The two first reduction processes are reversible while the 

others are quasi-reversible. Mass spectroscopy (MS) done earlier on the blue compounds 

obtained from the synthesis procedure formulated them as [(F64Pc)2MH], that is the one 

electron reduced state [(F64Pc)2M]
−
. Spectroelectrochemistry, showed that the electronic 

spectra of the [(F64Pc)2M]
−
 is similar to that of the (F64Pc)2MH complexes, thereby 

supporting the results of the MS.  The chemically generated reduction of (F64Pc)2MH by 

the use of hydrazine hydrate to the [(F64Pc)2M]
2−

 was supported by 

spectroelectrochemistry through the electronic spectra of the electrogenerated species. 

 The anomaly of the ESR signal from the diamagnetic complexes (F64Pc)2YH and 
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(F64Pc)2LuH can be reasonably explained by the presence of a reduced species, most 

likely [(F64Pc)2M]
2−

,
 
due to its ease formation by reduction. The [(F64Pc)2M]

2− 
 may have 

also been formed in the synthesis process, with small amounts remaining after 

fractionation.   

 MCD spectroscopy showed that the broadened Q-band of the (F64Pc)2MH 

compared to the Pc2M complexes was due to the overlap of two peaks as shown by two 

pseudo-A terms.   The presence of the π-radical electrons of the 
 
 F64Pc

3−
 has been 

confirmed through temperature dependent negative MCD terms at 494 and 498 nm, 

respectively. 

  The use of dilute frozen samples of the first three reduced species of (F64Pc)2Tb 

for MCD magnetization studies confirmed that the hysteresis and the slowed relaxation to 

magnetization reversal as was observed through SQUID AC magnetization studies was 

not due to long range order.  This could also be extended to the (F64Pc)2Dy complex and 

was further evidence of SMM behavior in this class of complexes.  Furthermore, QTM 

which was not observed in the SQUID magnetometry of undiluted solid samples was 

observed in MCD and presents additional evidence of SMM behavior.   The observed 

phenomenon of the lack of butterfly-shaped hysteresis in the EPR active species requires 

further study. 
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CHAPTER 7 

DISCUSSION AND FUTURE DIRECTIONS 

 

7.1 Overview 

The principles behind the application of single molecular magnets will be presented in 

the context of qubits for very fast quantum computers and high capacity magnetic 

devices.  Some of the other possible applications of the complexes [1]-[4] will then be 

discussed.  

 

7.2 Quantum Computers 

The development of a new class of computational algorithm based on the rules of 

quantum mechanics
[243]

 
[244, 245]

rather than classical physics led to the proposal of the 

storage of information as quantum phase.  Whereas classical computers use the binary bit 

as the smallest size for information storage, quantum computers use a two level quantum 

system or the qubit.   A quantum parallelism in which quantum mechanical systems can 

be in a superposition of computational states and simultaneously carry out multiple 

computations in the same computer is an underlying principle.
[246]

   Quantum mechanical 

phenomena include superposition, entanglement and coherence.    

 In a quantum computer, the logic circuitry and time steps are essentially classical, 

only the memory bits that hold the variables are in quantum superpositions - these are 

called qubits.
[246]

  Generally, a quantum computer having n qubits can be in an arbitrary 

superposition of 2
n
 different states simultaneously.  On the other hand, a classical 

computer can be in only one of these 2
n
 states at any one time.   The operation of the 

quantum computer is achieved by manipulating those qubits with a fixed sequence of 
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quantum logic gates.  The sequence of gates to be applied is known as quantum 

algorithm.
[247]

 

 A number of physical implementations of the quantum computer based on certain 

principles and systems have been pursued.  The use of flawed diamonds  involve the 

creation of a qubit made possible by the electronic or nuclear spin of nitrogen-vacancy 

centers in diamond;
[248, 249]

   quantum computers based on large-area current-biased 

Josephson junction whose two lowest energy quantum levels are used to implement a 

solid-state qubit;
[250]

  nuclear magnetic resonance in solution where  the qubit is provided 

by nuclear spins within the dissolved molecule
[251, 252]

  provide a few examples.  The 

demonstrations of quantum computers are based on the quantum computational 

algorithms such as Grover’s
[245, 246, 253]

, Shor’s
[244, 254]

 and Deutsch-Jozsa.
[255]

 

 A major of objective of this research was to develop molecular magnets which 

could be candidates for qubits to be used in quantum computers.  In fact, a proposal for 

the implementation of Grover’s algorithm was developed for the high spin 3d class of 

molecular magnets such as Mn12 and Fe8.
[194]

  These SMMs use spin eigenstates as 

qubits.  Each eigenstate represents a different binary unit, i.e., 2
0
, 2

1
, 2

2
 … .  They act as 

storage units of a dynamic random access memory device, thereby allowing information 

storage and retrieval.  The decoding of read-out, stored information was to be achieved 

by using fast ESR pulses, accessing stored numbers of up to 10
5
 with access time as short 

as 10
−5

 s.
[194]

 

 The establishment of SMM behavior in [3] and the observance of QTM through 

MCD testing puts it among those candidates which can act as qubits in quantum 

computers.  The mechanism for QTM in Pc2Tb complex was reported as different from 
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the 3d, high spin SMMs.  In this complex the ground state multiplets are split by the 

ligand field from the two Pc ligands giving rise to strong magnetic anisotropy. 
[88]

  In the 

Tb complex, the lowest substates are assigned to Jz = ±6, which are the maximum and 

minimum values and correspond to the “spin-up” and “spin-down” states in the Jz = 6 

ground multiplet.  In the Dy complex, the lowest substates are characterized as Jz = 

±13/2, the second largest in the J = 15/2 ground state.
[8]

 

 The exploitation of the substate multiplets  of the lanthanide bisphthalocyanines 

for use as qubits in the implementation of quantum computing is still in its infancy.   It is 

perceived that its operation would be based on similar principles used for the 3d based 

magnets.   However, recent developments have seen electric control of the angle between 

the two ligands of Pc2Tb adsorbed to a Au(III) surface.
[256]

  The upper Pc ligand in Pc2Tb 

was rotated by applying a controlled electric current, leading to the disappearance and 

reappearance of Kondo peaks.  Reversible switching between two stable ligand 

orientations by applying a current pulse should make it possible to code information at a 

single-molecule level.    Despite being neutral molecules, [3] and [4] may still be 

potentially applicable because their behavior may be similar to Pc2Tb when attached to 

certain conducting surfaces. 

 Complexes [3] and [4] should remain as candidates for qubits because of their 

other related properties.  The fact that they are also soluble, air stable, resistant to 

oxidation, form crystals easily and are redox active also makes them even more 

attractive.  Their multifunctional nature may not be limited to these stated properties 

because their ability to form thin films, electrical, photonic, biochemical or catalytic 

properties have not been studied.   There are current drawbacks to their use as qubits, 
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chief among them being the low temperature at which SMM and hence qubit activity will 

be realized.    

 In general, the qubits in a quantum computer must be able to retain the quantum 

information they are given long enough to perform quantum logic operations across 

them.  That is, the system must be isolated from interactions in the environment which 

will cause premature quantum decoherence.  However, it must also interact in a 

controllable fashion to enable easy reading of the qubits. 

 

7.3  Some Potential Applications in Electronic Semiconductor Devices 

The development of ambipolar field-effect transistor based on organic-inorganic hybrid 

structure
[257]

 opened the possibilities for similar devices using Pc2Ln as the organic film 

in the device.  Organic Thin-Film Field Effect Transistors (OTFTs) are emerging as 

attractive candidates for low-price, large-area, and flexible circuit applications.
[51]

 An 

important property of these devices is the mobility of semi-conducting organic material. 

Li et al.
[51]

  reported that incorporation of the electron withdrawing groups such as F and 

CN on the on the Pc ring improved this mobility by converting the Pcs from p-type to n-

type semiconductors.   The mechanism was via the lowering of the Lowest Unoccupied 

Molecular Orbital (LUMO) energy level and thus facilitated the injection of an electron.   

  One of the challenges to the development of quantum computing and high density 

magnetic storage devices is the effective deposition and adsorption of the organic 

molecules to surfaces without modification of the SMM properties of the organic 

molecule.  The other common techniques used to deposit molecules such vapor 

deposition and Langmuir-Blodgett techniques did not result in a demonstration of 
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magnetic properties of the adsorbed molecules.
[4]

 Using a special technique, Vitali et 

al.
[258]

 deposited Pc2Tb crystals on Cu(111) surface as SMM.   Their studies revealed that 

the interaction with the metal surface preserved both the molecular structure and the large 

spin magnetic moment of the metal center. The 4f electron states were not perturbed by 

the adsorption, while a strong molecular/metal interaction could induce the suppression 

of the minor spin contribution delocalized over the molecular ligands.     

 A study of SMMs, Pc2Tb, Pc2Dy and Pc2Y deposited on Au(111) by Katoh et 

al.
[9]

 using Scanning Tunneling Microscopy (STM) and Scanning Tunneling 

Spectroscopy (STS) revealed the occurrence of the Kondo effect in the TbPc molecules at 

4.8 K, but neither the DyPc, YPc nor  any of the sandwich complexes exhibited this 

effect.  The Kondo temperature, Tk was ca. 250 K.  In addition, these authors investigated 

the electronic transport properties of PcLn molecules as the active layer in top- and 

bottom-contact thin-film organic field effect transistor devices.  PcTb molecule devices 

exhibit p-type semiconducting properties and the PcDy based devices exhibited 

ambipolar semiconducting properties.   The electronic application of not only sandwich 

(F64Pc)2MH complexes, but also their monophthalocyanines counterparts present exciting 

possibilities. 

 

7.4  Future Work 

1. Determine the conditions under which (F64Pc)2TbH forms the two pseudo-morphs  

[3] and [3′], having the space groups P4/ncc and the P2/1c respectively.  

Furthermore, investigate whether complexes [1], [2] and [4] are also polymorphic 

and will form crystal structures in both space groups under similar conditions. 
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2. Improve the purity of the products [1]-[4] by applying other separation techniques 

such as High Performance Liquid Chromatography (HPLC) or vacuum 

sublimation. A three stage process in the case of vacuum sublimation is 

suggested.  This begins with heating the >95% pure product in a closed glass 

ampoule at ca 300ºC for about two hours, with the intention of causing a 

breakdown or reaction of impurities.  The resulting material could then be 

subjected to liquid chromatography in an attempt to remove most of the impurities 

or undesired substances formed.  Finally, use vacuum sublimation to extract the 

products and leaving impurities in the bulk sample.  

3. Purification and full characterization of the byproducts [2-1], [2-2] and [2-3] from 

the synthesis reactions. The initial electronic and mass spectroscopy 

characterization data is suggesting that [2-1] and [2-3] may be sandwich 

compounds while [2-2] may be a monophthalocyanine. (See Appendix H). 

4. The ability of the compounds to form homogenous and strongly adhering thin 

films using the various coating techniques such as Langmuir Blodgett, physical 

vapor deposition and electrophoretic should be pursued.  Substance [2-2] appears 

to be very surface active.  Furthermore, the potential applications of complexes 

[2] and [3] as photovoltaics, semiconductor devices, qubits and high capacity 

storage devices may depend to some extent on their ability to form good films. 

5. The electrical conductivity of films of [1]-[4] for potential applications. 

6. Investigate the possibility of chemical synthesis of a stable 

H
+
[F64Pc

2−
]Ln

3+
[F64Pc

3−
]M

+
 complex where M is a cation.  This is essentially the 

[(F64Pc)2Ln]
2−

 species and since the  [(F64Pc)2Ln]
−
 is the stable species then it 
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may be possible to find a cation or cations which can stabilize the dianionic 

complex. 

7. Perform additional DSC tests on purer [1]-[4] to determine if the first order 

thermal transitions occurring at ~180ºC and ~240ºC are due to changes in 

crystalline structure.   Testing could be performed in the reverse (while cooling) 

or the use of the Modulated DSC (MDSC).
[259, 260]

 patented by TA Instruments. 

8. Separate and characterize the material that was formed in the DSC experiment at 

the point where the first order thermal event occurring at around 490ºC, resulted 

in a change in the color and electronic spectra of the residue of [1]-[4].  The 

thermal event was endothermic; therefore, there is a real possibility that there was 

a reaction because the electronic spectra were differed from the spectra obtained 

from the synthesis products and byproducts.  While it has been speculated that 

this green substance may be a three layer sandwich compound, it may also be a 

phthalocyanine formed by the replacement of the existing metal by Al from the 

metal can. 

9. Include the [(F64Pc)2M]
2−

  (M = Lu, Y) species in the DFT and  TDDFT studies of 

the of the complexes due to the real possibility of isolating a stable form of this 

complex and the fact that its  electronic spectra has been  measured. 

10. Neutron  scattering or  Muon Spin Relaxation (μSR) studies should be carried out 

to further probe the magnetic properties of the complexes, in particular to more 

accurately measure their energy barrier to magnetic reversal, ∆ and their attempt 

time.  
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11.  ESR studies of the single crystals to detect anisotropy and measure the g┴ and g║ 

values. 

12. Further, investigate whether the π-radical nature of the Pc ligand deactivates the 

tunneling regime in the sandwich compounds during the MCD experiments. 

13. Complete the AC magnetometry testing of dilute samples of [3] and [4].  

14. Continuation of the investigation of the anomalous results of  χM
′′
 vs. f  in the AC 

magnetic testing of [4]. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS  

 

8.1 Synthesis and Structure 

This research reports the synthesis, single-crystal X-ray structures and electronic and 

magnetic properties of the first examples of a new class of sandwich complexes of H-free 

ligands, stabilized in their closed-shell electronic configurations.  Before this work, 

sandwich complexes of any metal that did not contain C-H bonds were unknown.  

Bis[octakis(i-C3F7) octakis(perfluoro)phthalocyaninatoM(III)H], (M = Lu [1]; Y, [2]; Tb, 

[3]; and Dy, [4]) abbreviated (F64Pc)2MH, were synthesized in 5-12% yields from 

perfluoro-(4,5 di-isopropyl) phthalonitrile and a metal salt using a microwave-assisted 

procedure.   MALDI-TOF mass spectra confirmed the results. The formation of sandwich 

complexes was somewhat surprising given the reduced basicity of the ligand due to the 

presence of F and perfluoroalkyl i-C3F7 groups. 

 The identity of the F64Pc ligands was confirmed spectroscopically. The high 

solubility of the complexes in organic solvents facilitated the use of 
19

F NMR for the 

elucidation their structure and spin states.  Complexes [1] and [2] exhibit three  NMR 

signals at −71.4, −103.7, −165.0 and −71.6, −103.3, −165.0 ppm,  respectively, in 6:1:1 

ratio, assigned to the primary aliphatic, aromatic and tertiary aliphatic fluorine atoms, 

respectively,  the conformation was by analogy with the spectrum of diamagnetic  

F64PcZn , which exhibited signals at −71.3 (6 F), −103.9 (1 F) and −164.6 (1 F) ppm.
[261]

 

The similar chemical shifts and peak widths indicated magnetically equivalent F64Pc
2−

   

ligands in [1] and [2] and virtually eliminated the possibility of a F64Pc
−

 ligand.  The 

paramagnetic Tb
3+

 and Dy
3+

 in [3] and [4] broaden and shift the 
19

F signals up-field by 
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10.7 and 6.0 for primary aliphatic F, 15.6 and −6.4 ppm for aromatic F and 28.0 and 15.3 

ppm for tertiary aliphatic F, respectively.  An accurate integration of the 
19

F NMR peaks 

was not possible.   

 The characteristic IR bands in the 1300 - 1350 cm
-1

 range, diagnostic of π radical 

anions,
[125]

 were absent in all complexes.  Deconvoluted UV-visible spectra revealed red-

shifted N, B and Q bands relative to unsubstituted complexes, an effect of the F and the i-

C3F7 electron withdrawing groups. The proton, unobserved at the NMR time-scale, 

apparently rendered the Pc rings of [1]-[4] slightly non-equivalent resulting in split Q 

bands.  This split being relatively small, was obscured by a broadened Q-band, but was 

revealed by deconvolution of the UV-visible spectra and confirmed by MCD 

spectroscopy. The gaps between the peaks of the split Q-band of [1]-[4] was ca. 40 nm 

which was less than the 67-100 nm gaps observed for reduced, non-fluorinated 

complexes.
[52, 57, 68, 82, 159, 163]

 Spectroelectrochemistry of [1], [3] and [4] revealed a 

widening of this gap on reduction of the complexes. 

 The bands observed for [1]-[4] beyond 800 nm in the  RV region of the electronic 

spectra were ascribed to vibronic transitions of the Q-band of the anionic complexes and 

not to the bands that characterize the F64Pc
−

  radical anions electron neutral species.
[9]

   

The absence of NIR absorptions in the 1000-2200 nm region, attributed to 

F64Pc
−

/F64Pc
2−

 pair further supports the above assignments.
[72, 262]

  The electronic spectra 

of [1]-[4] were concentration independent indicating the ability of i-C3F7 groups to 

promote site isolation in solution and, possibly, magnetic dilution in the solid-state.  

 The solid-state architectures and the effects of the fluorine atoms and i-C3F7 

groups upon the structure of double-deckers were revealed via single crystal X-ray 
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studies. The formation of stable X-ray quality crystals was somewhat unexpected given 

the enhanced peripheral i-C3F7 group’s steric congestion and their anticipated impact 

upon convex ring distortions. Long-range ordering was also in doubt.  Nevertheless, 

single-crystals, albeit of medium quality were obtained by the room-temperature 

evaporation of acetone/chloroform (35%/65%) solutions.  The four complexes are 

isomorphous, tetragonal space group P4/ncc.  (F64Pc)2TbH exhibits polymorphism 

through the crystallization into a monoclinic space group P21/c  as well and is denoted by 

[3′].  The molecular structures confirm the double-decker architecture.  The X-ray 

structures also showed convexity of the F64Pc rings and analysis of several geometrical 

parameters such as Metal--N distances and the radius of the sphere of curvature, Rsf 

revealed asymmetry in the complexes.  This asymmetry was manifested by differences in 

values of the geometrical parameters between the two F64Pc
2−

 rings.  It was generally 

found that one ring had longer Metal--N distances and greater Ri, providing additional 

evidence of presence of the proton on that F64Pc
2−

 ring.  The evidence provided by the 

medium quality X-ray structures was somewhat weak due to small differences between 

the values of the geometrical parameters; in some cases within the limits of one standard 

deviation. However, initial DFT calculations provided support for this asymmetry 

showing statistically significant differences between defined bond distances of the 

F64Pc
2−

 and F64Pc
2−

H
+
 rings.  

 Although differences in Ri were noted for the F64Pc
2−

 rings, the convexity was not 

symmetrical.  This type of asymmetry was assessed by measuring the degree of rotation 

of the eight benzene rings around their centers, as measured by the angle, γ made by the 

bond that links the two benzene ring C atoms that bears the i-C3F7 groups with the 4N 
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plane.  Results of this assessment revealed differences in γ among the benzene rings. This 

non-equivalency provided a weak yet notable support for the presence of a proton; a well 

reported difficult identification via X-ray diffraction, exacerbated by the 4-fold 

disorder.
[53, 107, 108]

  

 The  twist angles between the F64Pc
2−

 rings, 32.0  0.5°, however, indicated a 

10° shift toward the eclipsed configuration in comparison with the unsubstituted 

sandwich complexes, for which the twist angles  are  42° (45° for a perfectly staggered 

complex).  The presence of the bulky i-C3F7 groups, similarity of the Metal--N and 4N 

inter planar distances between the Pc2Ln and (F64Pc)2MH sandwich complexes  should 

make  closer to the  45° angle.  It appears that the stable orientations of the i-C3F7 

groups conform to the 32° twist angle.   The 29° twist angle of the [3′] polymorph of 

(F64Pc)2TbH is, perhaps, due to greater intermolecular interactions in the more compact 

re-arrangement of the molecules in the monoclinic space group.  

 The magnetic properties, including intermolecular coupling could be affected by 

the above molecular distortions, but are more likely to be determined by long-range 

ordering.  The common packing diagrams for [1]-[4], reveal a columnar stacking 

architecture and F-lined channels, an uncommon mode of packing for anionic sandwich 

complexes, and somewhat unexpected due to the high content of fluorinated isoalkyl 

groups and a high percentage, 34  1% of solvent accessible volume.   Columnar stack  

architecture was also unexpected, due to requirement for long chain substituents that 

induce liquid crystalline mesophases.
[167]

  The potential of the i-C3F7 groups to simulate, 

to some extent, the longer to alkyl groups appears to be a possibility. 
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   Unlike the tetragonal phase, the molecules of [3′] are no longer parallel but 

almost perpendicular, occurring in pairs whose 4N planes makes an 87.6° angle.  

Peripheral i-C3F7 groups of one molecule penetrate the fluorine-lined Non-Covalent 

Interaction Space (NCIS) of the other molecule, up to the van der Waals contacts not only 

with other F, but also with C and N atoms of the macrocycle. This architecture leads to a 

more compact packing, the solvent-accessible volume being 22%, ~2/3 of that of 

tetragonal phases.  The monoclinic [3'] has reduced symmetry compared with the 

tetragonal [3], for which a 4-fold axis is present.  A cogwheel alignment of the two rings 

is in opposite directions, each coordinating F64Pc
2−

 ring being chiral.  

 In addition to structural effects, the replacement of all H atoms with F atoms and 

i-C3F7 groups was anticipated to impart thermo-chemical robustness, for high stability in 

technologically viable applications.  Thermogravimetric analysis (TGA) and Differential 

Scanning Calorimetry (DSC) revealed that all complexes are stable in air, sublimation 

starting at ca. 285°C at 1 atm.  In non-hermetically containers, DSC detects first order 

endothermic thermal events occurring below this temperature, these being attributed to 

possible rearrangements in the crystal structures.  The first order endothermic thermal 

events occurring at ~490°C for the Y, Dy and Tb complexes and at 500°C for Lu 

appeared to be the result of a chemical reaction based on the UV-visible spectra of the 

residues at the end of the test. 

  Initial cyclic voltammetry revealed that [(F64Pc
2−

)(F64Pc
2−

)HM(III)] resisted 

oxidization to [(F64Pc
2−

)(F64Pc
−

)M(III)] in ethanol which was consistent with the lack of 

aerobic oxidation.  The electronic deficiency of these new sandwich complexes on the 

other hand, facilitates the addition of an electron; for example, for [3] E1/2 = 0.04V (vs 
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Ag/AgCl).  Additional electrochemical tests done in acetone, identified five redox 

processes for the (F64Pc)2M (M= Lu, Tb, Dy) complexes, of which one was oxidation and 

other four were reductions starting from the neutral [(F64Pc)2M]
0

.   The values of the 

redox potentials were 1.2 to 1.5 V higher than those of the unsubstituted or alkoxy 

substituted analogues.  Since the metals are redox inactive, the redox chemistry is ligand 

centered.  While these results showed some consistency with the known sandwich 

complexes of Y, Lu, Tb and Dy in that they could be also be reduced and oxidized, 

several of them exhibited two or more oxidations.
[62, 238]

 The relative difficulty in 

oxidizing was suggesting that bulky cations such as TBA were unnecessary in [1]-[4] to 

stabilize diamagnetic ligand electronic configurations. 

 Complexes [1] and [2] were ESR silent in solution and the solid-state, as expected 

for closed-shell ligands.  Paramagnetic impurities, g = 2.004, less than 5% were detected 

in solid-state.  Spectroelectrochemical studies partially confirmed the nature of the 

paramagnetic impurities as reduced species of the form [(F64Pc)2M]
2− 

due to their ease of 

formation.  No ESR signal was observed for [3] and this was consistent with the absence 

of ESR signals for Tb
3+

 sandwich complexes noted previously.
[168]

  The Dy
3+

 complex [4] 

exhibited complex ESR spectra, consistent with the literature.
[86]

  The detailed 

interpretation of the Dy
3+

 complex’s
 
ESR results is beyond the scope of this research 

project.   

 MCD spectroscopy of solutions of [(F64Pc)2Tb]
−
, [(F64Pc)2Tb]

2−
 and 

[(F64Pc)2Tb]
3−

 of acetone with 0.8 M of tetrabutylammonium hexafluorophosphate  were 

carried at 3 K.  The split Q-band of the [(F64Pc)2Tb]
−
 was confirmed by the presence of 

two pseudo A-terms at 700 and 661 nm.   The MCD terms in [(F64Pc)2Tb]
2−

 exhibited 
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close correspondence to absorbencies in the UV-visible spectrum of (F64Pc)2TbH  that 

was reduced with hydrazine hydrate.  The presence of the π-radical band of 

[(F64Pc)2Tb]
2−

 and [(F64Pc)2Tb]
3−

  was exhibited by two temperature dependent MCD 

terms at 494 and 498 nm respectively. 

   

8.2 Magnetism 

Further insights into the influence of the i-C3F7 group upon the magnetic properties of 

this class of sandwich compounds were obtained via magnetometry and MCD studies.  

Variable temperature magnetic susceptibility measurements, AC and DC magnetization 

studies between 2 and 300 K showed  ferromagnetic impurities were absent as indicated 

by magnetization curves.  To begin with, the weak paramagnetism exhibited by [1] and 

[2] during DC magnetic measurements was determined to be due to small amounts (~1%) 

of paramagnetic impurities.  The source of these paramagnetic impurities was found to be 

other redox states of the [(F64Pc)2M] complexes containing unpaired electrons, their 

presence confirmed by cyclic voltammetry and spectroelectrochemistry.   Approximately 

the same small amounts of this class of paramagnetic impurities were also believed to be 

present in [3] and [4].     Both [3] and [4] are paramagnetic in keeping with their central 

Tb
3+

 and Dy
3+

 ions having six and five unpaired electrons respectively.  On an average, 

the effective magnetic moment, μeff and Weiss constant, θ were found to be 8.9 BM and 

−2.0 K and 10.4 BM and −4 K for [3] and [4], respectively.  DC magnetism results of 

tests carried out on the diluted samples of [3] and [4] supported these results except for 

the θ value of [4] which was only −0.53.   These values are within the range reported for 
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one electron reduced Tb and Dy sandwich lanthanide complexes reported elsewhere.
[86, 

198]
   

 Results of the AC magnetization studies on [3] in the range 2-50 K, revealed 

  
     peak  at temperatures of  19, 33 and 40 K which are similar to literature values.

[7]
  

The energy barrier to magnetization relaxation was consistent with literature values 

within the temperature range 25≤ T≤ 40 K.  The source of slow magnetization relaxation 

of these classes of molecules has been reported to be influenced by the ligand field.    The 

complexes’ ligand field induces a splitting of the electronic sub-structures making an 

Orbach relaxation process possible.  Sub-states formed from this splitting, gives rise to a 

series of “spin up” and “spin down” states.  The ground multiplet of the Tb complex is J 

= 6 and splitting and the lowest Jz sub-states are Jz = ± 6 corresponding to the maximum 

and minimum states.  The energy barrier, and the pre-exponential factors obtained for [3] 

was in the range ∆ = 200-300 cm
-1 

and τ0
−1 

= 3.0 x 10
8
-2.8x10

7
 s

−1 
and for [4],  τ0

−1
 = 1.6 

x 10
5
 s

−1 
and ∆ = 31 cm

-1
.  These values are in the range obtained for the respective 

unsubstituted
 
[Pc2Tb]

−
 and [Pc2Dy]

−
 analogues using similar test methods.   This means 

that the impact of the electron withdrawing peripheral groups on ∆ and τ0
−1

 is at least 

similar to these unsubstituted analogues and their exact impact may have to be 

determined using more accurate probing methods such as neutron scattering and μSR.  

 Magnetization studies carried out on [3] and [4] in the sub-kelvin temperature 

range (0.04-1.1 K) on the micro-SQUID machine revealed hysteresis with the AC 

magnetic field swept at rates between 0.001 T/s and 0.280 T/s.  Both [3] and [4] exhibited 

slowed response to the changing magnetic fields, characteristic of the behavior of the 

SMMs previously studied in this class of materials. 
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 Close examination of the sub-kelvin temperature magnetic hysteresis of [3] and 

[4] did not reveal the staircase hysteresis loops which are known to accompany (QTM). 

