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ABSTRACT

MARKOVIAN AND STOCHASTIC DIFFERENTIAL EQUATION BASED

APPROACHES TO COMPUTER VIRUS PROPAGATION DYNAMICS

AND SOME MODELS FOR SURVIVAL DISTRIBUTIONS

by
Lianzhe Xu

This dissertation is divided in two Parts. The first Part explores probabilistic modeling

of propagation of computer ‘malware’ (generally referred to as ‘virus’) across a network

of computers, and investigates modeling improvements achieved by introducing a

random latency period during which an infected computer in the network is unable

to infect others. In the second Part, two approaches for modeling life distributions in

univariate and bivariate setups are developed.

In Part I, homogeneous and non-homogeneous stochastic susceptible-exposed-

infectious-recovered (SEIR) models are specifically explored for the propagation of

computer virus over the Internet by borrowing ideas from mathematical epidemiology.

Large computer networks such as the Internet have become essential in today’s

technological societies and even critical to the financial viability of the national and

the global economy. However, the easy access and widespread use of the Internet

makes it a prime target for malicious activities, such as introduction of computer

viruses, which pose a major threat to large computer networks. Since an understandi-

ng of the underlying dynamics of their propagation is essential in efforts to control

them, a fair amount of research attention has been devoted to model the propagation

of computer viruses, starting from basic deterministic models with ordinary differential

equations (ODEs) through stochastic models of increasing realism.

In the spirit of exploring more realistic probability models that seek to explain

the time dependent transient behavior of computer virus propagation by exploiting

the essential stochastic nature of contacts and communications among computers, the

present study introduces a new refinement in such efforts to consider the suitability



and use of the stochastic SEIR model of mathematical epidemiology in the context

of computer viruses propagation. We adapt the stochastic SEIR model to the study

of computer viruses prevalence by incorporating the idea of a latent period during

which computer is in an ‘exposed state’ in the sense that the computer is infected but

cannot yet infect other computers until the latency is over. The transition parameters

of the SEIR model are estimated using real computer viruses data. We develop the

maximum likelihood (MLE) and Bayesian estimators for the SEIR model parameters,

and apply them to the ‘Code Red worm’ data.

Since network structure can be a possibly important factor in virus propagation,

multi-group stochastic SEIR models for the spreading of computer virus in heterogene-

ous networks are explored next. For the multi-group stochastic SEIR model using

Markovian approach, the method of maximum likelihood estimation for model param-

eters of interest are derived. The method of least squares is used to estimate the

model parameters of interest in the multi-group stochastic SEIR-SDE model, based

on stochastic differential equations. The models and methodologies are applied to

Code Red worm data.

Simulations based on different models proposed in this dissertation and determi-

nistic/stochastic models available in the literature are conducted and compared.

Based on such comparisons, we conclude that (i) stochastic models using SEIR

framework appear to be relatively much superior than previous models of computer

virus propagation – even up to its saturation level, and (ii) there is no appreciable

difference between homogeneous and heterogeneous (multi-group) models. The ‘no

difference’ finding of course may possibly be influenced by the criterion used to assign

computers in the overall network to different groups. In our study, the grouping

of computers in the total network into subgroups or, clusters were based on their

geographical location only, since no other grouping criterion were available in the

Code Red worm data.



Part II covers two approaches for modeling life distributions in univariate and

bivariate setups. In the univariate case, a new partial order based on the idea of

‘star-shaped functions’ is introduced and explored. In the bivariate context; a class of

models for joint lifetime distributions that extends the idea of univariate proportional

hazards in a suitable way to the bivariate case is proposed. The expectation-maximiz-

ation (EM) method is used to estimate the model parameters of interest. For the

purpose of illustration, the bivariate proportional hazard model and the method of

parameter estimation are applied to two real data sets.
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CHAPTER 1

OVERVIEW

1.1 Motivation

Since the advent of the world wide web, the Internet continues to play an increasingly

important role in modern society. However, the easy access to the web has made

all participating computers on the net a prime target for malicious attacks. The

continuing upsurge in the incidents of such attacks in the form of computer viruses,

worms and other ‘malware’ have become a major problem for large computer networks,

which then requires considerable amounts of resources and time to be spent recovering

from large-scale attacks. It is believed that a good and reliable model is necessary

to analyze the characteristics of computer virus propagation over the Internet so

that the efficient human countermeasures can be implemented in time. So far,

available studies to understand the characteristics of computer virus prevalence have

employed epidemiological models which are either deterministic or relatively simple

stochastic epidemic models. Thus, motivated by the need for more realistic models

to better understand the underlying dynamics of computer virus propagation, we

explore adapting stochastic susceptible-exposed-infectious-recovered (SEIR) models

by incorporating the idea of a latent period during which the virus in an infected

computer remains dormant. The corresponding analysis of the propagation of a

computer virus in both homogeneous and heterogeneous networks are considered.

The other topic of research presented here concern some aspects of survival

distribution models in reliability. Comparisons between survival distribution are

often facilitated via suitable partial orderings that have been responsible for the

development of several nonparametric aging classes in reliability theory. Motivated by

such considerations, we introduce and explore a new partial ordering. Its properties

1
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among univariate survival distributions which are so ordered are introduced and

investigated.

Proportional hazards among univariate survival distributions are well known

and have played an important role in reliability and survival analysis. In the case

of two component lifetimes which need not be independent, our work on bivariate

proportional hazard models presented here is motivated by the observation that there

is no unique way of extending the idea of proportional hazards to a bivariate setup;

although there are different approaches to such generalization and corresponding

results that are available in the literature. We introduce a framework for a new

formulation of bivariate proportional hazard models that is different from the existing

approaches and explore its properties, basic distribution theory and estimation of

parameters along with its illustration to two real life data sets.

1.2 Outline of the Dissertation

The contents of this dissertation are organized as follows:

The introduction to Part I, stochastic epidemic models and inference for the

propagation of computer virus, is presented in Chapter 2. Chapter 3 reviews computer

virus propagation models in the literature and presents an investigation of epidemic

models and associated statistical inference techniques that have been described in the

literature. Moreover, the background of the ‘Code Red worm’ and the previous works

on its modeling and analysis are summarized.

In Chapter 4, stochastic susceptible-exposed-infectious-recovered (SEIR) model

using a Markovian approach is adapted to the context of computer virus propagation

in homogeneous networks. With a completely observed computer virus epidemic

process, (i.e., both infection times and recovery times are observed during the epidemic

process), the methods of maximum likelihood and Bayesian estimation are used to

estimate the model parameters of interest. The proposed stochastic SEIR model and

the methods of parameter estimations are applied to the Code Red worm data.



3

In reality, a computer virus propagation process is unlikely to be observed

completely. For example, in many cases the actual times when computers are infected

may not be available. With such missing infection times, methods of parameter

estimations discussed in Chapter 4 cannot be implemented. In Chapter 5, we explore

Markov chain Monte Carlo (MCMC) methods for Bayesian inference to deal with the

parameter estimations in cases where the computer virus propagation is only partially

observed. The proposed method is applied to Code Red worm data.

It has been shown that the network structure has impact on computer virus

propagation [66, 67, 86]. Chapter 6 presents a multi-group stochastic SEIR model,

using a Markovian approach for computer virus prevalence in heterogenous networks.

Maximum likelihood estimators of model parameters of interest are developed. Furth-

ermore, for multi-group stochastic SEIR setup, we develop a new model based on

stochastic differential equations (SDE). The models and methods are comparatively

applied to Code Red worm data.

Conclusion and a comparative discussion of the models and methodologies

described are given in Chapter 7. Possible extensions of the research presented in

Part I are indicated.

Chapter 8 introduces the broad theme in Part II of this dissertation, dealing

with some aspects of survival distribution models, followed by a brief description of

expectation-maximization (EM) algorithm used for estimations of parameters of the

bivariate models introduced in Chapter 10.

Chapter 9 explores a new partial ordering called reverse star-ordering among

life distributions on the half line [0,∞). We investigate its properties including the

relationship of this ordering to several other partial orderings and non-parametric life

distribution classes, and its preservation properties under some reliability operations.

Proportional hazard model plays an important role in reliability and survival

analysis. Modeling the joint distribution of possibly mutually dependent lifetimes

which may be considered as multivariate versions of the univariate proportional
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hazard idea, for which there is no unique way to formulate such a notion, is our

final research theme. In Chapter 10, a new bivariate proportional hazard model

is introduced and its distribution theory is explored. In most of cases of such

distributions, the maximum likelihood estimators cannot be expressed in closed explic-

it forms. We describe an expectation-maximization (EM) algorithm to compute the

maximum likelihood estimators of the unknown parameters.

Chapter 11 concludes with a discussion and summary of our work and methodol-

ogy, described in Part II. Possible extensions to the research presented in Part II are

indicated.

1.3 Contributions of the Dissertation

1.3.1 Dynamics of Computer Virus Propagation

We adapt the stochastic susceptible-exposed-infectious-recovered (SEIR) models of

mathematical epidemiology, which to the best of our knowledge has not been attempt-

ed before, to the study of computer virus propagation by incorporating the idea

of a random latent period during which a computer is in an ‘exposed state’ in the

sense that the computer is infected but cannot yet infect other computers until

the latency is over. Such use of SEIR models is explored (i) using the standard

Markovian approach that use ordinary differential equations governing transition

probabilities between states, and (ii) via a stochastic differential equations (SDE)

based approach in a multi-group setup to model the propagation dynamic of a virus

across a non-homogeneous network with possibly different rates of infection across

component subnetworks that are homogeneous within themselves with corresponding

latent periods and recovery rates. Estimators of the model parameters (maximum

likelihood and Bayesian estimators in the Markovian model, and least squares estimat-

ors in the SDE-based model) are developed. Our methods and results are illustrated

numerically using data for the well known Code Red worm of 2001. Simulation of

the Code Red worm based on the estimates developed under various scenarios (single
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and multi-group setups) for Markovian as well as SDE-based SEIR models have been

carried out and compared to the results of other models in the literature. These

simulation based comparisons show that outputs of our stochastic SEIR models for the

Code Red worm outbreak matches the actual observed time trajectory of infections

more closely than the corresponding outputs of all other models considered by other

researchers.

Situations where a computer virus outbreak data are only partially observed

are more challenging. In this dissertation, we specifically consider the case where the

clock times when individual computers are infected by a virus are unknown/missing

and only recovery times are observed. In the context of SEIR models for computer

virus propagation, such a scenario is eminently realistic since the duration of the

latency period (i.e., sojourn time in the ‘Exposed’ state until becoming ‘infectious’) is

uncertain. For Markovian SEIR models, we use Markov chain Monte Carlo (MCMC)

methods in a Bayesian framework to provide estimates of model parameters via their

data driven posterior distributions. The method is again illustrated with the Code

Red worm data, and the simulation results again show a very good fit to the actual

propagation data for Code Red worm. By including a latency period parameter; the

overall thirst of our findings point to superiority of the stochastic SEIR framework

as models of computer virus propagation relative to other models considered in the

literature.

1.3.2 Survival Distributions in Reliability

Our work here considers two new approaches for modeling univariate and bivariate

survival (life) distributions, respectively. We introduce a new partial order among

survival distributions which exploits the concept of star-ordered real valued functions

[9]. The star-ordering developed here, called ‘reverse star-order’, is different from the

classic star-order among life distribution (see Barlow and Proschan [9]). Various

properties of life distributions which are star-ordered in our sense are developed
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and their ramifications are explored. A surprising finding is the equivalence of our

proposed star-ordering to the so called reversed hazard rate order considered by Block,

Savits and Singh [10] and others. This equivalence also justifies an aging property

interpretation of a life distribution F relative to another distribution G when they

are mutually reverse star-ordered.

Univariate proportional hazard models have been found to be of considerable

importance and applicability in the context of survival analysis. In the bivariate

set up, we formulate a new notion of bivariate proportional hazard models that is

distinct from the formulation of Clayton and Cuzick [17], Hougaard [46] and Oakes

[61]. Since our focus is on developing the basic distribution theory for a new class

of lifetimes models that can be interpreted to hare bivariate proportional hazards

in a suitably well defined sense; we do not consider frailty effects via unobserved

explanatory covariates, although such refinements may be important in applications

and would be a legitimate topic for future research. Dependence between component

lifetimes is achieved in our setup via latent variables, some or, all of which may be

individually unobserved. We show that a distribution belonging to our proposed

class of bivariate proportional hazard models (BPHM) can be decomposed into an

absolutely continuous and a singular part. Maximum likelihood estimators of model

parameters are developed, which can require using an expectation-maximization (EM)

algorithm when a baseline distribution parameter is also unknown. We also give

illustration of our BPHMs with two actual data sets.



Part I

STOCHASTIC EPIDEMIC MODELS AND INFERENCE FOR THE

PROPAGATION OF COMPUTER VIRUS
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CHAPTER 2

INTRODUCTION

The primary purpose of Part I is to explore a more realistic stochastic epidemic model

and corresponding statistical inference for application to computer virus propagation

data. It may be observed here that such a methodology provides a means of quantifyi-

ng transmission and the estimated benefit of infection control interventions in terms

of changed transmission rates.

Despite a large body of research regarding the propagation of computer virus,

most of them use deterministic epidemic models which only indicate the average

tendency of computer virus spread in the long run. However, the spread of a computer

virus has an essentially stochastic nature, especially in the early phase of the propagat-

ion. Consequently, the use of deterministic models may not be sufficient to understand

the dynamics of prevalence of a computer virus. Stochastic epidemic models and

statistical inference methods are well-equipped to tackle such difficulties arising from

the use of deterministic models. Furthermore, such methods are able to quantify the

estimated effects of infection control interventions in terms of changed transmission

rates.

In practice, if it is the case that the entire epidemic process has been completely

observed, so that recorded computer virus spread data include all infection and

recovery times; then maximum likelihood and Bayesian estimates of transition param-

eters of stochastic models can be obtained. These methods with complete computer

virus propagation data are examined and illustrated in Chapter 4. However, the

infection times when a computer is infected may not be observed in practice. In such

cases, the epidemic process must be considered to have been only partially observed.

It is still possible to obtain parameter estimates using Markov chain Monte Carlo

(MCMC) methods in a Bayesian framework [37, 38, 65, 78]. MCMC methods are

8
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highly versatile and popular (e.g. [37], [38], [65], [78]) and have been used to analyze

data of partially observed biological epidemic processes. In Chapter 5, we investigate

the use of MCMC methods in the context of computer virus propagation to conclude

that such methods appear well suited to the computer virus prevalence data.

It has been shown that network structure has impact on the propagation of

computer virus [62, 66, 67, 86]. We investigate the sensitivity of our models and

methods when a network structure is superimposed by considering the corresponding

multi-group stochastic models in Chapter 6. Simulation results for heterogeneous

multi-group stochastic model are contrasted with those with homogeneous assumption.

All illustrations of our methods and results are shown with reference to the data on

Code Red worm outbreak of July 19, 2001.

This Part of our dissertation investigates the use of stochastic epidemic model

and statistical inference techniques to describe the spreading of computer virus over

homogeneous and heterogeneous networks in Chapters 4 – 5 and Chapter 6, respectiv-

ely. The methods are applied to data describing the occurrence of Code Red worm

on July 19, 2001.



CHAPTER 3

LITERATURE REVIEW

3.1 Computer Virus Propagation Modeling

The Internet has become critically important to most facets of human activities

ranging from personal communication to industrial productivity and financial viability

of national and global economy in modern technological society. However, the increas-

ingly easy access and use of the Internet by most computers make them a prime

target for malicious activities, such as computer viruses using the Internet as a

communicating tool. There is a widespread agreement about a continuing upsarge

in such incidents of introduction of new “viruses” which quickly propagate through

computer networks targeting individual computers that are vulnerable to such attacks.

There have been many previous studies to model and analyze the spread of computer

virus over the Internet using deterministic epidemic models of mathematical biology

as a basis. Since the prevalence of malicious codes has a stochastic nature, especially

in the early phase of their propagation, the use of deterministic models is typically

not adequate to fully understand the dynamics of the propagation of malicious codes

over the Internet. In this Part, it is proposed to use stochastic epidemic models to

quantitatively describe and analyze the propagation of malicious codes and compare

the results of our analysis with those obtained using the deterministic and simple

stochastic epidemic models in previous works.

3.1.1 What is a Computer Virus?

A computer virus is “a malicious code which is a software program that is intentionally

designed to move from computer to computer, or from network to network and modify

the system without the consent of the user” [40]. Major types of malicious code

include virus, worm, Trojan, and rogue Internet content. The first malicious code is

10
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a computer virus, developed by Fred Cohen [18, 19] for research purposes. Cohen’s

definition of computer virus is “a program that can ‘infect’ other programs by modifyi-

ng them to include a version of itself”. This definition has been generally accepted as

a standard definition of a computer virus.

Even though worms are very similar to viruses in that they are computer

programs that replicate themselves and often, but not always, contain some malicious

functions that would disrupt the normal use of a computer system or a network

[40], worms exist as separate entities: they do not attach themselves to any other

files or programs. The first computer worm, Morris, was released on November 2,

1988 [76]. It utilized the TCP/IP protocols, common application layer protocols,

operating system bugs, and a variety of system administration flaws to propagate

itself. The “Morris worm” infected approximately three thousand computers during

eight hours of activity [76]. Since worms can spread automatically over a computer

network without the need of human intervention, they can potentially spread on the

Internet with staggering speed and cause damage on the order of billions of dollars

[59]. Famous worms include Code Red in 2001 and SQL Slammer in 2003.

Borrowing relevant ideas from quantitative models of biological epidemics, the

stochastic models we propose in this dissertation to analyze the spread, over computer

networks, of malicious codes/programs (generically referred to as ‘malware’), which

include computer viruses, worms and other variants of potentially harmful software

programs. Since our main goal is to model the spread of such malware over time across

computer networks by stochastic model(s) that adequately explain the observed time

trajectory of such propagation – for which the technical distinctions between various

forms of malware such as ‘virus’, ‘worm’ etc. are not essential ; the term virus is used

throughout this dissertation to denote a generic malware that has an ability to infect

any computer to which it can gain access.



12

3.1.2 Modeling Computer Virus Dynamics

A good and reliable computer virus propagation model can help us to understand

the life cycle of a self-replicating program. At a fundamental level, they explain

how wide and how fast the propagation is. They can also be useful in suggesting

countermeasure techniques [15] to mitigate the disruptive effects of virus attacks and

to examine the effects of network traffic [75] factors and network topology [62, 66].

Kephart and White [49] built a Susceptible-Infected-Susceptible (SIS) model as an

explanatory model of computer virus propagation, and used deterministic ordinary

differential equations to approximate the SIS model. Hierarchical and spatial models

were also presented in [49], after which they introduced the concept of a Kill signal (a

warning signal as a countermeasure to reduce the spreading of computer virus). They

built a model for virus propagation with the Kill signal and concluded that the Kill

signal is effective in reducing the spread of the virus [50]. Staniford [77] constructed

a deterministic Susceptible-Infected (SI) model based on the empirical data from the

outbreak of the Code Red worm. Serazzi and Zanero [75] surveyed existing models of

computer virus propagation for virus and worms and derived a compartment-based

model that deals with the propagation inside and outside of an autonomous system

which is a sub-network administered by a single authority. Zou [90] considered a model

for Code Red worm propagation based on the classic Susceptible-Infected-Removed

(SIR) model. Two factors that might affect the worm propagation were introduced

into the model, which are a countermeasure effect and a decreased infection rate due

to the Internet congestions caused by the worm. Pastor-Satorras and Vespigani [66]

studied the effects of network topology on epidemic models.

All of the above models are deterministic, described by a system of ordinary

differential equations [69], except that of Kephart and White [49], which uses a linear

birth and death process to study the expected lifetime of the infection.

In most virus propagation models based on epidemiology, epidemic prevalence

and propagation characteristics are described by a system of ordinary differential
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equations (ODEs). Although ODEs can be safely used to approximate a stochastic

process when the population size is large, no probabilistic event is considered. Moreov-

er, the ODEs only describe the average tendency of virus propagation. Thus, determi-

nistic models cannot represent rare events such as saturation and extinction of a

virus. Such rare events are quite important to evaluate security strategies in a

network, and the transmission of a virus from one computer to another is actually

stochastic [73, 89]. It is thus natural to model the computer virus prevalence via

stochastic models. The stochastic model can give us the probability that an event

will happen instead of deterministic yes-or-no answer relying on the law of large

numbers [4]. When the population size is large, it has been shown that a stochastic

model converges to deterministic model [4]. It is believed that both deterministic

and stochastic models are important to understand the propagation of a malicious

program like a worm or a virus. Andersson and Britton [4] concluded that stochastic

models are preferred when their analysis is possible. Wang [84] simulated computer

virus propagation to evaluate security policies based on the simulation. Wierman

and Marchette [88] propose an extended model from the stochastic Susceptible-

Infectious-Susceptible (SIS) model, taking account of the probability of infection

reintroduction at the virus-free state. Okamura [63] developed a new stochastic model

that reformulates a deterministic model with kill signal [50] as a continuous-time

Markov chain to evaluate the probabilistic behavior of the Internet worm propagation

and its associated dependability measures. Rohloff and Basar [72] considered the

stochastic properties of a special type of a computer worm called a Random Constant

Scanning (RCS) worm, to present an idealized stochastic propagation model for RCS

worms using ideas from the literature of epidemiology and public health (namely

density-dependent Markov jump process model), and compared the results obtained

using their model with those obtained by the standard deterministic simple epidemic

model. The influence of network topology on computer virus propagation have also

been considered by several authors [32, 62, 91].
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3.2 Epidemic Models

The mathematical modeling of diseases and their propagation has a history of about

three hundred years [22]. Epidemic models describe the dynamics of infectiousness

as opposed to the dynamics of disease. The infectious process can be represented

by a succession of states or ‘compartments’. Such a representation is referred to

as a ‘compartmental model ’ [47]. A compartmental model can be described by

either deterministic or stochastic equations. In a deterministic model, the number

of infections in a short time interval can be assumed proportional to the number of

susceptible and infectious individuals and to the time interval. In a stochastic model,

the probability of a new case in a small time interval is correspondingly proportional

to the same quantity.

The term “epidemic” refers to outbreaks of undesirable events (i.e., new cases of

infections by a biological agent or, computer malware) which can usually be attributed

to a point source. Mathematical models are used to describe biological and transmissi-

on mechanisms, threshold densities and to predict the course of epidemics [5]. In

particular, they are used to predict the initial conditions which lead to an epidemic,

the shape of the epidemic curve, the number of cases at the peak of the epidemic, the

duration of the total epidemic and the total number of cases [28].

Epidemic modeling has three main goals [22]: 1) to understand the disease

spreading mechanism; 2) to predict the future course of the epidemic; 3) to understand

how to control the spread of the epidemic. A good epidemic model should be able

to capture the essential features of the epidemic, make reasonable predictions, and

evaluate the effect of suggested control methods.

3.2.1 Deterministic Models

Deterministic models are generally based on the mass-action principle which states

that the evolutionary course of an epidemic depends on the number of susceptible

individuals and the contact rate between susceptible and infectious individuals. The
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mass-action principle was formulated in discrete time by Hamer in 1906 and then in

continuous time by Ross in 1908 [4]. In a deterministic model, the future state of

the epidemic process can be determined from the initial numbers of susceptible and

infectious individuals, together with the infection rate, recovery rate, birth rate and

death rate [5].

The first mathematical model of epidemics is generally attributed to Kermack

and McKendrick [52]. However, the set of governing equations were first published

by Ross and Hudson in 1917 [28]. These equations describe the dynamics of a

Susceptible-Infectious-Removed (SIR) disease in continuous time. It is assumed that

the disease being modeled occurs in a large, closed, homogeneous and uniformly

mixing population of equally susceptible individuals; contacts are made according to

the law of mass action and infection triggers an autonomous process within the host

[27]. These assumptions are summarized by the equation

S ′(t) =
dS

dt
= S(t)

∫ ∞
0

Ā(τ)S ′(t− τ)dτ, (3.2.1)

where S(t) is the spatial density of susceptible (i.e., the number of susceptible per

unit area) at time t, −S ′(t) is the incidence (i.e., the number of infection events in

a unit of time) at time t and Ā(τ) is the expected infectivity of an individual that

become infected τ time units ago [26]. Equation (3.2.1), referred to as the Kermack

and McKendrick model, is usually expressed for the specific case in which infectivity

has an exponential distribution. If β is the rate at which an infectious individual has

contact (sufficient for transmission) with susceptible members and γ is the removal

rate, then the Kermack and McKendrick model with exponential infectivity is

S ′(t) = −βS(t)I(t), (3.2.2a)

I ′(t) = βS(t)I(t)− γI(t), (3.2.2b)

where I(t) is the number of infectious individuals at time t. The Kermack and

McKendrick model is often referred to as the general epidemic model. The term
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‘general’ is used in the sense that the model is not confined to infection only, i.e. the

possibility of removal is also considered [5]. Hethcote [44] provides a brief outline of

possible generalizations.

Besides SIR model, another well-known epidemic model is Susceptible-Infectious-

Susceptible (SIS) model [1]. In SIS epidemic model, individuals in the population

are classified according to disease status, either as healthy and susceptible or as

infected and therefore infectious (i.e., able to infect others). A susceptible individual,

after a successful contact with an infectious individual, becomes infected and hence

infectious, but does not develop the immunity to the disease. Therefore, after recovery,

infected individual return to the susceptible class. The standard assumptions of SIR

model continue to apply to SIS model; i.e., the disease being modeled occurs in a

large, closed, homogeneous and uniformly mixing population of equally susceptible

individuals; contacts are made according to the law of mass action and infection

triggers an autonomous process within the host [27]. If β is the rate at which

an infectious individual has contact (sufficient for transmission) with susceptible

members and γ is the removal rate, then an SIS epidemic model has the following

form:

S ′(t) = −βS(t)I(t) + γI(t), (3.2.3a)

I ′(t) = βS(t)I(t)− γI(t). (3.2.3b)

For SIS model, an explicit solution can be obtained, which is given by

I(t) =

(1− γ

β
)I(0)e(β−γ)t

1− γ

β
+ I(0)(e(β−γ)t − 1)

, (3.2.4)

where I(0) is the initial value of infectious individuals.

Standard epidemic models, such as the SIR model above, share the core concept

of classifying the state of an individual unit into one of several categories referred to

as ‘compartments’, and are thus known as compartment models. There are a number
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of other compartment models for the spread of biological diseases [1, 2, 4]. Some of

these models can be relevant for modeling computer virus outbreaks. The stochastic

version of one such class of models that we have found to be profitably adaptable

to the context of computer virus propagation is SEIR model, which is described in

greater details in Chapter 4 in the context of our research.

