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ABSTRACT

SEQUENTIAL BAYESIAN FILTERING FOR SPATIAL ARRIVAL
TIME ESTIMATION

by
Rashi Jain

Locating and tracking a source in an ocean environment as well as estimating environm-

ental parameters of a sound propagation medium is of utmost importance in underwater

acoustics. Matched field processing is often the method of choice for the estimation of

such parameters. This approach, based on full field calculations, is computationally

intensive and sensitive to assumptions on the structure of the environment. As an

alternative, methods that use only select features of the acoustic field for source

localization and environmental inversion have been proposed. The focus here is on

inversion using arrival times of identified paths within recorded time-series. After a

short study of a linearization techniques employing such features and numerical issues

on their implementation, we turn our attention to the need for accurate extraction of

arrival times for accurate estimation. We develop a particle filtering approach that

treats arrival times as “targets”, dynamically modeling their “location” at arrays

of spatially separated receivers. Using Monte Carlo simulations, we perform an

evaluation of our method and compare it to conventional Maximum Likelihood (ML)

estimation. The comparison demonstrates an advantage in using the proposed approach,

which can be employed as a pre-inversion tool for minimization and quantification of

uncertainty in arrival time estimation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The problem of locating and tracking a single or multiple acoustic sources in a

multipath environment is of interest in many areas. In underwater applications,

estimating the time evolution of a target’s position from noise corrupted signal measure-

ments at arrays of hydrophones is an important problem for defense purposes or

environmental surveys. Other areas where such problems frequently appear include

speech recognition, seismology, and robotics, where specific applications might include

automatic camera steering for video-conferencing, identification of individual speakers

in multi-source environments, information on steering for microphone arrays, and

autonomous naviga- tion for robots.

Motivated by the importance of environmental parameter estimation and

localization of a sound source in the ocean, we focus on the problem of accurately

estimating arrival times and amplitudes of acoustic signals arriving at an array of

receivers in an underwater waveguide. Arrival time and amplitude estimates can

provide in an efficient manner information on source location and ocean properties

such as water column depth, speed of sound propagation, and sediment attenuation,

knowledge of which is valuable for ocean exploration and advanced sonar design.

1.2 Problem Description

An array of spatially separated receivers is placed in a shallow water environment and

acoustic signals are received from a source placed at some distance from the array

of hydrophones. The main objective in the beginning of our study is to acoustically

determine the geometry of propagation and some environmental properties of the

medium, and later on, our objective is to accurately determine ray arrival times and

1
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amplitudes for distinct rays identified at the array of receivers. The aim is to formulate

our parameter estimation problem in a nonlinear tracking-smoothing framework, in

order to obtain accurate travel time and amplitude estimates to be used for robust

localization and environmental inversion. Arrival times and amplitudes of additional

paths are then calculated from both synthetic and real data.

1.3 Background

In underwater acoustics, several methods have been presented for source localization,

geoacoustic inversion, and tracking. The task of acoustic source localization in

a shallow water environment is challenging because of the noise interference from

sources present in coastal and the inadequately understood propagation environment.

Matched field processing (MFP) is a method frequently used for source localization in

the ocean [1, 2, 3, 4, 5]. MFP employs a sound propagation model for the calculation

of full acoustic fields, known as replicas, that are then correlated to the received field

at an array of phones [5, 6, 7, 8, 9]. The values generating the best match (highest

correlation) between the true and replica fields are the estimates of the unknown

parameters. Various forms of MFP have been proposed; the most widely used one is

the Bartlett processor, which calculates the inner product between the received data

and normalized replica fields.

To successfully compute the parameters of interest, one must make certain

assumptions regarding sound propagation. Uncertainties on factors such as water

column depth, receiver depth, receiver ranges, and bottom sediment properties must

be incorporated in the estimation process to ensure accurate results, resulting in a

complex, highly non-linear, and comp problem.

In order to overcome this problem, linearized inversion [10, 11] has been

proposed for source localization and inversion for sediment related quantities, such

as sound speed and layer thickness. The method uses arrival times estimated from
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signals received at an array of phones. At the same time, replica arrival times are

computed using an assumed geometry and environment and are then compared to

estimated arrival times. Accurate estimation of arrival times from the received signals

is required for this method to perform well.

In a multipath environment, the job of detecting peaks and associating them

to the right ray paths is difficult; that is, data-association is complex, because one does

not know which peak corresponds to which arrival. Thus, selection of an appropriate

arrival time (or time delay) estimation method is crucial. Many algorithms have

been developed for arrival time estimation [12, 13, 14], including a simple cross-

correlation of the received and source signals [15, 16, 17]. Maximum a Posteriori

(MAP) estimation has also been proposed [18]. With this method, estimation of

the unknown parameters is obtained by maximizing the posterior probability density

function (PDF) of the unknown parameters given prior knowledge and received data.

MAP estimation has an excellent performance but is computationally expensive since

it conventionally requires exhaustive calculation of the posterior distribution of the

parameters. An approach known as the Gibbs Sampling Maximum A Posteriori

(GS-MAP), was proposed in [19], which combines both the MAP framework and a

fast Gibbs sampler [20, 21] for the efficient computation of the posterior joint PDF

of all unknown parameters at every phone. The shortcoming of this method is its

inability to tie information across different receivers. This has sparked our interest in

developing sequential Bayesian methods for more comprehensive and accurate arrival

time estimation.

1.4 Research Focus and Thesis Structure

In our research, we first estimate parameters such as source and receiver range and

depth and water column depth using linearized inversion and regularization. The

aim is to generalize the approach developed in [10, 11, 19] by introducing a sloping
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ocean bottom in the geometry of the ocean environment, more closely representing

true environmental conditions. The arrival times employed in the work are estimated

with the GS-MAP approach, which jointly estimates number of arriving paths, their

arrival times and amplitudes, and the noise level. We show with real data, that our

approach, integrating a more accurate description of the environment in the inversion

process in comparison to other methods, produces estimates that are closer to ground

truth data. This work is presented in Chapter 2.

Since inversion quality depends on the accuracy in arrival time extraction,

we subsequently work on improving arrival time estimates. The idea we decided to

explore was to employ information on arrival times from one receiver to the next to

improve arrival time estimation at each phone. This direction of using information

from one hydrophone for the estimation process at another hydrophone leads us to

the concept of sequential Bayesian filtering. Since Bayesian filters have the power

to exploit the correlation of motion of a target from one window to another [22,

23], it is possible to estimate parameters such as arrival times more tightly when

we exploit spatial information rather than than by only employing data at a single

phone. Specifically, our signal arrives at a set of receivers via multiple paths and the

“movement” of each arrival up and down the array of receivers can be compared to

the dynamics of a moving target. Hence, the theory developed for target tracking is

adapted for our purpose of arrival time estimation. The background and concepts of

Bayesian filtering that we follow in our work are discussed in Chapter 3, where initial

results from the application of Bayesian filtering to our data are also presented.

Our initial results stimulated our interest in further improving our model

by exploring arrival time relationships in space in a more structured way than the

one described in Chapter 3. Thus, in Chapter 4, we introduce a new model that

treats arrival times as targets, the velocities of which are now estimated as well.

These velocities correspond to gradients in the receptions of distinct paths and are
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estimated at the same time as actual arrival times. The benefit from the new model

is that the knowledge of the gradient from a previous receiver is now one additional

piece of information that reduces error in the arrival time estimation process. Another

important element that is introduced in Chapter 4 is the estimation of amplitudes of

arriving paths in addition to their arrival times. Estimates of amplitudes are essential

in estimation of attenuation in seafloor sediments.

Chapter 5 extends our work for cases with an unknown number of ray paths

arriving at an array of receivers in the ocean. These cases better reflect realistic

situations, where it is not feasible to know a priori how many paths are within an

observation window. This is the problem of model order estimation often handled with

information theoretic criteria. We show that we can extend our method appropriately

to estimate the varying number of paths, as well as their arrival times and amplitudes.

Not only do we obtain an estimate of the model order, but we also calculate posterior

PDFs for the number of paths present in our signals. Our results are further improved

in Chapter 6 when, in addition to a forward moving Bayesian filter, we implement a

backward filter as well, which allows us to improve estimates by now using information

from later states into the estimation process at earlier ones. Finally, in Chapter 7, we

apply our estimators to synthetic and real data for estimation of source range, source

depth, and water column depth, the task that provided the motivation for our work.

Conclusions and future work follow in Chapter 8.



CHAPTER 2

REGULARIZED INVERSION

2.1 Introduction

Sound waves traveling in the ocean “encode” information related to the sea environment

and propagation geometry. The recovery of this information using acoustic measureme-

nts is the main objective of inverse methods in ocean acoustics.

The properties of the seafloor sediments in shallow water environments have a

significant impact on acoustic propagation, making the study of these characteristics

of utmost importance. Core survey methods are often time consuming and restricted

to small areas. Instead, information about ocean properties can be obtained from

data acquired in simple ways (travel time, phase, etc.) via inversion. Various

inversion methods based on full-field methods and global optimization [1, 24, 25]

or linearization [26, 27, 11] have been presented in the ocean acoustics literature.

Details of inverse theory can be found in [28, 29, 30, 31, 32].

Linearized inversion [33, 34] via regularization is employed in this chapter

for the estimation of geometric parameters (source and receiver location, and ocean

bottom depth). These can be later used for the estimation of sound speed in the

sediment layer. The method is applied to acoustic data recorded during an experiment

in the Haro Strait, south of Vancouver Island. Broadband sound signals, generated by

implosion of household light bulbs, propagated in a range-dependent shallow water

region and were received at vertical element arrays. There are three such arrays,

referred to as the SW, NW, and NE, because of their location. Although these were

vertical line arrays (VLAs), there were also horizontal displacements between phones

because of tilt. All arrays consisted of 16 phones (four of those were not operational

at the NW array).

