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ABSTRACT

NUMERICAL AND ASYMPTOTIC MODELING OF EVOLVING
NONLINEAR OCEAN SURFACE WAVE FIELDS

by
Matt Malej

The main focus of this dissertation is the asymptotic and numerical modeling of non-

linear ocean surface wave fields. In particular, a development of an accurate numerical

model for the evolution of nonlinear ocean waves, including extreme waves known as

Rogue/Freak waves. Due to their elusive and destructive nature, the media often por-

trays Rogue waves as unimaginatively huge and unpredictable monsters of the sea. To

address these concerns, derivations of asymptotically reduced models, based on the

small wave steepness assumption, are presented and their corresponding numerical

simulations via a Fourier pseudo-spectral method are discussed. The simulations

are initialized with a well-known JONSWAP wave spectrum and different angular

distributions are employed. Both deterministic and Monte-Carlo simulations and the

corresponding analysis were carried out. Based on preliminary numerical analysis,

certain conclusions are drawn on the validity of the modified nonlinear Schrödinger

equation (MNLS) of Dysthe (1979) in relation to realistic ocean surface waves and its

ability to predict the occurrence of large amplitude waves known as Rogue or Freak

waves.

Furthermore, this dissertation concerns the development of a new computa-

tionally efficient numerical model for the short term prediction of evolving weakly

nonlinear ocean surface waves. The derivations are originally based on the work of

West et al. (1987) and Choi (1995) and since the waves in the ocean tend to travel pri-

marily in one direction, the aforementioned new numerical model is derived based on

additional assumption of a weak transverse dependence. In turn, comparisons of the

ensemble averaged random initial spectra, as well as deterministic surface-to-surface



correlations are presented. The new model is shown to behave quite well in various

directional wave fields and can potentially be a candidate for computationally efficient

prediction and propagation of large ocean surface waves – Rogue/Freak waves.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Computing efficiently and accurately the evolution of highly nonlinear time-dependent,

three-dimensional surface wave fields in various ocean environments is certainly a

challenging hydrodynamic problem. Consequently, a considerable effort and resources

have been allocated towards a better understanding of large nonlinear ocean waves

over the course of the last decade (Waseda et al. 2009). These large waves whose

height surpasses twice the significant wave height (Hs) of the analyzed field are com-

monly referred to as Rogue or Freak Waves. In terms of waves with broad directional

distribution, it has been shown by Onorato et al. (2002) and Socquet-Juglard et al.

(2005) that as directional distribution broadens, the occurrence of these uncommonly

large waves subsides. Those findings were normally supported via statistical methods,

such as a measure of the fourth statistical moment (kurtosis), see for example Dysthe

et al. (2003), Waseda et al. (2009b), or Toffoli et al. (2010).

When considering the prevalent theories, it is believed that these extreme waves

occur more frequently than random superposition of different waves would predict.

Though questionable, a common assumption in modeling is that the sea state is a

stationary random process. This tends to give a false impression on the frequency

of the occurrence of these extremely large waves. Prevailing models for describing

such phenomena are highly complex. These models do not possess analytic solutions

and hence require careful and costly numerical computations. In modeling, a large

number of factors need to be considered such as: variable bottom topography, ocean

currents, wave-wind interactions and energy dissipation due to wave breaking. An

additional complication is that there is a wide range of scales to be resolved. The

1
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coupling between various modes and thus the energy transfer between different length

scales lack a thorough understanding (Waseda et al. 2009a).

In the effort of bringing the oceanographic community closer towards real time

wave prediction, the objective of this research has been the development of an ef-

ficient numerical model to accurately forecast the evolution of weakly nonlinear,

multi-directional irregular surface wave fields in the ocean. Also, in order to better

understand the underling physical effects and to deviate from having to carry out

intensive numerical computations of the full Euler equations, in this dissertation we

re-derived, based on the work of West et al. (1987) and Choi (1995), a reduced model

accurate to a third order in wave steepness. In fact, Dommermuth and Yue (1987)

have also independently derived a similar model, commonly referred to as a HOSM

(higher-order spectral method). For an excellent review of various computational

approaches to nonlinear free-surface flows see Tsai and Yue (1996).

Subsequently, since waves in the ocean tend to primarily travel in one direction,

we also proposed a new weakly two-dimensional (Weakly 2D) model based on addi-

tional assumption of weak transverse dependence. This weak transverse dependence

is exhibited in the wavenumber ratio ky/kx being on the order of wave steepness (ε),

where ky and kx are of course the horizontal wavenumbers. The models are presented

for arbitrary water depth (0 < h <∞), as well as for both shallow or infinitely deep

water.

This dissertation is organized as follows. In chapter 1 we give the objective,

motivation and the background information, as well as several accounts of marine

ship accidents attributed to Rogue/Freak waves. In §1.4 we present the mathematical

formulation of an ideal fluid with a free-surface. In chapter 2, we re-derive the fully

two-dimensional (Fully 2D) model based on the work of West et al. (1987) and Choi

(1995), and introduce a new model based on weak transverse dependence (Weakly

2D). Then in chapter 3, we give a detailed description of our numerical method and
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statistical description of the realistic ocean wave fields. In chapter 4, we present

the results of the simulations for the deterministic surface-to-surface comparisons

and ensemble averaged wavenumber spectra for an array of initial wave fields. The

comparisons are made between the Fully 2D and the Weakly 2D model, as well as,

between Fully 2D and MNLS (Modified Nonlinear Schrödinger Equation) of Dysthe

(1979). Also, in chapter 5, we show how the Fully 2D model can be effectively

uncoupled and separated into unidirectional components. Finally, in chapter 6 the

concluding remarks are given. In addition, in the Appendix we carry out linearized

stability analysis for the MNLS and plot regions of modulational instability of the

Stokes wave for the MNLS. Ultimately, we argue that the Weakly 2D model behaves

quite well in broad directional wave fields. Moreover, even though our models do not

account for wave breaking, we still observed permanent downshifting of the spectral

peak. In that respect, it appears that the primary driving mechanism behind the

spectral downshifting is indeed the nonlinear wave-wave interaction, brought about

by the mode coupling and thus the nonlinear energy transfer.

1.2 Background Information

Whether being on a beach or onboard a vessel, one of the first things one will no-

tice when looking at the ocean are the omnipresent surface waves. Despite that,

relatively little progress had been made from the times of ancient Greeks to the

19th century. Some of the great minds like George Biddell Airy (1801-1892), John

Scott Russell (1808-1882), Sir George Stokes (1819-1903), Lord Rayleigh (1842-1919),

and Joseph Boussinesq (1842-1929) are among the scientists who provided important

contributions to the development of ocean waves. Generally speaking, ocean surface

waves are the result of forces acting on the initially uniform ocean surface. In fact,

many types of waves involving different physical factors exist in the ocean and all

must be associated with some form of a restoring force. It is therefore convenient to
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make a rough classification of ocean waves according to their restoring force as (also

summarized in Table 1.1):

Table 1.1 Classification of Various Ocean Surface Wave Types Based on the
Restoring Force. The Typical Period in the Third Column is Given in Seconds (sec),
Minutes (min), Hours (h), and Days.

Wave Type Physical Mechanism Typical Period Populated Regions

Sound Compressibility 10−2 to 10−5 sec Underwater

Capillary Surface Tension < 10−1 sec Surface

Gravity & Swells Gravity 1 to 25 sec Surface

Tsunami Gravity 10 min to 2 h Surface

Internal Layer Stratification 2 min to 10 h Deep Ocean (interior)

Tides Earth Rotation 12 to 24 h Entire Ocean

• Water compressibility which leads to the creation of sound waves that are not

discussed further in this dissertation.

• Pressure fluctuations or atmospheric stresses (particularly from the wind) create

capillary and gravity waves.

• Subsurface earthquakes that create long surface gravity waves (tsunami) that

have enormous destructive powers, especially for coastal and riverine communi-

ties. The earthquake can create a long wave of small amplitude traveling very

fast (often several hundreds of miles per hour) in the deep ocean. While the

wave approaches shallow coastal water on the continental shelves, it slows down

and increases in amplitude and can even travel thousands of kilometers away

from the earthquake.
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• Gravitational attraction from the moon and rotation (Coriolis force) of the earth

can generate tidal waves.

Unnatural physical event can also produce waves in the ocean. One can take the

example of a boat cruising in Norwegian fjords. Depending on the boat’s speed and

the depth of the fjord, it can generate waves which become high enough to cause

damage along the coast.

Ocean surface waves have been a subject of study with an increasing interest over

the last several decades. Shipping companies, offshore industries (especially the oil

and gas producers), fish industries, harbors (transport of sediments), tourist industry

(ships, waves breaking on beaches) and environmentalists are becoming increasingly

concerned about the role of the ocean waves. A better understanding of the waves

can play a major role in the economy, the safety of populations and the protection of

the world. A wave hitting an oil platform and stopping the production of oil means

several millions of dollars lost per day for the company. When a tsunami reaches a

coast without warning, thousands of human lives may be lost.

For the present dissertation, however, the primary motivation has been the so-

called Freak/Rogue wave, also commonly referred to as extreme wave. These waves

are storm waves with extreme heights compared to the significant wave height of the

surrounding wave field. The commonly accepted definition of the significant wave

height (Hs), is the average of the top one-third (1/3) of the highest wave heights.

The meaning of a wave height (H) is simply a distance from a trough to a peak

and when we talk about the wave height, we have to distinguish between up-crossing

(H-) and down-crossing (H+) wave heights. In turn, the height of the wave will

ultimately be the maximum value of the up-crossing and down-crossing wave heights,

as is illustrated in Figure 1.1. An alternative point of view exists on rogue waves that

consists of two views: (1) “classical” extreme waves (that are described by standard

physical models and statistics) and (2) “freak” extreme waves (that need a new set of
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x-axis

H = max(H+, H-)

H-

H+

Figure 1.1 Schematic and definition of a wave height (H).

theories and approaches) (Haver 2005). This concept is primarily based on stochastic

(probabilistic) approaches and considerations. In this dissertation, however, we are

concerned with all kinds of extreme waves and we do not make a distinction between

rouge and freak waves; thus we use those two terms interchangeably.

Before discussing more details of water waves, few basic assumptions about the

ocean are needed, mainly:

• The water is considered to be incompressible.

• It has an inviscid nature, meaning that any frictional forces are neglected and

only gravity and pressure forces are taken into account, although for the ma-

jority of this dissertation only gravity waves will be considered.

• The fluid is irrotational.
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When observing the ocean from a beach during calm weather, one can notice

the presence of nearly sinusoidal long-crested and progressive waves. These waves

will become higher and shorter when reaching the coast and will finally break. This

phenomenon is well-known among the surfers. The water depth (h) plays a major role

in ocean physics. When a wave propagates, both surface and underwater particles

are in motion. The phase speed and the frequency of the waves depends on depth (h)

through the dispersion relation. This comes from the fact that water is a dispersive

media, in other words - water waves of different wavelengths (λ) and frequency travel

with different speeds. A simple classification using the water depth (h) and the

wavelength (λ) to characterize the ocean can be made as follows

• Shallow water h < λ/25

• Transitional/Arbitrary/Finite depth λ/25 < h < λ/4

• Deep water λ/4 < h.

Here, we deal primarily with a finite water depth, with occasional considerations

of the other two ends of the spectrum (shallow and deep water). The dispersive

nature of water waves can be described by the fundamental relationship between the

wavenumber k =
√
k2
x + k2

y, where kx and ky are the horizontal wavenumbers, and

the angular wave frequency (ω = ω(k)), which is commonly referred to as dispersion

relation. This relation can be easily derived from the linear theory and has the

following form

ω2 = gk tanh(kh), (1.1)

where g is the gravitational acceleration equal to 9.81m/s2. For deep water, tan(kh) ≈

1 and the dispersion relation reduces to ω2 = gk. When watching the ocean, it is

relatively obvious that the sea is not a single sinusoidal wave. Moreover, it is not

easy to get a general description, or the governing law for the surface elevation.



8

Waves have different speeds, amplitudes, directions, and wavelengths. Short waves

ride on top of the long waves and small waves are overtaken by longer waves. When

observing one particular point on the ocean surface it seems that it evolves almost

randomly. Looking at a larger piece of the ocean from a satellite, however, one can

see the influence of the wind and the different patterns – especially in the coastal

areas where the surface interacts with the bottom topography.

In addition, when one treats the ocean surface waves as a stationary random

process (a stochastic process whose joint probability distribution does not change

when shifted in time or space), then they can be simulated as the sum of simple

sinusoidal waves with different wavelengths, frequencies, amplitudes, and directions.

By the same token, one can include a large number of simple sinusoidal waves to build

the sea surface. Therefore, it should not be surprising that adding two-dimensional

(2D) waves with different heights, wavelengths and directions, will ultimately result in

a realistic ocean surface field where seemingly no general physical laws are observed.

In fact, Lord Rayleigh once said:“The basic law of the seaway is the apparent lack of

any law.”

From the theory established by Fourier, it follows that the sea surface at a given

instant can be obtained from the superposition of many simple sinusoidal waves. It

is quite fascinating to realize that something very complicated can be constructed by

adding relatively simple elements. In linear theory, one can simulate the sea surface

at any time by adding many sinusoidal waves like

ζ(x, y, z, t) =
∑
i

∑
j

ai,j exp
(
kxi
x+ kyj

y − ω(kx, ky)t+ φn
)

+ c.c. , (1.2)

where c.c. stands for the complex conjugate with random phases φn. Each sinusoidal

wave in the sum is an elementary wave, often referred to as a Fourier mode. Taking

nonlinear effects into account, however, means that the individual Fourier modes are
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coupled. Thus the amplitudes (ai,j) and phases (φn) are changing with time and in

principle have to be computed at every time step.

1.3 Freak/Rogue Waves

This section presents some accounts and stories about freak waves, which have been

presented in scientific papers, as well as popular scientific magazines and even the

media. Media accounts often portray rogue waves as unimaginatively huge monsters

of the sea, mainly due to their size and unpredictable nature. There are many well-

documented cases of the occurrence of extreme waves. Until few decades ago, these

extreme waves were usually dismissed as simple mariners’ tales and were given very

little credibility. In fact, when captain Dumont d’Urville, a French scientist and naval

officer on an expedition in 1826, along with three of his colleagues, reported seeing

waves up to 30 meters high, they were openly ridiculed as such waves were practically

impossible to experience given the current water wave theories.