This is believed to be due to the use of the undiluted samples in the test.    Dispersing 

these molecules in the appropriate matrix to increase the distance between the molecular 

units should allow for the observance of QTM. 

 The AC magnetic testing of [4] exhibited some anomalous results. The χM
′′
 vs. f , 

(f = frequency) plot shows peaks at frequencies which shift to a lower value as 

temperature is raised. Interestingly, with Hdc = 0, the shift of the peak of χM
′′
 vs. f 

appeared as if it as almost temperature independent, remaining at around 100 Hz.  More 

detailed AC magnetic testing at 2.0 K with Hdc varying between 0 and 2000 Oe, revealed 

that the χM
′′
 peaks seemed to converge within a small frequency range of about 0.4 Hz to 

4 Hz at Hdc of ~ 2000 Oe. 

 The use of dilute frozen samples of the first three reduced species of (F64Pc)2Tb 

for MCD magnetization studies, confirmed that the hysteresis and the slowed relaxation 

to magnetization reversal as was observed through SQUID AC magnetization studies was 

not due to long range order.  This could also be extended to the (F64Pc)2Dy complex and 

is further evidence of SMM behavior in this class of complex.  Furthermore, QTM which 

was not observed in the SQUID magnetometry of undiluted solid samples was observed 

in MCD and presents additional evidence of SMM behavior.   The observed phenomenon 

of the lack of the “butterfly-shaped hysteresis” in the EPR active species requires further 

study. 
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APPENDIX A 

MASS SPECTROSCOPY ISOTOPIC PATTERNS 

 

This appendix contains the experimental and isotopic patterns of the mass spectroscopy 

of the (F64Pc)2MH, with M=Lu(III) Y(III), Tb(III) and Dy(III),  
BG

Y and of Pc2Y. 

 

 
Figure A.1 Observed MS MALDI-TOF isotopic pattern of (F64Pc)2LuH (top) and 

calculated isotopic pattern of (F64Pc)2Lu (below).  In the negative mode, H is lost 

([M−H]
−
) and the pattern resembles that of the non-protonated form.  
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Figure A.2 Observed MS MALDI-TOF isotopic pattern of (F64Pc)2YH (top) and 

calculated isotopic pattern of (F64Pc)2Y (below).  In the negative mode, H is lost 

([M−H]
−
) and the pattern resembles that of the non-protonated form.  
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Figure A.3  Observed MS MALDI-TOF of the (F64Pc)2YH complex (top) and the 

(F64Pc)2LuH complex bottom. 
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Figure A.4  Observed MALDI-TOF MS isotopic pattern of (F64Pc)2TbH in the positive 

mode (top) with PEG4000 internal calibrant in a CCA matrix.  Simulated isotopic 

patterns of (F64Pc)2Tb (middle) and  (F64Pc)2TbH (bottom) are shown for comparison. 

The observed spectrum reflects (F64Pc)2TbH+H
+
 providing evidence for the protonated 

form of the complex.   
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Figure A.5  Observed MALDI-TOF MS isotopic pattern of (F64Pc)2TbH in the negative 

mode (top) with external calibration and DCTB as the matrix .  Simulations of the 

isotopic pattern for (F64Pc)2Tb (middle) and (F64Pc)2TbH (bottom) are shown.    
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Figure A.6  Observed MALDI-TOF MS isotopic pattern of (F64Pc)2DyH in the negative 

mode (top) with external calibration and DCTB as the matrix.  A simulation of the 

isotopic pattern for (F64Pc)2Dy (bottom) is shown.  
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Figure A.7 Observed MALDI-TOF MS isotopic pattern of (F64Pc)2DyH in the positive 

mode (top) with PEG4000 internal calibrant in a CCA matrix.  Simulated isotopic 

patterns of (F64Pc)2Tb (middle) and  (F64Pc)2DyH (bottom) are shown for comparison.  
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Figure A.8 Observed MALDI-TOF MS isotopic pattern of 

BG
Y in the negative mode in 

CCA matrix (top).  The expanded observed isotopic pattern is shown (bottom). 
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                                 (a)                                                            (b)     

Figure A.9 (a) Simulated MS spectrum of [
BG

Y−H]
−
 representing the observed spectrum 

and (b) simulated MS spectrum of 
BG

Y. 
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Figure A.10 Mass spectroscopy of pattern of Pc2Y in the positive mode.  The patterns are 

shown with a C2H5Na adducted.  It has empirical formula C64H32N16Y with an isotopic 

molecular mass of 1113.205 Da.    
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APPENDIX B 

RESULTS OF SINGLE CRYSTAL X-RAY DIFFRACTION 

 

This appendix contains definitions and the tables of the crystal refinement results for the 

five X-ray structures of complexes [1], [2], [3], [3′] and [4]. 

 

B.1 X-ray Diffraction and Refinement Definitions 

When a particular model is used in the solution and refinement of a molecular structure 

obtained from X-ray or Neutron scattering data, the results contain information from 

parameters defined by the particular discipline.  Structure refinements were carried out 

using the SHELXL-97 and SHELXTL 6.14
[263, 264]

 packages and some specific 

definitions have been included.  

 

B.1.1 The Structure Factor
[265]

 

The structure factor Fhkl is a mathematical function describing the amplitude and phase of 

a wave diffracted from crystal lattice planes characterized by Miller indices h,k,l.  It may 

be given by the equation; 

                

 

                        

 

(B.1) 

where the sum is over all atoms in the unit cell, xj,yj,zj are the positional coordinates of 

the jth atom, fj is the scattering factor of the jth atom. 
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B.1.2  Zeroth Order Structure Factor 

The evaluation of the structure factor in zeroth order case, where h = 0, k = 0, l = 0, may 

be described by the expression; 

             
 

      
 

 
 

 
(B.2) 

where where fr is the real part of the scattering factors at, fi is the imaginary part of the 

scattering factors at, θ is the Bragg angle, and the sum is taken over each atom in the unit 

cell.  F(000) is essentially a count of electrons in the cell. 

 

B.2 Residual or R-Factors
[266]

  

The quality of a model can be judged with various residual or R- factors.   These factors 

should converge to a minimum during the refinement and are quoted when the structure 

is published.  Three of the common R-factors used are; 

(1) The R1 factor in SHELXTL is based on structure factor F and is the unweighted 

residual factor. It is defined as; 

   
            

     
 

 

(B.3) 

where  Fo is observed structure factor, Fc is the calculated structure factor amplitudes. 

 

(2) The weighted R factor, (wR2 in SHELXL) is defined as; 

 

     
     

    
   

    
 

 

 

 

 

(B.4) 
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where w is the weighting factor. It is related to the refinement of the structure against the 

square of the structure factors.  

 

(3) The Goodness of Fit, GooF or simply S, is defined as: 

   
     

    
   

       
 

 

 

 

(B.5) 

 

where NR is the number of independent reflections and NP is the number of refined 

parameters. 
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                Table B.1  Experimental Parameters and Structure Refinement for (F64Pc)2Lu 

 
Empirical formula  C112 F128 Lu N16 

Formula weight  4176.25 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Tetragonal 

Space group  P4/ncc 

Unit cell dimensions a = 27.1399(4) Å 

= 90°.  

 b = 27.1399(4) Å 

= 90°.  

 c = 23.7987(10) Å 

 = 90°.  

Volume 17529.5(8) Å3 

Z 4 

Density (calculated) 1.582 g/cm3 

Absorption coefficient 2.774 mm-1 

F(000) 8028 

Crystal size 0.47 x 0.41 x 0.20 mm3 

Theta range for data collection 4.61 to 57.39°. 

Index ranges -28<=h<=29, -29<=k<=29, -

26<=l<=25 

Reflections collected 124883 

Independent reflections 5997 [R(int) = 0.0889] 

Completeness to theta = 57.39° 99.9 %  

Max. and min. transmission 0.6015 and 0.3537 

Refinement method Full-matrix least-squares on 

F2 

Data / restraints / parameters 5997 / 277 / 617 

Goodness-of-fit on F2 1.115 

Final R indices [I>2sigma(I)] R1 = 0.0783, wR2 = 0.2288 

R indices (all data) R1 = 0.0837, wR2 = 0.2351 

Largest diff. peak and hole 2.337 and -4.668 e.Å-3 
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             Table B.2 Atomic Coordinates (x 10
4
) and Equivalent Isotropic Displacement  

             Parameters (A
2
 x 10

3
) for (F64Pc)2Lu.  U(eq) is Defined as One Third of the  

             Trace of the Orthogonalized U
ij
 Tensor 

 
 x y z U(eq) 

Lu 2500 2500 8012(1) 27(1) 

N(1) 2900(2) 3101(2) 8579(2) 35(1) 

N(2) 2477(1) 1772(2) 7445(2) 29(1) 

N(3) 3345(2) 1596(2) 7343(2) 34(1) 

N(4) 3711(2) 2746(2) 8686(2) 40(1) 

C(1) 3551(2) 3630(2) 8765(3) 43(2) 

C(2) 3120(2) 3902(2) 8795(3) 44(1) 

C(3) 3139(2) 4389(2) 8955(3) 48(2) 

C(4) 3583(3) 4637(2) 9046(3) 59(2) 

C(5) 4029(3) 4356(3) 9001(3) 63(2) 

C(6) 3993(2) 3855(3) 8849(3) 52(2) 

C(7) 4557(3) 4537(3) 9116(5) 82(3) 

C(8) 4894(4) 4189(5) 9438(5) 140(6) 

C(9) 4830(9) 4662(12) 8571(14) 120(20) 

C(9') 4784(9) 4709(8) 8562(11) 180(30) 

C(10) 3427(4) 5274(3) 9815(5) 116(4) 

C(11) 3123(3) 5487(2) 8810(4) 84(3) 

C(12) 3537(3) 5193(3) 9186(4) 77(3) 

C(13) 4417(2) 1926(2) 7095(3) 39(1) 

C(14) 4008(2) 2196(2) 7245(2) 37(1) 

C(15) 4031(2) 2701(2) 7265(2) 35(1) 

C(16) 4481(2) 2928(2) 7180(3) 39(1) 

C(17) 4908(2) 2675(2) 7051(2) 42(1) 

C(18) 5395(2) 2970(3) 7068(3) 50(2) 

C(19) 5489(2) 3269(3) 6543(3) 65(2) 

C(20) 5450(2) 3282(3) 7622(3) 68(2) 

C(21) 5246(2) 1805(2) 6694(3) 50(2) 

C(22) 5550(2) 1469(3) 7098(3) 63(2) 

C(23) 5029(2) 1466(3) 6202(3) 69(2) 

C(24) 4873(2) 2147(2) 6967(2) 43(2) 

C(25) 3492(2) 2057(2) 7360(2) 33(1) 

C(26) 2713(2) 3571(2) 8683(2) 39(1) 

C(27) 3405(2) 3117(2) 8656(2) 38(1) 

C(28) 2876(2) 1472(2) 7367(2) 32(1) 

F(1) 2721(1) 4629(1) 9014(2) 55(1) 

F(2) 4396(1) 3590(1) 8783(2) 65(1) 

F(3) 4553(2) 4957(2) 9418(3) 118(2) 

F(4) 4660(3) 3879(3) 9790(3) 142(3) 

F(5) 5221(3) 4449(3) 9749(4) 186(4) 

F(6) 5186(2) 3902(3) 9073(4) 165(4) 

F(7) 4890(20) 4260(18) 8260(30) 160(20) 

F(7') 4767(11) 4368(8) 8149(13) 99(7) 

F(8) 5259(15) 4822(16) 8760(30) 159(17) 

F(8') 5256(8) 4862(9) 8550(20) 149(12) 

F(9) 4604(13) 5009(17) 8280(19) 190(20) 

F(9') 4543(7) 5096(6) 8333(9) 91(6) 

F(10) 3055(2) 5271(2) 8326(3) 110(2) 

F(11) 3290(2) 5941(2) 8737(4) 145(3) 

F(12) 2695(2) 5525(2) 9081(3) 107(2) 
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                  Table B.2 Atomic Coordinates (x 10
4
) and Equivalent Isotropic Displacement  

                 Parameters (A
2
 x 10

3
) for (F64Pc)2Lu.  U(eq) is Defined as One Third of the  

                 Trace of the Orthogonalized U
ij
 Tensor, Continued 

 

 x y x U(eq) 

F(13) 2695(2) 5525(2) 9081(3) 107(2) 

F(14) 3384(3) 5749(2) 9924(3) 159(4) 

F(15) 3806(3) 5104(3) 10097(3) 130(3) 

F(16)  4377(1) 1438(1) 7048(2) 55(1) 

F(17) 4503(1) 3418(1) 7244(2) 50(1) 

F(18) 5179(2) 3128(2) 8027(2) 72(1) 

F(19) 5329(2) 3761(2) 7519(2) 80(1) 

F(20) 5917(1) 3295(2) 7772(2) 86(2) 

F(21) 5118(2) 3574(2) 6420(2) 77(1) 

F(22) 5890(2) 3538(2) 6600(2) 94(2) 

F(23) 5548(2) 2977(2) 6097(2) 84(1) 

F(24) 5783(1) 2651(2) 7118(2) 65(1) 

F(25) 5259(2) 1222(2) 7436(2) 75(1) 

F(26) 5828(2) 1163(2) 6816(3) 96(2) 

F(27) 5845(2) 1748(2) 7405(2) 81(1) 

F(28) 5589(1) 2077(2) 6405(2) 70(1) 

F(29) 5368(2) 1414(2) 5803(2) 89(2) 

F(30) 4907(2) 1021(2) 6367(2) 87(2) 

F(31) 4639(2) 1681(2) 5972(2) 79(1) 

F(32) 3951(2) 5448(2) 9052(3) 108(2) 

 

 

 

Table B.3   Bond Lengths [Å] and Angles [°] for (F64Pc)2Lu 
 

Lu-N(1)#1  2.380(4)  Lu-N(2)  2.394(4) 

Lu-N(1)#2  2.380(4)  Lu-N(2)#3  2.394(4) 

Lu-N(1)  2.380(4)  Lu-N(2)#2  2.394(4) 

Lu-N(1)#3  2.380(4)  Lu-N(2)#1  2.394(4) 

     

N(1)-C(27)  1.383(7)  C(4)-C(12)  1.548(10) 

N(1)-C(26)  1.396(7)  C(5)-C(6)  1.410(10) 

N(2)-C(25)#1  1.361(7)  C(5)-C(7)  1.537(11) 

N(2)-C(28)  1.368(7)  C(6)-F(2)  1.318(7) 

N(3)-C(25)  1.316(7)  C(7)-F(3)  1.348(10) 

N(3)-C(28)  1.316(7)  C(7)-C(9)  1.53(3) 

N(4)-C(26)#1  1.302(8)  C(7)-C(9')  1.53(3) 

N(4)-C(27)  1.307(7)  C(7)-C(8)  1.523(17) 

C(1)-C(6)  1.363(9)  C(8)-F(4)  1.347(12) 

C(1)-C(2)  1.383(8)  C(8)-F(5)  1.353(9) 

C(1)-C(27)  1.470(8)  C(8)-F(6)  1.410(11) 

C(2)-C(3)  1.378(8)  C(9)-F(9)  1.32(3) 

C(2)-C(26)  1.447(8)  C(9)-F(7)  1.32(3) 

C(3)-F(1)  1.316(7)  C(9)-F(8)  1.32(3) 

C(3)-C(4)  1.398(9)  C(9')-F(8')  1.35(2) 

C(4)-C(5)  1.435(11)  C(9')-F(9')  1.35(2) 
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Table B.3   Bond Lengths [Å] and Angles [°] for (F64Pc)2Lu, Continued 

 
C(9')-F(7')  

C(10)-F(13)  

1.35(2) 

1.302(9) 

 C(18)-C(19)  1.511(11) 

 C(18)-C(20)  1.576(10) 

C(10)-F(15)  1.313(11)  C(19)-F(22)  1.318(7) 

C(10)-F(14)  1.318(9)  C(19)-F(23)  1.333(8) 

C(10)-C(12)  1.541(14)  C(19)-F(21)  1.337(8) 

C(11)-F(10)  1.306(9)  C(20)-F(18)  1.285(8) 

C(11)-F(11)  1.325(8)  C(20)-F(20)  1.316(7) 

C(11)-F(12)  1.331(9)  C(20)-F(19)  1.361(8) 

C(11)-C(12)  1.644(14)  C(21)-F(28)  1.372(7) 

C(12)-F(32)  1.358(8)  C(21)-C(24)  1.519(9) 

C(13)-F(16)  1.335(7)  C(21)-C(22)  1.562(10) 

C(13)-C(14)  1.378(8)  C(21)-C(23)  1.601(11) 

C(13)-C(24)  1.408(9)  C(22)-F(26)  1.307(7) 

C(14)-C(15)  1.371(8)  C(22)-F(25)  1.311(8) 

C(14)-C(25)  1.477(8)  C(22)-F(27)  1.324(8) 

C(15)-C(16)  1.382(8)  C(23)-F(30)  1.313(8) 

C(15)-C(28)#3  1.467(8)  C(23)-F(31)  1.326(8) 

C(16)-F(17)  1.338(6)  C(23)-F(29)  1.331(8) 

C(16)-C(17)  1.382(8)  C(25)-N(2)#3  1.361(7) 

C(17)-C(24)  1.451(9)  C(26)-N(4)#3  1.302(8) 

C(17)-C(18)  1.544(9)  C(28)-C(15)#1  1.467(8) 

C(18)-F(24)  1.367(8)  F(7')-F(9)  1.82(5) 

     

N(1)#1-Lu-N(1)#2 71.25(11)  N(2)-Lu-N(2)#3 71.43(11) 

N(1)#1-Lu-N(1) 71.25(11)  N(1)#1-Lu-N(2)#2 132.77(14) 

N(1)#2-Lu-N(1) 110.9(2)  N(1)#2-Lu-N(2)#2 153.82(14) 

N(1)#1-Lu-N(1)#3 110.9(2)  N(1)-Lu-N(2)#2 75.07(16) 

N(1)#2-Lu-N(1)#3 71.25(11)  N(1)#3-Lu-N(2)#2 87.76(15) 

N(1)-Lu-N(1)#3 71.25(11)  N(2)-Lu-N(2)#2 111.3(2) 

N(1)#1-Lu-N(2) 87.76(15)  N(2)#3-Lu-N(2)#2 71.43(11) 

N(1)#2-Lu-N(2) 75.07(16)  N(1)#1-Lu-N(2)#1 153.83(14) 

N(1)-Lu-N(2) 153.83(14)  N(1)#2-Lu-N(2)#1 87.76(15) 

N(1)#3-Lu-N(2) 132.76(14)  N(1)-Lu-N(2)#1 132.76(14) 

N(1)#1-Lu-N(2)#3 75.08(16)  N(1)#3-Lu-N(2)#1 75.07(16) 

N(1)#2-Lu-N(2)#3 132.77(14)  N(2)-Lu-N(2)#1 71.43(11) 

N(1)-Lu-N(2)#3 87.76(15)  N(2)#3-Lu-N(2)#1 111.3(2) 

N(1)#3-Lu-N(2)#3 153.83(14)  N(2)#2-Lu-N(2)#1 71.42(11) 

C(27)-N(1)-C(26) 108.0(4)  C(2)-C(1)-C(27) 106.7(5) 

C(27)-N(1)-Lu 123.3(4)  C(3)-C(2)-C(1) 119.6(6) 

C(26)-N(1)-Lu 124.1(3)  C(3)-C(2)-C(26) 132.4(6) 

C(25)#1-N(2)-C(28) 109.3(5)  C(1)-C(2)-C(26) 107.8(5) 

C(25)#1-N(2)-Lu 122.6(3)  F(1)-C(3)-C(2) 118.2(5) 

C(28)-N(2)-Lu 123.1(3)  F(1)-C(3)-C(4) 119.2(5) 

C(25)-N(3)-C(28) 122.3(5)  C(2)-C(3)-C(4) 122.5(6) 

C(26)#1-N(4)-C(27) 123.6(5)  C(3)-C(4)-C(5) 117.4(6) 

C(6)-C(1)-C(2) 119.9(6)  C(3)-C(4)-C(12) 115.7(6) 

C(6)-C(1)-C(27) 133.4(6)  C(5)-C(4)-C(12) 127.0(6) 
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Table B.3   Bond Lengths [Å] and Angles [°] for (F64Pc)2Lu, Continued 

 
C(6)-C(5)-C(4) 118.2(6)  C(10)-C(12)-C(4) 111.4(7) 

C(6)-C(5)-C(7) 114.7(6)  F(32)-C(12)-C(11) 100.9(7) 

C(4)-C(5)-C(7) 127.1(6)  C(10)-C(12)-C(11) 109.0(7) 

F(2)-C(6)-C(1) 118.0(6)  C(4)-C(12)-C(11) 114.3(6) 

F(2)-C(6)-C(5) 119.9(6)  F(16)-C(13)-C(14) 118.9(5) 

C(1)-C(6)-C(5) 122.1(6)  F(16)-C(13)-C(24) 118.4(5) 

F(3)-C(7)-C(9) 105.5(14)  C(14)-C(13)-C(24) 122.6(5) 

F(3)-C(7)-C(9') 101.8(11)  C(15)-C(14)-C(13) 120.2(5) 

C(9)-C(7)-C(9') 6.7(15)  C(15)-C(14)-C(25) 107.0(4) 

F(3)-C(7)-C(8) 105.2(8)  C(13)-C(14)-C(25) 132.7(5) 

C(9')-C(7)-C(8) 112.4(11)  C(14)-C(15)-C(16) 118.8(5) 

F(3)-C(7)-C(5) 111.0(7)  C(14)-C(15)-C(28)#3 106.7(4) 

C(9)-C(7)-C(5) 111.7(14)  C(16)-C(15)-C(28)#3 134.5(5) 

C(9')-C(7)-C(5) 108.6(12)  F(17)-C(16)-C(17) 118.7(5) 

C(8)-C(7)-C(5) 116.9(9)  F(17)-C(16)-C(15) 117.8(5) 

F(4)-C(8)-F(5) 107.3(10)  C(17)-C(16)-C(15) 123.4(5) 

F(4)-C(8)-F(6) 107.6(11)  C(16)-C(17)-C(24) 117.8(5) 

F(5)-C(8)-F(6) 104.9(8)  C(16)-C(17)-C(18) 117.1(5) 

F(4)-C(8)-C(7) 114.5(9)  C(24)-C(17)-C(18) 124.8(5) 

F(5)-C(8)-C(7) 110.2(10)  F(24)-C(18)-C(19) 106.3(5) 

F(6)-C(8)-C(7) 111.7(10)  F(24)-C(18)-C(17) 109.5(5) 

F(9)-C(9)-F(7) 111(2)  C(19)-C(18)-C(17) 113.7(5) 

F(9)-C(9)-F(8) 111(2)  F(24)-C(18)-C(20) 101.1(5) 

F(7)-C(9)-F(8) 111.0(19)  C(19)-C(18)-C(20) 112.8(6) 

F(9)-C(9)-C(7) 112(2)  C(17)-C(18)-C(20) 112.4(5) 

F(7)-C(9)-C(7) 110(3)  F(22)-C(19)-F(23) 108.3(6) 

F(8)-C(9)-C(7) 102(4)  F(22)-C(19)-F(21) 107.6(6) 

F(8')-C(9')-F(9') 102.2(18)  F(23)-C(19)-F(21) 106.5(6) 

F(8')-C(9')-F(7') 103.2(19)  F(22)-C(19)-C(18) 110.6(6) 

F(9')-C(9')-F(7') 103.0(17)  F(23)-C(19)-C(18) 111.0(6) 

F(8')-C(9')-C(7) 120(3)  F(21)-C(19)-C(18) 112.6(5) 

F(9')-C(9')-C(7) 112.9(17)  F(18)-C(20)-F(20) 111.0(6) 

F(7')-C(9')-C(7) 114(2)  F(18)-C(20)-F(19) 107.9(6) 

F(13)-C(10)-F(15) 109.1(9)  F(20)-C(20)-F(19) 104.8(5) 

F(13)-C(10)-F(14) 109.6(8)  F(18)-C(20)-C(18) 113.4(5) 

F(15)-C(10)-F(14) 108.2(8)  F(20)-C(20)-C(18) 109.5(6) 

F(13)-C(10)-C(12) 112.2(7)  F(19)-C(20)-C(18) 109.9(6) 

F(15)-C(10)-C(12) 107.1(8)  F(28)-C(21)-C(24) 109.7(5) 

F(14)-C(10)-C(12) 110.5(9)  F(28)-C(21)-C(22) 105.4(5) 

F(10)-C(11)-F(11) 110.4(8)  C(24)-C(21)-C(22) 116.4(5) 

F(10)-C(11)-F(12) 109.9(8)  F(28)-C(21)-C(23) 101.1(5) 

F(11)-C(11)-F(12) 106.8(6)  C(24)-C(21)-C(23) 114.7(5) 

F(10)-C(11)-C(12) 111.0(6)  C(22)-C(21)-C(23) 108.1(5) 

F(11)-C(11)-(12) 106.8(8)  F(32)-C(12)-C(10) 108.3(6) 

F(12)-C(11)-C(12) 111.8(7)  F(32)-C(12)-C(4) 112.3(6) 

F(27)-C(22)-C(21) 109.0(6)  F(30)-C(23)-F(29) 106.8(6) 

F(30)-C(23)-F(31) 109.0(6)  F(31)-C(23)-F(29) 107.9(7) 
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Symmetry transformations used to generate  equivalent atoms:  

 #1 y,-x+1/2,z    #2 – x+1/2,-y+1/2,z    #3 -y+1/2,x,z 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.3   Bond Lengths [Å] and Angles [°] for (F64Pc)2Lu, Continued 

 
F(30)-C(23)-C(21) 113.7(6)    

F(31)-C(23)-C(21) 110.1(5)  N(4)-C(27)-C(1) 123.3(5) 

F(29)-C(23)-C(21) 109.1(5)  N(1)-C(27)-C(1) 108.6(5) 

C(13)-C(24)-C(17) 116.6(5)  N(3)-C(28)-N(2) 128.2(5) 

C(13)-C(24)-C(21) 114.7(5)  N(3)-C(28)-C(15)#1 123.0(5) 

C(17)-C(24)-C(21) 128.3(5)  N(2)-C(28)-C(15)#1 108.6(4) 

N(3)-C(25)-N(2)#3 130.0(5)  C(9')-F(7')-F(9) 39.6(18) 

N(3)-C(25)-C(14) 121.7(5)  C(9)-F(9)-F(7') 45(3) 

N(2)#3-C(25)-C(14) 108.2(4)  F(26)-C(22)-F(25) 109.8(6) 

N(4)#3-C(26)-N(1) 128.0(5)  F(26)-C(22)-F(27) 107.2(5) 

N(4)#3-C(26)-C(2) 123.3(5)  F(25)-C(22)-F(27) 108.6(6) 

N(1)-C(26)-C(2) 108.7(5)  F(26)-C(22)-C(21) 111.1(6) 

N(4)-C(27)-N(1) 127.7(5)    
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                      Table B.4  Experimental Parameters and Structure Refinement for 

                      (F64Pc)2Y 

 

Empirical formula  C112 F128 N16 Y 

Formula weight  4090.19 

Temperature  253(2) K 

Wavelength  1.54178 Å 

Crystal system  Tetragonal 

Space group  P4/ncc 

Unit cell dimensions a = 27.4142(4) Å 

= 90°.  

 b = 27.4142(4) Å 

= 90°.  

 c = 24.3774(10) Å 

 = 90°.  

