
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Dissertations Electronic Theses and Dissertations 

Summer 8-31-2011 

Theoretical prediction of drug release in GI tract from spherical Theoretical prediction of drug release in GI tract from spherical 

matrix systems matrix systems 

Naga Lakshmi Ramana Susarla 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations 

 Part of the Chemical Engineering Commons 

Recommended Citation Recommended Citation 
Susarla, Naga Lakshmi Ramana, "Theoretical prediction of drug release in GI tract from spherical matrix 
systems" (2011). Dissertations. 276. 
https://digitalcommons.njit.edu/dissertations/276 

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital 
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232274242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=digitalcommons.njit.edu%2Fdissertations%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/276?utm_source=digitalcommons.njit.edu%2Fdissertations%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



 

 

ABSTRACT 

 

THEORETICAL PREDICTION OF DRUG RELEASE IN GI TRACT 

 FROM SPHERICAL DOSAGE FORMS 

 

by 

Naga Lakshmi Ramana Susarla 

 

The significance of controlled release drug delivery systems (CRDDS) lies in their ability 

to deliver the drug at a steady rate thus reducing the dosage interval and providing a 

prolonged pharmacodynamic effect. But despite the steadily increasing practical 

importance of these devices, little is known regarding their underlying drug release 

mechanisms. Mathematical modeling of these drug delivery systems could help us 

understand the underlying mass transport mechanisms involved in the control of drug 

release. Mathematical modeling also plays an important role in providing us with 

valuable information such as the amount of drug released during a certain period of time 

and when the next dosage needs to be administered. Thus, potentially reducing the 

number of in-vitro and in-vivo experiments which in some cases are infeasible. There is a 

large spectrum of published mathematical models for predicting drug release from 

CRDDS in vitro following conventional approaches. These models describe drug release 

from various types of controlled delivery devices for perfect sink conditions. However in 

a real system (human body) a sink condition may not be applicable. For a CRDDS along 

with the physiochemical properties (solubility, diffusion, particle size, crystal form etc.) 

the physiological factors such as gastrointestinal tract (GI) pH, stomach emptying, (GI) 

motility, presence of food, elimination kinetics etc., also affect the rate of drug release. 

As the drug delivery system is expected to stay in the human body for a longer period of 

time when compared to a immediate release dosage form the process of drug release 



 

 

occurs in conjunction with the absorption (for oral delivery systems) and elimination 

kinetics. Earlier work by Ouruemchi et.al.[71] include prediction of the plasma drug 

concentration for an oral diffusion controlled drug delivery system. Amidon et.al.[68] 

developed several models for predicting the amount of drug absorbed within through the 

intestine walls for immediate release dosage forms. However none of these models study 

the effect of absorption rate on the rate of drug release for an oral controlled drug 

delivery system. 

 In this work mathematical models are developed for prediction of drug release 

from both diffusion controlled and dissolution controlled drug delivery systems taking 

into account the affect of absorption rate. Spherical geometry of the particles is 

considered.  The model is developed by assuming that the drug is release into a finite 

volume and is thereby absorbed through the intestine wall following first order kinetics. 

A closed form solution is obtained for the prediction of fraction of drug released for a 

diffusion controlled drug delivery system. The results are compared with both 

experimental data (taken from literature) as well as existing models in the literature. 

Whereas for a dissolution-diffusion controlled drug delivery system non linear 

dissolution kinetics are taken into consideration and the problem is solved by both 

numerical and analytical techniques. In addition two simple models are also presented for 

dissolution controlled drug delivery devices. 
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1 

CHAPTER 1 

 

INTRODUCTION 

 

 

Controlled drug delivery devices or systems (CRDDS) have gained a lot of attention over 

the past few years. These devices help to deliver the drug at a controlled rate as opposed 

to the immediate release dosage forms, thus leading to a decrease in the number of 

dosages required and also reducing the possibility of side effects [1]. The devices can be 

in various sizes and shapes like spherical (nano or microparticles), cylindrical (millirods) 

or planar (thin films). The most common method of administration of these devices is 

either parenteral or via implants. The nanosized drug particles are expected to stay in the 

circulatory system for a long period of time without getting eliminated. Though oral route 

is not a common delivery option, a few studies have been done on utilizing the controlled 

drug delivery devices for oral drug delivery. The nanoparticle drug delivery system is 

either absorbed as a whole through the intestine walls or able to stay in the gastro 

intestinal system for a longer time thus releasing the drug in a controlled manner while 

protecting the drug from degradation [2].  

        There are various methods by which these devices are produced. The drug particle is  

encapsulated or dispersed within a polymer matrix. The drug-polymer system is classified 

as either a matrix type or a reservoir system. In the case of a matrix system the drug is 

commonly assumed to be uniformly distributed within the polymer matrix where the 

initial drug loading is either lower than the solubility of the drug inside the matrix 

(dissolved system) or higher than the solubility of the drug inside the polymer matrix 

(dispersed system)[5]. In Reservoir systems the drug is assumed to be confined within a 

given geometry such as an outer radius R and inner radius r [5]. The drug release 
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mechanisms have been identified as (i) diffusion-controlled (ii) dissolution-controlled 

(iii) erosion-controlled (iv) degradation-controlled or (v) swelling-controlled. In some 

cases two or more of these processes could be controlling the rate of drug release with 

each becoming the rate-controlling step at a particular time.  

Despite having many advantages the knowledge about the underlying drug release 

mechanisms for these devices is not fully developed [3]. Mathematical modeling of the 

drug release process can help us to improve the understanding of the underlying mass 

transport and chemical processes as well as optimize the dosage form dimensions to 

achieve targeted desired release profiles [4]. Mathematical modeling can also help to 

reduce the number of in-vitro and in-vivo experiments which are not only expensive but 

in some cases infeasible. There is a large spectrum of mathematical models available in 

the literature ranging from the classical models like those developed by Higuchi [6] and 

Peppas [4,7] to some of the recent models [8,9]. 

 Most of these mathematical models are developed for in-vitro conditions where 

sink conditions are maintained. However when it comes to a real system (human body) 

various factors like absorption rate of the drug, drug distribution, metabolism and 

elimination within the system (which intern depend on factors such as pH, temperature, 

blood flow rate, presence of food etc., in the gastro-intestinal (GI) tract [10]) come into 

play which the regular models do not take into consideration. This can result in a severe 

discrepancy between the in-vitro and in-vivo correlations for drug release [11] 

The main objective of this work is to develop a mathematical model for prediction 

of drug release in the GI tract taking into account the absorption kinetics. When a 

CRDDS is administered orally it reaches the GI tract and releases the drug at a controlled 
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rate, the released drug is absorbed through the intestine wall and into the systemic 

circulation. After a certain period of time the drug release process and absorption of the 

drug occur in conjunction. Therefore absorption kinetics become important and they 

cannot be ignored. In this thesis an extensive review of mathematical models developed 

over the past decade is given (Chapter 2) followed by objectives (Chapter 3) and models 

developed (Chapter 4) 

 



 

4 

2. LITERATURE REVIEW 

 

 

2.1  Mathematical Models for Diffusion and Diffusion-Degradation Controlled 

Drug Delivery Systems 

 

Diffusion controlled drug delivery devices are very popular, the classical model 

describing solute release from a polymer matrix for various geometries was first 

developed by Crank [12]. As it will be seen from discussion to follow, most authors 

adopt this model to describe the process of drug release. Diffusion mechanism remains a 

part of drug release process even if it is not the rate controlling step. However a 

significant number of controlled release devices made now a days are either erosion or 

degradation controlled. Polymer degradation is defined as the chain scission process by 

which the polymer chains are cleaved into oligomers and monomers whereas erosion is 

defined as a process of material loss from polymer bulk [3]. Depending on the 

composition and geometry of the erodible device, numerous mass transport and chemical 

reaction phenomena affect the drug release kinetics. A few of them are (i) Water 

intrusion into the device (ii) drug dissolution (iii) polymer degradation (iii) creation of 

aqueous pores (iv) diffusion of the drug and/or polymer degradation products inside the 

polymer matrix (v) micro-environmental pH changes inside the polymer matrix pores by 

degradation products (vi) polymer swelling [3]. 

        Charlier, A., et.al.,[13] proposed a diffusion-degradation model for the release of 

mifepristone an antiprogestative norsteroid drug from degradable PLGA planar matrix 

system. They postulated that the diffusion coefficient ( D ) depended on the polymer 
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Where k is the degradation constant and oM , 
oD  are the initial polymer molecular weight 

and corresponding diffusion coefficient, respectively. 

The amount of drug released in the assumption of steady state was taken as  

0 .dQ C S dh  (2.2) 

                                                                                      

Equations (2.1.1) and (2.1.2) were combined to give the final expression for the fraction 

of drug released as: 

 

0 02 ( 1)kt

sC C D e
Q S

k


  

  (2.3)                                                                                         

 

Their results seemed to agree well with the experimental data and with the Higuchi 

equation [6] at early times. 

Liggins and Burt [14] studied paclitaxel release from poly (L-lactic acid) 

microspheres. The main focus of their study was the effect of molecular weight of 

polymer on the release rate. The amount of paclitaxel released from polymers of different 

molecular weight was studied for a period of 14 days, as perfect sink conditions were not 

maintained during the in vitro experiments, the saturation of paclitaxel was observed 

within 3 days. It was found that 11-76 % of the drug released over the period of 14 days. 

Because of the incomplete release of paclitaxel the authors hypothesized that the release 

kinetics could be explained using a „two compartmental model‟. In this model 

compartment 1 was hypothesized to contain paclitaxel that could freely diffuse from the 

microspheres while compartment 2 contained immobilized by semi crystalline polymer 

matrix. To test this hypothesis the authors related the fraction of paclitaxel remaining 
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within the microsphere after the release studies with the polymer crystallinity and 

molecular weight. The studies indicated that as the mw and crystallinity increase the 

fraction of paclitaxel remaining increased. The authors used Baker‟s equations [15] given 

below to fit theoretical curves to the experimental data. 
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                                                     (2.5) 

 

The authors also derived an empirical relationship between the polymer mw, crystallinity 

and diffusion coefficients. Though significant biodegradation of the polymer 

microspheres was observed after a period of 5 days the authors did not account for 

biodegradation in the model and only diffusion phenomena seemed to adequately account 

for the drug release. 

Wong et al. [16] studied the in vitro sustained release of human immunoglobulin 

G (IgG) from PLA and PLGA biodegradable microspheres. The authors used two 

different models to explain the release kinetics of IgG. They used the diffusion model and 

the diffusion/dissolution model. For both of these models two cases of mass transfer were 

considered, one with finite mass transfer coefficient at the surface and one with infinite 

mass transfer coefficient ( all the mathematical details are given below).  
























r

C

rr

C
D

t

C 2
2

2

                                                                                                  (2.6) 

 

The initial and boundary conditions taken are: 

 

RrCCt in  00                                                                                           (2.7) 
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Case 1:   For infinite mass transfer the boundary conditions were taken as 

 

000 



 r

r

C
t      and   RrCCt  0                                                  (2.8) 

 

The fraction of mass of drug released to total mass was obtained as 
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n

nM

M 


                                                                          (2.9) 

 

Case 2: a finite mass transfer coefficient on the surface was assumed such that the 

concentration in the surroundings is constant. The boundary conditions were taken as 

 

 000 
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r

C
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r
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and the fraction of mass of drug released to total mass was obtained as 
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Where   
D

hR
S                                                                                                             (2.12) 

 

And n s are the roots of the transcendental equation 

 

Snn 1cot                                                                                                            (2.13) 

 

Diffusion/Dissolution Model: 

 

Case1: 

 
2

2

2
( )sat

C C C
D k C C

t r r r

   
     

   
                                                                         (2.14) 

 

Where satC  represents the saturation concentration of the drug in the system and   

represents the porosity of the microspheres. 
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The initial condition was taken as  

 

0 0satt C C r R                                                                                       (2.15) 

 

Same boundary conditions were used as Equation (2.8). After converting the Equations 

(2.14), (2.15) and (2.8) into dimensionless form and solving it [17] the final expression 

for amount of drug released was obtained as 

2 2 2 2 2 2

2 2 2
3 1

( ) {1 exp[ ( ) ]
6

4 ( )

3

t
t

n
sat

M Di n Di n Di n

Di n
C R

    








    
 




                      (2.16) 

Where Di  is known as dissolution/diffusion number and is given as 
2kR

Di
D

  

Case 2: For the case of finite mass transfer coefficient on the surface 

2 2 2 2 2 2
2

2 2 2 2 2
3 1

( ) {1 exp[ ( ) 1]
6

4 ( ) ( 1)

3

t n n n
t

n n n
sat

M Di R Di R Di R
S

Di R R S SC R

    


 





     
 

    
        (2.17) 

Where the parameters S  and n  are given by Equations (2.12) and (2.13). 