Until recent, the largest reliably measured waves have had the heights of 30

meters, in particular the waves registered during the “Halloween Storm” in 1991 and

Hurricane Luis in 1995. Currently, the observations and hence data collection of

extreme waves from space have been possible with SAR (Synthetic Aperture Radar)

and other similar satellite imagining devices. These large waves are usually generated

by storms and hurricanes, hence one would expect the occurrence of rogue waves to

increase, or become more probable during severe weather. In fact, Komar (2007)

reported a substantial increase in typical wave heights during a season of tropical

storms in the North Atlantic region.

The list of marine accidents attributed to extreme waves contains many records

in the recent decades. Twenty-two super carriers were lost or severely damaged

between 1969 and 1994 due to occurrence of sudden rogues waves and a total of 542

lives were lost as a result of these accidents (Lawton 2001). Figures 1.2-1.3 show
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respectively, the density of ship accidents and individual ship accidents between the

years of 1995-1999 around the world, collected by the Lloyds Marine Information

Service (LMIS). The areas of East China Sea and the North Sea are well known for

abnormally large waves. Therefore, it is not a surprise that the largest concentration

and occurrence of ship accidents, due to collisions with extreme waves, are in these

parts of the world.
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Figure 1.2 Geographical distribution: ship accidents in the period of five years from
1995 to 1999. Taken from the Lloyds Marine Information Service (LMIS) casualty
database.

Moreover, the number of accidents reported by the media is growing and the

issue of huge sea waves has attracted many people from various communities (scientific

and non-scientific). Some of the recent accidents with large ocean liners that include

Queen Elizabeth II in 1995, Bremen and Caledonian Star 2001, and Norwegian Dawn

in 2005, demonstrate the destructive powers of rogue waves.
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Figure 1.3 Worldwide ship accidents (1995-1999) due to severe weather. Taken
from the Lloyds Marine Information Service (LMIS) casualty database.

Offshore platforms are also quite vulnerable to rogue waves; not so much about

the loss of life, but more about the financial and ecological problems a damaged oil

drilling platform can create. The famous New Year Waves hit the Draupner platform

on January 1, 1995, with a height of approximately 26 meters, while the typical

surrounding waves were about 10-11 meters (Trulsen and Dysthe 1997).

Over the past few decades, the combination of in situ and remote sensing obser-

vations have demonstrated that extremely large nonlinear rogue waves are ubiquitous

features of costal oceans (Kharif et al. 2009). Much of the modern interest in large

surface waves in oceanography began in the early 1960s with an interesting conflu-

ence of advances in ocean instrumentation, applied mathematics, and remote sensing.

Prevailing models for describing such phenomena are highly complex. These models

do not possess analytic solutions and hence require careful and costly numerical com-

putations. In addition, calculations and predictions generated by these models are

often inaccurate due to oversimplifications in the models and their numerical schemes.

In modeling, a large number of factors need to be considered such as: variable bot-
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tom topography, ocean currents, wave-wind interactions, and energy dissipation due

to wave breaking. An additional complication is that there is a wide range of scales

to be resolved. The coupling between various modes and thus the energy transfer

between different length scales lack a thorough understanding. The ability to predict

more accurately the generation and propagation of highly nonlinear ocean wave fields,

such as rogue (freak) waves, will be crucial for a number of engineering and scientific

applications.

Furthermore, there are many individuals and government agencies that dedicate

a lot of resources toward a better understanding of water waves. For example: civil

and ocean engineers trying to protect coastal and offshore structures, naval architects

designing ships, and physical oceanographers investigating air-sea interaction, are all

interested in obtaining a better understanding of the dynamics of nonlinear ocean

waves. Increasingly, the investigation of nonlinear ocean surface waves requires high

power computing. Global propagation and real time wave field prediction is still a

computationally formidable task, since it requires correlating a vast amount of in situ

experimental data with proposed models and the resolution of large scale interactions

(Osborne 2010). One of the questions addressed in this research is, do these extreme

waves occur more frequently than random superposition of different waves would

predict? Though questionable, a common assumption in modeling is that the sea state

is a stationary random process. This tends to give a false impression on the frequency

of the occurrence of these extremely large waves (Waseda – private communications).

Another hydrodynamic difficulty is an accurate computation of the highly nonlinear

time-dependent, three-dimensional surface wave fields in various ocean environments.

From the physical point of view, there have been several plausible explanations

for the generation of rogue waves, some of which include:

• focusing due to modulational instability (Benjamin-Feir instability)
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• wave-current interaction

• geometric (spatial) focusing

• dispersive focusing (spatio-temporal focusing)

• soliton collisions.

Waves with hight exceeding 30 meters are being reported more frequently these

days. This certainly has to do with an increasing number of freight vessels in the

sea, as well as the ever increasing growth of technology and communication. Freak

waves in shallow and deep water have been observed all around the world, along the

South African coast, East China Sea, in the Gulf of Mexico, or in the North Sea. In

regards to possible mechanism of rogue wave generation in linear theory, one can cite

Lavrenov (1998) (amplification due to opposing current), White and Fornberg (1998)

(wave focusing due in a random current) and Kharif et al. (2000) (wave focusing

in arbitrary depth). On the other hand, for the nonlinear theory, one can mention

the work of Dysthe and Trulsen (1999) with the Modified Nonlinear Schrödinger

Equations, or Onorato et al. (2002) via the Zakharov equation.

The following are accounts of crew members and witnesses of recent ship acci-

dents attributed to rogue waves.

• Cruise Liner Queen Elizabeth II

Reported by E.S.A. (European Space Agency)

The Cruiser Liner Queen Elizabeth II was struck by a 30-meter high rogue wave

during a hurricane in the North Atlantic during the month of February in 1995.

Ronald Warwick, the captain of the vessel, described the incident as “a great

wall of water... it looked as if we were going into the White Cliffs of Dover.”

• The Bremen and the Caledonian Star

Reported by E.S.A. (European Space Agency)
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In March of 2001 two tourist cruisers,The Bremen and the Caledonian Star, had

their bridge and windows smashed by 30-meter waves, as they were cruising in

the South Atlantic. As a result of this impact, the Bremen was left drifting

without navigation or propulsion for about two hours. A senior scientist of the

Bremen (Wolfgang Rosenthal) accounts: “All the electronics were switched off

on the Bremen as they drifted parallel to the waves, and until they were turned

on again the crew were thinking it could have been their last day alive. The

same phenomenon could have sunk many less lucky vessels: two large ships sink

every week on average, but the cause is never studied to the same detail as an

air crash. It simply gets put down to bad weather.”

• Statoil Oil Platform

The Draupner oil rig owned by Statoil in the North Sea had registered on

January 1, 1995, a nearly 26 meter wave (see Figure 1.4). In addition, the

same year in the North Sea, Statoil floating rig Veslefrikk-B becomes severely

damaged by a rogue wave. Though rogue waves are usually short lived, one

of the crew members of the floating rig described the wave as a“wall of water”

visible for several minutes before it struck.
5 1 Introduction

Figure 3: a) Surface elevation at one point of the ocean. Here it’s the so-called "New

Year wave" which hit the Draupner offshore platform the 1st of January 1995. b) Sea

surface from a satellite - SAR image.

you look at one particular point of the ocean (see Figure 3a). Looking at a larger piece

of the ocean from a satellite, one can see the influence of the wind and the pattern of

the waves looks more regular due to the filtering that a finite resolution produces even

though the randomness is still there. (see Figure 3b).

However, the ocean can be simulated as the sum of simple sinusoidal waves with

different lengths, heights and directions. We start explaining this construction of the

ocean with two simple waves. We make the assumption that the two waves have the

same height but differ slightly in wavelength. Adding these two waves, we get a wave

with non uniform waveheigths and distances between the wave crests. Figure 4 shows

the construction of such a wave. In our example, we choose the sine wave (Fig 4a)

and a slightly modified sine wave, sin(1.1x) (Fig 4b). On Fig 4c they are plotted

together. Comparing the resulting wave (Fig 4d) with Fig 4c shows that the resulting

wave has a local maximum when the two sinusoidal waves are in phase while it’s a

minimum when they are out of phase. It’s interesting to notice that in adding two

simple sinusoidal waves, we already get a more complicated wave.

Keeping the same idea, we can superpose a large number of simple sinusoidal

waves to build the sea surface. Figure 4 shows the case of two 1D waves added to-

gether. Therefore it should not surprise us anymore than adding 2D waves with differ-

ent heights, wavelengths and directions will result in an ocean where no general laws

Figure 1.4 New Year wave which hit the Draupner offshore drilling platform on
January 1, 1995.
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• Oil tankers damaged by giant waves off the south-east coast of South

Africa

Smith (1976) had collected information on several ship accidents due to freak

waves: “During the closure of the Suez Canal a number of ships, particularly oil

tankers, have reported extensive damage caused by giant waves off the south-

east coast of South Africa (Mallory 1974; Sturm 1974; Sanderson 1974). Two

particularly unfortunate vessels are the World Glory, which broke in two and

sank in June 1968, and the Neptune Sapphire, which lost 60 m of its bow section

in August 1973. We can only speculate that giant waves may account for many

of the ships which have been lost without trace off this coast.”

• Oil Tanker Esso Languedoc

Lawton (2001) reported the accounts of Philippe Lijour, who was a first mate on

the oil tanker Esso Languedoc and was describing the huge wave that slammed

into the ship off the east coast of South Africa in 1980: “We were in a storm

and the tanker was running before the sea. This amazing wave came from the

aft and broke over the deck. I did not see it until it was alongside the vessel

but it was special, much bigger than the others. It took us by surprise. I

never saw one again.” Lijour and his shipmates are very fortunate to be alive.

They were struck by a rogue wave – a monstrous wall of water, that rose out

of nowhere and slammed onto the deck. Ships often do not survive an event of

this magnitude. In fact, many vessels sink before anyone on board realizes what

has hit them. Lijour had another stroke of luck that day. As the wave crashed

into the ship, he managed to get a hold of his camera. The photograph he took,

is one of the few images we have of a rogue wave (see Figure 1.5). It shows a

large wall of water, much bigger that anything else in the surrounding sea at

the time, smashing into the bow. Lijour estimated that the wave was around

20 meters high. In reality, it was most likely much bigger sine rogue waves are



16

Figure 1.5 Picture of a Rogue wave taken by Philippe Lijour on board of the oil
tanker Esso Languedoc in 1980.

often preceded by a deep trough, thus when viewed from the sea surface shortly

before it struck, the wave could have been as large as 30 meters or more.

• SS Spray

Captain G. Anderson Chase was on board the SS Spray in February of 1986,

in the Gulf Stream, off Charleston when the picture (see Figure 1.6) was taken.

He wrote: “A substantial gale was moving across Long Island, sending a very

long swell down our way, meeting the Gulf Stream. We saw several rogue waves

during the late morning on the horizon, but thought they were whales jumping.

It was actually a nice day with light breezes and no significant sea. Only the

very long swell, of about 15 feet high and probably 600 to 1000 feet long. This

one hit us at the change of the watch at about noon. The photographer was

an engineer (name forgotten), and this was the last photo on his roll of film.

We were on the wing of the bridge, with a height of eye of 56 feet, and this
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wave broke over our heads. This shot was taken as we were diving down off

the face of the second of a set of three waves, so the ship just kept falling into

the trough, which just kept opening up under us. It bent the foremast (shown)

back about 20 degrees, tore the foreword firefighting station (also shown) off

the deck (rails, monitor, platform and all) and threw it against the face of the

house. It also bent all the catwalks back severely. Later that night, about 7:30

pm, another wave hit the after house, hitting the stack and sending solid water

down into the engine room through the forced draft blower intakes.”

Figure 1.6 Picture of a big wave taken on board of the SS Spray in 1986.

1.4 Mathematical Formulation – Ideal Fluid with a Free-Surface

In a wide variety of gravity wave problems, the variation of water density is insignif-

icant over the temporal and spatial scales of interest. The fundamental conservation
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laws (mass & momentum) are adequately described by the Navier-Stokes equations:

Conservation of Mass : ∇ · u = 0,

Conservation of Momentum :
(
∂
∂t

+ u · ∇
)

u = −∇
(
p
ρ

+ gz
)

+ ν∇2u,
(1.3)

where u(x, y, z, t) is the velocity vector, p(x, y, z, t) is the pressure, ρ is the density, g

is the acceleration due to gravity, and ν is the kinematic viscosity. The illustration of

problem geometry is provided in Figure 1.7. In water, where the kinematic viscosity

(ν) is small (≈ 10−2cm2/s), the last term in the momentum balance equation of (1.3)

is negligible except in the regions of large velocity gradients and strong vorticity.

Furthermore, for an inviscid irrotational flow, the velocity (u) can be expressed as

the gradient of a scalar potential (φ)

u = ∇φ

and ultimately the following physical setup is employed, (where x ≡ (x, y)):

• Ideal Fluid (Inviscid, Incompressible, Irrotational)

• No variable bottom topography (flat bottom)

• No imposed currents or atmospheric pressure fluctuations (waves are fully de-

veloped).

