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ABSTRACT

CONFIDENCE BANDS FOR SURVIVAL FUNCTIONS UNDER
SEMIPARAMETRIC RANDOM CENSORSHIP MODELS

by
Peixin Zhang

In medical reports point estimates and pointwise confidence intervals of parameters

are usually displayed. When the parameter is a survival function, however, the

approach of joining the upper end points of individual interval estimates obtained

at several points and likewise for the lower end points would not produce bands that

include the entire survival curve with a given confidence. Simultaneous confidence

bands, which allow confidence statements to be valid for the entire survival curve,

would be more meaningful.

This dissertation focuses on a novel method of developing one-sample confidence

bands for survival functions from right censored data. The approach is model-

based, relying on a parametric model for the conditional expectation of the censoring

indicator given the observed minimum, and derives its chief strength from easy

access to a good-fitting model among a plethora of choices currently available for

binary response data. The substantive methodological contribution is in exploiting

an available semiparametric estimator of the survival function for the one-sample

case to produce improved simultaneous confidence bands. Since the relevant limiting

distribution cannot be transformed to a Brownian Bridge unlike for the normalized

Kaplan–Meier process, a two-stage bootstrap approach that combines the classical

bootstrap with the more recent model-based regeneration of censoring indicators

is proposed and a justification of its asymptotic validity is also provided. Several

different confidence bands are studied using the proposed approach. Numerical

studies, including robustness of the proposed bands to misspecification, are carried

out to check efficacy. The method is illustrated using two lung cancer data sets.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

This research seeks to investigate a novel approach of constructing simultaneous

confidence bands (SCBs) for survival functions from right censored data. In medical

reports it is typical to display the estimate of a survival curve along with pointwise

confidence intervals, which are two curves one of which connects the upper endpoints

and the other connects the lower end points of interval estimates obtained at several

points. It is not possible to make confidence statements for the entire survival curve

with such intervals, however. SCBs do not have this problem and hence may be more

meaningful to report. Recent advances offer the prospect of producing SCBs with

improved coverage and which are potentially more informative than existing ones

based on the Kaplan–Meier (KM) [32] estimator and its large sample properties. We

implement such a new procedure for the one-sample setting.

SCBs, which were first applied to linear models [47, 57], are random regions

within which an entire curve to be estimated lies with a pre-specified probability.

Subsequently, SCBs have been obtained for generalized linear models [54, 43], isotonic

or convex functions [16], regression curves [33, 26, 53, 58, 9], distribution functions

[5, 25], density functions [45], receiver operating characteristic curves [27], isotonic

dose-response curves [34], load curves [4], hazard rates [8], and the additive regression

model [59], among others.

In the analysis of censored-time-to-event data, special attention has been devoted

to obtaining SCBs for the cumulative hazard and survival functions, some of them

based on empirical likelihood as well [23, 28, 18, 42, 1, 12, 6, 30, 36, 24, 29, 35, 40];

or for the difference/ratio of two survival functions [44, 61, 39]. In the one-sample

1
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setting of the random censorship model the data are n independent and identically

distributed (i.i.d) copies of (Z, δ), where Z = min(T, C), T is the failure time of

interest, C is an independent censoring variable, and δ = I(T ≤ C) is the censoring

indicator. Significantly, however, all existing methods for this setting employ the

KM estimator to develop SCBs for the survival function S(t) = P (T > t). Some

recent advances indicate that improved SCBs can be obtained through an alternative

approach, which has not yet been investigated and implemented.

1.2 Semiparametric Random Censorship Models

The alternative approach that we implement recognizes that one or more good-

fitting models for m(t), the conditional expectation of δ given Z = t, are available

from the literature on binary response data and may be utilized for improved SCB

construction. Indeed, choices such as logistic, probit, complementary log-log, and

generalized proportional hazards, among others, may be investigated for zeroing-

in on an apt model for m(t); see, for example, [11, 10]. Semiparametric random

censorship models (SRCMs) exploit this facility to replace each observed δ with

its estimated conditional expectation, so that the censoring indicator δ figures in

subsequent analysis only through its surrogate, namely the estimated m(t). Thus,

SRCMs derive their rationale from their ability to gainfully utilize parametric ideas

within the (nonparametric) random censorship environment. Indeed, when the model

for m(t) is correctly chosen, asymptotically, the resulting SRCM-based estimator of

S(t) is more efficient than the KM estimator [13], and so we expect this efficiency

to reflect in improved SRCM-based SCBs for S(t). Unlike for the standard random

censorship model, the SRCM approach is flexible enough to include missing censoring

indicators as well with no additional effort, which may be an added plus [48].
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1.3 Two-stage Resampling

The main issue in constructing one-sample SCBs for S(t) lies in the specification

of critical values. It is well known that the scaled KM process converges weakly

to a time-transformed Brownian Bridge [28, 1, 19], using which the percentiles of

its supremum can be obtained from tables calculated for this purpose. This is not

possible with the SRCM approach, however, because the limiting distribution of the

normalized cumulative hazard estimator does not have independent increments. A

similar problem also arises when constructing subject-specific SCBs for S(t), see [36],

who developed simulated-process SCBs for S(t) in the Cox regression framework.

Their rationale was to utilize a representation for the limit of the normalized cumulative

hazard process to produce an approximation whose distribution they generated using

simulation. We employ a different strategy in that we propose and implement a

novel two-stage resampling scheme that is specifically tailored to SRCMs and which

we show produces asymptotically correct critical values for the supremum statistic

leading to improved SCBs for S(t).

In many instances the classical bootstrap allows calibration of percentiles of

intractable distributions. Akritas (1986) [1] and Horváth and Yandell (1987) [31]

showed that the approach [18] of obtaining bootstrap replicates by drawing at random

and with replacement from {(Zi, δi), i = 1, . . . , n} yields asymptotically correct SCBs

for S(t). Sun, Sun, and Diao (2001) [55] used the same approach to derive SCBs for

quantile functions. This approach, however, would be unsatisfactory for obtaining

SRCM-based SCBs, which calls for a resampling mechanism that takes into account

information available in the form of an assumed model for m(t). We propose a

two-stage resampling plan where we combine the classical bootstrap with model-

based regeneration of censoring indicators. Regeneration of binary responses has

been employed in multiple imputations estimation and model checking [38, 56, 14,

49, 50, 15].
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1.4 Proposed Confidence Bands

The range-respecting SCBs that we propose are based on the asymptotic validity

of our bootstrap, which means proving that for almost all samples the suprema

over a certain time interval [0, τ ] of normalized bootstrap processes, from which the

desired critical values will be calibrated, have the same limit distribution as the basic

ones they are intended to approximate. The method of proof involves first deriving

functional central limit theorems for the bootstrap versions of certain basic estimators

and later invoking Gill and Johansen’s (1990) [22] functional delta method to prove

via a series of compactly differentiable mappings the desired asymptotic validity. For

different choices of a weight function we are then able to obtain the approximating

critical values for constructing the SCBs for S(t) on any desired interval [t1, t2] ⊂ [0, τ ],

see Section 3.3.

Our simulation studies focus on two cases one of which is when the model

for m(t) is specified correctly and the second pertains to performance in the face of

misspecification. For the first case we perform comparisons with competing confidence

bands proposed in the literature in terms of measures such as the empirical coverage

probability (ECP), the estimated average enclosed area (EAEA), and the estimated

average width (EAW). The ECP is the proportion of SCBs, computed from several

generated data sets each of a certain sample size, that include S(t) for all t ∈ [t1, t2].

The area enclosed by an SCB is computed as the sum of products of the widths of the

SCB at each point of jump of the estimator of S(t) and the distance between points

of jump. The EAEA is the average of many such quantities. The average width of

an SCB is a weighted average of the widths of the SCB at each jump point weighted

by the jump size of the estimator. The EAW of the SCB is the average of many such

quantities. The numerical study for the case of no misspecification is intended (i)

to validate the proposed SCBs in the sense of providing verification that their ECPs

match the nominal level 1 − α and (ii) to showcase the superiority of the proposed
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SCBs in the sense that they produce smaller EAEAs and EAWs in comparison with

competing SCBs. On the other hand, the numerical robustness study that we report

is to check how the ECP, EAEA, and EAW of the proposed SCBs deviate, with

increased misspecification, from their values when there is no misspecification. As is

typical of such studies, we estimate the parameters from models which are different

from the ones from which the original data are generated.



CHAPTER 2

REVIEW OF EXISTING CONFIDENCE BANDS

It is of interest to compare the proposed SCBs with some of the existing bands based

on the KM estimator. Here we provide a brief review of the various approaches that

have been proposed in the literature.

2.1 Hall–Wellner Band

Hall and Wellner (1980) [28] derived their large-sample SCB based on the asymptotic

property of the KM process

Z∗(t) = n1/2(ŜKM(t)− S(t)), 0 ≤ t ≤ τ.

They showed that for continuous cumulative distribution functions (cdf) F (t) and

G(t), where F (t) = 1−S(t) and G(t) is the cdf for the censoring time C, the limiting

process {Z∗(t)}0≤t≤τ is related to a Brownian bridge process, B0, “by a rescale of

the state space and a monotone transformation of the time axis”. More specifically,

asymptotically,

Z∗(t) =
S(t)

1−K(t)
B0(K(t)), 0 ≤ t ≤ τ,

in distribution, where

K(t) = C(t){1 + C(t)}−1, C(t) =

∫ t

0

(1− F (s))−2 (1−G(s))−1 dF (s).

Defining K̂(t) = Ĉ(t)/(1+ Ĉ(t)), where Ĉ(t) is a certain consistent estimator of C(t),

Hall and Wellner (1980) [28] proved that, with a properly estimated critical value, λ,

6
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as n →∞,

P

(
n1/2

∣∣∣ŜKM(t)− S(t)
∣∣∣ 1− K̂(t)

ŜKM(t)
≤ λ, 0 ≤ t ≤ τ

)

→ P

(
|Z∗(t)| 1−K(t)

S(t)
≤ λ, 0 ≤ t ≤ τ

)
.

It is useful to note that the Hall–Wellner band reduces to the Kolmogorov–Smirnov

band, one of the most well-known bands used with complete data.