The experimental results were found to be in good agreement with the theoretical models 

presented. 

Abdekhodaie [18] presented an exact solution for the diffusional release from 

theophylline microspheres coated with ethyl vinyl acetate copolymer into a finite external 

volume using the Laplace transform method. The solute was assumed to have very low 

solubility in the polymeric membrane and the diffusion coefficient was assumed to be 

independent of concentration. The diffusion of drug into the surroundings was described 

by Fick‟s second law of diffusion as:  

2

2

C D C
r

t r r r

   
  

   
                                                                                                (2.18) 
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The initial and boundary conditions were taken as: 

[ ,0] sC r C a r b                                                                                        (2.19) 

[ , ] sC a t C                                                                                                    (2.20) 

[ , ] ( )bC b t KC t                                                                                             (2.21) 

Where sC  is the solubility limit of the drug K  is the equilibrium distribution coefficient 

between polymeric membrane and external bulk concentration and bC is the external bulk 

concentration at any time t. The expression for cumulative amount of solute released was 

obtained as: 

 

2
2

2 2 2 2

2
1 exp[ ]

(1 )[ (1 ) ] 1

t n
n

n n n

M

aM

b


 

  

  

    
  

2.22 

 

where   was defined as:  

34

V

b K



                                                                                                               (2.23) 

The parameter   had significant affect on the drug release profile. 

He et.al. [19] proposed a mathematical model accounting for polymer erosion and 

degradation. They considered a polymer matrix system where in the drug was 

molecularly dispersed. They assumed that the kinetics of the drug release from 

bioerodible polymer matrices followed a Fickian diffusion influenced by polymer 

degradation and that it accelerated at a certain time by polymer erosion. The polymer 

chain scission was described by first order auto catalyzed hydrolysis kinetics and the 

matrix was assumed to be fully eroded at the end of the drug release process. The authors 
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took into account the equations describing drug release by Fickian diffusion, developed 

by Baker and Lonsdale [20] and Ritger and Peppas [21] for spherical and disk matrix 

geometries, respectively. 

2 2
6 3d

Dt Dt
m

r r
                                                                                                     (2.24) 

 
3 3 2

2 2 2 2 2 2 2

2 2
4 4 [8 2 ]

3 3
d

Dt Dt Dt Dt r Dt Dt Dt
m

r r r l l r r r

 


     

     
           

     
  (2.25) 

 

They modified the diffusion coefficient in Equations (2.24) and (2.25) to 

exp( )t o sD D k t to account for the polymer degradation kinetics. Then the equations were 

combined with Equation (2.26) proposed by Fitzgerald and Corrigan [22] which describe 

the matrix erosion as a combined process of the branching and termination of polymer 

decomposition caused by formation of activated nuclei in the matrix.  

                                                                                        (2.26) 

Where em  is the fraction of drug released, ek  is the acceleratory coefficient describing 

the probability of branching from active sites during the time interval between oligomer 

generation and dissolution and MaxT  is the time to maximum matrix erosion rate. 

The total fraction of drug released obtained by combining Equations (2.23)-(2.26) is 

given by Equations (2.27) and (2.28).All the parameters needed to solve these Equations 

were taken from the literature. 

2 2

3 exp( )
6
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t t t e e Max
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M D t D t k t k T
F

M r r k t k T
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                                                        (2.27) 
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3 3 2

2 2 2 2 2 2 2

2 2
4 4 8 2
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      (2.28) 

Where 
EF  is the factor accounting for the contribution of matrix erosion to drug released. 

It indicates that a fraction of drug originally released through diffusion is now released 

through matrix erosion. The proposed model was able to describe triphasic drug release 

kinetics for bioerodible polymeric matrices which included an initial burst phase (caused 

by high initial drug release rate due to short diffusion pathways), an intermediate phase 

(an approximately zero order drug release phase resulting from drug diffusion and 

polymer degradation) and a second rapid drug release phase due to matrix erosion. 

Raman et al. [23] developed a mathematical model to study the affect of polymer 

degradation and nonuniform drug distribution on the release of small molecules from 

degradable microspheres. The authors considered a diffusion coefficient which is 

dependent on polymer molecular weight. 

 





















r

C
MDr

rrt

C
W )(

1 2

2
                                                                                      (2.29) 

 

The boundary conditions used were: 

 

0
0














rt

C
                                                                                                                 (2.30) 

 

  0RrC                                                                                                                     (2.31) 

 

The initial condition used: 

 

  )(0 rfrC t                                                                                                                (2.32) 
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The model contained one fit parameter  0D  which was used until the time dependent 

diffusivity [ ( )]wD M  was larger than 
0D  . The authors solved Equations (2.29) - (2.32) 

using an adaptive Runge-Kutta methods using fifth and sixth order Runge- Kutta 

formulas to estimate error of integration. And since the molecular weight of the 

microspheres did not change for the first 4 days, the molecular weight loss was modeled 

as: 

0W W lagM M t t                                                                                     (2.33) 

 
( )

0
d lagk t t

W W lagM M e t t


                                                                                  (2.34) 

 

The release profiles generated by model were compared to the experimental data. The 

model was found to be a good fit to the data. 

Faisant et al. [24] developed a simple mathematical model to elucidate the 

underlying drug release mechanisms of 5-FU (a drug used for fighting cancer) from 

PLGA erodible microspheres which exhibited a biphasic release profile (an intial burst 

phase followed by a zero order release phase). The system considered was a monolithic 

system (drug dispersed within the polymer matrix), where the drug was release by 

diffusion. The equation describing the system is given as   
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By making the following assumptions of constant drug diffusivity, perfect sink condition 

and uniform initial drug concentration smaller than the solubility of the drug within the 

system (monolithic solutions) the solution can be obtained [12] as: 

        
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                                                                   (2.36) 
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Where tM and  M  denote the cumulative absolute amount of drug release at time t 

and at infinite time respectively. D  is taken as apparent diffusivity taking into account 

the drug transfer through the polymer itself as well as possible drug transfer through 

water-filled nanopores. When equation (2.36) was fitted to the experimental drug release 

profile it was only able to describe the intial burst phase well but not the second zero-

order release phase. A major assumption made in obtaining the above equation was that 

of monolithic solutions. So the authors adopted the Koizumi and Panomsuk [25] model 

(Equation (2.37)) to describe the drug release profile. They then combined Equation 

(2.37) with Equations (2.38) and (2.39) to account for the polymer degradation. 
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DtCCCRM                                     (2.37) 

    

       
Mw

k
DMwD  0)(                                                                                              (2.38) 

 

    )exp(4.78)( deg tktMw r                                                                                        (2.39) 

 

 

Here rkdeg is the pseudo-first order degradation rate constant. The mathematical model 

was fitted to the experimental drug release profile using C
++

 program and it was found 

that the model was able to describe both the phases adequately. However there still were 

deviations between the experimental data and model. The authors concluded that these 

discrepancies could have occurred since not all the important physicochemical 

phenomena were taken into account. Though the drug release process is primarily 

controlled by diffusion phenomena there is a significant contribution by the polymer 

degradation process. During the degradation process water inhibition occurs thus 
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decreasing the average molecular weight of the macromolecules, leading to increased 

diffusion coefficients.  

Siepmann et al. [26] quantitatively studied the effect of size of biodegradable 

microspheres on the drug release rate. They studied the release of 5-Fluorouracil from 

PLGA microspheres applying a diffusion-degradation model [24]. The microspheres 

were prepared such that the initial drug loading is much higher than the solubility. The 

polymer matrix was in rubbery state. The polymer degradation was observed to follow 

pseudo-first order kinetics and the diffusion coefficient of the drug was seen to increase 

monotonically with time. The authors used Equation (2.37) developed by Koizumi and 

Panomsuk [25] for spherical non-erodible systems and combined it with Equation (2.39) 

to account for polymer degradation. The mathematical model was implemented using C
++

 

program. The authors found that as the size of the microparticles did not significantly 

effect the polymer degradation kinetics. However with increase in microsphere size the 

amount of initial drug loading increased and so did the amount of drug released. The 

reason for this was attributed to the increase in internal porosity of the microsphere with 

the increase in initial drug loading. Upon the increase of drug depletion the apparent drug 

diffusivities increased thus resulting in greater drug release rates. The authors also 

established a correlation for drug diffusivity and initial loading: 

 
s

cmwwgdrugloadinD
214

0 10)))/%((21.0exp(4.2                                                (2.40) 

 

The model (Equations (2.37) and (2.39)) was able to predict the drug release profile for 

particles of various sizes and the size of the particle was found to play a very important 

role in achieving the desired drug release profile. 
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It is interesting to note that Berkland et al. [27] in their study found that as the size 

of microsphere increased the rate of drug release decreased. In their study the authors 

prepared piroxicam and rhodamine (NSAID) loaded microspheres in the size range of 1-

100 µm. The drug loading were about 1-20 %. The initial rate of drug release decreased 

with increase in the particle size. The release profile for large diameter microspheres 

followed a three-phase type of a release (an initial burst, an intermediate phase and a 

second rapid release phase) whereas the drug release from small diameter microparticles 

was uniform and it reached saturation after sometime. The reason for this was attributed 

to the decrease in area/volume ratio with the increase in particle size. The authors 

concluded that the large diameter microspheres were of a better application for prolonged 

release of drug. The conclusions drawn by Siepmann et.al.,[26] and Berkland et.al., [27] 

are drastically different. A possible reason for this could be that different polymers and 

different drug loading % were considered by both the authors respectively. The porosity 

of PLGA [26] could have increase with the increase in the particle size causing a rapid 

diffusion process as compared to PLG [27].  

        Siepmann et al. [28] quantitatively studied the effect of composition of the device 

(type and amount of plasticizer, type of polymer) on the diffusivities of the drug and its 

release kinetics. They chose water-insoluble polymers and considered monolithic 

solutions (dissolved systems) of planar and spherical geometries for the study. They 

applied Equations (2.37) – (2.39) to describe the process of drug release. They used 

theophylline as the model drug incorporated into 6 different plasticizers. They found that 

the diffusivities varied for different type of plasticizers and the amount of drug released 

was higher when large amounts of plasticizers were used. Also there was a pronounced 
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effect of type of polymer (polymers of different chain length) on the drug diffusivity as 

well. The authors explained these phenomena using the free volume theory (FVT) of 

diffusion that is the plasticizing effect of a substance is based on the reduction of the 

attractive forces between polymer chains. Decreasing attractive forces leads to increased 

mobilities of the macromolecules. According to FVT, the diffusion occurs by localized 

activated jumps from one pre existing cavity to another [29] .When the diffusing species 

is larger than a pre-existing cavity, a certain number of monomer segments must first be 

rearranged to allow the diffusion of the molecule. In this step the mobility of the polymer 

chain is the decisive factor for the mass transfer rate. High mobilities lead to high 

rearrangement rates and thus to high drug diffusion rates. A quantitative relationship was 

developed for dependence of D  on the type and amount of plasticizer as follows:  

10 2(% ) 0.135.exp(0.121.% ).10D TBC TBC cm s                                                     (2.41)   

Siepmann et al. [30] also studied the effect of drugs on the polymeric systems. 

Here the drugs themselves were considered to act as plasticizers. For device optimization 

it is important to know the effect of plasticizer on drug mobility within the polymeric 

system. The quantitative understanding of this phenomenon plays a vital role in 

controlled release formulations. The authors considered monolithic solution systems with 

planar geometries. They studied the effect of three drugs (metoprolol tartrate, 

chelorpheniramine maleate and ibuprofen) on Eudraigit RS polymeric films. It was found 

that ibuprofen had more impact on the thermal (glass transition temperature) and 

mechanical properties (elongation) of the polymer than the other two drugs, however 

metoprolol tartarate released much faster than the other two drugs. One possible 

explanation for this is given to be the electrostatic interactions between drug and 
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polymer. Ibuprofen being negatively charged (at pH 7.4) interacts with the positively 

charged quaternary ammonium ions groups of Eudraigit RS thus hindering the diffusion. 