6
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The transmitted sound signals arrived at the VLAs via different paths (for

example, direct, surface reflection (SR), bottom reflection (BR), bottom surface

reflected (BSR), surface bottom reflected (SBR) and other ray paths that interacted

with the seabed sediments). Because of the frequency content of the source signals

(between 100 and 800 Hz), the distinct arrivals in the received acoustic data are

well resolved, as shown in Figure 2.1, which illustrates a set of receptions at the 16

receiving phones of the SW VLA.
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Figure 2.1 Received time-series at the SW array.

The details of the experiment are available in [35, 36].

The problem is formulated by assuming a discrete model q of unknown

parameters and generating replica arrival times using an assumed geometry and

environment. The GS-MAP estimation method mentioned in the previous section

is employed for the extraction of direct, SR, and BR arrival times from the recorded

time-series. An effort is then made to equate the two sets of arrival times, replicas

and estimates of measurements, yielding a simple inversion problem. Sections 2.2 and

2.3 discuss linearized inversion using regularization.

In [11], Michalopoulou and Ma employed linearization to estimate the geometric
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and environmental parameters assuming a flat bottom. Our aim in this chapter is

to improve on these results by including slope in the ocean floor model. Section 2.4

presents the inversion approach applied to Haro Strait data with the consideration

of slope. Section 2.5 discusses the inversion results using data from two sources lying

on the same ‘line of sight.’

2.2 Linearization and Inversion

Inversion via linearization compares measured arrival times of various paths to theoret-

ically and numerically predicted arrival times (replicas), generated using prior knowledge

on geometry and environment. The arrival times depend on geometry and environmental

parameters of the underwater medium under study, such as source range r, source

depth zs, ocean depth D, receiver depths zr, source instant ts, and sound speed c.

For the Haro Strait experiment, the sound speed in the water column is assumed to

be known and constant with depth, that is, an iso-velocity sound profile is considered

with c = 1482.5 m/s. Other parameters like density and sediment attenuation do not

affect arrival times and are, hence, ignored.

Arrival times t are here expressed as:

t = t(r, zs, zr, D) + ts. (2.1)

In our study of Haro Strait data, the measured data t consist of three arrival

times: direct, SR, and BR received at a tilted (and distorted) vertical array of L

hydrophones. The success of the method relies on the correct identification and

estimation of the different paths carrying sound from the source to the array. We

implement the GS-MAP approach for computation of joint PDFs of the unknown

parameters. This approach will be addressed later in detail in Chapter 3.

Let vector q contain the set of parameters to be estimated:
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q = [r1, r2, . . . , rL, zs, zr1, zr2, . . . , zrL, D, φ, ts] (2.2)

where,

- ri, i = 1, ..., L, horizontal ranges of source from L receivers

- zs, source depth

- zri, i = 1, ..., L, receiver depths

- D, ocean depth

- φ, slope of ocean bottom

- ts, source instant.

d2

d3

d4

d5
(BR)

(SR)

(Direct)

d1

SOURCE

RECEIVER

Zs

D

Zr

r

Figure 2.2 Geometry of the environment (the ocean bottom
is assumed to be flat).

The geometry of the environment (including the source and VLA positions) is

used to relate times to model parameters. As an example, we focus here on the SR

path. As shown in Figure 2.2, let DSR = d1+ d2 be the total distance traveled by the

SR ray. The time needed for the ray to travel from source to receiver is:

tSR = ts +
DSR

c
(2.3)
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= ts +

√

r2 + (zs + zr)2

c
. (2.4)

Equation (2.3) above can be generalized as:

t = f(q), (2.5)

where f is the forward model relating data and unknown parameters. The relationships

between time and q are mildly non-linear but can be linearized using Newton’s

method. Linearization leads to:

t = t0 + J(q− q0) (2.6)

Jq = t− f(q0) + Jq0 = d, (2.7)

where J is the Jacobian matrix containing time derivatives with respect to model

parameters, and t0,q0 are vectors formed from initial conditions.

The resulting system can be solved iteratively with least squares. The least

squares solution is given by:

q̂ = (JTJ)−1JTt. (2.8)

This expression is based on the assumption that measurement errors are zero-

mean Gaussian with the same variance and no correlation. Under these assumptions,
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q̂ is the best linear unbiased estimator of q. If, however, the measurements have

different uncertainties, a weighted sum of squared residuals is minimized where each

weight is equal to the reciprocal of the variance of the measurement. Correlation can

also be included in a straightforward manner. Equation 2.7 can then be solved by

minimizing the χ2 misfit:

χ2 = ‖G(Jq− d)‖2 (2.9)

with respect to the model q, where G=diag[1/ν1, . . . , 1/νL] is a matrix that weighs

the data according to their uncertainties. If the observation errors are uncorrelated,

the weight matrix G is diagonal and equal to the inverse of the covariance matrix of

the observations. We assume the observation errors to be uncorrelated and hence the

weight matrix G is diagonal. The solution obtained is:

q̂ = (JTGTGJ)−1(JTGTGd). (2.10)

2.3 Regularization

The matrix to be inverted in Equation 2.10 is required to be non-singular and

well conditioned; the latter is not typically the case. To remedy this complication,

regularization is employed to provide a stable solution to the inverse problem. As

suggested in [27, 37, 38], the problem can be regularized by including prior knowledge

on the unknown parameters, producing a new objective function:

g(q) = ‖G(Jq− d)‖2 + α2‖H(q− q0)‖2, (2.11)
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where H is the regularization matrix that penalizes estimates q which are far away

from the prior information vector q0. If prior information on model parameters is

available, then H can be chosen to be:

H = diag[1/ξ1, . . . , 1/ξL], (2.12)

where ξj represents the uncertainty on the jth parameter. If no information is present

for a certain parameter, then the corresponding entry in H is equal to 0. The

regularized solution can be obtained as follows:

q̂ = (JTGTGJ+ α2HTH)−1(JTGTGt+ α2HTHqp). (2.13)

Parameter α is the trade-off value between regularization error and model-

data fit. Its value can be selected using an L-curve analysis [30, 11]. The method

gets its name from the fact that, when term ‖H(q− qp)‖2 is plotted against term

‖G(Jq− d)‖ for various values of α, the resulting graph is an L-shaped curve. An

often proposed “optimal” value for α is the one that provides a solution to the right

of the corner of the L-curve [39].

2.4 Geometric Relations Between Unknown Parameters for an Ocean

Bottom with a Slope

This section aims at improving results obtained for flat bottom geometry in [11, 40]

by considering a more accurate description of the true propagation environment.

A slope in the ocean bottom is introduced (Figure 2.3) and, accordingly, relations
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between the unknown parameters (geometric and environmental) and the measured

data t are described. This problem was also discussed in [41], where parameters were

estimated through an exhaustive minimization of differences between measured and

replica arrivals. Instead of an exhaustive search, we use the method of linearization

and regularization to determine values for the unknown parameters. The vector q of

unknown parameters to be estimated is given by Equation 2.2.

We introduce a new vector q̃:

q̃ = [r
′

1, r
′

2, . . . , r
′

L, z
′

s, z
′

r1, z
′

r2, . . . , z
′

rL, D, φ, ts], (2.14)

where parameters r
′

i,z
′

ri and z
′

s are introduced for computational purposes and are

shown in Figure 2.3.

- D, ocean depth at source location

- z
′

ri, distance between receiver and bottom with slope

- z
′

s, distance between source and bottom with slope

- r
′

i, horizontal range from source to the phone with respect to the bottom

- φ, angle of inclination of the bottom from the horizontal

- ts, initial time instant

Using the simple geometry shown in Figure 2.3, we can write the forward model

relating data and unknown/uncertain parameters as:

tdi = ts +

√

r2i + (zs − zri)2

c
(2.15)

tsi = ts +

√

r2i + (zs + zri)2

c
(2.16)
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Figure 2.3 Haro Strait geometry with a sloping bottom.

tbi = ts +

√

r
′2
i + (z′

s + z
′

ri)
2

c
. (2.17)

Also:

r
′

i = cosφ[ri − (zs − zri) tanφ] (2.18)

z
′

ri = cosφ[D − zri + ri tanφ] (2.19)

z
′

s = z
′

ri − h′ − h
′′

, (2.20)

where,

h′ = (zs − zri) secφ (2.21)
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h
′′

= sin φ(ri − (zs − zri) tanφ). (2.22)

Therefore,

z
′

s + z
′

ri = 2 cosφ(D − zri) + ri sinφ+ (zs − zri)(tanφ sinφ− sec φ). (2.23)

Substituting Equations 2.18 and 2.23 into Equation 2.17, we obtain an equation for

the first bottom reflected path arrival time.

The relations as described by the above equations can be linearized in a

straightforward manner, and the arrival time derivatives with respect to the unknown

parameters constitute the entries of the Jacobian matrix J:

J =

























































∂td1
∂r1

. . . ∂td1
∂rL

∂td1
∂zs

∂td1
∂zr1

. . . ∂td1
∂zrL

∂td1
∂D

∂td1
∂ts

...

∂tdL
∂r1

. . . ∂tdL
∂rL

∂tdL
∂zs

∂tdL
∂zr1

. . . ∂tdL
∂zrL

∂tdL
∂D

∂tdL
∂ts

∂ts1
∂r1

. . . ∂ts1
∂rL

∂ts1
∂zs

∂ts1
∂zr1

. . . ∂ts1
∂zrL

∂ts1
∂D

∂ts1
∂ts

...