Deterministic models approximate actual state changes by assuming that the

number of susceptible, infected or recovered individuals vary continuously, while in

reality they are integer valued. When numbers of susceptible and infective individuals

are both large and mixing is reasonably homogeneous, the deterministic model is likely

to be satisfactory as a first approximation [5]. The approximation will not be good

when any of the integer-valued variables become sufficiently small for the population

as a whole to be considered close to extinction [4, 22, 58]. Further details about

deterministic epidemic models can be found in [2, 5, 22].

3.2.2 Stochastic Models

In a stochastic model, probability distributions of the numbers of susceptible and

infectious individuals at any instant replace the corresponding values in a deterministic

model. The majority of stochastic models are based on variants of the general

epidemic model and the chain binomial model. Both of these classical models are

special cases of a general SIR model of a closed and homogeneous mixing population

in which contacts between pairs of individuals occur independently. The infectious

periods are assumed to be independent and identically distributed. Assumptions

concerning the distribution of the infectious periods differ between the two classical

models. For example, within the general epidemic model the infectious period is

assumed to be exponential and in the chain binomial model the infectious period

is assumed to be of a pre-determined fixed length. The general epidemic model is

usually described in continuous time dynamics and the chain binomial model in a

discrete time framework.
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An overview of stochastic epidemic models is available in [4, 5, 22], where

asymptotic and exact distributions of the final size of the epidemic, the total area

under the trajectory of infective individuals, and approximations are discussed. In

addition, generalizations of the stochastic epidemic model to allow for several classes

of susceptible and infected individuals are made and the phenomena of recurrence

and competition and spatial aspects are considered.

The general stochastic epidemic model was first studied by McKendrick in 1926

and then ignored until 1949 when it was analyzed by Bartlett. Deterministic general

epidemic models assume that the actual number of new infections in a time interval

is proportional to the product of the susceptible and infective population sizes and

the time interval. Stochastic epidemic models, on the other hand, assume that the

probability of a new infection in a short interval is proportional to this same amount,

i.e. the product of the susceptible and infective population sizes and the time interval.

The stochastic version of system of equations (3.2.2) thus expresses the probabil-

ity of infection and removal as

P (S(t+ ∆t) = s− 1, I(t+ ∆t) = i+ 1 | S(t) = s, I(t) = i) = βsi∆t+ o(∆t), (3.2.5a)

P (S(t+ ∆t) = s, I(t+ ∆t) = i− 1 | S(t) = s, I(t) = i) = γi∆t+ o(∆t). (3.2.5b)

The force-of-infection is defined as the rate at which an individual is infected, i.e.

βI(t). This formulation for the force-of-infection is known as the ‘pseudo mass-action’

assumption [23]. It is used when the number of effective transmission is expected to

remain the same regardless of the population size. Another approach, ‘true mass-

action’ assumes that the probability of contact decreases as population size increases.

In this case, β should be divided by the population size. The force-of-infection at a

time is sometimes referred to as the hazard rate function h(t). For the model described

by the system of equations (3.2.5), the hazard rate function at time t is then given
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by

h(t) = βI(t). (3.2.6)

The system of equations (3.2.5) define an infection process in which contacts

between uniformly mixing susceptible and infections individuals occur at times govern-

ed by a homogeneous Poisson process with constant intensity β. An implicit assumpti-

on is that the infectious periods (= time during which the infectious individual can

infect the susceptible individual) are independently and exponentially distributed

with mean γ−1. A corresponding implication is that the conditional distribution of

an infection time in given previous infection times i0, i1, . . . , in−1, depends only on

the most recent infection time in−1; the so called ‘Markov property’. Time periods

that are modeled as random variables form an exponential distribution are said to be

Markovian.

Stochastic models that do not assume homogeneous mixing have also received

considerable attention. Such models include multitype models (e.g. [6], [7], [4]),

which divide the population into homogeneous subpopulations, and their extensions

[8], social cluster models [74] and random network models [3].

There are significant similarities between the propagation of a computer virus

and that of biological epidemic agent [51], although there can be significant differences

as well. For example, the concepts of susceptible as well as infectious units are the

same in both; but the idea of a recovered unit acquiring a permanent or limited

temporary immunity may or may not be applicable for computer virus. In the

context of computer networks, such immunity apart from being virus specific, may

be permanent if the anti-virus software remains resident in the same computer after

recovery, or be temporary in the event the anti-virus software is deleted, or not

renewed after its license expires.
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3.2.3 Comparison of Deterministic and Stochastic Models

The stochastic versus deterministic model debate is often centered around model

simplicity and realism [4]. Deterministic models are generally simpler to analyse

than their stochastic counterparts [5, 58]. For a stochastic model to be analytically

trackable, simpler assumptions that may not be entirely realistic are often required.

Although exact analytic solution can be difficult, suitable approximations can provide

useful information about the system [58].

Deterministic models are unsuitable for small populations. For large population,

the mean number of infectives in a stochastic model may not always be approximated

satisfactorily by a corresponding deterministic model [4, 22, 58]. According to Rensh-

aw [68], it should always be assumed that stochastic effects play an important role in

any given process unless proven otherwise.

3.3 Statistical Inference Methods

3.3.1 Maximum Likelihood Estimation

Maximum likelihood estimation is a method used for fitting a parametric statistical

model to data and providing estimates for the model parameters. In general, for

given set of data and an underlying probability model, the method of maximum

likelihood selects values of the model parameters such that the parameters maximize

the likelihood function, or equivalently, loglikelihood function. Maximum likelihood

estimation, which have good large sample properties, provides a unified approach

for estimating parameters of interest, and are known to have good large sample

properties.

3.3.2 Bayesian Estimation

A Bayesian estimator of a parameter maximizes the expected value of a parameter’s

posterior distribution. While constructing a Bayesian estimator, if there is no inherent

reason to prefer one prior probability distribution over another, a conjugate prior is
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sometimes chosen for analytical simplicity. A conjugate prior is defined as a prior

distribution belonging to some parametric family, for which the resulting posterior

distribution also belongs to the same family. This is an important property, since

the Bayesian estimator, as well as its statistical properties (e.g. variance, confidence

interval), can all be derived from the posterior distribution. Conjugate priors are

especially useful for sequential estimation, where the posterior of the current measure-

ment is used as the prior in the next measurement. In sequential estimation, unless

a conjugate prior is used, the posterior distribution typically becomes more complex

with each added measurement, and the Bayesian estimate cannot usually be computed

without resorting to numerical methods.

3.3.3 Bayesian Inference using Markov Chain Monte Carlo (MCMC)

Methods

Bayesian inference [34] is the process of fitting a model to data and summarizing the

results via the posterior distribution of the parameters and unobserved quantities. In

contrast to the frequentist framework; in a Bayesian model, parameters are treated as

random variables and relevant data are considered as given, which contain information

about the parameter(s). The posterior distributions obtained within a Bayesian

framework provide information about parameter uncertainty and permit the formulat-

ion of direct probability statements about parameters which is appropriate for small

size samples. A frequentist approach estimates only the standard errors of parameters

rather than full probability distributions of parameters. Probability statements within

a frequentist approach rely on indirect statements based on confidence intervals and

p-values. Calculation of the frequentist confidence levels may require development

of appropriate theoretical results and the usual conditions that require asymptotic

normality of maximum likelihood estimators are often violated [64].

A Bayesian framework incorporates prior information on the model parameters

θ in the form of a prior distribution P (θ). This prior distribution along with the
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likelihood of the data D, P (D|θ) = L(θ; D), defines the posterior distribution,

denoted by P (θ|D). The posterior distribution is given by

P (θ|D) =
P (θ)P (D|θ)∫

θ
P (θ)P (D|θ) dθ

. (3.3.1)

The posterior distribution (3.3.1) is the distribution of the model parameters conditio-

nal on the data. Because the denominator of equation (3.3.1) is not a function of θ and

since integration is with respect to θ, the posterior distribution (3.3.1) is proportional

to the product of the prior and likelihood distributions,

P (θ|D) ∝ P (θ)P (D|θ). (3.3.2)

When making inference about the parameters, one is usually concerned with

point and interval summaries of the posterior distribution, such as mean, variance or

quantiles. Point and interval summaries are expressed in terms of their expectation

of a function of the unknown parameters,

E(f(θ)|D) =

∫
θ
f(θ)P (θ)P (D|θ)dθ∫
θ
P (θ)P (D|θ) dθ

. (3.3.3)

Except in the simplest cases, the integrals in (3.3.3) cannot be evaluated analyti-

cally. Given a realization of a Markov chain {θ[g]}, g = 1, 2, . . . whose stationary

distribution is the posterior distribution, the integral E(f(θ)|D) can be estimated by

Monte Carlo integration as:

E(f(θ)|D) ≈ 1

G

G∑
g=1

f(θ[g]).

The essence and practical utility of Markov Chain Monte Carlo (MCMC) metho-

ds derives from the fact that it is possible to construct a Markov chain with a pre-

assigned stationary distribution. This makes MCMC method an ideal vehicle to carry

out large scale simulations of a Markov chain to numerically capture its long run
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behavior, thus producing random samples from its stationary distribution which we

originally assign as the target posterior distribution.

Markov chain realizations can be obtained using Markov chain Monte Carlo

(MCMC) techniques [12, 36, 39] which iteratively generate samples from some target

distribution π(θ), that is known only up to proportionality. In a Bayesian framework,

the target distribution is the posterior distribution of the model parameters. Samples

are drawn from the appropriate Markov chain and the process is continued until the

chain converges to its stationary distribution π(θ). After discarding initial samples to

remove dependence of the simulated chain on its starting location (burn-in simulations)

and convergence is achieved in terms of satisfying convergence criteria; samples

generated by simulating the Markov chain can be used to estimate functions of the

target distribution [48].

The transition kernel P(θ[g+1]|θ[g]) is the probability law of the next state of

the chain lies within some set, given that the chain is currently in state θ[g] [12]. If

the transition kernel satisfies the detailed balance condition,

π(θ[g])P(θ[g],θ[g+1]) = π(θ[g+1])P(θ[g],θ[g+1]),

then the Markov chain will have a stationary distribution π [12, 81, 82].

To ensure that Markov chain converges to the stationary state; regularity condit-

ions of irreducibility, aperiodicity and positive recurrence are required. An irreducible

positively occurrent Markov chain will reach any non-empty set of states with positive

probability in a finite number of iterations. The aperiodicity condition prevents the

Markov chain from oscillating between different states in a regular periodic fashion. If

a Markov chain is positive recurrent and an initial value is sampled from a stationary

distribution π(θ), then all subsequent iterations will also be distributed according to

π(θ).

The Metropolis-Hastings algorithm [16, 42, 56] is a Markov chain simulation

method used to draw samples from Bayesian posterior distribution [34]. The Metropol-
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is sampler [56] and the Gibbs sampler [13, 33, 35, 80] are special cases of the Metropolis-

Hastings algorithm.

The Metropolis-Hastings algorithm can be described as follows:

• start with an initial value θ[0]

• obtain a realization θ[1],θ[2], . . . from a Markov chain by repeating the following

steps for g = 1, 2, . . .:

1) sample a point θ[∗] from some proposal distribution q(θ[∗]|θ[g]),

2) evaluate the following value

α(θ[g],θ[∗]) = min(1,
π(θ[∗])q(θ[g]|θ[∗])
π(θ[g])q(θ[∗]|θ[g])

),

3) set θ[g+1] equal to θ[∗] with probability α(θ[g],θ[∗]), otherwise set θ[g+1]

equal to θ[g].

The transition kernel for the Metropolis-Hastings algorithm is:

P(θ[g+1]|θ[g]) =


q(θ[g+1]|θ[g])α(θ[g],θ[g+1]) if θ∗ is accepted such that θ[g+1] = θ∗,

1−
∫
q(θ[∗]|θ[g])α(θ[g],θ[∗])dθ[∗] if θ∗ is rejected such that θ[g+1] = θg,

and satisfies the detailed balance equation

π(θ[g])P(θ[g],θ[g + 1]) = π(θ[g+1])P(θ[g],θ[g + 1]),

[71]. This implies that π(θ) is the stationary distribution of the Markov chain [12,

16, 81, 82].

The irreducible, aperiodic and positive recurrent conditions, which regulate

convergence of Markov chain to the stationary distribution, will be satisfied by Markov

chains generated using the Metropolis-Hastings algorithm if the proposal distribution

provides full support for stationary distribution π(θ) [70]. It should be noted that
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Markov chains that are irreducible with stationary distribution π(θ) will be positive

recurrent [71].

It is often computationally more efficient to update the components of θ one by

one, rather than all at once using a single component Metropolis-Hastings algorithm

[39]. If the proposal distribution is symmetric, i.e. if q(θ∗|θ) = q(θ|θ∗), then a special

case of the Metropolis-Hastings algorithm, named as the Metropolis algorithm, can

be used. Given a symmetric proposal distribution, the candidate value θ∗ is accepted

as the next value with probability α = min(1,
π(θ∗)

π(θ)
).

Gibbs sampling is a special case of the single component Metropolis-Hastings

algorithm in which the proposal distribution for updating the ith component of θ at

the gth iteration of the Markov chain is same as the full conditional.

A Markov chain defined by the Metropolis-Hastings algorithm will satisfy the

irreducible, aperiodic and positive recurrent conditions required for convergence to a

stationary distribution as long as the proposal distribution ensures that the support

of θ can be fully explored [70].

Burn-in. Early iteration in MCMC simulations are discarded to diminish the

effect of the starting value [12]. The discarded iterations are referred to as burn-in.

The length of the burn-in period will depend on the starting value and the rate

of convergence of the Markov chain to the stationary distribution [39]. Geyer [36]

suggests that calculating the burn-in is unnecessary and that discarding 1% to 2% of

the run length should be sufficient so that extreme starting values are discarded. A

more conservative rule of thumb is used by Gelman et al. [34], who generally discard

the first half of the iterations.

Thin factor. Markov chain sequences may be thinned by keeping every kth

simulation draw from each sequence and discarding the rest. Thinning is useful for

problems with a large number of parameters where computer storage is a problem

[34]. A thinned Markov chain of length G will have less autocorrelation than a full

sample of the same length [36]. As the thin factor k goes to infinity, the Markov
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chain will become almost independent [36]. The amount of thinning must be weighed

against the cost of sampling as the full sample will have more information.

3.4 Code Red Worm Studies

3.4.1 Introduction

The first incarnation of the Code Red worm (CRv1) began to infect hosts running

unpatched versions of Microsoft’s IIS webserver on July 12, 2001. The first version

of the worm uses a static seed for its random number generator. Then, around 10:00

UTC (Universal Time Coordinated) in the morning of July 19th, 2001, a random seed

variant of the Code Red worm (CRv2) appeared and spread. This second version

shared almost all of its code with the first version, but spread much more rapidly.

Finally, on August 4th, a new worm began to infect machines exploiting the same

vulnerability in Microsoft’s IIS webserver as the original Code Red virus. Although

the new worm shared almost no code with the two versions of the original worm, it

contained in its source code the string “CodeRedII” and was thus named CodeRed

II. Since we model and analyse the propagation of Code Red version 2 (CRv2) worm,

the characteristics of CRv2 are described below. For more details about the other

versions of Code Red worm, see [59].

At approximately 10:00 UTC in the morning of July 19, 2001, a random seed

variant of the Code Red worm (CRv2) began to infect hosts running unpatched

versions of Microsoft’s IIS webserver. The worm began to spread by probing random

IP addresses and infecting all hosts vulnerable to the IIS exploit. CRv2 lacks the

static seed found in the random number generator of Code Red version 1. In contrast,

the CRv2 worm uses a random seed. So each infected computer attempts to infect

a different list of randomly generated IP addresses. This seemingly minor change

had a major impact: more than 359,000 machines were infected with CRv2 in just

fourteen hours. CRv2 initially generated 100 threads. Each of the first 99 threads

randomly chose one IP address and tried to set up connection on port 80 with the
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target machine. If the connection was successful, the worm would send a copy of

itself to the victim’s web server to compromise it and continue to find another web

server. If the victim was not a web server or the connection could not be set up, the

worm thread would randomly generate another IP address to probe. The timeout of

the CRv2 can exploit only Windows 2000 with IIS server installed. Figure 3.1 shows

the spread of CRv2 by the number of infected hosts versus time.

Figure 3.1 Observed Code Red worm propagation-number of infected hosts.
Source: http://www.caida.org/research/security/code-red/gifs/cumulative-ts.gif

Because CRv2 is identical to Code Red version 1 in all respects except the seed

for its random number generator, its only actual damage is the “Hacked by Chinese”

message added to top level webpages on some hosts. However, CRv2 had a greater

impact on global infrastructure due to the sheer volume of hosts infected and probes

sent to infect new hosts. It also wreaked havoc on some additional devices with web

interfaces, such as routers, switches, DSL modems, and printers. Although these

devices were not infected with the worm, they either crashed or rebooted when an

infected machine attempted to send them a copy of the worm. Even though the CRv2
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is a kind of friendly worm which does not damage the computers that were infected

or, leave any back doors on infected computers; the cost of this epidemic, including

subsequent strains of Code Red, is estimated to be in excess of $2.6 billion [59].

3.4.2 Data and Notation

For simplicity and our purpose of modeling and analysis, the Code Red version 2

is referred to subsequently as the Code Red worm. The observed Code Red worm

data set Dobs includes the start time, end time, top-level domain (TLD), country,

latitude and longitude information, autonomous system (AS) number and AS name

for each computer in a /8 network at UCSD (University of California at San Diego),

where the start time and the end time corresponds to the infection time and the

recovery time respectively. In modeling and analysis of Code Red worm propagation,

a computer is characterized as being i) susceptible (S), ii) exposed (E, i.e., infected

but not infectious), iii) infectious (I), or iv) recovered (R) at any given time. The

number of computers in each of the susceptible, exposed, infectious and recovered

compartments at time t are S(t), E(t), I(t) and R(t), respectively. N is used to

denote the total number of computers in the Internet.

3.4.3 Summary of Previous Works on Code Red Worm

Both the SIS and SIR models of biological epidemics have been adapted to the study

of computer virus propagation in networks [50, 51, 57, 87, 89]. However, in the SIS

model the infected individual becomes re-infected as soon as it is recovered, which

means that the recovered individual does not have immunity to the disease (biological,

or computer malware) after it is cured. On the other hand, in the SIR model the

infected individual will be healthy and will have permanent immunity to the disease

after it is recovered.

Deterministic models have been used to study Code Red worm propagation

[77, 90]. Zou et al. [90] proposed and investigated two-factor worm model based on
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the classic epidemic Kermack-McKendrick model as follows:

dI(t)

dt
= β(t)[N − I(t)−R(t)−Q(t)]I(t)− dR(t)

dt
, (3.4.1)

where N is total number of hosts under consideration, and I(t), R(t) and Q(t)

represent the number of infectious hosts, the number of removed hosts from the

infectious population and the number of removed hosts from the susceptible population

at time t, respectively. The parameter β(t) is infection rate at time t and reflects the

impact of the Internet traffic on the Code Red worm prevalence. R(t) and Q(t)

reflect the cleaning, patching and filtering countermeasures against Code Red worm.

Simulations and numerical solutions of the two-factor worm model were given, which

match the observed data of Code Red worm better than previous models do.

When there is no human countermeasures and when the infection rate is constant

divided by N , the two-factor worm model equation (3.4.1) is then the classic simple

epidemic model used by Rohloff et al. [72] for the spread of Code Red worm:

dI(t)

dt
=

β

N
[N − I(t)]I(t). (3.4.2)

These types of model are suitable when the number of infected hosts are large.

However, during the first phase of the worm propagation, the number of infected

hosts are small and such deterministic models may not accurately characterize the

propagation of viruses. Moreover, these models do not consider the existence of

latency, which makes them unsuitable as realistic models in those situations where

the existence of a random sojourn time in an exposed state is relevant to correctly

describe the future propagation of infection. One of the salient points of departure

from existing models in our work on computer virus propagation reported here is the

explicit introduction of such latency in an exposed state via SEIR model corresponding

overall finding that such a refinement significantly enhances the overall fit of the model

to the actual Code Red worm propagation data.



CHAPTER 4

STOCHASTIC SEIR MODEL AND INFERENCE FOR COMPLETELY

OBSERVED COMPUTER VIRUS PROPAGATION

4.1 Introduction

Stochastic epidemic models can be used to model and analyze the spreading of a

computer virus. In this Chapter, the stochastic susceptible-exposed-infectious-recover-

ed (SEIR) model of mathematical biology, which uses a Markovian approach is

adapted for analysis of data describing a completely observed computer virus. In

particular, the methods are applied to data describing the incident of Code Red

worm on July 19, 2001.

4.2 Model and Methodology

Many epidemiology based models have been suggested to model virus propagation

in computer networks. Recently, a dormant latent period that some viruses spend

inside infected computers in a network has attracted attention of some researchers

[85]. Explicitly accounting for this feature requires that we examine the so-called

susceptible-exposed-infectious-recovered (SEIR) model [2] to investigate how well it

can explain computer virus propagations.

Stochastic models such as SI and SIR models, which are simpler than SEIR

model, have been used in previous works on computer virus propagation modeling.

The point of departure in our work from previous models is to recognize the possibility

that a virus may have a random latent period during which it is already infected with

the virus, but is not an active agent for infecting others in the network, i.e., in

reality a computer virus can be dormant for some time (referred to as in a latent

period), only to become active after a certain period [85]. For example, in case of

email viruses, computers are infected at the time when the users check their emails

30
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but such infected computers cannot infect others in the network until they send out

emails to other users. The latent period parameter is the ‘mean sojourn time’ spent

by an infected computer in the ‘exposed state’ (when it is itself infected but cannot

infect others). In Markov chain models, the latency parameter can be equivalently

described by the reciprocal of the mean sojourn time, which is the transition rate

from the ‘exposed state’ to the ‘infectious state’.

The SEIR model is very similar to the SIR model, but it accounts for the fact

that some viruses go through a latent period before the host becomes infectious. In

SEIR model, a computer may experience four states during the virus propagation:

the susceptible state (S), the exposed state (E), the infectious state (I) and the

recovered state (R), as shown in Figure 4.1. In state S, the computer is healthy but

can be infected by viruses. In state E, the computer is infected but the virus has not

been triggered yet, which means that the computer is infected but it cannot infect

other computers. Then in state I, the virus has been triggered and the computer is

now infectious and able to infect other computers. Finally in state R, the computer

is recovered from non-healthy status and has permanent immunity.

Figure 4.1 The Diagram of susceptible-exposed-infectious-recovered (SEIR) model.

In Figure 4.1, β is the infection rate at which a given infectious computer

makes contact with other initially susceptible computers; σ is the rate at which a

given infected computer that is in state E becomes infectious. This means that σ is

the transition rate from state E to state I, or we can say that
1

σ
is the mean latent

period ; γ is the recovery rate at which that an infectious computer is recovered from

the non-healthy status and has immunity to the virus. The rates (β, σ, γ) are usually

measured in per second time unit. S(t), E(t), I(t) and R(t) respectively denote the
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number of computers that are in susceptible, exposed (infected but not infectious),

infectious and recovered states at time t ≥ 0, with S(t)+E(t)+I(t)+R(t) = N , where

N is the total number of population. Of the N computers in the closed population

(network), Ns ≤ N computers could potentially become infected by computer virus.

At time 0, (S(0), E(0), I(0), R(0) = (s0, e0, i0, r0), where 0 < s0 ≤ Ns, e0 = 0, i0 ≥ 1,

r0 > 0, denotes the initial state of the network. Since for all t, in virtue of a closed

network; we have S(t) + E(t) + I(t) + R(t) = N , it is sufficient to keep track of

(S(t), E(t), I(t)). Together with the assumption that the network is homogeneous,

evolution of the epidemic process (S(t) = a,E(t) = b, I(t) = c) can be described by

the following state-to-state transition rates:

(a, b, c)→ (a− 1, b+ 1, c) :
β

N
S(t)I(t) (4.2.1a)

(a, b, c)→ (a, b− 1, c+ 1) : σE(t) (4.2.1b)

(a, b, c)→ (a, b, c− 1) : γI(t) (4.2.1c)

(4.2.1a) is a schematic description of the equation

P ((S(t+4t), E(t+4t), I(t+4t)) = (a− 1, b+ 1, c)|(S(t), E(t), I(t)) = (a, b, c))

=
β

N
S(t)I(t) + o(4t).

The transition schematics shown by (4.2.1b) – (4.2.1c) are interpreted similarly.

4.3 Statistical Inference

4.3.1 Computer Virus Propagation Data and Notation

Assume that the epidemic is observed over the time interval [e1, T ], where e1 is the

time of the first infection exposure and T is the clock time of the last observation.

Our virus propagation data thus consists of all infection exposure times e observed

during [e1, T ]; as well as the instances within this time window when some computer

in the network becomes infectious and the recovery times when a computer becomes
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virus free. The observed vector of infectious times instances i during [e1, T ] is of

the form i = e + d, where d is the latent period spent by an infected computer in

the exposed state when the infection is dormant before becoming infectious. It is

reasonable to assume that latency period is small enough to guarantee that for every

exposure event in [e1, T ], the corresponding instances of becoming infectious falls

within the observation window [e1, T ] and in thus recorded. On the other hand, all

computers that are recorded as having become infectious may not enter the recovered

healthy state by time T , when observations end. Thus, the number of recorded

recovery times r may be smaller than the number of cases of infection exposure and

becoming infectious. Hence, the observed data on computer virus propagation over

a time window has the form (e, i, r), where e = (e1, e2, . . . , em), i = (i1, i2, . . . , im)

and r = (r1, r2, . . . , rn) for some m and n such that n ≤ m ≤ N , where m and n

respectively denote the number of infection/infectious cases and number of recoveries.

The components of each vector are time-ordered, i.e., el ≤ el+1, il ≤ il+1 and rl ≤ rl+1.

The total number of computers in the network is N , with m = n if the epidemic dies

out and is completely observed until extinction. If n < m, the virus persists in the

network at the time T when observations end.

For the Markovian SEIR model, with a closed network of computers (no ‘births’

or ‘deaths’); the basic reproduction number is given by R0 =
βNs

γN
, where Ns is the

number of computers which could potentially be infected by computer virus, and

determines if the epidemic will be eventually extinct, entering the ‘disease-free’ state

(0, 0, 0, N) or, persist depending on whether R0 ≤ or > 1.