Volume 18320.6(8) Å3 

Z 4 

Density (calculated) 1.483 g/cm3 

Absorption coefficient 2.072 mm-1 

F(000) 7900 

Crystal size 0.42 x 0.41 x 0.23 mm3 

Theta range for data collection 3.22 to 67.58°. 

Index ranges -32<=h<=31, -32<=k<=29, -28<=l<=28 

Reflections collected 145759 

Independent reflections 8172 [R(int) = 0.0338] 

Completeness to theta = 67.58° 98.7 %  

Max. and min. transmission 0.6473 and 0.4766 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8172 / 198 / 580 

Goodness-of-fit on F2 1.058 

Final R indices [I>2sigma(I)] R1 = 0.0732, wR2 = 0.2226 

R indices (all data) R1 = 0.0820, wR2 = 0.2319 

Largest diff. peak and hole 0.679 and -0.342 e.Å-3 

 

 

                   Table B.5 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                    Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Y.  U(eq) is Defined as One  

                   Third of the Trace of the Orthogonalized U
ij
 Tensor 

 

 x y z              U(eq) 

Y 2500 2500 8029(1) 41(1) 

N(1) 3101(1) 2098(1) 8599(1) 49(1) 

N(2) 2742(1) 1297(1) 8698(1) 56(1) 

N(3) 2472(1) 1779(1) 7463(1) 48(1) 

N(4) 3332(1) 1598(1) 7364(1) 54(1) 

C(1) 3112(1) 1606(1) 8676(1) 51(1) 

C(2) 3617(1) 1455(1) 8785(2) 56(1) 

C(3) 3885(1) 1876(1) 8810(2) 57(1) 

C(4) 3555(1) 2279(1) 8696(1) 51(1) 

C(5) 3838(1) 1013(1) 8887(2) 67(1) 

C(6) 4326(2) 976(2) 9037(2) 76(1) 

C(7) 4604(1) 1416(2) 9073(2) 72(1) 

C(8) 4372(1) 1850(2) 8969(2) 65(1) 
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                  Table B.5 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                  Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Y.  U(eq) is Defined as One  

                  Third of the Trace of the Orthogonalized U
ij
 Tensor, Continued 

 

 x y z U(eq) 

C(9) 5158(2) 1460(2) 9213(3) 97(2) 

C(10) 5237(3) 1540(5) 9817(4) 168(4) 

C(11) 5462(2) 1840(3) 8815(4) 117(2) 

C(12) 4496(2) 449(2) 9163(4) 116(2) 

C(13) 4627(4) 171(3) 8646(8) 228(8) 

C(14) 4149(4) 114(3) 9475(4) 218(7) 

C(15) 2866(1) 1478(1) 7386(1) 51(1) 

C(16) 2692(1) 982(1) 7281(2) 56(1) 

C(17) 2189(1) 1006(1) 7261(1) 55(1) 

C(18) 2058(1) 1515(1) 7374(1) 51(1) 

C(19) 1926(1) 602(1) 7109(2) 64(1) 

C(20) 2143(2) 157(1) 6973(2) 68(1) 

C(21) 2663(2) 119(1) 7056(2) 66(1) 

C(22) 2920(1) 537(1) 7182(2) 61(1) 

C(23) 2957(2) -363(2) 7065(2) 86(1) 

C(24) 3257(2) -428(2) 7610(3) 114(2) 

C(25) 3260(3) -457(3) 6568(4) 141(3) 

C(26) 1803(2) -227(2) 6709(2) 84(1) 

C(27) 1493(3) -1(3) 6206(4) 132(3) 

C(28) 1457(3) -494(3) 7070(4) 129(2) 

F(1) 4617(1) 2268(1) 9006(1) 82(1) 

F(2) 3568(1) 615(1) 8823(1) 89(1) 

F(3) 5405(1) 1042(1) 9057(2) 156(2) 

F(4) 5257(2) 1898(2) 8372(2) 162(2) 

F(5) 5907(1) 1659(2) 8789(3) 228(3) 

F(6) 5504(1) 2264(2) 9067(2) 155(2) 

F(7) 5031(2) 1972(2) 9950(2) 157(2) 

F(8) 5080(3) 1184(2) 10076(3) 207(3) 

F(9) 5708(2) 1622(2) 9925(3) 223(3) 

F(10) 4910(2) 450(2) 9453(2) 171(2) 

F(11) 4411(2) -187(2) 9798(4) 277(5) 

F(12) 3857(2) 372(3) 9811(2) 200(3) 

F(13) 3871(2) -159(2) 9114(4) 280(6) 

F(14) 4802(2) -252(2) 8727(4) 264(5) 

F(15) 4301(2) 176(2) 8281(3) 219(4) 

F(16) 5021(2) 406(2) 8395(4) 220(3) 

F(17) 3401(1) 520(1) 7243(1) 82(1) 

F(18) 1443(1) 642(1) 7072(1) 91(1) 

F(19) 2653(1) -752(1) 7111(2) 119(1) 

F(20) 3303(2) -891(1) 7728(2) 161(2) 

F(21) 3121(2) -172(2) 8004(2) 141(2) 

F(22) 3746(2) -290(1) 7492(3) 176(2) 

F(23) 3557(2) -88(2) 6431(2) 172(2) 

F(24) 3519(2) -847(2) 6590(3) 202(3) 

F(25) 2960(2) -516(2) 6138(2) 185(2) 

F(26) 2071(1) -561(1) 6438(2) 127(1) 

F(27) 1410(2) -351(2) 5852(2) 178(2) 

F(28) 1669(2) 372(2) 6003(2) 166(2) 
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                 Table B.5 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                 Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Y.  U(eq) is Defined as One  

                 Third of the Trace of the Orthogonalized U
ij
 Tensor, Continued 

 

 x y z U(eq) 

F(29) 1033(2) 125(2) 6396(3) 189(3) 

F(30) 1747(2) -802(2) 7400(2) 160(2) 

F(31) 1216(2) -236(2) 7427(2) 155(2) 

F(32) 1192(2) -811(2) 6824(3) 194(2) 
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  Table B.6   Bond Lengths [Å] and angles [°] for (F64Pc)2Y 

 
Y-N(1) 

Y-N(1)#1 

Y-N(3)  

2.421(3) 

2.421(3) 

2.411(3) 

 Y-N(1)#2 

Y-N(1)#3 

Y-N(3)#2 

2.421(3) 

2.421(2) 

2.411(3) 

Y-N(3)#1  2.411(3)  Y-N(3)#3 2.411(3) 

     

N(1)-C(4)  1.360(4)  C(13)-F(16)  1.397(16) 

N(1)-C(1)  1.363(4)  C(14)-F(12)  1.345(8) 

N(2)-C(1)  1.322(4)  C(14)-F(11)  1.349(6) 

N(2)-C(4)#1  1.331(4)  C(14)-F(13)  1.384(7) 

N(3)-C(18)  1.365(4)  C(15)-C(16)  1.463(4) 

N(3)-C(15)  1.374(4)  C(16)-C(17)  1.382(5) 

N(4)-C(15)  1.321(4)  C(16)-C(22)  1.390(5) 

N(4)-C(18)#2  1.329(4)  C(17)-C(19)  1.370(5) 

C(1)-C(2)  1.470(4)  C(17)-C(18)  1.467(4) 

C(2)-C(3)  1.371(5)  C(18)-N(4)#1  1.329(4) 

C(2)-C(5)  1.377(5)  C(19)-F(18)  1.331(4) 

C(3)-C(8)  1.393(5)  C(19)-C(20)  1.399(5) 

C(3)-C(4)  1.454(4)  C(20)-C(21)  1.444(6) 

C(4)-N(2)#2  1.332(4)  C(20)-C(26)  1.545(5) 

C(5)-F(2)  1.327(5)  C(21)-C(22)  1.380(5) 

C(5)-C(6)  1.391(5)  C(21)-C(23)  1.547(6) 

C(6)-C(7)  1.428(6)  C(22)-F(17)  1.330(4) 

C(6)-C(12)  1.550(6)  C(23)-F(19)  1.359(6) 

C(7)-C(8)  1.374(6)  C(23)-C(25)  1.491(10) 

C(7)-C(9)  1.561(6)  C(23)-C(24)  1.574(9) 

C(8)-F(1)  1.331(4)  C(24)-F(21)  1.245(8) 

C(9)-F(3)  1.386(6)  C(24)-F(20)  1.308(7) 

C(9)-C(10)  1.503(11)  C(24)-F(22)  1.422(8) 

C(9)-C(11)  1.650(10)  C(25)-F(24)  1.282(8) 

C(10)-F(8)  1.239(15)  C(25)-F(23)  1.342(10) 

C(10)-F(9)  1.337(10)  C(25)-F(25)  1.343(10) 

C(10)-F(7)  1.352(10)  C(26)-F(26)  1.347(6) 

C(11)-F(4)  1.230(8)  C(26)-C(28)  1.486(9) 

C(11)-F(5)  1.318(7)  C(26)-C(27)  1.616(9) 

C(11)-F(6)  1.318(8)  C(27)-F(28)  1.235(9) 

C(12)-F(10)  1.337(6)  C(27)-F(27)  1.311(7) 

C(12)-C(13)  1.516(17)  C(27)-F(29)  1.387(10) 

C(12)-C(14)  1.526(14)  C(28)-F(32)  1.280(7) 

C(13)-F(15)  1.262(15)  C(28)-F(31)  1.302(9) 

C(13)-F(14)  1.271(11)  C(28)-F(30)  1.411(9) 

N(3)-Y-N(3)#1 70.89(7)  N(3)#3-Y-N(1)#1 154.28(8) 

N(3)-Y-N(3)#2 70.89(7)  N(3)-Y-N(1)#3 132.79(8) 

N(3)#1-Y-N(3)#2 110.19(14)  N(3)#1-Y-N(1)#3 75.86(9) 

N(3)-Y-N(3)#3 110.19(14)  N(3)#2-Y-N(1)#3 154.28(8) 

N(3)#1-Y-N(3)#3 70.89(7)  N(3)#3-Y-N(1)#3 88.69(9) 

N(3)#2-Y-N(3)#3 70.88(7)  N(1)#1-Y-N(1)#3 70.79(7) 

N(3)-Y-N(1)#1 75.85(9)  N(3)-Y-N(1)#2 154.28(8) 
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Table B.6   Bond Lengths [Å] and angles [°] for (F64Pc)2Y, Continued 

 
N(3)#1-Y-N(1)#1 88.69(9)  N(3)#1-Y-N(1)#2 132.79(8) 

N(3)#2-Y-N(1)#1 132.80(8)  N(3)#2-Y-N(1)#2 88.69(9) 

N(3)#3-Y-N(1)#2 75.85(9)  N(3)#1-Y-N(1) 154.28(8) 

N(1)#1-Y-N(1)#2 109.99(13)  N(3)#2-Y-N(1) 75.85(9) 

N(1)#3-Y-N(1)#2 70.79(7)  N(3)#3-Y-N(1) 132.79(8) 

N(3)-Y-N(1) 88.69(9)  N(1)#1-Y-N(1) 70.78(7) 

N(1)#3-Y-N(1) 109.99(13))  N(1)#2-Y-N(1) 70.79(7) 

C(4)-N(1)-C(1) 108.6(3)  C(10)-C(9)-C(11) 114.3(7) 

C(4)-N(1)-Y 123.8(2)  C(7)-C(9)-C(11) 114.4(4) 

C(1)-N(1)-Y 122.9(2)  F(8)-C(10)-F(9) 111.6(8) 

C(1)-N(2)-C(4)#1 122.3(3)  F(8)-C(10)-F(7) 114.9(11) 

C(18)-N(3)-C(15) 108.2(3)  F(9)-C(10)-F(7) 102.1(9) 

C(18)-N(3)-Y 123.6(2)  F(8)-C(10)-C(9) 109.5(9) 

C(15)-N(3)-Y 123.10(19)  F(9)-C(10)-C(9) 111.0(9) 

C(15)-N(4)-C(18)#2 122.8(3)  F(7)-C(10)-C(9) 107.4(7) 

N(2)-C(1)-N(1) 128.7(3)  F(4)-C(11)-F(5) 115.4(8) 

N(2)-C(1)-C(2) 122.3(3)  F(4)-C(11)-F(6) 109.6(7) 

N(1)-C(1)-C(2) 108.9(3)  F(5)-C(11)-F(6) 105.9(5) 

C(3)-C(2)-C(5) 119.9(3)  F(4)-C(11)-C(9) 111.5(5) 

C(3)-C(2)-C(1) 106.0(3)  F(5)-C(11)-C(9) 105.0(7) 

C(5)-C(2)-C(1) 134.0(3)  F(6)-C(11)-C(9) 109.0(6) 

C(2)-C(3)-C(8) 118.9(3)  F(10)-C(12)-C(13) 103.8(7) 

C(2)-C(3)-C(4) 107.4(3)  F(10)-C(12)-C(14) 105.6(6) 

C(8)-C(3)-C(4) 133.5(3)  C(13)-C(12)-C(14) 105.0(7) 

N(2)#2-C(4)-N(1) 128.8(3)  F(10)-C(12)-C(6) 111.1(4) 

N(2)#2-C(4)-C(3) 122.2(3)  C(13)-C(12)-C(6) 112.0(8) 

N(1)-C(4)-C(3) 108.9(3)  C(14)-C(12)-C(6) 118.2(5) 

F(2)-C(5)-C(2) 117.3(3)  F(15)-C(13)-F(14) 112.5(10) 

F(2)-C(5)-C(6) 120.5(3)  F(15)-C(13)-F(16) 103.4(15) 

C(2)-C(5)-C(6) 122.3(4)  F(14)-C(13)-F(16) 101.4(9) 

C(5)-C(6)-C(7) 118.0(3)  F(15)-C(13)-C(12) 114.6(8) 

C(5)-C(6)-C(12) 114.2(4)  F(14)-C(13)-C(12) 114.8(15) 

C(7)-C(6)-C(12) 127.8(4)  F(16)-C(13)-C(12) 108.5(8) 

C(8)-C(7)-C(6) 118.1(3)  F(12)-C(14)-F(11) 106.3(8) 

C(8)-C(7)-C(9) 115.0(4)  F(12)-C(14)-F(13) 110.2(9) 

C(6)-C(7)-C(9) 126.8(4)  F(11)-C(14)-F(13) 109.4(7) 

F(1)-C(8)-C(7) 120.0(3)  F(12)-C(14)-C(12) 111.0(7) 

F(1)-C(8)-C(3) 117.2(3)  F(11)-C(14)-C(12) 109.0(8) 

C(7)-C(8)-C(3) 122.7(4)  F(13)-C(14)-C(12) 110.7(8) 

F(3)-C(9)-C(10) 108.5(5)  N(4)-C(15)-N(3) 128.1(3) 

F(3)-C(9)-C(7) 110.5(4)  N(4)-C(15)-C(16) 122.7(3) 

C(10)-C(9)-C(7) 111.5(6)  N(3)-C(15)-C(16) 109.1(3) 

F(3)-C(9)-C(11) 96.5(5)  C(17)-C(16)-C(22) 118.9(3) 

C(17)-C(16)-C(15) 106.7(3)  F(20)-C(24)-F(22) 102.2(5) 

C(22)-C(16)-C(15) 134.3(3)  F(21)-C(24)-C(23) 115.6(5) 

C(19)-C(17)-C(16) 119.8(3)  F(20)-C(24)-C(23) 110.2(5) 
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Table B.6   Bond Lengths [Å] and angles [°] for (F64Pc)2Y, Continued 

 
C(19)-C(17)-C(18) 133.6(3)  F(22)-C(24)-C(23) 106.9(6) 

C(16)-C(17)-C(18) 106.4(3)  F(24)-C(25)-F(23) 107.7(8) 

N(4)#1-C(18)-N(3) 128.6(3)  F(24)-C(25)-F(25) 105.9(6) 

N(4)#1-C(18)-C(17) 122.0(3)  F(23)-C(25)-F(25) 105.5(8) 

N(3)-C(18)-C(17) 109.4(3)  F(24)-C(25)-C(23) 114.8(8) 

F(18)-C(19)-C(17) 118.4(3)  F(23)-C(25)-C(23) 114.1(5) 

F(18)-C(19)-C(20) 118.6(3  F(25)-C(25)-C(23) 108.2(7) 

C(17)-C(19)-C(20) 123.0(4)  F(26)-C(26)-C(28) 107.6(5) 

C(19)-C(20)-C(21) 116.8(3)  F(26)-C(26)-C(20) 109.8(4) 

C(19)-C(20)-C(26) 115.8(4)  C(28)-C(26)-C(20) 118.4(5) 

C(21)-C(20)-C(26) 127.2(4)  F(26)-C(26)-C(27) 100.1(5) 

C(22)-C(21)-C(20) 118.3(3)  C(28)-C(26)-C(27) 107.5(6) 

C(22)-C(21)-C(23) 116.2(4)  C(20)-C(26)-C(27) 111.9(4) 

C(20)-C(21)-C(23) 125.3(3)  F(28)-C(27)-F(27) 114.1(8) 

F(17)-C(22)-C(21) 120.0(3)  F(28)-C(27)-F(29) 106.6(7) 

F(17)-C(22)-C(16) 117.3(3)  F(27)-C(27)-F(29) 104.2(6) 

C(21)-C(22)-C(16) 122.6(3)  F(28)-C(27)-C(26) 114.5(5) 

F(19)-C(23)-C(25) 105.9(5)  F(27)-C(27)-C(26) 108.1(6) 

F(19)-C(23)-C(21) 110.6(4)  F(29)-C(27)-C(26) 108.7(7) 

C(25)-C(23)-C(21) 115.3(5)  F(32)-C(28)-F(31) 113.1(8) 

F(19)-C(23)-C(24) 99.3(4)  F(32)-C(28)-F(30) 100.4(6) 

C(25)-C(23)-C(24) 112.1(6)  F(31)-C(28)-F(30) 103.2(7) 

C(21)-C(23)-C(24) 112.3(4)  F(32)-C(28)-C(26) 114.9(7) 

F(21)-C(24)-F(20) 114.0(7)  F(31)-C(28)-C(26) 116.8(5) 

F(21)-C(24)-F(22) 106.8(6)  F(30)-C(28)-C(26) 105.9(6) 

 

   Symmetry transformations used to generate equivalent atoms:  

   #1 y,-x+1/2,z    #2 -y+1/2,x,z    #3 -x+1/2,-y+1/2,z      
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Table B.7 Anisotropic Displacement Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Y. The 

Anisotropic Displacement Factor Exponent Takes the Form: −2π2[h
2 

a*
2 

U
11

 + … +2 h k 

a* b* U
12

] 
 

 U11 U22 U33 U23 U13 U12 

Y 33(1)  33(1) 56(1)  0 0  0 

N(1) 42(1)  42(1) 63(2)  2(1) -6(1)  1(1) 

N(2) 52(2)  43(1) 72(2)  13(1) -7(1)  0(1) 

N(3) 41(1)  41(1) 62(1)  -5(1) -2(1)  0(1) 

N(4) 46(1)  43(1) 73(2)  -11(1) 2(1)  3(1) 

C(1) 45(2)  44(2) 63(2)  4(1) -9(1)  3(1) 

C(2) 47(2)  49(2) 71(2)  5(2) -12(2)  3(1) 

C(3) 45(2)  57(2) 69(2)  -1(2) -12(1)  2(1) 

C(4) 42(2)  49(2) 62(2)  2(1) -9(1)  5(1) 

C(5) 54(2)  56(2) 91(3)  11(2) -17(2)  6(2) 

C(6) 59(2)  63(2) 107(3)  10(2) -25(2)  13(2) 

C(7) 54(2)  75(2) 89(3)  1(2) -25(2)  12(2) 

C(8) 46(2)  68(2) 81(2)  -7(2) -15(2)  2(2) 

C(9) 61(3)  86(3) 143(5)  -3(3) -39(3)  10(2) 

C(10) 129(6)  200(10) 176(8)  -39(8) -94(6)  65(7) 

C(11) 50(3)  147(6) 154(6)  -48(5) -9(3)  3(3) 

C(12) 78(3)  70(3) 199(7)  16(4) -54(4)  15(3) 

C(13) 111(7)  98(6) 470(20)  -77(10) -44(11)  20(5) 

C(14) 157(9)  131(8) 370(20)  138(11) -49(11)  39(7) 

C(15) 46(2)  38(2) 69(2)  -6(1) -1(1)  1(1) 

C(16) 52(2)  41(2) 76(2)  -10(1) -2(2)  1(1) 

C(17) 54(2)  43(2) 70(2)  -6(1) -9(2)  3(1) 

C(18) 45(2)  39(2) 70(2)  -7(1) -6(1)  -1(1) 

C(19) 59(2)  44(2) 89(2)  -6(2) -18(2)  -2(2) 

C(20) 77(3)  47(2) 80(2)  -7(2) -13(2)  -5(2) 

C(21) 74(2)  43(2) 81(2)  -12(2) -3(2)  1(2) 

C(22) 53(2)  47(2) 84(2)  -12(2) 0(2)  2(1) 

C(23) 93(3)  46(2) 118(4)  -23(2) -17(3)  5(2) 

C(24) 105(4)  76(3) 163(6)  -7(4) -33(4)  23(3) 

C(25) 144(6)  103(5) 175(7)  -60(5) 9(6)  42(5) 

C(26) 99(3)  49(2) 103(3)  -22(2) -19(3)  -8(2) 

C(27) 142(6)  102(5) 153(6)  -34(4) -65(5)  -11(4) 

C(28) 122(6)  94(4) 171(7)  -7(5) -23(5)  -50(4) 

F(1) 51(1)  65(1) 131(2)  -10(1) -28(1)  -2(1) 

F(2) 68(1)  50(1) 150(2)  22(1) -31(1)  2(1) 

F(3) 69(2)  119(3) 279(6)  -50(3) -39(2)  40(2) 

F(4) 157(4)  159(4) 171(4)  -21(3) 54(4)  -31(3) 

F(5) 71(2)  165(4) 448(10)  -77(5) 51(4)  12(2) 

F(6) 77(2)  121(3) 266(6)  -26(3) -36(3)  -8(2) 

F(7) 181(4)  156(4) 134(3)  -48(3) -78(3)  39(3) 

F(8) 232(7)  171(5) 218(6)  64(4) -88(5)  37(5) 

F(9) 147(4)  250(6) 271(7)  -47(5) -144(5)  19(4) 

F(10) 104(3)  112(3) 298(6)  31(3) -105(3)  29(2) 

F(11) 180(5)  190(5) 460(12)  198(7) -142(7)  -6(4) 

F(12) 156(4)  246(7) 197(5)  133(5) -36(4)  -14(5) 

F(13) 151(4)  91(3) 599(16)  81(5) -165(7)  -14(3) 

F(14) 168(5)  88(3) 536(14)  -67(5) -47(7)  55(3) 

F(15) 121(4)  215(6) 320(8)  -153(6) -69(4)  51(4) 

F(16) 141(4)  190(6) 328(9)  -97(6) -9(5)  58(4) 
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Table B.7 Anisotropic Displacement Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Y. The 

Anisotropic  Displacement Factor Exponent Takes the Form: −2π2[h
2 

a*
2 

U
11

 + … +2 h k 

a* b* U
12

], Continued  
 

 U11 U22 U33 U23 U13 U12 

F(17) 57(1)  49(1) 141(2)  -18(1) 0(1)  10(1) 

F(18) 58(1)  57(1) 158(2)  -19(1) -29(1)  -6(1) 

F(19) 128(2)  48(1) 182(3)  -11(2) -44(2)  -5(2) 

F(20) 161(4)  75(2) 246(5)  32(3) -68(4)  15(2) 

F(21) 173(4)  124(3) 126(3)  0(2) -51(3)  16(3) 

F(22) 117(3)  91(2) 320(7)  -40(3) -84(4)  30(2) 

F(23) 129(3)  149(4) 237(5)  -82(4) 80(3)  -21(3) 

F(24) 195(5)  131(3) 280(7)  -86(4) 8(4)  74(3) 

F(25) 193(5)  205(5) 156(4)  -69(4) 9(4)  0(4) 

F(26) 142(3)  74(2) 164(3)  -50(2) -51(2)  13(2) 

F(27) 204(5)  140(3) 189(4)  -68(3) -108(4)  17(3) 

F(28) 232(5)  131(3) 135(3)  30(3) -75(3)  -27(3) 

F(29) 137(4)  131(3) 300(7)  -74(4) -117(4)  20(3) 

F(30) 175(4)  106(3) 198(5)  18(3) 4(4)  -14(3) 

F(31) 145(4)  104(3) 215(5)  3(3) 52(3)  -15(2) 

F(32) 171(4)  121(3) 290(6)  -14(3) -52(4)  -89(3) 

 

 

 

Table B.8 Anisotropic Displacement Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Lu. The 

Anisotropic Displacement Factor Exponent Takes the Form: −2π2[h
2 

a*
2 

U
11

 + … +2 h k 

a* b* U
12

]  
 

 U11 U22 U33 U23 U13 U12 

Lu 19(1)  19(1) 41(1)  0 0  0 

N(1) 26(2)  32(2) 48(3)  -5(2) -4(2)  -2(2) 

N(2) 22(2)  19(2) 45(3)  -5(2) -2(2)  -2(2) 

N(3) 24(2)  29(2) 49(3)  -6(2) 3(2)  2(2) 

N(4) 33(3)  36(3) 50(3)  -4(2) -9(2)  0(2) 

C(1) 43(3)  38(3) 49(4)  -13(3) -6(3)  -13(3) 

C(2) 43(3)  41(3) 49(3)  -12(3) -5(3)  0(3) 

C(3) 57(4)  34(3) 52(4)  -16(3) 6(3)  -7(3) 

C(4) 61(4)  46(4) 69(4)  -27(3) 0(3)  -17(3) 

C(5) 53(4)  51(4) 84(5)  -27(4) -6(4)  -15(3) 

C(6) 40(4)  48(4) 68(4)  -18(3) -10(3)  -6(3) 

C(7) 66(5)  65(5) 117(8)  -42(5) -8(5)  -21(5) 

C(8) 90(9)  127(11) 204(16)  -50(11) -84(10)  -19(9) 

C(9) 30(15)  90(30) 250(60)  -30(30) 70(20)  1(17) 

C(9') 210(60)  100(30) 230(50)  -20(30) -50(40)  -30(30) 

C(10) 142(10)  98(8) 107(8)  -54(7) 27(8)  -62(8) 

C(11) 112(7)  29(4) 111(7)  -4(4) 32(6)  -6(4) 

C(12) 73(5)  51(4) 106(6)  -33(4) 34(5)  -29(4) 

C(13) 36(3)  27(3) 52(3)  -7(2) 1(3)  2(2) 

C(14) 23(3)  41(3) 47(3)  -4(3) 1(2)  -2(2) 

C(15) 32(3)  22(3) 51(3)  -3(2) 4(2)  1(2) 

C(16) 27(3)  33(3) 55(3)  -6(3) -1(3)  -2(2) 

C(17) 32(3)  41(3) 53(4)  -8(3) 6(2)  -1(3) 

C(18) 31(3)  58(4) 59(4)  -11(3) 12(3)  -1(3) 
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Table B.8 Anisotropic Displacement Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Lu. The 

Anisotropic Displacement Factor Exponent Takes the Form: −2π2[h
2 

a*
2 

U
11

 + … +2 h k 

a* b* U
12

], Continued 
 

 U11 U22 U33 U23 U13 U12 

C(19) 60(5)  63(5) 73(5)  -10(4) 16(4)  -11(4) 

C(20) 45(4)  72(5) 85(6)  -16(4) -2(4)  -14(4) 

C(21) 30(3)  47(4) 71(4)  0(3) 8(3)  1(3) 

C(22) 45(4)  59(4) 86(5)  -4(4) 3(4)  17(4) 

C(23) 43(4)  65(5) 101(6)  -22(4) 17(4)  1(4) 

C(24) 28(3)  51(4) 51(4)  0(3) -1(2)  3(3) 

C(25) 24(3) 31(3) 45(3) -2(2) 0(2) 0(2) 

C(26) 39(3)  32(3) 45(3)  -7(2) -3(2)  -1(3) 

C(27) 37(3)  36(3) 41(3)  -7(2) -5(2)  -4(3) 

C(28) 29(3)  26(3) 42(3)  -5(2) -1(2)  5(2) 

F(1) 53(2)  33(2) 79(2)  -19(2) 13(2)  -2(2) 

F(2) 36(2)  55(2) 104(3)  -27(2) -19(2)  -7(2) 

F(3) 93(4)  83(4) 176(6)  -61(4) -18(4)  -30(3) 

F(4) 168(7)  115(5) 143(6)  -19(4) -85(5)  -19(5) 

F(5) 120(5)  152(6) 285(10)  -110(7) -110(6)  -16(5) 

F(6) 57(3)  108(5) 331(12)  -81(7) -42(5)  -3(3) 

F(7) 130(30)  100(30) 260(40)  -60(30) 100(30)  -50(20) 

F(7') 110(13)  37(7) 151(12)  -32(7) 54(9)  -5(7) 

F(8) 100(20)  130(20) 250(40)  -10(20) 30(18)  -72(17) 

F(8') 50(9)  79(11) 320(30)  -73(16) 52(11)  -27(8) 

F(9) 140(30)  220(40) 220(30)  -120(30) 130(30)  -140(30) 

F(9') 98(11)  48(8) 127(11)  -14(7) 43(8)  -10(7) 

F(10) 110(4)  79(4) 140(5)  22(4) 31(4)  19(3) 

F(11) 120(5)  53(3) 261(9)  0(4) 85(5)  -20(3) 

F(12) 101(4)  55(3) 164(5)  -28(3) 61(4)  -12(3) 

F(13) 113(4)  101(4) 86(3)  -45(3) 39(3)  -48(3) 

F(14) 196(7)  102(4) 180(7)  -99(5) 93(6)  -76(5) 

F(15) 124(5)  153(6) 112(5)  -43(4) -7(4)  -60(5) 

F(16) 33(2)  35(2) 98(3)  -12(2) 8(2)  6(2) 

F(17) 32(2)  33(2) 84(3)  -5(2) 12(2)  -4(1) 

F(18) 63(3)  90(3) 65(3)  -20(2) 3(2)  -2(2) 

F(19) 51(2)  56(3) 133(4)  -28(3) 18(2)  -10(2) 

F(20) 47(2)  90(3) 121(4)  -44(3) -17(2)  -5(2) 

F(21) 70(3)  57(2) 104(3)  24(2) 30(2)  3(2) 

F(22) 69(3)  99(4) 114(4)  -10(3) 29(3)  -47(3) 

F(23) 83(3)  81(3) 86(3)  1(3) 17(2)  0(2) 

F(24) 36(2)  63(2) 95(3)  -19(2) 1(2)  1(2) 

F(25) 57(2)  59(2) 110(3)  10(2) -7(2)  7(2) 

F(26) 56(3)  73(3) 159(5)  -9(3) 0(3)  31(2) 

F(27) 53(2)  83(3) 106(4)  0(3) -17(2)  2(2) 

F(28) 46(2)  69(3) 95(3)  -16(2) 15(2)  -3(2) 

F(29) 79(3)  91(3) 96(3)  -40(3) 26(3)  -5(3) 

F(30) 61(3)  54(3) 147(4)  -38(3) 25(3)  -2(2) 

F(31) 71(3)  84(3) 81(3)  -25(2) -10(2)  -5(2) 

F(32) 106(4)  62(3) 156(5)  -41(3) 45(4)  -44(3) 

C(25) 24(3) 31(3) 45(3) -2(2) 0(2) 0(2) 
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                Table B.9 Experimental Parameters and Structure Refinement for 

                (F64Pc)2Tb(½ Acetone)(⅛ Chloroform)                            
 

Empirical formula  C227.25 H6.25 Cl0.75 F256 

N32 O Tb2 

Formula weight  8408.32 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 20.6911(6) Å 

= 90°.  

 b = 20.9584(7) Å 

= 95.539(2)°.  

 c = 36.6961(12) Å 

 = 90°.  