Here, ∇ is defined as the horizontal gradient: ∇ ≡
(
∂
∂x
, ∂
∂y

)
, while the free-surface

elevation as z = ζ(x, t) and so the governing equation for the velocity potential is the

three-dimensional Laplace equation

∇2φ+
∂2φ

∂z2
= 0 − h ≤ z ≤ ζ(x, t). (1.4)

For variable bottom topography, h would in turn be a function of space h = h(x),

assuming, of course, no temporal variations. The boundary condition at the bottom
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Figure 1.7 Physical three-dimensional setup of the ocean surface wave field. No
variable topography or actions of current and atmospheric stresses are imposed, hence
waves are fully developed.

is the standard kinematic boundary condition D
Dt

(z − h(x)) = 0, where D
Dt

is the

material derivative, but since a flat bottom is employed, it reduces to simply implying

no vertical fluid velocity at the bottom

∂φ

∂z
= 0 at z = −h. (1.5)

The above problem is elliptic, hence in order to have any wave-like motion one needs to

impose additional boundary conditions on the free-surface. Therefore, the free-surface

boundary conditions are the kinematic (1.6) and dynamic (1.7) boundary conditions

∂ζ

∂t
+∇φ · ∇ζ =

∂φ

∂z
at z = ζ(x, t), (1.6)

∂φ

∂t
+

1

2
|∇φ|2 +

1

2

(
∂φ

∂z

)2

+ gζ = 0 at z = ζ(x, t). (1.7)

The kinematic boundary condition is a simple consequence of having particles of

the free-surface remaining on the free-surface itself. Also, note that since the fluid is

effectively inviscid, only the normal stress balance is considered with zero-atmospheric

pressure above the free-surface and thus obtaining the dynamic boundary condition

(1.7) directly from Bernoulli’s equation, where g is the acceleration due to gravity.
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It should also be noted that, since the the gravity waves will be of sole interest

to us at the moment, the effects of surface tension are neglected, whose significance

would be substantiated if the wavelengths were O(1 cm). That same point can be

readily derived by making the linearized dynamic boundary condition (1.7) equal to

the surface tension (since now the atmospheric pressure would be balanced by the

effects of surface tension rather than simply being equal to zero). Subsequently, by

assuming a wave-like form for the surface elevation ζ = A cos(kx−ωt), writing down

a dispersion relation (ω = ω(k)) and balancing the effects of gravity and surface

tension, one can ultimately show that the importance of surface tension in relation

to gravity is measured by

P =
αk2

ρg

being close to the value of one. Here, α is the surface tension constant of water,

g is the usual gravitational acceleration and ρ is the density of water. Hence, for

water surface waves P = 1 when the wavelength is about 1.7 cm. Therefore, if the

wavelengths are much larger than this, as is the case for gravity waves, the effects of

surface tension are essentially negligible.



CHAPTER 2

SMALL WAVE STEEPNESS ASYMPTOTICS

2.1 Fully 2-Dimensional (Fully 2D) Model

This section concerns the derivation of what we call a Fully 2D model. It is based

on a sole assumption of a small wave steepness (ε) and can be viewed (in a broad

terms) as sort of boundary integral method. In other words, the field equations that

govern the evolution of the surface elevation (ζ) and the velocity potential (φ) will

be transformed into new canonical variables – the surface elevation ζ(x, y, t) and the

velocity potential defined at the free surface Φ ≡ φ(x, y, z = ζ, t). That, in turn,

will eliminate the need to solve Laplace equation for the velocity potential at every

time step. Moreover, with this transformation we can utilize the two-dimensional

(2D) FFT (Fast Fourier Transform) in our Fourier pseudo-spectral numerical method

(discussed in the next chapter). The derivation of the Fully 2D model is based on the

work of West et al. (1987) and Choi (1995).

At first, we will recast our free-surface boundary conditions into a different

form - those having our velocity potential φ and the vertical velocity ∂φ
∂z

defined at

the free-surface z = ζ, mainly


Φ(x, t) ≡ φ(x, z = ζ, t)

W ≡ ∂φ
∂z

(x, z = ζ, t),

(2.1)

and through a simple application of the chain rule we obtain


∂φ
∂t
|z=ζ = ∂Φ

∂t
−W ∂ζ

∂t

∇φ|z=ζ = ∇Φ−W∇ζ.
(2.2)

21
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Then, we substitute (2.2) into the free-surface boundary conditions (1.6) and

(1.7) and we obtain a system of two equation for kinematic and dynamic boundary

condition in the following form (Zakharov, 1968)

∂ζ

∂t
+∇Φ · ∇ζ =

(
1 + |∇ζ|2

)
W, (2.3)

∂Φ

∂t
+

1

2
|∇Φ|2 + gζ =

1

2

(
1 + |∇ζ|2

)
W 2. (2.4)

Equations (2.3) and (2.4) give a system of two equations with three unknowns. Hence,

in order to close the system we need a constituent relation between Φ and W , i.e. we

seek a way of representing W in terms of Φ and ζ.

For that, we start-off by expanding both Φ and W about the mean surface

z = 0.
Φ(x, t) = φ(x, z = 0, t) + ζφz(x, z = 0, t) + ζ2

2
φzz(x, z = 0, t) + ...

W ≡ φz(x, z = ζ, t) = φz(x, z = 0, t) + ζφzz(x, z = 0, t) + ζ2

2
φzzz(x, z = 0, t) + ... .

(2.5)

Then, we define the velocity potential and the vertical velocity at the mean surface

(z = 0) to be φo ≡ φ(x, 0, t) and Wo = ∂φ
∂z

(x, 0, t), and with the help of our three-

dimensional Laplace’s equation can rewrite (2.5) as
Φ(x, t) = φo + ζWo − ζ2

2
∇2φo + ...

W = Wo − ζ∇2φo − ζ2

2
∇2Wo + ... ,

(2.6)

where every instance of a second derivative of φ with respect to z was replaced by

the negative horizontal laplacian.

Now, for our constituent relation betweenW and Φ (or ratherWo and φo) we will

solve Laplace equation in the 3D rectangular region −h ≤ z ≤ 0 and −∞ ≤ x ≤ ∞

via 2D Fourier transform. Our Fourier transform pair is
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φ̂(kx, ky, z, t) =

∫∫
R2

(
φ(x, y, z, t)e−ikxxdx

)
e−ikyydy

φ(x, y, z, t) = 1
4π2

∫∫
R2

(
φ̂(kx, ky, z, t)e

ikxxdkx

)
eikyydky.

(2.7)

Hence, in Fourier space the Laplace equation becomes

φ̂zz −
(
k2
x + k2

y

)
φ̂ = 0 ⇒ φ̂ = A cosh(κ(z + h)) +B sinh(κ(z + h)) ,

where κ ≡
√
k2
x + k2

y and after imposing the boundary condition at the bottom

(z = −h), as well as the fact that φ = φo at z = 0 we obtain

Ŵo = φ̂oκ tanh(κh) =
∂φ̂

∂z

∣∣∣∣
z=0

. (2.8)

Consequently, inverting the Fourier transform yields our constituent relation

(convolution)

Wo =

∫∫
R2

φo(ξ, η, t)K(ξ − x, η − y) dξ dη , (2.9)

where K is the kernel defined by

K(ξ − x, η − y) ≡ 1

4π2

∫∫
R2

√
k2
x + k2

y tanh
(√

k2
x + k2

y h
)

eikx(ξ−x)eiky(η−y)dkx dky .

Hereafter, the linear integral (convolution) operator (2.9) will be defined as

Wo ≡ −L[φo], (2.10)

where the minus sign is added purely for convenience. It should perhaps be pointed

out that our constituent relation (2.10) serves as a Dirichlet-to-Neumann operator.

Craig and Sulem (1993) have also derived their version of a Dirichlet-to-Neumann

operator for the unidirectional waves, while Bateman et al. (2001) proposed an

extension of it to account for directionality.
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Returning to our expansions of Φ and W (2.6) about the mean surface and

substituting (2.10) yields
Φ = φo − ζL[φo]− ζ2

2
∇2φo + ...

W = −L[φo]− ζ∇2φo + ζ2

2
∇2(L[φo]) + . . . ,

(2.11)

which effectively closes the system. Note that the first equation in (2.11) can be

formally inverted by writing

φo = Φ + ζL
[
Φ + ζL[Φ + ...] +

ζ2

2
∇2(Φ + ...) + ...

]
+
ζ2

2
∇2

(
Φ + ζL[Φ + ...] +

ζ2

2
∇2(Φ + ...) + ...

)
+ . . . ,

which helps us write W solely in terms of Φ and ζ.

Finally, what we are left with is a straightforward substitution of (2.11) into

(2.3) and (2.4). Then, we can effectively truncate our system at successive orders of

wave steepness and our fully two-dimensional model (Fully 2D) accurate to the third

order in wave steepness (ε) has the following dimensional form

∂ζ

∂t
= −L[Φ]−∇(ζ∇Φ)−L[ζL[Φ]]−∇2

(
ζ2

2
L[Φ]

)
−L

[
ζ2

2
∇2Φ + ζL[ζL[Φ]]

]
+O(ε4),

(2.12)

∂Φ

∂t
= −gζ − 1

2
|∇Φ|2 +

1

2
(L[Φ])2 + L[Φ]

(
ζ∇2Φ + L[ζL[Φ]]

)
+O(ε4). (2.13)

In fact, one can write down a recursive formula which would yield the above mentioned

(Fully 2D) system accurate to any order, see Choi and Lyzenga (2006).

2.2 Weak Transverse Dependence (Weakly 2-Dimensional Model)

Since the waves in the ocean tend to primarily travel in one direction, our weakly two-

dimensional model (Weakly 2D) is based on additional assumption of weak transverse

dependence. Recall the relations (2.8) and (2.10), where our operator L took the
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following form in Fourier (F) space

F [L[Φ] ] = −κ tanh(κh)Φ̂, where κ =
√
k2
x + k2

y and Φ̂ = F [Φ],

with h being the undisturbed water depth. In that respect, the weak transverse

assumption is realized through the ratio ky/kx being small. How small it is, is a

matter of predefined initial velocity wave field and since our original small parameter

ε was defined to be a product of characteristic wave amplitude and peak wave number

(ε = ā kp), we will set the ratio ky/kx to be O(ε). Also, our primary concern is the

case of arbitrary water depth 0 < h <∞, but the other two extremes, infinitely deep

and shallow water, are also presented. The modeled equations, correct to the third

order in wave steepness (ε), in their symbolic Fourier form are given by

ζt + |kx|
(

1 + 1
2

(
ky

kx

)2
)

tanh(|kx|h)Φ + |kx|
(
|kx|h

2

(
ky

kx

)2

sech2(|kx|h)

)
Φ

+ (ikxζ ikxΦ− ζk2
xΦ) + |kx| tanh(|kx|h) (ζ|kx| tanh(|kx|h)Φ)

−k2
x

(
ζ2

2
|kx| tanh(|kx|h)Φ

)
+|kx| tanh(|kx|h)

(
− ζ2

2
k2
xΦ + ζ|kx| tanh(|kx|h)(ζ|kx| tanh(|kx|h)Φ

)
+O(ε4) = 0,

(2.14)

Φt + gζ + 1
2
(ikxΦ)2 − 1

2
(|kx| tanh(|kx|h)Φ)2

−|kx| tanh(|kx|h)Φ (−ζk2
xΦ + |kx| tanh(|kx|h) [ζ|kx| tanh(|kx|h)Φ)]) +O(ε4) = 0.

(2.15)

For clarity, the above mentioned symbolic Fourier form can be viewed as, for example:

k2
x

(
ζ2

2
|kx| tanh(|kx|h)Φ

)
≡ F−1

[
k2
xF

[
ζ2

2
F−1{|kx| tanh(|kx|h)F [Φ]}

]]
,

where F and F−1 are the forward and backward Fourier transforms, respectively.

What should also be immediately apparent is that in equations (2.14) and (2.15)

we have only two terms with transverse dependence (ky). That very same point has

great advantages for numerical computation and is discussed further in the subsequent

sections.
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In addition, when we consider an infinite water depth limit (h→∞) we recover

the following system

ζt + |kx|
(

1 + 1
2

(
ky

kx

)2
)

Φ + (ikxζ ikxΦ− ζk2
xΦ) + |kx| (ζ|kx|Φ)− k2

x

(
ζ2

2
|kx|Φ

)
+|kx|

(
− ζ2

2
k2
xΦ
)

+ |kx| (ζ|kx|(ζ|kx|Φ)) +O(ε4) = 0,

(2.16)

Φt + gζ + 1
2
(ikxΦ)2 − 1

2
(|kx|Φ)2 − |kx|Φ (−ζk2

xΦ + |kx|(ζ|kx|Φ)) +O(ε4) = 0,

(2.17)

where in this case, we retain only one term that depends on transverse variable (ky).

Furthermore, for the other end of the spectrum – the shallow water limit (h→

0), upon taking the balance of kxh = O(ε1/3) the system (2.14)-(2.15) reduces to

ζt + k2
xhΦ +

(
ikxζ ikxΦ− ζkx +2 Φ

)
+ k2

xh
(
ζk2

xhΦ
)

+O(ε
10
3 ) = 0, (2.18)

Φt + gζ +
1

2
(ikxΦ)2 − 1

2
(k2
xhΦ)2 +O(ε

10
3 ) = 0, (2.19)

where the terms with transverse dependence occur at the next order, hence making

the above two systems (h → ∞ and h → 0) especially attractive for our numerical

simulations. In contrast to shallow water equations, such as for example the KP

equation (Kadomtsev & Petviashvili 1970), the ratio ky/kx in the KP equation is

O(ε1/3).

2.3 Modified Nonlinear Schrödinger Equation (MNLS)

The Modified Nonlinear Schrödinger equation (MNLS) governs the evolution of the

so-called envelope (A) of the ocean surface waves, accurate to third-order in wave

steepness (ε), see Figure 2.1 for the schematic. The subsequent derivation is directly

based on the work of Trulsen and Dysthe (1996), hence most of the details will be

omitted here. We begin with the field equations (1.4), (1.5), (1.6), and (1.7). The

equations are then scaled by characteristic amplitude ā, peak wavenumber kp, and
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Envelope
(MNLS)

Figure 2.1 Sketch of an envelope of a periodic wave train, corresponding to the
evolution of the first harmonic (A) in the Modified Nonlinear Schrödinger equation
(MNLS).

peak frequency ωp to give the following dimensionless quantities

ζ ′ = kpζ, φ′ =
kp
ωpā

φ, (x′, y′, z′) = kp(x, y, z), t′ = ωpt, d = kph.

Which, in turn, (after dropping primes for convenience) yield the following system

∇2φ+ ∂2φ
∂z2

= 0 − d ≤ z ≤ ε ζ(x̄, t),

∂φ
∂z

= 0 at z = −d,

∂ζ
∂t

+ ε∇φ · ∇ζ = ∂φ
∂z

at z = ε ζ(x̄, t),

∂φ
∂t

+ ε
2
|∇φ|2 + ε

2

(
∂φ
∂z

)2
+ 1

tanh(d)
ζ = 0 at z = ε ζ(x̄, t),

where once again the wave steepness is ε = kpā and the last coefficient 1/ tanh(d)

comes from the linearized dispersion relation ω2 = gkp tanh(kph).

Furthermore, the wave field is assumed to have a narrow spectral bandwidth.