2.2 Nair’s Equal Precision Band

Based on the normal approximation of the KM estimator and Greenwood’s variance

formula, one can derive the pointwise confidence interval for S(t) on a fixed t by,

ŜKM(t)± zα/2n
−1/2ŜKM(t)Ĉ(t)1/2, (2.1)

where zα/2 is the 100(1−α/2)% percentile of the standard normal distribution. Nair

(1984) [42] showed that a large-sample SCB can be obtained by replacing zα/2 in (2.1)

by an appropriately larger critical value. Specifically, under the random censorship

model, he proved that for fixed 0 < a < b < 1,

P
(
n1/2|ŜKM(t)− S(t)| ≤ eαŜKM(t)Ĉ(t)1/2,∀t : a ≤ K̂(t) ≤ b

)
→ 1− α,

as n →∞ with eα = eα(a, b) satisfying

P

(
sup

a≤x≤b

|B0(x)|
(x(1− x))1/2

≤ eα

)
= 1− α.

Note that, Nair’s SCB is defined simultaneously on t ∈ [0, τ ] for which a < K̂(t) < b,

and the band width is proportional to the estimated standard deviation at each t. In

this sense, the band has equal precision at all the valid t points. It is also of interest

to note that in the absence of censoring, the equal precision band reduces to

ŜKM(t)± eαn−1/2
(
ŜKM(t)

(
1− ŜKM(t)

))1/2

,
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which is another well-known confidence band in the uncensored case.

2.3 Akritas Band

Akritas (1986) [1] suggested that for the random censorship model, bootstrapping

may be carried out in two different ways [18, 46]. He showed, however, only Efron’s

(1981) [18] approach could be applied to produce SCBs for S(t). Akritas (1986) [1]

derived the weak convergence of the bootstrapped KM process, specifically that

n1/2
(
Ŝ∗KM(t)− ŜKM(t)

) 1− K̂(t)

ŜKM(t)
→ B0(K(t)),

conditionally almost surely on [0, τ ], where Ŝ∗KM denotes the KM estimator based on

the bootstrapped data. As a result, this allows us to choose the critical values from

the bootstrap distribution to construct SCBs. Akritas (1986) [1] demonstrated in

his simulation studies that the SCBs using Efron’s (1981) [18] procedure provide

asymptotically correct convergence for samples even with small sample size and

for discrete data as well. Independently, using different methodologies, Lo and

Singh (1986) [37], and Horváth and Yandell (1987) [31] also proved that Efron’s

bootstrapping approach is correct to estimate the asymptotic distribution of the KM

process. Lo and Singh (1986) [37] established a representation of the KM process as an

i.i.d mean of a set of bounded random variables and gave a corresponding bootstrap

version of the representation. Horváth and Yandell (1987) [31] approximated the

bootstrapped KM process with a Wiener process. In the last two studies, rates of

convergence of their approximations and similar results for the bootstrapped KM

quantile processes were also provided.

2.4 Other Bands

Besides the three most widely used SCBs mentioned above, some other kinds of SCBs

have also been introduced in the literature.
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Efron (1967) [17] noted that asymptotically, the KM process can be transformed

to a standard Brownian motion, or Wiener process, W . Specifically, he showed that

for s ∈ [0, C(τ)],

n1/2
(
ŜKM

(
C−1(s)

)− S
(
C−1(s)

))
/S

(
C−1(s)

) → W (s),

weakly, as n → ∞, where C−1(t) is the inverse of the increasing function, C(t) for

t ∈ [0, τ ]. Based on this version of transformation, instead of the transformation to

Brownian bridge process used by Hall and Wellner (1980) [28], Gillespie and Fisher

(1979) [23] developed their SCB by their proved fact that for fixed c1 < 0, c2 > 0 and

specially chosen d1, d2,

P

(
n1/2 ŜKM(t)

n1/2 + c2 + d2Ĉ(t)
≤ S(t) ≤ n1/2 ŜKM(t)

n1/2 + c1 + d1Ĉ(t)
, 0 ≤ t ≤ τ

)

→ P (c1 + d1s ≤ W (s) ≤ c2 + d2s, 0 ≤ s ≤ C(τ))

= 1− P (c1, d1, c2, d2, C(τ)) ,

as n →∞, where P (c1, d1, c2, d2, C(τ)) denotes the probability that W (s) hits one of

the nonintersecting straight lines, c1 + d1s and c2 + d2s, [3]. Nair (1980) [41] adopted

the same idea to generate a general version of large-sample SCB which releases the

condition of linear boundaries. Both bands fail to reduce to the Kolmogorov–Smirnov

band when there is no censoring. As we can see from previous study, Hall and

Wellner (1980) [28] developed their SCB using the distribution of sup0≤t≤τ |B0(K(t))|;
a parallel approach can be seen in Gill (1980) [21] where he constructs SCB for S(t)

based on the known distribution of sup0≤s≤C(τ) |W (s)|.



CHAPTER 3

NEW SIMULTANEOUS CONFIDENCE BANDS

We denote the distribution function of Z by H(t), its empirical estimator by Ĥ(t),

and assume that H(τ) > 0 where τ > 0. We denote the cumulative hazard function

of T by Λ(t).

3.1 Review of Semiparametric Random Censorship Models

Dikta (1998) [13] first derived a functional central limit theorem for the SRCM-based

estimator Ŝ(t). Here, however, we will employ the following modular procedure for our

derivations. The basic building block is the subdistribution Q(t) = P (Z ≤ t, δ = 1),

which is given by

Q(t) =

∫ t

0

m(s)dH(s). (3.1)

Following Dikta (1998) [13], we specify a parametric model m(t,θ), where θ ∈
Θ ⊂ IRk is the model parameter, which we estimate via maximum likelihood. We

denote the maximum likelihood estimator (MLE) of θ by θ̂ and the model-based

estimator of m(t) by m(t, θ̂). We write Dr(m(t,θ)) for the partial derivative of

m(t,θ) with respect to θr, r = 1, 2, . . . , k, denoting it by Dr(m(t,θ∗)) when it is

evaluated at θ = θ∗. We also write Grad(m(t,θ)) = [D1(t,θ), . . . , Dk(t,θ)]T and

Cθ(t) = Grad(m(t,θ)) (Grad(m(t,θ)))T . When θ = θ0, we denote the matrix

Cθ0(t) by C0(t). Let I(θ0) ≡ I0 = E[C0(Z)/(m(Z, θ0)(1 − m(Z, θ0)))] and let

α(u, v) = (Grad(m(u, θ0)))
T I−1

0 Grad(m(v, θ0)). We denote the second order partial

derivatives by Dr,s(·). Note that the (r, s) element of the information matrix I0 is

given by

ir,s = E

(
Dr(m(Z, θ0))Ds(m(Z, θ0))

m(Z, θ0)(1−m(Z, θ0))

)
. (3.2)

10
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The SRCM-based estimator of Q(t), denoted by Q̂(t), is obtained by replacing

m(s) and H(s) on the right hand side of Equation (3.1) with the estimates m(s, θ̂)

and Ĥ(s) respectively. We can show that Ẑ(t) = n1/2
(
Q̂(t)−Q(t)

)
tends weakly

to a centered Gaussian process Z on [0, τ ], where the covariance structure of Z,

Cov (Z(t1),Z(t2)) is given for 0 ≤ t1 ≤ t2 ≤ τ by

∫ t1

0

m2(x, θ0)dH(x)−Q(t1)Q(t2) +

∫ t2

0

∫ t1

0

α(u, v)dH(u)dH(v). (3.3)

See, for example Subramanian and Bandyopadhyay (2010) [51], where the influence

function for a related process and the expression for its asymptotic variance are both

given.

Writing Ĥ−(t) for Ĥ(t−), the SRCM-based estimator of Λ(t), denoted by Λ̂(t),

is obtained via the following sequence of mappings, see Gill and Johansen (1990) [22]

or Subramanian (2009) [49]:

(Q̂, 1− Ĥ−) →
(

Q̂,
1

1− Ĥ−

)
→

∫

[0,·]

1

1− Ĥ−
dQ̂ ≡ Λ̂. (3.4)

The SRCM-based estimator of S(t), denoted by Ŝ(t), follows via the product integral

mapping:

π
[0,·]

(
1− 1

1− Ĥ−
dQ̂

)
≡ π

[0,·]

(
1− dΛ̂

)
≡ Ŝ. (3.5)

When the model for m(t) is correctly specified, one may use the weak convergence

of the basic bivariate process n1/2(Q̂(t) − Q(t), Ĥ−(t) − H−(t)) ≡ (Ẑ(t), Ĥ(t)) and

appeal to Gill and Johansen’s (1990) [22] functional version of the delta method to

obtain, successively, the weak convergence of each of the intermediate processes in the

above sequence, finally culminating in the weak convergence of Ŵ(t) = n1/2(Ŝ(t) −
S(t)) in D[0, τ ]; see, for example, Subramanian (2009) [49] for an application of this

approach. In particular, Ŵ converges weakly to a centered Gaussian process with
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variance at t, denoted by V (t) (see Equation (1.7) also), given by

S2(t)

[∫ t

0

m(s)

1−H(s)
dΛ(s) +

∫ t

0

∫ t

0

α(u, v)

(1−H(u))(1−H(v))
dH(u)dH(v)

]
. (3.6)

When m(t) is correctly specified, V (t) is no greater than the asymptotic variance of the

Nelson–Aalen estimator of Λ(t) [13]. In this article we demonstrate that this efficiency

of the SRCM-based approach leads to improved SCBs for S(t). Given the plethora

of choices available for fitting binary response data, identifying a suitable model for

m(t) should not be difficult; furthermore, model checking methods for testing the

adequacy of a chosen model for binary response data are also readily available [14].

Therefore, it is clear that the SRCM approach would not involve significant investment

of additional effort. As was noted in the introduction section, however, the limiting

process does not have independent increments, the latter property being crucial for

approximating a scaled version of the normalized survival function process with a

Brownian Bridge process from which desired critical values could be calibrated. To

compute critical values, we now introduce our two-stage resampling procedure and

state our main results.