Equations (2.37) to (2.39) were used to describe the drug release process from the 

monolithic solution systems into perfect sink conditions (in-vitro). This model was also 

useful in predicting the effect of initial loading and optimizing the dose dimensions to get 

the required release profiles.    

Klose et al. [31] studied the effect of porosity and particle size on the drug release 

kinetics. They studied the release of Lidocaine from porous PLGA loaded microspheres 

(7.5µm-75µm). In their previous paper Siepmann, et.al., [32] studied the drug release 

from non-porous polymer matrices. For both porous and non porous lidocaine loaded 

microspheres Equation (2.36) was used to describe the drug release mechanism. The 

following assumptions were made (i) at time t=0 the drug was considered to be 

homogeneously distributed throughout the microsphere (ii) diffusion mechanism was 

solely responsible for drug release out of the microsphere (iii) there is no diffusional 

resistance for the drug release (iv) perfect sink conditions were maintained through out 

the (in-vitro) experiment. For a non-porous system the autocatalytic effect seemed to play 

a major role, but for porous microspheres autocatalytic effect was negligible and also as 

the pores increased in size so did the amount of drug released. Equation (2.36) could not 

describe the latter system adequately. This may be also partly due to the fact that as the 

size of pores increase the degradation of the polymer also increased which was not 

accounted for. 

Cruz et al. [33] studied the diffusional release of drug from three types of 

nanocarriers (nanoemulsions (NE), nanocapsules (NC) and nanospheres (NS)). They 
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developed a mathematical model (Equations (2.42)-(2.43)) using MicroMath Scientist to 

analyze the probe disappearance profile. They also used this model to analyze the release 

profiles of indomethacin loaded and indomethacin ethyl ester loaded NE, NC and NS 

0

ktC C e                                                                                                                      (2.42) 

 

 1 2k t k tC ae be                                                                                                            (2.43) 

 

                                                                                                 

It was found that the release profiles for all three types of indomethacin loaded 

nanocarriers were well described by monoexponential model (Equation (2.41)). However 

biexponential model (Equation (2.42)) was found to be a better fit for release profile of 

indomethacin from ethyl ester loaded nanocarriers. Though the model fitted the 

experimental data well, it does not provide any insight into the underlying transport 

mechanisms responsible for drug release phenomena. 

The drug release from lipid based implants was studied by Guse et al. [34]. 

Glycerol-trimyristate, -tripalmitate and –tristearate were used as model lipids and 

lysozyme and pyranine were used as model drugs. The drugs were compressed to form 

cylindrical geometries. The analytical solution for Fick‟s second law of diffusion 

(Equation (2.44)) was used to describe the drug release process from lipid implants [35]. 

It is interesting to note that the drug release profile differed significantly with the type of 

lipid used. When the drug loadings were low the model was able to describe the drug 

release process well, but at higher loadings the model could not explain the drug release 

profile. The authors also applied the model to describe the pyranine release from 

microspheres coated with PLGA layer. The model was able to describe the tri-phasic 

release profile well. The authors also found that the drug release profile changed 

significantly with varying compression strength. 
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Lao et al. [36] developed a mathematical model to study the release behavior of 

paclitaxel (drug used for treating cancer) from biodegradable blended polymers. The drug 

release profile showed biphasic behavior. The drug release process was believed to 

follow three steps: (i) solvent penetration into the matrix (ii) a degradation-dependent 

“relaxation of the network” creating more free volume for the drug dissolution and (iii) 

finally the drug diffusion into the surrounding medium. Models were developed to 

describe the drug release process into perfect sink from pure PCL and PLGA films as 

well as blended films. Equation (2.45) which is the solution for Fick‟s second law of 

diffusion for a planar system [12] was combined with equation (2.46) which describes the 

kinetics of initial burst as developed by Batycky [37].  
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For neat PLGA films a second term comes into picture (Equation (2.48)) because 

degradation-dependent relaxation of PLGA chains plays a critical role in drug dissolution 

and release process. 
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As paclitaxel is expected to stay in the system for a period of 3 months, a blend of these 

two polymers is desired as PCL degrades too soon while PLGA takes a long time. When 

blended theses polymers form two phases (one with PCL rich phase and one PLGA rich 

phase) because of their low miscibility. Thus the authors adopted a heuristic approach 

(Equation (2.49)) postulating that: “the drug partitions into each phase and remains there 

until released and the drug follows same mechanism of release for the respective phase”. 
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Where 

 

  1PCL PLGAf f                                                                                                            (2.50) 

 

   [ ]/[ ]K PCL PLGA                                                                                                   (2.51)                                         
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The model results agreed well with the data except for PLGA/PCL ratio of 75/25. For this 

case the model results varied significantly from the experimental data. The explanation 

for this deviation was given as follows: as the blend model assumes that the total release 

is a sum of drug release contribution by two phases, the drug from each phase is released 

through interconnected paths of its own phase across the film. When the weight fraction 

of one of the component, is reduced considerably it is expected that the minor component 
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will assume the form of isolated islets in the major phase. The interconnectivity of the 

minor phase is thus lost. Therefore the drug released from the minor phase in this case 

PCL phase would be disrupted. Equations (2.45) through (2.52) were fit to the 

experimental data using MATLAB programming. 

Muschert et al. [38] studied the release of diltiazem HCl from ethyl cellulose 

coated pellets. In order to determine the diffusion coefficient of drug within the coat the 

authors applied the Equations (2.45) .The authors also found that by changing osmolality 

the drug release profile varied greatly. Fick‟s second law of diffusion for planar sheet is 

given by: 
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Initial and boundary conditions applied: 
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The solution for Equations (2.53)-(2.54) using the Laplace transform method [36] is    

given as: 
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 tan G                                                                                                                    (2.56) 
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G

D
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The overall release of drug from the coated pellet into perfect sink was given by: 
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Where tM , 0M  represent the amount of drug released at time t and 0, A  denotes the 

surface area of the pellet, D represents the diffusion coefficient, lV ,  represent the 

volume of the pellet and thickness of the film coating and K  represents the partition 

coefficient. 

 

2.2 Mathematical Models for Diffusion- Dissolution Controlled Drug Release 

There is a wealth of mathematical models describing drug release from diffusion, 

degradation and swelling controlled drug delivery devices but very few articles deal with 

the dissolution controlled drug release kinetics. This phenomenon becomes especially 

important when the drugs are sparingly soluble.  

Ayres and Lindstrom [39] developed a mathematical model taking into account 

both diffusion and dissolution phenomenon to explain the release kinetics of topically 

applied ointment (cortisone) through skin and into the blood stream. They assumed the 

diffusion coefficient to be constant. The equations describing the mass transport of the 

drug through the suspension (ointment) and a permeable barrier (skin) to a perfect sink 

are given as follows: 
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The equation for diffusion through medium II is given as: 
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The initial conditions are given as: 

 

     0)0,( 11  xLCxC s                                                                             (2.61) 
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     22 00)0,( LxxC       (2.62)        

 

The boundary conditions assumed were  

  

  0),0(),0( 21  ttPCtC                                                                         (2.63) 
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  00),( 22  ttLC                                                                             (2.66) 

 

 

Equations (2.59)-(2.66) were solved using Laplace transform method. The mass 

distribution functions for cumulative drug mass taken up by receptor (Equation (2.67)) 

and the cumulative mass loss from the ointment (Equation (2.68)) is given as:  
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Performing the indicated partial differentiation with subsequent evaluations of these at 

2Lx  and 0x results in Equations (2.69) and (2.70) respectively. 
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Where A  is the cross sectional area, 21 , DD  are the diffusion coefficients for medium I 

and II respectively. K  is the dissolution rate constant and P is the partition coefficient. 

The relative cumulative receptor phase uptake 0/)()( MtMt butbut   and the cumulative 

drug mass loss from the ointment, 1  for finite 1D  and 2D   is given as: 
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Where ])4/9/[(5),/(25.0 2

21

22

11 KLDtLDK    

All the parameters required to solve Equations (2.69) - (2.73) were taken from the 

literature, except for the values of diffusion coefficient and dissolution constant which the 

authors could not find in the literature. The authors also studied two special cases to 

emphasize the effect of K  on the drug release process. 
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Case 2)( Di  implies that the mass transport through the skin is carried out infinitely 

fast. This represents a case when the ointment is directly applied to open wounds. Now as

K  the solution phase concentration phase distribution in medium I (the ointment) 

tend to stay at a saturated concentration sC  which was well predicted by the model. The 

cumulative drug mass uptake by the blood versus time curves showed that when 0K

only finite amount of original solution phase drug in the ointment can be taken up by the 

blood because this is the only drug mass available to be taken up. However, for 0K , the 

blood uptake of the drug distribution of time can be seen.  

The classical Higuchi equation (1961) can be recasted into the notion of proposed 

model as Equation (2.74) and compared with the cumulative amount of drug taken up by 

the receptor (Equation (2.73)). The difference between these two Equations was that but  

was proportional to t  for large values of time whereas H  is proportional to t  at all 

times. 
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1 )12(
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M
tD DT
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    (where H stands for classical model)                                (2.74) 

 

Following a similar procedure as case (i) the authors obtained the drug release 

profiles for case (ii) 1D  which corresponds to the transport rate limiting step in the 

skin. It was found that initially ( 4/1t  day) drug was lost rapidly from the ointment to 

the surface layer of the skin. For 0K about 87% of the drug was found to be lost from 

the ointment by the end of day 1. Since there is no dissolution from the suspension when 

0K , the only available drug is that in the solution phase initially. With the blood 

capillary system supposedly forming a perfect sink for the drug, both 1C  and 02 C  as 
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time t . When 0K , a finite steady state in the skin is easily observed as time

t . At small times, a rapid loss of drug from the ointment was observed. However, 

as time progresses the drug released from the ointment is being replaced by the finite 

dissolution rate process occurring in the suspension (medium I). From the drug release 

plots, it can also be inferred that as K value increases a deficit zone is generated. The 

drug in the ointment releases too rapidly for the drug to be replaced by dissolution from 

the suspension. Thus, by varying the values of K  the authors obtained several plots for 

cumulative amount of drug taken by the blood and the cumulative mass loss of drug from 

the ointment. The drug release profiles differed greatly with the value of K , therefore 

establishing that the rate of dissolution has a significant role to play in the process of drug 

release. The authors concluded that the factors affecting the drug release process from 

semisolid suspensions are (i) powder density of particle size, (ii) partition coefficient 

between the vehicle and receptor phase, (iii) solubility of the drug in the vehicle, (iv) area 

of application, (v) viscosity of the vehicle, (vi) temperature and (vii) the total time the 

drug remains in contact with the receptor. 

The same authors in a different paper [40] proposed a solution based on numerical 

methods to predict drug release from suspension of drug in semisolid vehicles. The mass 

transport model was given as: 
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Initial condition taken was: 

 

 

  0)0,(  xLCxC s                                                                (2.76) 
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The boundary conditions taken were: 

 

                                                                             (2.77)                                                       

                                                                                  

 

Equations ( 2.75) – (2.77)  which form a non-linear system were solved using the 

method of backward finite differences, where the global error involved at any point in 

time and space always remains bounded and goes as )( 2 txo  . Plots for cumulative 

release of ointment as a function of time were obtained for different K  and 0  values. 

Though the model results were in good agreement with the Higuchi model [39] the 

release profiles were quite different. Cortisone powder was taken as the model drug.  

 Frenning and Stromme [41] developed a mathematical model taking into account 

drug dissolution, diffusion and immobilization to explain the delayed release of NaCl 

from agglomerated micronized cellulose. Following assumptions were made for the 

model development (i) the tablet contains a large number of drug crystals, of 

approximately same size and shape, dispersed into an insoluble matrix. (ii) When in 

contact with water, the tablet breaks up into a number of approximately spherical tablet 

fragments. (iii) Liquid absorption and tablet disintegration rate are much faster than the 

drug dissolution. Accordingly, the initial state is characterized by virtually complete 

liquid absorption, matrix swelling and disintegration but negligible drug dissolution. (iv) 

The surrounding liquid is well mixed, so that its concentration is independent of the space 

coordinates. The drug flux within each fragment was assumed to be caused by diffusion. 