∂tsL
∂r1

. . . ∂tsL
∂rL

∂tsL
∂zs

∂tsL
∂zr1

. . . ∂tsL
∂zrL

∂tsL
∂D

∂tsL
∂ts

...

























































. (2.24)

where some of the entries are zero because the direct and SR arrivals do not depend

on the depth of the ocean. That is,

∂tdi
∂D

= 0 (2.25)
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∂tsi
∂D

= 0 (2.26)

∂tbi
∂ri

= [cos φ(ri − (zs − zri) tanφ)] +

[(2 cosφ(D − zri) + ri sin φ+ (zs − zri)(tanφ sinφ− sec φ)) sinφ]

(−c([(cos φ(ri − (zs − zri) tanφ))
2 +

(2 cosφ(D − zri) + ri sin φ+ (zs − zri)(tanφ sinφ− sec φ))2])−1/2(2.27)

∂tbi
∂D

= [(2 cosφ(D − zri) + ri sinφ+ (zs − zri)(tanφ sinφ− secφ))2 cosφ]

(−1/c)([(cosφ(ri − (zs − zri) tanφ))
2 +

(2 cosφ(D − zri) + ri sinφ+ (zs − zri)(tanφ sinφ− secφ))2])−1/2(2.28)

2.4.1 Case NW24

The regularization method discussed in Section 2.3 was applied to Haro Strait data

for signal NW24 (implying that shot 24 was considered as the source and the signal

was received at the NW VLA). Prior information was available on receiver depths

zri, i = 1, . . . , 12, and ocean depth D, which was taken into account. Uncertainty on

receiver and water depths was selected as 5 and 20 m, respectively.
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Figure 2.4 Source-receiver ranges and phone depths for case
NW24, when slope is also included in the unknown parameters.

Estimates for unknown parameters values were computed via inversion of the

NW24 data. The results are shown in Figure 2.4. The estimates for phone depths

are plotted against the horizontal distances from the source and demonstrate a tilt

in the array.

Table 2.1 shows reference values for source range, source depth, and ocean

depth for NW24 and estimates obtained by a obtained for a flat and sloping ocean

bottom. For comparison purposes, the same uncertainties were used in both the cases.

2.5 Inversion with two Sources

In this section, we use arrival time data from two sources lying in the same ‘line of

sight’ for better estimation of the unknown parameters, namely, range, source depth

and ocean depth. Let the unknown parameter vector be:
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Table 2.1 Comparison of Estimates Obtained Using a Flat Bottom Model vs. a
Model of an Ocean Bottom with a Slope for NW24

Parameter Estimate(flat) Estimate(slope) Reference

r1(m) 509.0 513.5 512.9

zs(m) 60.7 61.5 70

D(m) 201.7 200 200

q = [r1, r2, . . . , rL, zs, zr1, zr2, . . . , zrL, D, φ, ts], (2.29)

where all the parameters represent the same quantities as before except for D which

is now the ocean depth at the first receiver instead of the ocean depth at the source

location. The depths at the remaining k − 1 receivers and the source are related to

D as follows:

Di = D + (ri − r1) tanφ (2.30)

D0 = D − r1 tanφ (2.31)

where D0 is the ocean depth at the source; since the two sources fall in the same line

of sight, the angle (slope) is the same. Equations 2.15 and 2.16 remain the same.

Equation 2.17 changes to:

tbi = ts +

√

(N1)2 + (N2)2

c
(2.32)
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where,

N1 = r
′

i

= (cosφ(ri − (zs − zri) tanφ) (2.33)

N2 = zsnew + zrnew

(2.34)

where,

zrnew = (D − zri) cosφ+ (ri − r1) sinφ+ ri sinφ (2.35)

zsnew = zrnew − h
′ − h

′′

(2.36)

Quantities h
′

and h
′′

are the same as in Equations (2.21-2.22). Equation (2.35) has

been obtained by substituting Equation (2.30) into Equation (2.19).

Thus,

N2 = 2zrnew − h
′ − h

′′

(2.37)

= 2(D − zri) cosφ+ 2(ri − r1) sinφ+ ri sinφ+

(zs − zri)(tanφ sinφ− sec φ) (2.38)

With these new equations describing the BR arrival time, the entries related

to derivatives of bottom reflected arrival time with respect to the unknown parameters

in the Jacobian matrix J will change. For instance, the derivative of the BR arrival
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time with respect to D becomes:

∂tbi
∂D

=
−2(N2) cosφ

c
√
N2

(2.39)

2.5.1 Results: Cases SW29-SW32

Figure 2.5 illustrates the inversion results when data from two sources are employed.

The plot illustrates the structure of the array, the depths of the hydrophones, and the

positions of the two sources. A tilt in the SW array can be noticed from the shallowest

receiver, which is at a depth of approximately 45 m, to the deepest receiver, which

is at an approximate depth of 138 m. Source 29 is deployed in an environment that

is deeper than that of source 32. The phone array is positioned at an even deeper

site in comparison to that of both sources 29 and 32. This environmental description

matches prior bathymetry knowledge on the site of the experiment.

Inversion results using data from two sources with a sloping ocean bottom

are compared to inversion results obtained using data from one source with a flat

ocean bottom in Table (2.2). The results presented in the table using data from two

sources and considering a sloping bottom are more accurate in terms of proximity

to benchmark values than the results calculated via simple inversion under a flat

bathymetry assumption.
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Figure 2.5 Array and source positions for shots 29 and 32
with respect to the SW array.

Table 2.2 Comparison of Estimates for SW29 Obtained Using a Flat Bottom vs.
Using Data from Two Sources for a Sloping Ocean Bottom

Parameter Estimate (flat) Estimate (2 sources) Reference

r1(m) 865.8 900.0 894.7

zs(m) 77.0 81.0 70.0

D(m) 202.0 195.0 190.0



CHAPTER 3

BAYESIAN FILTERING: A SIMPLE MODEL

3.1 Introduction

In this chapter, the focus is on the estimation of multipath arrival times of a known

deterministic signal at a set of L spatially separated hydrophones. Our aim is to

estimate both arrival times and amplitudes of paths arriving at L receivers via

various paths such as direct, surface reflection, and bottom reflection. To obtain

these estimates, we first calculate the joint PDF for amplitudes (ãk = [a1, a2, ..., aP ],

k = 1, . . . , L, P being the number of arrivals) and arrival times (X̃k), where each X̃k

consists of different paths (such as the ones mentioned above). Thus, X̃k is a vector:

X̃k = [X1, X2, ..., XP ]. The PDF we want to compute is

p(ã1, ã2, ã3..., ãL, X̃1, ..., X̃L|Y1, ..., YL), where Yk, k = 1, . . . , L, is the received signal

at the kth receiver. Signal Yk can be written as:

Yk(t) =
P
∑

p=1

akps(t−Xkp) + nk(t), (3.1)

where t = 1, . . . , Ns (Ns is the duration of Yk) [19, 42, 43, 44]. Quantity akp is

the amplitude of the pth path at the kth receiver and nk is additive white Gaussian

noise. Figure 3.1 shows five time-series Yk (k = 1, 2, 3, 4, 5) at five phones of a VLA,

consisting of P = 2 arrivals. Estimates of arrival times of paths in Figure (3.1) and

their corresponding amplitudes can be obtained by calculating the mean or mode of

their joint PDF. The latter provides MAP estimates.

Maximizing the joint PDF p(ãk, X̃k | Yk) of amplitudes and arrivals is an

optimal way for estimating arrival times and amplitudes at a particular receiver [45],

22
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Figure 3.1 Time-series for the first five receivers.

but it can get computationally expensive as the number of paths increases. An

efficient method developed in [19] is the implementation of a MAP approach for

amplitude and arrival time estimation using Gibbs Sampling (GS-MAP). The Gibbs

Sampler was used for the computation of full joint PDFs of amplitudes and arrival

times at every receiver. The method is briefly described below.

Assuming a uniform prior on amplitudes and arrival times as:

p(ai) = 1 −∞ < ai < ∞, i = 1, ..., P (3.2)

p(Xi) =
1

Ns
1 ≤ Xi ≤ Ns, i = 1, ..., P, (3.3)

the joint posterior PDF at receiver k has the form:

p(X1, X2, ..., XP , a1, a2, ..., aP |Yk) = C
1

NP
s

1
√
2πσ2

Ns

exp(− 1

2σ2

Ns
∑

t=1

(Yk(t)−
P
∑

p=1

aps(t−Xp))
2) (3.4)
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where C is a normalizing constant.

Gibbs Sampling is an iterative Monte Carlo (MC) process used to sample from

a joint distribution which is not known explicitly, when the conditional distribution

of each variable conditional on the current values of other variables is known [46, 47,

20, 48, 49].

The joint PDF of arrival times and amplitudes as shown by Equation (3.4)

is obtained by computing the marginal distribution of each unknown parameter

conditional on other parameters; for example, the conditional posterior distribution

of X1 for known X2, ..., XP and ap, p = 1, 2, ..., P , is:

p(X1 | X2, ..., XP , a1, a2, ..., aP , Yk) = G exp(− 1

2σ2

Ns
∑

t=1

(Yk(t)−
P
∑

p=1

aps(t−Xp))
2).(3.5)

The conditional distributions serve as building blocks for the estimation of the joint

PDF of arrival times and amplitudes. In general, if Y is our data and Θ = [θ1, θ2, ..., θD]

is a vector of parameters of interest with selected initial values Θ0 = [θ01, θ
0
2, ..., θ

0
D],

then the following steps are run iteratively:

for i = 1 : T

• sample θi+1
1 from p(θ1|θi2, ..., θiD, Y )

• sample θi+1
2 from p(θ2|θi+1

1 , θi3..., θ
i
D, Y )

...

end

The sequence of vectors Θ0, ...,ΘT converges to the true PDF for large T [46, 47, 48].

In case of multipath arrivals, it is difficult to associate a particular arrival
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to its respective path with GS-MAP. This is one of the drawbacks of GS-MAP that

we wish to remedy in our study so that arrival estimates, can be used to enhance

inversion. This will facilitate the better understanding of ocean environments.

Another disadvantage of GS-MAP and arrival time estimation methods is

that they estimate ã1, ..., ãL, X̃1, ..., X̃L at every receiver but fail to use information

available from neighboring phones. Information from previous or next receivers can

be crucial and can provide useful insights in arrival times of distinct paths. Thus, we

propose to identify and utilize relations between arrivals from one receiver to another.