By narrow, we imply that the bandwidth, defined by

∆k

k
, (2.20)
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is on order of the wave steepness (ε). Subsequently, one can conveniently express the

surface elevation (ζ) as superposition of harmonic modes about the peak frequency

as

ζ(x, y, t) = ζ̄(εx, εy, εt) + 1
2
(A(εx, εy, εt)eiθ + A2(εx, εy, εt)e2iθ

+ A3(εx, εy, εt)e3iθ + ...+ c.c.),
(2.21)

where c.c stands for the complex conjugate and θ = kxx−ωt. The coefficients A, A2,

and A3 are functions of slow modulation variables in both space and time and are of

first, second, and third order in wave steepness (ε), respectively. Moreover, ζ̄ is also

a slowly varying variable in space and time, representing the mean surface elevation.

In most of our subsequent numerical simulations, ζ̄ will be on the order of machine

precision – hence for all practical purposes, zero.

The substitution of equation (2.21) into the rescaled field equations above is

certainly a laborious procedure, but carrying it out to the third order in wave steepness

ultimately yields the following system for the evolution of an envelope of a slowly

varying wave field (wave train):

∂A
∂t

+ 1
2
∂A
∂x

+ i
8
∂2A
∂x2 − i

2
∂2A
∂y2

+ i
2
|A|2A

− 1
16
∂3A
∂x3 + 3

8
∂3A
∂x∂y2

+ 5
4
|A|2 ∂A

∂x
+ 1

4
A∂|A|2

∂x
+ iA∂φ̄

∂x
= 0 at z = 0,

(2.22)

∂φ̄

∂z
=

1

2

∂|A|2

∂x
at z = 0, (2.23)

∇2φ̄+
∂2φ̄

∂z2
= 0 − h ≤ z ≤ 0, (2.24)

∂φ̄

∂z
= 0 at z = −h. (2.25)
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The reconstruction formulas are given by

ζ̄ = 1
2
∂φ̄
∂x
,

A2 = 1
2
A2 − i

2
A∂A
∂x
,

A3 = 3
8
A3.

(2.26)

Note that a similar system of evolution equations, along with reconstruction formulas

for second and third order terms, can be obtained for the following expansion of the

velocity potential (φ):

φ(x, y, z, t) = φ̄+
1

2

(
Beıθ + B2e2ıθ + B3e3ıθ + ...+ c.c.

)
, (2.27)

where φ̄ is the induced current.

It should also be noted that the MNLS equation was derived under the as-

sumption of infinitely deep water, hence the dispersion relation was in the form of

ω2 = gk. When we compare the numerical results on the MNLS with Fully 2D

model in the subsequent sections, we take the depth (h) to be 20 meters, hence

ω2 = gk tanh(kh) ∼ gk. However, when the depth is finite (h ≈ 1), all of the coef-

ficients of the MNLS equation become function of tanh(kh) and several new terms

enter the equation to account for free long waves. Brinch-Nielsen and Jonsson (1986)

derived equations for the temporal evolution of the velocity potential (B), while

Sedletsky (2003) derived fourth-harmonic contribution for the temporal evolution of

the velocity potential (B4). The following two reconstruction formulas can be ex-

tracted from Brinch-Nielsen and Jonsson (1986) for the second and third harmonic

of the surface elevation

A2 =
3− tanh(kh)2

4 tanh(kh)3
A2 + ...

A3 =
3(3− tanh(kh)2)(3 + tanh(kh)4)

64 tanh(kh)6
A3 + ... ,
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and in the limit (h → ∞) the above two coefficients become 1/2 and 3/8, respec-

tively. Therefore, it should be rather obvious that nonlinear contributions to the

reconstruction of the surface elevation become more significant at smaller depths.



CHAPTER 3

NUMERICAL SIMULATIONS

3.1 Statistical Description of Realistic Ocean Surface Wave Fields

In reality, water waves obey certain physical laws and may be taken into account

in a deterministic setting/model. In practice, however, this approach fails due to

inadequate information about the sea state and its fluctuations in time. Generally

speaking, a system of equations that one chooses to work with often suffers from

sensitive dependence on initial data/conditions. From our daily experiences we know

that the ocean waves behave irregularly and somewhat unpredictably on various time

scales, nevertheless they can exhibit periodic behavior. Therefore, the dynamics

of ocean waves often manifest a random (stochastic) nature. In that respect, the

sea surface at a given place and time is represented by a random indexed function

ζj(x, y, t) with some statistical properties. In turn, this approach is referred to as

stochastic and aims at a statistical description of the sea surface. The goal is to

describe and predict the dynamics of certain realizations on the basis of ensemble

averages. This approach, in fact, is widely used in ocean engineering and atmospheric

research.

Furthermore, in order to obtain time dependent statistical properties, we can

elect to perform stochastic simulations – that is, we can use our deterministic models

to compute a sufficient number of randomly chosen realizations of the sea state, i.e.,

Monte-Carlo simulations. The premise behind it is that, if we take a sufficiently large

number of random representations of the sea surface, then the ensemble average of

this large (but finite) number of simulations would adequately represent the evolution

of the whole ensemble (in statistical sense). If we consider the surface elevation to

be a function of both space and time ζ(x, y, t), then its autocorrelation function is

31
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defined as

R(x, y, t; x̄, ȳ, τ) ≡ E [ζ(x, y, t) · ζ(x+ x̄, y + ȳ, t+ τ)] , (3.1)

where E[·] denotes statistical averaging over the ensemble of realizations ζj(x, y, t)

and has the following form

E [ζ(x, y, t) · ζ(x+ x̄, y + ȳ, t+ τ)] = lim
N→∞

1

N

N∑
j=1

ζj(x, y, t) · ζj(x+ x̄, y + ȳ, t+ τ).

(3.2)

Although in practice N is finite, it should be sufficiently large to provide a good esti-

mate of the above limit. This approach requires the random process to be stationary

(statistical properties do not depend on time). If we have stationarity and spatial

homogeneity, then the autocorrelation function (3.1) does not depend on space and

time. In turn, the equation (3.2) represents the mean energy density and via Parseval’s

formula for a finite Fourier series we can write

E ∼
N1∑
l=1

N2∑
m=1

|alm|2 =
1

N1N2

N1∑
l=1

N2∑
m=1

|ζlm|2, (3.3)

where alm are the Fourier coefficients. Therefore, the Fourier transform of the auto-

correlation function (3.1) gives the wave spectrum F (kx, ky). Moreover, the integral

of the spectrum gives the mean energy density in the physical domain [Lx × Ly]

E =

∫ kxmax

−kxmax

∫ kymax

−kymax

F (kx, ky)dkxdky, (3.4)

where kxmax and kymax are given by

kxmax = (Nx/2)∆kx and kymax = (Ny/2)∆ky with ∆kx,y = 2π/Lx,y.

It is also well known that the total energy of a linear progressive plane wave

ζ(x, y, t) =
A0

2
ei(kxx+kyy−ωt+θ) + c.c = A0 cos(kxx+ kyy − ωt+ θ)
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is defined as

ETotal = ρg

∫ ∞
−∞

∫ ∞
−∞

F (kx, ky)dkxdky = ρg
A2

0

2
. (3.5)

The relation (3.5), in turn, allows us to define the spectrum as the squared absolute

value of the Fourier transform of the process.

In order to describe a relatively realistic ocean wave field, we designate the

Fourier transform of the autocorrelation function F (k) of surface elevations as our

initial spectrum in the following form

F (k) = F (k, θ) = S(k)D(θ), (3.6)

where k and θ are the polar coordinates of (kx, ky). For S(k) we utilize the JONSWAP

spectrum from the Joint North Sea Wave Atmosphere Project

S(k) =
α k2

pH
2
s

2 k4
exp

(
−5

4

(
kp
k

)2
)
γ

exp
“
−(
√
k/kp−1)2/(2σ2

A)
”
. (3.7)

Once again, kp is the peak wavenumber obtained through linear dispersion relation

ω2
p = gkp tanh(kph), the coefficient γ is known as the peak enhancement, while the

parameter σA has the values
σA = 0.07 if k < kp

σA = 0.09 if k > kp.

Note that from S(ω)dω dθ = S(k)k dk dθ and the linearized dispersion relation one

can transform the wavenumber spectrum (3.7) into a frequency spectrum via

S(k) ≡ S (ω(k))

k

dω

dk
.

In addition, the dimensional parameter α, known as the Phillips parameter, was taken

to be 5/16. Similarly, based on the relatively narrow spectral bandwidth (Ochi 2005),
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we can define the wave steepness as the product of twice the standard deviation and

the peak wavenumber (ε = 2kpσ), where

σ =

(∫∫
k F (k, θ) dk dθ

) 1
2

(3.8)

is the standard deviation. Note, however, that the above definition of the wave

steepness is
√

2 larger than that of Socquet-Juglard et al. (2005). For the directional

distribution function D(θ) the following form was used (see Figure 3.3)

D(θ) =


1
β

cos2
(
πθ
2β

)
if |θ| ≤ β

0 if |θ| > β.

(3.9)

For the purpose of illustration, Figure 3.1 shows few realizations of the JONSWAP

spectra S(k), for an array of different initial parameters, corresponding the four dif-

ferent cases in Table 3.1.
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Figure 3.1 Plots of four different initial JONSWAP spectra S(k) for varying param-
eters: γ = (3.3, 5.0), ε = (0.03, 0.05, 0.08, 0.13), corresponding to initial data given in
Table 3.1 and scaled by the maximum value.



35

3.2 Numerical Method

For the numerical method of our Fully and Weakly 2D models we wrote a Fourier

pseudo-spectral method, where the surface elevation (ζ) and the velocity potential

(Φ) are given by

ζ(x, y, t) =

Nx
2∑

m=−Nx
2

Ny
2∑

n=−Ny
2

amn(t) ei(m∆kx x+n∆ky y), (3.10)

Φ(x, y, z = ζ, t) =

Nx
2∑

m=−Nx
2

Ny
2∑

n=−Ny
2

bmn(t) ei(m∆kx x+n∆ky y), (3.11)

similar to the one used by Lo and Mei (1987).

Spectral methods are one of the major three numerical techniques for solv-

ing partial differential equations (PDEs), alongside the finite difference and finite

element methods. In the 1970s, the transformation of the field was brought about

Orszag and others with their work on fluid dynamics and meteorology and spectral

methods became rather famous. Historically, the major precursor to this surge of

interest in the spectral methods in the 1970s, was the re-introduction and numerical

implementation of the Fast Fourier Transform (FFT) in 1965 by J. W. Cooley and

J. W. Tukey. The algorithm and its recursive nature was actually invented by Carl

Friedrich Gauss around 1805, who applied it to interpolation of asteroid trajectories.

The main achievement of the FFT was the fact that it takes O(N logN), rather than

O(N2) number of floating point operations to carry out a matrix multiplication in

the standard discrete Fourier transform (DFT). Furthermore, if a solution of PDE is

needed to a high level of accuracy and if the data defining the problem are smooth,

then spectral methods are usually ideal. The reason behind this application is that

smooth functions change slowly and since high wavenumbers correspond to short
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waves and rapid oscillations, such functions therefore contain little energy in their

spectral tail (at the high wavenumbers).

Moreover, if the Fourier transform of a function decays rapidly, then the errors

introduced by numerical discretization will in turn be small. This is primarily because

these errors are caused by this so-called aliasing of the high wavenumbers to low

wavenumbers. This aliasing is a simple consequence of finite discretization of the

domain and the periodic nature of the basis functions. In other words, functions

on a discrete domain x ∈ [x1, x2, ..., xn], like for example sin(2πkxj) or exp[iπkxj],

will have an infinite family of “aliases” that are equal to them and are separated by

integer values.

In contrast to finite difference or finite element methods, the spectral methods

often gain several orders of accuracy within a similar time frame and dedicated com-

putational resources. The Fourier pseudo-spectral method applied in our simulations

requires periodic boundary conditions in both horizontal directions. If one desires

different boundary conditions for their numerical simulations, such as Dirichlet or

Neumann, then different basis functions (such as Chebyshev) have to be employed.

Nevertheless, the FFT can still be used to accommodate the Fourier transform with

Chebyshev basis.

As noted earlier, the value of the standard deviation σ in (3.8) is appropriately

chosen through the input parameters so the wave steepness (ε) has a desired value and

in the case of numerical simulation discussed next, its values are ε = 0.03, 0.05, 0.08,

and 0.13 (see Table 3.1). In addition, Table 3.1 contains another parameter called

the Benjamin-Feir Index (BFI), which is defined as the ration of the wave steepness

(ε) to the relative spectral bandwidth ∆ω/ωp ∼ ∆k/2kp. Where ∆ω and ∆k are the

measures of the width of frequency and wavenumber spectrum, respectively. These

widths were measured at the point where the one-half of the maximum/peak of the

spectrum occurred. It should be pointed out that BFI is treated as an indicator for
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Figure 2. Scatter diagram for Hs and Tp from the northern North Sea. Pooled data 1973–2001,
from the platforms Brent, Statfjord, Gullfax and Troll. Curves of constant steepness s are also
shown. The figure was prepared by K. Johannessen Statoil.

theoretical results due to Tayfun (1980). These results are based on the assumption
that the first harmonic in the narrow band development (equation (1)) is Gaussian.
This is found to be in very good agreement with the simulations up to 4 standard
deviations (4σ ) for case A and 3σ for the cases B and C. Virtually no time variation
is detected in these ranges of the distributions. In figure 6 the Gaussian probability
distribution function (normalized by the standard deviation σ ) is compared to typical
data of the first harmonic for the cases A, B and C.

4.1. The distribution of the surface elevation

In the remainder of the paper it is convenient to scale the surface elevation by the
standard deviation σ defined in equation (3). Doing so, and noting that B2 = 1

2σB2,
we then have from equation (1) to second order that

η =
1

2
(Beiθ +

σ

2
B2e2iθ + c.c.) + o(σ 2)

= a cos(θ + ψ) +
σ

2
a2 cos(2θ + 2ψ) + o(σ 2), (6)

where the complex amplitude B of the first harmonic is written B = a exp(iψ).