Fick‟s law of diffusion was used with concentration-dependent chemical diffusion 

coefficient )(cD  was taken to be: 

cDj                                                                                                                    (2.78) 
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 The diffusion coefficient was expressed as: 

 

])exp()1[(0   bcDD                                                                                      (2.80) 

 

The total source density term was taken to be: 

 

bd RRR                                                                                                                 (2.81) 

 

Where ),( xtRd  is the contribution to the source density term due to dissolution process 

and ),( xtRb  is the contribution due to adsorption process. The dissolution process was 

described using the well-known Noyes-Whitney equation [42] averaged over a small 

volume. 

)( ccAkR sdd                                                                                                           (2.82) 

 

Where dk  is the dissolution rate constant, sc  is the solubility of the drug, and ),( xtA  is 

the average surface area of the undissolved drug per unit volume. The adsorption rate was 

taken as: 

t
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Where ),( xts  represents the amount of drug adsorbed per unit volume. Following the 

assumption that if the adsorption by which the drug becomes immobilized proceeds very 

rapidly in comparision with the diffusion process, local equilibrium can exist between the 

mobile and immobilized components of diffusion substance [12] the authors adopted the 

Langmuir-Freundlich isotherm to describe the adsorption process: 
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Where bk  is the adsorption constant, and  is the measure of the width of distribution of 

adsorption energies which assumes a value between 0 and 1. 
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Combining equations (2.78) through (2.84) a non-linear inhomogeneous diffusion 

equation was obtained as: 
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Following the assumptions given by Edwards [43] and Hixon and Crowell [44], the 

authors derived the following relation between average surface area of undissolved drug 

),( xtA  and mobile drug concentration ),( xtc : 

3/2

00















m

m

A

A
                                                                                                              (2.86) 

 

The equation for average surface area of undissolved drug was taken as: 
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Where ),( xtm  denotes average mass of undissolved drug per unit volume and indexed 

quantities denote the initial values. 

For a spherical system, Equation (2.85) can be written as: 

    (2.88)          

 

  

The boundary conditions were taken as:  
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  represents the partition coefficient, )(tcsol  represents the drug concentration in the 

surrounding solution at any time t and )(tmsol  represents the mass of drug present in the 

surrounding liquid at time t. the rate of change of )(tmsol  was computed from the total 

flux out from all N tablet fragments as: 
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The problem was set up in dimensionless form as: 
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The boundary conditions became 
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The initial conditions, obtained from the assumption that the entire drug is present in 

undissolved state initially were taken as: 
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1),0(                                                                                                                    (2.98) 

The drug concentration in the solution surrounding the tablet fragments was expressed as: 
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 Equations (2.93) and (2.94) were solved using finite difference method [45]. The 

numerically computed release profiles were in excellent agreement with the experimental 

data. 

Frenning [46] developed a semi analytical solution for the release of slowly 

dissolving drugs from planar matrix systems and later on extended the idea to develop a 

model for spherical system [47]. Assumptions made for the model development are: (i) A 

planar matrix system is considered (ii) the boundary at 0x  is assumed to be 

impenetrable to the drug, while the matrix is in contact with liquid at Lx   (iii) the 

matrix is at all times in contact with a well stirred medium with volume large enough to 

maintain sink conditions. (iv) The liquid absorption is much faster than the drug 

dissolution and subsequent release (v) all the drug is present in solid form initially. The 

drug release process through diffusion and dissolution was described by coupled PDEs as 

follows (given in dimensionless form): 
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Where ),( xtC  represents the concentration of dissolved drug within the matrix and  

),( xtS  is the concentration of solid drug within the matrix. The dimensionless variables  

 

were taken as: 

 

0S

C
C    and       

0S

S
S                                                                                             (2.102) 

 

2L

Dt
       and        

L

x
                                                                                          (2.103) 



32 
 

   

 

Dimensionless solubility and dissolution constant were taken as: 

 

0S

C
C s

s        and     
D

AkL
k 0

2

                                                                                   (2.104) 

 

The initial conditions were taken as: 
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The boundary conditions were taken to be: 
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The boundary condition for 1  was determined by putting 1  in Equation (2.101). 

As a result of the boundary condition of Equation (2.107), Equation (2.101) then reduces 

to an ordinary differential equation for )1,(S . The solution to this Equation  
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then yields the desired boundary condition. The boundary condition of Equation (2.109) 

is valid as long as 3skC  and it has to be replaced by 0)1,( S  for larger values  

of .  

The fraction of drug released was expressed as: 
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Where the integral accounts for entire drug remaining in the matrix. 
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For the derivation of an approximate analytical solution, the authors made the following 

approximation:  

SU 1                                                                                                                     (2.111) 

 

Where U is only valid during intial stages of drug release process. By keeping only the  

 

linear terms Equations (2.100) and (2.101) are converted into linear PDEs and solved  

 

using Laplace transform method. The final fraction of drug released was obtained as: 
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This equation is able to account for the decrease in surface area as opposed to the solution 

given by Aryes and Lindstrom [39] which assumes that the surface area remains constant. 

However, this Equation is only valid during early stages of the release process. Equations 

(2.100) and (2.101) were also solved numerically by using the FORTRAN routine 

D03PCF which was provided to them by The Numerical Algorithms Group (NAG, 

United Kingdom), this routine reduces the PDEs to ODEs and the resulting ODE system 

is solved by using backward differentiation formula method [48]. The drug release 

profiles obtained from the semi-analytical solution (Equation (2.112)) and numerical 

solution were compared with Crank‟s Equation (Equation (2.113)) and adjusted Higuchi 

Equation (2.114) proposed by Bunge [49] which were developed for the case of 

instantaneous dissolution. 
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It was seen that as the k  and sC  values were varied the rate of drug released also varied. 

The drug release profile obtained by the semi-analytical equation and the numerical 

solution were in good agreement with each other. The authors concluded that by retaining 

the non linear terms the overestimation of the fraction of drug released could be avoided 

which normally occurs due to linearized treatment of the problem. 

Polakovic et al. [50] adopted two mathematical models to describe the release of 

lidocaine from PLA nanospheres. They applied the diffusion model and dissolution 

model separately to describe lidocaine release from nanospheres. They found that the 

diffusion model Equation (2.115) – (2.116) [12] accounted well for the drug release from 

particles containing low drug loadings and dissolution model (Eq. (2.117)) accounted 

well for drug release from particles with higher drug loading. For the derivation of 

dissolution model they assumed that (i) the dissolution of lidocaine crystals was the rate-

controlling step implying a homogeneous distribution of drug within the matrix.(ii) The 

mass of dissolved drug inside the particle was negligible compared to the crystalline drug 

form. (iii) As the crystal specific area was unknown, the driving force of dissolution was 

defined as the difference of the concentration of the solid drug and its equilibrium 

concentration corresponding to the bulk liquid drug content. 
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It was observed that for low drug loading the process of drug release was controlled by 

diffusion process whereas at high drug loadings the drug release process was controlled 

by dissolution process. 

     When, compared with the model developed by Frenning [46, 47] Polakovic‟s model 

does not predict the initial time delay for drug release, but is valid for drug release over 

all time periods. 

Jo et al. [51] applied Polakovic‟s model (Equation (2.117)) to describe the 

dissolution controlled release of indomethacin from PLG-PEO nanospheres. However, 

for modeling diffusion controlled drug release the authors proposed a new model 

(Equation (2.118)) which contradicts the classical solution given by Crank [12] for the 

release of solute from a spherical matrix due to diffusion. 
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Notice that the coefficient in the denominator of Equation (2.118) differs from Equation 

(2.115). Their observations were in agreement with Polakovic‟s observations, that for 

small particles diffusion was the main mechanism controlling the drug release process 

whereas for larger nanospheres dissolution was more dominant in controlling the drug 

release process. However, the dissolution model significantly under predicted the drug 

release profile when compared to the diffusion model. 

 

2.3 Mathematical Models for Prediction of Drug Release In Vivo 

 

There are various factors that affect the process of drug release. The size of the drug 

particles and the type of polymer used has an effect of the rate of drug release apart from 

the transport processes involved. The effect of acidic pH on the degradation and release 
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of dexamethosone from PLGA microspheres was investigated by Zolnik B.S and Burgess 

[52, 53]. They reported that there was no evident effect of pH on the burst phase of the 

release however the pH did significantly affect the second phase of release (bi-phasic 

release). Faisant et.al. [54] found that the drug release profile from microspheres were 

markedly different for different osmolalities, temperatures and pH. Excipients also seem 

to have an effect on drug release rate [55, 56]. All the models discussed so far have been 

for in-vitro drug release kinetics wherein perfect sink conditions are maintained. And all 

the factors recognized to be affecting the drug release process are physiochemical in 

nature. However when it comes to a real system (human body) the physiological factors 

also come into play. The presence of food, type of food, blood flow rate to the gastro-

intestinal (GI) tract, GI tract motility etc., are a few of them [10]. Presence of one drug in 

the system before the admission of another drug can also effect the absorption rate of 

drug in the GI tract [57]. Mechanistic modeling cannot be applied directly for prediction 

of amount of drug in the system (plasma). This is where physiological or compartmental 

modeling might reveal better information. While mechanistic modeling is concerned with 

understanding the underlying drug release phenomena compartmental modeling is 

concerned with understanding the physiological phenomena [58]. Pharmacokinetic 

modeling can broadly be classified as: One compartmental modeling, two compartmental 

modeling, multi compartmental modeling [10, 59] and physiologically based 

pharmacokinetic modeling [60]. There are also various compartmental model developed 

for orally administered drugs taking into account the hepatic first pass metabolism, GI 

tract motility, absorption in small intestine etc., [61, 62, 63, 64]. In one compartmental 

model the whole body is thought of as one compartment and the absorption and 
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elimination kinetics of the drug are studied, where as in two compartmental modeling a 

second compartment accounting for drug uptake by the tissue is also considered. In 

physiologically based pharmacokinetic modeling the pertinent biochemical and 

physiological constants for metabolism and solubility in each compartment are included. 

Routes of dosing are included in their proper relationship to the overall physiology. Each 

compartment in the model is described by differential mass balance equations whose 

terms mathematically represent the biological process [60]. These equations are then 

solved using numerical methods and software packages [10]. 

There is a large spectrum of pharmacokinetic models available in the literature 

[10, 57, 58, 59], but most of these models consider the entire drug to be present in the 

compartment at time t = 0 which is not the case with controlled release drug delivery 

devices. Therefore there are discrepancies in the in-vitro in-vivo correlations [65, 66, and 

67]. There are very few models which take into account both the in-vitro parameters (like 

diffusion coefficient) and the in-vivo parameters like absorption and elimination 

coefficients. Nia et.al., [68] developed a simple mathematical model taking into 

accounting both in-vitro and in-vivo parameters to calculate the amount of drug released 

into the plasma for a diffusion controlled oral dosage form. They made the following 

assumptions: (i) the oral dosage form was cylindrical in shape and the drug concentration 

was uniform initially (ii) the process of drug release out of the dosage form is solely 

controlled by diffusion (iii)  the drug releases out of the dosage into the GI tract thereby 

is absorbed into the blood compartment and eliminated. The absorption and elimination 

constants were taken from the data. The radial and longitudinal diffusion was defined by 

equation (2.119) 
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The boundary conditions taken were: 
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The solution for Equations (83)-(84) is given  as [70]: 
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Where ln  and rn  are the roots of the equation given by  
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The Equations for rate of drug release into the blood compartment and rate of elimination 

of drug were taken as 
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Equations (2.122)-(2.127) were solved using finite difference method. 
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Ouriemchi et al. [71] presented a numerical solution to calculate the amount of 

drug released in-vivo. They studied the effects of absorption rate, elimination rate and 

volume of liquid in the stomach on the rate of drug release. They considered a diffusion 

controlled spherical matrix system. The absorption and elimination rate coefficients were 

assumed to be constant. The volume of the gastric liquid was taken to be constant and the 

concentration of drug in the stomach and blood compartment were taken to be uniform. 
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Following the Crank-Nicolson method [70], the authors obtained the amount of drug in 

the dosage form at any time t as 
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The equations for flow of drug leaving the dosage form, flow of drug passing into the 

stomach and the flow of drug eliminated out of the blood are given by Equations (2.131)-

(2.132) 
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The rate of increase in the amount of drug in the plasma compartment and gastric liquid 

is given by: 
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Where ak  is the absorption rate constant, ek is the elimination rate constant, bK  is the 

partition coefficient between of drug between stomach and blood and bs VV ,  are the 

volume of gastric liquid and blood respectively. Equations (2.133)-(2.135) were resolved 

step by step by increasing the amount of drug  ZY ,  and W during each time interval 

],[ ttt   using the crank-Nicolson method and Equations (2.134)- (2.135) was solved 

with parabolic approximation of grid points N, N-1, N-2 of the dosage form. The effect of 

absorption rate was found to be negligible but when the volumetric liquid volume was 

lowered the elimination kinetics changed significantly. 