This approach can be expressed via Bayes rule as follows:

p(ã1, ..., ãL, X̃1, ..., X̃L|Y1, ..., YL) = p(ãL, X̃L| ˜aL−1, ˜XL−1, YL)

p( ˜aL−1, ˜XL−1| ˜aL−2, ˜XL−2, YL−1)

. . . p(ã2, X̃2|ã1, X̃1, Y2)p(ã1, X̃1|Y1). (3.6)

Hence, if a prior p(ã1, X̃1|Y1) at the first receiver is selected, the joint PDF

of amplitudes and arrival times can be estimated for the following receivers using a

Bayesian filter.

3.2 State-Space Model

The idea of Bayesian filtering has been used extensively for target tracking, that is,

estimating a target’s position (flight corridors for commercial planes, road network

for civil surveillance, etc) from time t to time t+ 1.

The signal arriving at an array of spatially separated receivers can be compared

to a source moving in time and the idea of target tracking (tracking a target’s position,

velocity, or acceleration in time) can be used in our study to track arrival times in
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space. We view every path as a target and track it in space as if we were tracking

a target in time. Thus, the theory developed for conventional target tracking can be

used to track the various paths in space, enabling us to estimate arrival times and

amplitudes from one receiver to another in a particular time frame.

We adopt a state-space approach [50, 51, 52, 53, 54, 55] to model the dynamics

of the system. That is, every possible position (represented by a time sample) and

its corresponding signal strength (amplitude) are represented as a state and the

probability of moving from one state to another depends only on the previous state.

This property is known as the Markov property. In general, the state vector contains

all relevant information that might be required to describe the system; for example,

position and velocity (and, later, signal amplitudes) of a ‘target’ in time or space.

Here, we consider L hydrophones placed in an ocean environment. Arrival times

evolve from one receiver to the next. Hence, our problem narrows down to estimation

of arrival times in space within a particular time frame.

In order to analyze the dynamics of such a system, two models are required:

(a) a model to describe the transition of states from receiver k to k + 1, and (b) a

model to relate the noisy measurements at receiver k + 1 to the state.

Let Xk be the state vector at state k. Its expected evolution in space can be

expressed via the prediction equation (reflecting the transition model):

Xk = Fk(Xk−1, wk) (3.7)

The actual measurements and state are related by the update-observation equation:

Yk = Hk(Xk, nk) (3.8)
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Here, (wk, nk) represent independent and spatially and temporally uncorrelated noise,

that is, the covariance matrices of wk and nk is a diagonal matrix. Functions Fk, Hk

are, in general, nonlinear, and Xk, Yk are multi-dimensional vectors. The goal is to

estimate Xk based on the set of available measurements Yk. For that, we will first

calculate PDF p(Xk | Yk).

Assuming that PDF p(Xk−1 | Yk−1) is known at state k − 1, the PDF of

arrival times for the current step k can be computed using the following recursion

equation [42]:

p(Xk | Yk−1) =
∫

p(Xk | Xk−1)p(Xk−1 | Yk−1)dXk−1 (3.9)

(Chapman-Kolmogorov Equation)

p(Xk | Yk) ∝ p(Yk | Xk)p(Xk | Yk−1). (3.10)

(Bayes rule)

In general, p(Yk | Xk) denotes the density of Yk given parameter values Xk.

For a particular value of Xk = xk, after data Yk have been observed, p(Yk | Xk)

becomes a likelihood function for Xk. Any reference to p(Yk | Xk) henceforth, will

represent the likelihood function rather than the PDF of Yk.

Using the PDF described in Equation (3.10), we can obtain parameter estimates

such as expectation [56]:

X̂k = E(Xk | Yk) =
∫

Xkp(Xk | Yk)dXk (3.11)
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or a MAP estimate as,

˜̂
Xk = arg max p(Xk | Yk). (3.12)

Because the PDF is not necessarily Gaussian or even unimodal, the mode is the

estimator we will be computing, since the mean may be misleading.

The situation would have been simple had all the PDFs been available in

closed forms and easy to compute, which is usually not the case in practical situations.

If the PDF at every step is Gaussian and functions Hk and Fk are linear, the Kalman

Filter (KF) [50, 57, 58, 56, 59, 51] is the optimal Bayesian filter for estimating

unknown parameters such as ours. Under these circumstances, Equations (3.7) and

(3.8) can be written in the following form:

Xk = Fk−1Xk−1 + wk−1 (3.13)

Yk = HkXk + nk, (3.14)

where wk and nk follow Gaussian distributions. From Equation (3.7), we can obtain

the state transition probability p(Xk | Xk−1). Equation (3.8) is employed to obtain

the likelihood function p(Yk | Xk). Thus, the PDF p(Xk | Yk) can be calculated

recursively using the prediction and update Equations (3.9) and (3.10).

For nonlinear systems where functions F and H can be linearized using a

Taylor expansion, an Extended Kalman Filter (EKF) is often used for parameter

estimation [60, 61]. Assuming that nonlinearities in H and F are small, these

functions are approximated by the first term in their Taylor series expansion. This

filter is sometimes referred to as an analytic approximation because the nonlinear

functions are expanded analytically. If the nonlinearity is significant and the functions
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and noise components follow complex distributions, EFKs are not applicable. If the

PDF p(Xk | Yk) is moderately non-Gaussian and can be represented by the first two

moments, then an Unscented Kalman Filter (UKF) can be employed [62]. Instead

of linearizing functions F and H , the UKF approximates the PDF p(Xk | Yk) with

a Gaussian distribution. Thus, linearization is obtained in a statistical sense rather

than an analytical one. A particle filter (PF), on the other hand, is a Bayesian filter

that does not require either the assumption of Gaussian PDFs or linearity and can

be employed when the KF and its extensions fail due to the nonlinear structure of

the state and measurement equations and the non-Gaussian behavior of measurement

errors. PF is a sequential Monte Carlo (SMC) method [63, 64, 65, 66, 67] that uses

a set of particles to represent the required PDF [68, 69, 70, 71, 72, 73]. It is an

approach that executes the recursive Bayesian filter through MC simulations. Since,

in the implementation of a PF, the PDF of the state vector at the present step is

used for the prediction of the state vector at the next step, the PF is often referred

to as a sequential tracker.

We use the idea of particle filtering and represent the PDF by a set of particles,

where every particle is of the form Xk = [X1, X2, ..., XP ]. Sequential Importance

Sampling (SIS) and Sampling Importance Resampling (SIR) are two of the many

kinds of particle filters that are most common [74, 55, 56] and will be discussed in

brief in the following sections.

3.3 Particle Filtering

This section discusses the implementation of PFs in our problem. Once the transition

densities and likelihood function have been obtained, a PF is designed to obtain the

PDF of the arrival times-direct and SR in the beginning and more paths later on.
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3.3.1 Sequential Importance Sampling Algorithm

SIS is a technique used for implementing recursive Bayesian filtering via Monte

Carlo simulations. Let the required posterior PDF be denoted as p(Xk | Yk), where

{X i
k, i = 1...N} is a set of support points for the unknown parameters and Yk are the

received data at receiver k [74].

Let {wi
k, i = 1...N} be the associated weights corresponding to the support

points. These weights are normalized so that
∑

iw
i
k = 1. Then, the posterior PDF of

Xk at receiver k can be described as [63]:

p(Xk | Yk) ≈
N
∑

i=1

wi
kδ(Xk −X i

k). (3.15)

The weights are assigned to states X i
k through the likelihood function p(Yk |

Xk). This will be discussed in more detail later.

The discrete weighted approximate representation is an unbiased estimate of

the true posterior PDF and approaches the true PDF as N → ∞ [56].

Typically, it is not easy to obtain a closed form of the posterior density;

instead, samples Xk are drawn from a known and simpler density q(Xk | Yk), which

is called the importance or proposal density. The importance density is similar to the

original density function, that is, they have the same set of support points. Hence,

the weights are now defined as:

wi ∝ p(X i
k | Yk)

q(X i
k | Yk)

. (3.16)

The weights in Equation (3.16) are obtained from Monte Carlo integration, the details

of which can be found in [56].
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Assuming that the posterior PDF at state k − 1 is known, the importance

density can be written as:

q(Xk) = q(Xk | Xk−1)q(Xk−1 | Yk−1). (3.17)

The new set of samples at receiver k, X i
k ∼ q(X i

k | Yk), can be obtained by augmenting

each of the existing samples X i
k−1 ∼ q(X i

k−1 | Yk−1) with the new state X i
k ∼ q(X i

k |

Xk−1). The weight equation is then:

wi
k ∝ p(Yk | X i

k)p(X
i
k | X i

k−1)p(X
i
k−1 | Yk)

q(X i
k | X i

k−1)q(X
i
k−1 | Yk−1)

(3.18)

wi
k = wi

k−1

p(Yk | X i
k)p(X

i
k | X i

k−1)

q(X i
k | X i

k−1)
. (3.19)

The weights and support points are propagated recursively as each measurement is

received sequentially.

One simple variant of the SIS filter can be derived if the importance density

q(Xk | X i
k−1) is chosen to be the prior density p(Xk | X i

k−1).

3.3.2 SIR: Resampling for Degeneracy Reduction

A common problem with such methods is that, after a few iterations, many particles

have negligible weights; a large computational effort is required to update even those

particles, whose contribution to the approximation of the posterior PDF is almost

zero. This is known as ‘degeneracy’. Resampling is an effective way to reduce

degeneracy [75, 56]. In resampling, the main idea is to concentrate on particles
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with large weights while eliminating particles with smaller ones. Resampling involves

generating a new set of particles X i∗
k , i = 1...N from the existing data set by sampling

with replacement such that Pr(X i∗
k = Xj

k) = wj
k. The particle set obtained as a result

of resampling is an independent and identically distributed (i.i.d) sample from the

discrete density 3.15; therefore, the weights are set to wi
k = 1/N [74, 56].