3.2 Resampling Procedure and Large Sample Justification

We obtain the bootstrap data (Z∗
1 , δ

∗
1), . . . , (Z

∗
n, δ

∗
n) in the following way:

(1) Generate Z∗
i , i = 1, . . . , n from Ĥ(t).

(2) For each i = 1, . . . , n, generate the censoring indicator δ∗i from a Bernoulli

distribution having success probability m(Z∗
i , θ̂).

We write θ̂
∗

for the bootstrap MLE of θ and we let Ĥ∗(t) and Q̂∗(t) denote

the bootstrap versions of Ĥ(t) and Q̂(t) respectively. In turn, Equation (3.4) and

Equation (3.5) then determine the bootstrap versions of the SRCM-based estimators

of Λ(t) and S(t), which we will denote by Λ̂∗(t) and Ŝ∗(t) respectively. Our new

SCBs will be based on large-sample justification of the proposed resampling, which
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involves deriving a new bootstrap version of the functional central limit theorem for

the normalized SRCM-based cumulative hazard and survival function processes. We

prove our result in the form of several technical modules.

We employ some of the notations and regularity conditions introduced by Dikta

et al. (2006) [14]. We let IP n, IEn,Vn, and Covn denote respectively the probability

measure, expectation, variance, and covariance associated with our bootstrap sample.

Write w1(x, θ) = ln(m(x, θ)), w2(x, θ) = ln(1−m(x, θ)), and w(δ, Z, θ) = δw1(Z, θ)+

(1 − δ)w2(Z, θ). Then, the normalized log likelihood function based on the original

data takes the form

ln(θ) =
1

n

n∑
i=1

{δiw1(Zi, θ) + (1− δi)w2(Zi, θ)} ,

Noting that l∗n(θ) is the bootstrap version of ln(θ), we now state some standard

regularity conditions; see [13, 14].

C1 There exists a measurable solution θ̂ ∈ Θ of Grad(ln(θ)) = 0 satisfying θ̂
a.s.−→θ0.

C2 For almost all sample sequences, (Z1, δ1), . . . , (Zn, δn), there exists a measurable

solution θ̂
∗ ∈ Θ of Grad(l∗n(θ)) = 0 such that θ̂

∗ IP n−→θ0.

A1 For 1 ≤ r, s ≤ k, and i = 1, 2, the quantities Dr,s(wi(x, θ)) exist at each θ ∈ Θ, x ∈
IR, and Dr(wi(·, θ)) and Dr,s(wi(·, θ)) are measurable for each θ ∈ Θ. There exists a

neighborhood V (θ0) ⊂ Θ of θ0 and a measurable function M , with E(M2(Z)) < ∞,

such that
∑2

i=1 |Dr,s (wi(x, θ))| +
∑2

i=1 |Dr (wi(x, θ))| ≤ M(x) for all θ ∈ V (θ0),

x ≥ 0, and 1 ≤ r, s ≤ k.

A2 The matrix I0 with elements given by Equation (3.2) is positive definite.

Let Nk(µ,Σ) denote a k-variate normal distribution with mean vector µ and

variance-covariance matrix Σ. We state our first result, which describes a central

limit theorem for the bootstrap version of the MLE θ̂.

Theorem 1 Suppose that Θ ⊂ IRk is connected and open, conditions C1,C2,A1,

and A2 hold, and H is continuous. Under the proposed two-stage resampling, with
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probability 1,

n1/2
(
θ̂
∗ − θ̂

)
= n−1/2

n∑
i=1

I−1
0 Grad(w(δ∗i , Z

∗
i , θ̂)) + oIP n

(1). (3.7)

Furthermore, n1/2
(
θ̂
∗ − θ̂

)
is asymptotically distributed as Nk(0, I−1

0 ) with probability

1.

The proof of Theorem 1, given in the Appendix, uses a standard Taylor’s

expansion of S∗n(θ̂
∗
) ≡ Grad(l∗n(θ̂

∗
)) about θ̂ to obtain an asymptotic representation

for θ̂
∗− θ̂ as the average of Grad(wi(δ

∗
i , Z

∗
i , θ̂)), i = 1, . . . , n, multiplied by Dr,s(l

∗
n(θ))

evaluated at an intermediate value θ̃ joining the line segment connecting θ̂
∗

and θ̂.

Repeated use of a continuity argument and verification of Lindeberg’s condition then

completes the proof.

We next derive a functional central limit theorem for Ẑ∗(t) = n1/2(Q̂∗(t)−Q̂(t))

(Theorem 2 below). Recalling that α(u, v) = (Grad(m(u, θ0)))
T I−1

0 Grad(m(v, θ0)),

we introduce α̂ (u, v) =
(
Grad(m(u, θ̂))

)T

I−1
0 Grad(m(v, θ̂)). It is straightforward

to show that the following processes which figure in the asymptotic representation

for Ẑ∗(t) proved in Theorem 2 below are centered, that is, they have bootstrap

expectation zero:

A∗(t) := A∗(Z∗, t) = m(Z∗, θ̂)1[Z∗≤t] −
∫ t

0

m(x, θ̂)dĤ(x), (3.8)

B∗(t) := B∗(Z∗, δ∗, t) =
δ∗ −m(Z∗, θ̂)

m(Z∗, θ̂)
(
1−m(Z∗, θ̂)

)
∫ t

0

α̂ (x, Z∗) dĤ(x). (3.9)

To prove Theorem 2, we will need some additional regularity conditions which we

state now.

A3 The function m(t,θ) has continuous partial derivatives of second order with respect

to θ and t. Furthermore, for each θ ∈ V (θ0) ⊂ Θ, a neighborhood of θ0,

∥∥∥∥
∫ τ

0

|d (Grad (m(x, θ)))|
∥∥∥∥ ≤ M < ∞.
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A4 For 1 ≤ r ≤ k, [∂m(·, θ)/∂θr]θ=θ0
is Lipschitz on [0, τ ]. This means that for an

appropriate constant c and any x, y ∈ [0, τ ], with H(τ) < 1, the following holds:

∣∣∣∣
∂m(x, θ0)

∂θr

− ∂m(y, θ0)

∂θr

∣∣∣∣ ≤ c |x− y| .

Remark 1 The first part of condition A3 is standard [14]. The second part of

A3 is needed in the proof of Theorem 2 to show that the remainder term is oIP n
(1)

uniformly for t ∈ [0, τ ]; see the remainder term I∗3 (t) occurring at the beginning of

the proof of Theorem 2. It simply requires that the total variation of Dr(m(x, θ)) is

bounded over [0, τ ] for each r = 1, . . . , k.

Remark 2 Condition A4 is also standard [14]. It is needed to prove tightness of a

centered process β∗n(x) defined in the proof of Theorem 3.

Theorem 2 Suppose that Θ ⊂ IRk is connected and open, conditions C1,C2,A1−A4

hold, and H is continuous. Under the proposed two-stage resampling, with probability

1,

Ẑ∗(t) = n−1/2

n∑
i=1

(A∗ (Z∗
i , t) + B∗ (Z∗

i , δ
∗
i , t)) + oIP n

(1). (3.10)

In particular, with probability 1, Ẑ∗ has the same limit distribution as Ẑ.

The proof of Theorem 2 is given in the Appendix. The derived asymptotic

representation for Ẑ∗(t) given by Equation (3.10) is used for verifying finite dimensional

convergence and tightness, and that the limiting covariance structure matches the

expression given by Equation (3.3).

Our final result pertains to a functional central limit theorem for the normalized

bootstrap SRCM-based survival function process, denoted by Ŵ∗(t) = n1/2(Ŝ∗(t) −
Ŝ(t)), which is the bootstrap version of Ŵ(t). First note that, with probability 1, the

bivariate process (Ẑ∗, Ĥ∗) converges weakly to (Z∗,H∗), where (Z∗,H∗) is a bivariate

Gaussian process with the same covariance structure as the bivariate gaussian process
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(Z,H), the latter being the limit distribution of the bivariate process (Ẑ, Ĥ). A

sequence of mappings operated on the basic bivariate process (Ẑ∗, Ĥ∗) produces the

process Ŵ∗. The mappings are compactly differentiable, which by the functional delta

method (see Theorem II.8.1 of Andersen et al. (1993) [2]) allows us to deduce the

weak convergence of Ŵ∗.

Theorem 3 Under the conditions of Theorem 2, with probability 1, Ŵ∗(t) has the

same limit distribution as Ŵ(t).

The proof of Theorem 3 is given in the Appendix. As discussed in section 3.1, the

proof employs Gill and Johansen’s (1990) [22] functional delta method.

Remark 3 Since the supremum of the absolute value of a process on a closed interval,

[0, τ ] in this case, is a continuous mapping, we may deduce from Theorem 3 and the

continuous mapping theorem (see Billingsley (1968) [7]) that with probability 1 both

n1/2 sup
0≤t≤τ

∣∣∣Ŝ(t)− S(t)
∣∣∣ , n1/2 sup

0≤t≤τ

∣∣∣Ŝ∗(t)− Ŝ(t)
∣∣∣

have the same limit distribution, permitting us to calibrate the critical values of the

first from those of the second.

3.3 Proposed Simultaneous Confidence Bands

In the following, qα refers to a generic upper α quantile of the distribution of the

bootstrap processes. We first introduce untransformed SCBs and then develop further

refinements.

Let t1, t2 be such that [t1, t2] ⊂ [0, τ ]. Since, by the results of the preceding

subsection, the processes Ŵ(t) = n1/2(Ŝ(t) − S(t)) and Ŵ∗(t) = n1/2(Ŝ∗(t) − Ŝ(t))

are asymptotically equivalent, their quantiles are approximately equal. This yields

qα satisfying the equation

P ( sup
t1≤t≤t2

|Ŵ∗(t)| ≤ qα) = 1− α. (3.11)
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A 100(1−α)% fixed-width SCB for S(t), referred as “Proposed I” henceforth, is given

by
[
Ŝ(t)− n−1/2qα, Ŝ(t) + n−1/2qα

]
.