Volume 15839.0(9) Å3 

Z 2 

Density (calculated) 1.763 g/cm3 

Absorption coefficient 4.140 mm-1 

F(000) 8097 

Crystal size 0.25 x 0.23 x 0.14 mm3 

Theta range for data collection 3.08 to 67.63°. 

Index ranges -24<=h<=24, -24<=k<=25, -

41<=l<=43 

Reflections collected 120685 

Independent reflections 27542 [R(int) = 0.0678] 

Completeness to theta = 67.63° 96.2 %  

Absorption correction Semi-empirical from 

equivalents 

Max. and min. transmission 0.5949 and 0.4242 

Refinement method Full-matrix-block least-

squares on F2 

Data / restraints / parameters 27542 / 9 / 2042 

Goodness-of-fit on F2 1.106 

Final R indices [I>2sigma(I)] R1 = 0.0780, wR2 = 0.2183 

R indices (all data) R1 = 0.0919, wR2 = 0.2292 

Largest diff. peak and hole 3.070 and -1.635 e.Å-3 
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                   Table B.10 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                   Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Tb(½ Acetone)(⅛ 

                   Chloroform).  U(eq) is Defined as One Third of the Trace of the  

                   Orthogonalized  U
ij
 Tensor 

 

 x y z U(eq) 

Tb 4579(1) 3818(1) 1285(1) 19 

N(1) 4544(2) 4960(2) 1408(1) 24 

N(2) 3382(2) 5121(2) 1373(1) 24 

N(3) 3618(2) 4277(2) 952(1) 20 

N(4) 3452(2) 3548(2) 443(1) 23 

N(5) 4605(2) 3656(2) 631(1) 23 

N(6) 5759(2) 3691(2) 569(1) 29 

N(7) 5539(2) 4351(2) 1089(1) 22 

N(8) 5701(2) 5176(2) 1544(1) 30 

N(9) 5042(2) 3911(2) 1918(1) 22 

N(10) 6157(2) 3599(2) 1877(1) 23 

N(11) 5444(2) 3043(2) 1418(1) 20 

N(12) 5086(2) 2218(2) 974(1) 22 

N(13) 4135(2) 2747(2) 1183(1) 20 

N(14) 3023(2) 2866(2) 1326(1) 24 

N(15) 3718(2) 3626(2) 1681(1) 22 

N(16) 4093(2) 4266(2) 2210(1) 22 

C(1) 3993(2) 5252(2) 1501(1) 23 

C(2) 4166(3) 5761(2) 1763(2) 28 

C(3) 3824(3) 6169(3) 1962(2) 30 

C(4) 4117(3) 6614(3) 2208(2) 34 

C(5) 4802(3) 6684(3) 2230(2) 33 

C(6) 5149(3) 6244(2) 2034(2) 30 

C(7) 4837(3) 5775(3) 1812(2) 27 

C(8) 5073(3) 5278(2) 1579(2) 26 

C(9) 3657(3) 6931(3) 2465(2) 38 

C(10) 3268(1) 7494(1) 2283(1) 43 

F(7) 2864(2) 7735(1) 2513(1) 55 

F(8) 2918(2) 7328(1) 1975(1) 51 

F(9) 3663(2) 7956(1) 2201(1) 50 

C(11) 3180(1) 6438(1) 2638(1) 52 

F(4) 3109(2) 6610(1) 2980(1) 58 

F(5) 2590(2) 6421(1) 2460(1) 55 

F(6) 3428(2) 5851(1) 2648(1) 50 

C(12) 5213(3) 7222(3) 2426(2) 35 

C(13) 5580(1) 7021(1) 2792(1) 47 

F(14) 5167(2) 6982(2) 3051(1) 55 

F(15) 6026(2) 7447(2) 2909(1) 66 

F(16) 5862(2) 6461(2) 2770(1) 48 

C(14) 5690(1) 7558(1) 2170(1) 43 

F(11) 5769(2) 8171(1) 2274(1) 50 

F(12) 6291(2) 7306(1) 2205(1) 57 

F(13) 5462(2) 7540(1) 1831(1) 53 

C(15) 3244(2) 3927(2) 698(1) 23 

C(16) 2560(2) 4071(3) 726(2) 24 

C(17) 1977(3) 3813(3) 570(2) 31 
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                   Table B.10 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                   Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Tb(½ Acetone)(⅛ 

                   Chloroform).  U(eq) is Defined as One Third of the Trace of the  

                    Orthogonalized  U
ij
 Tensor, Continued 

 

 x y z U(eq) 

C(18) 1374(3) 4046(3) 649(2) 34 

C(19) 1366(3) 4583(4) 894(2) 41 

C(20) 1963(3) 4822(3) 1047(2) 33 

C(21) 2549(2) 4561(3) 978(2) 25 

C(22) 3222(2) 4686(2) 1118(2) 23 

C(23) 770(3) 3691(4) 477(3) 72 

C(24) 594(2) 3081(2) 626(1) 39 

F(25) 1082(2) 2664(2) 667(1) 42 

F(24) 85(2) 2791(2) 449(1) 52 

F(23) 427(2) 3227(2) 959(1) 47 

C(24') 801(3) 2984(3) 702(2) 45 

F(25') 956(4) 2615(3) 423(2) 47 

F(23') 1282(4) 2908(3) 976(2) 48 

F(24') 270(4) 2784(3) 825(2) 58 

C(25) 831(2) 3510(2) 11(1) 30 

F(20) 240(2) 3530(2) -170(1) 56 

F(21) 1053(2) 2920(2) -46(1) 42 

F(22) 1209(2) 3911(2) -153(1) 48 

C(25') 477(3) 3758(3) 162(2) 34 

F(20') -72(4) 3419(4) 123(2) 44 

F(21') 330(4) 4361(4) 88(2) 43 

F(22') 894(4) 3528(4) -65(2) 44 

C(26) 761(4) 4855(5) 1040(2) 78 

C(27) 796(1) 4930(2) 1473(1) 98 

F(26) 1215(2) 4535(3) 1625(1) 98 

F(27) 235(2) 4811(3) 1581(1) 141 

F(28) 965(2) 5503(3) 1563(1) 94 

C(28) 533(1) 5439(2) 840(1) 93 

F(30) 33(2) 5690(2) 997(2) 191 

F(31) 343(2) 5290(2) 491(1) 125 

F(32) 1018(2) 5864(2) 851(1) 71 

C(29) 5152(2) 3532(2) 461(1) 23 

C(30) 4975(3) 3220(3) 112(2) 28 

C(31) 5318(3) 3008(3) -170(2) 31 

C(32) 5030(3) 2794(3) -502(2) 29 

C(33) 4332(3) 2840(3) -563(2) 30 

C(34) 3989(3) 2999(3) -263(2) 26 

C(35) 4304(3) 3189(2) 68(2) 26 

C(36) 4076(2) 3472(2) 401(1) 24 

C(37) 5490(3) 2509(3) -766(2) 36 

C(38) 5967(1) 1990(1) -586(1) 39 

F(39) 6107(2) 1574(2) -833(1) 67 

F(40) 6545(2) 2229(2) -464(1) 71 

F(41) 5720(2) 1700(2) -319(1) 77 

C(39) 5865(2) 3014(2) -963(1) 52 

F(36) 6249(2) 3368(2) -750(1) 88 

F(37) 5454(2) 3425(2) -1139(1) 111 

F(38) 6174(2) 2764(2) -1223(1) 82 

C(40) 3926(3) 2813(3) -940(2) 36 
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                  Table B.10 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                  Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Tb(½ Acetone)(⅛ 

                  Chloroform).  U(eq) is Defined as One Third of the Trace of the  

                   Orthogonalized  U
ij
 Tensor, Continued 

 

 x y z U(eq) 

F(46) 2822(1) 3223(1) -924(1) 44 

C(41) 3414(1) 3374(1) -1008(1) 39 

F(47) 3371(1) 3533(1) -1359(1) 47 

F(48) 3615(1) 3891(1) -816(1) 43 

C(42) 3584(1) 2166(1) -1030(1) 46 

F(43) 4004(2) 1700(1) -1049(1) 53 

F(44) 3226(2) 2211(1) -1352(1) 66 

F(45) 3189(2) 2011(1) -775(1) 48 

C(43) 5904(2) 4768(2) 1309(2) 28 

C(44) 6577(3) 4734(3) 1213(2) 34 

C(45) 7154(3) 5016(3) 1350(2) 43 

C(46) 7740(4) 4925(4) 1175(2) 55 

C(47) 7704(4) 4561(4) 838(2) 59 

C(48) 7130(4) 4252(3) 733(2) 48 

C(49) 6576(3) 4333(3) 920(2) 33 

C(50) 5916(2) 4079(3) 846(2) 28 

C(51) 8361(3) 5146(4) 1413(3) 70 

C(52) 8409(1) 4931(1) 1827(1) 58 

F(52) 9010(2) 4757(2) 1937(1) 70 

F(53) 8025(2) 4439(1) 1875(1) 46 

F(54) 8256(2) 5399(2) 2050(1) 81 

C(53) 8435(3) 5988(3) 1527(2) 36 

F(57) 8542(4) 6199(3) 1210(2) 61 

F(56) 7967(4) 6287(3) 1655(2) 45 

F(55) 9004(4) 6067(3) 1738(2) 49 

C(53') 8538(2) 5796(2) 1325(1) 32 

F(56') 8074(2) 6189(2) 1434(1) 36 

F(57') 8596(2) 5958(2) 978(1) 42 

F(55') 9097(2) 5964(2) 1507(1) 37 

C(54) 8206(4) 4588(8) 552(3) 119 

C(55) 7851(2) 4650(2) 61(1) 35 

F(63) 7726(2) 4114(2) -70(1) 48 

F(64) 8374(2) 4893(2) -55(1) 51 

F(62) 7430(2) 5034(3) 132(1) 54 

C(55') 7874(3) 5148(4) 250(2) 46 

F(63') 8227(4) 5571(4) 122(2) 54 

F(64') 7303(4) 5423(4) 296(2) 50 

F(62') 7658(5) 4679(5) -30(2) 115 

C(56) 8504(2) 3816(2) 506(1) 46 

F(58) 9056(2) 3832(2) 810(1) 45 

F(59) 8250(2) 3342(2) 530(1) 51 

F(60) 8929(2) 3808(2) 230(1) 60 

C(56') 8639(3) 4198(3) 554(2) 34 

F(60') 9013(4) 4448(4) 293(3) 41 

F(58') 9033(4) 4209(4) 862(2) 25 

F(59') 8270(5) 3786(4) 428(3) 70 

C(57) 5694(2) 3901(2) 2033(2) 23 

C(58) 5804(2) 4246(2) 2377(2) 24 

C(59) 6339(2) 4381(2) 2621(2) 26 
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                  Table B.10 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                  Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Tb(½ Acetone)(⅛ 

                  Chloroform).  U(eq) is Defined as One Third of the Trace of the  

                   Orthogonalized  U
ij
 Tensor, Continued 

 

 x y z U(eq) 

C(60) 6292(3) 4655(3) 2963(2) 30 

C(61) 5654(3) 4772(3) 3078(2) 30 

C(62) 5131(3) 4686(2) 2818(2) 28 

C(63) 5199(3) 4426(2) 2475(1) 24 

C(64) 4726(2) 4213(2) 2182(1) 21 

C(65) 6940(3) 4869(3) 3179(2) 33 

C(66) 7313(1) 4311(1) 3385(1) 45 

F(74) 7444(2) 3842(1) 3160(1) 50 

F(75) 6970(2) 4069(1) 3641(1) 56 

F(76) 7875(2) 4528(1) 3553(1) 61 

C(67) 7410(1) 5245(1) 2939(1) 40 

F(77) 7865(1) 4878(1) 2813(1) 52 

F(78) 7075(1) 5525(1) 2648(1) 46 

F(79) 7709(1) 5700(1) 3137(1) 58 

C(68) 5475(3) 4905(3) 3474(2) 31 

C(69) 4923(1) 4436(1) 3594(1) 38 

F(67) 4927(1) 3890(1) 3408(1) 42 

F(68) 4337(1) 4683(1) 3552(1) 43 

F(69) 5054(1) 4301(1) 3946(1) 44 

C(70) 5290(1) 5597(1) 3547(1) 35 

F(70) 5086(2) 5655(1) 3877(1) 46 

F(71) 5797(1) 5987(1) 3529(1) 42 

F(72) 4812(1) 5811(1) 3303(1) 40 

C(71) 6033(2) 3187(2) 1601(1) 22 

C(72) 6534(2) 2784(2) 1470(1) 23 

C(73) 7199(3) 2723(2) 1548(2) 25 

C(74) 7567(3) 2275(3) 1382(2) 28 

C(75) 7233(3) 1818(3) 1137(2) 31 

C(76) 6565(3) 1905(3) 1054(2) 29 

C(77) 6220(2) 2372(3) 1207(2) 25 

C(78) 5524(2) 2539(2) 1186(1) 23 

C(79) 8307(3) 2305(3) 1476(2) 34 

C(80) 8534(1) 1940(1) 1834(1) 43 

F(127) 9173(2) 1939(2) 1893(1) 64 

F(128) 8344(2) 1334(2) 1813(1) 57 

F(126) 8293(2) 2199(2) 2118(1) 54 

C(81) 8614(1) 3002(1) 1504(1) 50 

F(123) 9188(1) 2991(1) 1381(1) 66 

F(124) 8239(2) 3405(1) 1294(1) 56 

F(125) 8691(2) 3238(1) 1844(1) 60 

C(82) 7512(3) 1218(3) 973(2) 42 

C(83) 7107(1) 587(1) 1025(1) 50 

F(119) 6784(2) 638(1) 1323(1) 55 

F(120) 7512(2) 94(1) 1082(1) 70 

F(121) 6693(2) 439(1) 746(1) 61 

C(84) 7618(1) 1297(2) 563(1) 57 

F(116) 8065(2) 1748(2) 534(1) 76 

F(117) 7851(2) 750(2) 437(1) 83 

F(118) 7097(2) 1464(2) 355(1) 66 
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                  Table B.10 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                  Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Tb(½ Acetone)(⅛ 

                  Chloroform).  U(eq) is Defined as One Third of the Trace of the  

                   Orthogonalized  U
ij
 Tensor, Continued 

 

 x y z U(eq) 

C(85) 4450(2) 2311(2) 985(1) 22 

C(86) 3969(2) 1902(2) 783(1) 23 

C(87) 4005(3) 1404(3) 536(2) 27 

C(88) 3469(3) 1092(2) 370(2) 27 

C(89) 2844(3) 1263(3) 485(2) 28 

C(90) 2816(3) 1777(3) 728(2) 27 

C(91) 3363(2) 2093(2) 879(1) 24 

C(92) 3486(2) 2618(2) 1138(2) 24 

C(93) 3604(3) 613(3) 68(2) 30 

C(94) 3820(1) -49(1) 225(1) 33 

F(100) 3350(1) -319(1) 401(1) 47 

F(101) 4336(1) 2(1) 466(1) 36 

F(102) 3952(2) -436(1) -41(1) 43 

C(95) 4093(1) 853(1) -201(1) 37 

F(103) 4696(1) 649(1) -122(1) 40 

F(104) 3903(1) 650(1) -540(1) 48 

F(105) 4100(1) 1494(1) -215(1) 38 

C(96) 2186(3) 915(3) 376(2) 38 

C(97) 1793(1) 1255(1) 55(1) 53 

F(110) 1208(2) 952(2) -11(1) 74 

F(111) 2083(2) 1231(2) -245(1) 58 

F(112) 1683(2) 1855(2) 131(1) 64 

C(98) 1752(1) 801(1) 704(1) 48 

F(107) 2122(1) 760(2) 1022(1) 49 

F(108) 1444(1) 249(2) 650(1) 67 

F(109) 1304(1) 1239(2) 734(1) 52 

C(99) 3153(2) 3299(2) 1589(1) 23 

C(100) 2687(2) 3447(3) 1850(1) 24 

C(101) 2081(3) 3207(3) 1913(2) 31 

C(102) 1770(3) 3363(3) 2219(2) 33 

C(103) 2065(3) 3845(3) 2465(2) 33 

C(104) 2671(3) 4068(3) 2395(2) 30 

C(105) 2986(3) 3870(2) 2100(2) 24 

C(106) 3645(2) 3965(2) 1994(1) 21 

C(107) 1164(4) 2962(4) 2276(2) 60 

C(108) 1253(2) 2221(2) 2209(1) 31 

F(84) 1049(3) 1819(2) 2491(2) 78 

F(85) 1100(3) 1931(2) 1936(2) 69 

F(86) 1931(3) 2035(2) 2288(1) 52 

C(113) 1041(3) 2334(4) 2155(2) 2000 

F(84') 800(4) 1957(3) 2420(3) 58 

F(85') 930(3) 2111(3) 1829(2) 48 

F(86') 1624(5) 2070(3) 2228(2) 90 

C(109) 551(1) 3200(2) 2060(1) 71 

F(87) 413(2) 3770(2) 2172(1) 92 

F(88) 599(2) 3186(2) 1711(1) 88 

F(89) 49(1) 2824(2) 2140(1) 119 

C(110) 1765(3) 4156(4) 2791(2) 48 

C(111) 1795(1) 4924(1) 2782(1) 55 
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                 Table B.10 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                 Displacement Parameters (A
2
 x 10

3
) for (F64Pc)2Tb(½ Acetone)(⅛ 

                 Chloroform).  U(eq) is Defined as One Third of the Trace of the  

                  Orthogonalized  U
ij
 Tensor, Continued 

 

 x y z U(eq) 

F(91) 2284(2) 5153(1) 2998(1) 69 

F(92) 1249(2) 5141(1) 2900(1) 95 

F(93) 1840(2) 5134(1) 2448(1) 69 

C(112) 2020(2) 3904(2) 3159(1) 67 

F(94) 1740(2) 4188(2) 3427(1) 102 

F(95) 2657(2) 3976(2) 3227(1) 73 

F(96) 1909(2) 3267(2) 3186(1) 88 

F(1) 3169(2) 6117(2) 1926(1) 38 

F(2) 5789(2) 6272(2) 2056(1) 39 

F(3) 4000(2) 7174(2) 2768(1) 46 

F(10) 4823(2) 7727(2) 2499(1) 41 

F(17) 1997(2) 3312(2) 350(1) 41 

F(18) 1976(2) 5321(2) 1273(1) 44 

F(19) 269(3) 4087(3) 392(2) 43 

F(19') 266(4) 3914(4) 775(3) 47 

F(29) 232(2) 4422(3) 996(2) 87 

F(33) 5970(2) 3015(2) -110(1) 44 

F(34) 3344(2) 2999(2) -305(1) 34 

F(35) 5146(2) 2169(2) -1037(1) 45 

F(42) 4328(2) 2921(2) -1207(1) 52 

F(49) 7092(2) 3902(3) 434(1) 74 

F(50) 7170(2) 5353(2) 1657(2) 63 

F(51) 8879(2) 4839(3) 1283(2) 80 

F(61) 8650(2) 5062(5) 636(2) 165 

F(65) 6929(1) 4242(2) 2519(1) 35 

F(66) 4535(2) 4816(2) 2902(1) 31 

F(73) 5988(2) 4772(2) 3723(1) 36 

F(80) 6820(2) 5308(2) 3438(1) 39 

F(81) 1804(2) 2783(2) 1674(1) 42 

F(82) 2970(2) 4502(2) 2622(1) 35 

F(83) 1063(2) 2960(3) 2645(1) 68 

F(90) 1106(2) 4048(3) 2760(1) 68 

F(97) 4595(2) 1245(1) 448(1) 28 

F(98) 2242(1) 1968(2) 826(1) 33 

F(99) 3052(2) 497(2) -162(1) 37 

F(106) 2297(2) 311(2) 265(1) 45 

F(113) 7492(1) 3122(2) 1796(1) 30 

F(114) 6240(2) 1507(2) 818(1) 37 

F(115) 8108(2) 1056(2) 1143(1) 59 

F(122) 8620(2) 2046(2) 1204(1) 50 

O(1A) 624(10) 1558(10) 9142(5) 126 

C(1A) 1508(9) 2214(10) 9057(5) 75 

C(2A) 354(15) 2591(15) 9015(9) 140 

C(3A) 833(9) 2092(11) 9067(5) 83 

C(1C) 8560(11) 1862(15) 9458(6) 11 

Cl(1C) 8031(9) 1367(9) 9517(5) 73 

Cl(2C) 8931(14) 1534(16) 9168(8) 135 

Cl(3C) 9032(15) 1820(20) 9802(8) 174 
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    Table B.11   Bond Lengths [Å] and Angles [°] for (F64Pc)2Tb(1/2 Acetone)(1/8  

    Chloroform) 
 

Tb-N(5)  2.429(5)  C(12)-C(13)  1.537(6) 

Tb-N(11)  2.431(4)  C(12)-C(14)  1.591(7) 

Tb-N(3)  2.431(4)  C(15)-C(16)  1.461(7) 

Tb-N(9)  2.432(4)  C(16)-C(21)  1.382(8) 

Tb-N(1)  2.438(4)  C(16)-C(17)  1.393(7) 

Tb-N(15)  2.439(4)  C(17)-C(18)  1.396(8) 

Tb-N(13)  2.442(4)  C(18)-C(19)  1.443(10) 

Tb-N(7)  2.446(4)  C(18)-C(23)  1.535(9) 

N(1)-C(1)  1.364(7)  C(19)-C(20)  1.398(8) 

N(1)-C(8)  1.379(6)  C(19)-C(26)  1.520(10) 

N(2)-C(22)  1.325(7)  C(20)-C(21)  1.376(8) 

N(2)-C(1)  1.334(7)  C(21)-C(22)  1.462(7) 

N(3)-C(15)  1.366(7)  C(23)-C(25')  1.263(12) 

N(3)-C(22)  1.369(7)  C(23)-C(24)  1.450(9) 

N(4)-C(36)  1.323(7)  C(23)-C(24')  1.693(11) 

N(4)-C(15)  1.330(7)  C(23)-C(25)  1.769(12) 

N(5)-C(29)  1.370(7)  C(26)-C(28)  1.480(10) 

N(5)-C(36)  1.372(6)  C(26)-C(27)  1.591(8) 

N(6)-C(50)  1.318(8)  C(29)-C(30)  1.456(8) 

N(6)-C(29)  1.322(7)  C(30)-C(31)  1.383(8) 

N(7)-C(50)  1.365(7)  C(30)-C(35)  1.385(8) 

N(7)-C(43)  1.367(7)  C(31)-C(32)  1.379(8) 

N(8)-C(43)  1.312(8)  C(32)-C(33)  1.443(8) 

N(8)-C(8)  1.336(7)  C(32)-C(37)  1.543(8) 

N(9)-C(57)  1.373(7)  C(33)-C(34)  1.406(8) 

N(9)-C(64)  1.376(7)  C(33)-C(40)  1.549(8) 

N(10)-C(57)  1.324(7)  C(34)-C(35)  1.378(8) 

N(10)-C(71)  1.334(7)  C(35)-C(36)  1.476(8) 

N(11)-C(71)  1.368(6)  C(37)-C(39)  1.534(7) 

N(11)-C(78)  1.377(7)  C(37)-C(38)  1.570(6) 

N(12)-C(78)  1.320(6)  C(40)-C(42)  1.552(7) 

N(12)-C(85)  1.334(7)  C(40)-C(41)  1.586(6) 

N(13)-C(92)  1.364(7)  C(43)-C(44)  1.469(8) 

N(13)-C(85)  1.369(7)  C(44)-C(49)  1.364(9) 

N(14)-C(99)  1.333(7)  C(44)-C(45)  1.383(9) 

N(14)-C(92)  1.337(7)  C(45)-C(46)  1.437(10) 

N(15)-C(99)  1.369(7)  C(46)-C(47)  1.450(12) 

N(15)-C(106)  1.373(7)  C(46)-C(51)  1.552(10) 

N(16)-C(106)  1.319(6)  C(47)-C(48)  1.375(11) 