Various resampling techniques like ‘Residual Resampling’, ‘Stratified Resamp-

ling’, ‘Multinomial Resampling’, and ‘Systematic Resampling’ are analysed in [75,

76, 77] to reduce the variance amongst particles. The way to resample is via the

cumulative density function (CDF) of the weights. Once the CDF has been constructed,

a random number from a uniform distribution is selected and compared with the

cumulative sum of weights while moving up the CDF, starting from its bottom until

the value of the random number is less than the value of the CDF at a point j.

u1 ∼ U(0, 1/N) (3.20)

uj = u1 +N−1(j − 1), j = 1, ..., N. (3.21)

Then, a new particle Xj = X i is chosen, such that uj <= ci and uj > ci−1, where ci

is the value of the cdf at ith particle and wj = 1/N . Drawing particles from the CDF

in this manner leaves out particles with negligible weights and, at the same time,

particles with larger weights are selected more frequently.

Figure 3.2 shows one iteration of the particle filter with resampling.

Combination of the SIS filter with resampling is known as the Sample Importance

Resampling Filter (SIR) filter. This implies that the samples need to be drawn from

p(Xk | X i
k−1) and the weight equation (Equation (3.16)) can now be written as:

wi
k = wi

k−1p(Yk | X i
k). (3.22)
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Figure 3.2 Symbolic representation of particle filtering.
Particles are denoted by circles, the size of which reflects their
corresponding likelihood weights.

Weights are normalized before the resampling stage.

3.3.3 Order of Complexity

The order of complexity of PFs is an important consideration for their implementation.

The order is tightly related to the number of particles necessary to attain desired levels

of accuracy. Naturally, larger state vectors require more particles. It is expected

that the number of particles increases linearly with the number of parameters to be

estimated [78]. However, this is not strictly the case, as careful investigation of a

particular problem might reveal features (such as linearity between measurements

and at least part of the state vector), that can be explored for the reduction in the

number of particles. This is known as Rao-Blackwellization and it will be explained in

more detail in the following chapter. The order of complexity depends on the method

selected for resampling, which, in its turn, is a function of the number on particles.
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The order has been found to be O(N) when the resampling procedure described in

this paper is adhered to [56].

In addition to the load of resampling, nonlinearities in the state and measurement

equation and the level of noise are important factors determining the computation

requirements of a particle filter.

3.4 Algorithm Development - Known Number of Paths and Known

Amplitudes

To start with, we base our study on just two paths: direct and SR. Hence, the number

of paths for initial discussion is two and constant with state (phone). As an example,

Figure (3.1) shows the two paths arriving at the first five receiving phones. Our

convention is that the first receiver is the one at the shallowest depth. The signal

is shown in time samples rather than in true time. True time can be calculated by

dividing time samples over the sampling frequency. In our case, both arrivals, direct

and SR, arrive close to each other at the first receiver, making it difficult to identify

them. This occurrence and its impact will be discussed later.

Amplitudes ak = [adk, ask] of the two arrivals are initially assumed to be known:

adk = 1 is the amplitude associated with the direct arrival and ask = −1 is the

amplitude associated with the SR arrival. Let Xk=[Xdk, Xsk] be the unknown state

vector at receiver k; Xdk represents the direct ray and Xsk represents the SR path.

Our goal is to estimate Xk given data Yk and prior states.

To obtain the state transition probability p(Xk | Xk−1) and the likelihood

function p(Yk | Xk), we describe the dynamics of the system using the prediction and

update equations.
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3.4.1 Transition Density

At receiver k, let Xk=[Xdk, Xsk]. A random walk process is used to model the

dynamics of propagation of Xk:

Xk = Xk−1 + wk, (3.23)

where wk ∼ N(0, σ2
kI), I being the 2×2 identity matrix. Parameter σk is the standard

deviation of the direct and SR paths from receiver (k − 1) to the receiver k, which

is chosen empirically depending on general expectations on the evolution of arrival

times. Information on these perturbations can be extracted by simulating sample

arrival times at a set of hydrophones representing our array for a set of possible ocean

environments and source positions.

The transition density is described by:

p(Xk | Xk−1) ∼ N(Xk−1, σ
2
k). (3.24)

3.4.2 The Likelihood Function

Assuming that the signal from a sound source arrives to a set of receiving phones via

P paths instead of just a direct eigenray, the measurement model in a nondispersive

medium [43] can be written as in Equation 3.1, where t = 1, . . . , Ns (Ns is the duration

of the received signal). The number of paths P is initially considered known. Quantity

Xkp denotes the arrival time of path p of the kth receiver and akp is its corresponding

amplitude.



36

The likelihood function using the measurement equation is:

p(Yk | Xk) = exp(−
∑Ns

n=1(Yk −
∑P

p=1 akps(n−Xkp))
2

2σ2
). (3.25)

The likelihood function, instead of being calculated over the entire domain as in the

case of ML computations, is now being computed for only few possible time samples

(N particles) that lie within a feasible region determined by the transition density

function (or a prior density for k = 1).

3.5 Implementation

In the tracking problem discussed here, we are interested in tracking the direct and

SR arrival evolution across receiving hydrophones. Concatenation of one sample for

each of the two paths produces a particle at receiver k. Thus, at the kth receiver, a

particle is described by a two-dimensional vector of arrival time samples X i
k=[X i

dk,

X i
sk], i = 1, . . . , N . Element X i

dk represents a sample for the direct arrival and X i
sk

represents a sample for SR.

The PF applied here is based on the SIR filter. The filter is initialized by

drawing a sample X i
k0, i = 1, . . . , N , from a uniform distribution over the entire range

of time samples. Weights for particles wi
k are computed according to Equation (3.22).

The particles are propagated using the transition density by sampling from

a normal distribution X i
k ∼ N(X i

k−1, σ
2
k). The computed weights are normalized

and resampling is performed, generating a new set of particles from the existing set.

Finally, MAP arrival time estimates for the direct and SR arrival at receiver k are

computed as the mode of the joint posterior PDF.



37

3.5.1 Simulation Results - Error Analysis

The above algorithm is validated with simulated data that includes two ray paths:

direct and SR. The arrival structure for the two paths is shown in Figure (3.3).

Figure (3.4(a)) shows noise-free time-series with two arrivals and Figure (3.4(b))

demonstrates one noisy realization for an SNR of 15 dB.
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Figure 3.3 Arrival times for the direct and SR paths for a
synthetic data set.

Figure (3.5) shows the estimates obtained with the PF and ML estimators for

the arrival times of the direct and SR arrivals at a Signal to Noise Ratio (SNR) of 15

dB. The performance of the PF is plotted vs. the number of particles. Here, error is

the L2-norm averaged over K = 16 receivers and Nr noisy realizations:

error =

√

√

√

√

∑K
k=1 |xk − x̂k|2

K Nr
, (3.26)

where xk is the vector of true values of the arrival times and x̂k is the vector of

the modes of the arrival time PDFs estimated at state k. One-hundred realizations
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(Nr = 100) were run for a Monte Carlo performance evaluation. The error curves

were smoothed with a median filter.

The first observation we make is that the PF does not offer an advantage

over the ML estimator when the number of particles is small. The reason is that

few particles are not adequate for capturing a broad probability density region. As

the number of particles increases, the PF outperforms significantly the ML method

for the direct path arrival time estimation. However, we note that there exists a

substantial difference in the performance of the PF for the direct and SR arrival

estimation. Although the PF performance is excellent for the former, the PF error in

SR arrival estimation is high, making the ML preferable. This was initially puzzling,

since we expected a superior performance in both direct and SR cases. Careful review

of the problem and implementation led us to understand that this difference in errors

suggests that the sharp changes of the SR arrival times in space (which can be seen

in Figure 3.3) are the cause for the significant error. The changes are less steep for

the direct path. It appears that the simple PF model is unable to capture the arrival

time evolution. In the next chapter, we discuss a new model that improves the results

of the particle filter.

3.5.2 Simulation Results - PDF Calculation

Figure (3.6) illustrates estimated PDFs for the direct and SR paths for an SNR

of 17 dB using the PF method, which further strengthen our observations from

Figure (3.5). At the tenth receiver, the gradient of the PDF for the SR arrival is

concentrated in regions far from the true arrival time values. The reason is that the

perturbation of the particles at the 9th receiver imposed by the transition density was

inadequate for shifting the particles towards the region around the true arrival time

at the 10th receiver. Instead, a region away from the true arrival time was populated
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Figure 3.4 Noise-free signal and (b) one noisy realization. The
SNR is 15 dB.
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Figure 3.5 Performance of a PF (triangle: direct, circle: SR)
and ML (dashed line: direct, dot-dashed line: SR). The SNR is
15 dB.
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with particles. In the next chapter, we will discuss how this shortcoming can be

remedied.

Time Samples

H
yd

ro
ph

on
e 

nu
m

be
r

0 20 40 60 80 100

2

4

6

8

10

12

14

16

Figure 3.6 Arrival time PDFs for the direct and SR paths.



CHAPTER 4

BAYESIAN FILTERING: DYNAMIC MODEL AND AMPLITUDE

ESTIMATION

4.1 Discussion of Practical Implementation Aspects

In the following section, we continue to investigate the reason for results as seen

in Chapter 3 and aim to find a solution to density problem. The limitation of the

transition density function brought up in the last chapter is more clearly demonstrated

in Figure (4.1). Although the transition model suffices for the direct path (top plot),

it does not seem to describe adequately the SR arrival: the samples for the surface

reflection do not capture the high likelihood region (bottom plot).
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Figure 4.1 A sketch of the transition density function for both
direct and SR arrivals.