4.3.2 Maximum Likelihood Estimation

As a first step to estimate the parameters, the likelihood expression with data Dobs =

(e, i, r) is computed. Instead of clock time, the waiting time between the different

events is modeled, i.e., ti = t′i − t′i−1, where t′i denotes events in clock time of

the i-th event. Likelihood of waiting times can be found using survival analysis
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methodology multiple modes of failure [31]. Three events of interest are possible:

infection, infectious and recovery, i.e., entering the exposed (E), infectious (I) and

recovered (R) states, respectively. The corresponding hazard rate functions are

λinfection(ti | β) =
β

N
S(ti)I(ti), (4.3.1a)

λinfectious(ti | σ) = σE(ti), (4.3.1b)

λrecovery(ti | γ) = γI(ti), (4.3.1c)

with S(ti), E(ti) and I(ti) being the number of susceptible, exposed and infectious

computers at time ti, respectively. The three events of infection, becoming infectious

and recovery are assumed to be mutually independent. Corresponding to the next

event of ‘infection’, becoming ‘infectious’ or ‘recovery’, which ever occurs earlier, the

overall hazard rate function λ at time ti is thus given by

λ(ti | β, σ, γ) =
β

N
S(ti)I(ti) + σE(ti) + γI(ti). (4.3.2)

Between consecutive events; the hazard function λ∗(t) expressed in clock-time t is a

piecewise linear shift of the hazard function λ in (4.3.2). Its value at clock-time t is

λ∗(t|β, σ, γ) ≡ λ∗(t′i−1 + u) = λ(u|β, σ, γ),

if ti ≡ t′i − t′i−1 ≤ u < t′i+1 − ti−1 for i ≥ 1 (setting t′0 = 0); and is thus piecewise

constant.

The epidemic dataset is described by D = (ti, Ei), where Ei ∈ {infection,

infectious, recovery} denotes the event type. D consists of m infection times, m

infectious times and n recovery times, where n ≤ m. The interest here is the joint

density of (e, i, r) given the rates β, σ and γ. Consider an arbitrary single event Ei

in D. Counting time from the occurrence of the preceding event Ei−1; the density
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function of the arrival time Ti to event Ei at t > 0, is

LEi(t) = λEi(t)PEi(Ti > t)

= λEi(t) exp

(
−
∫ t

0

λ(u|β, σ, γ)du

)
, (4.3.3)

where the hazard rate λEi(·) of the i-th event Ei is given by (4.3.1a) – (4.3.1c). We

have to consider however, the overall likelihood of the events in the data D at the

observed clock-times t′i; i = 1, 2, . . . , n+m, when they occur. To that end, note that

the inter-event arrival times tl = t′l − t′l−1 are tl = el or, il if El is an exposure or

infectious event (El = el, or il; l = 1, 2, . . . ,m) and tl = rl if it is a recovery event

(El = rl; l = 1, 2, . . . , n). Note, the survival function at the value ti of the time to

the i-th event Ei (i = 1, 2, . . . ,m+ n) can be written as,

PEi(Ti > ti) = exp

(
−
∫ ti

0

λ(x|β, σ, γ)dx

)
= exp

(
−
∫ t′i−t′i−1

0

λ∗(t′i−1 + v|β, σ, γ)dv

)

= exp

(
−
∫ t′i

t′i−1

λ(u|β, σ, γ)du

)
.

Assuming independence of the inter-event time lengths; the overall likelihood function,

considering all observed infection, infectious and recovery events, is

L =
m+n∏
l=1

λEi(ti)PEi(Ti > ti)

=
m+n∏
l=1

λEi(ti) exp(−
∫ t′i

t′i−1

λ(u|β, σ, γ)du) (4.3.4)

=
m∏
l=1

β

N
S(e−l )I(e−l ) exp(−

∫ el

el−1

λ(u | β, σ, γ)du)
m∏
l=1

σE(i−l )

× exp(−
∫ il

il−1

λ(u | β, σ, γ)du)
n∏
l=1

γI(r−l ) exp(−
∫ rl

rl−1

λ(u | β, σ, γ)du)

=
m∏
l=1

β

N
S(e−l )I(e−l )

m∏
l=1

σE(i−l )
n∏
i=1

γI(r−l )
m∏
l=1

exp(−
∫ el

el−1

λ(u | β, σ, γ)du)

×
m∏
l=1

exp(−
∫ il

il−1

λ(u | β, σ, γ)du)
n∏
i=1

exp(−
∫ rl

rl−1

λ(u | β, σ, γ)du), (4.3.5)
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where S(t−), E(t−) and I(t−) denote the number of susceptible, exposed and infectious

computers just prior to time t, i.e., S(t−) = lim
t→t−

S(t), etc. Since the events of

infection, infectiousness and recovery occur sequentially in time (see Remark 4.3.1

following (4.3.8a) – (4.3.8c) at the end of this section); the sums of integrals in the

likelihood L above can be simplified into a single integral as,

L =

(
β

N

)m m∏
l=1

S(e−l )I(e−l )σm
m∏
l=1

E(i−l )γn
n∏
i=1

I(r−l )

× exp(−
∫ T

e1

λ(t | β, σ, γ)dt). (4.3.6)

With the likelihood function (4.3.6), we can obtain the log-likelihood function as

lnL = m ln β −m lnN +
m∑
l=1

ln(S(e−l )I(e−l )) +m lnσ +
m∑
l=1

lnE(i−l )

+ n ln γ +
n∑
l=1

ln I(r−l )− β

N

∫ T

e1

S(t)I(t)dt

− σ
∫ T

e1

E(t)dt− γ
∫ T

e1

I(t)dt.

Differentiating the above equation with respect to β, σ and γ, respectively, the

following score equations are obtained

0 =
∂ lnL

∂β
=
m

β
− 1

N

∫ T

e1

S(t)I(t)dt, (4.3.7a)

0 =
∂ lnL

∂σ
=
m

σ
−
∫ T

e1

E(t)dt, (4.3.7b)

0 =
∂ lnL

∂γ
=
n

γ
−
∫ T

e1

I(t)dt; (4.3.7c)
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thus leading to the following maximum likelihood estimators (m.l.e.) of the infection,

exposure and recovery rate parameters:

β̂ =
mN∫ T

e1

S(t)I(t)dt

, (4.3.8a)

σ̂ =
m∫ T

e1

E(t)dt

, (4.3.8b)

γ̂ =
n∫ T

e1

I(t)dt

. (4.3.8c)

as the unique solution of the score equations in (4.3.7).

Remark 4.3.1 In the expression (4.3.4) for the likelihood; recall that the i.i.d.

random variables Ti are defined as the minimum of the times to the next event,

irrespective of event type Ei ∈ {infection, infectious, recovery} that occur; i = 1, 2, · · · .

However, the first event E1 is necessarily an exposure to infection at clock-time t′1 =

t1 = e1, and the second event E2 is either the second infection or, the first infectious

event, but cannot be a recovery (since a recovery must be preceded by an infection

and a subsequent infectious event. E2 occurs at clock-time t′2 = t′1 +x = e1 +x, where

x = e2 or, i1. Thus, the first two inter-event times T1 and T2 are not distributed as

the minimum of the times to the next infection/infectious/recovery event regardless

of the event type. In order to justify our maximum likelihood estimators for β, σ

and γ in (4.3.8a) – (4.3.8c); we proceed to argue that (4.3.4) does indeed correctly

represent the likelihood of the observed data.

In virtue of (4.3.2) and our remarks about which event types cannot occur as

the first two events, together with the piecewise constancy of the overall hazard rate

expressed as a function of clock-time; the ratio of the actual likelihood to its suggested
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representation in (4.3.4), is easily seen to be:

exp

(∫ t′1

0

{σE(t) + γI(t)} dt+

∫ t′2

t′1

γI(t) dt

)

= exp

(∫ t′1

0

{σE(e1−) + γI(e1−)} dt+

∫ t′2

t′1

γI(i1−) dt

)
= exp {t′1 {σE(e1−) + γI(e1−)}+ (t′2 − t′1) γI(i1−)}

≡ exp {e1 {σE(e1−) + γI(e1−)}+ (min(i1, e2)− e′1)γI(i1−)}

= 1,

since, for t ∈ (0, t′1), we have E(t) = E(e1−), I(t) = I(e1−), and prior to the first

infection event, there are no computers in the exposed or, infectious state (E(e1−) =

0 = I(e1−)). Similarly, we argue that for all clock-times t ∈ [t′1, t
′
2), we must also

have I(t) = I(i1−) = 0. This follows, since t′1 ≤ t < t′2 corresponds to ‘time to the

second event’ t2 ∈ [0, t′2− t′1) = min(e2, i1). Then, either e2 < i1 (2nd exposure occurs

before 1st infectious event), or, i1 < e2. In both cases, the second event occurs before

the first infectious event, which implies I(t) = I(i1−) = 0.

4.3.3 Bayesian Estimation

We assume the prior distributions of the unknown transition rate parameters β, σ

and γ, respectively, to be gamma distributed as

β ∼ Γ(νβ, λβ), σ ∼ Γ(νσ, λσ), γ ∼ Γ(νγ, λγ),

where Γ(ν, λ) denotes the Gamma distribution with mean
ν

λ
and variance

ν

λ2
. In

virtue of Bayes Formula, it is well known that

Posterior ∝ Likelihood × Prior.
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Ignoring the normalizing constants, the posterior distributions of β, σ and γ,

up to a constant of proportionality, are respectively given by

π(β | e, i, r, σ, γ) ∝ f(e, i, r | β, σ, γ)π(β)

∝
m∏
l=1

β

N
S(e−l )I(e−l ) exp

(
−
∫ T

e1

(
β

N
S(t)I(t) + σE(t) + γI(t)

)
dt

)
× (β)νβ−1 exp(−λββ)

∝ (β)m exp

(
−
∫ T

e1

β

N
S(t)I(t)dt

)
(β)νβ−1 exp(−λββ)

= (β)νβ+m−1 exp

(
−λββ −

∫ T

e1

β

N
S(t)I(t)dt

)
∼ Γ(νβ +m,λβ +

1

N

∫ T

e1

S(t)I(t)dt), (4.3.9)

π(σ | e, i, r, β, γ) ∝ f(e, i, r | β, σ, γ)π(σ)

∝
m∏
l=1

σE(i−l ) exp

(
−
∫ T

e1

(
β

N
S(t)I(t) + σE(t) + γI(t)

)
dt

)
× σνσ−1 exp(−λσσ)

∝ σm exp

(
−
∫ T

e1

σE(t)dt

)
σνσ−1 exp(−λσσ)

= σνσ+m−1 exp

(
−λσσ −

∫ T

e1

σE(t)dt

)
∼ Γ(νσ +m,λσ +

∫ T

e1

E(t)dt), (4.3.10)
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and

π(γ | e, i, r, β, σ) ∝ f(e, i, r | β, σ, γ)π(γ)

∝
n∏
l=1

γI(rl−) exp

(
−
∫ T

e1

(
β

N
S(t)I(t) + σE(t) + γI(t)

)
dt

)
× γνγ−1 exp(−λγγ)

∝ γn exp

(
−
∫ T

e1

γI(t)dt

)
γνγ−1 exp(−λγγ)

= γνγ+n−1 exp

(
−λγγ −

∫ T

e1

γI(t)dt

)
∼ Γ(νγ + n, λγ +

∫ T

e1

I(t)dt). (4.3.11)

The Bayesian estimators for β, σ and γ are then obtained as the posterior means

of the distributions (4.3.9) – (4.3.11), as

β̂ =
νβ +m

λβ +
1

N

∫ T

E1

S(t)I(t)dt

, (4.3.12a)

σ̂ =
νσ +m

λσ +

∫ T

E1

E(t)dt

, (4.3.12b)

γ̂ =
νγ + n

λγ +

∫ T

E1

I(t)dt

. (4.3.12c)

These estimates are applied to Code Red worm data in Section 4.4

4.4 Case Study: Code Red Worm Data

The observed Code Red worm dataDobs includes the start time and end time for each

computer in a /8 network at UCSD, where the start time and the end time corresponds

to the infection time and the recovery time respectively, i.e., Dobs = (e, r). At any

given time, a computer is characterized as being (1) susceptible, (2) exposed (infected

but not infectious), (3) infectious, or (4) recovered. The number of computers in each
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of the susceptible, exposed and infectious compartments at time t are S(t), E(t) and

I(t), respectively.

4.4.1 Parameters Estimation Results

The maximum likelihood estimators of the parameters for the Code Red worm data

are computed based on the results obtained in section 4.3.2. The MLEs so computed

are β̂ = 3.2100, σ̂ = 0.11 and γ̂ = 5.625851× 10−5.

These maximum likelihood estimates lead to the following interpretations for

the Code Red worm propagation:

1) an infectious computer makes contact with approximately three (3) susceptible

computers per second;

2) an exposed computer (infected by Code Red worm but not yet infectious) in

state E becomes infectious (i.e., goes to state I) with rate 0.11/sec. In other

words, we can say that the average latent period is about (0.11)−1 ≈ 9 seconds;

3) an infectious computer in state I, is recovered from non-healthy status and has

immunity at rate 5.625851×10−5 computers/sec. This corresponds to an average

recovery time of (5.625851)−1 × 105 ≈ 17775.09 sec ≈ 4.94 hrs per computer.

Because of the relatively small value of recovery rate and the correspondingly

relatively large recover time, the Code Red worm propagated rapidly (viz., m.l.e.

of the basic reproduction number is R̂0 =
β̂Ns

γ̂N
= 5.3139 > 1).

Bayesian estimators of the parameters for the Code Red worm data also can be

computed based on the results obtained in section 4.3.3. Here, β̂ = 3.2421, σ̂ = 0.10

and γ̂ = 5.681790× 10−5.

The Bayesian estimates for the Code Red worm propagation, parameters are

similarly interpreted ; viz.,

1) contacts with approximately three (3) susceptible computers per second is made

by each infectious computer;
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2) an exposed computer (infected by Code Red worm but not infectious) has an

average latent period of (0.1)−1 ≈ 9 seconds;

3) infectious computers in the network are recovered to a healthy state at the rate

γ ≈ 5.681790 × 10−5 computers/sec. To a typical recovery of an infectious

computer takes γ−1 ≈ 17600.09 sec ≈ 4.89 hrs on average.

Table 4.1 below summarizes the model parameter estimates using maximum

likelihood method and Bayesian method.

Table 4.1 Summary of Parameter Estimates for Stochastic SEIR Model using
Markovian Approach

Estimates β̂ σ̂ γ̂

Maximum Likelihood Estimates 3.2100 0.11 5.625851× 10−5

Bayesian Estimates 3.2421 0.10 5.681790× 10−5

4.4.2 Simulation Results

4.4.2.1 Description of Simulation. The simulation program is written using

Fortran under Window XP environment. In the simulation, we have N = 232 (the IP

address space), Ns = 400, 000 (an approximation of the size of the susceptible Code

Red population), I(0) = 1 (the size of initial infection) for the two stochastic SEIR

models with MLE and Bayesian estimates. The system in our simulation consists of

N = 232 computers that can reach each other directly and thus there is no topology

issue in our simulation. For classic simple SI model and two-factor worm model,

with associated parameters used in [72] and [90], the governing ordinary differential

equations are solved numerically using ODE solver in Fortran and the solutions of

those two models are plotted in Figure 4.4, orange solid line and green solid line,

respectively. For both stochastic SEIR models (with MLE and Bayesian estimates),

we carried out 5000 simulation runs. We plot the average values of the outcome of
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5000 simulation runs in Figure 4.4 for stochastic SEIR model with MLE and stochastic

SEIR model with Bayesian estimates, red solid line and blue solid line, respectively.

4.4.2.2 Results. For the purpose of comparison, we plot the Figure 4.2 and

Figure 4.3. We observe that our stochastic SEIR models (with MLE and with

Bayesian estimates) well match the observed Code Red worm data.

Figure 4.2 Observed data vs. Code Red worm simulation plot based on maximum
likelihood estimates of parameters.

For the Code Red data, we also contrast our results of the stochastic SEIR

model with the results of other models used in the literature to study Code Red

worm, we do some simulation experiments. One of these is the classic SI (susceptible-

infected) model presented in [72], which is deterministic and does not consider the

latent period or allow recovery from a virus and acquiring a corresponding immunity.

The other is the two-factor worm model presented in [90]. The two-factor worm

model is also a deterministic model that considers the impacts of i) the effect of

human countermeasures against worm spreading and ii) the slowing down of worm

infection rate, worm’s impact on Internet traffic and infrastructure. The comparative
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Figure 4.3 Observed data vs. Code Red worm simulation plot based on Bayesian
estimates of parameters.

result of all models along with ours, are summarized in Table 4.2, with the plots of

all simulated outputs shown in Figure 4.4.

Figure 4.4 shows that

1) The classic simple SI model consistently overestimates the actual infected popul-

ation (observed data), represented by the black solid line. By contrast, from

the overlay graphs of SEIR model simulations outputs, using both maximum

likelihood (MLE) and Bayesian estimates as input parameters, is easily seen to

provide a much closer fit to the observed data.

2) The two-factor worm model output, shown by green solid line in Figure 4.4,

increases dramatically in the range 19/20-24 hours, which accounts for as much

as 20-25% of the effective significant range of the outbreak period of the Code

Red worm data (approximately 12-24 hours) and thereby increasingly overestim-

ates the actual infections during the last 20% of the outbreak period, by the

end of which the infection has already reached its saturation level.
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Figure 4.4 Comparison among observed data, stochastic SEIR model with
maximum likelihood estimates, stochastic SEIR model with Bayesian estimates,
classic simple SI model and Two-factor worm model.

To compare the four models, stochastic SEIR model with ML estimates, stochas-

tic SEIR model with Bayesian estimates, classic simple SI model and two-factor

worm model, to see which one is better, the standard deviation of the ‘discrepancy’

(= simulated output − actual observed) is computed for each of them. Table 4.2

summarizes the maximum and average discrepancy along with the standard deviation

of the discrepancies, for each of the four models. Both MLE and Bayes estimate

based simulations of the stochastic SEIR model have smaller standard deviation of

the discrepancy compared to classic simple SI and two-factor worm models; a finding

that is consistent with the visual plots of the simulations shown in Figure 4.4.

4.4.2.3 Simulation Results for Recovery Profiles. To examine the time profi-

le of the number of recoveries, we also plot the observed total number of recovered

hosts for the Code Red data and the simulation results of the recovered hosts against

clock time using our stochastic SEIR model with the MLE estimates of β, σ and γ

as input parameters in Figure 4.5 (blue solid line and green solid line respectively).
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Table 4.2 Summary of Simulation Results from Stochastic SEIR Model using
Markovian Approach and Comparisons with other Previous Models

Standard Deviation Maximum Discrepancy Average Discrepancy

Stochastic SEIR (MLE) 13.3572 40.7684 −0.5910

Stochastic SEIR (Bayesian Estimates) 13.3128 45.9277 2.9181

Classic Simple SI Model 28.4853 100.6507 19.7426

Two-factor worm Model 41.9134 136.2675 8.9397

Figure 4.5 Observed and simulated total number of recovered hosts for Code Red
worm data.

From Figure 4.5, it would appear that, between approximately 14-23 hours

since the first instance of Code Red infection is detected and recorded, the simulated

number of recoveries consistently overestimates the actual number of recovered hosts;

and after which the actual number steeply climbs to overtake the simulated number of

recoveries by the time the clock reads 24 hours since the first detected infection. This

apparent mismatch of the number of recoveries is less serious than it seems and can be

explained by noting that people are initially slow to react to a malware attack until

it is fairly widespread when they actually begin to take protective countermeasures

such as using antivirus software to remove/clean infected files. There is usually a time



47

lag between the time when an infection is detected in a computer and the time when

a corresponding countermeasure is taken while the SEIR model does not include any

countermeasure factors and thus effectively assumes no delay in implementing them.

Such lags can explain why initially the simulated number of recoveries overestimates

the actual number of recovered computers up to a certain clock time.

Simulation of the results of recoveries over time where also undertaken for

other models of the SEIR genre and input parameter estimating methods explored

in the subsequent Chapters 5 – 6. The various scenarios so considered for simulating

the number of recoveries in time were: (A) for homogeneous networks, simulated

recoveries with A-i) full Bayesian estimates (complete data), A-ii) MCMC based

estimates (incomplete data with infection times missing), as well as (B) for multi-

group heterogeneous networks (Code Red data classified into seven groups based on

country location) based on B-i) Markovian model with maximum likelihood estimates

(MLE), and B-ii) SDE-based least squares estimates. For the Code Red data, the

profiles of actual recoveries vs. the corresponding simulation results obtained for the

different cases listed above for homogeneous as well as multi-group heterogeneous

networks are seen to be similar (see Figures 4.6 – 4.9) and mimic the profile of

Figure 4.10, which assumes a single homogeneous network for the propagation of the

‘Code Red’.
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Figure 4.6 Observed and simulated total number of recovered hosts for Code Red
worm data using Bayesian estimates (single homogeneous network).

Figure 4.7 Observed and simulated total number of recovered hosts for Code Red
worm data using MCMC estimates (infection times missing, single homogeneous
network).
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Figure 4.8 (Multi-group Markovian model) Observed and simulated number of
recovered hosts by groups: (a) Asia (b) Africa (c) Europe (d) North America (e)
Oceanic (f) South America and (g) XX (location unknown).
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Figure 4.9 (Multi-group SDE model) Observed and simulated number of recovered
hosts by groups: (a) Asia (b) Africa (c) Europe (d) North America (e) Oceanic (f)
South America and (g) XX (location unknown).
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As the Code Red virus has a designed active lifespan of 24 hours from the time

it goes out into a network, and the first case of infection can be detected and recorded

only at a time later than its initiation; it is no longer active in the network when the

recording clock reads 24 hours – at which time the actual number of infected hosts also

appears to have reached its saturation level; although observations on detected Code

Red infections continued until about 32 hours of clock time since the first infection,

with no new cases detected after 24 hours. The overlay plots in Figure 4.10 exhibits

all these features in the same graph.

Figure 4.10 Overlay Plots of Code Red worm data vs. simulation plot for the
whole network (based on maximum likelihood estimates of parameters).

From Figure 4.5 and Figure 4.10, coupled with the steeply accelerating pace

of actual recoveries from about 23 hours, the gap between the actual and simulated

number of recoveries continues to diminish, as clean up measures are more aggressively

undertaken at an aggressive pace.
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4.5 Discussion

In this Chapter, Stochastic SEIR model using a Markovian approach has been adapted

to the context of computer virus propagation. Survival analysis methodology is

used to express the likelihood function to estimate the transition parameters of the

stochastic SEIR model using maximum likelihood and Bayesian methods. With values

of the maximum likelihood estimators and Bayesian estimators as inputs, simulations

have been conducted and compared with the observed Code Red worm data. It is

found that the proposed stochastic SEIR model closely matches the observed data. In

fact, comparing our simulation results for the stochastic SEIR model with the classic

simple SI model and the two-factor worm model – both of which are deterministic;

we observe that stochastic SEIR model provides a better match to the observed Code

Red worm data.



CHAPTER 5

MARKOV CHAIN MONTE CARLO (MCMC) METHODS FOR

PARTIALLY OBSERVED COMPUTER VIRUS PROPAGATION –

STOCHASTIC SEIR MODEL

5.1 Introduction

In practice, the nature of data that are available for computer virus epidemics are

typically not as exhaustive as would be desirable for modeling and inference. For

example, it is unlikely that the precise times when individual computers became

infected during an epidemic are known, or that other relevant details of the infection

process would be observed. Consequently, for many of the epidemic models, it

becomes difficult to write down the full likelihood function in the spirit of Chapter 4,

where all relevant variables (exposure, infectious, recovery times) are observed. Howe-

ver, researchers are still interested in estimation of parameters, β, σ and γ, despite of

missing infection times. Our results reported in this Chapter based on Markov Chain

Monte Carlo (MCMC) methods to deal with the partially observed computer virus

propagation process, using only the observed recovery times.

5.2 Model and Methodology

Stochastic SEIR model using a Markovian approach, as in Chapter 4, will be used

in this Chapter, to analyze a partially observed computer virus epidemic process,

where only recovery times are observed, and all infection times are missing. Bayesian

inference using Markov chain Monte Carlo (MCMC) method are used to estimate the

model parameters.

We use Markov chain Monte Carlo (MCMC) to generate a Markov chain whose

stationary distribution is the joint posterior distribution of the parameters. Inferences

53
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about the parameters based on the Markov chain sample are made using Monte Carlo

integration.

Since the computer virus propagation is partially observed, i.e., the observed

data consist only of a set of recovery times r; MCMC approach here treats the

unobserved infection times e as parameters of the model except the transition parame-

ters, β, σ and γ, in the model. The following notations are adapted from Chapter 4.

Let the observed recovery times be r = (r1, r2, . . . , rn), where 0 < r1 ≤ r2 ≤ · · · ≤

rn = T . The vector e = (e1, e2, . . . , em) and i = (i1, i2, . . . , im) respectively denote

the unobserved infection exposure times and infectious times after latency; where

0 < e1 ≤ e2 ≤ · · · ≤ em and ej ≤ rj for j = 1, 2, . . . ,m and 0 < i1 ≤ i2 ≤ · · · ≤ im

and ij ≤ rj for j = 1, 2, . . . ,m. If the epidemic is known to have ceased, then it must

be true that m = n; in general, n ≤ m ≤ N .

A Gibbs sampler within Metropolis sampling scheme will be used to generate

random samples from the desired posterior distribution. Relevant details about how

to sample from the appropriate conditional distributions are described below. First,

note that the density of (e, i, r) conditionally on β, σ and γ is given by

L = f(e, i, r|β, σ, γ)

=

(
β

N

)m m∏
j=1

S(e−j )I(e−j )σm
m∏
j=1

E(i−j )γn
n∏
j=1

I(r−j )

× exp(−
∫ T

e1

λ(t | β, σ, γ)dt), (5.2.1)

where λ(t | β, σ, γ) =
β

N
S(t)I(t) + σE(t) + γI(t), using the notations in Chapter 4,

and where ej
− denotes the left limit. We assume that β, σ and γ have gamma

prior distributions with parameters (νβ, λβ), (νσ, λσ) and (νγ, λγ) respectively. Then

following from equation (5.2.1) and using Γ to denote the family gamma distributions,
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the posterior distributions of β, σ and γ are easily shown to be:

π(β | e, i, r, σ, γ) ∼ Γ(νβ +m,λβ +
1

N

∫ T

e1

S(t)I(t)dt), (5.2.2)

π(σ | e, i, r, β, γ) ∼ Γ(νσ +m,λσ +

∫ T

e1

E(t)dt), (5.2.3)

π(γ | e, i, r, β, σ) ∼ Γ(νγ + n, λγ +

∫ T

e1

I(t)dt). (5.2.4)

For simplicity, the notation f(e, i, r|β, σ, γ) for the joint density of (e, i, r) in (5.2.1)

will be abbreviated as f(e). Then the sampling scheme is as follow:

• Initial state vector

Initial values for β, σ and γ are obtained by sampling from their respective

priors, Γ(νβ, λβ), Γ(νσ, λσ) and Γ(νγ, λγ). By fixing the seed value of the

random generator, it is possible to assure fixed initial values. Exposure times

e are generated by sampling from a uniform distribution over the set of valid

configurations. We draw m independent values from the uniform distribution on

(0, rn), sort them in ascending order and check whether they obey the constraint

of ej < rj for 1 ≤ j ≤ m. This procedure is repeated until a valid sample of

infection times is obtained.