Figure 3.2 Recordings of wave heights from the North Sea, taken over the span
of 28 years in the intervals of 20 minutes. Lines of constant wave steepness (ε) are
superimposed. Plot taken from Socquet-Juglard et al. (2005) – with permission from
Karsten Trulsen.
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the relative degree of nonlinearity. In other words, when BFI> 1, this indicates that

the wave field is highly nonlinear, while BFI< 1 describes a weakly nonlinear wave

field. Also, note that the case of ε = 0.1 is a rather extreme end of the spectrum,

as it is illustrated in Figure 3.2 (extracted from Socquet-Juglard et al. (2005) with

permission from Karsten Trulsen). It represents recordings of wave heights over the

period of 28 years taken within intervals of 20 minutes in the North Sea. The lines of

constant steepness are superimposed showing that the steepness of ε = 0.1 is indeed

an extreme end of the spectrum.

Aside of the required periodic boundary conditions and in order to minimize

the computational burden of ensemble averaged simulations, the initial spatial grid

was comprised (after padding) of

(Nx, Ny) = (512, 256)

Fourier modes, where we padded half of the modes with zero-pad-filter in order to

avoid aliasing. The choice of the zero-pad filter region is based on the order of the

nonlinearity (m) and is given by (m + 1)/2. Therefore, since we are dealing with

the cubic nonlinearities (m = 3), we needed to double the number of Fourier modes,

thus essentially we padded half of the Fourier modes with zeros. The numerical

computations for both, Fully and Weakly 2D models, were initialized in Fourier space

via the square root of the autocorrelation function of surface elevations F (k) with

random phases

F [ζ(x, y, t = 0)] = ζ̂(kx, ky, t = 0) =
√

2F (kmn) ∆kx ∆ky eıθmn , (3.12)

where F (kmn) is given by (3.6) and the random phases θmn were uniformly distributed

over a 2π domain, with the wavenumber vector being defined as

kmn = (m∆kx , n∆ky) with ∆kx = 1/512 and ∆ky = 1/256.
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Therefore, the corresponding spatial resolution/discretization in physical space is

∆x = 2π/(Nx ∆kx) and ∆y = 2π/(Ny ∆ky).

We employed about 30 characteristic wavelengths (λp = 2π/kp) in each horizontal

direction, with characteristic wave period of 1 sec. This implies that the horizontal

domain had dimensions of about Lx = Ly ∼ 46 meters. It should also be noted

that, although in realistic ocean wave fields the characteristic wave period is between

6 to 16 seconds, we can certainly (without a loss of generality) scale the system to

accommodate our characteristic wave period of 1 sec.

Finally, the numerical codes were written in FORTRAN 90 and were parallelized

with the use of the Message Passing Interface (MPI) library/paradigm, to allow for

multiprocessor and multicore computations with high performance computing (HPC)

machines, such as Hydra at NJIT (New Jersey Institute of Technology) or Dolphin

at KAIST (Korean Advanced Institute of Science and Technology). The Dolphin in

KAIST is a brand new IBM 256 core HPC cluster with Infiniband interconnects. For

our simulations we used a set time step of ∆t = 10−3 and we normally achieved the

following time results under an intermediate cluster load:

Fully 2D


32 processor cores → 4.48× 10−2 sec per time step

64 processor cores → 3.56× 10−2 sec per time step,

Weakly 2D


32 processor cores → 3.58× 10−2 sec per time step

64 processor cores → 2.71× 10−2 sec per time step.

To put this in perspective, a case of one set of parameters of the Fully 2D model

for 100 ensemble averaged simulations up to 150 peak periods (150 sec), with a fixed

time step of ∆t = 10−3 and using 32 dedicated processor cores, it took about 8 days

to complete the simulation. In contrast, for a single simulation on 32 processors cores
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up to 150 peak periods with the same time step, but with [2048×1024] Fourier modes

(after padding), it takes about 30 days to complete this one simulation.

In reality, due to the limits on the computational resources and the fact that

the HPC queue was a shared system, we were often limited to using only 16 cores for

a single job. Hence, a large number of our simulations were carried out on 16 cores

each. Nonetheless, the use of parallel computing in our case is literally indispensable.

Without these resources and tools, it would probably take another few years to com-

plete all of these simulations on a single processor machine, despite the fact that we

still kept the number of Fourier modes at fairly modest level (Nx = 512, Ny = 256).

It should be noted though, that these results were obtained without optimizing

the FFT for the Weakly 2D model. In other words, we mentioned before that because

of only two terms with transverse dependence appearing in the Weakly 2D model

(2.14)-(2.15), we can cut down the time and operation count of carrying out a single

2D FFT for all other terms (without transverse dependence – ky) by 50%. That is, we

can simply apply 1D FFT along the x-direction for every single instance of y, without

subsequently having to transpose the matrix and applying additional 1D FFT along

y-direction for every single x. Therefore, it is expected that if these optimizations

would be implemented, thus also eliminating the need of transposing the matrix to

carry out the second part of the 2D FFT, the computational times for the Weakly

2D model, given above, would reduce by at least 50%.

Nevertheless, we cannot expect to monotonically decrease the computational

time with continuous increase of the dedicated processor cores, because of the plateau

effect. In other words, since the MPI (Message Passing Interface) library and the FFT

requires a hefty amount of communication between various nodes/cores at every time

step, we would expect that the communication overhead would eventually take longer

than a single computation per time step. The exact place of the plateau is of course

dictated by the HPC architecture and is also code dependent. In fact, in some of
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our early simulations we observed very little gain in computational speed when we

increased from 64 to 128 dedicated processor cores. Hence, we were almost plateauing

and we can pretty much assume that once we increase to 256 processor cores, our

simulations would take longer than those for 128 cores.

Consequently, our initial surface wave fields were initialized by taking a two-

dimensional discrete fast Fourier transform (FFT) of (3.12). Upon taking a two-

dimensional FFT in space, we solve for temporal evolution via fourth order Runge-

Kutta method with, as mentioned before, a set time step of

∆t = 10−3,

which conserves all of the corresponding conserved quantities such as: mass, momen-

tum, and energy to a very high degree of accuracy. For instance, in the case of widest

initial directional distribution of β = 0.7 and wave steepness ε = 0.13, after 150

wave periods (150 sec) the energy was conserved on the order of 10−4 of a percent.

We carried out both, single deterministic and multiple Monte-Carlo simulations av-

eraged over 100 and in some cases 200 runs. Furthermore, in order to see appreciable

evolution of the spectra and to manage the computational burden in our averaged

Monte-Carlo simulations, we chose the final time to be on the order of 150Tp, where

Tp is the peak wave period - taken here to be 1 sec. Note that, based on nonlinear

four-wave interaction theory of Pushkarev et al. (2003), the time scale for the onset

of nonlinear four-wave interaction is inversely proportional to fourth power of wave

steepness (ε4). We also present few results for 100 averaged simulations carried out

for 900 peak periods (900 sec).
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ā

∆
k

B
F
I

T
im
e

(s
ec

)
#
of

R
u
n
s

0.
14

5.
0

4.
02

1.
56

1
0.

01
14

0.
03

1.
35

0.
18

15
0

10
0

0.
35

5.
0

4.
02

1.
56

1
0.

01
80

0.
05

1.
35

0.
29

15
0

20
0

0.
35

3.
3

4.
02

1.
56

1
0.

03
26

0.
08

1.
52

0.
42

15
0

10
0

0.
7

3.
3

4.
02

1.
56

1
0.

03
26

0.
08

1.
52

0.
42

15
0

20
0

0.
7

3.
3

4.
02

1.
56

1
0.

05
15

0.
13

1.
52

0.
69

15
0

&
90

0
10

0
&

10
0



43

Also, wanting to study the influence of the directional spreading of the spectrum

on the evolution of the wave field, especially in the context of extreme waves, we

chose three different cases of initial directional distribution for (3.9). Similar cases

of directional distributions were also examined by Socquet-Juglard et al. (2005).

However, their simulations were carried out exclusively for the set wave steepness of

ε = 0.1. The above mentioned three cases of directional distribution (3.9) are the

following 

Case (1) β = 0.14 γ = 5.0

Case (2) β = 0.35 γ = 5.0

and β = 0.35 γ = 3.3

Case (3) β = 0.7 γ = 3.3.

Also, we note that the case for β = 0.7 gives a wider initial mean directional spreading198 H. Socquet-Juglard, K. Dysthe, K. Trulsen, H. E. Krogstad and J. Liu

–40 –20 0 20 40
0

1

2

3

4

5

6

7

8

φ (deg.)

D(φ)

β = 0.14 

 0.35

0.70 

Figure 1. The angular distributions (equation (4)) of the initial spectra.

The simulation model uses an origin of the k-plane located at the initial spectral
peak and we write K = k − (0, 1). Moreover, the model (see Trulsen et al. 2000)
employs a cut-off for the first-harmonic amplitude at some Kc ! 1 and we have used
Kc = 1. How much of the energy in the JONSWAP spectrum that is left out depends
mainly on γ , and here it is less than 20 %.

To solve the modified NLS equation for B we use the numerical method described
by Lo & Mei (1985, 1987) with periodic boundary conditions. For all simulations
shown in this paper a uniform numerical grid in both horizontal directions with
Nx = Ny = 256 points, has been used. The discretization of the wavenumber plane
is "Kx = "Ky = 1/128 where, however, only the modes with |K | < 1 are used. The
corresponding spatial resolution is hence "x = 2π/ (Nx"Kx), and similarly for "y,
thus covering 128 characteristic wavelengths in each horizontal direction.

The computations are initiated by specifying the spatial Fourier transform of B , B̂ ,
at t = 0,

B̂(Kmn, 0) =
√

2F (Kmn)"Kx"Kye
iθmn,

where the phases θmn are taken to be uniformly distributed on [0, 2π), and Kmn =
(Kxm, Kyn) = (m"Kx, n"Ky). The relation between the physical amplitude B(xjk, t)

and B̂(Kmn, t) is obtained through the discrete Fourier transform,

B(xjk, t) =

Nx/2, Ny/2∑
m=−Nx/2,n=−Ny/2

B̂(Kmn, t)e
iKmn·xjk . (5)

In order to have a truly Gaussian initial condition, each Fourier coefficient should be
chosen as an independent complex Gaussian variable with a variance proportional
to the corresponding value of the spectrum. However, numerical experiments using

Figure 3.3 Three different cases of directional distribution function D(θ) defined
by equation (3.9).
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(defined in the next chapter), than the widest case of directional spreading (N = 24)

used by Toffoli et al. (2010). In their work, Toffoli and collaborators compared

the simulations of the higher order spectral method (HOSM) of West et al. (1987)

and the broader modified nonlinear Schrödinger (BMNLS) equation of Trulsen and

Dysthe (1996) to a series of experimental data. They have also carried out simulations

based on the JONSWAP spectrum with different initial directional distributions and

100 averaged simulation, but only up to 60 peak periods (60 sec). Most of the

correlations have been performed in the statistical setting of the third and fourth

moment (skewness and kurtosis), with the usual results of a decreasing kurtosis when

the directional distribution broadened. The skewness and kurtosis of the surface

elevations is defined as
M3(ζ) =

∑N
j=1

(ζj−ζ̄)3
N

=⇒ Skewness : m3(ζ) ≡ M3

σ3

M4(ζ) =
∑N

j=1
(ζj−ζ̄)4
N

=⇒ Kurtosis : m4(ζ) ≡ M4

σ4 ,

(3.13)

where σ is the standard deviation of the surface wave field. Also it should be noted

that Toffoli and collaborators, have performed only four (4) experiments and both

of the numerical models were being compared to them. This seeming low number of

experiments might be the reason behind their findings, that the BMNLS was behaving

the least well for the case of narrow directional distribution — where in theory it

should have behaved the best.



CHAPTER 4

RESULTS OF NUMERICAL SIMULATIONS (SINGLE AND

ENSEMBLE AVERAGES)

This chapter presents the results and analysis of the numerical simulations. The

following two sections compare the simulations between the Fully 2D and Weakly 2D

models, as well as the Fully 2D and the MNLS, respectively. Aside of direct surface-

to-surface wave profile comparisons, we elected to carry out ensemble averaging of

the spectra. As it was mentioned in the previous chapters, the ensemble averaging

has been employed to give credibility to our random simulations, especially due to

the lack of any direct experimental data that these models could be compared with.

Moreover, due to spatial discretization of initially smooth JONSWAP spectrum,

after one single simulation the spectrum becomes uneven and loses all of its original

smoothness. The averaging over 100 simulations allows us, in turn, to smooth out

the spectrum in order to be able to clearly distinguish the level curves in the density

plots. In contrast, Dysthe et al. (2003), who compared MNLS with a cubic NLS

for an initially Gaussian spectrum, have not only averaged their randomly initialized

spectra over 20 simulations (in 2D), but have also smoothed it out with a so-called

“moving average” by using a Gaussian with appropriately chosen standard deviation.

They also argue that the spectrum reaches a quasi-steady-state within few (20 or so)

periods (1 period = 1 sec). We, on the other hand, do not believe that smoothing

out the spectrum with the help of a moving average is a reliable method and in our

simulations, we resort only to ensemble averaging to support this quasi-steady-state.

Socquet-Juglard et al. (2005), who simulated MNLS with an initial JONSWAP

spectrum and used a Fourier pseudo-spectral method similar to ours, have employed

a rather peculiar circular zero-pad de-aliasing filter, centered around the peak of the

45
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spectrum, with a radius equal to the distance (or rather a number of Fourier modes)

from zero to the peak wavenumber (kp). The physical aspect and the validity of

this filter, as well as the amount of energy that is initially cut off, still needs further

investigation.

Also, we would like to point out the work of Tanaka (2007), where he simulated

the evolution of the JONSWAP spectrum under the action of both, the HOSM (Higher

Order Spectral Method) of West et al. (1987) and the Zakharov equation (1968), with

an unusually large number of Fourier modes. Mainly, in his Fourier pseudo-spectral

method, he used as many as (Nx, Ny) = (4096, 2048) Fourier modes and showed that

in such fine discretization of the wave field, the spectrum for a single simulation

remained not only incredibly smooth, but also the downshifting of the spectral peak

was almost nonexistent – even up to the time of 100 peak periods. These results, as

far as we are concerned, were not reproduced by anyone yet, but it is worth adding

that they contradict the last two decades of numerical results for the simulation of

evolving weakly nonlinear ocean surface waves.