Alternatively, let V̂ (t) denote a consistent estimate of V (t), obtained by replacing

S(t), Λ(t), H(t), and θ in Equation (3.6) with their estimates. The processes W2(t) =

Ŵ(t)/(S(t)V (t)1/2) and W ∗
2 (t) = Ŵ∗(t)/(Ŝ(t)V̂ (t)1/2) are asymptotically equivalent,

which yields qα satisfying

P ( sup
t1≤t≤t2

|W ∗
2 (t)| ≤ qα) = 1− α. (3.12)

A 100(1− α)% variable-width SCB for S(t), referred as “Proposed II” henceforth, is

given by
[
Ŝ(t)− n−1/2Ŝ(t)V̂ (t)1/2qα, Ŝ(t) + n−1/2Ŝ(t)V̂ (t)1/2qα

]
.

These SCBs can, however, yield values outside the interval (0, 1) and hence require

truncation.

Let g(t) ≥ 0 denote a bounded weight function on [t1, t2]. We now obtain

range-respecting SCBs over [t1, t2] ⊂ [0, τ ]. Introducing the transformed process

Ψ(t) = n1/2g(t)
{

log
(
− log

(
Ŝ(t)

))
− log (− log (S(t)))

}
,

we note by the functional delta method that Ψ(t) is asymptotically equivalent to

the process U(t) = g(t)Ŵ(t)/(S(t)(log S(t))), which, by our results of the preceding

subsection, can be approximated by the process U∗(t) = ĝ(t)Ŵ∗(t)/(Ŝ(t)(log Ŝ(t))),

based on the bootstrap data, where ĝ(t) is a consistent estimate of g(t). Our choices

for g are: g(t) = S(t) log(S(t)) and g(t) = V (t)−1/2 log S(t), where V (t) is given by

Equation (3.6). For the first choice U∗(t) reduces to Ŵ∗(t) and Equation (3.11) gives

qα. For this case a 100(1− α)% SCB for S(t), referred henceforth as “Proposed III”,
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is given by

[
Ŝ(t)exp (−n−1/2qα/(Ŝ(t) log Ŝ(t))), Ŝ(t)exp (n−1/2qα/(Ŝ(t) log Ŝ(t)))

]
.

For the second choice of g, the process U∗(t) reduces to W ∗
2 (t) and Equation (3.12)

gives qα. A 100(1−α)% SCB for S(t), referred henceforth as “Proposed IV”, is then

given by

[
Ŝ(t)exp (−n−1/2qαV̂ 1/2(t)/ log Ŝ(t)), Ŝ(t)exp (n−1/2qαV̂ 1/2(t)/ log Ŝ(t))

]
.

Note that, Proposed I band was constructed based on the asymptotic distribution

of the process, Ŵ(t) = n1/2(Ŝ(t)−S(t)) under the semiparametric random censorship

models. This is similar to the construction of Hall–Wellner band [28] and Akritas

band [1], both of which were constructed based on the asymptotic distribution of the

KM process, n1/2(ŜKM(t) − S(t)) under the standard random censorship model. In

fact, Akritas (1986) [1] constructed his (nonparametric) bootstrap confidence bands

following the Hall–Wellner approach. From this perspective, Proposed I band can be

actually seen as a semiparametric version of Hall–Wellner band.

Proposed II band was constructed based on the asymptotic distribution of the

normalized process, W2(t) = n1/2(Ŝ(t)−S(t))/(S(t)V (t)1/2) under the semiparametric

random censorship models. This is similar to the construction of Nair’s equal precision

band [42] developed based on the asymptotic distribution of the normalized KM

process, n1/2(ŜKM(t) − S(t))/(S(t)C(t)1/2) under the standard random censorship

model. So, Proposed II band can be actually seen as a semiparametric version of

Nair’s equal precision band.

For Proposed III band in which g(t) = S(t) log(S(t)), based on the delta method,

the process Ψ(t) is asymptotically equivalent to Ŵ(t) from which critical values are

calibrated for constructing SCBs. So, Proposed III band is actually a transformed

version of Proposed I band.
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Similarly, for Proposed IV band in which g(t) = V (t)−1/2 log S(t), the process

Ψ(t) is asymptotically equivalent to W2(t) from which we calibrated critical values to

construct SCBs. So, Proposed IV band is actually a transformed version of Proposed

II band.



CHAPTER 4

NUMERICAL STUDIES

For our simulation and misspecification studies estimates were calculated repeatedly

over 1000 data sets (replications) each with sample size 100. For each simulated data

set of size 100, critical values were estimated based on 500 bootstrap resamples.

4.1 Simulation Studies
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Figure 4.1 Empirical coverage probabilities of several confidence bands for different
censoring rates.

The failure and censoring times are generated from two independent Weibull

distributions respectively, with F (t) = 1 − exp (−(t/β1)
α1), t ≥ 0 and G(t) = 1 −

exp (−(t/β2)
α2), t ≥ 0. Introducing new parameterizations θ1 = (α1β

−α1
1 )/(α2β

−α2
2 )

20
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and θ2 = α2 − α1, and letting θ′ = (θ1, θ2), the true model for the conditional

probability P (δ = 1|Z = t), called the generalized proportional hazards model

(GPHM), is given by m(t,θ) = θ1/(θ1+tθ2), see Dikta (1998) [13]. Taking (α1, β1, β2) =

(2, 3, 4.5) and varying α2 in a fine grid of values between 1.1 and 5.5, the censoring

rates varied between 18% (α2 = 5.5) and 40% (α2 = 1.1). The ECPs of the

proposed and several existing 95% confidence bands are presented in Figure 4.1. The

Proposed I, Proposed III, transformed and untransformed Akritas, and transformed

Hall–Wellner bands perform well achieving the nominal 95% level. The other bands

do not perform as well.
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Figure 4.2 Estimated average widths of several confidence bands for different
censoring rates.

In Figure 4.2, we present the EAWs of the proposed and several existing SCBs

at 95% confidence level. Proposed I and Proposed III perform the best. In particular,

for the untransformed scenario, depending on the censoring rate, the Proposed I SCB



22

0.1 0.2 0.3 0.4 0.5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Censoring Rate

EA
EA

Proposed I

Proposed II

Hall−Wellner

Akritas

Nair’s Equal Precision

Untransformed Bands

0.1 0.2 0.3 0.4 0.5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Censoring Rate

 

Proposed III

Proposed IV

Nair’s Equal Precision

Hall−Wellner

Akritas

Transformed Bands

Figure 4.3 Estimated average enclosed areas of several confidence bands for
different censoring rates.

offers a reduction of between 1.74% and 6.12% in EAW over its nearest competitor,

which is the SCB of Akritas. Likewise for the transformed scenario, depending on the

censoring rate, the Proposed III SCB offers a reduction between 1.72% and 5.02% in

EAW over its nearest competitor, which is also the SCB of Akritas. The Proposed II

and Proposed IV SCBs do not perform well.

Finally, in Figure 4.3, we present the EAEAs of the proposed and several existing

95% SCBs. Proposed I and Proposed III perform the best. In particular, for the

untransformed scenario, depending on the censoring rate, the Proposed I SCB offers

a reduction of between 1.88% and 5.32% in EAEA over its nearest competitor, which is

the SCB of Akritas. Likewise for the transformed scenario, depending on the censoring

rate, the Proposed III SCB offers a reduction between 1.87% and 4.16% in EAEA

over its nearest competitor, which is also the SCB of Akritas. The Proposed II and
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Proposed IV SCBs do not perform well. Therefore, it seems clear that the studentized

processes, may not provide improved untransformed or transformed SCBs.

4.2 Misspecification Studies

For our first misspecification study, the minimum Z was uniform on (0, 1) and we

generated m(x) according to the following complementary log-log model m(x, α) =

1− exp(− exp(α1 +α2x)), where αT = (α1, α2), the parameter α2 was fixed at −5.92,

and the parameter α1 was assigned several values between 3 and 6, giving censoring

rates of between 40% (α1 = 3) and 3% (α1 = 6). Misspecification of m(t) was

introduced by fitting the model m(x, α) = 1− exp(− exp(4 + α2x)) to the generated

data. It may be noted that the misspecification of m(x, α) increases when α1 departs

from 4. Figure 4.4 gives the ECPs of Proposed I, Proposed III, and other competing

95% SCBs for different values of α1. The Proposed II and Proposed IV bands were not

investigated in view of their poor performance when there was no misspecification.

The proposed SCBs provide adequate coverage, comparable to the Hall–Wellner and

Akritas bands.

In Figure 4.5, we present the EAWs of Proposed I, Proposed III, and other

competing 95% SCBs under misspecification, computed over the entire interval [3, 6].

The proposed SCBs outperform their nearest competitor, the Akritas bands. In

particular, for both the transformed and untransformed scenarios, our proposed SCBs

offer a reduction of up to 1.4% over the SCBs of Akritas. Since the proposed and

Akritas bands have comparable coverage over [3, 6], lower EAWs for the proposed

bands may be seen as evidence of their marginal superiority over the Akritas bands,

for the range of α1 values that we have considered.

In Figure 4.6, we present the EAEAs of the proposed and the competing 95%

SCBs. Proposed I and Proposed III perform the best. The proposed SCBs outperform

their nearest competitor, the Akritas bands. Specifically, for both the untransformed
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Figure 4.4 Empirical coverage probabilities of proposed and other currently existing
confidence bands for the first misspecification study.

and transformed scenarios, depending on the censoring rate, our proposed SCBs offer

a reduction of up to 2% over the SCBs of Akritas. Since the proposed and Akritas

bands have comparable coverage, lower EAEAs for the proposed bands may be seen

as evidence of their superiority over the Akritas bands, for the range of α1 values that

we have considered.

For the second misspecification study, to generate the data we employed the

same model as for our simulation study but took α1 = 0.8, β1 = 2/3 and β2 = 10.

We assigned values for α2 in a fine grid between 0.3 and 1.3, which gave censoring

rates from 32% (α2 = 0.3) to 4% (α2 = 1.3). Although the true model was m(t,θ) =

θ1/(θ1 + tθ2), we fit a constant model m(t) = k to the generated data and computed

our proposed SCBs using the estimated misspecified model. It may be noted that

when α2 = 0.8 there is no misspecification, since θ2 = 0 and m reduces to a constant.
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Figure 4.5 Estimated average widths of proposed and other currently existing
confidence bands for the first misspecification study.