• Generating new states by Gibbs within Metropolis

A Gibbs sampling algorithm within Metropolis sampling scheme is used to

update the state vector (β, σ, γ, e). The first three components, β, σ and γ,

are updated by sampling from the full conditional distributions (5.2.2), (5.2.3)

and (5.2.4), respectively. The Metropolis sampler is used for sampling from the

uniform distribution of e given (r, β, σ, γ). Because the epidemic is assumed

to be observed to its end, we know the size (m) of the exposure times, e. The

only operation is the moving of an infection event in time using the Metropolis

algorithm, is as follows:
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i) choose one from the existing infection times, e1, e2, . . . , em, uniformly at

random and denote it as s,

ii) generate a replacement time t by sampling uniformly on (e1, rn),

iii) accept the new infection candidate with probability

min(1,
f(e− {s}+ {t})

f(e)
).

While implementing, the infection times vector e is represented as an array.

After the new infection candidate t is written to s’s position in e, the array needs to

be sorted before the acceptance probability can be computed.

5.3 Data and Notation

Data used in this Chapter will be partially observed, consists only of the observed

recovery times, r. At any given time t, a computer is characterized as being (i)

susceptible, (ii) exposed (infected but not infectious), (iii) infectious, or (iv) recovered.

The number of computers in each of susceptible, exposed, infectious and recovered

compartments at time t are S(t), E(t), I(t) and R(t), respectively. β, σ and γ are

infection rate, infectious rate and removal rate, respectively. Moreover, the total

population is close, homogeneous and uniformly mixing such that S(t) + E(t) +

I(t) + R(t) = N , where N is the total population size (number of computers in

the network). The notations of various parameters and variables, as described in

Section 4.3.1, remain in effect.

5.4 Case Study: Code Red Worm Data

In this section, results of applying MCMC method to Code Red worm data, where

the infection times are treated as missing values, are summarized. Our data consists

of observed recovery times only. Since the Code Red worm epidemic process is indeed
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observed to its end [59], the sampling scheme described in Section 5.2 can be applied

to Code Red worm data.

5.4.1 MCMC Estimation

To make inferences for transition parameters of interest in stochastic SEIR model

using Markovian approach, 10,000 samples from 1,000,000 MCMC iterations with

thin factor of 100 are used following a burn-in of 5000 iterations. The posterior

distribution of the parameters are shown in Figure 5.1, and the corresponding point

estimates (mean, median and some percentiles) are summarized in Table 5.1. The

percentiles can be used to construct confidence interval of the parameters.

Table 5.1 Summary of Parameters Estimates using MCMC Methods for Code Red
Worm Data with Observed Recovery Times Only

Parameters Mean Standard Deviation MC Error 2.5% Median 97.5%

β 3.206544 0.024427 0.000245 3.15866 3.20772 3.25048

σ 0.115749 0.000425 4.26× 10−6 0.11590 0.11575 0.11665

γ 5.61× 10−5 1.69308× 10−6 1.71× 10−8 5.29687× 10−5 5.63× 10−5 5.88577× 10−5
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Figure 5.1 Posterior distributions of the model parameters β, σ and γ for the
Markovian SEIR model with Code Red worm data.
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Table 5.2 contrasts the MCMC estimate of the transition parameters for the

partially observed Code Red worm data (of recovery times only) to those obtained

as MLE and Bayes estimates, reported in Chapter 4 for the completely observed

Code Red worm data. It shows that even with exposure and infectious times missing,

MCMC-based estimates of the epidemic parameters are very close to those obtained

when complete data are available.

Table 5.2 Comparison among Maximum Likelihood Estimates, Bayesian Estimates
and MCMC Estimates

β σ γ

Maximum Likelihood Estimates 3.2100 0.11 5.625851× 10−5

Bayesian Estimates 3.2421 0.10 5.681790× 10−5

Markov chain Monte Carlo (MCMC) Estimates 3.2065 0.1157 5.61× 10−5

5.4.2 Simulation Results

To further judge the extent to which MCMC-based estimates can adequately capture

the Code Red virus propagation, simulations were performed using stochastic SEIR

model with MCMC estimates as input values of model parameters, β, σ and γ.

Figure 5.2 shows that the simulation results, which closely match the observed Code

Red worm data.

For purposes of comparison, discrepancy measures are computed for each of the

simulation scenarios. The results are summarized in Table 5.3. Moreover, Figure 5.3

graphically exhibits the Code Red propagation time trajectory for the different model

setups of Table 5.3. The stochastic SEIR model with MLE, stochastic SEIR model

with Bayesian and stochastic SEIR with MCMC estimators better fit the actual Code

Red worm data much closer than the previous works, classic simple SI model and

two-factor worm model reported in the literature.



60

Figure 5.2 Comparison between observed Code Red worm data and simulation
based on MCMC estimates for parameters.

Table 5.3 Summary of Stochastic SEIR Simulations and Comparison with other
Models

Standard Deviation Maximum Discrepancy Average Discrepancy

of Discrepancy

Stochastic SEIR (MLE) 13.3572 40.7684 −0.5910

Stochastic SEIR (Bayesian Estimation) 13.3128 45.9277 2.9181

Stochastic SEIR (MCMC Estimation) 12.0984 39.3951 −1.0646

Classic Simple SI Model 28.4853 100.6507 19.7426

Two-factor worm Model 41.9134 136.2675 8.9397
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Figure 5.3 Comparison between observed Code Red worm data and simulations
based on different models: Stochastic SEIR model with MLE, Stochastic SEIR model
with Bayesian estimates, Stochastic SEIR model with MCMC estimates, Classic
Simple SI Model and Two-factor Worm Model.

5.5 Discussion

In this Chapter, Bayesian inference using Markov chain Monte Carlo (MCMC) method

is introduced to the context of computer virus propagation. The MCMC method can

be used to estimate model parameters when all relevant variables of the computer

virus propagation are not completely observed. The model and methodology are

applied to Code Red worm data by treating the infection times as missing values. The

simulation results show that MCMC method is efficient for dealing with parameter

estimations with partially observed computer virus epidemic process.



CHAPTER 6

MULTI-GROUP MARKOVIAN AND SDE-BASED SEIR MODELS

AND INFERENCE FOR COMPUTER VIRUS PROPAGATION

6.1 Introduction

In both Chapters 4 and 5, the stochastic SEIR model in a Markovian setup to study

computer virus propagation, the underlying network is assumed to be homogeneous.

It has been argued, however, that network structure has an impact on the speed

and other characteristics of propagation of a computer virus [66, 67, 86], and thus

the assumption of homogeneity may need to be relaxed. In this Chapter, two multi-

group stochastic SEIR models will be introduced to study computer virus prevalence.

Maximum likelihood estimation for model parameters of interest will be developed

for multi-group stochastic SEIR model using Markovian approach. Furthermore,

stochastic differential equations (SDE) will be used to construct a multi-group SEIR

model, denoted as multi-group stochastic SEIR-SDE model. The method of least

squares will be used to estimate parameters of interest for multi-group stochastic

SEIR-SDE model.

6.2 Model and Methodology

6.2.1 Data and Notation

It is assumed that the epidemic is observed in the time interval [e1, T ], where e1

is the time of the first exposure to infection in the network; and at time T , all

infected computers have been recovered, so that the epidemic is completely observed.

We continue to use the same notations and conventions to describe our data and

the corresponding variables as in Chapter 4. Our data thus consists of m observed

exposure to infection times e during [e1, T ] and n(≤ m) recovery times r during [e1, T ].

Because the infected computer will stay in the exposed state for the length of a latent

62
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period before it becomes infectious and is capable to infect other computers, we have

another sequence of m observed infectious times i during [e1, T ], where i = e + d,

and d denotes latent periods during which infected computers remain dormant.

As a way of considering the structure of network, in this dissertation the whole

Internet will be divided into several subnets (groups) according to some characteristic

information, i.e., if the computers who have the same characteristics will considered to

be from the same group. Now suppose the Internet is divided into g subnets. We use

the following notational conventions to denote the state variables and transmission

parameters within and between subnets in the multi-group SEIR setup:

i) (Sj(t), Ej(t), Ij(t) and Rj(t)) is the random vector representing the number

of (susceptible, exposed, infectious, recovered) computers at time t satisfying

Sj(t) + Ej(t) + Ij(t) + Rj(t) = Nj, where Nj is the total number of computers

in subnet j;

ii) transmission parameters:

• βjk: infection rate from subnet j to k, where j, k = 1, 2, . . . , g. (Note,

βjj represents intra-subnet infection rate; i.e., the infection rate within the

subnet j, j = 1, 2, . . . , g.)

• σj: infectious rate within subnet j, where j = 1, 2, . . . , g.

• γj: recovery rate within subnet j, where j = 1, 2, . . . , g.

6.2.2 Multi-group Stochastic SEIR Model using Markovian Approach

As a first step to estimate the parameters of interest, the likelihood expression with

data (e, i, r) is computed. Instead of absolute clock time, the waiting time between

the different events is modeled, i.e., ti = t′i−t′i−1, where t′i denotes the clock time of the

i-th event such that i = 1, 2, . . . ,m if the i-th event is of type e or i and i = 1, 2, . . . , n

if it is of type r (i.e., a recovery event). Likelihood of each waiting time can be found

using survival analysis methodology in a setup with multiple modes of failure [31]. The
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events of interest are: infection, becoming infectious and recovery. The corresponding

hazard rate functions, for a non-homogeneous network, as described in the previous

section, can be expressed as

λinfection(ti | β) =

g∑
j=1

g∑
k=1

βjk
Nk

Sk(ti)Ij(ti) (6.2.1a)

λinfectious(ti | σ) =

g∑
j=1

σjEj(ti) (6.2.1b)

λrecovery(ti | γ) =

g∑
j=1

γjIj(ti) (6.2.1c)

with Sj(ti), Ej(ti) and Ij(ti) are the number of susceptible, exposed and infectious

computers at time t in the subnet j, respectively, and where i = 1, 2, . . . ,m in (6.2.1a)

– (6.2.1b), and i = 1, 2, . . . , n in (6.2.1c). The events of infection, infectious and

recovery are assumed to be mutually independent. The overall hazard rate function

is then given by

λ(ti | θ) =

g∑
j=1

g∑
k=1

βjk
Nk

Sk(ti)Ij(ti) +

g∑
j=1

σjEj(ti) +

g∑
j=1

γjIj(ti), (6.2.2)

where θ = (β11, β12, . . . , βgg, σ1, σ2, . . . , σg, γ1, γ2, . . . , γg) is a vector of 2g+ g+ g = 4g

parameters. The hazard rate remains unchanged between events.

The epidemic dataset is described by D = (ti, Ei), where Ei ∈ {infection,

infectious, recovery} denotes the event type. D consists of m infection times, m

infectious times and n(≤ m) recovery times. Our interest now is the density of (e,

i, r) given β, σ and γ. Consider therefore the likelihood of a single arbitrary event

Ei in D as failure time in a setup with constant hazard rate and non-informative

censoring. If time is zero at the occurrence of the event just prior to the event Ei,

the likelihood is

LEi = λEi(ti | θ)P (Ti ≥ ti | θ) = λEi(ti | θ)F (ti | θ), (6.2.3)
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where Ti is a random variable denoting the clock time to event Ei, and

F (t | θ) = exp(−
∫ t

0

λ(u | θ)du) (6.2.4)

is the survival function based on the overall hazard rate function (6.2.2). Assuming

independence of the event inter-arrival times; the overall likelihood is given by conside-

ring all infection, all infectious and all recovery events. Hence,

L =
m∏
l=1

[
g∑
j=1

g∑
k=1

βjk
Nk

Sk(e
−
l )Ij(e

−
l ) exp(−

∫ el

el−1

λ(t | θ)dt)

]

×
m∏
l=1

[
g∑
j=1

σjEj(i
−
l ) exp(−

∫ il

il−1

λ(t | θ)dt)

]
n∏
l=1

[
g∑
j=1

γjIj(r
−
l ) exp(−

∫ rl

rl−1

λ(t | θ)dt)

]

=
m∏
l=1

[
g∑
j=1

g∑
k=1

βjk
Nk

Sk(e
−
l )Ij(e

−
l )

]
m∏
l=1

[
g∑
j=1

σjEj(i
−
l )

]
n∏
i=1

[
g∑
j=1

γjIj(r
−
l )

]

×
m∏
l=1

exp(−
∫ el

el−1

λ(t | θ)dt)
m∏
l=1

exp(−
∫ il

il−1

λ(t | θ)dt)
n∏
i=1

exp(−
∫ rl

rl−1

λ(t | θ)dt),

(6.2.5)

where Sj(t
−), Ej(t

−) and Ij(t
−) denote the numbers in each category just prior to

time t in the subnet j, i.e., Sj(t
−) = lim

t→t−
Sj(t), etc. Since the events of infection,

infectious and recovery are consecutive in time, the sums of integrals in the likelihood

function (6.2.5) can be simplified into a single integral to yield,

L =
m∏
l=1

[
g∑
j=1

g∑
k=1

βjk
Nk

Sk(e
−
l )Ij(e

−
l )

]
m∏
l=1

[
g∑
j=1

σjEj(i
−
l )

]
n∏
i=1

[
g∑
j=1

γjIj(r
−
l )

]

× exp(−
∫ T

e1

λ(t | θ)dt). (6.2.6)
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Then, log-likelihood function is given by

lnL =
m∑
l=1

ln

[
g∑
j=1

g∑
k=1

βjk
Nk

Sk(e
−
l )Ij(e

−
l )

]
+

m∑
l=1

ln

[
g∑
j=1

σjEj(i
−
l )

]

+
n∑
l=1

ln

[
g∑
j=1

γjIj(r
−
l )

]
−
∫ T

e1

g∑
j=1

g∑
k=1

βjk
Nk

Sk(e
−
l )Ij(e

−
l )dt

−
∫ T

e1

g∑
j=1

σjEj(i
−
l )dt−

∫ T

e1

g∑
j=1

γjIj(r
−
l )dt. (6.2.7)

Differentiating (6.2.7) with respect to each component in θ, we get the following

score functions, for j, k = 1, 2, . . . , g

∂ lnL

∂βjk
=

m∑
l=1

Sk(e
−
l )Ij(e

−
l )/Nj

g∑
j=1

g∑
k=1

βjk
Nk

Sk(e
−
l )Ij(e

−
l )

− 1

Nj

∫ T

e1

Sk(t)Ij(t)dt

∂ lnL

∂σj
=

m∑
l=1

Ej(i
−
l )

g∑
j=1

σjEj(i
−
l )

−
∫ T

e1

Ej(t)dt

∂ lnL

∂γj
=

n∑
l=1

Ij(r
−
l )

g∑
j=1

γjIj(r
−
l )

−
∫ T

e1

Ij(t)dt.

(6.2.8)

Setting each of the above score functions to zero, the maximum likelihood

estimates (MLEs) of the parameters σj, γj and βjk; j, k = 1, 2, . . . , g are obtained

as the solution of the system of equations

m∑
l=1

Sk(e
−
l )Ij(e

−
l )/Nj

g∑
j=1

g∑
k=1

βjk
Nk

Sk(e
−
l )Ij(e

−
l )

− 1

Nj

∫ T

e1

Sk(t)Ij(t)dt = 0

m∑
l=1

Ej(i
−
l )

g∑
j=1

σjEj(i
−
l )

−
∫ T

e1

Ej(t)dt = 0

n∑
l=1

Ij(r
−
l )

g∑
j=1

γjIj(r
−
l )

−
∫ T

e1

Ij(t)dt = 0

(6.2.9)

In practice, these equations will require a numerical solution.
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6.2.3 Multi-group Stochastic SEIR-SDE Model

To set up our proposed multi-group stochastic SEIR model using stochastic differential

equations, let X(t) = (S1(t), . . . , Sg(t), E1(t), . . . , Eg(t), I1(t), . . . , Ig(t), R1(t), . . . ,

Rg(t))
T denote the column vector state of the multi-group system at time t, where

(Sj(t), Ej(t), Ij(t), Rj(t)) represents the corresponding distribution of Nj computers

in subnet j (j = 1, 2, . . . , g) which are (susceptible, exposed, infectious, recovered) at

time t.

The stochastic differential equation formulation is based on a time step, 4t. We

assume that the time step, 4t, is small enough so that there can be only a change

(±1) of at most one unit among the S-E-I-R category counts within each subnet

during a time step. We denote the changes in each subnet j during 4t by 4Sj(t) =

Sj(t +4t) − Sj(t), 4Ej(t) = Ej(t +4t) − Ej(t), 4Ij(t) = Ij(t +4t) − Ij(t) and

4Rj(t) = Rj(t+4t)−Rj(t). The change in the entire network is given by 4X(t) =

(4S1(t), . . . ,4Sg(t),4E1(t), . . . ,4Eg(t),4I1(t), . . . ,4Ig(t),4R1(t), . . . ,4Rg(t))
T .

Now, we can compute the probabilities of the various changes occurring in each

subnet. For k = 1, 2, . . . , g, these transition probabilities are given by:

P (4Sk = −1,4Ek = 1|X(t)) =

g∑
j=1

βjk
Nk

Sk(t)Ij(t)4t+ o(4t) (6.2.10a)

P (4Ek = −1,4Ik = 1|X(t)) = σkEk(t)4t+ o(4t) (6.2.10b)

P (4Ik = −1,4Rk = 1|X(t)) = γkIk(t)4t+ o(4t) (6.2.10c)

Applying these transition probabilities, the expected rate of change of the

population E(4X(t)) can be found. This expected value, after approximate algebraic

computation, can be shown to be given by
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E(4X(t)) := µ(X(t))4t+ o(4t)

=



−
g∑
j=1

βj1
N1

S1(t)Ij(t)

...

−
g∑
j=1

βjg
Ng

Sg(t)Ij(t)

g∑
j=1

βj1
N1

S1(t)Ij(t)− σ1E1(t)

...
g∑
j=1

βjg
Ng

Sg(t)Ij(t)− σgEg(t)

σ1E1(t)− γ1I1(t)
...

σgEg(t)− γgIg(t)

γ1I1(t)

...

γgIg(t)



4t+ o(4t). (6.2.11)

The column vector shown in (6.2.11) thus corresponds to µ(X(t)).

The stochastic variance comes from the covariance matrix for the rate of change

in the random variables. The covariance matrix of 4X(t) is V (4X(t)) = E(4X(t)

(4X(t))T ) − E(4X(t))(E(4X(t)))T ≈ E(4X(t)(4X(t))T ), since the elements in

the second term are o((4t)2). Then the 4g × 4g covariance matrix of 4X(t) up to

order 4t, is given by

V (4X(t)) =



A B 0 0

B C D 0

0 D E F

0 0 F G


4t (6.2.12)
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[1]. Here the g × g submatrices in (6.2.12) are given by

A = diag

(
g∑
j=1

βjk
Nk

Sk(t)Ij(t)

)
, B = diag

(
−

g∑
j=1

βjk
Nk

Sk(t)Ij(t)

)
,

C = diag

(
g∑
j=1

βjk
Nk

Sk(t)Ij(t) + σkEk(t)

)
, D = diag (−σkEk(t)) ,

E = diag (σkEk(t) + γkIk(t)) , F = diag (−γkIk(t)),

G = diag (γkIk(t)) ,

where the rows and columns of the matrix in (6.2.12) shown in terms of partitioned

submatrices corresponding to susceptible (S), exposed (E), infectious (I) and recover-

ed (R) states. The null submatrices in (6.2.12) arise as a consequence of the transition

equations (6.2.10) or/and due to impossibility of direct transitions from S → E,

S → R, E → R, I → S, R→ S and R→ E.

Considering X(t) as approximating a diffusion process with small time step 4t,

we have up to order 4t,

4X(t) = E(4X(t)) +
√
V (4X(t)). (6.2.13)

Let

H(X(t)) =
√
V (4X(t)) =

√√√√√√√√√√√√



A B 0 0

B C D 0

0 D E F

0 0 F G


,

where the matrices A, B, C, D, E, F , and G are defined as in (6.2.12). The matrix

H is the unique because matrix V (4X(t)) is positive definite and is given by

H(X(t)) =
√
V (4X(t)) =



A1 0 0 0

B1 C1 0 0

0 D1 E1 0

0 0 0 F1


. (6.2.14)
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Here the g × g submatrices in (6.2.14) are given by

A1 = diag

−
√√√√ g∑

j=1

βjk
Nk

Sk(t)Ij(t)

 , B1 = diag

√√√√ g∑
j=1

βjk
Nk

Sk(t)Ij(t)

 ,

C1 = diag
(
−
√
σkEk(t)

)
, D1 = diag

(√
σkEk(t)

)
,

E1 = diag
(
−
√
γkIk(t)

)
, F1 = diag

(√
γkIk(t)

)
.

Taking limit as 4t → 0 of equation (6.2.13), the following system of Itô

stochastic differential equations (SDE) is obtained,

d(X(t)) = µ(X(t))dt+H(X(t))dW (t), (6.2.15)

where W (t) = (W1(t),W2(t), . . . ,W4g(t))
T , and each Wi(t), i = 1, 2, . . . , 4g is an

independent Wiener process. The stochastic differential equations (SDEs), governing

the process, are:

dSi(t) = −
g∑
j=1

βji
Ni

Si(t)Ij(t)dt−

√√√√ g∑
j=1

βji
Ni

Si(t)Ij(t)dWi(t)

dEi(t) =

[
g∑
j=1

βji
Ni

Si(t)Ij(t)− σiEi(t)

]
dt+

√√√√ g∑
j=1

βji
Ni

Si(t)Ij(t)dWi(t)

−
√
σiEi(t)dWg+i(t)

dIi(t) = [σiEi(t)− γiIi(t)] dt+
√
σiEi(t)dWg+i(t)−

√
γiIi(t)dW2g+i(t)

dRi = γiIi(t)dt+
√
γiIi(t)dW3g+i(t),

(6.2.16)

for i = 1, 2, . . . , g.

6.3 Case Study: Code Red Worm Data

The methods described in Section 6.2.2 and Section 6.2.3 will be applied to Code Red

worm data.

We make the following simplifying assumptions for the transmission, latency

and recovery parameters of the component subnets:
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1) all within subnet infection rates are the same, i.e., βjj = βw; j = 1, 2, . . . , g.

2) infection rates between any two subnets are equal, i.e., βjk = βb for all distinct

pairs j 6= k; j, k = 1, 2, . . . , g.

3) infectiousness latency rate is constant across subnets, i.e., σj = σ; j = 1, 2, . . . , g.

4) each subnet has the same recovery rate, i.e., γj = γ; j = 1, 2, . . . , g.

Each component subnet in the network is necessarily assumed to be homogeneo-

us within itself, since otherwise the subnet can be further decomposed into constituent

homogeneous subgroups. The simplifying assumptions 1) – 4) above are often, in

practice – as in the case of Code Red data to which our model is applied, due to lack

of detailed information about the communication profiles of the individual nodes in

the computer network that would make it feasible to choose/assign distinct but at

the same time also realistic values to all different parameters.

For Code Red worm data, Figure 6.1 summarizes the total number of infected

hosts according to the country information.

Based on the geographical locations (i.e., country information) for each computers

in Code Red worm data set, the Internet is divided into seven groups, namely Asia,

Africa, Europe, North America, Oceania, South America and XX (computers, for

which no specific country information is available), which is summarized in Figure 6.2.

6.3.1 Results for Country based Multi-group Stochastic SEIR Model

using Markovian Approach

6.3.1.1 Parameters Estimations Results. In the application to Code Red

worm data, the whole network is divided in seven groups based on country information

of each computer, namely Asia, Africa, Europe, North America, Oceania, South

America and XX (no country specific information given), i.e., number of groups g = 7.

For parameters of interest, since the reciprocal of infectious rate, σ, is the average

latent period, which depends only on the computer virus itself, σj will be same for each
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Figure 6.1 Distribution of total number of infected hosts based on location
(country).

Figure 6.2 Distribution of the population of infected hosts among different groups:
Asia, Africa, Europe, North America, Oceania, South America, and XX (location
unknown).
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of the seven groups. Also, since based on geographical location information above,

there is no reason to believe that the designers/propagators of the Code Red virus

have any explicit preference of targets by their location; it is reasonable to assume

that all intra-subnet as well as inter-subnet transmission rates are each constant.

Therefore additionally, we assume that for all seven groups, within each group the

infection rates are same, i.e., βjj = βw for j = 1, 2, . . . , 7, and between groups the

infection rate are also same, i.e., βjk = βb for j, k = 1, 2, . . . , 7 and j 6= k. Now,

the likelihood function (6.2.6), the log-likelihood function (6.2.7) and the system of

equations (6.2.8) can be simplified, and the maximum likelihood estimates (MLEs)

of the parameters βw, βb, σ and γj; j = 1, 2, . . . , 7 for each of the seven groups can be

obtained as the numerical solution of the simplified system of equations corresponding

to (6.2.9). Our results of the parameter estimates are summarized in Table 6.1 and

Table 6.2.

Table 6.1 Summary of Parameter Estimates in Multi-group Stochastic SEIR Model
using Markovian Approach (Same Recovery Rate for All Groups)

β̂w β̂b σ̂ γ̂

Maximum Likelihood Estimates 3.3035 3.2556 0.11 5.625851× 10−5

If the the fourth assumption of constancy of recovery rates between groups,

as assumed at the beginning of Section 6.3, is relaxed; then the maximum likelihood

estimates for the possibly different recovery rates for different groups can be obtained.

Table 6.2 summarizes the maximum likelihood estimates for all parameters, by suitably

modifying equations (6.2.9) with this relaxation. There does not appear to by any

appreciable difference in the estimates of recovery rates across groups. The estimated

average recovery time across groups as measured by γ−1 varies only between 4.8 hours

and 4.9 hours (a difference of 0.1 hour or, about 6 minutes for a recovery) across the

seven groups.
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Table 6.2 Summary of Parameter Estimates in Multi-group Stochastic SEIR Model
using Markovian Approach (Different Recovery Rates for All Groups)

β̂w β̂b σ̂ γ̂1 γ̂2

MLE 3.3035 3.2556 0.11 5.6159× 10−5 5.7236× 10−5

γ̂3 γ̂4 γ̂5 γ̂6 γ̂7

MLE 5.6359× 10−5 5.6259× 10−5 5.7528× 10−5 5.6288× 10−5 5.6269× 10−5

Both Table 6.1 and Table 6.2 show that the maximum likelihood estimates of βw

and βb are close, 3.3035 and 3.2556, respectively, which are also close to the maximum

likelihood estimate of β and Bayesian estimate of β (shown in Table 4.1) obtained in

Chapter 4.

6.3.1.2 Simulation Results. To see how well our multi-group stochastic SEIR

model using Markovian approach is, simulations using the maximum likelihood estimates

for all parameters (values in Table 6.2) were conducted with 5000 simulation runs.