Ouriemchi et al. [72] studied the drug release from a spherical core and shell type 

of dosage form in the plasma compartment. The drug transfer at the core-shell interface is 

taken to be the same. The Equation for radial diffusion from a spherical particle is same 

as Equation (2.128). The rate of drug release out of the dosage form was taken as 
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Amount of drug in the GI tract, Plasma and the drug eliminated were taken as: 
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Equations (2.136)-(2.139) were also solved using the Crank-Nicolson method. 

      
Following a similar approach [73] Bakhouya et al. [74] calculated the antibiotic 

levels in the plasma for oral erosion –controlled drug dosage form. They considered two 

dosage forms one immediate release dosage form and another erosion controlled dosage 

form. The calculated release profiles for both the dosages were compared and it was 

found that the rate constant of elimination played a significant role. Drug release profiles 

were compared for both single dosage and multiple dosages. The erosion–controlled 

release profiles showed a steady release rate compared to the immediate release profiles. 

The rate of drug release from the erosion-controlled dosage was taken to be: 
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Where tM represents the amount of drug released after time t, inM  is the amount of drug 

initially present in the dosage form and erK  is the rate constant of erosion. 

The amount of drug located in the GI compartment, plasma compartment and amount of 

drug eliminated are given by Equations (2.141)-(2.143) 
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Where 
terR represents the rate at which the drug is released out of the dosage. 

Ainaoui et al. [2] also followed a similar approach to calculate the dimensions of 

dosage forms required for achieving the desired release profile. Monolithic diffusion-

controlled drug delivery devices of spherical, cylindrical and parallelepiped geometries 

were considered. Equations (2.144)-(2.146) were used to describe the drug released from 

spherical, cylindrical and parallelepiped system respectively. 
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Where M and tM  represent the amounts of drug released at time t and infinity. 

1 2 3, ,L L L represent the three lengths of the parallelepiped and , ,n m p  are the integers.  

,R H represent the radius and height of the spherical and cylindrical system respectively. 

Equations (2.141)-(2.143) are combined with Equations (2.144)-(2.146) and solved  

numerically. 
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 Holz and Fahr [58] developed a pharmacokinetic model for transdermal drug 

delivery system. The release of estradiol from the patch was modeled by considering the 

Fick‟s law of diffusion to describe the drug release from a homogeneous layer. The 

following assumptions were made: (i) as estradiol has good water solubility, the stratum 

corneum (skin) is the primary barrier of concern and no additional diffusion step through 

the viable dermis is considered. (ii) Initially the skin and the capillaries are free of drug. 

(iii) The efflux through the left side of the patch is zero. (iv) The efflux from the patch 

compartment at 0x  equals the input flux into the skin compartment and the efflux from 

right side of the skin to the blood capillaries follows a first order rate constant dk . (v) The 

estradiol release from the patch at 0x  is assumed to follow the Higuchi law which was 

in accordance with the in vitro experiments performed. 

The mass efflux rate out of the patch/skin system was given as: 
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Where D  is constant diffusivity, C  is the concentration, t  is the time and x  is the 

integration path through the skin and L is the thickness of the skin. 

The authors assumed a semi-infinite membrane for the patch, and applied the following 

boundary conditions: 
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Where H is the thickness of the patch, PD  is the diffusion constant in the patch, sC  is 

the solubility in the skin and PC  is the solubility in the patch. 

Equations (2.147)-(2.149) were transformed into dimensionless form using the following 

dimensionless variables: 
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Laplace transform method [37] was then used to solve the problem. The final expression 

for amount of drug released into the blood stream was obtained as: 
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Where M  is the amount of drug released from the patch/skin system at infinite time. 

 

The inverse Laplace transform for equation (2.151) was performed numerically [74]. 

Weinberg et al. [75] presented a model to simulate doxorubicin transport in non-

ablated and radiofrequency (RF) ablated liver tumor. The method of ablation using RF is 

known to have improved efficacy in treatment where 80% of the tumors cannot be 

removed by surgery. The authors applied the computational modeling technique using 

finite element method implemented in COMSOL 3.3. One-dimensional and three-

dimensional models were used to simulate the intratumoral doxorubicin release from 

PLGA millirods. The doxorubicin transport into the tumor from these implants was 

analyzed using the following Equation: 
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Here   represents the elimination coefficient. 
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The boundary conditions taken were             

 

; ( )IBr R C f t                                                                                                           (2.153) 

 

; 0OBr R C                                                                                                               (2.154) 

 

Here IBR , OBR  represent the inner implant boundary and the maximum extent of normal  

liver tissue included in the model.  

The initial condition was taken as 

0; 0t C                                                                                                                   (2.155) 

 

The diffusion and elimination coefficients in both ablated and non-ablated tumor tissues 

were determined by least-squares fitting technique. Isqcurvefit function in MATLAB 7.1 

was applied for implementation of curve fitting. In, the case of ablated tumors it was 

observed that the model did not yield a close fit when constant D  and   values were 

used. Therefore for more accurate prediction of drug transport the authors considered the 

diffusion coefficient to be a function of radius and elimination coefficient to be a function 

of time.          

The RF ablation reduced the drug elimination rate from the implant and also 

increased the diffusion process thus providing an effective treatment. Overall the 

computational model provided an adequate fit for the drug release profile for ablated 

tumors and it was found to be a useful tool for future studies like predicting the changes 

in drug release profile with change in implant design and also for clinical applications. 
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CHAPTER 3 

 

OBJECTIVES 

 

 

Controlled release drug delivery systems (CRDDS) have several advantages over 

conventional dosage forms, they are able to reduce the discrepancies in the therapeutic 

regime by delivering the drug in a controlled manner. Mathematical modeling for such 

systems not only helps us in identifying the underlying transport mechanisms responsible 

for the drug release but also helps in reducing the number of experiments needed. In vitro 

and in vivo experiments are not only very expensive but in some cases they are 

infeasible, in such situations mathematical models can aid in reducing the number of 

experiments needed [75]. 

         As seen from the discussions above, there are many models describing drug release 

from CRDD forms for in vitro conditions. And these models help us in recognizing the 

underlying drug transport mechanisms for these conditions. But when it comes to an 

actual biological system there are a number of parameters both physiological and 

physiochemical which may influence the rate of drug release. Conventional 

pharmacokinetic modeling is also performed taking the entire drug to be present in the 

system once (immediate release systems), which cannot be applicable to controlled 

release or extended release dosage forms [76]. As controlled release dosages are expected 

to stay within the system over a period of few weeks to few months, these devices may 

undergo number of changes which are not accounted for both in the in vitro experiments 

and in mathematical models developed.  
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          The model applied by Ouriemchi [71] and other [69, 70] clearly shows that the 

absorption and elimination rate coefficients play a major role in the drug release process. 

However none of these models take into account the effect of absorption rate kinetics on 

rate of drug release. 

The objectives of the present work are (1) to develop a mathematical model for a 

diffusion-dissolution controlled drug delivery system [47] and analyze the effect of 

absorption rate on the rate of drug release. (2) To study the effect of diffusion, drug 

dissolution and rate of absorption on rate of drug release. (3) Compare the models to 

established models [47, 51] which do not take absorption rate into account.  

A closed form solution was obtained for prediction of drug released from a 

diffusion controlled drug delivery system taking into account the absorption kinetics [77]. 

This can be considered as a reduced case of the diffusion-dissolution problem. Results 

show that absorption rate has a significant effect on the drug release profile within the GI 

tract.  

A numerical approach is followed to obtain the solution for a dissolution-

diffusion controlled drug delivery model (including all nonlinearities). An approximate 

analytical solution and an asymptotic solution are also derived. Results from these 

models are given in the proceeding sections. 
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CHAPTER 4 

MATHEMATICAL MODELING OF DRUG RELEASE FROM SPHERICAL 

MATRIX SYSTEMS: 

ANALYSIS OF THE AFFECT OF FINITE DISSOLUTION RATE AND 

ABSORPTION RATE ON THE RATE OF DRUG RELEASE 

 

 

4.1 Introduction 

 

The phenomenon of drug dissolution plays a very important role in the drug release 

kinetics. The drug dissolution rate has pronounced effect on the drug absorption. Noyes – 

Whitney equation is most commonly applied for describing the drug dissolution process.  

Most of the pharmacokinetic models are also developed taking into account the drug 

dissolution kinetics. However for the case of a CRDDS drug diffusion also plays a major 

role in drug release process. And in some cases the encapsulated drug dissolution can 

also become a rate controlling step as seen in section 2.2.  Thus both drug dissolution and 

diffusion contribute towards the drug release process. Frenning [47] developed a model 

to predict the amount of drug released from a polymer matrix containing solid drug 

particles. Unlike the existing models the developed model accounted for the change in 

particle size. Thus capturing the phenomena of delayed release of the drug which is seen 

during the initial stage of drug release process. However,  the model was developed for 

sink conditions and did not take into account the absorption kinetics of the drug through 

the GI tract. In the preceding section a new model is proposed which takes into account 

the diffusion-dissolution equations proposed by Frenning as well as the absorption 

kinetics through the GItract.
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4.2 Problem Description 

Consider an encapsulated drug in a polymer matrix system. The drug is uniformly 

dispersed within the spherical matrix and it is in crystalline form. When the drug reaches 

the GI tract the fluid from the surroundings diffuses into the sphere and dissolves some of 

the drug. Therefore, at one point there is both dissolved and undissolved drug present 

within the polymer matrix. The dissolved drug then enters into the GI tract where it is 

eventually absorbed. Following absorption in the GI tract the drug thereby enters into the 

plasma compartment. The rate of absorption depends on various factors such as the 

amount of food present in the stomach, type of food taken, pH etc., [11]. This situation 

can be interpreted as an encapsulated drug matrix system of radius R  and volume 
s

V   

placed in a liquid compartment of finite volume lV  .The concentration of the solid drug 

within the matrix is taken as S . The concentration of dissolved drug in the matrix is taken 

as C .The drug enters the liquid phase by the process of mass diffusion at timet 0= . The 

concentration of the drug in the liquid phase is taken as lC . A well- stirred tank 

assumption is made such that lC  is independent of position. Thereby the drug is 

consumed by a first order absorption (Figure 4.1). 

Assumptions 

1. A matrix type of a system is considered wherein the drug particles are 

encapsulated within a polymer matrix. The entire drug is assumed to be present in 

solid form initially. 

2. As the liquid enters the matrix, some of the drug is dissolved, and released into 

the compartment (simulating the GI tract) through the process of diffusion. At 

some point there is both dissolved and undissolved drug present within the matrix. 
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3. The drug releases from the polymer matrix into the GI tract. Only absorption of 

the drug in the GI tract is considered and the transport of the drug into the plasma 

compartment is not considered. Thus the effect of absorption rate on the rate of 

drug release in the GI tract is the only consideration. 

4. Initially no drug is present in the liquid compartment. 

5. When the rate of diffusion and drug dissolution are fast rate of absorption is 

expected to become the rate controlling step. 

 

 

 

 

 

 

Figure 4.1 Schematic Representation of Drug Release from Dissolution Controlled    

Drug Delivery System in the GI Tract. 

 

 

4.3 Model Development 

The basic equations governing the system Equations (5.1) and (5.2) were originally 

introduced by Frenning [47]. The same nomenclature has been retained. The first term on 

the RHS of Equation (4.1) accounts for the diffusion of the dissolved drug and the second 

term accounts for the dissolution of solid drug particles.  