Figure 4.7 gives the ECPs of Proposed I, Proposed III, and other competing 95%

SCBs for different values of α2. The Proposed II and Proposed IV bands were not

investigated in view of their poor performance when there was no misspecification. For

values of α2 ∈ [0.55, 1.3], the proposed SCBs provide adequate coverage, comparable

to the Hall–Wellner and Akritas bands. The proposed bands provide poor coverage

for values of α2 lower than 0.55.

In Figure 4.8, we present the EAWs of Proposed I, Proposed III, and other

competing 95% SCBs under misspecification. The proposed bands offer comparable

coverage only for α2 ∈ [0.55, 1.3]. So we focus on this region for following comparisons.

The proposed SCBs outperform their nearest competitor, the Akritas bands. In

particular, for both the untransformed and transformed scenarios, depending on the

censoring rate, our proposed SCBs offer a reduction of up to 10.6% over the SCBs of
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Figure 4.6 Estimated average enclosed areas of proposed and other currently
existing confidence bands for the first misspecification study.

Akritas. Lower EAWs for the proposed bands may be seen as evidence of their clear

superiority over the Akritas bands.

In Figure 4.9, we present the EAEAs of the proposed and the competing 95%

SCBs. The proposed SCBs outperform their nearest competitor, the Akritas bands.

Specifically, for both the untransformed and transformed scenarios, depending on the

censoring rate, our proposed SCBs offer a reduction of up to 10% over the SCBs of

Akritas. Lower EAEAs for the proposed bands may be seen as evidence of their clear

superiority over the Akritas bands.

4.3 Real Example Illustrations

We illustrate the new SCBs through two examples. To facilitate comparisons with

alternative SCBs, the Hall–Wellner, Nair, and Akritas bands are also plotted. The
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Figure 4.7 Empirical coverage probabilities of proposed and other currently existing
confidence bands for the second misspecification study.

objectives of our illustrations are two fold. First, to showcase our methodology as

being able to produce bands that are as informative as existing bands based on the

defacto choice, which is the KM estimator. Our second objective is to convince the

practitioner that obtaining good parametric fits, required by our methodology, is not

a cumbersome activity and that our proposed methodology would indeed offer a viable

and alternative option to existing KM-based bands. These objectives, we feel, can be

achieved using publicly available real data sets. Accordingly, the first data that we

utilize for our illustrations are from a lung cancer study reported by Ying, Jung, and

Wei (1995) [60]; the second data are from a lung cancer study reported by Gatsonis,

Hsieh and Korwar (1985) [20].

A lung cancer study Patients with small cell lung cancer were assigned

randomly to two treatments. The response is the base 10 log failure time, and age
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Figure 4.8 Estimated average widths of proposed and other currently existing
confidence bands for the second misspecification study.

and treatment indicator were the two covariates. The estimation of the censoring

distribution was of particular interest for inverse censoring weighted median regression.

Since censoring was administrative, it is free of the covariate, and the two choices

are the KM and SRCM-based estimators of its distribution. Subramanian and Dikta

(2009) [52] fit the model m(x, θ) = (10x/365)θ2/(θ1 +(10x/365)θ2) to the data (Zi, 1−
δi), i = 1, . . . , n. Here θ = (θ1, θ2)

′, with 10x/365 being just the original failure time

expressed in years. The parameter estimates were reported as θ̂1 = 610 and θ̂2 = 6.01

and the SRCM-based survival function estimator showed good agreement with KM

estimator suggesting that misspecification may not be an issue. They also performed

a formal goodness of fit test, which indicated that the above model was appropriate.

We calculated the SCBs over the interval [t1, t2], where t1 was slightly larger

than 0.2273, the smallest uncensored observation, and t2 was slightly smaller than
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Table 4.1 First Lung Cancer Study Example: Percent Reduction in Width
and Enclosed Area of Proposed over Competing Untransformed Bands
Computed over the Interval [0.2274, 3.6027]

Width Enclosed Area

Proposed Akritas Hall–Wellner Nair Akritas Hall–Wellner Nair

I 3.34% 7.77% 7.65% 3.4% 7.77% 7.65%

II −2.45% 2.25% 2.13% 2.52% 7.07% 4.58%

Table 4.2 First Lung Cancer Study Example: Percent Reduction in
Width and Enclosed Area of Proposed over Competing Transformed Bands
Computed over the Interval [0.2274, 3.6027]

Width Enclosed Area

Proposed Akritas Hall–Wellner Nair Akritas Hall–Wellner Nair

III 3.14% 7.42% −8.71% 2.59% 6.2% −18.47%

IV 15.23% 18.97% 4.86% 21.63% 24.53% 4.68%
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Figure 4.9 Estimated average enclosed areas of proposed and other currently
existing confidence bands for the second misspecification study.

3.6028, the largest uncensored observation. The rationale for such truncation was

to allow fair comparisons with the Hall–Wellner and Nair bands, which cannot be

calculated outside this bound. Tables 4.1 and 4.2 give the percent reduction in

empirical width and enclosed area of the proposed over competing bands. Table

4.1 represents untransformed bands and Table 4.2 is for transformed bands. The

proposed I and IV bands provide more informative bands than each of the Akritas,

Hall–Wellner, and Nair SCBs in terms of the empirical width and enclosed area.

In Figure 4.10 above, we present the KM and SRCM-based estimators of the

censoring distribution, together with Proposed III, Proposed IV, and the transformed

Akritas, Hall–Wellner, and Nair bands. The untransformed SCBs, consisting of

Proposed I, Proposed II, and the other three competing bands, followed nearly the
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Figure 4.10 Transformed simultaneous confidence bands of the survival function
in a lung cancer study.

same pattern as the displayed one except that the irregularity near the lower end of

the “Time” axis was absent.

In Table 4.2, we reported the widths and enclosed areas over the interval

[0.2274, 3.6027]. The poor performance of the Proposed III, transformed Akritas

and Hall–Wellner bands in comparison with Proposed IV and Nair bands may be

seen to be an artifact of the irregularity near the lower end, see Figure 4.10. We now

report figures calculated over the interval [0.6077, 3.6027] in Table 4.3. The Proposed

III bands perform best over this interval.

Second lung cancer study Memorial Sloan-Kettering Institute conducted a

study of the effects of cisplatin based chemotherapy on lung cancer patients. The

data reported by Gatsonis et al. (1985) [20] pertain to survival or censoring times of
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Table 4.3 First Lung Cancer Study Example: Percent Reduction in
Width and Enclosed Area of Proposed over Competing Transformed Bands
Computed over the Interval [0.6077, 3.6027]

Width Enclosed Area

Proposed Akritas Hall–Wellner Nair Akritas Hall–Wellner Nair

III 5.28% 9.77% 11.51% 1.83% 6.52% 9.12%

IV −0.47% 4.29% 6.14% −3.46% 1.49% 4.23%

97, Stage III, non-small cell lung cancer patients who had received no chemotherapy.

Approximately one quarter of the patients were still alive at the end of the study and

the observations on these patients were treated as censored. We performed formal

goodness of fit tests of each of three models for m(x), via the model-based resampling

test of Dikta et al. (2006) [14]. The models were the GPHM given by m(t,θ) =

θ1/(θ1+tθ2), see also the simulation studies section, and the logistic and probit models.

The p-values for the Kolmogorov–Smirnov test, based on 500 bootstrap resamples,

were 0.967, 0.778 and 0.810, respectively. The p-values for the Cramer-vón Mises

test were 0.914, 0.641 and 0.679, respectively. Since all the three models were not

rejected, we used the GPHM for obtaining our parametric fit for m(x).

We constructed the SCBs over the interval [0.991, 22.539]. As for the first

example we present in Tables 4.4 and 4.5 the percent reduction in empirical width

and enclosed area of the proposed over competing bands. Table 4.4 represents

untransformed bands and Table 4.5 is for transformed bands. The proposed IV bands

perform the best.

In Figure 4.11 below we plot the KM and SRCM-based estimators of the survival

function, together with the proposed and other SCBs. Here we report only the

untransformed bands as the patterns were similar for transformed bands.
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Table 4.4 Second Lung Cancer Study Example: Percent Reduction in
Width and Enclosed Area of Proposed over Competing Untransformed
Bands Computed over the Interval [0.991, 22.539]

Width Enclosed Area

Proposed Akritas Hall–Wellner Nair Akritas Hall–Wellner Nair

I −2.82% 1.89% 3.35% 1.53% 6.39% 10.1%

II −2.66% 2.05% 3.50% −1.76% 3.26% 7.1%

Table 4.5 Second Lung Cancer Study Example: Percent Reduction in
Width and Enclosed Area of Proposed over Competing Transformed Bands
Computed over the Interval [0.991, 22.539]

Width Enclosed Area

Proposed Akritas Hall–Wellner Nair Akritas Hall–Wellner Nair

III −1.4% 2.97% −13.52% 2.94% 7.09% −4.61%

IV 14% 17.71% 3.73% 13.64% 17.33% 6.92%

Table 4.6 Second Lung Cancer Study Example: Percent Reduction in
Width and Enclosed Area of Proposed over Competing Transformed Bands
Computed over the Interval [2.99, 22.539]

Width Enclosed Area

Proposed Akritas Hall–Wellner Nair Akritas Hall–Wellner Nair

III −1.5% 3.25% 6.04% 3.90% 8.46% 11.92%

IV −4.52% 0.37% 3.24% −1.69% 3.13% 6.80%
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Figure 4.11 Untransformed simultaneous confidence bands of the survival function
in a second lung cancer study.

The irregularity noted in the first example was found here as well. In Table 4.6,

we report the figures computed over the interval [2.99, 22.539] from which we infer

that the Akritas and Proposed III bands perform equally well.