Figure 6.3 shows the observed Code Red worm data and the corresponding simulation

results separately for each of the seven different groups classified by location. By

visual inspection, the simulations for each of the seven groups well match the actual

observed data.
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Figure 6.3 Comparison between observed data and Code Red worm simulation
using multi-group stochastic SEIR with Markovian approach for the seven different
groups based to geographical locations of computers: (a) Asia (b) Africa (c) Europe
(d) North America (e) Oceanic (f) South America and (g) XX (location unknown).
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Table 6.3 also demonstrates the close match to the observed Code Red data,

which is shown in Figure 6.3, by computing the discrepancy measures.

Table 6.3 Summary of Simulations from Multi-group Stochastic SEIR Model using
Markovian Approach for Code Red Worm Propagation Based on Different Groups

Standard Deviation Maximum Discrepancy Average Discrepancy

of Discrepancy

Asia 4.1242 10.7505 −1.1366

Africa 9.1801 24.0843 1.5849

Europe 1.6653 5.7695 0.0049

North America 0.5943 18.9769 −0.3101

Oceania 3.7204 11.6271 1.9450

South America 3.2043 11.3123 1.4794

XX (location unknown) 5.3483 15.8771 2.0977

6.3.2 Multi-group Stochastic SEIR-SDE Model

6.3.2.1 A Special Case of Multi-group Stochastic SEIR-SDE Model: One

Group Only-Homogeneous Case. When the constituent groups in a multi-group

stochastic SEIR-SDE model are merged together, the model reduces to a single

network under homogeneity assumption. For comparison purposes, simulations are

performed based on stochastic SEIR-SDE model with different parameter input values

by using MLE and Bayesian estimates obtained in Chapter 4, MCMC estimates

obtained in Chapter 5 and those used in previous works [72, 90]. Figure 6.4 shows

the result that the simulations based on the models with MLE, Bayesian and MCMC

estimates fit the observed Code Red worm data much better than those previous

works. The corresponding discrepancy measures in Table 6.6 underscore this finding.

6.3.2.2 Parameters Estimations Results. In the case using stochastic differe-

ntial equations, we assume that all groups have the same infectious rates, σ, and

recovery rates, γ, i.e., σj = σ and γj = γ for j = 1, 2, . . . , 7. Moreover, we assume
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Figure 6.4 Comparison between observed data and Code Red worm simulation
using SDE based on different parameter values: (a) maximum likelihood estimates
(β = 3.2100, σ = 0.11, γ = 5.625851× 10−5) (b) Bayesian estimates (β = 3.2421, σ =
0.10, γ = 5.681790 × 10−5) (c) MCMC estimates (β = 3.2065, σ = 0.12, γ = 5.61 ×
10−5) and (d) previous works (β = 2.83, σ = 0.11, γ = 1.39× 10−5).

Table 6.4 Summary of Stochastic SEIR Models Simulations for Code Red Worm
Propagation in Homogeneous Network using Stochastic Epidemic Equations based
on Different Scenarios

Standard Deviation Maximum Discrepancy Average Discrepancy

of Discrepancy

Stochastic SEIR (MLE) 15.3200 47.6329 −0.7411

Stochastic SEIR (Bayesian Estimates) 15.4543 53.7708 1.2451

Stochastic SEIR (MCMC Estimates) 15.3342 47.1415 −0.8880

Stochastic SEIR (Previous Work) 19.6102 78.3853 12.2958
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that σ = 0.11 and γ = 5.625851 × 10−5, maximum likelihood estimates for σ and

γ obtained in Chapter 4. Since each element in W (t) = (W1(t),W2(t), . . . ,W4k(t))
T

in system of equations (6.2.15) is Wiener process, i.e., Wi(t) has normal distribution

with mean 0 and variance t for i = 1, 2, . . . , 4k, the method of least squares can

be used to estimate the parameters of interest, saying βw and βb. However, due

to the complexity of the system of equations (6.2.15), the explicit solution for the

parameter estimates can not be obtained. We obtain the numerically solutions for

the least squares estimates for model parameters of interest, which are summarized

in Table 6.5.

Table 6.5 Summary of Parameter Estimates in Multi-group Stochastic SEIR Model-
SDE

β̂w β̂b

Least Squares Estimates 3.303 3.256

6.3.2.3 Simulation Results. With the least squares estimates obtained above,

simulations based on the stochastic multi-group SEIR-SDE model is conducted. Figu-

re 6.5 shows the comparison results between the observed Code Red worm data and

simulation results. By visual inspection, the multi-group stochastic SEIR-SDE model

well match the observed data for each of the seven groups. It also can be seen from

Table 6.6.

6.3.3 Comparison between Multi-group Markovian SEIR Models and

Multi-group Stochastic SEIR-SDE Model

In this Section, we compare the multi-group Markovian SEIR model and multi-group

SEIR-SDE model. Table 6.7 summarizes the discrepancy measures for both two

models. It shows that for each of the seven groups the two models are very close to

each other and both of them well match the observed Code Red data. Figure 6.6 also

visually corroborates the same view.



79

Figure 6.5 Comparison between observed data and Code Red worm simulation
using multi-group stochastic SEIR-SDE model for the seven different groups based
on geographical locations of computers: (a) Asia (b) Africa (c) Europe (d) North
America (e) Oceanic (f) South America and (g) XX (location unknown).
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Table 6.6 Summary of Multi-group Stochastic SEIR-SDE Model Simulation for
Code Red Worm Propagation Based on Different Groups

Standard Deviation Maximum Discrepancy Average Discrepancy

of Discrepancy

Asia 3.9111 11.2867 −0.8152

Africa 9.9556 25.57 2.4000

Europe 1.7385 6.1037 2.1306

North America 0.5779 1.9992 0.3639

Oceania 3.6543 12.112 4.7506

South America 3.4150 11.81 1.7619

XX (location unknown) 5.7399 16.671 2.5190

Table 6.7 Comparison between Multi-group Stochastic SEIR Model using
Markovian Approach and Multi-group Stochastic SEIR-SDE According to Different
Groups

Group SEIR Model Type Standard Deviation Maximum Discrepancy Average Discrepancy

of Discrepancy

Asia Markovian 4.1242 10.7505 −1.1366

SDE 3.9111 11.2867 −0.8152

Africa Markovian 9.1801 24.0843 1.5849

SDE 9.9556 25.57 2.4000

Europe Markovian 1.6653 5.7695 0.0049

SDE 1.7385 6.1037 2.1306

North Markovian 0.5943 18.9769 −0.3101

America SDE 0.5779 1.9992 0.3639

Oceania Markovian 3.7204 11.6271 1.9450

SDE 3.6543 12.112 4.7506

South Markovian 3.2043 11.3123 1.4794

America SDE 3.4150 11.81 1.7619

XX Markovian 5.3482 15.8771 2.0977

SDE 5.7399 16.671 2.5190
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Figure 6.6 Comparison between observed data and Code Red worm simulations
using multi-group stochastic SEIR with Markovian approach and multi-group
stochastic SEIR-SDE for seven different groups according to geographic-al locations
of computers: (a) Asia (b) Africa (c) Europe (d) North America (e) Oceanic (f) South
America and (g) XX (location unknown).
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Moreover, as the overall comparison between the two models, Table 6.8 and

Figure 6.7 show the same result that both multi-group Markovian SEIR model and

multi-group SEIR-SDE model are good in matching the observed Code Red worm

data.

Table 6.8 Comparison between the Overall Simulations from Multi-group
Stochastic SEIR Model using Markovian Approach and Multi-group Stochastic
SEIR-SDE Model

Multi-group SEIR- Multi-group Markovian

SDE Model SEIR Model

Standard Deviation of Discrepancy 11.7929 12.3782

Maximum Discrepancy 41.5196 39.7848

Average Discrepancy 0.2449 1.5910

Figure 6.7 Comparison between observed Code Red worm data and simulations
based on Multi-groups Markovian SEIR Model and Multi-group SEIR-SDE Model.
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6.3.4 Comparison between Models with Homogeneous Assumption and

Models with Heterogeneous Assumption

For the purpose of comparing the stochastic models with homogeneous assumption

discussed in Chapter 4 and Chapter 5 with the multi-group stochastic SEIR model

of this Chapter of a heterogeneous network, simulations based on different models

are conducted. The results are shown in Figure 6.8 and Table 6.9, from which we

conclude that the use of stochastic SEIR model under a homogeneous assumption

or, a heterogenous assumption fit the actual Code Red worm data much better than

previous models do.

Figure 6.8 Comparison between observed data and Code Red worm simulations
based on different models: Stochastic SEIR model with MLE, Stochastic SEIR model
with Bayesian estimates, Stochastic SEIR model with MCMC estimates, Classic
Simple SI Model, Two-factor Worm Model , Multi-groups Stochastic SEIR Model
using Markovian Approach and Multi-group Stochastic SEIR-SDE Model.

Among the SEIR single homogeneous network model outputs with input param-

eter chosen as estimates obtained by different methods (MLE, Bayesian), the MCMC

based outputs with partially observed data appear to perform best in term of average,

standard deviation of discrepancies from actual data and also in term of the maximum
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Table 6.9 Summary of Stochastic SEIR Models Simulations and Comparison with
other Models

Standard Deviation Maximum Discrepancy Average Discrepancy

of Discrepancy

Stochastic SEIR (MLE) 13.3572 40.7684 −0.5910

Stochastic SEIR (Bayesian Estimation) 13.3128 45.9277 2.9181

Stochastic SEIR (MCMC Estimation) 12.0984 39.3951 −1.0646

Classic Simple SI Model 28.4853 100.6507 19.7426

Two-factor worm Model 41.9134 136.2675 8.9397

Multi-group Stochastic SEIR-SDE Model 11.7929 41.5196 0.2449

Multi-group Markovian SEIR Model 12.3782 39.7848 1.5910

deserved discrepancy (see Table 6.9). In the Markovian vs. SDE based approach

to multi-group SEIR models to allow for possible network heterogeneity, the results

based on parameters estimates obtained via SDE approach are again seem to perform

better than the Markovian approach (see Table 6.8).

Moreover, there is no big difference between the stochastic models with homoge-

neous and those with heterogenous assumption for Code Red worm data. To check

the possible reason, the observations (percentage of the infected hosts) Code Red

worm is plotted according to the seven groups: Asia, Africa, Europe, North America,

Oceania, South America and XX (location unknown) in Figure 6.9. In Figure 6.9, the

total observed (in the form of percentage of the infected hosts) Code Red worm data

is also plotted. It is can be seen that the feature of the propagation of Code Red worm

in different groups are very similar and also similar to the total observations. This is

a possible reason why there is no significant difference between the simulations using

stochastic models with homogeneous assumption and with heterogeneous assumption

for Code Red worm data.

6.4 Discussion

In this Chapter, two multi-group stochastic SEIR models are introduced, to study the

propagation of computer virus in heterogeneous networks. Parameter estimates are
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Figure 6.9 Comparison between Code Red worm observation among groups (Asia,
Africa, Europe, North America, Oceania, South America and XX (location unknown))
and total observations.

developed. The models are applied to Code Red worm data. The simulation results

show that the multi-group stochastic SEIR models well match the observed Code

Red worm data and generally provide a much better fit to the actual data than those

obtained by previous models. However, the difference between using stochastic SEIR

model for a single homogeneous network vs. multi-group stochastic SEIR models to

incorporate network heterogeneity does not appear to be significant when the Code

Red worm data are grouped by geographical locations.



CHAPTER 7

CONCLUSION

Stochastic SEIR models and inference for computer virus propagation in Homogeneo-

us and Heterogeneous networks using (i) a Markovian approach and (ii) an approach

based on stochastic differential equations (SDE) are considered in this Part (Chapters

2 – 6) of this dissertation. The models developed and the corresponding methodology

are applied to ‘Code Red’ outbreak data. Based on simulation results, we conclude

that (a) our proposed models well match the observed ‘Code Red’ data; and in fact

(b) provide a closer fit than offered by other models explored in the literatures to

explain the observed data on ‘Code Red’.

To summarize, we have two main findings:

A. Our numerical studies of the ‘Code Red’ data indicates an overall relative

superiority of the stochastic SEIR framework to more adequately explain the

propagation behavior in time of computer ‘viruses’ that by their intrinsic nature,

remain dormant for a random ‘latent period’ in a computer after it is infected,

until it turns infectious.

B. The impact of network structure on computer ‘virus’ propagation dynamics over

time can be explored via multi-group variants of a stochastic SEIR framework

(Markovian, or SDE based) to allow for different transmission, infection and

recovery parameters between and within subnets that are homogeneous within

themselves, and together constitute the overall heterogeneous network. Whether

allowing for such heterogeneity improves our ability to describe a ‘virus’ outbreak

a homogeneous model depends essentially on whether the individual nodes

(computers) in the network can be suitably grouped into clusters (subnetworks)

which differ substantially in communication activity profiles and in their primary
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purposes (academic/administrative/govenment/industrial R&D/media/financi-

al etc.) between clusters but are closely similar or, identical for nodes within

clusters.

For the possible future work, the stochastic SEIR framework can be further

modified by considering other feature. For increased realism, two such possibilities

are:

(1) Considering the human countermeasures

Human countermeasures is a very important factor for a more realistic modeling

of computer virus propagation, since appropriately including the effects of such

countermeasures can substantially further improve such a models’s predictive

ability, and corresponding influence real life actions taken by network administr-

ators as well as by individual users in controlling the virus outbreak and the

consequent damages. Some work has been done to consider the effect of such

human countermeasures, such as ‘kill signals’. Wang [84] has explored the static

effects of human countermeasures by considering the possibility of immunizing

a fraction of the hosts before the computer virus spread becomes a serious

threat, which begs the question of the timings of such immunization. Zou

[90] also consider the human countermeasures as a factor while modeling Code

Red worm propagation where the human countermeasures are dynamic actions

and is used in a deterministic epidemic model. In this dissertation, the human

countermeasure is not included as a factor. For the future work, one can attempt

to include such countermeasure effects in as suitable way in the stochastic SEIR

model setting as a dynamic factor, although it is not yet clear how to do this.

(2) Considering the infection rate as a function of time

The infection rates are assumed to be constant in the sense that it does not

change over time during the whole process. In reality, it is possible that either

(i) a large-scale computer virus propagation causes congestion in Internet traffic,
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thereby slowing down the speed of infection, as seems to be the case with Code

Red data [90] or, (ii) the infection rates increase due to the occurrence of more

computer infections, i.e., due to the increased number of infectious hosts. In

either case, the constant infection rates are not appropriate. Thus, for future

work, the constant infection rate, β, may be generalized to be a suitable function

of time.

Investigating the effects of network topology on computer malware propagation

is now emerging as a new avenue of research, and is not included in the scope of

our work reported here. Doing so successfully would require tying together the

ideas and tools of random graph dynamics to describe the stochastic behavior of the

topological structure of large computers network with important factors relevant to

network traffic. Even without such sophistication, the relatively simple modification

of earlier models to a SEIR framework can, as we have shown, significantly improve

its explanatory ability.



Part II

ON SOME SURVIVAL DISTRIBUTION MODELS IN RELIABILITY
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CHAPTER 8

INTRODUCTION

8.1 Brief Description of Research

In this Part, we explore two models of survival distribution in univariate and bivariate

setups respectively. A new partial ordering called reverse star-ordering among life

distributions is first introduced. Its properties including the relationship of this

ordering to other partial orderings and non-parametric life distribution classes, and

preservation properties of under some reliability operations are also discussed.

A new class of bivariate proportional hazard model is introduced and its different

properties are discussed. The maximum likelihood estimators cannot be expressed in

explicit forms in most of the cases. The expectation-maximization (EM) algorithm

has been proposed to compute the maximum likelihood estimators of the unknown

parameters. The model and methodology are applied to two real data sets as illustrati-

ons.

8.2 Review of Expectation-Maximization (EM) Algorithm

For data D generated from a model defined by parameters θ, a maximum likelihood

estimate (MLE) of θ is the value that maximizes the likelihood function L(θ; D), or

equivalently, the loglikelihood l(θ; D). If the likelihood is differentiable, unimodal

and bounded above [79], the MLE is unique and found by setting the score function

S(θ) =
∂l(θ; D)

∂θ
to zero and solving for θ. Numerical approaches can be used when

the maximum of the likelihood can not be determined analytically. The expectation-

maximization (EM) algorithm is discussed below. Other numerical approaches include

the Newton-Raphson method, the Nelder-Mead simplex algorithm, quadratic optimiz-

ation and the quasi-Newton method.
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The expectation-maximization (EM) algorithm, first named by Dempster et

al. [24], can simplify maximum likelihood estimation of the parameter vector θ by

considering a more complete and hypothetical data set. The complete data set D

is formed by augmenting the observed data Dobs with fictitious data Dm which is

referred to as latent or missing data. The latent data should be chosen such that

the loglikelihood of the complete data is relatively straightforward. The algorithm

is an iterative method which consist of two steps: the E-step (expectation step) and

the M-step (maximization step). Once an initial parameter choice θ0 is chosen, the

E-step and M-step are performed repeatedly until convergence occurs, which is until

the difference between successive iterates is negligible.

The EM algorithm is as follows:

E-Step. The E-step consists of computing the expected value of the complete

data loglikelihood conditional on the observed data and current estimate,

EDm|θ[i],Dobsl(θ; Dobs Dm).

M-Step. The M-step requires maximizing the expectation calculated in the

E-step with respect to θ to obtain the next iterate θ[i].

Iterates obtained using the EM algorithm converge to a turning point of the

likelihood. Readers are referred to Hastie et al. [41] for an explanation as to why the

EM algorithm works. A numerical example is provided in [79].



CHAPTER 9

COMPARING SURVIVAL (LIFE) DISTRIBUTIONS VIA A NEW

PARTIAL ORDERING

9.1 Introduction

In statistical reliability theory, identifying the broad concept of ‘aging’ or degradation

in any specific sense for modeling the distribution of lifelength of an equipment or

system is often motivated by intuitive considerations. For example, the notion of

‘increasing failure rate’ (IFR) property is derived from the observation that if X

denotes the lifelength of a device with cumulative distribution function (cdf) F (·)

and probability density function (pdf) f(·); then given that the device has not failed

at age x, the conditional probability that it does not last beyond an additional time

h > 0, is

P (X ≤ x+ h|X > x) = hr(x) + o(h) (9.1.1)

where r(x) :=
f(x)

1− F (x)
, as a function of device’s age x can be interpreted as a

measure of the equipment’s proneness to fail at age x, and is called the failure rate

function r(x) at age x. Thus, if the life distribution F is such that the proneness

to fail as measured by r(x) increases (↑) with age x; the device or equivalently its

distribution F is said to be IFR. In studying the ramifications of this intuitive notion

of aging in the sense of IFR property, it is well known that equivalence of the IFR

property (r(x) ↑) to a specific stochastic partial order (viz., a convex order >c, see

[9]) proved to be very useful [9], [60] to discover many useful consequences of the IFR

property.

Such interplay between an intuitive notion of degradation and an equivalent

partial order has had a large role in the development of many nonparametric life
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distribution classes (such as IFR, IFRA, DMRL, NBU, NBUE, HNBUE), useful as

stochastic models of life [9], [14].

In this Chapter, a new partial ordering among life distributions on the half line

[0,∞) is introduced and several of its consequences are investigated. It may be noted

here that this work takes the reverse of the traditional route of going from an intuitive

notion to some equivalent partial order.

9.2 Reverse Star-order among Life Distributions

For any distribution function F , which need not be continuous throughout its entire

support, its generalized inverse F−1 : (0, 1) (−∞,∞) is

F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1 (9.2.1)

If F is a life distribution and hence its support is contained in [0,∞), then it can be

obviously written F−1(u) = inf{x ≥ 0 : F (x) ≥ u} for u ∈ (0, 1). Alternatively, if F

is continuous on its support, then {x : F (x) ≥ u} is a singleton for each u ∈ (0, 1) so

that there is a 1:1 correspondence between F and F−1 (i.e. F is fully invertible).

Definition 9.2.1 A real valued function h(x) on A ⊂ (0,∞) is star-shaped if h(x)/x

is nondecreasing on A; equivalently, if

h(αx) ≤ αh(x), x ∈ A, 0 < α < 1. (9.2.2)

The idea of star-shaped functions has been used, in the context of reliability

theory, to define a partial ordering among distributions on the half line [0,∞); viz.,

Definition 9.2.2 (See Barlow and Proschan [9]). If F and G (continuous) are life

distribution, then F is said to be >∗-dominate G if F−1G : [0,∞) → (0, 1) is a

star-shaped function on the support {x : G(x) < 1} of G.

The intuitive notion of increasing failure rate average(IFRA) property and the

corresponding nonparametric clan of life distributions can be described via the star-
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ordering (>∗) above, namely: F if IFRA if F >∗ G where G is the unit (mean = 1)

exponential distribution [9].

Motivated by the above and some results of Chan, Proschan and Sethuraman

[14] on comparing life distribution using a partial order they developed using notion

of convexity; we introduce a new partial order defined below.

Definition 9.2.3 Let F and G be continuous life distributions. Then F is said to be

reverse star-ordered (>∗) relative to G, if FG−1 is a star-shaped function on (0, 1);

i.e.,
FG−1(u)

u
is non-decreasing on (0, 1).

If F is reverse star-ordered relative to G in the sense of Definition 9.2.3; we

say F >∗ G (F dominates G in reverse star-order, or equivalently F dominates G in

>∗-order). Note that, while F−1G : [0,∞) → [0, 1); the function FG−1 : (0, 1) →

(0, 1). Clearly, neither the star-order (>∗), nor the reverse star-order (>∗) implies

the other.

The following result characterizes the >∗-order and further shows that >∗-order

is stronger than the usual stochastic majorization order >st, i.e., F >st G (F (x) ≤

G(x) for all x).

Lemma 9.2.4 Let the distribution functions F and G be continuous. Then, F >∗ G

if and only if
F

G
↑, and implies (⇒) F >st G.

Proof By Definition 9.2.3, F >∗ G if and only if
FG−1(u)

u
is non-decreasing in u on

(0, 1). i.e.,

F >∗ G⇔ FG−1(u)

u
≡ FG−1(u)

GG−1(u)
↑ in u ∈ (0, 1) (9.2.3)

⇔ F (x)

G(x)
↑ in x > 0, setting u = G(x)

⇒ 0 <
F (x)

G(x)
≤ lim

x→∞

F (x)

G(x)
=
F (∞)

G(∞)
= 1, x > 0 (9.2.4)

⇔ 1−G(x) ≤ 1− F (x)

⇔ F >st G
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Note:

(i) G is continuous on [0,∞) implies GG−1(u) = u in (9.2.3). If G is an arbitrary

cdf, then GG−1(u) ≥ u on (0, 1) with strictly inequality if u is a discontinuity

point of G. On the other hand G−1G(u) = u on (0, 1) for any cdf G, continuous

or not.

(ii) It is clearly possible to extend the domain of >∗ ordered life distribution by

allowing a possible jump discontinuity (infant mortality effect) at zero. If

X, Y are lifetimes with cdfs F , G continuous on (0,∞) but with possible

discontinuous at zero; note that right continuity of cdfs and (9.2.4) together

implies

P (X > 0) = 1− F (0) = 1− lim
x→0+

F (x) ≥ 1− lim
x→0+

G(x) = 1−G(0) = P (Y > 0).

Hence if G is continuous at 0 (⇔ P (Y > 0) = 1), then so must be F .

Lemma 9.2.5 The relation >∗ is a partial order.

Proof (i) Reflexive: FF−1(u) = u is trivially star-shaped, thus F >∗ F , i.e., F is

>∗-ordered relative to itself.

(ii) Transitive: F >∗ G andG >∗ H imply F >∗ H, since FH−1(u) = FG−1GH−1(u)

is star-shaped. viz., a(u), b(u) both are star-shaped and b(u) ↑ in u⇒ a◦b(u) ≡

a(b(u)) is star-shaped, since
a ◦ b(u)

u
=
a(b(u))

b(u)
· b(u)

u
is ↑ in u.

(iii) Antisymmetric: F >∗ G and G >∗ F imply F = G, since by Lemma 9.2.4,

F >∗ G ⇒ F >st G and G >∗ F ⇒ G >st F , together, F = G pointwise is

obtained.

9.3 Results for Reverse Star-order

The idea and our formulation of the reverse star-order (>∗-order) as a concept has

been motivated by some work of Chan, Proschan and Sethuraman [14]. They define
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a convex order (>c) as: life distributions F >c G (F is more convex than G in

>c-ordered) if FG−1(u) is convex for 0 < u < 1, and investigate its reliability theoretic

consequences. It may be noted here that the convex partial order >c is different from

the convex order >c described in Section 9.1 which is an equivalent description of the

well known IFR (increasing failure rate) property as a non-parametric notion of an

equipment’s degradation with age.

The notion of reverse star-order (>∗) can be extended to real valued right-

continuous monotone non-decreasing (↑) and non-increasing (↓) functions or the half-

line by suitably re-defining their inverse functions as:

(a) if f is monotone ↓ on [0,∞), then f−1(z) := sup{x : f(x) ≤ z},

(b) if f is monotone ↑ on (0,∞), then f−1(z) := inf{x : f(x) ≥ z}, as defined

earlier for cdfs.

If f is continuous and strictly monotone, then f(x) is of course fully invertible.

In the spirit of Definition 9.2.3; for such real valued function f and g, it will

be said that f >∗ g (f is more >∗-star shaped than g) if f ◦ g−1(x) := f(g−1(x)) is

star-shaped on its domain. A corresponding convex ordering (>c) among continuous

functions f and g is similarly defined, viz., f >c g (f is more >c-convex than g) if

f ◦ g−1(x) := f(g−1(x)) is convex on its domain.

A question of natural interest in comparing life distributions F and G is: if it is

known that the d.f.s F and G are suitably ordered what can be said about possible

ordering of the corresponding survival probabilities (tail functions) F and G.

Lemma 9.3.1 If F and G are absolutely continuous life distributions, then

G >c F ⇒ G >∗ F (9.3.1)

i.e., survival function of G is more >c-convex than that of F implies that survival

function of G is more >∗-star-shaped than the survival function of F .
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Proof Follows from the facts that,

(i) F and G are continuous on [0,∞), which requires F (0) = G(0) = 0,

(ii) for any real valued convex function h(x) on [0,∞), h(0) ≤ 0 implies h(x) is

star-shaped on (0,∞), viz., for x > 0 and 0 < α < 1,

h(αx) ≡ h(αx+ (1− α) · 0) ≤ αh(x) + (1− α)h(0), by convexity

≤ αh(x)

Hence, G >c F and continuous at zero together imply G >∗ F .

Remark 9.3.2 We may note that the conclusion of Lemma 9.3.1 also follows from

a corresponding result of Chan, Proschan and Sethnraman [14] under a stronger

>c-ordering which they define (viz., F >c G if FG−1 is convex on (0, 1) where d.f. G

is continuous and
dF

dG
exists) states

F >c G if and only if G >c F

(see their theorem 2.8, p.125 in [14]), and further that F >c G implies both the ratios

F

G
and

F

G
of d.f.s and corresponding survival functions are nondecreasing. We note

however that in Lemma 9.3.1, the implication holds only one way.