N(16)-C(64)  1.329(7)  C(47)-C(54)  1.549(13) 

C(1)-C(2)  1.458(7)  C(48)-C(49)  1.402(10) 

C(2)-C(3)  1.365(8)  C(49)-C(50)  1.465(8) 

C(2)-C(7)  1.384(8)  C(51)-C(53')  1.456(8) 

C(3)-C(4)  1.394(8)  C(51)-C(52)  1.580(10) 

C(4)-C(5)  1.421(9)  C(51)-C(53)  1.818(11) 

C(4)-C(9)  1.553(9)  C(54)-C(56')  1.212(15) 

C(5)-C(6)  1.407(9)  C(54)-C(55')  1.711(13) 

C(5)-C(12)  1.546(8)  C(54)-C(56)  1.747(17) 

C(6)-C(7)  1.395(8)  C(54)-C(55)  1.885(10) 

C(7)-C(8)  1.461(8)  C(57)-C(58)  1.455(8) 

C(9)-C(10)  1.544(7)  C(3)-C(4)-C(9) 115.3(5) 

C(9)-C(11)  1.603(7)  N(9)-Tb-N(13) 109.12(14) 
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Table B.11   Bond Lengths [Å] and Angles [°] for (F64Pc)2Tb(1/2 Acetone)(1/8 

Chloroform), Continued 

 
C(88)-C(89)  1.442(8)  N(1)-Tb-N(13) 156.02(14) 

C(88)-C(93)  1.540(8)  N(15)-Tb-N(13) 69.71(14) 

C(89)-C(90)  1.402(8)  N(5)-Tb-N(7) 71.19(14) 

C(89)-C(96)  1.563(7)  N(11)-Tb-N(7) 76.23(14) 

C(90)-C(91)  1.380(7)  N(3)-Tb-N(7) 108.63(14) 

C(91)-C(92)  1.462(7)  N(9)-Tb-N(7) 89.32(14) 

C(93)-C(94)  1.552(6)  N(1)-Tb-N(7) 69.27(15) 

C(93)-C(95)  1.564(7)  N(15)-Tb-N(7) 155.70(15) 

C(96)-C(97)  1.538(7)  N(13)-Tb-N(7) 132.77(14) 

C(96)-C(98)  1.586(7)  C(1)-N(1)-C(8) 108.4(4) 

C(99)-C(100)  1.458(8)  C(1)-N(1)-Tb 121.7(3) 

C(100)-C(105)  1.379(7)  C(8)-N(1)-Tb 121.4(3) 

C(100)-C(101)  1.391(8)  C(22)-N(2)-C(1) 123.5(5) 

C(101)-C(102)  1.386(9)  C(15)-N(3)-C(22) 108.5(4) 

C(102)-C(103)  1.451(8)  C(15)-N(3)-Tb 120.8(3) 

C(102)-C(107)  1.542(9)  C(22)-N(3)-Tb 121.3(3) 

C(103)-C(104)  1.384(8)  C(36)-N(4)-C(15) 122.6(4) 

C(103)-C(110)  1.543(9)  (C 29)-N(5)-C(36)       108.2(4) 

C(104)-C(105)  1.382(8)  C(29)-N(5)-Tb  125.0(3) 

C(105)-C(106)  1.466(7)  C(36)-N(5)-Tb  123.8(3) 

C(107)-C(113)  1.405(11)  C(50)-N(6)-C(29) 122.9(5) 

C(107)-C(109)  1.514(10)  C(50)-N(7)-C(43) 109.5(4) 

C(107)-C(108)  1.587(10)  C(50)-N(7)-Tb     122.2(3) 

C(108)-C(113)  0.521(7)  C(43)-N(7)-Tb 122.5(4) 

C(110)-C(112)  1.499(9)  C(43)-N(8)-C(8) 123.0(5) 

C(110)-C(111)  1.612(8)  C(57)-N(9)-C(64) 108.1(4) 

O(1A)-C(3A)  1.24(3)  C(57)-N(9)-Tb 125.2(4) 

C(1A)-C(3A)  1.42(2)  C(64)-N(9)-Tb 122.7(3) 

C(2A)-C(3A)  1.44(2)  C(57)-N(10)-C(71) 122.8(4) 

C(1C)-Cl(3C)  1.52(3)  C(71)-N(11)-C(78) 108.6(4) 

C(1C)-Cl(2C)  1.53(3)  C(71)-N(11)-Tb 123.6(3) 

C(1C)-Cl(1C)  1.54(2)  C(78)-N(11)-Tb 121.3(3) 

N(5)-Tb-N(11) 91.09(14)  C(78)-N(12)-C(85) 122.0(5) 

N(5)-Tb-N(3) 69.70(14)  C(92)-N(13)-C(85) 108.5(4) 

N(11)-Tb-N(3) 156.35(14)  C(92)-N(13)-Tb 123.5(3) 

N(5)-Tb-N(9) 155.49(14)  C(85)-N(13)-Tb 120.2(3) 

N(11)-Tb-N(9) 69.36(14)  C(99)-N(14)-C(92) 122.1(4) 

N(3)-Tb-N(9) 132.57(14)  C(99)-N(15)-C(106) 107.8(4) 

N(5)-Tb-N(1) 108.88(15)  C(99)-N(15)-Tb 126.2(3) 

N(11)-Tb-N(1) 130.86(14)  C(106)-N(15)-Tb 124.0(3) 

N(3)-Tb-N(1) 70.51(14)  C(106)-N(16)-C(64) 123.7(5) 

N(9)-Tb-N(1) 76.21(14)  N(2)-C(1)-N(1) 127.4(5) 

N(5)-Tb-N(15) 130.67(14)  N(2)-C(1)-C(2) 123.1(5) 

N(11)-Tb-N(15) 109.64(14)  N(1)-C(1)-C(2) 109.6(4) 

N(3)-Tb-N(15) 75.82(14)  C(3)-C(2)-C(7) 118.8(5) 

N(9)-Tb-N(15) 71.85(14)  C(3)-C(2)-C(1) 134.9(5) 

N(1)-Tb-N(15) 90.88(15)  C(7)-C(2)-C(1) 106.3(5) 

N(5)-Tb-N(13) 76.33(14)  C(2)-C(3)-C(4) 123.4(6) 

N(11)-Tb-N(13) 71.00(13)  C(3)-C(4)-C(5) 118.4(6) 

N(3)-Tb-N(13) 90.53(13)  C(31)-C(30)-C(29) 134.5(5) 

C(5)-C(4)-C(9) 125.9(5)  C(31)-C(30)-C(35) 118.7(5) 
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Table B.11   Bond Lengths [Å] and Angles [°] for (F64Pc)2Tb(1/2 Acetone)(1/8 

Chloroform), Continued 

 
C(6)-C(5)-C(4) 117.2(5)    

C(6)-C(5)-C(12) 115.6(5)  C(35)-C(30)-C(29) 106.7(5) 

C(4)-C(5)-C(12) 127.1(6)  C(32)-C(31)-C(30) 123.8(5) 

C(7)-C(6)-C(5) 122.1(6)  C(31)-C(32)-C(33) 117.1(5) 

C(2)-C(7)-C(6) 119.5(5)  C(31)-C(32)-C(37) 116.1(5) 

C(2)-C(7)-C(8) 107.2(5)  C(33)-C(32)-C(37) 126.8(5) 

C(6)-C(7)-C(8) 133.1(5)  C(34)-C(33)-C(32) 117.9(5) 

N(8)-C(8)-N(1) 128.0(5)  C(34)-C(33)-C(40) 116.0(5) 

N(8)-C(8)-C(7) 123.6(5)  C(32)-C(33)-C(40) 125.6(5) 

N(1)-C(8)-C(7) 108.4(5)  C(35)-C(34)-C(33) 121.8(5) 

C(10)-C(9)-C(4) 112.8(5)  C(34)-C(35)-C(30) 119.9(5) 

C(10)-C(9)-C(11) 110.4(4)  C(34)-C(35)-C(36) 133.1(5) 

C(4)-C(9)-C(11) 113.6(4)  C(30)-C(35)-C(36) 106.4(5) 

C(13)-C(12)-C(5) 114.1(4)  N(4)-C(36)-N(5) 128.5(5) 

C(13)-C(12)-C(14) 110.8(4)  N(4)-C(36)-C(35) 122.5(5) 

C(5)-C(12)-C(14) 113.1(4)  N(5)-C(36)-C(35) 108.8(4)    
N(4)-C(15)-N(3) 126.9(5)  C(39)-C(37)-C(32) 113.6(4) 

N(4)-C(15)-C(16) 123.7(5)  C(39)-C(37)-C(38) 110.5(4) 

N(3)-C(15)-C(16) 109.2(5)  C(32)-C(37)-C(38) 113.9(4) 

C(21)-C(16)-C(17) 119.5(5)  C(33)-C(40)-C(42) 114.7(4) 

C(21)-C(16)-C(15) 106.3(4)  C(33)-C(40)-C(41) 114.1(4) 

C(17)-C(16)-C(15) 134.2(5)  C(42)-C(40)-C(41) 109.2(4) 

C(16)-C(17)-C(18) 122.4(6)  N(8)-C(43)-N(7) 127.5(5) 

C(17)-C(18)-C(19) 117.7(5)  N(8)-C(43)-C(44) 124.1(5) 

C(17)-C(18)-C(23) 117.0(6)  N(7)-C(43)-C(44) 108.1(5) 

C(19)-C(18)-C(23) 125.3(6)  C(49)-C(44)-C(45) 119.0(6) 

C(20)-C(19)-C(18) 117.9(5)  C(49)-C(44)-C(43) 106.8(5) 

C(20)-C(19)-C(26) 116.7(6)  C(45)-C(44)-C(43) 134.2(6) 

C(18)-C(19)-C(26) 124.8(6)  C(44)-C(45)-C(46) 121.2(6) 

C(21)-C(20)-C(19) 122.9(6)  C(45)-C(46)-C(47) 118.3(7) 

C(20)-C(21)-C(16) 119.4(5)  C(45)-C(46)-C(51) 113.5(7) 

C(20)-C(21)-C(22) 133.6(5)  C(47)-C(46)-C(51) 127.4(8) 

C(16)-C(21)-C(22) 107.0(4)  C(48)-C(47)-C(46) 117.4(8) 

N(2)-C(22)-N(3) 128.8(5)  C(48)-C(47)-C(54) 116.4(8) 

N(2)-C(22)-C(21) 122.5(5)  C(46)-C(47)-C(54) 125.2(9) 

N(3)-C(22)-C(21) 108.7(4)  C(47)-C(48)-C(49) 122.0(7) 

C(25')-C(23)-C(24) 109.1(6)  C(44)-C(49)-C(48) 121.4(6) 

C(25')-C(23)-C(18) 128.5(8)  C(44)-C(49)-C(50) 107.5(5) 

C(24)-C(23)-C(18) 119.8(7)  C(48)-C(49)-C(50) 131.0(6) 

C(25')-C(23)-C(24') 122.4(6)  N(6)-C(50)-N(7) 130.3(5) 

C(24)-C(23)-C(24') 17.2(2)  N(6)-C(50)-C(49) 121.5(5) 

C(18)-C(23)-C(24') 103.5(6)  N(7)-C(50)-C(49) 107.9(5) 

C(25')-C(23)-C(25) 37.7(4)  C(53')-C(51)-C(46) 111.6(6) 

C(24)-C(23)-C(25) 102.7(6)  C(53')-C(51)-C(52) 119.1(7) 

C(18)-C(23)-C(25) 111.7(6)  C(46)-C(51)-C(52) 115.3(5) 

C(24')-C(23)-C(25) 106.4(5)  C(53')-C(51)-C(53) 28.9(3) 

C(28)-C(26)-C(19) 111.6(6)  C(46)-C(51)-C(53) 117.8(6) 

C(28)-C(26)-C(27) 113.4(6)  C(52)-C(51)-C(53) 93.4(6) 

C(19)-C(26)-C(27) 115.4(5)  C(56')-C(54)-C(47) 121.0(9) 

N(6)-C(29)-N(5) 128.3(5)  C(56')-C(54)-C(55') 135.8(9) 

N(6)-C(29)-C(30) 121.8(5)  C(47)-C(54)-C(55') 102.1(8) 

N(5)-C(29)-C(30) 109.7(4)  C(56')-C(54)-C(56) 26.9(5) 
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Table B.11   Bond Lengths [Å] and Angles [°] for (F64Pc)2Tb(1/2 Acetone)(1/8 

Chloroform, Continued 
     

C(47)-C(54)-C(56) 107.2(8)  C(74)-C(79)-C(81) 115.8(4) 

C(55')-C(54)-C(56) 134.2(8)  C(80)-C(79)-C(81) 108.1(4) 

C(56')-C(54)-C(55) 105.7(10)  C(75)-C(82)-C(84) 112.9(5) 

C(47)-C(54)-C(55) 115.2(6)  C(75)-C(82)-C(83) 114.4(5) 

C(55')-C(54)-C(55) 40.4(3)  C(84)-C(82)-C(83) 109.5(4) 

C(56)-C(54)-C(55) 94.6(8)  N(12)-C(85)-N(13) 129.4(5) 

N(10)-C(57)-N(9) 127.2(5)  N(12)-C(85)-C(86) 121.6(5) 

N(10)-C(57)-C(58) 123.7(5)  N(13)-C(85)-C(86) 108.9(4) 

N(9)-C(57)-C(58) 109.0(5)  C(87)-C(86)-C(91) 119.1(5) 

C(59)-C(58)-C(63) 117.4(5)  C(87)-C(86)-C(85) 134.1(5) 

C(59)-C(58)-C(57) 135.4(5)  C(91)-C(86)-C(85) 106.8(4) 

C(63)-C(58)-C(57) 107.0(4)  C(88)-C(87)-C(86) 123.6(5) 

C(58)-C(59)-C(60) 123.1(5)  C(87)-C(88)-C(89) 117.2(5) 

C(59)-C(60)-C(61) 118.6(5)  C(87)-C(88)-C(93) 115.6(5) 

C(59)-C(60)-C(65) 116.4(5)  C(89)-C(88)-C(93) 127.1(5) 

C(61)-C(60)-C(65) 124.7(5)  C(90)-C(89)-C(88) 118.1(5) 

C(62)-C(61)-C(60) 116.9(5)  C(90)-C(89)-C(96) 115.6(5) 

C(62)-C(61)-C(68) 115.2(5)  C(88)-C(89)-C(96) 126.3(5) 

C(60)-C(61)-C(68) 127.4(5)  C(91)-C(90)-C(89) 122.8(5) 

C(61)-C(62)-C(63) 122.2(5)  C(90)-C(91)-C(86) 118.9(5) 

C(58)-C(63)-C(62) 121.0(5)  C(90)-C(91)-C(92) 135.1(5) 

C(58)-C(63)-C(64) 106.5(5)  C(86)-C(91)-C(92) 106.0(4) 

C(62)-C(63)-C(64) 132.0(5)  N(14)-C(92)-N(13) 127.4(5) 

N(16)-C(64)-N(9) 129.2(5)  N(14)-C(92)-C(91) 122.5(5) 

N(16)-C(64)-C(63) 121.1(5)  N(13)-C(92)-C(91) 109.6(5) 

N(9)-C(64)-C(63) 109.3(4)  C(88)-C(93)-C(94) 112.5(4) 

C(66)-C(65)-C(60) 113.1(4)  C(88)-C(93)-C(95) 114.7(4) 

C(66)-C(65)-C(67) 110.0(4)  C(94)-C(93)-C(95) 110.0(4) 

C(60)-C(65)-C(67) 114.0(4)  C(97)-C(96)-C(89) 111.3(5) 

C(70)-C(68)-C(61) 114.8(4)  C(97)-C(96)-C(98) 110.7(4) 

C(70)-C(68)-C(69) 109.6(4)  C(89)-C(96)-C(98) 114.8(5) 

C(61)-C(68)-C(69) 112.8(4)  N(14)-C(99)-N(15) 128.9(5) 

N(10)-C(71)-N(11) 127.8(5)  N(14)-C(99)-C(100) 121.4(5) 

N(10)-C(71)-C(72) 122.3(4)  N(15)-C(99)-C(100) 109.5(4) 

N(11)-C(71)-C(72) 109.8(4)  C(105)-C(100)-C(101) 118.5(5) 

C(73)-C(72)-C(77) 117.9(5)  C(105)-C(100)-C(99) 107.0(4) 

C(73)-C(72)-C(71) 135.4(5)  C(101)-C(100)-C(99) 134.1(5) 

C(77)-C(72)-C(71) 106.6(4)  C(102)-C(101)-C(100) 123.0(5) 

C(72)-C(73)-C(74) 123.3(5)  C(101)-C(102)-C(103) 118.1(5) 

C(73)-C(74)-C(75) 118.3(5)  C(101)-C(102)-C(107) 115.4(5) 

C(73)-C(74)-C(79) 116.7(5)  C(103)-C(102)-C(107) 126.4(6) 

C(75)-C(74)-C(79) 125.0(5)  C(104)-C(103)-C(102) 116.9(5) 

C(76)-C(75)-C(74) 117.0(5)  C(104)-C(103)-C(110) 116.2(5) 

C(76)-C(75)-C(82) 115.0(5)  C(102)-C(103)-C(110) 126.9(5) 

C(74)-C(75)-C(82) 127.9(5)  C(105)-C(104)-C(103) 123.3(5) 

C(77)-C(76)-C(75) 123.2(5)  C(100)-C(105)-C(104) 120.0(5) 

C(76)-C(77)-C(72) 119.9(5)  C(100)-C(105)-C(106) 106.3(5) 

C(76)-C(77)-C(78) 133.9(5)  C(104)-C(105)-C(106) 133.5(5) 

C(72)-C(77)-C(78) 105.9(5)  N(16)-C(106)-N(15) 128.5(5) 

N(12)-C(78)-N(11) 129.6(5)  N(16)-C(106)-C(105) 121.6(5) 

N(12)-C(78)-C(77) 121.4(5)  N(15)-C(106)-C(105) 109.3(4) 

N(11)-C(78)-C(77) 108.9(4)  C(113)-C(107)-C(109) 91.5(5) 
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Table B.11   Bond Lengths [Å] and Angles [°] for (F64Pc)2Tb(1/2 Acetone)(1/8   

Chloroform), Continued 
     

C(74)-C(79)-C(80) 112.4(4)  C(113)-C(107)-C(102) 126.4(6) 

C(109)-C(107)-C(102) 113.6(7)  C(103)-C(110)-C(111) 112.8(5) 

C(113)-C(107)-C(108) 18.8(3)  O(1A)-C(3A)-C(1A) 122(2) 

C(109)-C(107)-C(108) 110.2(5)  O(1A)-C(3A)-C(2A) 116(2) 

C(102)-C(107)-C(108) 113.9(6)  C(1A)-C(3A)-C(2A) 122(2) 

C(113)-C(108)-C(107) 60.5(11)  Cl(3C)-C(1C)-Cl(2C) 103.0(19) 

C(108)-C(113)-C(107) 100.7(12)  Cl(3C)-C(1C)-Cl(1C) 104.6(19) 

C(112)-C(110)-C(103) 114.5(6)  Cl(2C)-C(1C)-Cl(1C) 101.8(18) 

C(112)-C(110)-C(111) 111.0(5)    

 

     Symmetry transformations used to generate equivalent atoms: 
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Table B.12   Anisotropic Displacement Parameters (Å
2 x 10

3
) for (F64Pc)2Tb(1/2 

Acetone)(1/8 Chloroform).  The Anisotropic Displacement Factor Exponent Takes the 

Form: -2π
2
[ h

2
a*

2
U

11
 + ... + 2 h k a* b* U

12
] 

 

 U11 U22 U33 U23 U13 U12 

Tb 16  20 19  0 -1  -1 

N(1) 26  21 25  3 -2  -2 

N(2) 26  22 25  1 -1  1 

N(3) 15  23 22  2 2  1 

N(4) 23  23 21  1 0  3 

N(5) 19  23 27  0 -2  0 

N(6) 25  36 26  5 4  7 

N(7) 18  20 28  4 2  -2 

N(8) 28  21 39  2 -8  -1 

N(9) 19  23 23  -1 -1  0 

N(10) 25  21 24  -1 0  -1 

N(11) 19  19 23  -2 0  2 

N(12) 24  20 22  -2 -2  -2 

N(13) 22  20 19  1 -2  -2 

N(14) 21  25 25  -2 2  -5 

N(15) 25  21 20  2 2  2 

N(16) 22  18 25  3 -1  -1 

C(1) 27  19 24  3 3  2 

C(2) 37  21 24  5 -2  0 

C(3) 34  27 30  1 2  -1 

C(4) 46  25 31  3 5  3 

C(5) 48  26 26  -2 -1  -5 

C(6) 37  22 31  2 -5  -1 

C(7) 32  23 25  0 -3  0 

C(8) 27  20 30  1 -7  -2 

C(9) 47  37 31  -12 7  -5 

C(10) 48  37 46  -11 11  -1 

F(7) 60  45 63  -20 16  4 

F(8) 63  39 48  -8 -4  8 

F(9) 62  32 57  2 4  1 

C(11) 62  42 53  -15 19  -5 

F(4) 82  52 43  -13 26  -9 

F(5) 55  53 60  -17 19  -8 

F(6) 76  33 44  -2 21  -5 

C(12) 52  27 25  -7 -1  -5 

C(13) 68  36 36  1 -7  -13 

F(14) 88  52 25  0 1  5 

F(15) 87  55 51  -6 -25  -29 

F(16) 60  46 37  1 -12  3 

C(14) 66  24 38  -9 4  -7 

F(11) 77  28 46  -9 12  -18 

F(12) 58  37 77  -13 13  -16 

F(13) 93  36 31  -5 11  -11 

C(15) 20  27 20  6 -5  -1 

C(16) 19  28 25  6 -1  0 

C(17) 25  37 30  8 -7  1 
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   Table B.12  Anisotropic Displacement Parameters (Å
2
 x 10

3
) for (F64Pc)2Tb(1/2   

   Acetone)(1/8 Chloroform).  The Anisotropic Displacement Factor Exponent Takes the 

   Form: -2π
2
[ h

2
a*

2
U

11
 + ... + 2 h k a* b* U

12
 ], Continued 

 

 U11 U22 U33 U23 U13 U12 

C(18) 18  46 38  13 -5  -2 

C(19) 26  66 31  3 0  4 

C(20) 26  43 31  4 4  4 

C(21) 22  26 26  1 3  1 

C(22) 18  25 26  4 4  1 

C(23) 25  45 141  7 -18  -5 

C(26) 29  120 83  -47 -7  16 

C(27) 80  115 108  28 63  46 

F(26) 73  127 92  5 4  6 

F(27) 34  170 222  85 24  4 

F(28) 47  170 68  -35 13  11 

C(28) 87  96 99  -2 23  -10 

F(30) 40  65 475  -29 60  18 

F(31) 56  143 171  -99 -15  24 

F(32) 57  56 100  4 2  7 

C(29) 25  25 20  4 3  7 

C(30) 28  31 25  7 2  6 

C(31) 32  34 28  6 8  9 

C(32) 38  28 22  3 10  8 

C(33) 42  29 19  -1 0  6 

C(34) 30  25 23  1 3  4 

C(35) 32  24 21  3 4  3 

C(36) 27  23 20  2 -1  2 

C(37) 47  34 30  -3 9  12 

C(38) 40  36 42  -7 9  11 

F(39) 69  62 67  -28 1  35 

F(40) 55  66 90  -23 -8  16 

F(41) 80  60 97  43 41  37 

C(39) 74  50 37  7 27  5 

F(36) 126  79 63  0 34  -40 

F(37) 122  107 115  78 64  43 

F(38) 110  88 59  -20 60  -12 

C(40) 47  37 25  1 2  8 

C(41) 48  40 28  2 -6  8 

F(46) 42  51 39  -1 -7  7 

F(47) 59  52 29  7 -3  12 

F(48) 52  33 44  0 -5  8 

C(42) 65  45 26  -5 -10  15 

F(43) 84  34 42  -12 5  13 

F(44) 96  57 37  -10 -27  4 

F(45) 54  41 46  -4 -7  -2 

C(43) 18  23 42  10 -8  -3 

C(50) 19  30 34  8 1  3 

C(51) 19  71 116  50 -14  -13 

C(52) 31  38 100  10 -20  -3 

F(52) 29  76 99  23 -20  -1 

F(53) 37  35 63  3 -5  -1 

F(54) 45  49 138  -12 -42  -1 

C(54) 27  256 73  88 -2  -31 
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   Table B.12   Anisotropic Displacement Parameters (Å
2
 x 10

3
) for (F64Pc)2Tb(1/2   

   Acetone)(1/8 Chloroform).  The Anisotropic Displacement Factor Exponent Takes the    

   Form: -2π
2
[ h

2
a*

2
U

11
 + ... + 2 h k a* b* U

12
 ], Continued 

 

 U11 U22 U33 U23 U13 U12 

C(57) 23  20 24  3 -1  -2 

C(58) 23  21 26  1 0  -1 

C(59) 21  24 32  -2 -5  -4 

C(60) 38  26 24  2 -9  -4 

C(61) 38  23 26  1 -6  0 

C(62) 34  22 27  -1 -4  -3 

C(63) 30  23 19  4 -2  0 

C(64) 24  18 22  5 -1  -3 

C(65) 34  35 27  -7 -7  -1 

C(66) 39  50 43  -4 -16  1 

F(74) 47  46 52  -8 -20  10 

F(75) 56  58 50  12 -10  13 

F(76) 44  68 63  -13 -34  3 

C(67) 35  44 40  -8 2  -10 

F(77) 33  65 56  -14 -5  -10 

F(78) 51  46 41  1 0  -14 

F(79) 56  61 54  -20 -2  -32 

C(68) 44  27 21  0 -4  -5 

C(69) 45  39 28  2 -5  -6 

F(67) 58  32 34  -3 1  -13 

F(68) 42  54 33  -2 5  0 

F(69) 61  46 25  4 0  -10 

C(70) 49  31 23  -4 -4  -3 

F(70) 69  39 30  -11 6  0 

F(71) 54  31 38  -5 -2  -5 

F(72) 53  35 32  -1 -4  5 

C(71) 21  22 23  1 -3  -1 

C(72) 23  23 23  0 -3  -1 

C(73) 27  25 23  -2 -3  -1 

C(74) 23  31 31  6 1  -3 

C(75) 27  31 35  -1 1  2 

C(76) 24  33 30  -6 -4  1 

C(77) 23  29 23  1 -5  -1 

C(78) 26  23 18  2 -3  0 

C(79) 25  37 41  -5 7  2 

C(80) 25  49 52  2 -7  5 

F(127) 29  77 81  1 -15  6 

F(128) 51  42 75  10 -6  5 

F(126) 44  72 45  1 -5  8 

C(81) 19  46 85  4 9  4 

F(123) 33  56 113  2 29  -5 

F(124) 45  42 85  15 25  3 

F(125) 29  54 96  -31 -1  -3 

C(82) 26  51 48  -19 -8  11 

C(83) 55  35 56  -11 -10  13 

F(119) 59  41 62  -3 -4  -5 

F(120) 64  42 99  -18 -24  20 

F(121) 60  45 72  -26 -24  13 

C(84) 45  69 58  -24 10  4 
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   Table B.12   Anisotropic Displacement Parameters (Å
2 x 10

3
) for (F64Pc)2Tb(1/2   

   Acetone)(1/8 Chloroform).  The Anisotropic Displacement Factor Exponent Takes the   

   Form: -2π
2
[ h

2
a*

2
U

11
 + ... + 2 h k a* b* U

12
], Continued 

 