CHAPTER 5

CONCLUSION

The model-based approach of constructing SCBs for survival curves proposed in this

paper would be a viable alternative to the existing and established paradigm based

on the KM estimator for the one-sample case. In fact, the approach of replacing

the censoring indicator with a model-based estimate of its conditional expectation

given the covariates applies equally well to the one-sample as well as subject-specific

settings and is the first of its kind to be proposed for improved SCB construction for

survival curves. A novel extension that addresses SCBs for subject-specific survival

would require non-trivial analysis and, for this reason, was not pursued in this article.

The proposed approach has sound merit due to the availability of good-fitting models

and good model-fitting procedures for binary response data and would be all the more

attractive because it is expected to produce more informative SCBs for the survival

curve with very little additional effort.

The idea underlying the proposed approach is that parametric specifications,

when employed judiciously, lead to more efficient estimation and inference. A novel

methodology developed in this project is the bootstrap of the SRCM-based survival

function estimator, where the two-stage resampling combines classical bootstrap with

model-based regeneration of the censoring indicators to yield a bootstrap that would

produce asymptotically correct critical values needed for constructing the proposed

SCBs for the one-sample survival curve. This hinges on a new functional central limit

theorems for the normalized cumulative hazard and survival function processes in the

context of semiparametric random censorship.
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APPENDIX A

PROOFS

A.1 Proof of Theorem 1

The normalized bootstrap log likelihood function is given by

l∗n(θ) =
1

n

n∑
i=1

{δ∗i w1(Z
∗
i , θ) + (1− δ∗i )w2(Z

∗
i , θ)}. (1.1)

Let θ̃
∗

denote a point inside the line segment joining θ̂
∗

and θ̂. Write A∗
n(θ̃

∗
) =

(
an

r,s(θ̃
∗
)
)

1≤r,s≤k
, where an

r,s(θ̃
∗
) = [∂2l∗n(θ)/∂θr∂θs]θ=θ̃

∗ = ∂S∗
n(θ)/∂θ|θ=θ̃

∗ for 1 ≤
r, s ≤ k. A Taylor expansion of S∗

n(θ̂
∗
) = Grad(l∗n(θ̂

∗
)) ≡ 0 about θ̂ leads to θ̂

∗− θ̂ =

−
(
A∗

n(θ̃
∗
)
)−1

· S∗
n(θ̂). The j-th element of the vector is given by

1

n

n∑
i=1

(
δ∗i

[
∂w1(Z

∗
i , θ)

∂θj

]

θ=θ̂

+ (1− δ∗i )
[
∂w2(Z

∗
i , θ)

∂θj

]

θ=θ̂

)

=
1

n

n∑
i=1

[
∂w(δ∗i , Z

∗
i , θ)

∂θj

]

θ=θ̂

,

from which we have

θ̂
∗ − θ̂ = −

(
A∗

n(θ̃
∗
)
)−1

· 1

n

n∑
i=1

Grad
(
w(δ∗i , Z

∗
i , θ̂)

)
. (1.2)

It remains to prove that, with probability 1, A∗
n(θ̃

∗
) = −I0 + oIP n

(1) and then

derive the asymptotic normality of the average displayed above. Using conditions C1

and C2, by Markov’s inequality, for any ε > 0 and 1 ≤ r, s ≤ k,

IP n

(
|an

r,s(θ̃
∗
)− an

r,s(θ0)| > ε
)
≤ 1

ε
IEn

(
sup

θ∈Vγ(θ0)

∣∣an
r,s(θ)− an

r,s(θ0)
∣∣
)

+ oIP n
(1),
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where Vγ(θ0) is γ-neighborhood of θ0. The expectation on the right is bounded by

1

n

n∑
i=1

IEn

(
sup

θ∈Vγ(θ0)

∣∣∣∣∣
∂2w1(Z

∗
i , θ)

∂θr∂θs

−
[
∂2w1(Z

∗
i , θ)

∂θr∂θs

]

θ=θ0

∣∣∣∣∣

+ sup
θ∈Vγ(θ0)

∣∣∣∣∣
∂2w2(Z

∗
i , θ)

∂θr∂θs

−
[
∂2w2(Z

∗
i , θ)

∂θr∂θs

]

θ=θ0

∣∣∣∣∣
)

=
1

n

n∑
j=1

(
sup

θ∈Vγ(θ0)

∣∣∣∣∣
∂2w1(Zj, θ)

∂θr∂θs

−
[
∂2w1(Zj, θ)

∂θr∂θs

]

θ=θ0

∣∣∣∣∣

+ sup
θ∈Vγ(θ0)

∣∣∣∣∣
∂2w2(Zj, θ)

∂θr∂θs

−
[
∂2w2(Zj, θ)

∂θr∂θs

]

θ=θ0

∣∣∣∣∣
)

which, by the strong law of large numbers (SLLN), tends with probability 1 to

E

{
sup

θ∈Vγ(θ0)

(∣∣∣∣∣
∂2w1(Z, θ)

∂θr∂θs

−
[
∂2w1(Z, θ)

∂θr∂θs

]

θ=θ0

∣∣∣∣∣

+

∣∣∣∣∣
∂2w2(Z, θ)

∂θr∂θs

−
[
∂2w2(Z, θ)

∂θr∂θs

]

θ=θ0

∣∣∣∣∣

)}
.

When γ → 0, the above expectation goes to 0 by Lebesgue’s theorem. Since γ is

arbitrary, we conclude that with probability 1, A∗
n(θ̃

∗
) = A∗

n(θ0)+oIP n
(1). Furthermore,

for 1 ≤ r, s ≤ k, we have that IEn

(
a∗r,s(θ0)

)
= IEn

(
[∂2l∗n(θ)/∂θr∂θs]θ=θ0

)
, so that

IEn

(
a∗r,s(θ0)

)

=
1

n

n∑
i=1

IEn

(
δ∗i

[
∂2w1(Z

∗
i , θ)

∂θr∂θs

]

θ=θ0

+ (1− δ∗i )
[
∂2w2(Z

∗
i , θ)

∂θr∂θs

]

θ=θ0

)

= IEn

(
δ∗

[
∂2w1(Z

∗, θ)

∂θr∂θs

]

θ=θ0

+ (1− δ∗)
[
∂2w2(Z

∗, θ)

∂θr∂θs

]

θ=θ0

)

= IEn

(
−

(
δ∗

m2(Z∗, θ0)
+

1− δ∗

(1−m(Z∗, θ0))2

)[
∂m(Z∗, θ)

∂θr

∂m(Z∗, θ)

∂θs

]

θ=θ0

+

(
δ∗

m(Z∗, θ0)
− 1− δ∗

1−m(Z∗, θ0)

)[
∂2m(Z∗, θ)

∂θr∂θs

]

θ=θ0

)
.

The second term has conditional expectation given Z∗ equal to zero. Using iterated

expectation with conditioning on Z∗, it follows by the SLLN that, with probability
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1,

IEn

(
a∗r,s(θ0)

)
= − 1

n

n∑
i=1

[(∂m(Zi, θ)/∂θr)(∂m(Zi, θ)/∂θs)]θ=θ0

m(Zi, θ0)(1−m(Zi, θ0))

→ −E

(
[(∂m(Z, θ)/∂θr)(∂m(Z, θ)/∂θs)]θ=θ0

m(Z, θ0)(1−m(Z, θ0))

)
≡ −ir,s.

Therefore, Chebyshev’s inequality and A1 yield that, A∗
n(θ̃

∗
) = −I0 + oIP n

(1).

To prove the asymptotic normality of the average displayed in Equation (1.2),

note that for i = 1, 2, . . . , n,

[
∂w(δ∗i , Z

∗
i , θ)

∂θr

]

θ=θ̂

=

(
δ∗i

m(Z∗
i , θ̂)

− 1− δ∗i
1−m(Z∗

i , θ̂)

)[
∂m(Z∗

i , θ)

∂θr

]

θ=θ̂

,

which, using iterated expectation with conditioning on Z∗
i , has mean 0 with probability

1, and hence Grad
(
w(δ∗i , Z

∗
i , θ̂)

)
is centered for each i = 1, 2, . . . , n. Furthermore,

for fixed ã = (a1, a2, . . . , ak)
′ ∈ IRk, we can show that with probability 1,

Vn

(
n−1/2

n∑
i=1

ã′Grad
(
w(δ∗i , Z

∗
i , θ̂)

))
→ ã′I0ã. (1.3)

Indeed, the term on the left hand side of Equation (1.3) can be expressed as

1

n

n∑
i=1

Vn

(
ã′Grad

(
w(δ∗i , Z

∗
i , θ̂)

))
= Vn

(
ã′Grad

(
w(δ∗, Z∗, θ̂)

))

= IEn

((
ã′Grad

(
w(δ∗, Z∗, θ̂)

))2
)

,

which equals

∑

1≤r,s≤k

arasIEn

((
δ∗

m2(Z∗, θ̂)
+

1− δ∗

1−m2(Z∗, θ̂)

)[
∂m(Z∗, θ)

∂θr

∂m(Z∗, θ)

∂θs

]

θ=θ̂

)
.

Using iterated expectation with conditioning on Z∗, the expectation IEn above becomes

1

n

n∑
i=1

[(∂m(Zi, θ)/∂θr)(∂m(Zi, θ)/∂θs)]θ=θ̂

m(Zi, θ̂)(1−m(Zi, θ̂))

→ E

(
[(∂m(Z, θ)/∂θr)(∂m(Z, θ)/∂θs)]θ=θ0

m(Z, θ0)(1−m(Z, θ0))

)
= ir,s,
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with probability 1 as n →∞, by condition C1 and the SLLN, proving Equation (1.3).

It remains to verify Lindeberg’s condition. That is, we need to prove that for every

ε > 0, with probability 1,

Ln(ε)

=
1

n

n∑
i=1

IEn




(
ã′Grad(m(Z∗

i , θ̂))
)2 (

δ∗i −m(Z∗
i , θ̂)

)2

m2(Z∗
i , θ̂)

(
1−m(Z∗

i , θ̂)
)2 1[∣∣∣∣∣

ã′Grad(m(Z∗
i

,θ̂))

m(Z∗
i

,θ̂)(1−m(Z∗
i

,θ̂))

∣∣∣∣∣>n1/2ε

]




= IEn




(
ã′Grad(m(Z∗, θ̂))

)2 (
δ∗ −m(Z∗, θ̂)

)2

m2(Z∗, θ̂)
(
1−m(Z∗, θ̂)

)2 1[∣∣∣∣
ã′Grad(m(Z∗,θ̂))

m(Z∗,θ̂)(1−m(Z∗,θ̂))

∣∣∣∣>n1/2ε

]


 → 0.