 

k  rk  

Perfectly stirred 

compartment  

Drug Particle 

Absorption 

Rate 
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Surface boundary condition subject to absorption in the GI tract is treated here as: 
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Boundary conditions: 

 

0)0,( rC                                                                                                                       (4.4) 

 

0)0( lC                                                                                                                         (4.5) 
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Equations (4.1)-(4.7) are converted into dimensionless form using the following 

dimensionless variables: 

 Dimensionless concentration of undissolved (solid) drug s

o

S

S
                                (4.8)        

Dimensionless concentration of dissolved drug 
oS

C
                                                (4.9)                                               

Dimensionless concentration of dissolved drug present in the liquid compartment  

 

l p

l

o

C K

S
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Dimensionless solubility:   s

o

C

S
                                                                                (4.11) 

 Dimensionless time:   
2

ABD t

R
                                                                                    (4.12) 
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 Dimensionless radial coordinate:  
r

R
                                                                     (4.13) 

l
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V
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V K
                                                                                                                      (4.14) 
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                                                                                                                 (4.16)                                                                                                                          

 

 

 

Equations (4.1)-(4.3) in dimensionless form are given by: 
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Provided that the particles are of the same size initially and retain their shape during the 

dissolution process the surface area of the undissolved drug is proportional to the volume. 

Hence  s  power 2/3 [47]. This assumption has been previously used to describe the 

dissolution of dispersed material [43, 44]. 
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The boundary conditions in dimensionless form are given as: 

 

( ,0) 0                                                                                                                        (4.20)    

 

 (1, ) ( )l                                                                                                                   (4.21) 

 

1)0,(  s                                                                                                                     (4.22) 
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4.4 Approximate Semi Analytical Solution 

Equations (4.18)-(4.19) form a non linear problem which has to be solved using numerical 

methods. However by making some approximations a semi analytical solution can be 

obtained. It is beneficial to get an approximate solution as the drug concentration profiles 

obtained from both the numerical and approximate solutions can be compared. This will 

help us in gauging the accuracy of the numerical solution. Equations (4.18) and (4.19) 

which have the non linear term have to be linearized using making some approximations. 

The approach followed is very similar to that of Frenning‟s [47]. However, it should be 

noted that in his work Frenning neither considered the accumulation of the drug 

nor the effect of absorption rate. His model was developed for perfect sink 

conditions and the Equations for obtaining Eigen values were much simpler than 

the problem described in section. An approximate solution can be obtained by 

considering only the initial stages of drug release.  

The following approximation can be made during early stages of drug release [47]. 

1 SU                                                                                                                         (4.25) 

 

From the initial condition of Equations (4.1) and (4.2) it can be concluded that both   

 

and U are equal to zero initially. And hence are <<1. Therefore during early stages of  

 

release U<<1. Now s  can be written in terms of U as: 
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Therefore equations (4.17) and (4.18) become: 
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Keeping only the linear terms we get: 
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An equation (4.27) becomes:  

 

  UN 

































 2
2

2

                                                                          (4.31) 

 

 Applying the Laplace transform method   Equations (4.17) and (4.18) become: 

 

U
d

sdu

d

sud
usus 








 










),(2),(
)0,(),(

2

2

                                                      (4.32) 

 

Usu
s

NUUs 


 












 ),()0,(

~~
                                                                            (4.33) 

 

Using the boundary condition 1)0,(  s  and eliminating U
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Where      
 
 








s

Mss2

                                                                                        (4.35)

 

 

Substituting ),( suq   into Equation (4.80) results in  
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Then Equation (4.82) can be written as 
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The characteristic equation of the above Equation is given as 
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The solution for this equation is given as 
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By substituting the boundary condition 0),0( su  we get 03 a .               

   

By applying the boundary condition )(),1( svsu  we get 
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Applying Laplace transform method to Equation (4.19) we get 
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Differentiating Equation (4.92) we get 
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Substituting for 4a from Equation (4.51) we get: 
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On rearranging we get 
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Substituting back for   we get  
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Using the residue theorem [37] for carrying out the Laplace inversion Let:         
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Since s 0=  is a simple pole of v(s) the residue is given by: 
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And the residue at )( Ns    is given by: 
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Which yield    
0, 10 

 

 

For 0, 1ns n 
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                                                                                                 (4.68)                                                                                     
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By setting the denominator of Equation (4.57) to zero we get the Eigen value as: 
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As it can be seen the above Equation is in implicit form. The s term is recast in terms of 

lambda. To compute the final fraction of drug released Q‟(s) is calculated as follows: 
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Substituting back for P(s) and Q(s) in Equation (4.68) we get the fraction of drug released 

as:  

 

(4.72) 
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4.5 Results and Discussions 

 

Fraction of drug released into the liquid compartment is computed using Equation (4.72). 

By changing the parameter values (in Equation (4.72)) effect of absorption rate, 

dissolution rate and solubility on rate of drug released can be analyzed. The 

corresponding Eigen values can be computed using Equation (4.70). Equation (4.35) 

gives the relation between s  and  , for every n value we get two values for ns one 

positive and one negative. Both the values were incorporated into Equation (4.72) for 

computing the fraction of drug released. The drug release profiles are computed and 

discussed in chapter 8. The semi analytical results are also compared with the numerical 

results.
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CHAPTER 5 

 

MATHEMATICAL MODELING OF DRUG RELEASE FROM SPHERICAL 

MATRIX SYSTEMS: 

ANALYSIS OF THE AFFECT OF DIFFUSION RATE AND ABSORPTION 

RATE ON RATE OF DRUG RELEASE 

 

 

5.1 Introduction 

 

The dissolution term in Equation (4.1) is only valid as long as there is solid drug present. 

When the concentration of the dispersed drug within the matrix is very small an 

assumption of instantaneous dissolution can be made. So the second term in the Equation 

(4.1) is dropped and only the diffusion term is considered. Now the problem at hand 

becomes drug release from a diffusion controlled drug delivery system.  

 

5.2 Problem statement 

 

Consider an encapsulated drug in a polymer matrix system. When administered orally the 

drug reaches the GI tract where it is released and eventually absorbed. Following 

absorption in the GI tract the drug enters the plasma compartment. The rate of absorption 

depends on various factors such as the amount of food present in the stomach, type of 

food taken, pH etc., [11]. This situation can be interpreted as an encapsulated drug matrix 

system of radius R  and volume 
s

V   placed in a liquid compartment of finite volume lV  

.The concentration of the drug is C . The drug enters the liquid phase by the process of 

mass diffusion at timet 0= . The concentration of the drug in the liquid phase is taken as

lC . A well- stirred tank assumption is made such that lC  is independent of position. 

Thereby the drug is consumed by a first order absorption (Figure 4.2). 



 

 

 

    Absorption rate (
r

k  )                                     

 

 

Figure 5.1 Schematic representation of drug release from diffusion controlled drug 

delivery System in the GI Tract. 

 
                                           

Assumptions 

 

1. A matrix type of a system is considered wherein the drug particles are 

encapsulated within a polymer matrix. The liquid from the compartment enters 

the polymer matrix, dissolving the drug within the matrix instantaneously thus 

enabling it to release. 

2. The process of drug release from the spherical matrix into the finite reservoir 

(simulating the GI tract) is assumed to be controlled by diffusion. 

3. The drug releases from the polymer matrix into the GI tract. Only absorption of 

the drug in the GI tract is considered and the transport of the drug into the plasma 

compartment is not considered. Thus the effect of absorption rate on the rate of 

drug release in the GI tract is the only consideration. 

4. The radius of the drug particles is assumed to remain constant during the release 

process and in this model is appropriate for small particles (micro and nano). 

5. The drug is assumed to release with a constant diffusivity. 

6. Initially there is no drug present in the compartment. 

Perfectly stirred tank 

Drug particle 
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5.3 Model Development 

 

For a spherical drug particle, the drug concentration is given by:  
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                                                                                                    (5.1)                                                                                          

 

where ABD  is the diffusivity of the drug in the matrix.  

A material balance of the drug in the liquid results in: 
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                                                                          (5.2) 

 

where rk  is a first order absorption rate coefficient. 

If one were to assume that equilibrium exists at the solid-liquid interface, then at r R

and any time t: 

S lC KC                                                                                                                         (5.3)                                                                                                              

where K  is the equilibrium constant. 

 

The initial and boundary conditions governing Equation (4.25) are: 

 

 

1)0,( CrC                                                                                                                       (5.4) 

   

0)0( lC                                                                                                                                                                                      (5.5) 

 

),0( tC   is finite.                                                                                                             (5.6) 

 

Dimensionless variables used: 

 

We proceed by first transforming the model (Equations (5.1)-(5.6)) into dimensionless 

form using the following scale factors: 

 for the dimensionless concentration in the solid we have: 
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for the dimensionless concentration in liquid 

 
1

1

C

KCC l
l


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Dimensionless radius 

 

R

r
                                                                                                                              (5.9) 

 

Dimensionless time 
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tDAB                                                                                                                       (5.10) 

 

The quantities B and M are defined as:  
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By making use of these dimensionless quantities Equation (5.1) becomes: 
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                                                                                                        (5.13) 

Subject to the dimensionless boundary conditions 

 

0)0,(                                                                                                                      (5.14)  

     

),0(  is finite                                                                                                             (5.15)                                    

 

)(),1(  l                                                                                                                (5.16) 

 

0)0( l                                                                                                                       (5.17) 

    

While Equation (5.2) becomes 
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5.4 Method of Solution 

 

 

A Laplace transform method [37] is used to solve Equations (4.36)-(4.41). 

Let   ),(),(),( sudeL s    
  and   )()( svL l                                  (5.19) 

Equation (5.13) then transforms into  

2

2

2
s u = 

d u du

d d  
                                                                                                         (5.20) 

 

Subject to the following conditions 

 

(0, )u s is finite                                                                                                             (5.21) 

 

(1, ) ( )u s v s                                                                                                                  (5.22) 

 

The General solution for Equation (4.43) is given as: 
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Where  1/ 2 1/ 2

2 2
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 
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Applying the condition that the solution is bounded such that 2m  must be chosen as zero 

in order for ( , )u s  to remain finite as 0  . This results in the solution: 

1
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At  1

2
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
                                                                     (5.26) 
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Therefore  1
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Application of Laplace transform to Equation (4.41) results in: 
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Substituting Equations (4.28) into Equation (4.26) results in: 
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and substituting for 1m  from Equation (5.29) and carrying out the appropriate algebraic 

manipulations we get: 
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Also Equation (5.25) becomes: 
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Using the residue theorem [37] for carrying out the Laplace inversion let:         
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So that   1
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Since s 0=  is a simple pole of v(s) the residue is given by: 
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Then  cot 1x x    as  0x                                                                                         (5.39) 
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Equation (5.41) can be further rearranged to give the form: 
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The Eigen values, n  can be defined as 
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Where  2

n n n ni s s        is the transformation 

 

 

The quantity )(' nsQ  is derived from Equation (5.41) as 
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Therefore, the dimensionless liquid concentration profile is given by: 
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5.5 Results and Discussion 

Using Equation (5.47) the fraction of drug released in the liquid compartment can be 

calculated. All the parameter values such as diffusion coefficient, volume of drug, radius 

of the spherical drug particles, are taken for lidocaine release from PLGA biodegradable 

spherical particles Polakovic et.al. [50] .The Eigenvalues given by equation (5.43) were 

determined using the FindRoot function in Mathematica
®
 (Wolfram, 1996). The 

parameter M accounts for the effect of the absorption constant. 
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        Gorner et.al, [78] studied the lidocaine release from small nanosized drug particles 

with low percentages of drug loadings. The authors reported that no biodegradation of the 

polymer occurred over the observed period of time. The drug release was monitored over 

a period of 4 days. To benchmark our model, the model predicted drug release profiles 

were compared with the experimental data (provided by Prof. Polakovic).  

        Figures 5.2 and 5.3 compare the drug release profiles between the in vitro 

experimental data, diffusion only model and the proposed model; for 6.5 % (w/w) and 8.5 

% (w/w) lidocaine loaded nanospheres. From Figure 5.2, one can observe that the 

diffusion model over predicts the experimental release profile by about 25%; while the 

largest difference between the proposed model and the experimental data occurs much 

later in the release and is under predicting the profile there by about 14%. 

 

 
 

 

Figure 5.2 Drug release for a loading of 6.5 % (w/w). 
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In the case of Figure 5.2, the difference increases to 35% under prediction for the 

diffusion only case whereas the proposed model yields about a 9% difference. 