For a lifetime X with cdf F , and a finite mean, let

νF (t) = E(X − t|X > t) =

∫∞
t
F (x) dx

F (t)
, t > 0 (9.3.2)

be its mean residual life (MRL) function at age t. For simplicity, it is assumed that

the support of life distributions is the entire half line [0,∞). If the right end point

of support of F is finite, i.e., sup{x ≥ 0 : F (x) < 1} < ∞, the argument and result

below can be suitably modified.

Our next result shows the relationship between reverse star-order (>∗) and the

mean residual life (MRL) order (for life distribution function F and G, it is said that

G≥MRLF if νG(t) ≥ νF (t)) pointwise.
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Corollary 9.3.3 G >∗ F ⇒ νG(t) ≥ νF (t) for all t > 0.

Proof Note that,

G >∗ F ⇒ G(x)

F (x)
↑ (from an obvious analog of Lemma 9.2.4) (9.3.3)

⇒ G(x)

F (x)
≥ G(t)

F (t)
, i.e., F (t)G(x) ≥ G(t)F (x), all x ≥ t

⇒ F (t)

∫ ∞
t

G(x) dx ≥ G(t)

∫ ∞
t

F (x) dx > 0

⇔ νG(t) =

∫∞
t
G(x) dx

G(t)
≥
∫∞
t
F (x) dx

F (t)
= νF (t), t > 0

Remark 9.3.4 The first implication (9.3.3) above follows from arguments paralleling

to those used in the proof of Lemma 9.2.4.

Our next result shows the relationship between our proposed partial order >∗

and the well known hazard rate order >hr, which is defined [10] as: for life distribution

function F and G, it is said that G >hr F if rG(t) ≥ rF (t), where r(·) is defined as in

Section 9.1.

Corollary 9.3.5 G >∗ F ⇔ G >hr F .

Proof Suppose the survival functionG >∗-dominates the survival function F . Hence,

G >∗ F ⇔ GF −1(u)

u
↑ (from Definition 9.2.3)

⇔ u−2
[
u
g(F −1(u))

f(F −1(u))
−GF −1(u)

]
≥ 0

⇔ g(F −1(u))

f(F −1(u))
≥ GF −1(u)

u
=
G (F −1(u))

F (F −1(u))

i.e.,
g(x)

f(x)
≥ G(x)

F (x)

⇔ g(x)

G(x)
≥ f(x)

F (x)
i.e., rG(x) ≥ rF (x)

⇔ G >hr F
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In the spirit of (9.1.1), if X is a lifetime with a density f(·) and cdf F (·);

then given an equipment with lifetime X had failed by clock-time x, the conditional

probability that it actually failed shortly before time x within a small left-neighborho-

od of x is:

P (X > x− h|X ≤ x) = hλ(x) + o(h) (9.3.4)

where λ(x) :=
f(x)

F (x)
is the so called reversed hazard rate (see [10]). Continuous life

distributions F and G on [0,∞) with densities f and g respectively are said to be

reversed hazard ordered in the sense of following definition.

Definition 9.3.6 F >rh G (F has more reversed hazard rate than G) if (f/F ) ≥

(g/G) pointwise.

As an apparently surprising implication of the reverse star-order (>∗), we show

that a subset of >∗-ordered life distributions coincides with the set of reversed hazard

ordered distributions. This result appears to be new and provides an alternative

description of the reversed hazard order that was originally motivated intuitively by

Block, Savits and Singh [10].

Consider the subset of all >∗-ordered (and hence continuous) life distributions

which are absolutely continuous and thus have probability density functions (pdfs).

The result below shows that within this subclass, >∗ and >rh ordering are equivalent.

Theorem 9.3.7 If F and G are absolutely continuous life distributions with densities

f and g respectively, then F >∗ G if and only if (f/F ) ≥ (g/G) pointwise.

Proof Using Definition 9.2.3, the following can be having

F >∗ G⇔ FG−1(u) is star-shaped for 0 < u < 1

⇔ h(u) :=
FG−1(u)

u
↑ in u on (0, 1)

⇔ h′(u) ≥ 0 for 0 < u < 1, if F and G have densities.
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Let G−1(u) = x ∈ (0,∞), then u = G(x) and,

du

dx
= G′(x) ≡ g(x)⇔ dx

du
=

1

g(x)
=

1

g(G−1(u))
≡ 1

g(x)
.

Now considering h′(u),

h′(u) = u−2
[
u f(G−1(u))

dG−1(u)

du
− FG−1(u)

]
= u−1

[
f(G−1(u))

dG−1(u)

du
− FG−1(u)

u

]
, 0 < u < 1.

Since sgn(h′(u)) = sgn

[
f(G−1(u))

dG−1(u)

du
− FG−1(u)

u

]
for 0 < u < 1,

0 ≤ h′(u)⇔ 0 ≤ f(G−1(u))
dG−1(u)

du
− FG−1(u)

u

= f(x)
dx

du
− F (x)

G(x)

=
f(x)

g(x)
− F (x)

G(x)

=
F (x)

g(x)

[
f(x)

F (x)
− g(x)

G(x)

]
⇔ f(x)

F (x)
≥ g(x)

G(x)
, i.e., F >rh G for x ∈ S(F ) ∩ S(G)

where S(F ) and S(G) is the support of F and G respectively.

If F is a life distribution with a finite mean µ, let

F̃ (x) := µ−1
∫ x

0

F (t)dt, x > 0,

denote the induced distribution, whose interpretations in the context of renewal

theory, as the initial distribution of a stationary renewal process and as the asymptotic

distribution of the age or, the remaining life of an item in use at time t as t→∞, are

well known. The following are some additional consequences of the reverse star-order

(>∗) property.

Corollary 9.3.8 Let F be a life distribution with a finite mean. Then, F >∗ F̃

(F̃ >∗ F ) implies F is DMRL (IMRL respectively).
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[DMRL (IMRL) ≡ Decreasing (Increasing) Mean Residual Life].

Proof By Lemma 9.2.4,

F >∗ F̃ ⇒ 1− F (x)

1− F̃ (x)
=

µF (x)∫∞
x
F (t)dt

=
νF (0)

νF (x)
is ↑ in x > 0,

where µF (·) is the MRL function of F , defined in (9.3.2). The duel result follows

analogously.

Corollary 9.3.9 Let F , G be life distributions with finite means. Then,

F >∗ G if and only if F̃ >∗ G̃.

Proof If λ denotes the Lebesgue measure on the real line; simply note that,

F̃ >∗ G̃ ⇔ dF̃

dG̃
=

(
dF̃

dλ

)
/

(
dG̃

dλ

)
= c

(
F

G

)
,

where c =
µG
µF

, the ratio of the means. Using Lemma 9.2.4 again, completes the

argument for the claim in the statement of Corollary 9.3.9.

A final aging property characterization result, analogous to the preceding coroll-

ary is:

Corollary 9.3.10 F is IFR (DFR) if and only if F >c F̃ (F̃ >c F , respectively).

[IFR (DFR) ≡ Increasing (Decreasing) Failure Rate].

Proof It is standard [9] that F is IFR implies, it is absolutely continuous and thus

has a density (f) with respect to Lebesgue measure. The induced distribution F̃ has

a density f̃ :=
f

F
by the former’s definition. Now, by the definition of >c-order (see

[14] and remarks preceding (9.3.2),

F >c F̃ ⇔ dF

dF̃
(x) =

f

f̃
≡ f(

F/µ
) = µr(x),
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where r(x) is the failure rate function of F . Now use the characterization of >c-order

(Theorem 2.3, p.124 in [14] which shows that
dF

dG
↑ is necessary and sufficient for

F >c G such that
dF

dG
exists.

Let A be an index set where elements are ordered; and let {Fα : α ∈ A} be a

family of distributions indexed by α ∈ A.

Definition 9.3.11 {Fα : α ∈ A} is a >∗-ordered family if α2 > α1 implies Fα2 >
∗

Fα1.

Theorem 9.3.12 A family {Fα : α ∈ A} of life distributions is >∗-ordered if Fα(x) :

A× [0,∞)→ [0, 1] is TP2 (Totally Positive of Order-2) in (α, x).

Proof For any α1, α2 in A such that α2 > α1,

Fα2 >
∗ Fα1 ⇔ Fα2F

−1
α1

(u) is star-shaped

⇔
Fα2F

−1
α1

(u2)

u2
≥
Fα2F

−1
α1

(u1)

u1

for 0 < u1 ≤ u2 < 1, or equivalently, if and only if

0 ≤

∣∣∣∣∣∣∣
u1 u2

Fα2F
−1
α1

(u1) Fα2F
−1
α1

(u2)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Fα1(x1) Fα1(x2)

Fα2(x1) Fα2(x2)

∣∣∣∣∣∣∣ , (9.3.5)

setting 0 < xi := Fαi(ui); i = 1, 2. The condition (9.3.5) is of course the TP2-property

for the family of cdfs Fα(x).

9.4 Preservation Results for Reverse Star-order

Theorem 9.4.1 If Fα >∗ G for each α, then
∫
Fαdµ(α) >∗ G for any mixing

distribution µ.
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Proof From the proof of Lemma 9.2.4, it follows that,

Fα >
∗ G⇔ Fα

G
↑, for eachα,

⇒

∫
Fαdµ(α)

G
↑

⇔
∫
Fαdµ(α) >∗ G.

A similar proof holds for our next result.

Theorem 9.4.2 If F >∗ Gα for each α, then F >∗
∫
Gαdν(α) for any mixing

distribution ν.

Theorems 9.4.1 – 9.4.2 together implies

Theorem 9.4.3 If Fα >
∗ Gβ for each pair (α, β), then

∫
Fαdµ(α) >∗

∫
Gβdν(β) for

any mixing distributions µ and ν.

Next, we will show that the reverse star-ordered is preserved under formation

of parallel systems of independent components. The life distribution of a parallel

system of n independent components with possibly different life distributions Fi (i =

1, 2, . . . , n) of the components, is given by the product
n∏
i=1

Fi(t). The following

theorem shows that the reverse star-order is preserved under formation of parallel

system.

Theorem 9.4.4 Suppose Fi >
∗ Gj for each pair (i, j). Then a parallel system of n

independent components with life d.f.s F1, . . . , Fn is more reliable than a comparable

system with life d.f.s G1, . . . , Gn.

Proof It is sufficient to prove the theorem for n = 2. By Lemma 9.2.4, for each pair

(i, j) with i 6= j, we have

Fi >
∗ Gj ⇔

Fi
Gj

↑, and hence
F1

G2

↑ and
F2

G1

↑

⇒ F1

G2

· F2

G1

↑ i.e.,
F1F2

G1G2

↑.
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Therefore, F1F2 >
∗ G1G2, which then implies F1F2 >st G1G2, by Lemma 9.2.4. Since

the survival function of a parallel system of two independent components with life

d.f.s F1 and F2 is SF1,F2(t) := 1 − F1(t)F2(t); it follows that a corresponding system

with component life d.f.s G1, G2 is less reliable, i.e.,

SF1,F2(t) ≥ SG1,G2(t), pointwise in t ≥ 0.



CHAPTER 10

A FRAMEWORK FOR BIVARIATE PROPORTIONAL HAZARD

MODELS

10.1 Introduction

Suppose X is an absolute continuous positive random variable with the probability

density function (p.d.f.) and cumulative distribution function (d.f.) as f(·) and F (·)

respectively. Then the hazard rate function at time t is defined as

r(t) =
f(t)

F (t)
, t > 0, (10.1.1)

where the tail function F := 1 − F is usually referred to as the survival function in

reliability theory.

The class of proportional hazard model can described as follows; A life distributi-

on F on the non-negative half line is referred to as a proportional hazard model if

F (t) = 1−
[
F 0(t)

]α
, t > 0, (10.1.2)

for some α > 0, and some (baseline) life distribution F0 with survival function F 0 =

1− F0. In such a case, the hazard functions ΛF := − lnF and ΛF0 := − lnF 0 satisfy

− lnF (t) = −α lnF 0(t), t > 0.

If further F0 is also absolutely continuous so that F0 and F both have density

functions, then the failure (hazard) rate rF (·) is proportional to rF0(·), as

rF (t) = αrF0(t), t > 0, (10.1.3)

whence the name proportional hazards. In practice, theoretical developments in

the proportional hazard model literature in the univariate set up within the basic

105
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framework exemplified by (10.1.2) and (10.1.3) are in conjunction with a vector X of

covariates [20], [45], [46], [30], [43]. The underlying idea behind including a vector X

of covariates is to account for possible influence of some environmental but typically

unobserved variables as the hazard rate rF (t) formulated as

rF (t) = rF0(t) e
Xβ,

referred to in the literature as the Cox-regression model. The vast majority of its

fruitful applications with real life data sets and associated methodological refinements

via censoring etc. are to be found mostly in biostatistics and engineering literature

too numerous to mention, and in other fields such as economics and political science

as well (e.g., [83], [11]).

10.1.1 Notions of Bivariate Proportional Hazards in Literature

For modeling the joint distribution of possibly mutually dependent lifetimes that may

be considered as multivariate version(s) of the proportional hazards idea, however

there is no universally agreed natural way to formulate such a notion. Several

researchers have considered this modeling problem from different perspectives.

Clayton and Cuzick [17] proposed and investigated a bivariate generalization of

the univariate proportional hazard (their Theorem 1, p. 85 in [17]). Their proposed

class of bivariate survival functions is the solution (unique, under some regularity

conditions) of a functional equation requiring a suitably defined bivariate hazard rate

(called by Clayton and Cuzick as ‘mortality potential’) to be equal to a scalar multiple

of the product of a version of the corresponding univariate conditional hazard rates

given the other lifetime exceeds a threshold. Beyond this formulation, however, the

main accent of their work is on statistical inference for estimation and testing of an

‘association parameter’ between the component lifetimes from right censored sample

data using only rank-order information.
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Hougaard [46] proposed a class of multivariate lifetime models that account

for possible heterogeneity across individuals or units within a group via unobserved

covariates with a positive stable distribution. His models have the property that if

the hazards conditional on the covariates are proportional, then so are the hazards of

marginal distributions (with different constants of proportionality). Additionally, for

Hougaard model the hazard of the minimal lifetime in a group is proportional to the

sum of the marginal hazards.

The idea of dependence among component lifetimes induced by an unobserved

covariate, known as the frailty effect has also been used by Oakes [61]. He considers

a class of bivariate survival distributions, where the two component lifetimes are

conditionally independent univariate proportional hazard models given the frailty.

The unobserved frailty variable is shown to induce a negative association between

the observed survival times. In the class of models investigated by Oakes, the

observable bivariate distribution determines the unobserved frailty distribution up

to scale equivalence, so that there are no identifiability issues.

The main aim of this Chapter is to formulate a suitable new notion of bivariate

proportional hazard models (BPHM) and study its consequence and applicability.

This is done by defining BPHMs in such a way that implies their marginal distributions

follow univariate proportional hazard model (PHM) distributions. The proposed

model is shown to have a structure that has a singular part, a feature often shared

by multivariate distributions (see Marshall and Olkin [55]). It is observed that, as

expected, the maximum likelihood estimators of the unknown parameters cannot

be obtained in explicit forms. Non-linear equations need to be solved to compute

the estimators of the unknown parameters. An expectation-maximization (EM)

algorithm is used for computing the MLEs of parameters. For the purpose of illustrati-

on, the proposed bivariate proportional hazard models and the method of parameter

estimation will be applied to two real data sets.
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10.2 A Framework for Bivariate Proportional Hazard Models

The point of departure in our framework, compared to the formulation by Clayton and

Cuzick [17], Hougaard [46] and Oakes [61] in the sense of, possibly unobserved, latent

variables that inject dependence between the components of the bivariate lifetime

in a way that guarantees all marginal distributions to have univariate proportional

hazards.

Our formulation is motivated by a recent work of Kundu and Gupta [53] with

proportional reversed hazards. The proposed BPHMs do not include covariates

(frailties), since the emphasis here is on developing a basic formulation and investigate

its corresponding distribution theoretic consequences. From an application point of

view, inclusion of such unobserved frailties may indeed be important and can be a

topic of future research, not included within the scope of the work reported here.

If {F 0(t; θ) : θ ∈ Θ} is a family of baseline survival functions with parameters

θ ∈ Θ ⊂ Rk, the k-dimensional Euclidian space for same k ≥ 1; in the spirit of

(10.1.2), a univariate proportional hazard model (PHM) is defined as a parametric

family of lifetime cdfs (≡ d.f.)

FPHM(x;α, θ) = 1− [F 0(x; θ)]α, x > 0, α > 0 (10.2.1)

with parameters α > 0 and θ (possibly vector valued). If the baseline d.f. F0 admits

a density f0, then the PHM family admits a density

fPHM(x;α, θ) = α[F 0(x; θ)]α−1f0(x; θ), x > 0. (10.2.2)

10.3 A New Class of Bivariate Proportional Hazard Models

The approach to define the notion of bivariate proportional hazard is as follows.

Definition 10.3.1 A pair of lifetimes (X1, X2) has a bivariate proportional hazard

model (BPHM) distribution iff

X1 = min(T1, T3), X2 = min(T2, T3)
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for some (T1, T2, T3) which are independent and each with a univariate proportional

hazard model (PHM) distribution.

An example that illustrates the genesis and rationale from Definition 10.3.1 can

be thought of as follows. Suppose T1, T2 denote the lifelengths of heating/cooling

systems in two independently owned homes. Let T3 denote the time to a catastrophic

power failure, which occurs independently of the failures of the home heating/cooling

systems, and which would automatically shut down the home systems by cutting off

the power supply (referred to as a ‘common cause failure’). Let Xi, i = 1, 2 be the

observed failure time of the home heating/cooling systems, then (X1, X2) are as in

Definition 10.3.1.

It is important to note here that while the component lifetimes (X1, X2) are

observable, the background latent variables T1, T2, and T3 defining them are not

covariates in the sense as usually understood in the context of survival analysis.

If each Ti, i = 1, 2, 3 has a d.f. in a parametric PHM-family {F (· ;α, θ), α >

0, θ ∈ Θ} as in (10.2.1), i.e.,

Ti ∼ PHM(αi, θ), i = 1, 2, 3 (10.3.1)

then following Definition 10.3.1 it can be said that the random vector

(X1, X2) ∼ BPHM(α1, α2, α3, θ) (10.3.2)

i.e., (X1, X2) follows a bivariate proportional hazard model with survival function

FX1,X2(x1, x2) := P (X1 > x1, X2 > x2) (10.3.3)

given by,

Proposition 10.3.2 If (X1, X2) ∼ BPHM(α1, α2, α3, θ), then the joint survival

function for x1 > 0 and x2 > 0 is

FX1,X2(x1, x2) = [F 0(x1; θ)]
α1 [F 0(x2; θ)]

α2 [F 0(z; θ)]α3 (10.3.4)
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where z = max(x1, x2).

Proof Follows as a consequence of (10.3.1) – (10.3.2) and independence of T1, T2, T3;

observing that,

FX1,X2(x1, x2) = P (min(T1, T3) > x1,min(T2, T3) > x2)

= P (T1 > x1, T2 > x2, T3 > max(x1, x2))

and then using (10.3.1) and independence of T1, T2, T3.

Note that (10.3.4) can be written as

FX1,X2(x1, x2) =


[F 0(x1; θ)]

α1+α3 [F 0(x2; θ)]
α2 , if 0 < x2 < x1 <∞

[F 0(x1; θ)]
α1 [F 0(x2; θ)]

α2+α3 , if 0 < x1 < x2 <∞

[F 0(x; θ)]α1+α2+α3 . if 0 < x1 = x2 = x <∞

(10.3.5)

If the baseline univariate PHM d.f. F0 is absolutely continuous, then the BPHM

survival time (X1, X2) has a joint probability density function (p.d.f.) given by the

following result.

Proposition 10.3.3 If the baseline d.f. F0 in (10.3.1) is absolutely continuous so

that the univariate PHM family in (10.2.1) admits a p.d.f. fPHM(x;α, θ) given by

(10.2.2), then the joint pdf of (X1, X2) ∼ BPHM(α1, α2, α3, θ) is given by

fX1,X2(x1, x2)

=



fPHM(x1;α1 + α3, θ)× fPHM(x2;α2, θ), if 0 < x2 < x1 <∞

fPHM(x1;α1, θ)× fPHM(x2;α2 + α3, θ), if 0 < x1 < x2 <∞

α3

α1 + α2 + α3

fPHM(x;α1 + α2 + α3, θ). if 0 < x1 = x2 = x <∞

(10.3.6)

Proof By taking
∂2

∂x1∂x2
FX1,X2(x1, x2) for x2 < x1 and x1 < x2 respectively, the first

two expressions in (10.3.6) can be obtained. For the remaining case when x1 = x2 = x;
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use

1 =

∫ ∞
0

∫ ∞
0

fX1,X2(x1, x2) =

∫ ∞
0

∫ x1

0

fPHM(x1;α1 + α3, θ)× fPHM(x2;α2, θ) dx2 dx1

+

∫ ∞
0

∫ x2

0

fPHM(x1;α1, θ)× fPHM(x2;α2 + α3, θ) dx1 dx2

+

∫ ∞
0

fX1,X2(x, x) dx,

together with the identities∫ ∞
0

∫ x1

0

fPHM(x1;α1 + α3, θ)× fPHM(x2;α2, θ) dx2 dx1 =
α2

α1 + α2 + α3

;

∫ ∞
0

∫ x2

0

fPHM(x1;α1, θ)× fPHM(x2;α2 + α3, θ) dx1 dx2 =
α1

α1 + α2 + α3

;

thus leading us to,∫ ∞
0

fX1,X2(x, x) dx = 1− α1 + α2

α1 + α2 + α3

=
α3

α1 + α2 + α3

.

Since the joint survival function along the diagonal (x, x) given by (10.3.5) has the

density function

− d

dx
[F 0(x; θ)]α1+α2+α3 = fPHM(x;α1 + α2 + α3, θ),

which is a proper univariate density on (0,∞), it follows that

fX1,X2(x, x) :=
α3

α1 + α2 + α3

fPHM(x;α1 + α2 + α3, θ)

is a version of the joint density fX1,X2(x1, x2) along the diagonal (x, x) on the positive

quadrant.

Remark 10.3.4 Proposition 10.3.3 shows that even when the baseline PHM is absol-

utely continuous, the bivariate density of (X1, X2) has a singular component (in

the case when x1 = x2), a feature often shared by other multivariate model in the
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literature, e.g. by the well known multivariate exponential distribution of Marshall

and Olkin [55]. An item of future work plan in this dissertation is to provide a

decomposition of the joint survival function FX1,X2(x1, x2) into its absolutely continuo-

us and singular parts.

The next result, which easily follow again from (10.3.1) and (10.3.2) and indepe-

ndence of Ti, i = 1, 2, 3, justifies the formulation of BPHM in Definition 10.3.1 by

demonstrating that its marginals indeed belong to a family of univariate proportional

hazard models.

Proposition 10.3.5 If (X1, X2) ∼ BPHM(α1, α2, α3, θ), then

X1 ∼ PHM(α1 + α3, θ); X2 ∼ PHM(α2 + α3, θ);

min(X1, X2) ∼ PHM(α1 + α2 + α3, θ).

Proof Follow from (10.3.5); viz., for the case x2 < x1 in (10.3.5), it can be obtained

that

P (X1 > x1) = FX1,X2(x1, 0+) = lim
x2→0+

[F 0(x1; θ)]
α1+α3 [F 0(x2; θ)]

α2

= [F 0(x1; θ)]
α1+α3 .

The remaining claims follow analogously.

If the bivariate hazard rate h(·, ·) of (X1, X2) defined by

hX1,X2(x1, x2) : =
fX1,X2(x1, x2)

FX1,X2(x1, x2)
(10.3.7)

=
∂2

∂x1∂x2
lnFX1,X2(x1, x2)

is used as the obvious generalization of the univariate hazard (failure) rate, as a

measure of joint failure proneness of (X1, X2), the following result also can be obtained.



113

Proposition 10.3.6 If (X1, X2) ∼ BPHM(α1, α2, α3, θ) admits a density on R2,

then the bivariate hazard rate as defined by (10.3.7) satisfies

hX1,X2(x1, x2) =


(α1 + α3)α2 r(x1; θ) r(x2; θ), if 0 < x2 < x1 <∞

α1 (α2 + α3) r(x1; θ) r(x2; θ), if 0 < x1 < x2 <∞

α3 r(x; θ), if 0 < x1 = x2 = x <∞

(10.3.8)

where r(·; θ) is the hazard (failure) rate of the univariate baseline d.f. F0 in (10.2.1).

Proof Since FX1,X2(x1, x2) = [F 0(x1; θ)]
α1 [F 0(x2; θ)]

α2 [F 0(z; θ)]α3 , where z =

max(x1, x2), the bivariate hazard rate at (x1, x2), hX1,X2(x1, x2) =
fX1,X2(x1, x2)

FX1,X2(x1, x2)
is

computed as follows:

For 0 < x2 < x1:

hX1,X2(x1, x2) =
fPHM(x1;α1 + α3, θ)× fPHM(x2;α2, θ)

[F 0(x1; θ)]α1+α3 [F 0(x2; θ)]α2

≡ (α1 + α3)[F 0(x1; θ)]
α1+α3−1f0(x1; θ)α2[F 0(x2; θ)]

α2−1f0(x2; θ)

[F 0(x1; θ)]α1+α3 [F 0(x2; θ)]α2

= (α1 + α3)
f0(x1; θ)

F 0(x1; θ)
· α2

f0(x2; θ)

F 0(x2; θ)

= (α1 + α3)α2r(x1; θ) r(x2; θ).

For 0 < x1 < x2: analogous computations yield,

hX1,X2(x1, x2) =
fPHM(x1;α1, θ)× fPHM(x2;α2 + α3, θ)

[F 0(x1; θ)]α1 [F 0(x2; θ)]α2+α3

= α1
f0(x1; θ)

F 0(x1; θ)
(α2 + α3)

f0(x2; θ)

F 0(x2; θ)

= α1(α2 + α3)r(x1; θ) r(x2; θ).
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For 0 < x1 = x2 ≡ x: it is got,

hX1,X2(x, x) =
α3

α1 + α2 + α3

· fPHM(x;α1 + α2 + α3, θ)

[F 0(x; θ)]α1+α2+α3

=
α3

α1 + α2 + α3

· (α1 + α2 + α3)[F 0(x; θ)]α1+α2+α3−1f0(x; θ)

[F 0(x; θ)]α1+α2+α3

= α3
f0(x; θ)

F 0(x; θ)

≡ α3r(x; θ).