Using iterated expectation with conditioning on Z∗, we have that,

Ln(ε)

= IEn




(
ã′Grad(m(Z∗, θ̂))

)2 (
δ∗ −m(Z∗, θ̂)

)2

m2(Z∗, θ̂)
(
1−m(Z∗, θ̂)

)2 1[∣∣∣∣
ã′Grad(m(Z∗,θ̂))

m(Z∗,θ̂)(1−m(Z∗,θ̂))

∣∣∣∣>n1/2ε

]




= IEn




(
ã′Grad(m(Z∗, θ̂))

)2

m(Z∗, θ̂)
1[|ã′Grad(w1(Z∗,θ̂))|>n1/2ε]

+

(
ã′Grad(m(Z∗, θ̂))

)2

1−m(Z∗, θ̂)
1[|ã′Grad(w2(Z∗,θ̂))|>n1/2ε]




=
1

n

n∑
i=1




(
ã′Grad(m(Zi, θ̂))

)2

m(Zi, θ̂)
1[|ã′Grad(w1(Zi,θ̂))|>n1/2ε]

+

(
ã′Grad(m(Zi, θ̂))

)2

1−m(Zi, θ̂)
1[|ã′Grad(w2(Zi,θ̂))|>n1/2ε]




=
1

n

n∑
i=1

∑

1≤r,s≤k

aras
[(∂m(Zi, θ)/∂θr)(∂m(Zi, θ)/∂θs)]θ=θ̂

m(Zi, θ̂)
(
1−m(Zi, θ̂)

)

×
((

1−m(Zi, θ̂)
)

1[|ã′Grad(w1(Zi,θ̂))|>n1/2ε] + m(Zi, θ̂)1[|ã′Grad(w2(Zi,θ̂))|>n1/2ε]

)
.
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The remainder of the proof is analogous to Dikta et al. (2006) [14]. By condition

C1, θ̂ → θ0 with probability 1. We apply condition A1 and the Cauchy–Schwarz

inequality to bound

Ln(ε) ≤ 2

n

n∑
i=1

∑

1≤r,s≤k

|ar||as|M2(Zi)1[‖ã‖
√

kM(Zi)>n1/2ε].

Now, fixing λ > 0 and using SLLN, we have that for properly selected c < ∞,

lim sup
n→∞

Ln(ε) ≤ cE
(
M2(Z)1[M(Z)>λ]

)
,

with probability 1. By condition A1, however, the right hand side of the inequality

above tends to 0 as λ → ∞. Therefore, Lindeberg’s condition is finally verified.

It now follows that asymptotically, n1/2
(
θ̂
∗ − θ̂

)
and n1/2

(
θ̂ − θ0

)
have the same

distribution.

A.2 Proof of Theorem 2

We can write Ẑ∗(t) := n1/2(Q̂∗(t)− Q̂(t)) = I∗1 (t) + I∗2 (t) + I∗3 (t), where

I∗1 (t) = n1/2

∫ t

0

m(x, θ̂)d
(
Ĥ∗(x)− Ĥ(x)

)
≡ n−1/2

n∑
i=1

A∗
i (t),

I∗2 (t) = n1/2

∫ t

0

(
m(x, θ̂

∗
)−m(x, θ̂)

)
dĤ(x),

I∗3 (t) = n1/2

∫ t

0

(
m(x, θ̂

∗
)−m(x, θ̂)

)
d

(
Ĥ∗(x)− Ĥ(x)

)
.

We will denote by θ̃
∗

a point on the line segment joining θ̂
∗

and θ̂, with the

understanding that it will change with each application of Taylor’s or the mean value

theorems. We have

I∗2 (t) = n1/2

∫ t

0

(
Grad

(
m(x, θ̂)

))T (
θ̂
∗ − θ̂

)
dĤ(x)

+ n1/2 1

2

∑

1≤r,s≤k

∫ t

0

[
∂2m(x, θ)

∂θr∂θs

]

θ=θ̃
∗

(
θ̂∗r − θ̂r

)(
θ̂∗s − θ̂s

)
dĤ(x).
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We apply Theorem 1 to deduce that the first term of I∗2 (t) above can be expressed as

the sum of the following centered term given the original data plus a remainder term

oIP n
(1):

n−1/2

n∑
i=1

δ∗i −m(Z∗
i , θ̂)

m(Z∗
i , θ̂)

(
1−m(Z∗

i , θ̂)
)

∫ t

0

α̂ (x, Z∗
i ) dĤ(x) ≡ n−1/2

n∑
i=1

B∗
i (t),

uniformly for t ∈ [0, τ ]. By conditions C1 − A1 and Theorem 1 the supremeum

over [0, τ ] of the second term of I∗2 (t) is O
(
n1/2‖θ̂∗ − θ̂‖2IEn (M(Z∗))

)
= oIP n

(1),

uniformly for t ∈ [0, τ ].

We next show that I∗3 (t) = oIP n
(1) uniformly for t ∈ [0, τ ]. The mean value

theorem yields

I∗3 (t) = n1/2(θ̂
∗ − θ̂)T

∫ t

0

Grad
(
m(x, θ̃

∗
)
)

d
(
Ĥ∗(x)− Ĥ(x)

)
.

After integration by parts it follows from Theorem 1 and the Glivenko–Cantelli lemma

that, uniformly for t ∈ [0, τ ],

I∗3 (t) = n1/2(θ̂
∗ − θ̂)

∫ t

0

(
Ĥ∗(x)− Ĥ(x)

)
d

(
Grad

(
m(x, θ̃

∗
)
))

+ oIP n
(1).

By condition A3, the leading term is

O

(
n1/2‖θ̂∗ − θ̂‖

∥∥∥∥
∫ τ

0

∣∣∣d
(
Grad

(
m(x, θ̃

∗
)
))∣∣∣

∥∥∥∥ ‖Ĥ∗ − Ĥ‖
)

= oIP n
(1),

uniformly for t ∈ [0, τ ], by the Glivenko–Cantelli lemma and Theorem 1. Therefore,

for t ∈ [0, τ ],

Ẑ∗(t) = n−1/2

n∑
i=1

[A∗
i (t) + B∗

i (t)] + oIP n
(1) = γ∗n(t) +

∫ t

0

β∗n(x)dĤ(x) + oIP n
(1),

where γ∗n(t) = n−1/2
∑n

i=1 A∗
i (t) and

β∗n(x) = n−1/2

n∑
i=1

δ∗i −m(Z∗
i , θ̂)

m(Z∗
i , θ̂)

(
1−m(Z∗

i , θ̂)
) α̂ (x, Z∗

i ) .
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The weak convergence of Ẑ∗(t) in D[0, τ ] would follow from the continuous mapping

theorem and the weak convergence in (D[0, τ ])2 of (γ∗n, β
∗
n). Finite dimensional

convergence to a multivariate normal distribution, with probability 1, can be shown

by verifying Lindeberg’s condition as in the proof of Theorem 1. Tightness of γ∗n and

β∗n under the probability measure IP n follows as in lemma 3.13 of Dikta (1998) [13].

For example, to show the tightness of β∗n, let īr,s denote the (r, s) element of I−1
0 and

write β∗n(x) =
∑

1≤r,s≤k β∗r,sn (x), where

β∗r,sn (x) =


n−1/2

n∑
i=1

δ∗i −m(Z∗
i , θ̂)

m(Z∗
i , θ̂)

(
1−m(Z∗

i , θ̂)
)

[
∂m(Z∗

i , θ)

∂θs

]

θ=θ̂




·̄ir,s
[
∂m(x, θ)

∂θr

]

θ=θ̂

.

By condition A3, the process β∗r,sn ∈ C[0, τ ]. Since for any x1, x2 ∈ [0, τ ] and for any

ε > 0,

IP n (|β∗r,sn (x2)− β∗r,sn (x1)| ≥ ε)

≤ 1

ε2
IEn

(
(β∗r,sn (x2)− β∗r,sn (x1))

2)

= ī2r,s

([
∂m(x2, θ)

∂θr

]

θ=θ̂

−
[
∂m(x1, θ)

∂θr

]

θ=θ̂

)2

×En





 δ∗ −m(Z∗, θ̂)

m(Z∗, θ̂)
(
1−m(Z∗, θ̂)

)
[
∂m(Z∗, θ)

∂θs

]

θ=θ̂




2


≤ c |x2 − x1|2 ,

for a specially chosen positive constant c, the tightness of β∗r,sn follows from condition

C1 and conditions A3 and A4 according to Theorem 12.3 in Billingsley (1968) [7].

So, β∗n is tight in C[0, τ ], which implies tightness in D[0, τ ]. Tightness of γ∗n and β∗n

implies that (γ∗n, β
∗
n) is tight. Therefore we conclude that Ẑ∗ converges weakly to a

centered Gaussian process Z∗ on [0, τ ].
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We now calculate the covariance structure for the limiting process Z∗. Since, for

0 ≤ t1 ≤ t2 ≤ τ , Cov (Z∗(t1),Z∗(t2)) = Var (Z∗(t1)) + Cov (Z∗(t1),Z∗(t2)− Z∗(t1)),
we need to calculate the two components of Cov (Z∗(t1),Z∗(t2)). We first compute

Var(Z∗(t)). We have

Vn (A∗(t)) = IEn

(
m2(Z∗, θ0)1[Z∗≤t] − 2Q̂(t)m(Z∗, θ0)1[Z∗≤t] +

(
Q̂(t)

)2
)

=
1

n

n∑
i=1

m2(Zi, θ0)1[Zi≤t] − 2Q̂(t)
1

n

n∑
i=1

m(Zi, θ0)1[Zi≤t] +
(
Q̂(t)

)2

,

which converges with probability 1 to
∫ t

0
m2(x, θ0)dH(x)−Q2(t) as n →∞. We also

have

Vn (B∗(t)) = IEn




(
δ∗ −m(Z∗, θ̂)

)2

m2(Z∗, θ̂)
(
1−m(Z∗, θ̂)

)2

(∫ t

0

α̂ (x, Z∗) dĤ(x)

)2


 .