It should perhaps be pointed out that, in all of the above mentioned simu-

lations, as well as the ones discussed below, the simulated models do not account

for any atmospheric pressure fluctuations or wind forcing and cannot topologically

accommodate wave breaking – where wave breaking is commonly believed to enhance

the downshifting of the spectral peak (Babanin et al. 2010). Therefore, the waves are

fully developed and the only mechanism for the evolution of the spectrum in time,

has to be the nonlinear energy transfer from the nonlinear mode coupling – at least

in the initial transient phase of the evolution.

4.1 Comparison Between Fully 2D and Weakly 2D Models

In this section we compare the results of the numerical simulations of our Fully and

Weakly 2D models. Since the Weakly 2D model was derived with an additional
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assumption of weak transverse dependence, it was expected that the simulations with

small initial directional distribution β in (3.9) would yield both good qualitative and

quantitative agreements. In Figure 4.1 we show the spectrum at t = 0 sec (left

column) and at t = 150Tp = 150 sec (right column) for the first case of directional

distribution (3.9) with β = 0.14 and wave steepness of ε = 0.03. The top row

corresponds to the Fully 2D model, while in the bottom row we have the Weakly

2D model. Also, the crossing of the two vertical and horizontal black marker lines

corresponds to the location of the initial spectral peak. As expected, the spectra of

both models appears to be almost indistinguishable. Nevertheless, it shows a slight

downshifting of the spectral peak attributed to the generation of both bound and

free waves. Free waves, are simply the waves that obey the dispersion relation of the

given dispersive problem.

Similarly, in Figure 4.2 we also show the spectrum at t = 0 sec (left column)

and at t = 150 sec (right column) for the second case of directional distribution (3.9)

with β = 0.35 and wave steepness of ε = 0.05. Once again, an excellent quantitative

agreement between the two models is achieved. Moreover, the downshifting of the

spectral peak, commonly attributed to modulation (Benjamin-Feir) instability and

the nonlinear energy transfer, is becoming more evident. In other words, as β in-

creased, we observed that the spectral peak downshifting was more pronounced in

the given time frame of computation. Hence, the findings of Waseda et al. (2009b)

that the rate of spectral downshifting is a monotonically decreasing function of the

directional distribution (β), are also supported here. Though it should be noted that

as our initial directional distribution is broadened, the nonlinearity (ε) is also being

increased.

In contrast, in Figure 4.3 the spectrum at t = 0 sec (left column) and at t =

150 sec (right column) for the third case of directional distribution (3.9) with β = 0.7

and wave steepness of ε = 0.08 is shown. In this case, the downshifting of the spectral
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peak is even more pronounced than in the previous two cases. Also, upon more

detailed observation, we notice that the spectrum appears to start cascading its energy

along the branches of the so-called figure-8 of McLean et al. (1981). Moreover, the

head (or nose) of the spectrum in the three different cases of directional distribution

and steepness, is topologically different. In other words, it transforms from being

concave for the case of β = (0.14, 0.35), to a convex structure in the final case of

β = 0.7. Finally, the tail of the spectrum between Weakly 2D and Fully 2D models

is qualitatively different. This is also the case of for β = 0.7 and ε = 0.13 (see

Figure 4.5). Interestingly enough, when we retain the steepness of ε = 0.08, but we

downgrade the directional distribution to β = 0.35, we no longer notice the significant

difference in the spectral tail. In other words, the tails of spectra between Fully

2D and Weakly 2D models have similar curvatures. We ultimately believe that this

difference in the qualitative nature of the spectral tail is brought about the asymptotic

limitations of the Weakly 2D model. Mainly, in the areas (corners) where the Weakly

2D spectrum (at t=150 sec) does not have the same curvature as the Fully 2D model,

the ratio ky/kx, originally assumed to be of order of the wave steepness (ε), is no

longer small and is about 2/3.

A natural question one may ask is – how do we ascertain that 100 simulation

average is sufficient. In Figure 4.6, we show the standard deviation of the ensemble

averaged spectra for 10, 20, 30, ... , 100, ... , 200 simulations for β = 0.7, ε = 0.8 (left

column) and ε = 0.13 (right column) against the mean of 200 and 100 simulations,

respectively. The corresponding standard deviations are clearly converging around

100 simulations (even for the extreme case of ε = 0.13). To quantify in more detail

the differences in spectral spreading of the Fully and Weakly 2D models, we define

the mean directional spread function of Toffoli et al. (2010) and Hwang et al. (2000)

σm(k) =

(∫ π/2
0

θ2F (k, θ)dθ∫ π/2
0

F (k, θ)dθ

)1/2

, (4.1)
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where hereafter σm(k) will be averaged over the wavenumber k and referred to as σm.

The comparisons between the two models for β = 0.14 are nearly identical and for

β = 0.35 the Weakly 2D model has a slightly higher mean directional spread than

that of the Fully 2D model. Hence, in Figures 4.7-4.8 we only plot the mean spreading

function of β = 0.7 for ε = 0.08 (left) and ε = 0.13 (right) that show appreciable

differences. Furthermore, in all different cases of initial directional distribution there

appears to be suggestive evidence for the existence of a quasi-steady-state of the mean

directional spreading function towards the end of the simulation (Final T ime =

150 Peak Periods ≡ 150 sec). In Figure 4.9, we show the mean spreading function

for the time frame larger by a factor of six. Mainly, we carried out the 100 averaged

simulations with the final time of 900 seconds and observed that suggested quasi-

steady-state for the mean spectral spreading function is indeed justified.

Contrary to the results obtained by Clamond et al. (2006), in their numerical

work Trulsen and Dysthe (1990) have observed that the downshifting of the spectral

peak is permanent - even in the case of nonbreaking waves. In Figure 4.10, we show

the persistence of the downshift of the spectral peak in our simulations. These were

carried out for the duration of 900 peak periods (900 sec) and were averaged over

100 simulations. Also, the spectra were integrated along the angle θ, rather than just

taking a cross section along the line of symmetry (ky = 0). What is immediately

apparent is that, the main downshifting of the spectral takes place during the first

600 peak periods (600 seconds) and the downshift between 600 and 900 seconds is

minimal. Also, note that because the spectra were angularly integrated, the peak

appears to be substantially rising. This is actually not the case, as the angularly

integrated spectra account for the spreading. If one would to plot the spectra along

the line of symmetry (ky = 0), you would still observe the spectral downshifting,

but the rise of the peak would normally not be observed in contrast to an angularly

integrated spectra.
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In fact, in Figure 4.11, we plot peak angular frequency ωp versus time, along the

line of symmetry (ky = 0). The top row gives the plots of the location of the spectral

peak frequency (ωp) as the function of time, relative to the location of the initial

spectral peak at t = 0s, for the Fully 2D (left) and Weakly 2D (right) models. While

the bottom row shows the magnitude of the spectral peak frequency as a function of

time, relative to the magnitude of the initial peak frequency (ωp at t = 0s). Different

degrees of directional distribution β = 0.14, 0.35, 0.7 and levels of wave steepness

ε = 0.03, 0.05, 0.08, 0.13 are also shown. The plots of the relative magnitude of the

spectral peak are decreasing in time, but show an oscillatory decaying behavior. What

is even more interesting, is that the location of the spectral peak frequency is also

oscillating according to a well defined pattern. In other words, for the case of β = 0.14

and ε = 0.03 the spectral peak upshifts and return to its original position for the

first 100 peak periods (100 sec). While in the remaining 50 periods it upshift and

downshift episodically. In turn, as we increase the directional distribution and wave

steepness to β = 0.35 and ε = 0.05, the spectral peak downshift and return to its

original location, with an increasing level of downshifting around 80 periods. In

contrast, for β = 0.7 and ε = 0.08, we still observe downshifting with a retraction

to an upshift, but it never return to the initial location of the peak. Finally, for

the case of β = 0.7 and ε = 0.13, the downshifting is even more pronounced, but

the retracting upshift is never observed. In this case, the spectral peak appears to

be sporadically stationary. To sum it all up, it should be rather obvious that as

the initial spectral distribution (β) broadens and the wave steepness (ε) increases,

the recurring upshifting and downshifting of the spectral peak is transformed into

primarily a downshifting trend.

In Figures 4.12-4.19, we show angular dependence of the spectra under the

action of both models (Fully 2D and Weakly 2D) at different values of angular

wavenumber k =
√
k2
x + k2

y, for all different cases of initial directional distribution
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Figure 4.6 Standard deviation of the averaged spectral distribution. The left col-
umn represents ε = 0.8 for up to 200 averaged simulations and the right column gives
ε = 0.13 for 100 averaged simulations, both for β = 0.7 directional spreading case of
(3.9). Top row is for the Fully 2D model, while the bottom row is for the Weakly 2D
model.
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Figure 4.7 Mean Spreading Function of (4.1) for ε = 0.08 wave steepness and
β = 0.7 of directional spreading case of (3.9), averaged over 200 simulations.
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Figure 4.8 Mean Spreading Function of (4.1) for ε = 0.13 wave steepness and
β = 0.7 of directional spreading case of (3.9), averaged over 100 simulatioins.
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Figure 4.9 Mean Spreading Function of (4.1) for the final time of 900 seconds (900
peak periods). The wave steepness ε = 0.13 and the initial directional spreading
β = 0.7, averaged over 100 simulations.
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Figure 4.10 The downshifting of the spectral peak for the wave steepness ε = 0.13
and the initial directional spreading β = 0.7. This spectra are averaged over 100
simulations and are angularly integrated along the angle θ. The final time is 900
peak periods (900 sec).
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Figure 4.11 Top row gives the plots of the location of the spectral peak frequency
(ωp) as the function of time, for the Fully 2D (left) and Weakly 2D (right) models.
While the bottom row shows the magnitude of the spectral peak frequency as a
function of time, relative to the magnitude of the initial frequency peak (ωp at t = 0s).
Different degrees of directional distribution β = 0.14, 0.35, 0.7 and levels of wave
steepness ε = 0.03, 0.05, 0.08, 0.13 are also shown.
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(β) and wave steepness (ε). Note that the spectra are symmetric over θ = 0 line in

the (k, θ) plane, hence we only plotted the first quadrant θ ∈ [0, π/2]. In these plots,

Kp represents the peak wave number, whose value is around 30 when unscaled by

2π/Lx, or around 4 when scaled. What is apparent from the plots is that the spectra

tend to develop a bi-modal structure around k = Kp/3, when the initial directional

distribution broadens.

Finally, wanting to examine these two models in a more deterministic setting,

in Figures 4.20-4.21, we plotted the cross sections of their surface elevations. The

cross sections were chosen wherever the largest difference between the Fully and

Weakly 2D models occurred. The first two cases of initial directional distribution

(β = 0.14, 0.35) are almost indistinguishable, hence once again we elected to plot

the latter two extreme cases of β = 0.7 for the steepness ε = 0.08 (Figure 4.20) and

ε = 0.13 (Figure 4.21). For the first fifty peak periods (50 sec) the surface correla-

tions are very promising and only after about one hundred peak periods we begin to

notice appreciable differences in individual wave heights. It is rather difficult to asses

whether the Fully or the Weakly 2D model tends to overestimate the occurrence of

the large waves. Nevertheless, even after one hundred peak periods the wave speeds

of large individual wave crests and troughs appear to be well resolved and surprisingly

in sync.

Keeping with the spirit of extreme waves, we also correlated the fourth statistical

moment (kurtosis) as an indicator for the occurrence of extreme waves – Rogue/Freak

waves, whose commonly accepted definition is a wave of height at least twice of that

of the significant wave height of the wave field. Recall that the kurtosis (m4) was

defined as

M4(ζ) =
N∑
j=1

(ζj − ζ̄)4

N
=⇒ Kurtosis : m4(ζ) ≡ M4

σ4
,
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Figure 4.12 The angular distribution of the spectra of the Fully 2D model, for the
initial case of β = 0.14 and ε = 0.03. The plots were extracted along fixed values of
k in the polar (k, θ) plane, where Kp represents the peak wavenumber.
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Figure 4.13 The angular distribution of the spectra of the Weakly 2D model, for
the initial case of β = 0.14 and ε = 0.03. The plots were extracted along fixed values
of k in the polar (k, θ) plane, where Kp represents the peak wavenumber.
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Figure 4.14 The angular distribution of the spectra of the Fully 2D model, for the
initial case of β = 0.35 and ε = 0.05. The plots were extracted along fixed values of
k in the polar (k, θ) plane, where Kp represents the peak wavenumber.
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Figure 4.15 The angular distribution of the spectra of the Weakly 2D model, for
the initial case of β = 0.35 and ε = 0.05. The plots were extracted along fixed values
of k in the polar (k, θ) plane, where Kp represents the peak wavenumber.
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Figure 4.16 The angular distribution of the spectra of the Fully 2D model, for the
initial case of β = 0.7 and ε = 0.08. The plots were extracted along fixed values of k
in the polar (k, θ) plane, where Kp represents the peak wavenumber.
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Figure 4.17 The angular distribution of the spectra of the Weakly 2D model, for
the initial case of β = 0.7 and ε = 0.08. The plots were extracted along fixed values
of k in the polar (k, θ) plane, where Kp represents the peak wavenumber.
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Figure 4.18 The angular distribution of the spectra of the Fully 2D model, for the
initial case of β = 0.7 and ε = 0.13. The plots were extracted along fixed values of k
in the polar (k, θ) plane, where Kp represents the peak wavenumber.



69

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35
k = Kp / 3

0 ! " ! #/2

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

120

140
k = 2 * Kp / 3

0 ! " ! #/2

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70
k = Kp

0 ! " ! #/2

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

40
k = 4 * Kp / 3

0 ! " ! #/2

 

 

T = 0 sec
T = 50 sec
T = 100 sec
T = 150 sec

T = 0 sec
T = 50 sec
T = 100 sec
T = 150 sec

T = 0 sec
T = 50 sec
T = 100 sec
T = 150 sec

T = 0 sec
T = 50 sec
T = 100 sec
T = 150 sec

Figure 4.19 The angular distribution of the spectra of the Weakly 2D model, for
the initial case of β = 0.7 and ε = 0.13. The plots were extracted along fixed values
of k in the polar (k, θ) plane, where Kp represents the peak wavenumber.
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Figure 4.20 Deterministic surface-to-surface comparison for single simulation. The
cross sections have been extracted along the transverse direction, wherever the largest
difference between the surface elevations of the models occurred. The initial wave
steepness is ε = 0.08, for β = 0.7 directional spreading case of (3.9).
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Figure 4.21 Deterministic surface-to-surface comparison for single simulation. The
cross sections have been extracted along the transverse direction, wherever the largest
difference between the surface elevations of the models occurred. The initial wave
steepness is ε = 0.13, with β = 0.7 directional spreading case of (3.9).
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where σ2 is the variance and σ is the standard deviation of the wave field given by

σ(ζ) =

√√√√ N∑
j=1

(ζj − ζ̄)2

N
.