 U11 U22 U33 U23 U13 U12 

F(116) 60  109 62  -16 24  -6 

F(117) 68  104 78  -50 14  28 

F(118) 62  93 42  -13 7  16 

C(85) 23  25 17  4 -2  -1 

C(86) 24  21 22  -2 -4  3 

C(87) 26  25 28  2 -1  -1 

C(88) 36  22 22  -2 -6  0 

C(89) 26  27 30  1 -7  -4 

C(90) 24  28 29  2 -3  -4 

C(91) 24  23 24  0 -1  -2 

C(92) 25  21 25  -1 -4  -1 

C(93) 37  25 25  -2 -9  0 

C(94) 43  21 33  -3 -6  -2 

F(100) 50  33 58  9 4  -4 

F(101) 45  30 33  -2 -7  5 

F(102) 61  26 39  -10 -8  10 

C(95) 55  29 26  -4 -5  -5 

F(103) 50  35 36  -9 8  5 

F(104) 75  42 25  -8 0  -9 

F(105) 57  26 31  0 2  0 

C(96) 34  29 50  -12 -7  -7 

C(97) 39  63 52  -20 -20  7 

F(110) 38  98 81  -26 -26  -7 

F(111) 59  70 41  -7 -18  16 

F(112) 68  56 60  -17 -29  25 

C(98) 34  41 67  -9 -3  -12 

F(107) 44  48 56  3 7  -8 

F(108) 47  55 102  -20 17  -24 

F(109) 27  57 73  -14 2  -6 

C(99) 22  24 24  3 -1  1 

C(100) 23  28 22  -1 1  -3 

C(101) 28  34 32  -7 1  -5 

C(102) 29  37 33  -3 4  -6 

C(103) 32  42 26  -3 7  -5 

C(104) 34  32 24  -4 1  -1 

C(105) 22  27 23  0 3  1 

C(106) 22  22 19  2 1  -1 

C(107) 44  86 52  -25 23  -29 

C(109) 39  106 67  -30 8  -16 

F(87) 49  142 85  -21 9  15 

F(88) 37  164 61  -20 -1  -14 

F(89) 46  208 106  -49 27  -69 

C(110) 34  60 53  -16 18  -14 

C(111) 45  65 56  -23 12  8 

F(91) 55  67 89  -39 26  -18 

F(92) 52  77 162  -59 35  -7 

F(93) 58  45 104  -4 -1  6 

C(112) 75  84 42  -10 12  -28 
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Table B.12   Anisotropic Displacement Parameters (Å
2
 x 10

3
) for (F64Pc)2Tb(1/2    

   Acetone)(1/8 Chloroform).  The Anisotropic Displacement Factor Exponent Takes the  

   Form:  -2π
2
[ h

2
a*

2
U

11
 + ... + 2 h k a* b* U

12
], Continued 

 

 U11 U22 U33 U23 U13 U12 

F(94) 106  156 51  -45 38  -53 

F(95) 71  105 42  7 -2  -32 

F(96) 108  99 57  14 4  -46 

F(1) 35  38 42  -11 9  -2 

F(2) 36  30 47  -10 -10  -3 

F(3) 68  42 30  -8 8  -3 

F(10) 60  27 34  -8 2  -2 

F(17) 35  38 47  -9 -15  -2 

F(18) 31  55 45  -15 4  13 

F(19) 20  53 54  -5 -9  8 

F(19') 27  43 69  -20 2  4 

F(29) 46  96 116  9 1  -6 

F(33) 28  68 36  -9 6  13 

F(34) 31  42 27  -6 0  0 

F(35) 55  50 29  -14 4  17 

F(42) 68  67 23  4 12  27 

F(49) 28  157 39  15 9  19 

F(50) 30  32 122  3 -28  -3 

F(51) 24  94 117  61 -18  -16 

F(61) 31  320 139  166 -22  -56 

F(65) 23  40 40  -10 -5  2 

F(66) 30  39 25  -9 2  1 

F(73) 47  36 22  3 -10  -2 

F(80) 44  40 32  -8 -9  -8 

F(81) 33  51 41  -16 8  -19 

F(82) 33  42 31  -16 8  -9 

F(83) 65  91 53  -17 28  -31 

F(90) 40  89 78  -38 26  -16 

F(97) 28  28 29  -7 0  4 

F(98) 20  34 44  -4 -2  -4 

F(99) 41  34 33  -10 -14  -2 

F(106) 38  36 61  -17 -5  -9 

F(113) 19  35 36  -8 -2  0 

F(114) 31  35 41  -16 -6  2 

F(115) 36  52 85  -28 -16  19 

F(122) 28  60 65  -18 14  6 
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                        Table B.13   Hydrogen Coordinates ( x10
4
) and Isotropic Displacement  

                        Parameters (Å
2
x 10

3
) for (F64Pc)2Tb(½ Acetone)(1/8 Chloroform) 

 
 x  y  z  U(eq) 

H(1A1) 1756 1828 9129 113 

H(1A2) 1641 2562 9227 113 

H(1A3) 1592 2336 8808 113 

H(2A1) 243 2661 8752 210 

H(2A2) 530 2986 9128 210 

H(2A3) -37 2466 9128 210 

H(1C) 8398 2301 9394 13 

 

 

 

                Table B.14  Experimental Parameters and Structure Refinement for (F64Pc)2Tb 
 

Empirical formula  C112 F128 N16 Tb 

Formula weight  4160.20 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Tetragonal 

Space group  P4/ncc 

Unit cell dimensions a = 27.5107(4) Å 

= 90°.  

 b = 27.5107(4) Å 

= 90°.  

 c = 23.6687(9) Å 

 = 90°.  

Volume 17913.4(8) Å3 

Z 4 

Density (calculated) 1.543 g/cm3 

Absorption coefficient 3.601 mm-1 

F(000) 8004 

Crystal size 0.20 x 0.20 x 0.15 mm3 

Theta range for data collection 2.27 to 71.07°. 

Index ranges -32<=h<=31, -32<=k<=29, -

27<=l<=27 

Reflections collected 157022 

Independent reflections 8298 [R(int) = 0.1111] 

Completeness to theta = 71.07° 95.5 %  

Refinement method Full-matrix least-squares on 

F2 

Data / restraints / parameters 8298 / 457 / 617 

Goodness-of-fit on F2 1.085 

Final R indices [I>2sigma(I)] R1 = 0.1064, wR2 = 0.2952 

R indices (all data) R1 = 0.1606, wR2 = 0.3301 

Largest diff. peak and hole 1.901 and -3.813 e.Å-3 
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              Table B.15 Atomic Coordinates (x 10
4
) and Equivalent Isotropic Displacement  

              Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Tb.  U(eq) is Defined as One Third of the  

             Trace of the Orthogonalized U
ij
 Tensor 

 

 x y z U(eq) 

Tb 2500 2500 2020(1) 67(1) 

N(1) 3098(2) 2096(2) 1431(3) 79(2) 

N(2) 3222(2) 2478(2) 2613(3) 78(2) 

N(3) 3388(2) 3334(2) 2713(3) 88(2) 

N(4) 3694(2) 2749(2) 1308(3) 81(2) 

C(1) 3486(3) 2070(3) 2697(4) 84(2) 

C(2) 3994(3) 2200(3) 2820(4) 90(2) 

C(3) 4402(3) 1939(3) 2965(4) 103(3) 

C(4) 4847(3) 2162(3) 3075(4) 92(2) 

C(5) 4883(3) 2675(4) 2997(4) 99(3) 

C(6) 4444(3) 2924(3) 2861(4) 94(2) 

C(7) 4011(3) 2700(3) 2786(4) 86(2) 

C(8) 3518(3) 2870(3) 2697(3) 81(2) 

C(9) 5237(3) 1818(4) 3312(4) 116(3) 

C(10) 5542(2) 1486(2) 2899(3) 126(6) 

F(4) 5805(3) 1177(3) 3197(3) 193(7) 

F(5) 5832(3) 1760(3) 2589(3) 151(4) 

F(6) 5244(3) 1242(3) 2566(4) 142(4) 

C(10') 5235(6) 1351(5) 2916(8) 140(20) 

F(4') 4997(10) 976(7) 3185(10) 158(16) 

F(5') 5706(9) 1214(7) 2801(12) 200(20) 

F(6') 4999(9) 1459(6) 2418(10) 152(12) 

C(11) 5050(3) 1463(3) 3814(4) 130(6) 

F(7) 5398(4) 1418(5) 4203(5) 235(9) 

F(8) 4945(4) 1027(4) 3600(5) 196(7) 

F(9) 4653(4) 1651(4) 4051(4) 164(5) 

C(11') 5252(10) 1718(7) 3961(7) 190(40) 

F(9') 4855(14) 1557(12) 4116(6) 210(30) 

F(8') 5339(12) 2100(11) 4214(7) 220(20) 

F(7') 5573(14) 1418(10) 4065(7) 220(20) 

C(12) 5358(3) 2976(4) 2977(4) 116(4) 

C(13) 5440(2) 3267(2) 3527(3) 291(16) 

F(14) 5046(3) 3535(2) 3638(3) 187(4) 

F(15) 5824(3) 3558(3) 3465(3) 224(4) 

F(16) 5519(3) 2960(3) 3954(3) 236(5) 

C(14) 5423(3) 3358(4) 2526(5) 450(50) 

F(12) 5250(4) 3816(5) 2730(6) 326(18) 

F(11) 5154(6) 3222(5) 2032(6) 130(6) 

F(13) 5929(7) 3399(5) 2386(7) 202(12) 

C(14') 5427(6) 3251(5) 2409(5) 67(8) 

F(11') 5850(9) 3240(8) 2274(8) 139(9) 

F(12') 5299(9) 3669(10) 2465(6) 187(12) 

F(13') 5184(11) 3059(7) 2047(9) 179(16) 

C(15) 3553(3) 2285(3) 1338(3) 80(2) 

C(16) 3383(3) 3116(3) 1356(3) 80(2) 

C(17) 3536(3) 3620(3) 1253(4) 83(2) 
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                Table B.15 Atomic Coordinates (x 10
4
) and Equivalent Isotropic Displacement  

                Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Tb.  U(eq) is Defined as One Third of the  

                Trace of the Orthogonalized U
ij
 Tensor, Continued 

 

 x y z U(eq) 

C(18) 3117(3) 3892(3) 1223(4) 91(2) 

C(19) 3137(3) 4369(3) 1068(4) 91(2) 

C(20) 3570(3) 4614(3) 980(4) 99(3) 

C(21) 4016(3) 4339(3) 1021(4) 104(3) 

C(22) 3975(3) 3844(3) 1145(4) 95(3) 

C(23) 3524(4) 5176(4) 852(5) 151(5) 

C(24) 3440(2) 5253(2) 225(3) 350(20) 

F(20) 3833(3) 5092(3) -68(3) 231(5) 

F(21) 3373(4) 5734(3) 122(3) 329(8) 

F(22) 3039(3) 5002(3) 60(3) 193(4) 

C(25) 3140(2) 5468(2) 1192(3) 155(6) 

F(23) 3299(2) 5907(2) 1277(4) 255(6) 

F(24) 3065(2) 5257(2) 1675(3) 201(4) 

F(25) 2736(2) 5486(2) 909(3) 233(5) 

C(26) 4547(4) 4512(3) 919(4) 136(4) 

C(27) 4904(2) 4181(2) 590(3) 440(30) 

F(27) 5209(2) 4456(2) 291(4) 225(4) 

F(28) 4655(2) 3893(2) 241(3) 177(3) 

F(29) 5155(2) 3909(3) 953(3) 280(8) 

C(28) 4788(2) 4665(2) 1499(3) 206(9) 

F(30) 5236(3) 4791(2) 1412(3) 226(5) 

F(31) 4775(3) 4302(2) 1846(3) 200(4) 

F(32) 4551(3) 5028(3) 1712(3) 251(6) 

F(1) 4361(2) 1459(2) 3024(3) 129(2) 

F(2) 4472(2) 3410(2) 2805(2) 109(2) 

F(3) 5582(3) 2081(3) 3616(6) 162(5) 

F(3') 5673(7) 1975(10) 3042(11) 118(9) 

F(10) 5757(2) 2670(3) 2916(4) 189(4) 

F(17) 4373(2) 3575(2) 1214(3) 114(2) 

F(18) 2720(2) 4617(2) 1022(2) 112(2) 

F(19) 3937(3) 5420(2) 1055(5) 203(4) 

F(26) 4544(3) 4931(3) 635(4) 184(3) 
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           Table B.16   Bond Lengths [Å] and Angles [°] for (F64Pc)2Tb 

 
Tb-N(1)#1  2.426(6)  Tb-N(2)#1  2.433(6) 

Tb-N(1)  2.426(6)  Tb-N(2)#2  2.434(6) 

Tb-N(1)#2  2.426(6)  Tb-N(2)  2.434(6) 

Tb-N(1)#3  2.426(6)  Tb-N(2)#3  2.434(6) 

     

N(1)-C(16)#1  1.331(9)  C(9)-C(10)  1.580(10) 

N(1)-C(15)  1.373(9)  C(9)-C(11)  1.621(10) 

N(2)-C(1)  1.351(8)  C(12)-C(14)  1.511(12) 

N(2)-C(8)  1.367(9)  C(12)-C(14')  1.556(12) 

N(3)-C(8)  1.324(9)  C(12)-C(13)  1.544(10) 

N(3)-C(1)#3  1.329(9)  C(15)-C(18)#1  1.473(10) 

N(4)-C(16)  1.329(9)  C(16)-N(1)#3  1.331(9) 

N(4)-C(15)  1.337(10)  C(16)-C(17)  1.471(10) 

C(1)-N(3)#1  1.329(9)  C(17)-C(22)  1.379(11) 

C(1)-C(2)  1.470(11)  C(17)-C(18)  1.375(9) 

C(2)-C(7)  1.380(12)  C(18)-C(19)  1.364(9) 

C(2)-C(3)  1.377(11)  C(18)-C(15)#3  1.474(10) 

C(3)-C(4)  1.392(12)  C(19)-C(20)  1.384(10) 

C(4)-C(5)  1.428(14)  C(20)-C(21)  1.446(12) 

C(4)-C(9)  1.537(12)  C(20)-C(23)  1.580(13) 

C(5)-C(6)  1.425(12)  C(21)-C(22)  1.398(12) 

C(5)-C(12)  1.547(13)  C(21)-C(26)  1.554(13) 

C(6)-C(7)  1.353(11)  C(23)-C(24)  1.515(11) 

C(7)-C(8)  1.449(11)  C(23)-C(25)  1.552(11) 

C(9)-C(11')  1.560(16)  C(26)-C(27)  1.549(10) 

C(9)-C(10')  1.591(15)  C(26)-C(28)  1.582(11) 

     

N(1)#1-Tb-N(1) 70.70(15)  N(1)#3-Tb-N(2)#3 76.5(2) 

N(1)#1-Tb-N(1)#2   70.70(15)  N(2)#1-Tb-N(2)#3 109.6(3) 

N(1)-Tb-N(1)#2 109.8(3)  N(2)#2-Tb-N(2)#3 70.58(16) 

N(1)#1-Tb-N(1)#3 109.8(3)  N(2)-Tb-N(2)#3 70.58(16) 

N(1)-Tb-N(1)#3 70.70(15)  C(16)#1-N(1)-C(15) 108.6(6) 

N(1)#2-Tb-N(1)#3 70.70(15)  C(16)#1-N(1)-Tb 123.7(5) 

N(1)#1-Tb-N(2)#1 76.5(2)  C(15)-N(1)-Tb 122.5(5) 

N(1)-Tb-N(2)#1 88.5(2)  C(1)-N(2)-C(8) 108.4(7) 

N(1)#2-Tb-N(2)#1 133.52(19)  C(1)-N(2)-Tb 123.0(5) 

N(1)#3-Tb-N(2)#1 153.72(18)  C(8)-N(2)-Tb 123.4(5) 

N(1)#1-Tb-N(2)#2 88.5(2)  C(8)-N(3)-C(1)#3 124.1(7) 

N(1)-Tb-N(2)#2 153.73(18)  C(16)-N(4)-C(15) 122.2(6) 

N(1)#2-Tb-N(2)#2 76.5(2)  N(3)#1-C(1)-N(2) 128.4(7) 

N(1)#3-Tb-N(2)#2 133.51(19)  N(3)#1-C(1)-C(2) 121.6(7) 

N(2)#1-Tb-N(2)#2 70.58(16)  N(2)-C(1)-C(2) 109.8(7) 

N(1)#1-Tb-N(2) 133.51(19)  C(7)-C(2)-C(3) 120.5(7) 

N(1)-Tb-N(2) 76.5(2)  C(7)-C(2)-C(1) 105.2(6) 

N(1)#2-Tb-N(2) 153.72(18)  C(3)-C(2)-C(1) 134.3(8) 

N(1)#3-Tb-N(2) 88.5(2)  C(4)-C(3)-C(2) 122.2(8) 

N(2)#1-Tb-N(2) 70.58(16)  C(3)-C(4)-C(5) 118.2(7) 

N(2)#2-Tb-N(2) 109.6(3)  C(3)-C(4)-C(9) 114.2(8) 

N(1)#1-Tb-N(2)#3 153.72(18)  C(5)-C(4)-C(9) 127.4(8) 

N(1)-Tb-N(2)#3 133.51(19)  C(6)-C(5)-C(4) 116.5(8) 

N(1)#2-Tb-N(2)#3 88.5(2)  C(6)-C(5)-C(12) 116.9(8) 

C(4)-C(5)-C(12) 126.2(8)  N(4)-C(15)-C(18)#1 121.5(6) 

C(7)-C(6)-C(5) 123.8(8)  N(1)-C(15)-C(18)#1 108.9(7) 
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Table B.16   Bond Lengths [Å] and Angles [°] for (F64Pc)2Tb, Continued 
     

C(6)-C(7)-C(2) 118.5(7)  N(4)-C(16)-N(1)#3 128.5(7) 

C(6)-C(7)-C(8) 134.0(8)  N(4)-C(16)-C(17) 121.2(6) 

C(2)-C(7)-C(8) 107.5(6)  N(1)#3-C(16)-C(17) 109.9(7) 

N(3)-C(8)-N(2) 127.1(7)  C(22)-C(17)-C(18) 118.8(7) 

N(3)-C(8)-C(7) 124.1(7)  C(22)-C(17)-C(16) 134.6(7) 

N(2)-C(8)-C(7) 108.8(6)  C(18)-C(17)-C(16) 106.4(7) 

C(11')-C(9)-C(10') 116.0(12)  C(19)-C(18)-C(17) 120.4(7) 

C(11')-C(9)-C(4) 119.2(10)  C(19)-C(18)-C(15)#3 133.5(7) 

C(10')-C(9)-C(4) 106.1(9)  C(17)-C(18)-C(15)#3 105.9(6) 

C(11')-C(9)-C(10) 119.5(10)  C(18)-C(19)-C(20) 122.8(8) 

C(10')-C(9)-C(10) 33.9(8)  C(19)-C(20)-C(21) 117.8(7) 

C(4)-C(9)-C(10) 120.0(7)  C(19)-C(20)-C(23) 115.8(8) 

C(11')-C(9)-C(11) 35.1(11)  C(21)-C(20)-C(23) 126.4(7) 

C(10')-C(9)-C(11) 86.8(9)  C(22)-C(21)-C(20) 117.1(7) 

C(4)-C(9)-C(11) 114.7(6)  C(22)-C(21)-C(26) 114.0(8) 

C(10)-C(9)-C(11) 105.8(7)  C(20)-C(21)-C(26) 128.8(8) 

C(14)-C(12)-C(14') 15.0(8)  C(17)-C(22)-C(21) 122.9(7) 

C(14)-C(12)-C(13) 102.6(8)  C(24)-C(23)-C(20) 109.8(8) 

C(14')-C(12)-C(13) 117.3(9)  C(24)-C(23)-C(25) 109.4(8) 

C(14)-C(12)-C(5) 119.6(7)  C(20)-C(23)-C(25) 117.5(7) 

C(14')-C(12)-C(5) 112.9(8)  C(27)-C(26)-C(21) 119.6(7) 

C(13)-C(12)-C(5) 112.0(7)  C(27)-C(26)-C(28) 109.1(8) 

N(4)-C(15)-N(1) 129.4(6)  C(21)-C(26)-C(28) 109.9(7) 

 

          Symmetry transformations used to generate equivalent atoms:  

         #1 y,-x+1/2,z    #2 -x+1/2,-y+1/2,z    #3 -y+1/2,x,z      
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Table B.17   Anisotropic Displacement Parameters (Å
2 x 10

3
) for (F64Pc)2Tb. 

The Anisotropic Displacement Factor Exponent Takes the  Form:  -2π
2
[ h

2
a*

2
U

11
 + ... + 2 

h k a* b* U
12

] 
 

 U11 U22 U33 U23 U13 U12 

Tb 48(1)  48(1) 105(1)  0 0  0 

N(1) 59(3)  61(3) 115(5)  4(3) 3(3)  -5(3) 

N(2) 62(3)  65(4) 108(5)  15(3) -6(3)  0(3) 

N(3) 67(4)  71(4) 125(5)  5(3) -16(3)  -5(3) 

N(4) 61(3)  53(3) 128(5)  9(3) 22(3)  -1(3) 

C(1) 75(5)  72(5) 105(6)  9(4) -7(4)  11(4) 

C(2) 76(5)  70(5) 125(7)  12(4) -14(4)  -7(4) 

C(3) 80(6)  71(5) 158(9)  33(5) -27(5)  7(4) 

C(4) 58(5)  104(6) 114(6)  11(5) -8(4)  12(4) 

C(5) 86(6)  96(6) 116(7)  5(5) -24(5)  1(5) 

C(6) 80(6)  76(6) 127(7)  3(4) -21(5)  -9(4) 

C(7) 76(5)  68(4) 113(6)  2(4) -11(4)  -2(4) 

C(8) 66(4)  73(5) 104(6)  7(4) -12(4)  -7(4) 

C(9) 77(6)  116(8) 156(9)  39(7) 12(6)  22(5) 

C(10) 92(11)  118(13) 168(15)  -32(11) -48(11)  37(10) 

F(4) 95(6)  168(10) 317(18)  89(10) 16(9)  57(6) 

F(5) 93(5)  150(8) 209(10)  39(7) 20(6)  -12(5) 

F(6) 119(8)  109(8) 199(10)  -9(7) 26(7)  14(6) 

C(10') 60(20)  28(17) 320(70)  90(30) -20(30)  4(15) 

F(4') 140(20)  100(20) 230(40)  -10(20) -80(30)  69(18) 

F(5') 210(40)  90(20) 300(50)  30(30) 190(40)  60(20) 

F(6') 109(19)  99(18) 250(30)  -17(18) 8(19)  64(15) 

C(11) 123(13)  109(13) 158(17)  29(11) -48(12)  26(10) 

F(7) 202(13)  230(17) 274(18)  130(15) -116(12)  8(11) 

F(8) 120(7)  134(9) 330(20)  123(11) -72(10)  -12(7) 

F(9) 113(7)  209(12) 169(9)  83(8) 14(6)  -6(7) 

C(11') 240(70)  190(60) 140(50)  -140(50) -90(50)  50(50) 

F(9') 190(40)  240(40) 220(40)  -100(30) -50(30)  130(40) 

F(8') 190(30)  350(50) 130(20)  -130(30) -70(20)  70(30) 

F(7') 320(50)  80(20) 250(40)  0(20) -150(40)  90(30) 

C(12) 58(5)  103(7) 187(11)  20(6) -51(6)  6(5) 

C(13) 190(20)  500(40) 187(18)  40(20) -38(16)  -220(30) 

F(14) 180(7)  141(6) 240(9)  -70(6) -114(7)  30(5) 

F(15) 181(7)  202(8) 289(11)  37(7) -124(7)  -91(6) 

F(16) 187(9)  249(11) 272(13)  20(9) -75(8)  16(8) 

C(14) 200(40)  750(90) 400(70)  240(60) -210(40)  -330(50) 

F(12) 101(9)  94(9) 780(50)  175(17) -164(18)  -47(7) 

F(11) 126(10)  112(11) 152(12)  56(8) 9(8)  28(8) 

F(13) 93(11)  103(12) 410(30)  89(15) 52(14)  -13(8) 

C(14') 76(17)  47(11) 79(15)  -16(10) 26(11)  -34(10) 

F(11') 60(11)  81(13) 280(20)  32(11) -15(12)  -14(9) 

F(12') 240(30)  210(30) 113(15)  21(15) 50(15)  30(20) 

F(13') 170(20)  90(14) 280(30)  89(17) 50(20)  46(15) 

C(15) 66(5)  78(5) 96(5)  -6(4) 9(4)  8(4) 

C(16) 55(4)  70(5) 115(6)  7(4) 5(4)  -8(3) 

C(17) 75(5)  57(4) 117(6)  9(4) 2(4)  -5(3) 

C(18) 81(5)  58(4) 133(7)  24(4) 7(5)  1(3) 

C(19) 81(5)  75(5) 116(6)  23(4) -7(4)  -8(4) 
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    Table B.17   Anisotropic Displacement Parameters (Å
2 
x 10

3
) for (F64Pc)2Tb. 

    The Anisotropic Displacement Factor Exponent Takes the    Form:  -2π
2
[ h

2
a*

2
U

11
 + ...  

    + 2 h k a* b* U
12

], Continued 
 

 U11 U22 U33 U23 U13 U12 

C(20) 94(6)  75(5) 129(7)  19(5) 0(5)  -27(4) 

C(21) 76(6)  92(6) 144(8)  23(5) 2(5)  -22(4) 

C(22) 70(5)  71(5) 143(7)  37(5) 7(5)  -4(4) 

C(23) 104(8)  107(8) 241(15)  68(9) -25(9)  -26(6) 

C(24) 810(70)  96(12) 144(15)  4(10) -10(30)  -30(20) 

F(20) 210(9)  169(8) 313(14)  95(9) -7(9)  -73(7) 

F(21) 321(13)  190(9) 480(20)  230(12) 29(13)  2(9) 

F(22) 164(6)  229(9) 185(8)  81(7) -34(5)  18(6) 

C(25) 197(14)  52(5) 216(15)  30(7) -76(13)  12(7) 

F(23) 177(7)  117(6) 471(19)  -66(8) -58(9)  -14(5) 

F(24) 142(6)  204(9) 256(11)  -86(8) -44(7)  12(6) 

F(25) 140(6)  122(6) 436(17)  110(8) -24(9)  5(5) 

C(26) 140(9)  71(6) 198(12)  36(6) 20(8)  -34(6) 

C(27) 330(30)  340(30) 660(50)  -300(40) 380(40)  -280(30) 

F(27) 153(7)  184(7) 339(11)  65(8) 113(7)  -30(6) 

F(28) 169(7)  140(6) 221(7)  17(5) 83(6)  -14(5) 

F(29) 106(6)  167(8) 570(20)  117(12) 50(9)  -28(5) 

C(28) 98(11)  270(30) 250(20)  48(19) -31(11)  -58(14) 

F(30) 138(6)  125(6) 416(16)  51(7) -55(8)  -26(5) 

F(31) 224(10)  125(6) 252(9)  50(6) -94(8)  -50(6) 

F(32) 185(10)  203(10) 367(15)  -38(10) -51(10)  -78(8) 

F(1) 73(3)  92(4) 223(6)  55(3) -22(3)  3(2) 

F(2) 76(3)  82(3) 169(5)  -1(3) -31(3)  -8(2) 

F(3) 81(5)  139(7) 266(15)  56(8) -70(7)  -5(4) 

F(10) 87(5)  160(6) 319(12)  67(7) -34(5)  -17(4) 

F(17) 67(3)  77(3) 196(5)  31(3) 27(3)  -11(2) 

F(18) 101(3)  61(3) 175(5)  33(3) -29(3)  -3(2) 

F(19) 169(6)  104(5) 337(11)  76(6) -36(7)  -51(4) 

F(26) 120(5)  114(5) 319(10)  84(6) 2(5)  -44(4) 
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                      Table B.18  Experimental Parameters and Structure Refinement for 

                      (F64Pc)2Dy 
 

Identification code  062708a 

Empirical formula  C112 Dy F128 N16 

Formula weight  4163.78 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Tetragonal 

Space group  P4/ncc 

Unit cell dimensions a = 27.1967(12) Å 

= 90°.  

 b = 27.1967(12) Å 

= 90°.  

 c = 23.553(2) Å 

 = 90°.  