 
 

      Figure 5.3 Drug release for a loading of 8.4 % (w/w).  

 

 

Though, it is stated in the literature that the absorption and distribution of lidocaine is 

relatively fast [79] there are various factors that can affect the absorption kinetics. 

Although oral delivery is not the most popular method for lidocaine admission there are a 

few studies in the literature for oral absorption of lidocaine [80]. Adjepon-Yamoah, K. 

K., et al. [81], studies the effect of presence of atropine in the system on the absorption 

rate of orally administered lidocaine while Isohanni N.H., et al. [82] studied the effect of 

fluvoxamine and erythromycin on the pharmacokinetics of orally administered lidocaine. 
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(instantaneous) therefore when absorption rate is very slow it becomes the rate 

controlling step. 

Three values of absorption rate constants were considered one high (2k) value, a 

medium value ((k) which is about 1h
-1

 [79])and a low value (k/2) to see its affect on drug 

release (Figures 5.4 and 5.5).  In Figure 5.4 the solid line represents the calculated fraction 

of drug release taking into account an arbitrary value of the absorption rate constant, the 

dashed line represents the diffusion only model and the diamond dots represent the a 

doubling of the arbitrary kr value. It can be seen from Figure 5.4 that for fast absorption 

rate there is virtually no difference between a diffusion only model and a model taking 

into account the absorption rate constant.  

 

 

 
 

Figure 5.4 Drug Release for Fast Absorption Rate. 
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In Figure 5.5 the solid line represents the calculated value of drug release taking into 

account an  arbitrary (same as in Figure 5.4) value of absorption rate constant, and the 

diamond dots represent a halving of the arbitrary kr value. It appears that when the 

absorption rate is slowed to half of the comparative standard, the drug release profile is 

markedly different from that exhibited by the diffusion only model. 

This suggests that during the mass transfer of the drug into the GI tract, the 

overall rate of mass transfer is sensitive to the rate of absorption of the drug in the GI 

tract. Specifically, if the absorption rate is relatively fast then its effect on the overall rate 

of mass transfer is negligible. However if the absorption rate is relatively slow the overall 

rate of mass transfer to the GI tract will be significantly reduced. 

 

 

 
 

Figure 5.5 Drug Release for Slow Absorption Rate. 
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5.6 Conclusions 

The fraction of drug released in the liquid compartment was obtained from the model. 

There is significant difference between the release profiles calculated using a diffusion 

only model and a diffusion model accounting for the effect of absorption. Therefore the 

rate of absorption plays an important role in the drug release process. Although many of 

the mathematical models take into account the perfect sink condition, in a real system this 

assumption may not be true as there are many physiological parameters which may affect 

the drug delivery process. To establish a good in vitro and in vivo drug release 

correlation, mathematical models will need to incorporate more parameters. This study 

does establish a significant step in the kinetics of drug delivery by including absorption in 

the delivery pathway of an oral drug dosage.   
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CHAPTER 6 

ASYMPTOTIC SOLUTION: 

ANALYSIS OF THE AFFECT OF ABSORPTION RATE AND DISSOLUTION 

RATE ON RATE OF DRUG RELEASED 

 

 

6.1 Problem Description 

The problem description is similar to the one in section 4.1. However, now Equations 

(4.1)-(4.3) are taken to be time dependent and independent of position (which neglects 

diffusion). Therefore now we have a set of ordinary differential equations represented by 

Equations (6.1) through (6.7). This solution is termed as asymptotic solution as we make 

some limiting approximations. This type of analysis is useful for tablet formulations of 

BCS class II compounds [1], where diffusion of drug is very fast in comparison with the 

dissolution of the drug. Therefore the diffusion term is removed from Equation (4.1). The 

drug release process is now completely dissolution controlled. The surface boundary 

condition (Equation (4.3)) is now recast in a different form (Equation (6.3)) which is a 

simple mass balance of drug across the particle and bulk liquid. The solution method is 

very similar to that carried out in the previous chapters. Equation (6.1) through (6.7) is 

also solved numerically using the MATLAB programming. The result for the asymptotic 

solution solved analytically is only valid for certain time range short times in other 

words. Whereas the numerical solution describes the drug release process over all time 

periods. However this analysis is only valid as long as dissolution is controlling the drug 

release process and diffusion is very fast. 
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6.2 Solution Method 
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The Boundary and Initial conditions are given by 

(6.4) 
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The dimensionless parameters used are: 

 

Dimensionless concentration of dissolved drug 
o

s
S
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o
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o
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Problem recast in non dimensional form: 
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The boundary and initial conditions become 

 
( ,0) 0                                                                                                                        (6.19) 

 

1)0,(  s                                                                                                                     (6.20) 

 

(0) 0l 
                                                                                                                        (6.21) 

 

Following section 4.3 the following assumption is made for obtaining an approximate 

solution. The following approximation can be made during early stages of drug release 

[47]. 

1 SU                                                                                                                         (6.22) 

 

From the initial condition given by Equations (6.4) and (6.6) it can be concluded that 

both   and U are equal to zero initially. And hence are <<1.  
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Therefore during early stages of release U<<1. Now s  can be written in terms of U as: 
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Replacing S  in Equation (6.23) we get: 
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Keeping only the linear terms we get  
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Applying Laplace transform method to Equation (4) we get: 
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Equation (6.17) becomes: 
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Now applying Laplace transform method to (6.31) we get: 
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Substituting for )(
~

sU from Equation (6.29) and on rearranging terms we get 
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Now from Equation (6.) we have: 
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On applying Laplace transform method to (6.36) we get: 
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Applying the boundary conditions (6.19) and (6.21) we get 
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Using the residue theorem [37] for carrying out the Laplace inversion let:         
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The residue at )(Ms  is given by: 
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Therefore 
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Substituting Equations (6.45), (6.46) and (6.47) into Equation (6.48) the final expression 

for fraction of drug released is obtained as 
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6.3 Results and Discussion 

Plots are made for fraction of drug release (Equation (6.49) versus square root of time 

and are displayed as Figure 6.1 and Figure 6.2 below. By changing the value of M in 

Equation (6.49) the fraction of drug released is obtained for different rates of absorption. 

The value for B and N are kept constant and the values of M are varied. Similarly the 

effect of dissolution rate N can be analyzed by keeping B and M constant. All the 

parameter values are taken from Polakovic‟s article [50] the solubility of drug is taken to 

be 0.5 [47]. 

 

Figure 6.1 Affect of absorption rate on rate of drug release for initial period of release. 

 

Figure 6.1 shows the effect of absorption rate on rate of drug released during initial 

period, which is up to 800 minutes of release time. As it can be seen there is not much 

difference in the release rates or fraction of drug released for three different absorption 

rate values.  
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Figure 6.2 Comparison of asymptotic and numerical solutions. 

 

Figure 6.2 shows the effect of absorption rate for a time period beyond 3000 

minutes. The effect of absorption rate is now evident. The fraction of drug released out of 

a dissolution controlled dosage form is substantially low at a higher absorption rate. The 

fraction of drug released reaches a maximum peak at about 0.06 when the rate of 

absorption is low. The plot also sheds light on when the drug release process stops thus 

providing valuable information on when the next dosage form needs to be administered. 

The plot also shows that there is a good agreement between the asymptotic and numerical 

predictions. The agreement reduces beyond time period of 0.12. As the solubility limit is 

placed at 50% the fraction of drug released is very low. 
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CHAPTER 7 

ANALYTICAL SOLUTION:  

ANALYSIS OF THE AFFECT OF DISSOLUTION RATE AND ABSORPTION 

RATE ON RATE OF DRUG RELEASE 

 

  

7.1 Problem Description 

Polakovic et al. [50] developed a simple model to describe the drug release process 

form a dissolution controlled drug delivery system. The change in concentration of 

the solid drug with respect to time is equal to the dissolution coefficient times the 

difference in solid and bulk liquid concentration. Diffusion of the dissolved drug out 

of the dosage form is considered to be very fast when compared to the dissolution of 

the drug. Therefore the Equation (7.1) only takes into account the dissolution of drug. 

The drug delivery system is similar to the one described in section 4.1 and 5.1. A 

uniformly distributed matrix system is considered. The concentration of solid drug is 

taken to be a function of time only. When administered orally the drug reaches the GI 

tract where it is released and eventually absorbed. This situation can be described 

mathematically by Equations (7.1) through (7.5) where R  is the radius of the 

spherical particle,  
s

V  the volume of the solid particles lV   the volume of liquid 

compartment and S  is the concentration of solid drug. The drug enters the liquid 

phase by process of diffusion at timet 0= . The concentration of the drug in the 

liquid phase is taken as lC . A well- stirred tank assumption is made such that lC  is  
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independent of position. Thereby the drug is consumed by a first order absorption 

(Figure 4.1). 

 

7.2 Solution Method 
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The boundary and initial conditions are given by 

 
                                                                                                                  (7.3) 

 

0)0( lC
                                                                                                                        (7.4) 

 

lPCKRS )0,(
                                                                                                               (7.5) 
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The problem is recast in non dimensional form as 
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The initial conditions are given as 
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Applying Laplace transform method on equation (7.14) we get 
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On substituting the boundary condition () and rearranging 
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Using the residue theorem [37] for carrying out the Laplace inversion Let:         
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Since s 0=  is a simple pole of v(s) the residue is given by: 
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The Eigen values are given by
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The fraction of drug released is given as:      
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7.3 Results and Discussions 

The Eigen values   are obtained using Mathematica. All the parameter values are taken 

from Polakovic‟s article [50]. The particles are up to 400 nanometers and have a drug 

loading of 20% (w/w) therefore the dissolution of drug within the polymer matrix 

becomes the rate controlling step. Plots are made for fraction of drug release (Equation 

(7.35) versus square root of time ( ). By changing the value of M in Equation (7.35) the 

fraction of drug released is obtained for different rates of absorption. The value for B and 

N are kept constant and the values of M are varied.  
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Figure 7.1 Affect of absorption rate on rate of drug release for initial period of release. 

 

The effect of absorption rate on rate of drug released during initial period of release is 

shown in figure 7.1. The time period of release is up to 800 minutes. As it can be seen 

there is not much difference in the release rates or fraction of drug released for three 

different absorption rate values. 

 

Figure 7.2 Affect of absorption rate on rate of drug release. 
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Figure 7.2 shows the effect of absorption rate for a time period beyond 3000 minutes. 

The effect of absorption rate is now evident. The fraction of drug released out of a 

dissolution controlled dosage form is substantially low at a higher absorption rate. The 

fraction of drug released reaches a maximum peak at about 0.2 when the rate of 

absorption is low. The plot also gives information on when the drug release process stops 

thus providing valuable information on when the next dosage form needs to be 

administered. 

 

Figure 7.3 Comparison of drug release profiles for nonlinear and liner dissolution models 

for initial release period. 

 

Figure 7.3 gives a comparison of drug release profiles obtained from asymptotic solution 

(chapter 6) and linear dissolution model. For both the models the effect of absorption rate 

on rate of drug released is less significant for the initial phase of release. However the 

nonlinear dissolution model captures the delay in release well than the linear dissolution 

model. Also the predicted rate of release is slightly higher for the linear dissolution model 

than the nonlinear model. 
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Figure 7.4 Comparison of drug release profiles (asymptotic solution and linear 

dissolution model) for entire time period. 