Remark 10.3.7 In addition to Proposition 10.3.5, Proposition 10.3.6 provides a

further justification of the framework of BPHMs via Definition 10.3.1.

It should be mentioned that the BPHM has both an absolute continuous part

and a singular part similar to the Marshall-Olkin bivariate exponential or bivariate

Weibull model. In Proposition 10.3.3, the function fX1,X2(·, ·) is considered to be the

joint p.d.f. of the BPHM, if it is understood that the first two terms are densities

with respect to the two dimensional Lebesgue measure and the third term is a density

function with respect to the one dimensional Lebesgue measure. The next result

shows the decomposition of the proposed bivariate proportional hazard model survival

function into its constituent absolutely continuous and singular parts.

Proposition 10.3.8 If (X1, X2) ∼ BPHM(α1, α2, α3, θ) with an absolute continuous

base-line d.f., then

FX1,X2(x1, x2) =
α1 + α2

α1 + α2 + α3

F a(x1, x2) +
α3

α1 + α2 + α3

F s(x1, x2), (10.3.9)

where,

F a(x1, x2) =
α1 + α2 + α3

α1 + α2

[F 0(x1, θ)]
α1 [F 0(x2, θ)]

α2 [F 0(z, θ)]
α3

− α3

α1 + α2

[F 0(z, θ)]
α1+α2+α3 (10.3.10)

and

F s(x1, x2) = [F 0(max(x1, x2), θ)]
α1+α2+α3 (10.3.11)
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respectively denote the joint survival function’s absolutely continuous and singular

parts.

Proof Set A := {T1 ≥ T3} ∩ {T2 ≥ T3}, where T1, T2, T3 are as in Definition 10.3.1.

Then P (A) =
α3

α1 + α2 + α3

. Therefore,

FX1,X2(x1, x2) = P (X1 > x1, X2 > x2|A)P (A)

+ P (X1 > x1, X2 > x2|A′)P (A′). (10.3.12)

Writing z ≡= max(x1, x2) note that

A ∩ {X1 > x1, X2 > x2} = {T1 ≥ T3, T2 ≥ T3,min(T1, T3) > x1,min(T2, T3) > x2}

= {T1 ≥ T3, T2 ≥ T3, T1 > x1, T2 > x2, T3 > max(x1, x2)}

= {T1 ≥ T3, T2 ≥ T3, T3 > z}.

Since Ti ≥ T3 > z implies Ti > xi for i = 1, 2. Also, since independence of T1, T2 and

(10.3.1) together implies

P (min(T1, T2) > t) = [F 0(t; θ)]
α1+α2 , t > 0. (10.3.13)

Then the following is obtained

P (A ∩ {X1 > x1, X2 > x2}) = P (T1 ≥ T3, T2 ≥ T3, T3 > z)

= P (min(T1, T2) ≥ T3 > z)

=

∫ ∞
z

P (min(T1, T2) ≥ t)fT3(t)dt (10.3.14)
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by independence of T3 from T1 and T2. Using (10.3.12) and the PHM assumption in

(10.3.1) for the pdf of T3, the last step above equals

α3

∫ ∞
z

[F 0(t; θ)]
α1+α2+α3−1f0(t; θ)dt = α3

∫ F 0(z;θ)

0

uα1+α2+α3−1du

=
α3

α1 + α2 + α3

[F 0(z; θ)]α1+α2+α3

= P (A)[F 0(z; θ)]α1+α2+α3 . (10.3.15)

Combining (10.3.14) – (10.3.15), the following is obtained

P (X1 > x1, X2 > x2|A) =
P (A ∩ {X1 > x1, X2 > x2})

P (A)

= [F 0(z, θ)]
α1+α2+α3 .

This is obviously the singular part of the joint survival function. The other factor

P (X1 > x1, X2 > x2|A) in the decomposition (10.3.12) can be obtained by subtracting

the second term in (10.3.12) from its left hand side, and corresponds to the absolutely

continuous part of FX1,X2(x1, x2).

The joint p.d.f. of (X1, X2) now follows using Proposition 10.3.8 and can be

decomposed as a mixture of absolutely continuous and singular components;

fX1,X2(x1, x2) =
α1 + α2

α1 + α2 + α3

fa(x1, x2) +
α3

α1 + α2 + α3

fs(z), (10.3.16)

where z = max(x1, x2),

fa(x1, x2) =
α1 + α2 + α3

α1 + α2

×


fPHM(x1;α1 + α3, θ)× fPHM(x2;α2, θ), if 0 < x2 < x1 <∞

fPHM(x1;α1, θ)× fPHM(x2;α2 + α3, θ), if 0 < x1 < x2 <∞

(10.3.17)

and

fs(x1, x2) = fPHM(z;α1 + α2 + α3, θ). (10.3.18)



117

Some further additional useful consequences of BPHM (Proposition 10.3.9 and

Proposition 10.3.10), which easily follow, are as follows.

Proposition 10.3.9 If (X1, X2) ∼ BPHM(α1, α2, α3, θ), then

P (X1 < X2) =
α2

α1 + α2 + α3

, P (X2 < X1) =
α1

α1 + α2 + α3

,

P (X1 = X2) =
α3

α1 + α2 + α3

.

Proposition 10.3.10 Let (X1, X2) ∼ BPHM(α1, α2, α3, θ). Suppose the baseline

d.f. F0 is absolutely continuous. Then the conditional survival function of X1 given

X2 > x2, say FX1|X2>x2(x1) is an absolute continuous survival function as follows:

FX1|X2>x2(x1) ≡ P (X1 > x1|X2 > x2)

=


[F 0(x1; θ)]

α1+α3 · [F 0(x2; θ)]
−α3 , if 0 < x2 < x1 <∞

[F 0(x1; θ)]
α1 . if 0 < x2 < x1 <∞

(10.3.19)

Note, by right continuity of cdfs, we can have the following,

FX1|X2>x2(x2) := FX1|X2>x2(x2+) = [F 0(x2; θ)]
α = FX1|X2>x2(x2−),

so that FX1|X2>x2(·) is continuous at x2. Along that the absolutely continuity of the

baseline d. f. F0, this proves FX1|X2>x2(·) is also absolutely continuous for each x2 > 0

and hence admits a

The conditional distributions FX1|X2>x2(·) vs. FX1|X2(·|x2)

It is institutive to construct the conditional distribution of X1 given {X2 > x2}

vs. the conditional distribution of X1 when X2 has an observed value x2. Denote the

corresponding c.d.fs by FX1|X2>x2(·) and FX1|X2(·|x2) respectively. The former if the

complement of the one-dimensional survival (tail) probability FX1|X2.x2 , developed in

Theorems and , which the latter is the traditional conditional cdf of X1 when the

value x2 assumed by the other associated future time X2 is known.
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For fixed x2 > 0,

FX1|X2(x1|x2) =

∫ ∞
x1

fX1|X2(u|x2)du, x1 > 0,

where, the corresponding conditional density (pdf)

fX1|X2(x1|x2) =
fX1,X2(x1, x2)

fX2(x2)
, (10.3.20)

can be computed using Proposition 10.3.6 and Proposition 10.3.5, to get:

fX1|X2(x1|x2) =


fPHM(x1;α1 + α3, θ)fPHM(x2;α2, θ)

fPHM(x2;α2 + α3, θ)
, if 0 < x2 < x1 <∞

fPHM(x1;α1, θ)fPHM(x2;α2 + α3, θ)

fPHM(x2;α2 + α3, θ)
, if 0 < x1 < x2 <∞

=


(α1 + α3)[F 0(x1; θ)]

α1+α3−1f0(x1; θ)α2[F 0(x2; θ)]
α2−1

(α2 + α3)[F 0(x2; θ)]α2+α3−1
, if 0 < x2 < x1 <∞

α1[F 0(x1; θ)]
α1−1f0(x1; θ), if 0 < x1 < x2 <∞

Hence, the conditional density of X1 when X2 has value x2, can be expressed

fX1|X2(x1|x2)

=



α2
α1 + α3

α2 + α3

[F 0(x1; θ)]
α1+α3−1[F 0(x2; θ)]

−α3f0(x1; θ), if 0 < x2 < x1 <∞

α1[F 0(x1; θ)]
α1−1f0(x1; θ), if 0 < x1 < x2 <∞

0, if 0 < x1 = x2 <∞

Remark 10.3.11 Note that along the diagonal x1 = x2, the conditional density,

according to (10.3.20), can be strictly positive; viz., if x1 = x2 ≡ x > 0,

fX1|X2(x|x) =
fX1,X2(x, x)

fX2(x)

=

α3

α1 + α2 + α3

fPHM(x;α1 + α2 + α3, θ)

fPHM(x;α2 + α3, θ)

=
α3

α2 + α3

[F 0(x; θ)]α1 , using (10.2.2)
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can be strictly positive if F0(x; θ) < 1, all x, i.e., if the baseline d.f. F0 has support

unbounded to the right, but contributes no mass to the conditional pdf, since∫
{x1:x1=x2}

fX1|X2(x1|x2)dx1 =

∫
{x2}

fX1|X2(x1|x2)dx1 = 0.

Hence, for x > 0, fX1|X2(x|x) can be defined arbitrarily and hence can be set to zero.

10.4 Parameter Estimators: Maximum Likelihood

Suppose x = ((x11, x21), · · · , (x1n, x2n)) are the observations in a random sample

from BPHM(α1, α2, α3, θ), the distribution of (X1, X2). To compute the maximum

likelihood estimators (MLEs) of the parameters, define:

J0 = {j;x1j = x2j = xj}, J1 = {j;x1j < x2j}, J2 = {j;x1j > x2j}, J = J0 ∪ J1 ∪ J2.

The cardinalities of the sets are, respectively,

|Ji| = ni, for i = 0, 1, 2 and n = n0 + n1 + n2.

Using (10.2.2) and (10.3.6), the log-likelihood function can be expressed as

l(α1, α2, α3, θ|((x11, x12), · · · , (x1n, x2n)))

= n1 lnα1 + (α1 − 1)
∑
j∈J1

lnF 0(x1j; θ) +
∑
j∈J1

ln f0(x1j; θ)

+ n1 ln(α2 + α3) + (α2 + α3 − 1)
∑
j∈J1

lnF 0(x2j; θ) +
∑
j∈J1

ln f0(x2j; θ)

+ n2 ln(α1 + α3) + (α1 + α3 − 1)
∑
j∈J2

lnF 0(x1j; θ) +
∑
j∈J2

ln f0(x1j; θ)

+ n2 lnα2 + (α2 − 1)
∑
j∈J2

lnF 0(x2j; θ) +
∑
j∈J2

ln f0(x2j; θ)

+ n0 lnα3 + (α1 + α2 + α3 − 1)
∑
j∈J0

lnF 0(xj; θ) +
∑
j∈J0

ln f0(xj; θ). (10.4.1)

For the sake of brevity, write l(α1, α2, α3, θ|(x11, x12), · · · , (x1n, x2n)) as l(α1, α2,

α3, θ|data). Now consider two cases.
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Case (1). θ is known: In this case the baseline distribution function F0 is

completely known and hence the baseline survival function F 0 = 1−F0 is completely

known. The only unknown parameters are α1, α2 and α3. By differentiating the log-

likelihood function (10.4.1) with respect to α1, α2 and α3 respectively, the following

can be obtained:
∂l(α1, α2, α3, θ|data)

∂α1
∂l(α1, α2, α3, θ|data)

∂α2
∂l(α1, α2, α3, θ|data)

∂α3



=



n1

α1

+
∑
j∈J1

lnF 0(x1j; θ) +
n2

α1 + α3

+
∑
j∈J2

lnF 0(x1j; θ) +
∑
j∈J0

lnF 0(xj; θ)

n1

α2 + α3

+
∑
j∈J1

lnF 0(x2j; θ) +
n2

α2

+
∑
j∈J2

lnF 0(x2j; θ) +
∑
j∈J0

lnF 0(xj; θ)

n1

α2 + α3

+
∑
j∈J1

lnF 0(x2j; θ) +
n2

α1 + α3

+
∑
j∈J2

lnF 0(x1j; θ) +
∑
j∈J0

lnF 0(xj; θ)


.

(10.4.2)

Set the left hand side of (10.4.2) to 0 = (0, 0, 0)T to obtain the three normal

equations as:

n1

α1

+
n2

α1 + α3

= −
∑
J1∪J2

lnF 0(x1j; θ)−
∑
J0

lnF 0(xj; θ), (10.4.3a)

n2

α2

+
n1

α2 + α3

= −
∑
J1∪J2

lnF 0(x2j; θ)−
∑
J0

lnF 0(xj; θ), (10.4.3b)

n0

α3

+
n1

α2 + α3

+
n2

α1 + α3

= −
∑
J1

lnF 0(x2j; θ)−
∑
J2

lnF 0(x1j; θ)−
∑
J0

lnF 0(xj; θ).

(10.4.3c)

It follows that for fixed α3 > 0, the MLEs of α̂1(α3) and α̂2(α3) are:

α̂1(α3) =
(n1 + n2 − a1α3) +

√
(a1α3 − n1 − n2)2 + 4a1n1α3

2a1
, (10.4.4)

α̂2(α3) =
(n1 + n2 − a2α3) +

√
(a2α3 − n1 − n2)2 + 4a2n2α3

2a2
, (10.4.5)
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where,

a1 := −
∑
J1∪J2

lnF 0(x1j; θ)−
∑
J0

lnF 0(xj; θ),

a2 := −
∑
J1∪J2

lnF 0(x2j; θ)−
∑
J0

lnF 0(xj; θ).

By plugging in (10.4.4) – (10.4.5) into (10.4.3c), the MLE of α3 can be obtained,

which can be seen to be a solution of equation

h(α3) = α3, (10.4.6)

where,

h(α3) :=

− n0∑
J1

lnF 0(x2j; θ) +
∑
J2

lnF 0(x1j; θ) +
∑
J0

lnF 0(xj; θ) +
n1

α̂2(α3) + α3

+
n2

α̂1(α3) + α3

,

(10.4.7)

i.e., α3 is the fixed point of the real valued function h(·). Any suitable numerical

procedure can be used to solve (10.4.7) iteratively.

Case (2). θ is unknown: Here instead of computing the MLEs directly, EM

algorithm will be used. Treating this as a missing value problem.

Corresponding to the bivariate survival times (X1, X2) which follows a BPHM

model (10.3.2), define an associated random vector (∆1,∆2) by:

∆1 =


1, if T1 < T3

3, if T1 > T3

, ∆2 =


2, if T2 < T3

3, if T2 > T3

.

Given (X1, X2), it is clear that the associated (∆1,∆2) is not always known.

Only when X1 = X2 (and hence ∆1 = ∆2 = 3), (∆1,∆2) is completely known. When

X1 < X2 or X1 > X2; the associated (∆1,∆2) is missing.

The ‘E’-step and ‘M’-step of EM algorithm can now be described.
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E-step: The observations belong to J0 are treated as the complete observations,

and the observation is treated as a missing observation if (x1, x2) belongs to

J1 or J2. If (x1, x2) ∈ J1, similarly as in [29], the ‘pseudo observation’ is

formed by fractionizing (x1, x2) to two partially complete observation of the

form (x1, x2, u1(γ)) and (x1, x2, u2(γ)). Here u1(γ) = P ((∆1,∆2) = (1, 2)|X1 <

X2) and u2(γ) = P ((∆1,∆2) = (1, 3)|X1 < X2). Similarly, for (x1, x2) ∈

J2, the ‘pseudo observation’ of the form (x1, x2, v1(γ)) and (x1, x2, v2(γ)) are

formed. Here v1(γ) = P ((∆1,∆2) = (1, 2)|X1 > X2) and v2(γ) = P ((∆1,∆2) =

(3, 2)|X1 > X2). Since

P (T1 < T2 < T3) =
α1α2

(α2 + α3)(α1 + α2 + α3)
,

P (T1 < T3 < T2) =
α1α3

(α2 + α3)(α1 + α2 + α3)
,

the following can be had:

u1(γ) = P ((∆1,∆2) = (1, 2)|X1 < X2) = P (T1 < T3, T2 < T3|X1 < X2)

=
P (T1 < T2 < T3)

P (X1 < X2)

=
α1

α2 + α3

,

and

u2(γ) = P ((∆1,∆2) = (1, 3)|X1 < X2) = P (T1 < T3, T3 < T2|X1 < X2)

=
P (T1 < T3 < T2)

P (X1 < X2)

=
α1α3

α2(α2 + α3)
.

Similarly, since

P (T2 < T1 < T3) =
α1α2

(α1 + α3)(α1 + α2 + α3)
,

P (T2 < T3 < T1) =
α2α3

(α1 + α3)(α1 + α2 + α3)
,
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the following can be hold:

v1(γ) = P ((∆1,∆2) = (1, 2)|X1 > X2) = P (T1 < T3, T2 < T3|X1 > X2)

=
P (T2 < T1 < T3)

P (X1 > X2)

=
α2

α1 + α3

,

and

v2(γ) = P ((∆1,∆2) = (3, 2)|X1 > X2) = P (T3 < T1, T2 < T3|X1 > X2)

=
P (T2 < T3 < T1)

P (X1 > X2)

=
α2α3

α1(α1 + α3)
.

Accordingly, the log-likelihood function of the ‘pseudo data’ is,

lpseudo(α1, α2, α3, θ)

= n0 lnα3 + (α1 + α2 + α3 − 1)
∑
j∈J0

lnF 0(xj; θ) +
∑
j∈J0

ln f0(xj; θ)

+ u1(γ)[n1 lnα2 + (α2 + α3 − 1)
∑
j∈J1

lnF 0(x2j; θ) +
∑
j∈J1

ln f0(x2j; θ)]

+ u2(γ)[n1 lnα3 + (α2 + α3 − 1)
∑
j∈J1

lnF 0(x2j; θ) +
∑
j∈J1

ln f0(x2j; θ)]

+ n1 lnα1 + (α1 − 1)
∑
j∈J1

lnF 0(x1j; θ) +
∑
j∈J1

ln f0(x1j; θ)

+ v1(γ)[n2 lnα1 + (α1 + α3 − 1)
∑
j∈J2

lnF 0(x1j; θ) +
∑
j∈J2

ln f0(x1j; θ)]

+ v2(γ)[n2 lnα3 + (α1 + α3 − 1)
∑
j∈J2

lnF 0(x1j; θ) +
∑
j∈J2

ln f0(x1j; θ)]

+ n2 lnα2 + (α2 − 1)
∑
j∈J2

lnF 0(x2j; θ) +
∑
j∈J2

ln f0(x2j; θ).

M-step: Maximize lpseudo(α1, α2, α3, θ) with respect to α1, α2, α3 and θ at each

step.
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For fixed θ, it is hold that arg max
(α1,α2,α3)

lpseudo(α1, α2, α3, θ) = (α̂1(θ), α̂2(θ), α̂3(θ)),

where

α̂1(θ) = − n1 + n2v1(γ)∑
j∈J0

lnF 0(xj; θ) +
∑
j∈J1

lnF 0(x1j; θ) + (v1 + v2)
∑
j∈J2

lnF 0(x1j; θ)
,

α̂2(θ) = − n2 + n1u1(γ)∑
j∈J0

lnF 0(xj; θ) + (u1 + u2)
∑
j∈J1

lnF 0(x2j; θ) +
∑
j∈J2

lnF 0(x2j; θ)
,

α̂3(θ) =

− n0 + n1u2(γ) + n2v2(γ)∑
j∈J0

lnF 0(xj; θ) + (u1 + u2)
∑
j∈J1

lnF 0(x2j; θ) + (v1 + v2)
∑
j∈J2

lnF 0(x1j; θ)
.

Finally the maximized θ̂ is obtained as θ̂ = arg max
θ

lpseudo(α̂1, α̂2, α̂3, θ).

To describe the iterative step of the EM algorithm, suppose that (α1
(i), α2

(i), α3
(i),

θ(i)) is the estimates of (α1, α2, α3, θ) at the i-th step. Then the estimate in the

(i+ 1)-th step is obtained using the following version of the EM algorithm known as

Expectation-Conditional-Maximization (ECM) algorithm:

Step 1: Compute u1(γ), u2(γ), v1(γ) and v2(γ) using α1
(i), α2

(i) and α3
(i).

Step 2: Compute θ(i+1) by maximizing lpseudo(α̂1(θ), α̂2(θ), α̂3(θ), θ).

Step 3: Compute α1
(i+1) = α̂1(θ

(i+1)), α2
(i+1) = α̂2(θ

(i+1)) and α3
(i+1) =

α̂3(θ
(i+1)) with obtained θ(i+1).

Iterations continue until the convergence criterion is satisfied.

10.5 Illustrative Applications of the Bivariate Proportional Hazard

Models

10.5.1 Examples of Bivariate Proportional Hazard Model (BPHM) Fami-

lies

We will examine the following models as examples of parametric families of BPHMs:
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Bivariate Generalized Exponential (BGE),

Bivariate Exponentiated Weibull (BEW),

Bivariate Linear Failure Rate (BLFR);

which are respectively specified via the joint survival function representation in Prop-

osition 10.3.2, using univariate Exponential (E), Weibull (W) and Linear Failure Rate

(LFR) baseline distributions of the latent variables Ti, i = 1, 2, 3 of Definition 10.3.1.

The univariate survival distribution of these baseline distributions, are of course:

Exponential E(λ) : F 0(x;λ) = e−λx; λ > 0

Weibull W (λ, β) : F 0(x;λ, β) = e−λx
β
; λ > 0, β > 0

Linear Failure Rate LFR(λ, β) : F 0(x;λ, β) = e−λ(x+βx
2); λ > 0, β > 0

If we denote the corresponding univariate proportional hazard model (PHM) families

by ’Generalized Exponential’ (GE), ’Exponentiated Weibull’ (EW), and ’Generalized

Linear Failure Rate’ (GLFR) distributions, then from their respective survival functio-

ns expressed via (10.2.1); it is clear that

GE(α, λ) ≡ E(αλ),

EW (α, λ, β) ≡ W (αλ, β),

GLFR(α, λ, β) ≡ LFR(αλ, β);

so that in the univariate case, the above PHM families do not lead to new distribution

models, and are not identifiable in the sense different combinations (αi, λi) can lead

to the same model, viz.,

GE(α1, λ1) = GE(α2, λ2) ≡ E(λ∗),

EW (α1, λ1, β) = EW (α2, λ2, β) ≡ W (λ∗, β),

GLFR(α1, λ1, β) = GLFR(α2, λ2, β) ≡ LFR(λ∗, β);
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where α1λ1 = α2λ2 ≡ λ∗. However, the identifiability issue ceases to exist for

the bivariate proportional hazard model (BPHM) families that we can construct

using the above baseline univariate distributions, as can be seen by writing out the

corresponding joint survival functions. This leads us to define the following BPHM

parametric families; in accordance with Definition 10.3.1:

• BGE(α1, α2, α3, λ), Bivariate Generalized Exponential, defined by

(X1, X2)
d
= (T1 ∧ T3, T2 ∧ T3), where

Ti ∼ E(λαi); i = 1, 2, 3.

Here, and below,
d
= denotes equivalence in distribution, and ∼ stands for ’distributed

as’.

• BEW (α1, α2, α3, λ, β), Bivariate Exponentiated Weibull, defined by

(X1, X2)
d
= (T1 ∧ T3, T2 ∧ T3), where

Ti ∼ W (λαi, β); i = 1, 2, 3.

• BLFR(α1, α2, α3, λ, β), Bivariate Linear Failure Rate, defined by

(X1, X2)
d
= (T1 ∧ T3, T2 ∧ T3), where

Ti ∼ LFR(λαi, β); i = 1, 2, 3.

For example, the family BEW (α1, α2, α3, λ, β) distributions, in virtue of Proposition

10.3.3, specified by the joint density function

fX1,X2(x1, x2) =
(α1 + α3)α2(λβ)2(x1x2)

β−1e−λ((α1+α3)x
β
1+α2x

β
2 ), if x2 < x1

α1(α + 2 + α3)(λβ)2(x1x2)
β−1e−λ(α1x

β
1+(α2+α3)x

β
2 ), if x1 < x2

α3λβx
β−1e−λ(α1+α2+α3)xβ , if x1 = x2 = x

(10.5.1)

a five-parameters family on (0,∞)2.
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10.5.2 Application to Data Sets

For the purposes of illustration, we analyze two data sets:

Data Set 1. This data set (Table 10.1) was first published in ‘Washington Post’

and available in [21], which describes goal timings of the National Football League

(NFL) matches in three consecutive weekends. In this bivariate data set for (X1, X2),

the variable X1 denotes the game time (in minutes and seconds) to the first points

scored by kicking the ball between goal posts; similarly, X2 denotes the game time

by moving (in minutes and seconds) the ball into the end zone. The events described

via X1 and X2 have the following meaning: (i) X1 < X2 means that the first score

is a field goal, (ii) X1 = X2 means the first score is a converted touchdown and (iii)

X1 > X2 means that the first score is an unconverted touchdown.

Table 10.1 National Football League (NFL) Data Obtained from the Matches on
Three Consecutive Weekend in 1986

X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2

2:03 3:59 5:47 25:59 10:24 14:15 14:32 20:34 8:52 8:52 2:54 2:54

9:03 9:03 13:48 49:45 2:59 2:59 10:51 38:04 17:50 17:50 7:14 9:41

0:51 0:51 7:15 7:15 3:53 6:26 31:08 49:53 10:09 10:09 14:35 14:35

3:26 3:26 4:15 4:15 0:45 0:45 8:32 14:34 8:59 8:59 11:49 11:49

7:47 7:47 1:39 1:39 11:38 17:22 19:39 10:42 5:31 11:16 12:08 12:08

10:34 14:17 6:25 15:05 1:23 1:23 32:27 42:21 6:25 6:25 15:32 15:32

7:03 7:03 4:13 9:29 10:21 10:21 6:51 34:35 7:01 7:01 2:35 2:35

Data Set 2. This data set (Table 10.2) is from the record of the IX FINA

World Cup diving competition, held in Atlanta, Georgia in 1995. The data were

obtained from [25, 54] and show the scores given by the seven judges who were from

the seven different countries. In this bivariate data set for (X1, X2), the variables

X1 (X2, respectively) represents the maximum score given by a judge from Asia or

Caucasus (from the Western countries, respectively). Here, (i) X1 < X2 means that

the maximum score for the diver is given by a Western judge, (ii) X1 = X2 means
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that the maximum score for the diver is given by a judge from Asia/Caucasus and

the Western – is a tie, while (iii) X1 > X2 means that maximum score was assigned

by a judge from Asia/Caucasus.