For the case of a single (or few) simulation(s), we clearly observed that the kur-

tosis increases beyond the value of three (where kurtosis equal to three corresponds

to the standard Gaussian distribution) as the directional distribution (β) is made

smaller/narrower. In fact, this has also been well documented in recent works of

Onorato et al. (2006) and Toffoli et al. (2010). Moreover, when we averaged over 100

simulations for both 150 seconds (Figure 4.22) and 900 seconds (Figure 4.23) we also

observed that kurtosis decreased as the directional distribution β in (3.9) broadened,

but the fluctuations where much less prounouced, with the Weakly 2D model produc-

ing higher values of kurtosis than the Fully 2D model for the larger values of initial

directional distribution (β). These results confirm those of Tanaka (2001), where he

studied the evolution of random surface gravity waves by direct simulations of both,

the HOSM (Higher Order Spectral Method) of West et al. (1987) and the Zakharov

Equation (1968). Both of these equations do not suffer from the narrow-bandwidth

assumption, but the Zakharov equation – being an integro-differential equation, takes

considerably more time to compute. It should, however, be of no surprise that the

kurtosis of the ensemble averaged simulations is closer to the value of the standard

Gaussian distribution (kurtosis=3) than for a single (or couple) of simulations, since

it is expected (via the Central Limit Theorem) that as the number of averaged sim-

ulations increases, we tend to approach the Gaussian spectrum.

4.2 Comparison Between Fully 2D Model and Modified Nonlinear

Schrödinger Equation (MNLS)

In this section we present the results of concurrent numerical simulations of the MNLS

and Fully 2D models, and comment on the observed features of the deterministic
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Figure 4.22 Averaged kurtosis from 100 simulations up to 150 seconds for three
different cases of directional distribution (β = 0.14, 0.35, 0.7) and four different initial
wave steepnesses (ε = 0.03, 0.05, 0.08, 0.13) for Fully and Weakly 2D models.
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Figure 4.23 Averaged kurtosis from 100 simulations up to 900 seconds for β = 0.7
cases of directional distribution and initial wave steepness ε = 0.13 for Fully and
Weakly 2D models.

(single run) and Monte-Carlo (averaged over 100 runs) simulations. In Figures 4.24,

4.25, and 4.30, the averaged spectra (over 100 initially random simulations) for the

intermediate case of directional distribution (β = 0.35) for the two-dimensional Fully

(2.12)-(2.13), Weakly (2.14)-(2.15), and MNLS (2.22)-(2.23) model systems are pre-

sented, respectively.

Moreover, in the simulation of the MNLS equation (with cubic nonlinearity),

rather than using the conventional rectangular half-zero-pad filter for de-aliasing,

we used a circular type filter centered at (Nx/4, 0) (for MNLS only) with radius

of Nx/4. This rather peculiar type of filter, also utilized in the work of Dysthe

et al. (2003), allows us to suppress the quasi-recurring energy leakage (instability)

originally studied and discussed by Martin and Yuen (1980). In Figure 4.26, we show

that very same energy leakage when a standard rectangular half-zero-padding filter

is used. Nevertheless, the spectral evolution of the two-dimensional MNLS equation

with the circular filter is in good qualitative agreement with the results obtained by

Socquet-Juglard et al. (2005). Also, what is relatively difficult to determine from the
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two-dimensional spectral density plots, but is more apparent in Figures 4.27, 4.28,

and 4.29, is that in the evolution of the spectrum one can notice evident shifting of

the spectral peak, as well as a definite rise of the tail of the spectrum.

Figure 4.24 Averaged spectrum (over 100 random realization) for Fully 2D model
system, for Case (2) with β = 0.35, γ = 5, ∆t = 10−3. Graph (A) shows the initial
spectrum (t = 0 sec), while graph (B) shows the spectrum at final time (t = 150Tp =
150 sec), along with 10 level curves.

Finally, we would like to present direct comparisons of the Fully 2D and MNLS

2D models. In Figures 4.31 and 4.32, the intermediate (Case 2) and the widest (Case

3) spreading cases are contrasted. What should also be immediately apparent is that

the surface extracted from MNLS has a smaller wave front velocity for individual

wave crests (especially those with higher steepness), but more importantly MNLS

seems to underestimate the occurrence of extreme waves when contrasted with the

solution of the Fully 2D in the widest case — β = 0.7 and γ = 3.3 - see Figure 4.32.

As a final note, we would like to comment on the surface initialization and

extraction between the Fully 2D and MNLS models. Given the initial JONSWAP

spectrum F (k, θ), the surface elevation (ζ) was initialized via the Fourier transform

of the autocorrelation function, as discussed in chapter 3. Then, the envelope variable
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Figure 4.25 Averaged spectrum (over 100 random realization) for Weakly 2D model
system, for Case (2) with β = 0.35, γ = 5, ∆t = 10−3. Graph (A) shows the initial
spectrum (t = 0 sec), while graph (B) shows the spectrum at final time (t = 150Tp =
150 sec), along with 10 level curves.

Figure 4.26 Averaged spectrum of the Modified Nonlinear Schrödinger Equation
(MNLS) for10 runs with rectangular zero-pad de-aliasing filter, exhibiting the energy
cascade along the instability branches (see the Appendix for derivation of instability
regions). The density plot on the left shows the initial spectrum (t=0 sec), while
the graph on the right is the spectrum at t=100 seconds. For this simulation the
directional spreading β was chosen to be 0.35 and the peak enhancement γ was equal
to 5.0.
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Figure 4.27 Angularly integrated spectrum of the Fully 2D model, for the inter-
mediate case of directional spreading — β = 0.35 and γ = 5.
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Figure 4.28 Angularly integrated spectrum of the Weakly 2D model, for the inter-
mediate case of directional spreading — β = 0.35 and γ = 5.
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Figure 4.29 Angularly integrated spectrum of the MNLS 2D model, for the inter-
mediate case of directional spreading — β = 0.35 and γ = 5.

Figure 4.30 Averaged spectrum (over 100 random realization) for MNLS 2D model
system, for Case (2) with β = 0.35, γ = 5, ∆t = 10−3. Graph (A) shows the initial
spectrum (t = 0 sec), while graph (B) shows the spectrum at final time (t = 150Tp =
150 sec), along with 10 level curves. NOTE: here we used a circular zero-pad filter.
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(A) in the MNLS equation was initialized with a simple phase shift and all of the

initial energy was put solely into a first harmonic (A), since

ζ(x, y, t) =
1

2
Aei(kxx+kyy−ωt) + higher order terms + c.c. ,

where c.c. represents the complex conjugate. In fact, when we took the time to spread

the energy over the first three harmonics (A, A2, A3), we did not notice any appre-

ciable differences in the final results, hence we elected to simplify our initialization

by writing

ζ(x, y, t = 0) =
1

2
Aei(kxx+kyy) + c.c =

1

2
Aeiθ + c.c =⇒ A = ζe−iθ.

Once the simulations were initialized, the final results for the evolution of the

envelope (A) were transformed into a surface elevation ζ. In other words, we used the

reconstruction formulae given by (2.26), to set up to the surface elevation, correct up

to third order in wave steepness (ε3).
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Figure 4.31 Single deterministic run comparison of Fully 2D and MNLS 2D models
for the intermediate case of transverse dependence: Case 2 - β = 0.35, γ = 5, with
∆t = 10−3. Snapshot taken along a particular value of y-coordinate which produced
the largest difference between two surface models.
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Figure 4.32 Single deterministic run comparison of Fully 2D and MNLS 2D models
for the largest case of transverse dependence: Case 3 - β = 0.7, γ = 3.3, with
∆t = 10−3. Snapshot taken along a particular value of y-coordinate which produced
the largest difference between two surface models.



CHAPTER 5

REDUCED ORDER UNCOUPLED SYSTEMS

5.1 Bi-directional Uncoupled Models

This section and its immediate subsections deal with both uncoupled bi-directional

and uni-directional wave propagation. For the latter we will, without loss of gen-

erality, propose a one dimensional version of the equations. Recall once again the

Fully 2D system of evolution equations (2.12) and (2.13), that is reproduced here for

convenience.

∂ζ

∂t
= −L[Φ]−∇(ζ∇Φ)−L[ζL[Φ]]−∇2

(
ζ2

2
L[Φ]

)
−L

[
ζ2

2
∇2Φ + ζL[ζL[Φ]]

]
+O(ε4),

∂Φ

∂t
= −gζ − 1

2
|∇Φ|2 +

1

2
(L[Φ])2 + L[Φ]

(
ζ∇2Φ + L[ζL[Φ]]

)
+O(ε4).

At the leading-order we have 
∂ζ
∂t

= −L[Φ]

∂Φ
∂t

= −gζ ,
(5.1)

with cross time derivative we obtain a bi-directionl uncoupled system
∂2ζ
∂t2

= gL[ζ]

∂2Φ
∂t2

= gL[Φ] ,

(5.2)

and the unidirectional aspect of the above system will be discussed in material that

follows when we deal with a second order system. Subsequently, truncating at the
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second order yields (ε = kpā)
∂ζ
∂t

+ L[Φ] +∇(ζ∇Φ) + L[ζL[Φ]] +O(ε3) = 0

∂Φ
∂t

+ gζ + 1
2
|∇Φ|2 − 1

2
(L[Φ])2 +O(ε3) = 0 ,

(5.3)

and then at third order we have
∂ζ
∂t

= −L[Φ]−∇(ζ∇Φ)− L[ζL[Φ]]−∇2
(
ζ2

2
L[Φ]

)
− L

[
ζ2

2
∇2Φ + ζL[ζL[Φ]]

]
+O(ε4)

∂Φ
∂t

= −gζ − 1
2
|∇Φ|2 + 1

2
(L[Φ])2 + L[Φ] (ζ∇2Φ + L[ζL[Φ]]) +O(ε4) .

(5.4)

First, in order to decouple the system accurate to second order we take the time

derivative of the second equation in (5.3) and substitute it into the first equation, while

using the second equation in (5.1) in the nonlinear (second order correction) terms

wherever ζ appears, hence effectively making sure that the error is O(ε3). Then we

arrive at a decoupled system of equations for the velocity potential Φ (defined at the

free-surface) and the corresponding surface elevation ζ, both being correct up to the

second order

∂2Φ

∂t2
− gL[Φ] + 2∇Φ · ∇Φt +

∂Φ

∂t
∇2Φ− L[Φ]L[Φt] + L

[
∂Φ

∂t
L[Φ]

]
= 0 , (5.5)

gζ = −∂Φ

∂t
+

1

2
(L[Φ])2 − 1

2
|∇Φ|2 . (5.6)
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Extending this procedure to third order and making similar substitution for ζ with

(5.1) and (5.6) where appropriate to keep the error O(ε4) yields

Φtt − gΩ +∇Φ · ∇Φt − 1
2
(Ω2)t +∇

([
Φt − 1

2
Ω2 + 1

2
|∇Φ|2

]
∇Φ
)

+L
[(

Φt − 1
2
Ω2 + 1

2
|∇Φ|2

)
Ω
]
− 1

g
∇2
(

1
2
(Φt)

2Ω
)
− 1

g
L
[

1
2
(Φt)

2∇2Φ + ΦtL[ΦtΩ]
]

+1
g
Ωt(Φt∇2Φ + L[ΦtΩ]) + 1

g
Ω(Φtt∇2Φ + Φt∇2Φt + L[ΦttΩ + ΦtΩt]) +O(ε4) = 0,

(5.7)

gζ = −Φt + 1
2
Ω2 − 1

2
|∇Φ|2 − 1

g
Ω(Φt∇2Φ + L[ΦtΩ]) +O(ε4).

(5.8)

Where Ω ≡ −L[Φ] and just to clean up a bit, our third order uncoupled system (after

using (5.2) to substitute for Φtt at the end of (5.7)) becomes
Φtt − gΩ + S{Φ,Φt}+ C{Φ,Φt}+O(ε4) = 0

gζ = −Φt − 1
2
|∇Φ|2 + 1

2
Ω2 − 1

g
Ω(Φt∆Φ + L[ΦtΩ]) +O(ε4) ,

(5.9)

where S and C are defined by

S{Φ,Φt} = 2∇Φ · ∇Φt + Φt∆Φ + L[ΦtΩ]− Ω Ωt ,

C{Φ,Φt} = −Ω∇Ω · ∇Φ + |∇Ω|∇(|∇Φ|) · ∇Φ + 1
2
Ω2∆Φ + 1

2
|∇Φ|2Ω

−1
2
L[Ω3] + 1

2
L[|∇Φ|2Ω]− 1

g
|∇Φt|2Ω− 1

g
Φt∆ΦtΩ− 2

g
Φt∇Φt · ∇Ω

− 1
2g

(Φt)
2∆Ω− 1

2g
L[(Φt)

2∆Φ]− 1
g
L[ΦtL[ΦtΩ]]− 1

g
ΩtΦt∆Φ

−1
g
ΩtL[ΦtΩ] + 1

g
ΩΦt∆Φt + ΩL[Ω2] + 1

g
ΩL[ΦtΩt].

At this point it would be beneficial to justify the validity and correctness of

our model. For that purpose we step back to our model accurate to second order

and compare our result with, as far as we know, the only decoupled model of Akers

and Milewski (2008). It should be pointed out that their model deals with water of

infinite depth and the velocity potential φo defined at the mean surface, as well as
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the surface tension. Therefore we substitute

Φ = φo − ζL[φo]−
ζ2

2
∆φo +O(ε4)

= φo +

(
1

g
φot −

1

g

(
1

2
L[φo]

2 − 1

2
|∇φo|2

))
L[φo]−

1

2g2
(φot)

2∆φo +O(ε4)

into (5.5) and truncate at second order (dropping terms of O(ε3) ) and then we obtain

(dropping the subscript o)

φtt − gL[φ] +
1

2
(L[φ]2)t +

1

2
(|∇φ|2)t +∇(∇φφt) +

1

g
(L[φt]φt)t +O(ε3) = 0. (5.10)

Setting L ⇒ −L and non-dimensionalizing to scale g out of the problem, plus ac-

counting for finite water depth and no surface tension effects in our model, allows us

to recover the exact form of the equation of Akers and Milewski (2008).