 

Figure 7.4 shows the release profiles predicted by both the models over the entire time 

period. For both the models the rate of drug release is higher when absorption rate is 

lower. However the fraction of drug released is significantly higher when nonlinear 

dissolution is not considered. As solubility limit of 50% is taken in the asymptotic 

solution this imposes a limit on the fraction of drug released into liquid. The models 

should be applied based on the type of dosage forms used. For a tablet or compact which 

has mostly API powder the chance of solubility being low is high especially if it‟s a BCS 

class II drug. For controlled release dosage form with drug particles encapsulated in a 

polymer matrix the solubility is significantly higher or improved yet dissolution can be 

slow enough to control the drug release process.
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CHAPTER 8 

NUMERICAL SOLUTION 

 

8.1 Introduction 

 

Since the problem discussed in section 4.1 is a non linear problem, it has to be solved 

using numerical methods. MATLAB program is implemented to get the numerical 

solution. The equations are discretized using the finite difference numerical method of 

lines scheme and the resulting system of ODEs is solved using one of MATLAB‟s built 

in solver. Given below are the equations to be solved (same as those listed in section 4.1) 
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The corresponding boundary conditions are given as 
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The equations in dimensionless form are given as 
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With the corresponding boundary conditions in dimensionless form  
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8.2 Discretized Equations 

 

Central and 2nd order accurate 3-point Backward Difference differentiation formula is 

used for this purpose [83]. For the purpose of numerical computation new variables are 

introduced. 
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And 

 

u  ,   t  ,  x     
sw      

lV       b 
                                                             (8.3)

 

              

Now Equation (4.17) becomes 

 

 ibi
iiiiii uw

x

uu

xx

uuu

dt

du


















   3

2

1

11

2

11

2

22
         

                                     (8.4)                                                                                 

 

 

For 1,2,...,i n  

 

Equation (4.18) becomes 
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  Equation (4.19) becomes 
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The boundary conditions become 

  

( ,0) 0i iu x u     (initial values for )                                                                            (8.7)                              

 

(1, ) ( , ) ( ) ( )n n nu x t u t V t      (boundary condition for )                                           (8.8) 

 

( , ) 1i iw x o w   (initial values for s )                                                                            (8.9) 

 

We have (0, )   is finite                                                                                              (8.10) 

 

1( , ) ( )nu x t u t   is finite                                                                                             (8.11) 

 

 This may be translated to:  
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And for the left boundary condition ( 1i  ) would mean that 
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8.3 Method of Lines (MOL method) [83] 

 

When using this method the spatial derivatives (boundary value) are approximated 

algebraically. The resulting system of ODEs in the initial value variables (typically time) 

is then integrated by an initial value ODE (ordinary differential equation) integrator (eg. 

Euler method, Modified Euler method, RKF 45). MOL has several advantages a few of 

them are listed below: 

 The temporal and spatial integrations are separated in the sense that they can be 

treated separately in the coding; this adds a very attractive degree of flexibility. 

Library routines can be used for the temporal and spatial integrations. 

 All major classes of PDEs (partial differential equations) can be accommodated 

(elliptical, hyperbolic and parabolic) 
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 Systems of ODEs and PDEs (in one, two and three spatial dimensions plus time), 

linear and nonlinear can be naturally accommodated within the MOL; for 

example ODEs can serve as boundary conditions for PDEs. However  application 

of MOL with even two spatial dimensions is extremely computationally 

expensive, and with 3D even more so. 

 

8.4 MATLAB Program 

The discretized equations are solved using MATLAB programming. ODE15S integrator 

was used to solve the problem. The MATLAB code and discretization of Equations is 

given in Appendix A and Appendix B. 

 

8.5 Results and Discussions 

Figure 8.1 shows the drug release profiles for different absorption rates generated using 

the MATLAB code. The trend is very similar to that observed in the chapters 6 and 7. As 

the absorption rate is high the rate of drug released is low. The drug release curve shows 

a slight delay in release during initial time due to the non linear dissolution term, thus 

capturing the phenomena explained by Frenning [47]. Figure 8.2 compares the drug 

release profiles for different absorption rates (low to high) and also the case with no 

absorption. The drug release is maximum for the case with no absorption considered. As 

the rate of removal of drug from the liquid compartment is 0 the amount or fraction of 

drug in the liquid is maximum. As the rate of removal of drug increases the amount 

accumulated in the liquid compartment decreases and also it reaches a very small peak.  
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Figure 8.1 Comparison of drug release profiles for different absorption rates 

 

 

Figure 8.2 Comparison of drug release profiles with and without absorption. 
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Figure 8.3 Comparison of semi analytical and numerical results 

 

The analytical (chapter 4) and the numerical results for high and low absorption rates are 

compared in figure 8.3. During intial time at about a time scale of 0.015 in the above 

figure the effect of absorption rate is negligible. The numerical results agree well with the 

analytical values only up to a time scale of 0.03. However after this time period the semi 

analytical solution blows up, and cannot be considered for explaining the drug release 

behavior. These findings are coherent with those of Frenning‟s [47]. 
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Figure 8.4 Comparison of semi analytical, asymptotic, numerical and linear dissolution 

model 

 

Finally the drug release profiles computed using all the four models discussed in chapters 

4, 6, 7 and 8 are plotted in figure 8.4. The time period (square root of tau) of 0.04 in the 

figure makes up to more than 5000 minutes of drug release time [50]. In their article 

Polakovic et.al. reported release from a controlled release drug delivery system for up to 

3 days. During this period they found that the drug reached a peak value of approximately 

2.5 (fraction of drug released) and stayed at that value for a time period of 3 days. From 

figure it can be seen that the asymptotic solution and the linear dissolution model predict 

a much higher and faster release than the semi analytical solution and the numerical 

solution (considering both diffusion and dissolution). The value of absorption rate was 

fixed at M=1500 for all the models. Therefore it is advisable to apply the diffusion-

dissolution model (chapter 4 and 8) when the drug release period is very large ranging 

from weeks to months.
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CHAPTER 9 

CONCLUSIONS 

 

The objective of the work was to present mathematical models for prediction of drug 

release in the GI tract. The models took into account the absorption rate of drug through 

the intestine wall along with the physiochemical properties of drug like solubility, 

diffusion and dissolution rate. Five models were presented in this work. These models 

mainly targeted three types of drug delivery systems, first model which took into account 

both diffusion and dissolution (Chapter 4), second model was for purely diffusion 

controlled dosage forms (Chapter 5) and the third model was for purely dissolution 

controlled drug delivery systems (Chapter 6 and 7).  

It was observed that absorption rate of a drug has significant impact on the rate of 

drug released. For diffusion controlled delivery forms as the rate of absorption increased 

the prediction of drug released came closer to the values predicted by pure diffusion 

model. However for dissolution controlled drug delivery devices the rate of absorption 

had a different effect. The fraction of drug was higher for low values of absorption rate. 

Therefore it is evident that when absorption rate is not included in the modeling process it 

can lead to significant errors in prediction of drug released. It can either over predict or 

under predict the rate of drug release. 

However, it is very important to know where to apply the model. For small times 

or during initial time period of release the impact of absorption rate is very less on the 

rate of drug released. So for immediate dosage forms or for drug delivery systems where 

the period of drug release is very small the prediction of drug released with and without
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inclusion of absorption rate does not differ significantly. For oral dosage form containing 

BCS class II compounds (tablets, compacts of API powders etc…) dissolution of the drug 

becomes the main rate controlling step. In such cases the models presented in Chapter 6 

and 7 which take diffusion to be much faster than dissolution and therefore a non 

contributing factor in drug release process should be considered. However, for a 

controlled release dosage form where the drug release process is expected to proceed for 

days, weeks or even months both diffusion and dissolution play a major role and the 

models presented in chapter 4 and 8 can be correctly applied to predict drug release. And 

for cases where the drug loading is low or where the drug dissolution is fast (BCS class I 

compounds) diffusion becomes the rate controlling step and model presented in Chapter 5 

can be applied.   

Most of the models in literature take into account only the dissolution kinetics of 

the dosage form, and pharmacokinetic modeling is applied only for dissolution controlled 

delivery systems [68]. However most of the dosage forms being developed in recent 

times aim at improving the solubility and dissolution kinetics of dosage forms and the 

drug diffusion through the polymer matrix plays a major role in drug delivery process. 

Thus the model developed in this work throws light at how such a dosage system would 

be behave at different absorption rates. 
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CHAPTER 10 

FUTURE STUDIES 

 

 

1. Modeling of Drug Release from Rectangular and Cylindrical matrix systems 

 

One of the objectives of the future studies will be to expand or extend the models 

developed in this work to non spherical matrix systems. Drug delivery systems in 

cylindrical matrices (e.g. needle shaped etc.) are common in literature and depending on 

application are preferred over spherical matrix systems. Similarly polymer films 

containing drug (e.g. transdermal patch or buccal, muccoadhesive strips) also have a wide 

range of application. Mathematical modeling of drug release from such systems has been 

studied widely in literature. However, the affect of absorption rate, diffusion rate and 

dissolution rate on these matrix types has not yet been explored. It will also be interesting 

to see how the geometry in conjunction with physiological and physiochemical 

parameters affects the drug release process. 

 

2. Drug Release from Thin Film Drug Delivery Systems (ERC related work) 

 

Future studies will also focus on attempting to apply the developed models to 

experimental data for drug release from polymer films or polymer thin film strips.  As 

mentioned previously polymer thin films have a wide range of applications and 

depending on the type of polymer used, the drug release mechanism can be manipulated, 

the diffusion rate can be controlled etc. In the ERC- NSF funded project at NJIT efforts 

are currently being made for development of polymer thin films containing dispersed 

BCS class II drug nano particle. By varying the thickness of the film the drug loading and 

polymer content vary and thus the release mechanism can also vary. As the drug 
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compounds have low solubility, dissolution might also become a rate controlling 

mechanism depending on the drug loading of the system.  

 

3. Analysis of Results 

Further analysis has to be done for the results obtained in Chapters 4 through 8. The 

effect of each parameter value (B, M and N) on the drug release behavior is to be 

investigated in depth. It is also of interest to compare the drug release behavior for sink 

and non sink conditions (with and without inclusion of absorption rate). 

Finally, it is a common notion to represent drug release profiles as a ratio of 
M

M t . 

All the results obtained in this work have been represented as a ratio of drug released to 

initial drug present within the system. These results have to be recast in terms of the mass 

ratio. 
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APPENDIX A 

Numerical Methods 
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APPENDIX B 

 

MATLAB Code 

 

 
clear 
clc 
clear all 
%-------------------Constants------------------------------------ 
phi2 = 5.205152486; %M 
phi1 = 9.93E-01;  %N 
B = 0.30922449; 
thb = .2; %Theta B 
%----------------------------------------------------------------- 
N = 321; %Number of nodes 

  
dx=1/(N-1); %Step size 

  
u0 = zeros(2*N+1,1); %Initial Condition at t=0 for u  

  
%Initial Condition at t=0 for w 
for i=(N+2):(2*N+1) 
    u0(i)=1; 
end 

  
global x %Array of x values 
for i=1:N 
    x(i) = (i-1)*dx; 
end 

  
options = odeset('RelTol',1e-6,'AbsTol',1e-6); %Error tolerance 

  
tstep = (0:.0001:.02); %Time step 

  
%Calls ODE Solver 
[t,u] = ode15s(@ode_uvw,tstep,u0,options,dx,N,B,phi2,phi1,thb); 

  
%Extracts V from u matrix 
V1 = u(1:end,N); 

  
%Extracts U from u matrix 
U1 = u(1:end,1:N); 

  
plot(t(1:end),V1(1:end,1)) 
title(['Concentration of Dissolved Drug outside Sphere w/ step size of 

',num2str(dx)]); 
ylabel('V(tao)') 
xlabel('tao') 
legend(['B = ',num2str(B),', phi1 = ',num2str(phi1),', 

phi2=',num2str(phi2)]) 
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function dt=ode_uvw(t,u,dx,N,B,phi2,phi1,thb) 

  
global x %Array of x values 

  
dt = zeros(2*N+1,1); %Initiates Size of dt 

  
%In matrix, u is represented from i=1 to i=N 
%w is represented from i = N+2 to i = 2N +1 

  
%Solves for u when i=1 
dt(1) = 3*((2*u(2)-2*u(1))/(dx^2))+((phi1)*((u(N+2))^(2/3))*(thb-

u(1))); 

  
%Solves for w when i=1 
dt(N+2) = ((-phi1)*((u(N+2))^(2/3)))*(thb-u(1));    

  
%Solves for inner nodes of u and w 
for i=2:N-1 
    %u(i) Equation: 
    dt(i) = ((u(i-1)-2*u(i)+u(i+1))/(dx^2))+((2/x(i))*((u(i+1)-u(i-

1))/(2*dx)))+(phi1*((u(N+1+i))^(2/3))*(thb-u(i))); 

     
    %w(i) Equation: 
    dt(N+1+i) = (-phi1*((u(N+1+i))^(2/3))*(thb-u(i)));     
end 

  
%Solves for u/v when i=N 
dt(N) = (-phi2)*(u(N))-(3/B)*((3*u(N)-4*u(N-1)+u(N-2))/(2*dx)); 

  
%Solves for W when i=N 
dt(2*N+1) = (-phi1*((u(2*N+1))^(2/3))*(thb-u(N))); 
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