Volume 17422(2) Å3 

Z 4 

Density (calculated) 1.587 g/cm3 

Absorption coefficient 4.001 mm-1 

F(000) 8008 

Crystal size 0.12 x 0.13 x 0.16 mm3 

Theta range for data collection 4.60 to 54.96°. 

Index ranges -28<=h<=28, -28<=k<=28, -24<=l<=24 

Reflections collected 98381 

Independent reflections 5468 [R(int) = 0.1003] 

Completeness to theta = 54.96° 99.7 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5468 / 0 / 501 

Goodness-of-fit on F2 1.311 

Final R indices [I>2sigma(I)] R1 = 0.0982, wR2 = 0.2855 

R indices (all data) R1 = 0.1080, wR2 = 0.2971 

Extinction coefficient 0.00000(2) 

Largest diff. peak and hole 3.152 and -6.000 e.Å-3 
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                 Table B.19 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                  Displacement Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Dy.  U(eq) is Defined as One  

                 Third of the Trace of the Orthogonalized U
ij
 Tensor 

 

 x y z U(eq) 

Dy 2500 2500 2009(1) 32(1) 

N(1) 2483(2) 3224(2) 2606(3) 34(2) 

N(2) 3343(2) 3404(2) 2693(3) 39(2) 

N(3) 3110(2) 2893(2) 1417(3) 46(2) 

N(4) 2766(2) 3700(2) 1313(2) 42(2) 

C(1) 3573(3) 2695(3) 1321(3) 43(2) 

C(2) 3915(2) 3098(1) 1204(2) 49(2) 

C(3) 4412(2) 3112(1) 1066(2) 49(2) 

C(4) 4644(1) 3561(2) 978(2) 60(2) 

C(5) 4380(2) 3996(1) 1030(3) 57(2) 

C(6) 3883(2) 3982(1) 1168(3) 52(2) 

C(7) 3651(1) 3533(2) 1255(2) 49(2) 

C(8) 2878(2) 3531(3) 2677(3) 35(2) 

C(9) 2708(1) 4039(1) 2756(2) 41(2) 

C(10) 2200(1) 4009(1) 2804(2) 40(2) 

C(11) 2065(3) 3500(2) 2683(3) 39(2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



238 

 

 

 

                 Table B.19 Atomic Coordinates (x 10
4
) and Equivalent Isotropic  

                  Displacement Parameters (Ǻ
2
 x 10

3
) for (F64Pc)2Dy.  U(eq) is Defined as One  

                  Third of the Trace of the Orthogonalized U
ij
 Tensor, Continued 

 

 x y z U(eq) 

C(12) 1929(1) 4423(2) 2951(2) 46(2) 

C(13) 2166(2) 4868(1) 3049(2) 46(2) 

C(14) 2675(2) 4898(1) 3001(2) 45(2) 

C(15) 2946(1) 4484(2) 2854(2) 45(2) 

C(16) 5213(4) 3502(4) 848(5) 82(3) 

C(17) 5306(2) 3398(2) 214(2) 125(5) 

F(9) 5066(2) 2999(2) 62(2) 108(2) 

F(10) 5780(2) 3331(2) 130(2) 133(3) 

F(11) 5153(2) 3773(2) -91(2) 125(3) 

C(18) 5504(1) 3075(1) 1235(2) 74(3) 

F(6) 5265(2) 3005(2) 1716(2) 97(2) 

F(7) 5955(2) 3224(2) 1346(2) 115(2) 

F(8) 5521(2) 2658(2) 949(2) 107(2) 

C(19) 4574(4) 4530(4) 919(6) 85(4) 

C(20) 4742(2) 4770(1) 1541(2) 100(5) 

F(16) 4881(2) 5220(2) 1467(2) 154(4) 

F(17) 5101(2) 4516(2) 1751(2) 110(2) 

F(18) 4372(2) 4759(2) 1888(2) 118(3) 

C(21) 4233(2) 4900(2) 596(3) 144(7) 

F(13) 3931(2) 4651(2) 251(3) 124(3) 

F(14) 4509(2) 5209(2) 290(3) 178(5) 

F(15) 3967(2) 5156(2) 973(3) 142(4) 

C(22) 3128(3) 3396(3) 1346(3) 46(2) 

C(23) 2982(3) 5390(3) 2949(3) 51(2) 

C(24) 1812(3) 5259(3) 3339(4) 58(2) 

C(25) 3297(1) 5496(1) 3497(1) 76(3) 

F(20) 3003(2) 5568(2) 3930(2) 89(2) 

F(21) 3566(2) 5889(2) 3415(2) 95(2) 

F(22) 3583(2) 5119(2) 3601(2) 82(2) 

C(26) 3310(1) 5447(1) 2385(1) 68(2) 

F(23) 3134(2) 5161(2) 1986(2) 76(2) 

F(24) 3765(2) 5321(2) 2497(2) 85(2) 

F(25) 3298(2) 5905(2) 2213(2) 91(2) 

C(27) 1485(1) 5567(1) 2931(2) 75(3) 

F(29) 1175(2) 5832(2) 3229(2) 111(2) 

F(30) 1239(2) 5270(2) 2595(2) 83(2) 

F(31) 1764(2) 5858(2) 2625(2) 85(2) 

C(28) 1479(1) 5041(1) 3854(2) 87(3) 

F(26) 1692(2) 4646(2) 4065(2) 89(2) 

F(27) 1039(2) 4924(2) 3659(2) 96(2) 

F(28) 1434(2) 5377(2) 4255(2) 102(2) 

F(1) 4633(2) 2695(2) 1001(2) 61(1) 

F(2) 3620(2) 4382(2) 1239(2) 64(1) 

F(3) 3427(2) 4498(2) 2786(2) 54(1) 

F(4) 1447(2) 4388(2) 2990(2) 61(1) 

F(5) 5476(2) 3902(2) 1007(3) 95(2) 

F(12) 4994(2) 4524(2) 628(3) 103(2) 

F(19) 2661(2) 5786(2) 2897(2) 70(1) 

F(32) 2097(2) 5591(2) 3630(2) 76(2) 
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       Table B.20   Bond Lengths [Å] and Angles [°] for (F64Pc)2Dy 
 

Dy-N(3)  2.417(6)  Dy-N(1)#1  2.421(6) 

Dy-N(3)#1  2.417(6)  Dy-N(1)  2.421(6) 

Dy-N(3)#2  2.417(6)  Dy-N(1)#2  2.421(6) 

Dy-N(3)#3  2.417(6)  Dy-N(1)#3  2.421(6) 

     

N(1)-C(8)  1.369(8)  C(8)-C(9)  1.469(8) 

N(1)-C(11)  1.374(8)  C(11)-N(2)#3  1.345(9) 

N(2)-C(8)  1.312(8)  C(11)-C(10)  1.460(8) 

N(2)-C(11)#1  1.345(9)  C(9)-C(10)  1.3900 

N(3)-C(22)  1.378(10)  C(9)-C(15)  1.3900 

N(3)-C(1)  1.387(10)  C(10)-C(12)  1.3900 

N(4)-C(1)#3  1.301(10)  C(12)-C(13)  1.3900 

N(4)-C(22)  1.290(10)  C(13)-C(14)  1.3900 

C(1)-N(4)#1  1.301(10)  C(13)-C(24)  1.590(8) 

C(1)-C(2)  1.463(8)  C(14)-C(15)  1.3900 

C(2)-C(3)  1.3900  C(14)-C(23)  1.582(8) 

C(2)-C(7)  1.3900  C(16)-C(17)  1.541(11) 

C(3)-C(4)  1.3900  C(16)-C(18)  1.678(13) 

C(4)-C(5)  1.3900  C(19)-C(21)  1.566(11) 

C(4)-C(16)  1.584(10)  C(19)-C(20)  1.667(15) 

C(5)-C(6)  1.3900  C(23)-C(25)  1.576(9) 

C(5)-C(19)  1.567(11)  C(23)-C(26)  1.607(8) 

C(6)-C(7)  1.3900  C(24)-C(27)  1.555(9) 

C(7)-C(22)  1.484(8)  C(24)-C(28)  1.624(9) 

N(3)-Dy-N(3)#1 70.55(15)  N(1)#2-Dy-N(1)#3 70.26(14) 

N(3)-Dy-N(3)#2 109.5(3)  C(8)-N(1)-C(11) 107.5(6) 

N(3)#1-Dy-N(3)#2 70.55(15)  C(8)-N(1)-Dy 123.5(4 

N(3)-Dy-N(3)#3 70.55(15)  C(11)-N(1)-Dy 122.4(4) 

N(3)#1-Dy-N(3)#3 109.5(3)  C(8)-N(2)-C(11)#1 123.7(7) 

N(3)#2-Dy-N(3)#3 70.55(15)  C(22)-N(3)-C(1) 109.4(6) 

N(3)-Dy-N(1)#1 76.6(2)  C(22)-N(3)-Dy 122.3(5) 

N(3)#1-Dy-N(1)#1 89.3(2)  C(1)-N(3)-Dy 123.0(5) 

N(3)#2-Dy-N(1)#1 154.46(19)  C(1)#3-N(4)-C(22) 124.4(6) 

N(3)#3-Dy-N(1)#1 133.02(19)  N(4)#1-C(1)-N(3) 128.2(7) 

N(3)-Dy-N(1) 89.3(2)  N(4)#1-C(1)-C(2) 123.2(6) 

N(3)#1-Dy-N(1) 154.46(19)  N(3)-C(1)-C(2) 108.6(6) 

N(3)#2-Dy-N(1) 133.02(19)  C(3)-C(2)-C(7) 120.0 

N(3)#3-Dy-N(1) 76.6(2)  C(3)-C(2)-C(1) 133.1(4) 

N(1)#1-Dy-N(1) 70.26(14)  C(7)-C(2)-C(1) 106.9(4) 

N(3)-Dy-N(1)#2 133.02(19)  C(4)-C(3)-C(2) 120.0 

N(3)#1-Dy-N(1)#2 76.6(2)  C(5)-C(4)-C(3) 120.0 

N(3)#2-Dy-N(1)#2 89.3(2)  C(5)-C(4)-C(16) 127.4(4) 

N(3)#3-Dy-N(1)#2 154.46(19)  C(3)-C(4)-C(16) 112.6(4) 

N(1)#1-Dy-N(1)#2 70.26(14)  C(4)-C(5)-C(6) 120.0 

N(1)-Dy-N(1)#2 108.9(3)  C(4)-C(5)-C(19) 126.8(4) 

N(3)-Dy-N(1)#3 154.46(19)  C(6)-C(5)-C(19) 113.1(4) 

N(3)#1-Dy-N(1)#3 133.02(19)  C(7)-C(6)-C(5) 120.0 

N(3)#2-Dy-N(1)#3 76.6(2)  C(6)-C(7)-C(2) 120.0 

N(3)#3-Dy-N(1)#3 89.3(2)  C(6)-C(7)-C(22) 132.6(4) 

N(1)#1-Dy-N(1)#3 108.9(3)  C(2)-C(7)-C(22) 107.1(4) 

N(1)-Dy-N(1)#3 70.26(14)  N(2)-C(8)-N(1) 126.8(6) 

N(2)-C(8)-C(9) 123.1(6)  C(13)-C(14)-C(23) 125.5(4) 

N(1)-C(8)-C(9) 110.0(5)  C(14)-C(15)-C(9) 120.0 



240 

 

 

 Table B.20   Bond Lengths [Å] and Angles [°] for (F64Pc)2Dy, Continued 

 
N(2)#3-C(11)-N(1) 127.9(6)  C(17)-C(16)-C(4) 111.6(8) 

N(2)#3-C(11)-C(10) 122.4(6)  C(17)-C(16)-C(18) 108.7(6) 

N(1)-C(11)-C(10) 109.6(6)  C(4)-C(16)-C(18) 115.1(6) 

C(10)-C(9)-C(15) 120.0  C(21)-C(19)-C(5) 118.4(8) 

C(10)-C(9)-C(8) 105.5(4)  C(21)-C(19)-C(20) 109.7(7) 

C(15)-C(9)-C(8) 133.9(4)  C(5)-C(19)-C(20) 108.0(7) 

C(9)-C(10)-C(12) 120.0  N(4)-C(22)-N(3) 128.0(7) 

C(9)-C(10)-C(11) 106.9(4)  N(4)-C(22)-C(7) 124.2(6) 

C(12)-C(10)-C(11) 133.1(4)  N(3)-C(22)-C(7) 107.5(7) 

C(13)-C(12)-C(10) 120.0  C(25)-C(23)-C(14) 112.2(5) 

C(12)-C(13)-C(14) 120.0  C(25)-C(23)-C(26) 110.9(5) 

C(12)-C(13)-C(24) 111.8(4)  C(14)-C(23)-C(26) 116.0(5) 

C(14)-C(13)-C(24) 126.8(4)  C(27)-C(24)-C(13) 116.2(6) 

C(15)-C(14)-C(13) 120.0  C(27)-C(24)-C(28) 109.8(5) 

C(15)-C(14)-C(23) 112.7(4)  C(13)-C(24)-C(28) 114.5(5) 

       Symmetry transformations used to generate equivalent atoms: 

       #1 y,-x+1/2,z    #2 -x+1/2,-y+1/2,z    #3 -y+1/2,x,z      
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   Table B.21  Anisotropic Displacement Parameters (Å
2
x10

3
) for (F64Pc)2Dy.  The   

   Anisotropic Displacement Factor Exponent Takes the Form: -2π
2
[h

2
a*

2
U

11
 + ... + 2hka*  

   b*   U
12

] 
 

 U11 U22 U33 U23 U13 U12 

Dy 26(1)  26(1) 44(1)  0 0  0 

N(1) 30(4)  27(3) 45(4)  -4(3) 6(2)  -1(2) 

N(2) 35(3)  31(3) 52(4)  -7(3) 2(3)  2(3) 

N(3) 39(4)  38(4) 62(4)  2(3) -1(3)  -5(3) 

N(4) 42(4)  33(3) 52(4)  7(3) 6(3)  -1(3) 

C(1) 35(4)  47(5) 46(4)  -2(3) 7(3)  6(4) 

C(2) 50(5)  40(4) 58(5)  2(3) 14(4)  -7(4) 

C(3) 32(4)  57(5) 58(5)  -13(4) 17(3)  -8(4) 

C(4) 49(5)  57(5) 73(6)  -4(4) 25(4)  -13(4) 

C(5) 49(5)  56(5) 66(5)  9(4) 16(4)  -6(4) 

C(6) 48(5)  42(5) 66(6)  20(4) 6(4)  -9(4) 

C(7) 43(4)  58(5) 45(5)  5(4) 6(3)  -6(4) 

C(8) 31(4)  34(4) 40(4)  -6(3) 3(3)  -2(3) 

C(11) 40(4)  27(4) 52(4)  1(3) 7(3)  10(3) 

C(9) 34(4)  31(4) 58(5)  -3(3) 7(3)  -4(3) 

C(10) 35(4)  34(4) 53(4)  -5(3) -1(3)  0(3) 

C(12) 29(4)  47(5) 61(5)  -3(3) 8(3)  -2(4) 

C(13) 58(5)  25(4) 55(5)  0(3) 8(3)  6(4) 

C(14) 43(5)  34(5) 56(5)  -10(3) 2(3)  0(4) 

C(15) 49(5)  40(5) 46(4)  -2(3) 1(3)  -8(4) 

C(16) 68(6)  69(6) 109(8)  -30(5) 46(6)  -23(5) 

C(17) 93(9)  205(16) 77(8)  16(9) 49(7)  -59(10) 

F(9) 103(5)  117(5) 102(5)  -35(4) 46(4)  -47(4) 

F(10) 97(5)  156(6) 146(7)  -35(5) 70(5)  -32(5) 

F(11) 155(7)  120(6) 101(5)  10(4) 30(5)  -58(5) 

C(18) 46(5)  78(7) 98(8)  -6(6) 9(5)  -2(5) 

F(6) 84(4)  89(4) 118(5)  -12(4) -10(4)  15(3) 

F(7) 66(4)  103(5) 178(7)  -37(4) 0(4)  -18(3) 

F(8) 70(4)  85(4) 167(7)  -38(5) 22(4)  -1(3) 

C(19) 56(6)  72(7) 125(10)  18(6) 43(6)  -11(6) 

C(20) 76(8)  59(7) 164(14)  -18(7) 24(8)  -19(7) 

F(16) 102(5)  69(4) 290(12)  -35(6) 41(6)  -35(4) 

F(17) 84(4)  94(5) 151(6)  -36(4) 9(4)  -18(4) 

F(18) 69(4)  122(6) 162(6)  -54(5) 31(4)  -23(4) 

C(21) 137(14)  87(10) 210(19)  82(12) 67(14)  -7(11) 

F(13) 117(5)  129(6) 127(6)  63(5) 4(4)  -2(5) 

F(14) 140(7)  109(6) 285(11)  114(7) 85(7)  1(5) 

F(15) 90(5)  61(4) 276(11)  36(5) 54(6)  0(4) 

C(22) 44(5)  45(5) 50(5)  9(4) 6(4)  -12(4) 

C(23) 51(5)  34(4) 70(6)  -12(3) 8(4)  2(4) 

C(24) 68(5)  31(4) 77(6)  -7(4) 16(4)  6(4) 

C(25) 82(7)  66(7) 82(7)  -9(5) -5(6)  -16(6) 

F(20) 101(4)  91(4) 74(4)  -14(3) 1(3)  -8(3) 

F(21) 98(4)  74(4) 114(4)  -27(3) 7(3)  -45(3) 

F(22) 66(3)  83(4) 98(4)  -34(3) -26(3)  -1(3) 
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   Table B.21  Anisotropic Displacement Parameters (Å
2
x10

3
)for (F64Pc)2Dy.  The   

   Anisotropic Displacement Factor Exponent Takes the Form: -2π
2
[h

2
a*

2
U

11
 + ... + 2hka*  

   b* U
12

], Continued 
 

 U11 U22 U33 U23 U13 U12 

C(26) 67(6)  58(6) 80(7)  6(5) -1(5)  -5(5) 

F(23) 93(4)  65(3) 70(4)  -3(2) 20(3)  0(3) 

F(24) 64(3)  64(3) 127(5)  -15(3) 21(3)  -13(3) 

F(25) 95(4)  49(3) 128(5)  14(3) 47(4)  -4(3) 

C(27) 70(7)  60(6) 96(8)  -15(5) 5(5)  12(6) 

F(29) 80(4)  65(4) 188(7)  0(4) 24(4)  33(3) 

F(30) 66(3)  74(3) 110(4)  16(3) -4(3)  6(3) 

F(31) 85(4)  62(3) 109(5)  10(3) 3(3)  4(3) 

C(28) 71(7)  44(5) 145(10)  -5(6) 45(7)  -5(5) 

F(26) 109(4)  81(4) 78(4)  6(3) 22(3)  -10(3) 

F(27) 66(3)  71(3) 150(5)  -25(3) 40(4)  -9(3) 

F(28) 115(5)  87(4) 104(4)  -38(3) 49(4)  -18(4) 

F(1) 38(2)  56(3) 90(3)  -12(2) 28(2)  -1(2) 

F(2) 53(3)  36(2) 102(4)  20(2) 18(2)  -1(2) 

F(3) 36(3)  35(2) 89(3)  -13(2) 1(2)  -3(2) 

F(4) 46(3)  37(2) 99(4)  -13(2) 17(2)  1(2) 

F(5) 56(3)  90(4) 139(5)  -30(4) 25(3)  -33(3) 

F(12) 85(4)  81(4) 143(5)  9(4) 44(4)  -31(4) 

F(19) 75(3)  44(3) 90(4)  -1(2) 23(3)  0(3) 

F(32) 76(3)  55(3) 97(4)  -19(3) 21(3)  -5(3) 
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APPENDIX C 

NMR GRAPHS 

 

This appendix contains the  
19

F NMR figures of complexes [1], [3] and [4].  

 

 
 

Figure C.1   
19

F NMR of (F64Pc)2TbH in acetone D6. 
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Figure C.2   

19
F NMR of (F64Pc)2DyH in acetone D6. 
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Figure C.3   
19

F NMR of (F64Pc)2LuH in acetone D6. 
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APPENDIX D 

MAGNETISM HYSTERESIS AND AC MAGNETISM CURVES 

 

This appendix contains Figure D.1,  showing the  DC magnetism hysteresis curve of 

(F64Pc)2LuH and Figures D.2-D.4 showing AC magnetism curves of (F64Pc)2DyH. 

 

 

 
Figure D.1  DC magnetic hysteresis of (F64Pc)2LuH.  (top) Raw magnetic moment data. 

(bottom) Molar magnetization data corrected for capsule and diamagnetic contribution. 
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Figure D.2  Temperature dependent out-of-phase susceptibility, χM

′′
  and in-phase 

susceptibility, χM
′ 
graphs of (F64Pc)2DyH for static bias DC magnetic field, Hdc of 1000 

Oe. 

 

 

 
Figure D.3  Temperature dependent out-of-phase susceptibility, χM

′′
  and in-phase 

susceptibility, χM
′ 
graphs of (F64Pc)2DyH for static bias DC magnetic fields, Hdc of 1000 

Oe. 
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Figure D.4  Frequency dependence of out-of-phase susceptibility, χM
′′ 
and in-phase 

susceptibility, χM
′ 
graphs of (F64Pc)2DyH in the temperature range 2-7 K for static bias 

DC magnetic fields, Hdc of 500 Oe.
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APPENDIX E 

ELECTRONIC SPECTRA  

 

This appendix contains UV-visible and Near Infra-Red deconvolution spectral data and 

figures.   The Gaussian and Voigt functions are explained.  

 

E.1 The Gaussian and Voigt Functions 

 

The Gaussian and Voigt functions contained in the Fityk® 
[160]

 program are given as 

follows: 

a) Gaussian  

         
           

 Where    =  height of the curve’s peak 

                = position of the centre of the peak 

                = parameter which controls the width of the bell and is related to           
                     the FWHM 

   FWHM =              

  b) Voigt
[267]

  

 

      
 

The Voigt function is a convolution of Gaussian and Lorentzian functions. =                     

height, = center,   is proportional to the Gaussian width, and  is                    

proportional to the ratio of Lorentzian and Gaussian widths with 

FWHM    =     approximation
[268]

 and where: 

     = Lorentzian FWHM and    = Gaussian FWHM. 
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   Table E.1  UV-Visible Deconvolution Data For (F64Pc)2YH in Methanol 

 

Peak 

Type 

Center Height Area FWHM  Parameters  

     a0 a1 a2 

Gaussian 877 0.122 16.1 124.1 0.122 877.2 62.0 

Gaussian 776 0.079 6.9 81.3 0.079 775.5 40.6 

Gaussian 705 0.095 2.7 26.2 0.095 704.8 13.1 

Gaussian 683 0.372 9.8 24.7 0.372 683.1 12.3 

Gaussian 676 0.793 65.1 77.1 0.793 675.8 38.5 

Gaussian 608 0.207 8.6 39.2 0.207 608.1 19.6 

Gaussian 559 0.367 17.2 44.2 0.367 558.7 22.1 

Gaussian 548 0.210 3.9 17.6 0.210 547.5 8.8 

Gaussian 522 0.083 5.7 64.0 0.083 522.0 32.0 

Gaussian 434 0.244 5.8 22.4 0.244 434.1 11.2 

Gaussian 415 0.088 1.7 18.2 0.088 415.1 9.1 

Gaussian 386 0.349 9.1 24.5 0.349 385.7 12.2 

Gaussian 342 0.807 93.8 109.2 0.807 341.5 54.6 

Gaussian 337 0.091 1.5 15.7 0.091 337.4 7.8 

 

 

 

       Table E.2 UV-Visible Deconvolution Data For (F64Pc)2LuH in Methanol 

 

Peak 

Type 

Center Height Area FWHM Parameters  

     a0 a1 a2 

Gaussian 915 0.085 13.69 151 0.0854 915.2 75.3 

Gaussian 801 0.049 4.81 93 0.0486 800.6 46.5 

Gaussian 713 0.104 2.45 22 0.1041 713.3 11.0 

Gaussian 688 0.671 21.45 30 0.6713 688.2 15.0 

Gaussian 664 0.617 63.76 97 0.6170 663.8 48.5 

Gaussian 548 0.253 15.59 58 0.2527 548.1 29.0 

Gaussian 546 0.192 3.85 19 0.1925 545.5 9.4 

Gaussian 495 0.034 1.06 29 0.0344 495.4 14.5 

Gaussian 438 0.155 3.77 23 0.1553 438.3 11.4 

Gaussian 421 0.034 0.77 21 0.0342 421.5 10.5 

Gaussian 388 0.200 4.54 21 0.2001 388.4 10.6 

Gaussian 

Gaussian 

346 

340 

0.741 

0.140 

96.20 

3.46 

122 

23 

0.7408 

0.1404 

345.8 

340.0 

61.0 

11.6 
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  Table E.3  UV-Visible Deconvolution Data For Pc2Y in Chloroform 

 

Peak Type Center Height Area FWHM Parameters 

           a0  a1  a2  a3 

Voigt 917 0.055 5.04 58 0.0551 917.2 -2.92 9.91 

Voigt 665 1.913 44.78 18 1.9134 665.0 8.15 0.50 

Voigt 634 0.135 3.27 22 0.1352 634.3 13.22 -0.03 

Voigt 601 0.234 6.95 23 0.2342 601.3 9.77 0.57 

Voigt 577 0.158 6.48 27 0.1583 576.8 4.69 2.61 

Voigt 459 0.284 25.59 58 0.2840 459.3 4.70 6.02 

Voigt 345 0.550 46.15 54 0.5501 344.9 3.72 7.11 

Voigt 318 0.978 51.15 34 0.9778 318.1 3.11 5.26 

 

 
Figure E.1 Deconvoluted UV-vis. and NIR (800-1000 nm) spectrum of (F64Pc)2LuH in 

methanol.  
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       Table E.4 UV-Visible Data For (F64Pc)2TbH in Methanol 

 

Peak 

Type 

Center Height Area FWHM Parameters  

     a0 a1 a2 

Gaussian 860 0.131 16.6 119.0 0.131 860.2 59.5 

Gaussian 756 0.100 8.8 82.3 0.100 756.3 41.1 

Gaussian 681 0.112 2.3 18.9 0.112 681.4 9.5 

Gaussian 680 1.037 69.5 62.9 1.037 680.3 31.5 

Gaussian 643 0.074 1.7 21.0 0.074 643.1 10.5 

Gaussian 611 0.313 16.0 47.8 0.313 610.7 -23.9 

Gaussian 559 0.389 16.2 39.2 0.389 559.4 19.6 

Gaussian 549 0.152 2.7 16.9 0.152 549.2 8.4 

Gaussian 532 0.098 6.9 66.2 0.098 531.7 33.1 

Gaussian 433 0.250 5.9 22.1 0.250 433.0 11.0 

Gaussian 415 0.090 1.6 16.7 0.090 414.9 8.4 

Gaussian 386 0.359 9.7 25.5 0.359 386.1 12.7 

Gaussian 342 0.820 96.0 110.0 0.820 341.6 55.0 

Gaussian 339 0.091 1.5 15.6 0.091 338.6 7.8 

  

 

 

      Table E.5 UV-Visible Data For (F64Pc)2DyH in Methanol 

 

Peak Type Center Height Area FWHM Parameters  

     a0 a1 a2 

Gaussian 871 0.084 12.3 137.2 0.084 871.3 68.6 

Gaussian 764 0.053 5.0 87.9 0.053 763.7 44.0 

Gaussian 682 0.532 32.3 57.0 0.532 682.2 28.5 

Gaussian 682 0.222 5.6 23.8 0.222 681.5 11.9 

Gaussian 644 0.323 36.2 105.3 0.323 644.5 52.7 

Gaussian 608 0.019 0.3 15.1 0.019 608.2 7.5 

Gaussian 554 0.245 10.9 41.8 0.245 553.9 20.9 

Gaussian 547 0.105 1.9 17.1 0.105 547.2 8.5 

Gaussian 513 0.051 3.0 55.4 0.051 512.9 27.7 

Gaussian 434 0.167 4.1 23.2 0.167 433.7 11.6 

Gaussian 415 0.062 1.2 18.4 0.062 415.3 9.2 

Gaussian 387 0.217 5.8 25.0 0.217 386.8 12.5 

Gaussian 342 0.634 75.3 111.6 0.634 342.2 55.8 

Gaussian 339 0.085 1.7 18.7 0.085 338.8 9.4 
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Figure E.2 Deconvoluted UV-visible and NIR (800-1000 nm) spectrum of (F64Pc)2DyH 

in methanol.  
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Figure E.3  Example of aggregation probing via the Lambert-Beer law verification 

showing  (F64Pc)2YH in methanol, up to the saturation point.  R is the goodness-of-fit. 
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APPENDIX F 

DENSITY FUNCTIONAL THEORY OF  (F64Pc)2MH ( M=Lu, Y)
[109]

 

 

Selected tables and figures on Density Functional Theory (DFT) and Time Dependent 

Density Functional Theory TDDFT calculations for the (F64Pc)2MH   complexes ( M=Lu, 

Y) carried out by Liao et al.
[109]

 This work is in the manuscript form at the time of writing 

this thesis. 