The arrival path can be compared to the trajectory of a moving target;

similarly to a target’s position and velocity changing with time, the time at which a

41
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particular path (direct and SR, for example) arrive in our problem change at every

receiver. Just like a target’s motion model describes the evolution of the target state

with respect to time, our motion model describes the evolution of “arrival trajectories”

with respect to space. Using kinematic constraints in the model dynamics helps

in reducing the bias in the estimates when the actual acceleration is time/position

varying [79]. The present transition density function does not take into consideration

the velocity/gradient inherent in the arrival time evolution and, hence, fails to prescribe

to particles the necessary motion. The transition density function must be updated to

include a velocity component for the appropriate particle movement from one receiver

to another. A kinematic component is typically incorporated in the transition/prediction

equation to integrate velocity into the tracking process. The inclusion of kinematics

into the filter is discussed in [80, 81, 82, 56]. Velocity can be dealt with as a constant

or as varying with time or space, which is more suitable for our problem. Adapting

the approach to our model, we use velocity to represent the gradient of arrival times

of a specific path in space.

The simplest model for a target maneuver (model with the kinematic constraint)

is the ‘white-noise acceleration model’ [60], which assumes that the target acceleration

is strictly white noise. Another simple model is the ‘Wiener-process acceleration

model’ [60], where acceleration is modeled as a Wiener process. The latter approach

is also referred to as the ‘nearly-constant acceleration model.’ Discussion on other

models is available in [83]. We adopt a non-constant and adaptive acceleration model

as described below. The model can adapt to necessary perturbation “gates” through

parameter amax.

Let the new state vector be X̄=[Xk Ẋk], where Ẋk denotes the velocity of a

particle at the kth receiver. It is the rate of change of particles from the (k − 1)th to

the kth receiver.

The state transition equations can be written as:
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Ẋk = Ẋk−1 + γkdsk (4.1)

Xk = Xk−1 + Ẋk−1dsk +
1

2
γk(dsk)

2, (4.2)

where dsk is a measure of distance between receivers k and k − 1. Quantity dsk can

be constant with state or can vary (the latter is the case in our problem).

It is assumed that the target accelerates or decelerates: γk ∈ N(0, amax) [83].

Parameter amax is the maximum acceleration allowed in the motion of a particle and

is defined to be the maximum change possible in the velocity/gradient of the particle.

It is typically chosen empirically.

The state equation can be written in a matrix form:

X̄k = FX̄k−1 +W (k), (4.3)

where

X̄k = [Xk Ẋk]
T , F =









1 dsk

0 1









(4.4)

and

W (k) =









(dsγk)
2

2

ds









. (4.5)
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4.1.1 Error Analysis

Figure (4.2) demonstrates the performance of the PF that incorporates the gradient

of arrival times in space. Again, the RMS error is plotted as a function of the number

of particles. The new PF performs very well in both direct and SR arrival time

estimation. It is worth noting that the SR arrival estimation is significantly superior

than that of the simple model (Figure (3.5)). There is practically no error reduction

for the direct arrival, because the original perturbations were adequate for that part

of the problem.

The ML results, shown in Figure (3.5) as well, are superimposed on the PF

error curves. The PF now outperforms the ML estimator consistently.

It should be noted that a Bayesian MAP estimator with uniform prior distributions

such as those selected here for the PF initialization can only do as well as the ML

processor; that is, the likelihood function and the posterior PDF are the same in that

case (differing only by the constant of normalization). For this reason, the PF cannot

do better outperform the ML approach at the first receiver; it can do worse, if the

particles do not capture extensively the regions of interest of the likelihood. However,

as the PF “collects” and explores information from arrival times in space, the results

become increasingly better than those of the ML estimator. This is because the ML

processor processes data in an isolated way, ignoring arrival times at neighboring

hydrophones. Methods to improve the estimation process at the first receiver, and

subsequently of the results at the whole array, will be discussed later in this work.

Figure (4.4) illustrates the PDFs of the arrival times computed using our PF

method. The results suggest that, with inclusion of velocity/gradient in the model,

the correct path for SR arrival can be identified effectively.

Calculation of PDFs is a significant asset of PFs. Instead of providing us only

with point estimates used to calculate errors such as those of Figures( 3.5) and (4.2),

they provide PDFs that reveal the uncertainty in the estimation process. The breadth
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Figure 4.2 Performance of a PF with a velocity component
(triangle: direct, circle: SR) and ML (dashed line: direct, dot-
dashed line: SR). The SNR is 15 dB.

of the PDFs shows a measure of variance (which can be calculated), that quantifies a

level of confidence one should have in particular point estimates. PDFs at receivers

2, 6, 10 and 11, for example, show increased uncertainty in comparison to those at

other phones.

4.2 Particle Filtering for Tracking Signals with Unknown Amplitudes

In all our earlier discussions, the assumption of known amplitudes was made. This

assumption is, however, not realistic. This section discusses a more scenario better

reflecting reality by including amplitudes as unknowns. Since it has been established

that the transition density function which includes the particle dynamics is better

than the one which does not, we continue our discussion based on the new model.
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Figure 4.3 Noise-free receptions and one realization of noisy
synthetic time-series with three arrivals.
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model.
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4.2.1 Model

Amplitude estimation can be treated in different ways. The first and most intuitive

approach is to treat amplitudes as unknown parameters, including them in the state

space and estimating them along with arrival times using particle filtering. Let ζ be

the vector of all parameters describing the model:

ζk = [X̄k ak], (4.6)

where ak is the vector of amplitudes associated with particle Xk and X̄k is vector

[Xk Ẋk]. Amplitudes are assumed to follow the following propagation model:

ak = ak−1 + w, (4.7)

where w is additive Gaussian noise with mean 0 and variance σ2
w. Amplitude particles

can be sampled according to [84]:

aik ∼ N(aik−1, σ
2
w). (4.8)

Following the sampling process of the time particles as per Equation (4.1)

and their respective amplitudes as per Equation (4.8), the likelihood is computed for

the selected samples for Xk and ak. Weights are then calculated for these particles.

This approach will increase the computational load of the PF process by doubling

the state vector dimension, thus necessitating a larger number of particles.

Alternative approaches for the estimation of amplitudes have been discussed
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in [54, 85, 86]. In [85, 86], amplitudes do not enter the vector of unknown parameters

but instead can be estimated using an ML or MAP estimator (since ML and MAP

generate the same estimate for uniform priors). Because the conditional PDFs of

amplitudes on arrival times follow a Gaussian distribution, estimation is straightforward.

We use the approach of [45, 85, 86] to estimate amplitude modes conditional on the

arrival time particles. We can also trace the covariance matrix of these conditional

PDFs [85, 86]. Since these conditional PDFs are Gaussian, we have enough information

to draw samples from those. These samples will be used for the construction of the

marginal posterior PDFs of the amplitudes at each state. The modes are used at

the next state for the prediction of the new set of arrival times and amplitudes.

Specifically [45]:

A = Λ−1φ, (4.9)

where φp is a column vector with φp =
∑Ns

t=1 s(t − τp)Y (t), p = 1, . . . , P , (Y is the

received time-series) and A is the column vector of unknown amplitudes. Also,

Λ =

























λ11 λ12 . . . λ1p

λ21 λ22 . . . λ2p

. . . . . . . . . . . .

λp1 λp2 . . . λpp

























, (4.10)

where λij =
∑Ns

t=1 s(t− τi)s(t− τj), i, j = 1, . . . , P .

This approach requires fewer particles than the method including amplitudes

in the state vector. This is because the PF efficiency largely depends on the dimension

of the state vector [78] as emphasized so far: more unknowns require more particles.

Under some circumstances, the number of particles can also be reduced by using
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Rao-Blackwellization [87, 56]. The idea is to separate the state variables, if possible,

and use a KF for the estimation of part of the state vector when linearity and

normality permit. A PF is only employed for the remaining part of the state vector.

4.2.2 Error Analysis

The performance of PF with the addition of unknown amplitudes is depicted in Figure

(4.5). Errors with unknown amplitudes are slightly larger than errors with known

amplitudes, which is expected. The comparison between PF and ML errors still

demonstrates a remarkable gain in using a PF over ML.
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ML Error (unknown amplitude): Direct Arrival
ML Error (unknown amplitude): SR Arrival

Figure 4.5 Comparison of PF estimation with known and
unknown amplitudes for an SNR=17 dB. ML estimates are
superimposed.

4.2.3 PDF Estimation

This section goes beyond the error analysis and characterizes arrival times and their

amplitudes by estimating their PDFs. By studying the estimated PDFs, one can
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estimate statistical characteristics such as mean and mode of the unknown parameters

and variance within the estimation process.

4.2.3.1 Case 1: Synthetic Data. This case estimates for the time-series

shown in Figure (4.3). The signal of Figure (4.3(a)) is noise-free and includes arrivals

three paths now: direct, SR and BR. The SR and BR paths cross; a noisy realization

is shown in Figure (4.3(b)). The challenge in identifying multipath arrivals is that,

at some point, paths may be very close (practically coinciding in some cases). Many

time delay methods are unable to identify arrivals when they are close together and

instead might perceive them as one single echo. Applying a PF, we estimate the

different arrival times and their posterior PDFs (initially, under the assumption of a

known number of paths). The power of this method lies in the sequential Bayesian

framework that allows us to distinguish between two crossing paths, albeit with

significant uncertainty. The arrival time PDFs illustrated in Figure (4.6(a)) reveal the

effectiveness of the method in resolving successfully the crossing paths. The amplitude

PDFs are demonstrated in Figures (4.6(b), (c), and (d)) for receiver 12 for the direct

path, SR, and BR, respectively. It is noteworthy that the PDFs are multimodal and

show an extensive spread at the 12th receiver, where the SR-BR paths approach each

other significantly.

4.2.3.2 Case 2: Haro Strait Data. For the experiment set up, an array

of 16 hydrophones was deployed. The vertical spacing between phones was 6.25 m

apart with the exception of the spacing between phones eight and nine which double.