Table 10.2 Dive Data Obtained from the IX FINA World Cup diving competition,
held in Atlanta, Georgia in 1995

Diver Country X1 X2 Diver Country X1 X2

Sun Shuwei China 19 19 Sun Shuwei China 15 16

David Pichler USA 15 15 David Pichler USA 15 15

Jan Hempel Germany 13 14 Jan Hempel Germany 17 18

Roman Volodkuv Ukraine 11 12 Roman Volodkuv Ukraine 16 16

Sergei Kudrevich Belarus 14 14 Sergei Kudrevich Belarus 12 13

Patrick Jeffrey USA 15 14 Patrick Jeffrey USA 14 14

Valdimir Timoshinin Russia 13 16 Valdimir Timoshinin Russia 12 13

Dimitry Sautin Russia 7 5 Dimitry Sautin Russia 17 18

Xiao Hailiang China 13 13 Xiao Hailiang China 9 10

Sun Shuwei China 18 18

10.5.3 Numerical Results

We fit three different bivariate proportional hazard models, namely (i) bivariate

generalized exponential (BGE), (ii) bivariate exponentiated Weibull (BEW) and (iii)

bivariate linear failure rate (BLFR), to each of the two data sets described in Section

10.5.2. The maximum likelihood estimates of model parameters for all three bivariate

proportional hazard models were obtained using EM algorithm.

10.5.3.1 Data Set 1: NFL Data. We analyze the NFL data set using the three

proposed bivariate proportional hazard models. First the data (shown in Table 10.1)

is reset with minutes as unit of time as in [21, 53], e.g., 2:03 is converted to 2.05

minutes. Although in reality, the possible scoring times are restricted by the duration
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of the game, it is ignored for modeling purposes as in [21, 53], by considering time to

goals a non-negative random variable.

The maximum likelihood estimates of the parameters for three different bivariate

proportional hazard models are summarized in Table 10.3, from which we can conclude

that BEW model fits NFL data set better than both BGE and BLFR models.

10.5.3.2 Data Set 2: Dive Data. We analyze the Dive data set (shown in

Table 10.2), also using the three proposed bivariate proportional hazard models listed

above. The maximum likelihood estimates of the parameters for three models are

summarized in Table 10.4. From the log-likelihood (LL) values, as well as from the

values of the AIC, BIC criteria of model fit shown in Table 10.4, it is seen that the

BEW as a bivariate proportional hazard model fits the dive data best among the

three candidates.
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With the maximum likelihood estimates for model parameters shown in Table

10.4, we can also compute the plug-in estimates of probabilities: (i) P (X1 > X2), (ii)

P (X1 < X2) and (iii) P (X1 = X2), the probability of tied scores, for three different

bivariate proportional hazard models, according to Proposition 10.3.9. The results

are summarized in Table 10.5, which also shows the estimates of these probabilities

obtained by Li [54] using bivariate geometric distribution as a model to describe the

data in Table 10.2. We further compute the AIC and BIC criteria, to judge the fit

of the bivariate geometric model in [54] to the dive data set and obtained the values:

AIC = 226.9937 and BIC = 229.827 for the discrete bivariate geometric distribution,

as a model for the dive data.

Table 10.5 Summary of Probabilities using Three Different Bivariate Proportional
Hazard Models and Bivariate Geometric Distribution (BGD) with Maximum
Likelihood Estimations for Model Parameters

BGE BEW BLFR BGD1

P (X1 > X2) 0.0251 0.0440 0.0376 0.1204

P (X1 < X2) 0.3548 0.3519 0.2882 0.3263

P (X1 = X2) 0.6201 0.6041 0.6741 0.5533

Comparing these AIC and BIC values to the corresponding AIC and BIC values

in Table 10.4; it appears that all three bivariate proportional hazard models provide

a better fit to the dive data set. This conclusion is however based on the premise

that assigned scores are continuous variables rather than discrete integers, which is

the assumed framework for using the bivariate geometric model [54].

10.6 Discussion

In this Chapter, we introduce a framework for bivariate proportional hazard models

and investigate its properties. Expectation-Maximization (EM) algorithm is discussed

1All probabilities based on BGD are obtained from [54].



133

to estimate model parameters. The proposed models and methodology are applied

to two real data sets for the illustrative purpose.



CHAPTER 11

CONCLUSION

In Part II, reverse star-ordered, a new partial ordering, and its properties including

the relationship of this partial order to other partial orders and non-parametric life

distribution classes, and preservation properties of under some reliability operations

are discussed.

In addition, we introduce a new class of bivariate proportional hazard models

and explore its properties. EM algorithm is used to obtain maximum likelihood

estimations for model parameters of interest. The model and methodology are applied

to real data set for illustrative purposes. The performance are quite satisfactory. To

illustrate the applicability of our proposed class of BPHM models, we consider two

different real data sets and three different parametric families of bivariate proportional

hazard models, and show one of the parametric class of BPHMs can explain both data

set very well in terms of log-likelihood and other well known model-fit criterions.
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APPENDIX A

FORTRAN PROGRAM CODES

A.1 Fortran 90 Program Code for MLE of Bivariate Generalized Exponential

Model Parameters using EM Algorithm with NFL Data Set

program footbal l BGE

intege r , parameter : : n00=24, n11=17, n22=1

r e a l ∗8 , parameter : : n0=24, n1=17, n2=1

r e a l ∗8 , parameter : : sma l l va lu e = 1e−20

r e a l ∗8 : : j0x ( n00 ) = ( / 9 . 05 , 0 . 85 , 3 . 43 , 7 . 78 , 7 . 05 , 2 . 58 ,

8 . 88 , 17 .83 , 10 .15 , 8 . 98 , 6 . 42 , 7 . 02 ,

11 .82 , 14 .58 , 2 . 9 , 15 . 53 , 12 .13 ,

10 .35 , 1 . 38 , 1 . 65 , 0 . 75 , 4 . 25 , 7 . 25 ,

2 . 98/ )

r e a l ∗8 : : j1x1 ( n11 ) = ( /2 . 05 , 10 .57 , 7 . 23 , 6 . 85 , 32 .45 ,

8 . 53 , 31 .13 , 14 .58 , 10 .85 , 5 . 52 ,

4 . 22 , 6 . 42 , 11 .63 , 3 . 98 , 13 . 8 , 5 . 78 ,

10 . 4/ )

r e a l ∗8 : : j1x2 ( n11 ) = ( /3 . 98 , 14 .28 , 9 . 68 , 34 .58 , 42 .35 ,

14 .27 , 49 .88 , 20 .57 , 38 .07 , 11 .27 ,

9 . 48 , 15 .08 , 17 .37 , 6 . 43 , 49 .75 ,

25 .98 , 14 .25/)

r e a l ∗8 : : j2x1 ( n22 ) = (/19 . 65/ )

r e a l ∗8 : : j2x2 ( n22 ) = (/10 . 7/ )

i n t e g e r (4 ) : : i , k

r e a l ∗8 : : N

135
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r e a l ∗8 : : u1 , u2 , v1 , v2

r e a l ∗8 : : a1 , a2 , a3 , lamda0 , lamda1

r e a l ∗8 : : d i f f

r e a l ∗8 : : sumj0x , sumj1x1 , sumj1x2 , sumj2x1 , sumj2x2 ,

sumj12x1 , sumj12x2

! I n i t i a l i z a t i o n

N = n0 + n1 + n2

a1 = 0 .1 d0

a2 = 0 .2 d0

a3 = 0.05 d0

lamda1 = −100.d0

d i f f = 100d0

i = 0

sumj0x = sum( j0x )

sumj1x1 = sum( j1x1 )

sumj1x2 = sum( j1x2 )

sumj2x1 = sum( j2x1 )

sumj2x2 = sum( j2x2 )

open ( un i t = 20 , f i l e = ’ output . txt ’ , s t a t u s = ’unknown ’ )

! Main loop

do whi l e ( d i f f > sma l l va lu e . and . i < 10000)

i = i +1

! Ca l cu la te u1 , u2 , v1 , v2

u1 = a1 / ( a2+a3 )

u2 = a1∗a3 / ( a2∗ ( a2+a3 ) )

v1 = a2 / ( a1+a3 )

v2 = a2∗a3 / ( a1∗ ( a1+a3 ) )

! Ca l cu la te lamda1
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lamda0 = lamda1

lamda1 = ( N + ( u1+u2 )∗n1 + ( v1+v2 )∗n2 ) / &

( ( a1+a2+a3 )∗ sumj0x + (1 + a3/a2 )∗ a1∗sumj1x2 + &

a1∗sumj1x1 + (1+a3/a1 )∗ a2∗sumj2x1 + a2∗sumj2x2 )

! Ca l cu la te a1 a2 a3

a1 = ( n1 + n2∗v1 ) / &

( lamda1 ∗( sumj0x +sumj1x1 + ( v1+v2 )∗ sumj2x1 ) )

a2 = ( n2 + n1∗u1 ) / &

( lamda1 ∗( sumj0x + ( u1+u2 )∗ sumj1x2 + sumj2x2 ) )

a3 = ( n0 + n1∗u2 + n2∗v2 )/ &

( lamda1 ∗( sumj0x +(u1+u2 )∗ sumj1x2 + ( v1+v2 )∗ sumj2x1 ) )

d i f f = abs ( ( lamda1 − lamda0 )/ lamda0 )

wr i t e (20 ,∗ ) ’−−−−−−−−−−−−−−−−’

wr i t e (20 ,∗ ) ’ d i f f = ’ , d i f f

wr i t e (20 ,∗ ) ’ loop = ’ , i

wr i t e (20 ,∗ ) ’ lamda = ’ , lamda1

wr i t e (20 ,∗ ) ’ a1 = ’ , a1

wr i t e (20 ,∗ ) ’ a2 = ’ , a2

wr i t e (20 ,∗ ) ’ a3 = ’ , a3

wr i t e (20 ,∗ ) ’ u1 = ’ , u1

wr i t e (20 ,∗ ) ’ u2 = ’ , u2

wr i t e (20 ,∗ ) ’ v1 = ’ , v1

wr i t e (20 ,∗ ) ’ v2 = ’ , v2

end do

! End main loop

c l o s e (20)

wr i t e (∗ ,∗ ) ’ d i f f = ’ , d i f f

wr i t e (∗ ,∗ ) ’ loop = ’ , i
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wr i t e (∗ ,∗ ) ’ lamda = ’ , lamda1

wr i t e (∗ ,∗ ) ’ a1 = ’ , a1

wr i t e (∗ ,∗ ) ’ a2 = ’ , a2

wr i t e (∗ ,∗ ) ’ a3 = ’ , a3

end program

A.2 Fortran 90 Program Code for MLE of Bivariate Exponentiated Weibull

Model Parameters using EM Algorithm with NFL Data Set

program football BEW

intege r , parameter : : n00=24, n11=17, n22=1

r e a l ∗8 , parameter : : n0=24, n1=17, n2=1

r e a l ∗8 , parameter : : sma l l va lu e = 1e−10,

sma l l va lue2 = 1e−10

r e a l ∗8 : : j0x ( n00 ) = ( / 9 . 05 , 0 . 85 , 3 . 43 , 7 . 78 , 7 . 05 ,

2 . 58 , 8 . 88 , 17 .83 , 10 .15 , 8 . 98 ,

6 . 42 , 7 . 02 , 11 .82 , 14 .58 , 2 . 9 ,

15 .53 , 12 .13 , 10 .35 , 1 . 38 , 1 . 65 ,

0 . 75 , 4 . 25 , 7 . 25 , 2 . 98/ )

r e a l ∗8 : : j1x1 ( n11 ) = ( /2 . 05 , 10 .57 , 7 . 23 , 6 . 85 , 32 .45 ,

8 . 53 , 31 .13 , 14 .58 , 10 .85 , 5 . 52 ,

4 . 22 , 6 . 42 , 11 .63 , 3 . 98 , 13 . 8 ,

5 . 78 , 10 . 4/ )

r e a l ∗8 : : j1x2 ( n11 ) = ( /3 . 98 , 14 .28 , 9 . 68 , 34 .58 , 42 .35 ,

14 .27 , 49 .88 , 20 .57 , 38 .07 , 11 .27 ,

9 . 48 , 15 .08 , 17 .37 , 6 . 43 , 49 .75 ,

25 .98 , 14 .25/)

r e a l ∗8 : : j2x1 ( n22 ) = (/19 . 65/ )

r e a l ∗8 : : j2x2 ( n22 ) = (/10 . 7/ )
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i n t e g e r (4 ) : : i , k

r e a l ∗8 : : N

r e a l ∗8 : : u1 , u2 , v1 , v2

r e a l ∗8 : : a1 , a2 , a3 , lamda0 , lamda1

r e a l ∗8 : : d i f f

r e a l ∗8 : : sumj0x , sumj1x1 , sumj1x2 , sumj2x1 , sumj2x2

r e a l ∗8 : : l n j 0x ( n00 ) , l n j 1x1 ( n11 ) , l n j 1x2 ( n11 ) ,

l n j 2x1 ( n22 ) , l n j 2x2 ( n22 )

r e a l ∗8 : : j0xb ( n00 ) , j1x1b ( n11 ) , j1x2b ( n11 ) ,

j2x1b ( n22 ) , j2x2b ( n22 )

r e a l ∗8 : : sumlnj0x , sumlnj1x1 , sumlnj1x2 , sumlnj2x1 ,

sumlnj2x2

r e a l ∗8 : : sum tmp1 , term1 , suma123 , suma1 , suma2

l o g i c a l : : do loop = . t rue .

! I n i t i a l i z a t i o n

N = n0 + n1 + n2

a1 = 0 .1 d0

a2 = 0 .2 d0

a3 = 0.05 d0

lamda1 = −100.d0

beta0 = 0 .9

beta1 = 0 .9

d i f f l amda = 100d0

d i f f b e t a = 100d0

i =0

ln j 0x = log ( j0x )

ln j 1x1 = log ( j1x1 )

ln j 1x2 = log ( j1x2 )
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l n j 2x1 = log ( j2x1 )

ln j 2x2 = log ( j2x2 )

sumlnj0x = sum( ln j 0x )

sumlnj1x1 = sum( ln j1x1 )

sumlnj1x2 = sum( ln j1x2 )

sumlnj2x1 = sum( ln j2x1 )

sumlnj2x2 = sum( ln j2x2 )

sum tmp1 = sumlnj0x + sumlnj1x1 + sumlnj2x2

open ( un i t = 20 , f i l e = ’ output . txt ’ , s t a t u s = ’unknown ’ )

! Main loop

do whi l e ( do loop )

i = i +1

! Ca l cu la te u1 , u2 , v1 , v2

u1 = a1 / ( a2+a3 )

u2 = a1∗a3 / ( a2∗ ( a2+a3 ) )

v1 = a2 / ( a1+a3 )

v2 = a2∗a3 / ( a1∗ ( a1+a3 ) )

! Ca l cu la te sum

j0xb = j0x ∗∗beta1

j1x1b = j1x1 ∗∗beta1

j1x2b = j1x2 ∗∗beta1

j2x1b = j2x1 ∗∗beta1

j2x2b = j2x2 ∗∗beta1

sumj0x = sum( j0xb )

sumj1x1 = sum( j1x1b )

sumj1x2 = sum( j1x2b )

sumj2x1 = sum( j2x1b )

sumj2x2 = sum( j2x2b )
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! Ca l cu la te lamda1

lamda0 = lamda1

term1 = N + ( u1+u2 )∗n1 + ( v1+v2 )∗n2

suma123 = a1 + a2 + a3

suma1 = (1 + a3/a2 )∗ a1

suma2 = (1 + a3/a1 )∗ a2

lamda1 = term1 / &

( suma123∗sumj0x + suma1∗sumj1x2 + a1∗sumj1x1 + &

suma2∗sumj2x1 + a2∗sumj2x2 )

! Ca l cu la te beta

beta0 = beta1

beta1 = term1 / &

( lamda1 ∗ ( suma123∗sum( j0xb ∗ l n j 0x ) + suma1∗ &

sum( j1x2b∗ l n j 1x2 ) + a1∗sum( j1x1b∗ l n j 1x1 )+ suma2∗ &

sum( j2x1b∗ l n j 2x1 ) + a2∗sum( j2x2b∗ l n j 2x2 ) ) − &

( sum tmp1+(u1+u2 )∗ sumlnj1x2+(v1+v2 )∗ sumlnj2x1 ) )

! Ca l cu la te a1 a2 a3

a1 = ( n1 + n2∗v1 ) / &

( lamda1 ∗( sumj0x +sumj1x1 + ( v1+v2 )∗ sumj2x1 ) )

a2 = ( n2 + n1∗u1 ) / &

( lamda1 ∗( sumj0x + ( u1+u2 )∗ sumj1x2 + sumj2x2 ) )

a3 = ( n0 + n1∗u2 + n2∗v2 )/ &

( lamda1 ∗( sumj0x +(u1+u2 )∗ sumj1x2 + ( v1+v2 )∗ sumj2x1 ) )

d i f f l amda = abs ( ( lamda1 − lamda0 )/ lamda0 )

d i f f b e t a = abs ( ( beta1 − beta0 )/ beta0 )

wr i t e (20 ,∗ ) ’−−−−−−−−−−−−−−−−’

wr i t e (20 ,∗ ) ’ d i f f l amda = ’ , d i f f l amda

wr i t e (20 ,∗ ) ’ d i f f b e t a = ’ , d i f f b e t a
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wr i t e (20 ,∗ ) ’ loop = ’ , i

wr i t e (20 ,∗ ) ’ lamda = ’ , lamda1

wr i t e (20 ,∗ ) ’ beta = ’ , beta1

wr i t e (20 ,∗ ) ’ a1 = ’ , a1

wr i t e (20 ,∗ ) ’ a2 = ’ , a2

wr i t e (20 ,∗ ) ’ a3 = ’ , a3

wr i t e (20 ,∗ ) ’ u1 = ’ , u1

wr i t e (20 ,∗ ) ’ u2 = ’ , u2

wr i t e (20 ,∗ ) ’ v1 = ’ , v1

wr i t e (20 ,∗ ) ’ v2 = ’ , v2

do loop = d i f f l amda > sma l l va lu e . or . &

d i f f b e t a > sma l l va lue2

do loop = do loop . and . i < 10000

i f (mod( i , 1 00 ) . eq . 0) then

wr i t e (∗ ,∗ ) i

end i f

end do

! End main loop

c l o s e (20)

wr i t e (∗ ,∗ ) ’ d i f f l amda = ’ , d i f f l amda

wr i t e (∗ ,∗ ) ’ d i f f b e t a = ’ , d i f f b e t a

wr i t e (∗ ,∗ ) ’ loop = ’ , i

wr i t e (∗ ,∗ ) ’ lamda = ’ , lamda1

wr i t e (∗ ,∗ ) ’ beta = ’ , beta1

wr i t e (∗ ,∗ ) ’ a1 = ’ , a1

wr i t e (∗ ,∗ ) ’ a2 = ’ , a2

wr i t e (∗ ,∗ ) ’ a3 = ’ , a3

end program
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A.3 Fortran 90 Program Code for MLE of Bivariate Linear Failure Rate

Model Parameters using EM Algorithm with NFL Data Set

program footbal l BLFR

intege r , parameter : : n00=24, n11=17, n22=1

r e a l ∗8 , parameter : : n0=24, n1=17, n2=1

r e a l ∗8 , parameter : : sma l l va lu e = 1e−6,

sma l l va lue2 = 1e−6

r e a l ∗8 : : j0x ( n00 ) = ( / 9 . 05 , 0 . 85 , 3 . 43 , 7 . 78 , 7 . 05 ,

2 . 58 , 8 . 88 , 17 .83 , 10 .15 , 8 . 98 ,

6 . 42 , 7 . 02 , 11 .82 , 14 .58 , 2 . 9 ,

15 .53 , 12 .13 , 10 .35 , 1 . 38 , 1 . 65 ,

0 . 75 , 4 . 25 , 7 . 25 , 2 . 98/ )

r e a l ∗8 : : j1x1 ( n11 ) = ( /2 . 05 , 10 .57 , 7 . 23 , 6 . 85 , 32 .45 ,

8 . 53 , 31 .13 , 14 .58 , 10 .85 , 5 . 52 ,

4 . 22 , 6 . 42 , 11 .63 , 3 . 98 , 13 . 8 ,

5 . 78 , 10 . 4/ )

r e a l ∗8 : : j1x2 ( n11 ) = ( /3 . 98 , 14 .28 , 9 . 68 , 34 .58 , 42 .35 ,

14 .27 , 49 .88 , 20 .57 , 38 .07 , 11 .27 ,

9 . 48 , 15 .08 , 17 .37 , 6 . 43 , 49 .75 ,

25 .98 , 14 .25/)

r e a l ∗8 : : j2x1 ( n22 ) = (/19 . 65/ )

r e a l ∗8 : : j2x2 ( n22 ) = (/10 . 7/ )

i n t e g e r (4 ) : : i

r e a l ∗8 : : N

r e a l ∗8 : : u1 , u2 , v1 , v2

r e a l ∗8 : : a1 , a2 , a3 , lamda0 , lamda1 , beta0 , beta1

r e a l ∗8 : : d i f f l amda , d i f f b e t a
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r e a l ∗8 : : sumj0x , sumj1x1 , sumj1x2 , sumj2x1 , sumj2x2

r e a l ∗8 : : sumj0xs , sumj1x1s , sumj1x2s , sumj2x1s ,

sumj2x2s

r e a l ∗8 : : sum tmp1 , term1 , suma123 , suma1 , suma2 ,

tmp1 , tmp2 , tmp3

l o g i c a l : : do loop = . t rue .

! I n i t i a l i z a t i o n

N = n0 + n1 + n2

a1 = 0 .1 d0

a2 = 0 .2 d0

a3 = 0.05 d0

lamda1 = −100.d0

beta0 = 0 .9

beta1 = 0 .9

d i f f l amda = 100d0

d i f f b e t a = 100d0

i =0

sumj0x = sum( j0x )

sumj1x1 = sum( j1x1 )

sumj1x2 = sum( j1x2 )

sumj2x1 = sum( j2x1 )

sumj2x2 = sum( j2x2 )

sumj0xs = sum( j0x ∗∗2)

sumj1x1s = sum( j1x1 ∗∗2)

sumj1x2s = sum( j1x2 ∗∗2)

sumj2x1s = sum( j2x1 ∗∗2)

sumj2x2s = sum( j2x2 ∗∗2)

open ( un i t = 20 , f i l e = ’ output . txt ’ , s t a t u s = ’unknown ’ )
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! Main loop

do whi l e ( do loop )

i = i +1

! Ca l cu la te u1 , u2 , v1 , v2

u1 = a1 / ( a2+a3 )

u2 = a1∗a3 / ( a2∗ ( a2+a3 ) )

v1 = a2 / ( a1+a3 )

v2 = a2∗a3 / ( a1∗ ( a1+a3 ) )

! Ca l cu la te lamda1

lamda0 = lamda1

term1 = N + ( u1+u2 )∗n1 + ( v1+v2 )∗n2

suma1 = (1 + a3/a2 )∗ a1

suma2 = (1 + a3/a1 )∗ a2

suma123 = a1 + a2 + a3

tmp1 = sum( 2∗ j0x /(1+2∗beta1∗ j0x ))+( u1+u2 )∗sum(2∗ j1x2 &

/(1+2∗beta1∗ j1x2 ))+sum(2∗ j1x1 /(1+2∗beta1∗ j1x1 ) ) &

+(v1+v2 )∗sum(2∗ j2x1 /(1+2∗beta1∗ j2x1 ))+sum(2∗ j2x2 &

/(1+2∗beta1∗ j2x2 ) )

tmp2 = suma123∗ sumj0xs + suma1∗ sumj1x2s + a1∗ sumj1x1s &

+ suma2∗ sumj2x1s + a2∗ sumj2x2s

lamda1 = tmp1 / tmp2

! Ca l cu la te beta

beta0 = beta1

tmp3 = suma123∗sumj0x + suma1∗sumj1x2 + a1∗sumj1x1 &

+ suma2∗sumj2x1 + a2∗sumj2x2

beta1 = ( term1 / lamda1 − tmp3 ) / tmp2

! Ca l cu la te a1 a2 a3

a1 = ( n1 + n2∗v1 ) / &
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( lamda1 ∗( sumj0x+sumj1x1+(v1+v2 )∗ sumj2x1)+lamda1 &

∗beta1 ∗( sumj0xs + sumj1x1s + ( v1+v2 )∗ sumj2x1s ) )

a2 = ( n2 + n1∗u1 ) / &

( lamda1 ∗( sumj0x+(u1+u2∗sumj1x2+sumj2x2)+lamda1 &

∗beta1 ∗( sumj0xs + ( u1+u2 )∗ sumj1x2s + sumj2x2s ) )

a3 = ( n0 + n1∗u2 + n2∗v2 )/ &

( lamda1 ∗( sumj0x+(u1+u2 )∗ sumj1x2+v1+v2 )∗ sumj2x1 ) &

+lamda1∗beta1 ∗( sumj0xs+(u1+u2 )∗ sumj1x2s+(v1+v2 ) &

∗ sumj2x1s ) )

d i f f l amda = abs ( ( lamda1 − lamda0 )/ lamda0 )

d i f f b e t a = abs ( ( beta1 − beta0 )/ beta0 )

wr i t e (20 ,∗ ) ’−−−−−−−−−−−−−−−−’

wr i t e (20 ,∗ ) ’ d i f f l amda = ’ , d i f f l amda

wr i t e (20 ,∗ ) ’ d i f f b e t a = ’ , d i f f b e t a

wr i t e (20 ,∗ ) ’ loop = ’ , i

wr i t e (20 ,∗ ) ’ lamda = ’ , lamda1

wr i t e (20 ,∗ ) ’ beta = ’ , beta1

wr i t e (20 ,∗ ) ’ a1 = ’ , a1

wr i t e (20 ,∗ ) ’ a2 = ’ , a2

wr i t e (20 ,∗ ) ’ a3 = ’ , a3

wr i t e (20 ,∗ ) ’ u1 = ’ , u1

wr i t e (20 ,∗ ) ’ u2 = ’ , u2

wr i t e (20 ,∗ ) ’ v1 = ’ , v1

wr i t e (20 ,∗ ) ’ v2 = ’ , v2

do loop = d i f f l amda > sma l l va lu e . or . &

d i f f b e t a > sma l l va lue2

do loop = do loop . and . i < 20000

i f (mod( i , 1 00 ) . eq . 0) then
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wr i t e (∗ ,∗ ) i

end i f

end do

! End main loop

c l o s e (20)

wr i t e (∗ ,∗ ) ’ d i f f l amda = ’ , d i f f l amda

wr i t e (∗ ,∗ ) ’ d i f f b e t a = ’ , d i f f b e t a

wr i t e (∗ ,∗ ) ’ loop = ’ , i

wr i t e (∗ ,∗ ) ’ lamda = ’ , lamda1

wr i t e (∗ ,∗ ) ’ beta = ’ , beta1

wr i t e (∗ ,∗ ) ’ a1 = ’ , a1

wr i t e (∗ ,∗ ) ’ a2 = ’ , a2

wr i t e (∗ ,∗ ) ’ a3 = ’ , a3

end program
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