 

     Table F.1  Calculated Properties
a
 of the Protonated Forms of Double-Deckers   

     (H16Pc)2YH,  (F16Pc)2YH, (F32Pc)2YH, and (F32Pc)2LuH 

 
 (H16Pc)2YH (F16Pc)2YH (F32Pc)2YH (F32Pc)2LuH 

RCt(N4)N, Å 1.921, 1.993b 1.922, 1.993 1.926, 1.994 1.924, 1.980 

RCt(N4)M, Å 1.769, 1.228 1.762, 1.226 1.762, 1.221 1.709, 1.162 

RMN, Å 2.611, 2.341 2.607, 2.340 2.611, 2.338 2.573, 2.296 

RCt(N4)Ct(C8), Å  0.450, 0.557 0.353, 0.352 0.279, 0.269 0.425, 0.361 

RPcPc, Å 2.997 2.988 2.983 2.871 

RCt(N4)H(ax), Å 0.516 0.531 0.539 0.530 

RNH(ax), Å 1.989 1.994 2.000 1.996 

QM 2.71 2.74 2.72 2.55 

, Debye 1.93 2.15 1.78 1.62 

IP, eV 6.23 7.22 7.96 7.92 

EA, eV 2.87 3.95 4.83 4.83 

Ebind(M2Pc), eV 18.47 18.14 18.40 18.68 
        aR, distance; Ct(N4), centroid of the plane defined by the four pyrrole nitrogen atoms;  

     Ct(C8), centroid of the plane defined by the eight peripheral carbon atoms; RPcPc = 2RCt(N4)M;    

     QM, Mulliken charge distribution on the M atom; , dipole moment; IP, vertical ionization potential;     

     EA,  vertical electron affinity; Ebind, binding energy, see text for the definition.  
       bThe second set of values represents the structural parameters related to the other, lower-part, Pc   ring  

     which does not carry an axial H atom [see Figure 2(c)]. 
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Figure F.1 Orbital energy levels of various protonated yttrium bis(phthalocyanine)s 

Pc2YH. The Orbital energy levels of (H16Pc)2Y are given here for comparison. 
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Figure F.2 Simulated electronic absorption spectra for various protonated Pc2YH species 

and for (F32Pc)2LuH. 
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Table F.2. Calculated Excitation Energies (E
exc

) and Oscillator Strengths (f )  for 

(F32Pc)2YH 

 
State Contribution (%) Eexc, eV     f Assignment 

  Calc Exptl   

11E 92 (48a2  108e) 0.97 (0.95)a  0.0004  

21E 50 (47a2  108e); 38 (48a2  109e) 1.35 (1.33)  0.0070  

31E 39 (47a2  108e); 38 (48a2  109e); 

12 (47a2  109e) 

1.74 (1.73)  0.6540     Q1 

41E 75 (47a2  109e); 14 (48a2  109e) 1.82 (1.84)  0.1158  

51E 97 (53b1  108e) 1.93 (1.95)  0.0164  

61E 93 (52b1  108e) 2.06 (2.06)  0.0966     Q2 

71E 72 (53b2  108e); 26 (52b2  108e) 2.22 (2.13)  0.0746  

81E 73 (52b2  108e); 22 (53b2  108e) 2.27 (2.28)  0.1208     Q3 

101E 97 (53b1  109e) 2.38 (2.40)  0.0158  

131E 69 (52b1  109e); 22 (46a2  108e) 2.51 (2.51)  0.1438     Q4 

161E 88 (53b2  109e) 2.59 (2.59)  0.0430  

171E 84 (61a1  108e) 2.63 (2.61)  0.0208  

201E 86 (51b1  108e) 2.74 (2.73)  0.0220  

231E 48 (51b2  109e); 34 (45a2  108e) 2.93 (2.94)  0.0378  

261E 34 (46a2  109e); 34 (61a2  109e) 3.03 (3.04)  0.0324  

281E 61 (48a2  110e); 26 (103e  63a1) 3.05 (3.06)  0.0362  

301E 90 (51b1  109e) 3.12 (3.13)  0.0208  

311E 76 (102e  63a1) 3.20 (3.21)  0.0604  

321E 86 (58a1  108e) 3.26 (3.29)  0.0570  

341E 90 (107e  54b2) 3.34 (3.35)  0.0518  

371E 15 (59a1  109e); 12 (60a1  108e); 

11 (102e  63a1) 

3.43 (3.44)  1.3720     B 

381E 46 (57a1  108e); 24 (60a1  109e) 3.46 (3.46)  0.0470  

391E 53 (47a2  110e); 15 (57a1  108e); 

15 (106e  54b2) 

3.48 (3.48)  0.1524  

411E 56 (59a1  109e) 3.53 (3.51)  0.4080  

451E 41 (58a1  109e); 24 (106e  54b2)  3.66 (3.67)  0.2074  

591E 41 (48a2  113e); 32 (104e  54b1); 

15 (107e  55b2) 

4.04 (4.03)  0.0496  

651E 38 (101e  63a1); 19 (47a2  112e); 

10 (48a2  113e); 10 (107e  55b2) 

4.13 (4.12)  0.1802  

711E 40 (103e  54b1); 29 (105e  55b1) 4.19 (4.19)  0.1478  

781E 95 (104e  55b1) 4.28 (4.29)  0.0226  

791E 80 (102e  54b2); 11 (47b1  108e) 4.30 (4.31)  0.0242  

901E 64 (98e  63a1); 10 (97e  63a1) 4.44 (4.44)  0.0518  

1121E 39 (53a1  108e); 14 (44b2  108e) 4.60 (4.59)  0.0890  

a
The values in parentheses are the results for (F32Pc)2LuH. 
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APPENDIX G 

SPECTROELECROCHEMISTRY AND REDOX 

 

Figures and data on chemical reductions, electrochemical reactions and magnetic circular 

dichroism for (F64Pc)2MH, (M=Lu, Y, Tb and Dy) are presented in this appendix. 

 

Figure G.1  Cyclic voltammogram of (F64Pc)2TbH in 0.1 mol LiClO4/ethanol, platinum 

working electrode.  The peak anodic and cathodic current separation is 67 mV with E0 = 

36 mV vs Ag/AgCl. No oxidation is observed.  The first, one-electron reduction is highly 

reversible.  Data was provided by BASi, USA. 
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Figure G.2  Cyclic voltammogram at 100 mV s
−1

 of solution of 1Lu in a 0.1 M  

electrolyte solution of tetrabutylammonium hexafluorophosphate in acetone.  The four 

reduction processes, Redn, n =1, 2, 3, 4  are shown occurring a 0.3 V, 0.03 V, −0.43 V 

and -1.00 V respectively.  The processes occurring 0.3 V and 0.03 V were found to be 

reversible while the other two were quasi reversible.  The oxidation process anticipated to 

occur beyond 1.5 V is not shown.  SCE is Standard Calomel Electrode. 
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Figure G.3 Cyclic voltammogram at 100 mV s
−1

 of solution of 1Dy in a 0.1 M electrolyte 

solution of tetrabutylammonium hexafluorophosphate in acetone.   The four reduction 

processes, Redn, n =1, 2, 3, 4 are shown occurring a 0.15 V, −0.16 V, −0.63 V and −1.19 

V, respectively.  The processes occurring 0.3 V and 0.03 V were found to be reversible 

while the other two were quasi reversible.  The oxidation process anticipated to occur 

beyond 1.5 V is not shown. SCE is Standard Calomel Electrode. 
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Figure G.4  UV-visible and NIR absorption spectra of a solution of [(F64Pc)2Dy]
−
 in 0.1 

M electrolyte solutions of tetrabutylammonium hexafluorophosphate in acetone, and of 

solutions of [(F64Pc)2Dy]
2−

 and [(F64Pc)2Dy]
3−

 generated electrochemically from it. 
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Figure G.5 Successive UV-visible and NIR spectra during the electrochemical 

conversions of a solution of 1Dy
-
 to 1Dy

2- 
applying a potential of −0.25 V vs. Ag/AgCl (top 

(a) and (c)) and of 1Dy
2- 

to 1Dy
3-

 applying a potential of −0.70 V vs. Ag/AgCl (bottom (b) 

and (d)) in acetone with 0.1 M tetrabutylammonium hexafluorophosphate. 
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Figure G.6 Electronic spectra of (F64Pc)2YH and (F64Pc)2YH reduced by hydrazine 

hydrate in methanol.   The spectra of the reduced complex is similar to the 

electrogenerated [(F64Pc)2M]
2−

.  
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APPENDIX H 

SPECTROSCOPY OF UNIDENTIFIED SYNTHESIS BYPRODUCTS 

 

This appendix covers a summary of the properties of selected byproducts of synthesis for 

which neither structure nor empirical formula was confirmed. 

 

H.1 Reaction Byproducts 

 Several byproducts were synthesized in the microwave assisted reaction carried out to 

produce the (F64Pc)2MH (M =Lu, Y, Tb, Dy) complexes.  These were differentiated from 

the main products based on their color and migration rates on silica thin film 

chromatography (TLC) plates, during purification using flash chromatography and using 

standard spectroscopic methods such as UV-visible and MS spectroscopy, and NMR.  In 

general, three separate colors of green byproducts were identified.  They are referred to in 

this document as blue green, green and dark green and indexed as [2-1], [2-2], and [2-3] 

respectively. 

 

H.1.1 First Green Substances 

During flash chromatography, the first colored product to elute is a light green product 

which is usually mixed in with some of the yellow and dark impurities and some un-

reacted phthalonitrile.  When this fraction was separated, dried and flash chromatography 

repeated on the said silica gel using a acetone/toluene mixture (20%/80%), two different 

green fractions were separated.  The principal peaks in the UV-visible spectra of these 

green fractions are shown in the Table H.1. These green substances were separated purely 

on their mobility during flash chromatography. 
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    Table H.1 UV-Visible Spectra of “First Greens” 

 

Sample Peaks (nm) Shoulders (nm) 

First green 

Second green 

692 

691 

622 

623 

313 

385 

361 

665 

658 

421 

 

 

 From all indications, these first greens appear to be a mixture of the metal 

monophthalocyanines with different ligands attached, or may represent complexes which 

were formed from phthalocyanines that were formed from phthalonitriles that underwent 

various degrees of fractionation during the microwave synthesis.  They were very 

difficult to separate and since initial MS and electronic spectral data indicated that they 

were not principally sandwich compounds, further analysis were curtailed.  

 

H.1.2 The Dark Green, [2-3] Compounds  

 

This dark green colored material, [2-3] was obtained during the synthesis of the four 

identified sandwich compounds.  Initially this compound was not identified because it 

travelled at the same rate as the blue sandwich metal complex on the chromatography 

column.  It could not be adequately removed by flash chromatography.  It was removed 

by dissolution of the sample in either ethyl acetate or acetone and after precipitation of 

this solution with toluene; some of it remained dissolved in the filtrate.  Repeated cycles 

of this procedure removed more and more of this compound along with traces of the 

regular green, the metal free and the sandwich species.  The UV-visible spectra of the [2-

3] obtained from the (F64Pc)2TbH synthesis reaction, 
dg

Tb, (Figure H.1) exhibited a 

broadened Q-band suggesting that it may be a sandwich compound.  However the 

absence of the bands at 552 and around 430 nm resulted in a lack of interest these dark 

green compounds.  The absence of the vibronic Q-band at 621 nm differentiates it from 
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the other green terbium complexes.   It was surmised that these compounds did not 

contain the F64Pc
•─

 radical anion.  Furthermore, it was difficult to purify this compound 

using standard chromatography techniques. 

 A 
19

F NMR spectrum of this compound failed to show the usual three peaks 

corresponding to the primary aliphatic CF3, the aromatic F and the tertiary aliphatic F.  

The proton 
1
H did show peaks.   

 Mass spectroscopy measurements of 
dg

Tb using the MALDI-TOF negative mode 

gave a strong peak at 3676.92 amu.  This peak did not appear produce a structure or 

empirical formula consistent with a logical combination of the probable chemical 

components.    The combination of the proton NMR peaks, the broad Q-band, the absence 

of the charge transfer band was pointing to the possibility of the presence of a sandwich 

compound with some hydrocarbon groups attached.  

 

Figure H.1  UV-visible spectra of the unknown dark green [2-3] terbium phthalocyanine 

substance, 
dg

Tb and the green [2-2] terbium phthalocyanine, 
gr

Tb byproducts. 
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H.1.3 The Blue-Green, [2-1] Compounds 

 

After the main purple/bluish product elutes from the chromatography column, a 

bluish/green [2-1] product elutes.  A feature of this product was that it initially appears 

blue on the TLC, but after drying for a few hours it turns green.  It was called the blue 

green species.  It was observed for three of the four metal phthalocyanine reactions 

carried out.  A reasonable degree of purity was also achieved with some of these 

products, because it formed poor crystals in the same solvents as the main sandwich 

products.  However, no X-ray structure was obtained.  It also shared some of the UV-

visible peaks in common with the [1]-[4] complexes.  The UV-visible and NMR data are 

shown in Table H.2.  There was some evidence to support a possible metal free sandwich 

structure for this molecule based on: 

a)  A mass spectroscopy done on two [2-1] obtained in the synthesis of [2] coded as 
bg

Y 

and obtained in the synthesis of [4] coded as 
bg

Dy, returned similar m/z peaks at 4041.65 

and 4041.99 Da, respectively, suggesting the presence of a sandwich molecule, possibly 

attached with an acetate ion fragment.     The mass spectroscopy data appeared to support 

the empirical formula (F64Pc)2CH2CO.  A summary of the data is given in Table H.2 

 

  Table H.2 MALDI-TOF MS Data for the [2-1] Compounds  (
bg

Y) and (
bg

Dy).    

 

Molecule Matrix, Mode Calculated 

Peak (m/z) 

Observed Peak  

(m/z)   

Comment 

 
bg

Y CCA, Negative  4043.18  4041.99   [M-H
+
] 

bg
Dy CCA, Negative  4043.18  4041.65   [M-H

+
] 

 

b) The UV-visible data on 
bg

Dy shows the presence of the Q-band at 688 nm and a main 

B-band at 404 nm.   It shows the band and 552 nm in common with [1]-[4] complexes, 

but the band around 430 nm disappears and a new one at around 450 nm appears.  The 
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band at 450 nm is interesting because it is now located in the region where the band 

associated with the radical F64Pc
•─ 

occurs.  Another major difference is that the main B-

band’s absorbance is more intense than the Q-band.   

 Bench,
[110]

 in her thesis, reported an unknown phthalocyanine of  cobalt (III) 

which she suggested was a dimer and one having a UV-visible spectrum similar to the 

that of [2-1].  It was found to be diamagnetic and having no EPR signal with a 
19

F NMR 

signal similar to that of the F64PcZn.  This would be consistent with a low spin 3d
6
 

valence shell configuration of Co(III) with the presence of a pair of F64Pc
2─

 ligands in the 

complex.  It was further suggested that the counter ion was a Na
+
, based on the MS 

values obtained. 

 
Figure H.2 UV-visible spectra of some blue/green complexes obtained as byproducts in 

the synthesis of sandwich perfluoro phthalocyanine complexes of  Y, (
bg

Y), Tb, (
bg

Tb) 

and Dy, (
bg

Dy).  The spectra were carried out in methanol solutions of the samples. 
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c)  The 
19

F NMR of three of the [2-1] byproducts show the three main peaks found in the 

(F64Pc)2MH complexes.   However, the expected primary aliphatic CF3 shifts, showed a 

doublet similar to that found in (F64Pc)2YH.   There appeared to be no statistically 

significant differences in shifts in the NMR spectra of 
bg

Y, 
bg

Tb and 
bg

Dy shown on 

Table H.3.  They all showed a similar IR spectra which was similar to that of the 

(F64Pc)2MH and (F64Pc)2LnH compounds.  A representative IR spectrum is shown in 

Figure 3.7. 

 

   Table H.3   
19

F NMR Spectra of  (
bg

Y), (
bg

Tb) and (
bg

Dy) in Acetone D6  

 

Complex Primary Aliphatic CF3 

shifts, (ppm) and J (Hz) 

Aromatic F shifts 

(ppm) 

Tertiary Aliphatic 

CF shifts, (ppm) 
bg

Tb -71.3, -71.9     (J=170) -104.7 -165.1 
bg

Dy -71.3, -71.9     (J=170) -104.8 -165.1 
bg

Y -71.3, -71.8     (J=140) -104.6 -165.1 

 

 

 The 
1
H NMR showed the two shifts at 2.05 and 2.8 which were associated with 

trace quantities of water and acetone D6 solvents, respectively
[269]

  and, which were also 

obtained for the (F64Pc)2MH complexes.  However, it also showed other protons shifts at 

3.28, 3.56 and 1.8 ppm.  A table of characteristics 
1
H NMR shifts

[270]
  lists the peaks for 

HC-OH at 3.4-4 ppm, HC-O-R at 3.3-3.4 ppm and R-C-OH at 1-5.5 ppm.   These suggest 

the presence of an oxygen atom in the form of ether or an alcohol. 

 

                 Table H.4  
1
H NMR Spectra of  (

bg
Y), (

bg
Tb) and (

bg
Dy) in Acetone D6. 

                  
 
 

Compound                      Shifts (ppm) 
bg

Tb 1.8 2.04 2.8 3.28 3.57 
bg

Dy 1.8 2.04 2.8 3.28 3.56 
bg

Y 1.8 2.04 2.8 3.28 3.56 
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 The foregoing analysis has opened two main possibilities.  Since [2-1] is 

produced from the synthesis reactions of [2], [3] and [4] and the UV-visible, IR, MS and 

NMR spectra are essentially similar for  
bg

Y, 
bg

Tb and 
bg

Dy, then it appears that they are 

the same compound.  Their solubility in polar solvents, while being insoluble less polar 

solvents such as toluene and hexane suggests possible ionization in these solvents via a 

proton.  

 

H.1.4 The Green, [2-2] Compounds 

 

During flash chromatography a green substance, [2-2] was always left sticking to the 

silica gel.  Initially it was coded last green.   A 50:50 mixture of ethanol/acetone was 

required to remove most of it.  However, further examination of this substance showed 

that it was a problem, because it appeared to stick to other products as well.  The use of 

finer grained silica gel improved its removal from the other products, but it was time 

consuming and uneconomical to attempt to purify it.  TLC showed it to be a mixture of 

several green compounds as exhibited by several spots on the plate.  Despite these 

challenges, a level of separation was achieved, adequate enough to run some initial 

characterization tests.  The UV-visible spectrum in Figure H.1, showed that it was 

different from the four characterized sandwich compounds.  It has a narrow Q-band with 

no transitions in the BV or RV regions.  The absence of these bands is supporting 

evidence of the absence of a π-radical electron.  Mass spectroscopy done on the crude 

product was not conclusive.  Despite the low purity of the compound, the MS of the Tb, 

[2-2] compound, 
gr

Tb showed two major peaks; one at 2535 Da and the other at 4882 Da, 

and several lesser peaks, the major ones at 2347, 5137 and 741 Da.  The peak at 4882 is a 
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sum of the peaks of 2347 and 2535 for example. This is suggesting that the bulk of [2-2] 

is monophthalocyanines.  

 The general structure of the monophthalocyanines, PcM is shown in Figure H.3.  

In order further elucidate the probable structure of any of the green compounds, an 

attempt was made to separate the 
gr

Lu as much as possible and measure the mass of one 

of its components using electrospray MS.  Again, the result of MS was inconclusive.   

Based on the synthesis and purification methods, the most likely bidentate/monodentate 

mono-anionic ligand was the acetate ion.  However, there are several other solvents such 

as chloroform, ethanol, water and 1-hexanol that could be possible neutral ligands.  There 

was no success in finding credible combination of ligands which would match the results 

of the MS of 
gr

Lu and 
gr

Tb.   

 

Figure H.3  Schematic representation of the octacoordinate  monophthalocyanine 

lanthanide/ metal(III) (Ln) mixed-ligand complex with X being monodentate and 

monoanionic and  L being  a monodentate neutral ligand.  In fact, ligand X may also form 

bi- or multidentate monoanionic units.
[52]
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 For example, the empirical formula C71F64H25N8O3Lu representing 

Lu(PcF64)(OAc)(ethanol)2(1-hexanol) with a monoisotopic mass of 2428.0647  Da and 

an average mass of 2428.8758 Da looked workable.  This was suggesting that the acetate 

ion was the mono-dentate mono-anionic ligand and ethanol and 1-hexanol are the neutral 

mono-dentate ligands.  This overestimates the observed positive MS monoisotopic result 

of 2426.888 by approximately 1 Da, i.e.,  [M+2H]
+
 but would be accurate in the estimate 

of a negative mode method as [M−H]
−
.   

 It is known that monophthalocyanines may be anionic, such as in [MPcX2L2]
−
 

(where M is metal(III).
[271]

   The combination of the peaks of the observed 2347 and 2535  

to coincide with the observed 4882 peak to in the MS of 
gr

Tb is suggesting possibility of 

not only these anionic metal monophthalocyanine ions, but cationic ones as well.   This 

further adds to the challenges of not only separating compounds with different 

combination of ligands,  but ionic species, combinations and possible ligand exchanges 

during flash chromatography. 

 A 
19

F NMR spectrum of a [2-2] substance showed the usual three peaks 

corresponding to the primary aliphatic CF3, the aromatic F and the tertiary aliphatic F.  

Further purification of these green colored substances was abandoned because of the 

challenges and cost and initial data suggested it was outside of the scope of the research. 

 

 

H.2 Synthesis Method of the Reduced form N(C4H9)4[(F64Pc)2Ln] 

Initially, when the synthesized sandwich compounds were thought to be neutral 

compounds, an attempt was made to synthesize the reduced form, TBA[(PcF64)2Tb]   

TBA = [N(C4H9)4] using the method by Moussavi et al.
[64]

    This method was reported 
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successful in the synthesis of TBA[Pc2Lu].
[64]

       It was also done because the sandwich 

(F64Pc)2TbH has been shown to have a reversible reaction when reduced by hydrazine in 

ethanol,  after analyzing the UV-visible spectrum before and after the treatment with 

hydrazine.   After confirmation of oxidation state of the original sandwich (F64Pc)2MH 

compounds, several attempts were made to synthesize, isolate and fully characterize the 

TBA[(PcF64)2Ln] class of compounds.   However, the attempts were now based on cation 

exchange in which the original H
+
 counter-ion was to be replaced by the TBA ion.  The 

approach was to find synthetic methods which would foster an easy isolation of a 

TBA[(PcF64)2M] complex. 

  In general, the approach taken was to further reduce the (PcF64)2LnH by using 

either hydrazine hydrate in methanol or KOH in a 1:1 mixture of methanol and acetone.    

This reduced complex starting from (PcF64)2LnH, turned green in color and remained 

green until the reducing agent was removed.  Addition of TBA either as [TBA]Br or 

[TBA]ClO4 in excess was expected to add the counter ion, even if the complex was more 

than one electron reduced.    It was observed that removal of the oxidizing agent and/or 

dilution resulted in a reversion to a blue colored compound.  However, this compound 

was much more soluble than the original compound.   The task of removing excess 

[TBA]Br or [TBA]CLO4 using procedures such as filtration and chromatography, 

appeared to cause some reversion to (F64Pc)2MH as was observed through lowered 

migration rates during chromatography.  Crystals of the compound were formed from a 

acetone/chloroform solution, but the crystal structure was not obtained.  In the case of the 

reaction of the (F64Pc)2TbH complex, successive purification and recrystallization 
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resulted in a crystal structure of the parent (F64Pc)2TbH complex.  This suggested that the 

protonated form is more stable than the any of the forms produced with TBA. 

 UV-visible spectra of the blue colored, reverted compound coded as 
TBA

Ln was 

the same as the respective (F64Pc)2LnH compound.  The IR spectra were also the same. 

The MS of 
TBA

Tb using MALDI-TOF in negative ion mode, only gave large peaks at m/z 

of 4159.76 which was the value for the (F64Pc)2TbH complex.   

 The 
19

F NMR spectrum of  
TBA

Y in acetone D6 was not statistically different from 

(F64Pc)2YH.  Proton (
1
H) NMR of 

TBA
Y in the same solvents did not show any statistical 

difference from the pure [TBA]ClO4.  The presence of the TBA ion was confirmed but 

whether it had replaced the proton was unknown.  To further study the problem, the 
19

F 

and 
1
H NMR of the 

TBA
Tb were carried out using the similar conditions as for the 

TBA
Y.   

 

  Table H.5  Comparison of the NMR Values of  
TBA

Y and 
TBA

Tb with Those of  the   

  TBA
+
 ion and (F64Pc)2TbH 

 

 1
H NMR in Acetone D6   

Compound/ 

Reaction 

δ (Np(C)-

CH2, 8H 

(ppm) 

δ  8H, CH2 

(ppm) 

δ  8H, CH2 

(ppm) 

δ 12H, R-

CH3 (ppm) 

[TBA]
+
 (calc.) Triplet   

3.24 

Doublets of 

triplets  1.73 

Doublet of 

quartets,  1.33 

Triplet  

 0.96 

[TBA]ClO4 

(obs.) 

3.43 1.81 1.42 0.98 

TBA
Y 3.47 1.85 1.45 0.99 

TBA
Tb 3.31 1.67 1.28 0.83 

 

 19
F NMR in Acetone D6 Relative to CFCl3 

Copound/ 

Reaction 

δ,  Primary 

Aliphatic 

CF3   ppm 

δ, Ar-F , ppm δ,  Tertiary 

Aliphatic CF,   

ppm 

 

TBA
Y d, −71.5, 

−71.8 

s, −103.5 s, −165.0  

TBA
Tb  s,−83.6  s,−122.3 s, −195.0  

(F64Pc)2TbH s, −82.1 s, −119.3 s, −193.0  

  Key: s = Singlet; d = doublet 
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 Table H.5 which summarizes the data, shows statistically significant differences 

between the NMR of  
TBA

Tb and (F64Pc)2TbH.   Notably, in the 
19

F NMR, the differences 

between 
TBA

Tb and (F64Pc)2TbH were:  1.5 ppm for the primary aliphatic CF3, 3.0 ppm 

for the aromatic F and 2.0 ppm for the tertiary aliphatic CF.   While these results provide 

some evidence of the presence of the [TBA]
+
 ion attachment to the [(F64Pc)2M]

−
 ion,  the 

existence of the compound has not been confirmed. 
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