The shallowest receiver was about 30m from the surface. The acoustic source was

a household light bulb. Data were collected at a sampling rate of 1750Hz. The

experiment was also described in Chapter 2. The signal received at the hydrophones
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Figure 4.6 (a) Posterior PDFs of arrival times for synthetic
data. (b) Amplitude PDFs at phone 12.

is shown in Figure (4.7) and the results of estimation of arrival time PDFs using

the PF are shown in Figure (4.8). A spread of about two samples is noticed in the

estimation of arrival times; the PF process, however, has clearly estimated the arrivals

effectively. Relatively to other receivers, the PDF has a larger spread at the last two

receivers, where the SR and BR arrivals are in close proximity.

4.3 Initialization

A PF is an MCMC (Markov Chain Monte Carlo) method that updates particles

drawn at a previous state. It strongly relies on the accuracy of the posterior PDF

estimation at the first state . If the initial sample set, selected often from a uniform

distribution before updating (no prediction is feasible) does not capture the true PDF

of the unknowns, then the error propagates into the following states and the updated

cloud will carry for a few states the error at state 1. A useful initial sample set is

realizable if the initial sample is drawn from an informative space or if numerous
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particles are drawn at state 1.

The order of complexity for a PF is O(N) as previously discussed. If the

number of particles is large, as just indicated, the complexity may be prohibitive.

Alternatively, the number of samples only for the first state can be large and can

be reduced later on. For initializing the first particle set, N samples are drawn

from a uniform distribution over the entire search space as has been discussed. To

enhance the PF performance we can initially select M particles, also from a uniform

distribution, whereM > N . We then select at the end of the first state the N particles

with the highest probability. This not only keeps the computational requirements at

a reasonable level but also improves the performance of PF, as can be noticed by

comparing Figures (4.9) and (4.10). The former demonstrates results from arrival

time estimation from time-series with four arrivals when N is constant. The latter

illustrates results from the same time-series when M particles are selected at state

(phone) 1.
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Figure 4.9 Arrival time estimation
with N particles at all states. Straight
lines demonstrate the true arrival tracks.
Triangles, circles, diamonds, and asterisks
show the estimates for the direct, SR,
BR, and first sediment-halfspace interface
reflection.
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reflection.



CHAPTER 5

UNKNOWN NUMBER OF ARRIVALS

5.1 Introduction

In our work, the number of arrivals has been assumed to be fixed and known, that

is, the state-space estimates calculated so far have been conditional on the number

of arrivals. In practical applications, this information is not available. Hence, the

assumption of a known and fixed number of arrivals needs to be relaxed. This makes

the dimension of the model unknown at every receiver. When the number of targets

(arrivals, in our case) is known and constant, the state-space is just the collection

of all individual target states, but when the targets are allowed to enter or leave

the area under consideration, the dimensionality of the state-space is determined at

every step by the number of targets present. Hence, the variable target motion model

should not only serve to predict how targets will move, but it should also predict the

probability of how many targets/arrivals are present within the examined time-frame.

The signal processing and information literature contains a number of approaches

to the problem of determining the number of paths within a data set. In [88], the

order α of the model was considered as a random variable and it was estimated

along with arrival times, amplitudes, and noise variance. This was based on work

presented in [89], where the number of parameters to be estimated in problems

similar to ours was estimated using the Akaike Information Criterion (AIC) and the

Schwartz-Rissanen Criterion (SRC, also known as Minimum Description Length or

MDL). In addition to the calculation of point estimates for the number of arrivals,

posterior PDFs for that number were also computed in [88], expressing the uncertainty

in the estimation of α. The method discussed in [88] assumed a uniform prior for the
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number of sources over a range believed to be realistic and estimated the number of

paths at every receiver individually; no information was shared across receivers. In

this work, we use the information available on the number of paths at the kth phone

to estimate the number of paths at the k+1th receiver. In this manner, the dimension

of the model is allowed to change at every state based on knowledge on the number

of paths from the preceding state.

5.2 The Model

Let η be a vector containing all unknown parameters within a state - arrival

times, amplitudes, and order of the model:

η = (X̄k
i
(αi

k
), ak

i
(αi

k
), α

i
k), i = 1, ..., N. (5.1)

A transition density matrix Ptr = [πij ]αmax×αmax
is introduced [56]; αmax is the

maximum number of paths assumed to be present in a time frame, πij is the probability

of movement from state i to state j, i, j = 1, . . . , αmax and
∑

j(πij) = 1.

We initially assume that the maximum number or arrivals that can exist in a given

time frame is two; then αk = [1, 2] and the transition density matrix can be written

as:

Ptr(αk|αk−1) =









pr11 pr12

pr21 pr22









. (5.2)

This means that, if the model order is one, it will continue to be one with probability

pr11 at the next state. Alternatively, the number of arrivals can increase to two at

the next state with probability pr12. On the other hand, if the model order is two at

the present state, that is, there exist two arrivals, there is a probability of pr21 that
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at receiver k an arrival moves out of the window and a probability of pr22 that the

signal continues with two arrivals. Matrix Ptr does not have to be symmetric.

Estimation of model order is a tricky issue that requires careful attention.

Considering our case, we assume for a moment that we have a time-series with one

arriving path with an amplitude of one. We can create infinitely many combinations

of multiple paths with the exact same arrival time and amplitudes that, superimposed,

will generate the true reception. The model with the highest order is the one that will

prevail, because, in a noisy environment, when using more paths we will be able to

replicate better the existing signal. In our example, the larger model order possible

(two in this example) will always be preferred. That is, there is an inherent bias

towards large orders. In the derivation of AIC and SRC, terms were added to the

main selection component to penalize for order, so that the best match with the

smallest order was selected. Within the Bayesian framework that we follow here, the

penalizing term occurs naturally by forming the posterior PDF based on the likelihood

and priors, as follows.

Once a transition matrix has been selected, following the work of [88], we

select uniform priors on arrival times and amplitudes:

p(akp) = 1 (5.3)

p(Xkp) =
1

Ns
. (5.4)

The likelihood at a specific state has already been derived in Equation 3.25.

Only there, as just mentioned, the number of arrivals P was assumed to be known.

The joint prior for all arrival times 1
Np (resulting from the multiplication of the single

arrival priors) was omitted because it was the same for all states. Now that the

assumption of a known and constant model order is relaxed, this term becomes

essential in the posterior PDF formulation:

p(Yk | Xk) ∝
1

Np
s
exp(−

∑Ns

n=1(Yk −
∑P

p=1 akps(n−Xkp))
2

2σ2
). (5.5)
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The term 1
Np

s
is here the penalizing factor. For large values of p, this term has

a small value associating with it a small probability. Small values of p are associated

with higher probability.

5.2.1 Results for an Unknown Number of Arrivals

5.2.1.1 Synthetic Data. A synthetic case was developed to study the effect of

an unknown and varying order. Figure (5.1(a)) shows a noise-free signal that initially

has two arrivals. The SR arrival gradually moves out of the observation window and

only one arrival remains at receivers 12 through 16. Results on arrival time estimation

using the transition model are shown in Figure (5.1(b)). In Figure (5.2), we show

the PDF for order α. We notice that the probability of order two is dominating

at receivers one through 11. There is a noticeable switch at receiver 12, where the

probability for the order to be one is higher than the probability corresponding to

an order of two. This implies that our estimator was successful in detecting that one

of the signals has moved out of the window of observation at receiver 12. For this

example, an assumption of αk = [1, 2] was made. The transition matrix was:

Ptr =









0.75 0.25

0.25 0.75









. (5.6)

Because the model can jump or switch between order values, the method is

also referred to as a jumping or switching model.

The example with three arrivals previously presented was also examined here

from the perspective of the estimation of the number of paths. Figure (5.3) presents

the, now truncated, time-series; the second and third arrivals exit the observation

window at receiver 13. Figure (5.4) demonstrates the point estimates obtained by the

PF superimposed on the true tracks. Only at the first phone, one of the arrivals (SR)

is missed and the order is incorrectly determined as seen from the PDF of Figure
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(5.5). For all other receivers up to and including receiver 11, the order is estimated

correctly as three. After the 11th phone, the probability is concentrated at α = 1.
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Figure 5.3 Noise free signal showing the
number of arrivals decreasing from three to
one.
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Figure 5.4 Estimates of direct, SR, and
BR arrival times for an unknown number
of arrivals superimposed on the true tracks.

5.2.1.2 Real Data Results: The Haro Strait Experiment. The signal

shown in Figure (5.7(a)) is a set of receptions from the Haro Strait Primer experiment.

Figure (5.7(b)) demonstrates the corresponding arrival time PDFs when the number
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of arrivals is unknown. The arrivals seem to have been estimated well although more

uncertainty was introduced, namely the number of paths was here unknown. The

assumption was that αk = [1, 2, 3, 4]. Figure (5.6) suggests a significant probability

for the presence of three arrivals, which is the true case, with little probability for

orders of two or one. A rather small, but not negligible, probability is also associated

with four arrivals. The transition matrix used was:

Ptr =

























0.4 0.2 0.2 0.2

0.2 0.4 0.2 0.2

0.2 0.2 0.4 0.2

0.2 0.2 0.2 0.4

























. (5.7)

This simply means that the probability of the order remaining the same is 0.4;

the probability of switching to a different order is 0.2.
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CHAPTER 6

BAYESIAN FILTERING: SMOOTHING

6.1 A Smoothing Particle Filter

The quality of PF estimates largely relies on initialization as previously discussed.

In many cases, estimates for advanced states in time or space are excellent, with the

estimates at initial states suffering from inaccuracies. There is no reason, however, not

to exploit information from advanced states (deeper receivers, in our case) to improve

the estimates at the initial (shallower) ones. This process is typically referred to as

smoothing, because it “smooths out” volatility in the estimation process. The main

objective is to improve the standard particle filter by adding backward steps.

In [90], use of joint densities was proposed for filtering and smoothing, that

is, using p(qt, qt−1|Yt) for filtering and p(qt+1, qt|YT ) for smoothing. The advantage of

the method is that particles are sampled from a proposal density which incorporates

information both from the previous and the next receiver. Thus, even if estimation

at a previous receiver is erroneous because, for example, of a low SNR, information

from the (k + 1)th receiver can be used to correct the estimation at the kth receiver.