To obtain Vn (B∗(t)), recall α̂ (u, v) =
(
Grad(m(u, θ̂))

)T

I−1
0 Grad(m(v, θ̂)) and note

that

(∫ t

0

α̂ (x, Z∗) dĤ(x)

)2

=

∫ t

0

∫ t

0

α̂(u, Z∗)α̂(Z∗, v)dĤ(u)dĤ(v)

=
1

n2

n∑
i=1

n∑
j=1

α̂(Zi, Z
∗)α̂(Z∗, Zj)I(Zi ≤ t)I(Zj ≤ t).

Using iterated expectation with conditioning on Z∗, it follows that Vn (B∗(t)) equals

1

n2

n∑
i=1

n∑
j=1

(
Grad

(
m(Zi, θ̂)

))T

I−1
0 In(θ̂)I−1

0 Grad
(
m(Zj, θ̂)

)
I(Zi ≤ t)I(Zj ≤ t),

where In(θ̂) defined below is a consistent estimator of I0 [That is, In(θ̂)
P−→I0, as n →

∞.]:

In(θ̂) =
1

n

n∑

k=1

Grad
(
m(Zk, θ̂)

)(
Grad

(
m(Zk, θ̂)

))T

m(Zk, θ̂)
(
1−m(Zk, θ̂)

) .
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Therefore, we deduce that, with probability 1,

Vn (B∗(t)) →
∫ t

0

∫ t

0

α(u, v)dH(u)dH(v).

Finally, using iterated expectation with conditioning on Z∗, it is straightforward to

show that Covn(A∗(t), B∗(t)) = 0. Therefore we have that on [0, τ ]

Var (Z∗(t)) =

∫ t

0

m2(x, θ0)dH(x)−Q2(t) +

∫ t

0

∫ t

0

α(u, v)dH(u)dH(v). (1.4)

We now calculate Cov (Z∗(t1),Z∗(t2)− Z∗(t1)). It is straightforward to show

that

Covn (A∗(t1), A∗(t2)− A∗(t1)) = IEn (A∗(t1) (A∗(t2)− A∗(t1)))

=
(
Q̂(t1)

)2

− Q̂(t1)Q̂(t2),

which converges to Q2(t1)−Q(t1)Q(t2) with probability 1. Furthermore,

Covn (B∗(t1), B∗(t2)−B∗(t1)) = IEn (B∗(t1)(B∗(t2)−B∗(t1)))

→
∫ t2

t1

∫ t1

0

α(u, v)dH(u)dH(v),

with probability 1. Using iterated expectation with conditioning on Z∗, we also have

Covn (A∗(t1), B∗(t2)−B∗(t1)) = Covn (B∗(t1), A∗(t2)− A∗(t1)) = 0,

which, along with the derivations above, lead to Cov (Z∗(t1),Z∗(t2)− Z∗(t1)) given

by

Q2(t1)−Q(t1)Q(t2) +

∫ t2

t1

∫ t1

0

α(u, v)dH(u)dH(v). (1.5)

From Equation (1.4) and Equation (1.5), the limiting covariance structure of

Ẑ∗(t) is exactly equal to that of Z(t) given by Equation (3.3). We conclude that both



45

have the same asymptotic distribution and hence are asymptotically equivalent on

[0, τ ].

A.3 Proof of Theorem 3

The mapping φ : (x, y) → (x, u) = (x, 1/(1− y)) is compactly differentiable with

derivative evaluated at (h, k) given by dφ (x, y) · (h, k) = (h, k/(1− y)2) = (h, j).

Apply the functional delta method to deduce that with probability 1 the two bivariate

processes

n1/2

[(
Q̂∗,

1

1− Ĥ∗−

)
−

(
Q̂,

1

1− Ĥ−

)]
, n1/2

[(
Q̂∗,

Ĥ∗

(1− Ĥ−)2

)
−

(
Q̂,

Ĥ

(1− Ĥ−)2

)]

have the same limit distribution. Next, the mapping ψ : (x, u) → v =
∫

[0,·] udx is also

compactly differentiable with derivative evaluated at (h, j) given by dψ(x, u) · (h, j) =
∫

[0,·] jdx +
∫

[0,·] udh = l. Apply the functional delta method again to conclude that

with probability 1 the following two processes have the same limit distribution:

n1/2(Λ̂∗(·)− Λ̂(·)),
∫

[0,·]

Ĥ∗(s)
(1− Ĥ−(s))2

d Q̂(s) +

∫

[0,·]

1

1− Ĥ−(s)
d Ẑ∗(s).

Finally the mapping ξ : v → z =
∏

[0,·] (1− dv), is compactly differentiable with

derivative dξ(v)·l = z
∫

[0,·](z−/z)dl, so, by the functional delta method, with probability

1, the two processes

Ŵ∗(·), −Ŝ(·)
∫

[0,·]

1

1−∆Λ̂(s)

(
Ĥ∗(s)

(1− Ĥ−(s))2
d Q̂(s) +

1

1− Ĥ−(s)
d Ẑ∗(s)

)

have the same limit distribution. Basic calculations show that, with probability 1,

Ŵ∗(·) and

−Ŝ(·)
∫

[0,·]

d Ẑ∗(s) + Ĥ∗(s)dΛ̂(s)

(1−∆Λ̂(s))(1− Ĥ−(s))
≡ −Ŝ(·)

∫

[0,·]

d K̂∗(s)
(1−∆Λ̂(s))(1− Ĥ−(s))
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are asymptotically equivalent, where

K̂∗(t) = Ẑ∗(t) +

∫ t

0

Ĥ∗(s)dΛ̂(s).

Note that Theorem 2 gives the limiting covariance structure of Ẑ∗, see Equation (3.3)

for the final expression. From Theorem 2 we also have Ẑ∗(t) = A∗(t)+B∗(t)+oIP n
(1).

Writing

C∗(t) =

∫ t

0

(I(Z∗ < s)− Ĥ−(s))dΛ̂(s),

the following expressions can be verified for 0 ≤ t1 ≤ t2 ≤ τ : As n →∞,

Covn (C∗(t1), C∗(t2)) →
∫ t1

0

Λ(s)dQ(s) +

∫ t1

0

(Q(t2)−Q(s))dΛ(s)−Q(t1)Q(t2),

Covn (A∗(t1), C∗(t2)) → −
∫ t1

0

Λ(s)dQ(s) + Q(t1)Q(t2),

Covn (C∗(t1), A∗(t2)) → −
∫ t1

0

(Q(t2)−Q(s))dΛ(s) + Q(t1)Q(t2).

From the above expressions it follows that as n →∞, Covn

(
K̂∗(t1), K̂∗(t2)

)
converges

to

∫ t1

0

m2(x, θ0)dH(x) +

∫ t2

0

∫ t1

0

α(u, v)dH(u)dH(v), (1.6)

Thus, with probability 1, the process Ŵ∗(·) has the limiting covariance structure

V (t1, t2) given by

∫ t1

0

m2(s, θ0)

(1−H(s))2dH(s) +

∫ t1

0

∫ t2

0

α(u, v)

(1−H(u)) (1−H(v))
dH(v)dH(u), (1.7)

which is exactly the limiting covariance of Ŵ(·), see, example Dikta (1998) [13]. We

conclude that with probability 1 both Ŵ∗ and Ŵ have the same limit distribution

completing the proof.
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[47] H. Scheffé. The Analysis of Variance. New York, Wiley, 1959.

[48] S. Subramanian. The Missing censoring-indicator model of random censorship.
Handbook of Statistics, 23:123–141, 2004a.

[49] S. Subramanian. The multiple imputations based Kaplan-Meier estimator. Statistics
and Probability Letters, 79:1906–1914, 2009.

[50] S. Subramanian. Multiple imputations and the missing censoring indicator model.
Journal of Multivariate Analysis, 102:105–117, 2011.

[51] S. Subramanian and D. Bandyopadhyay. Doubly robust semiparametric estimation
for the missing censoring indicator model. Statistics and Probability Letters,
80:621–630, 2010.

[52] S. Subramanian and G. Dikta. Inverse censoring weighted median regression.
Statistical Methodology, 6:594–603, 2009.

[53] J. Sun and C. Loader. Simultaneous confidence bands for linear regression and
smoothing. The Annals of Statistics, 22:1328–1345, 1994.

[54] J. Sun, C. Loader, and W. P. McCormick. Confidence bands in generalized linear
models. The Annals of Statistics, 28:429–460, 2000.

[55] Y. Sun, S. Sun, and Y. Diao. Smooth quantile processes from right censored data and
construction of simultaneous confidence bands. Communications in Statistics –
Theory and Methods, 30:707–727, 2001.

[56] A. A. Tsiatis, M. Davidian, and B. McNeney. Multiple imputation methods for testing
treatment differences in survival distributions with missing cause of failure.
Biometrika, 89:238–244, 2002.

[57] J. Tukey. The Problem of Multiple Comparisons. Unpublished Manuscript, Princeton
Univ., 1953.

[58] Y. Xia. Bias-corrected confidence bands in nonparametric regression. Journal of the
Royal Statistical Society Series B, 60:797–811, 1998.

[59] L. Yang. Confidence band for additive regression model. Journal of Data Science,
6:207–217, 2008.

[60] Z. Ying, S. Jung, and L. J. Wei. Survival analysis with median regression models.
Journal of the American Statistical Association, 90:178–184, 1995.



51

[61] M. J. Zhang and J. P. Klein. Confidence bands for the difference of two survival
curves under proportional hazards model. Lifetime Data Analysis, 7:243–254,
2001.


	Confidence bands for survival functions under semiparametric random censorship models
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Review of Existing Confidence Bands
	Chapter 3: New Simultaneous Confidence Bands
	Chapter 4: Numerical Studies
	Chapter 5: Conclusion
	Appendix A: Proofs
	References

	List of Tables
	List of Figures