A fixed interval smoothing method for Markovian switching systems is studied

in [91]. The algorithm used two multiple-model filters, where the MAP-smoothed

estimate of Xk was computed using a combination of both a forward and a backward

MAP estimate.

Another approach was suggested in [92], which relies first on a forward filter

and then a backward smoothing pass. We describe here this latter approach, which

we adapted to our problem.
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Density p(Xk|Y1:k) is updated as follows:

p(Xk|Y1:k) ∝ p(Yk|Xk)p(Xk|Y1:k−1) (6.1)

=
∫

p(Yk|Xk)p(Xk|Xk−1)p(X1:k−1|Y1:k−1)dXk. (6.2)

On the same lines, smoothing can be achieved by moving backwards in space recursively

as:

p(Xk|Y1:L) =
∫

p(Xk+1|Y1:L)
p(Xk+1|Xk)p(Xk|Y1:k)

p(Xk+1|Y1:k)
dXk+1. (6.3)

Smoothing is achieved as follows:

1. Select a particle x̃j
k+1 at receiver k + 1

2. Compute wi
k|k+1 ∝ wi

kf(x̃
j
k+1|xi

k) for i = 1, . . . , N

3. Choose x̃k = xi
k

4. x̃1:16 = [x̃1, . . . , x̃16] is one new realization from the posterior joint PDF of all

unknowns.

If we perform the process many times (let’s say N), item 4 of the algorithm will

produce N realizations of the joint posterior PDF of times and amplitudes. This PDF

shows significantly decreased uncertainty in comparison to the original one obtained

by only using a forward filter. It should be also noted that:

• This process improves the estimates at the first phone, because now there is a

prior history (from phone 2) that is propagated backward.
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• The complexity of the approach does not increase, because no more particles are

selected and resampling (which is computationally intensive) is not performed

when moving backwards. The method still has order of complexity O(N) [92].

6.2 Results

Smoothing offers a significant advantage in our case, as demonstrated in Figure (6.1).

The figure shows (a) a comparison of PFs with and without smoothing for an SNR of

13 dB and (b) a comparison of a smoothing PF with the standard ML estimator in

(b). Results were obtained via a Monte Carlo performance evaluation process with

Nr = 100 noisy realizations. Five-hundred multi-dimensional particles were drawn

from each state during the backward step of the smoother. RMS errors are plotted

against the number of particles. The top figure confirms that the smoothing filter

reduces the estimation error. For example, the RMS error for the third path (green

curve with asterisks) is reduced approximately by 50% when the smoother is used

(from eight to four - green error curve with circles). The second path error is also

reduced and so is the direct arrival error (reduction of the latter error is not very

clear in the figure because the original, forward-only PF error was small to begin

with). We had already established that the PF with the kinematic constraint is

significantly superior to the conventional ML estimator. The new PF has an even

bigger advantage, as illustrated in Figure (6.1(b)).

Even more impressive are the results shown in Figure (6.2). Figure (6.2(a))

shows the posterior PDF of the arrival time of the BR path at the third phone

computed via a conventional forward PF. Figure (6.2(b)) presents the corresponding

PDF after the smoother. The true arrival time sample is 49. The top PDF is

multimodal with probability density spread over a range between 48 and roughly

60. The PDF after smoothing has all its probability around the true arrival time.
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Figure 6.1 Demonstration of the advantage of a PF with
smoothing over a simple PF for three paths at an SNR of 13 dB:
(a) RMS errors for arrivals times from a forward PF for three
paths (o) and a forward-backward filter for the same paths (*);
(b) RMS errors for arrivals times a forward-backward filter for
the three paths (*) and ML RMS errors (lines).



67

10 20 30 40 50 60 70

0.01

0.02

0.03

0.04

0.05

Time sample

P
D

F

10 20 30 40 50 60 70

0.02

0.06

0.10

0.14

Time sample

P
D

F

(a)

(b)

Figure 6.2 (a) PDF of the SR path arrival time at the first
phone with the conventional forward PF. (b) PDF of the SR
path arrival time at the first phone with the smoothing PF.



CHAPTER 7

UNCERTAINTY ANALYSIS

As mentioned earlier in Section 1.4, quality in geometric and environmental inversion

depends on the accuracy in the estimation of arrival times. In this section, our focus

is on performance assessment and quality evaluation of PFs through the study of

uncertainty of extracted parameter estimates associated with sound propagation.

If m is the vector of model parameters and d is the vector of observed data,

then, under the Bayesian framework, the posterior PDF p(m|d) is given by:

p(m|d) = p(d|m)p(m)

p(d)
, (7.1)

where p(d|m) is the likelihood and p(m) contains the prior information available on

model parameters.

Uncertainty analysis along these lines is carried in [93, 94, 25, 95] for matched-

field inversion. Specifically, in [25, 95], a fast GS approach is employed for estimation

of the multi-dimensional integral of the PDF described in Equation (7.1). Sen and

Stoffa [96] investigate the performance of several techniques like Gibbs Sampling,

Simulated Annealing, and Genetic Algorithms for the evaluation of joint and marginal

posterior PDFs.

We apply the PF method to extract arrival times with their respective amplitudes

from a received set of signals and the results are used as input to an inversion approach

similar to that of Chapter 2, that produces posterior PDFs as just described. It is

particularly important to propagate the estimates of the arrival time PDFs through

the inversion process, so that we can study the uncertainty that is reflected in our
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final inversion results. The PDF p(m|d) is computed at each point in the observed

data d = dobs where dobs is the set of estimated data features - here arrival times.

Figures (7.1, 7.2) compare the uncertainty in inversion associated with the

ML and PF arrival time estimation processes applied to synthetic data, designed to

closely simulate the Haro Strait experiment. The true values are 400 m, 50 m and

190 m, for horizontal range, source depth, and ocean depth, respectively.

The estimation process was as follows. We estimated arrival times using a

MAP (identical to ML for our priors) approach at isolated receivers with a method

such as GS-MAP. Along with the MAP estimates, we also produced the posterior

PDFs of the arrivals. In parallel, we also estimated the same arrival times and their

corresponding PDFs with our PF method, which accounted for time evolution across

hydrophones. Through our studies in the previous chapters, we have established that

the latter approach produces smaller errors. The “tighter” estimates produced by the

PF reflect into the range, source depth, and water column depth estimation process.

Figures (7.1(a)) and (7.1(b)) present posterior PDFs for ocean depth and source-

receiver distance using the GS-MAP approach and the PF approach, respectively.

The inversion employing PF arrival time estimates is characterized by significantly

reduced uncertainty in comparison to the inversion process relying on simple GS-MAP

estimates, evidenced via the small spread (variance) of the PDF in the former case.

Similar observations are made by observing Figures (7.2(a)) and (b), illustrating

posterior PDFs of range and source depth.

Inversion results from the application of our algorithm to Haro Strait data are

presented in Figures (7.3-7.5). These figures portray the uncertainty in the estimation

of horizontal range of first receiver vs. ocean depth and horizontal range of first

receiver vs. source depth. The results are in agreement with the benchmark values

of the parameters.
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Figure 7.1 Uncertainty comparison for ML estimation vs. PF
estimation at an SNR of 17 dB where (a) shows the uncertainty
associated with estimation of ocean depth and horizontal range
using ML and (b) illustrates the uncertainty in estimation when
PF estimates are used.
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Figure 7.2 Uncertainty comparison for ML vs. PF estimation
at an SNR of 17 dB where (a) shows the uncertainty associated
with estimation of source depth and horizontal range using
ML and (b) illustrates the uncertainty in estimation when PF
estimates are used.
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Figure 7.3 Posterior PDFs of source depth and horizontal
range for Haro Strait data.
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Figure 7.4 Posterior PDFs of ocean depth and horizontal
range for Haro Strait data.
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Figure 7.5 Posterior PDFs of ocean depth and source depth
for Haro Strait data.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this work, we developed an estimator for dynamically tracking arrival times in

space. This work is novel, because, to date, arrival time estimation (or time delay

estimation, as it is often referred to) has been performed at one phone at a time. Our

method relies on sequential Bayesian filtering, namely particle filtering. It produces

not only estimates of arrival times of specific sound rays propagating in an ocean

environment along with their corresponding amplitudes, but it also estimates joint

PDFs for those quantities. The essence of the method is the use of arrival time PDFs

at one phone for estimation of arrival times at the subsequent hydrophone location.

The method was evaluated through a comparison to a standard ML estimator.

Via a Monte Carlo performance evaluation process, we initially found out that,

under some circumstances, the method was not as effective and consistent as the ML

estimator. To resolve this problem, we developed a new approach that also estimated

and incorporated the gradient of arrival times. This latter approach was found to have

a significant advantage over the ML method. As expected, this advantage depended

on the number of samples employed by the PF process.

We also found out that the performance of the PF method strongly depended

on the estimates at the first phone. At that location there is no prior information

from previous phones and the estimates may be poor because of undersampling of the

search space. To address that, many particles would typically be required, increasing

the computational complexity of the method. We resolved this problem by considering

a filter with many particles at the initial state, out of which fewer particles were

retained for estimation at the following phones. Results for four arrivals demonstrated

the power of the method. Smoothing is another factor that played an important role

73



74

in the quality of the estimates, significantly reducing RMS errors.

In the future, we plan to use both the arrival time estimates obtained with

the PF and the corresponding amplitudes extracted from real data to perform more

detailed geometry estimation and geoacoustic inversion. We can obtain more information

on sound velocities and attenuation; the latter is strongly dependent on arrival

amplitudes. Thus, we may be able to extract useful information on sediment properties.

Also there are ways that can help us improve the estimation of the number of arrivals,

by generating a more flexible approach that will allow us to remove arrivals that are

weak and may not provide accurate information on inversion. This is a topic that

will be further investigated.
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