5.2 Uni-Directional Models (Second Order)

When the truncation was done at the second order it mirrored the results of Akers and

Milewski (2008), as expected. However, the question on what will happen at the third

order is still an open one, and as far as we are concerned, apparently has not been

investigated by anyone yet. Nevertheless, the apparent advantages of the reduction

to a single equation (unidirectional model) should be clear, both analytically, as well

as numerically. The first approach we are going to present parallels that of Akers and

Milewski (2008), where the leading order (linear) terms are split into two modal wave

components. For reference we reproduce here a one-dimensional (two-dimensional

surface elevation) form of equation (5.5)

Φtt − gL[Φ] + 2ΦxΦxt −
1

2
(L[Φ]2)t + ΦtΦxx + L[ΦtL[Φ]] = 0 (5.11)
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and subsequently we split up the linear terms by defining

2u ≡ Φt + iMΦ 2v ≡ Φt − iMΦ, (5.12)

where the operator M has the following form in the Fourier space

M̂ = sgn(κ)
√
g|κ| tanh(|κ|h),

with Φt = u+ v and Φ = (iM)−1(u− v). Therefore, the newly formed system takes

on the following form
ut − iMu+ 1

2
Q(u+ v, (iM)−1(u− v)) = 0,

vt + iMv + 1
2
Q(u+ v, (iM)−1(u− v)) = 0,

(5.13)

where Q is for now the next (second) order correction defined in terms of u and v as

Q ((iM)−1(u− v, u+ v) = 2(ux + vx)(iM)−1(ux − vx)

+(u+ v)(iM)−1(uxx − vxx)

+L [(u+ v)L[(iM)−1(u− v)]]

−L [(iM)−1(u− v)] L[u+ v].

(5.14)

However, if we assume that Φ has a small projection on waves in one direction, or in

other words if v starts off small (say O(ε2)) then it will remain small (loosely speaking)

for a“long time” (Akers and Milewski 2008). Hence, we can effectively uncouple the

system (5.13) by dropping v in the next order correction Q of the first equation, thus

arriving at

ut − iMu +1
2

(2ux(iM)−1ux + u(iM)−1uxx + L [uL[(iM)−1u]])

−1
2

(L [(iM)−1u]L[u]) +O(ε3) = 0.
(5.15)
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To illustrate our reasoning more clearly, we can express (5.13) in the following form
ut − L[u] +N2[u2, uv, v2] = 0,

vt + L[v] +N2[u2, uv, v2] = 0,

(5.16)

where the operators L and N2 are the linear and nonlinear operator parts of (5.13),

respectively. In addition, if we suppose that initially v = 0 and u = O(ε) then v

will be O(u2) ⇒ O(ε2) for the duration of the time for the validity of the second

order asymptotic approximation. Therefore, any coupling between u and v can be

neglected at that order, hence essentially leaving first equation of (5.16), or rather

(5.13), solely in terms of u.

In the first equation of (5.13) at the next order (correct up to O(ε3)), however,

we cannot simply drop all the terms that have v in it, since at that order the coupling

between u and v is no longer negligible. We can instead use the second equation in

(5.13) for v along the same lines, that is if we assume initially v = O(ε2) then it will

remain at the same order for a quite a long time, which of course would have to be

rigorously determined. Our system could be symbolically represented in the following

form 
ut − L[u] +N2[u2, uv, v2] +N3[u3, u2v, uv2, v3] = 0,

vt + L[v] +N2[u2, uv, v2] +N3[u3, u2v, uv2, v3] = 0,

(5.17)

and from the second equation in (5.17) we would have

vt + L[v] +N2[u2] +O(ε3) = 0. (5.18)

Hence, to effectively uncouple the system, we would be required to make the substi-

tution for v at every instance in the first equation of (5.17) using (5.18), which at this

point is the subject of the author’s ongoing work.
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Now, we would like to present a slightly different approach in deriving a unidi-

rectional version of (5.11). Rather than introducing two auxiliary variables u and v,

we adhere to our original form and keep Φ as our main variable of interest and write

down (5.11) in the following form

Φtt +M2[Φ] +Q(Φ,Φt) = 0 ⇒
(
∂

∂t
+ iM

)(
∂

∂t
− iM

)
Φ +Q(Φ,Φt) = 0,

(5.19)

where the operator M has the following representation in Fourier space

M̂ = sgn(κ)
√
g|κ| tanh(|κ|h)

and Q for a moment being just the second order nonlinear correction (in general any

order - second or higher).

At the leading order(
∂

∂t
+ iM

)(
∂

∂t
− iM

)
Φ = 0 ⇒ (2iM)

(
∂

∂t
− iM

)
Φ = 0, (5.20)

and therefore (
∂

∂t
− iM

)
Φ +

[
1

2
(iM)−1 + h.o.t.

]
Q(Φ,Φt) = 0. (5.21)

A key point, which still lacks a rigorous justification, is that we postulate that at

second order the higher order terms (h.o.t.) can be neglected and hence we arrive at

the at the following decoupled unidirectional version of (5.11)

Φt − iM[Φ] = (−iM)−1 [ΦxiM[Φx]] + 1
2
(iM)−1[ΦxxiM[Φ]]

−1
2
(iM)−1(L[iM[Φ]L[Φ]] ) + 1

2
(iM)−1 (L[Φ]L[iM[Φ]] ) .

(5.22)

The above expression (5.22) is believed to be asymptotically equivalent to (5.15) and

the transition from one form to the other will be addressed in the next paragraph. It

should also be pointed out that at the next (third) order, it is believed that the higher
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order terms (h.o.t.) in (5.21) can no longer be neglected and their corresponding form

will be discussed in the next subsection.

To compare the above result with the one obtained by using the approach of

two auxiliary variable (u, v) we will use (5.12) to go from (5.22) to (5.15). In other

words, we substitute

Φ = (iM)−1[u− v]

directly into (5.22) and upon discarding the terms which contain v in the second order

(nonlinear) correction Q, hence being consistent and keeping the error of O(ε3), we

obtain the following

ut − iM[u]− (vt − iM[v]) = −1
2

(2ux(iM)−1[ux] + u(iM)−1[uxx])

+1
2

(L [uL [(iM)−1[u]]])

−1
2

(L [(iM)−1[u]] L[u]) .

(5.23)

In order to make (5.23) equivalent to (5.15) we need the last two terms on the left-

hand-side to be zero at this (second) order. Hence, recalling that v = 1
2

(Φt − iM[Φ])

and Φtt +M2[Φ] = −Q(Φ, Φt) + O(ε3) and at the same time, since in 5.21 we

tentatively assumed that Φt − iM[Φ] = −(2iM)−1Q+O(ε3), we have

vt − iM[v] = vt + iM[v]− 2iM[v]

= −1
2
Q− iM[Φt]−M2[Φ] +O(ε3)

= −1
2
Q− iM [Φt − iM[Φ]]

= −1
2
Q− iM [(2iM)−1(−Q)] +O(ε3)

= 1
2
Q− 1

2
Q = O(ε3).

(5.24)

Thus (5.24) shows that the last two terms on the left-hand-side of (5.23) are indeed

O(ε3), hence making (5.23), or rather (5.22), asymptotically equivalent to (5.15).

Furthermore, with the help of (5.32) and (5.33) we can further deduce that

∂

∂t
Q = iM[Q] + O(ε3) =⇒ (iM)−1 ∂

∂t
Q = Q+O(ε3), (5.25)
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which will be an important fact in the derivation of the next (third) order correction

terms in the subsequent section.

Also, under the same underlying assumption (5.21), it is helpful to write down

the bi-directional (5.26) and uni-directional (5.27) models solely in terms of surface

elevation (ζ) correct up to second order, respectively

ζtt − gL[ζ] = g2

2
L
[
((iM)−1[ζx])

2
]
− g2

2
L
[
(L [(iM)−1[ζ]])

2
]

+g ∂
∂x

(ζt(iM)−1[ζx] + ζζx) + gL [ζtL [(iM)−1[ζ]] + ζL[ζ]] +O(ε3) ,

(5.26)

ζt − iM[ζ] = g
4
iM

[
((iM)−1[ζx])

2
]
− g

4
iM

[
(L [(iM)−1[ζ]])

2
]

+g
2
(iM)−1

[
∂
∂x

(iM[ζ](iM)−1[ζx] + ζζx)
]

+1
2
(iM)−1 [iM[ζ]L [(iM)−1[ζ]] + ζL[ζ]] +O(ε3),

(5.27)

where g is the acceleration due to gravity.

5.2.1 Third Order Uni-directional Model

Akers and Milewski (2008) applied their models to gravity-capillary waves, hence they

only needed to carry out their expansions up to second order. In our case, however,

since we are dealing primarily with gravity waves, we need to carry out our expansions

up to third order in wave steepness (ε). At first we recall again the equation (5.19)

Φtt+M2[Φ]+Q(Φ,Φt) = 0 ⇒
(
∂

∂t
+ iM

)(
∂

∂t
− iM

)
Φ = −Q(Φ,Φt), (5.28)

and introduce a new unidirectional equation with nonlinear correction R of unknown

form (
∂

∂t
− iM

)
Φ = R(Φ), (5.29)
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where Q and R are in general, any order nonlinear corrections and can therefore be

formally written down in powers of ε as
Q = Q2 +Q3 + ...

R = R2 +R3 + ... ,

(5.30)

where Q2 and R2 are the second order and Q3 and R3 are the third order corrections,

and moreover, the the form of Q2 and Q3 are known a priori. Now, we substitute

(5.29) into (5.28) and obtain the following(
∂
∂t
− iM

)
(2iM[Φ] +R) = −Q

=⇒ ∂Φ
∂t
− iM[Φ] = −(2iM)−1[Q]− (2iM)−1

[(
∂
∂t
− iM

)
R
]
≡ R.

(5.31)

In addition, from the previous section (key assumption) we know that at the second

order

R2 = −(2iM)−1Q2, (5.32)

and hence we can also deduce that

(2iM)−1

[(
∂

∂t
− iM

)
R2

]
= O(ε3). (5.33)

Consequently, at the third order we have

−(2iM)−1Q3 − (2iM)−1

[(
∂

∂t
− iM

)(
R2 +R3 +O(ε4)

)]
≡ R3. (5.34)

Note that Q3 can be obtained from the C{Φ,Φt} expression in (5.9) with every ap-

pearance of time derivative ∂
∂t

being replaced with iM and therefore with the help of

(5.32) we can can symbolically write down the next (third) order correction R3 from

(5.30), or rather (5.29), in the following form(
1

2
+ (2iM)−1 ∂

∂t

)
R3 = −(2iM)−1

[
Q3 − (2iM)−1

[
∂Q2

∂t
− iM[Q2]

]]
. (5.35)
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However, we suspect, without further justification at the moment that the following

equality will hold (
1

2
+ (2iM)−1 ∂

∂t

)
R3 = R3 +O

(
ε4
)
.

It should also be mentioned that at this stage of the development, due to a dependence

of Q2 on time on the right hand side of (5.35), any numerical discretization of the

temporal domain would yield an implicit system, thus potentially requiring either a

direct or an iterative inversion of the temporal derivative matrix.



CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1 Discussion

The main focus of this manuscript has been the development of an accurate numer-

ical model for the short-term evolution of weakly nonlinear ocean surface waves. In

that respect, the aforementioned Weakly 2D model, based on additional assump-

tion of weak transverse dependence, behaved surprisingly well in directional wave

fields. The spectral evolution for the first two cases of initial directional distribution

(β = 0.14, 0.35) give excellent qualitative and quantitative agreement between the

Weakly and Fully 2D models. The latter cases of β = 0.7 for two values of wave

steepness (ε = 0.08, 0.13) show differences in spectral evolution, but these disparities

are usually located towards the high wavenumbers, hence the end of the spectrum. To

quantify that further, we reintroduced the mean spreading function in (4.1) averaged

over wavenumber k =
√
k2
x + k2

y and showed in Figures (4.7)-(4.8) that the Weakly

2D model tends to have a higher mean spread than the Fully 2D model; albeit both

models suggested the existence of a quasi-steady state for the mean spreading function

when simulated over 150 peak periods (150 sec).

When the time frame was increased by a factor of six (900 sec), we showed

that the mean directional distribution function does indeed converge to an apparent

steady state. The same was the case for the angularly integrated spectra. Moreover,

it was evident that the spectral peak experiences a permanent downshifting (at least

on our time scale, 900 sec), even though our models do not allow for wave breaking.

What was also interesting, was the fact that as the spectrum was approaching this

steady state in its distribution (for the averaged case of 100 simulations for up to
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900 sec, β = 0.7 and ε = 0.13), the spectral bandwidth has also been progressively

decreasing concurrent with the downshifting of the spectral peak.

Also, we believe that in part the modulational instability, nonlinear wave-wave

interaction, and energy transfer is behind the observed spectral downshifting in the

case of broad directional distribution. In fact, Waseda et al. (2009b) suggested

that an initial directional distribution of β = 0.35 gives rise to the transition from the

so-called quasi-resonant to the full resonant interaction. When the latter is ultimately

in effect whenever the initial spreading (β) is larger than 0.35. Onorato et al. (2002)

argued that the modulational instability is suppressed whenever the initial directional

distribution is higher than β ∼ 0.26, however we believe that the modulational in-

stability will still be in effect for the dominant waves that are steep enough. The

reasoning behind this argument is that in the examination of surface elevations for

fairly broad directional fields (β = 0.35 and above), we frequently observed (not

shown here) irregular wavetrains of an adjacent triplet of large waves, whose height

was well above twice the significant wave height (Hs).

Finally, in Figures 4.20 and 4.21 we managed to show a deterministic comparison

between surfaces of the two models. It is rather comforting to see that the Weakly 2D

model is in good qualitative agreement with the Fully 2D model, even for the wave

fields with relatively broad directional distribution (β = 0.7) and essentially for the

duration of the entire simulation (150 sec).

One of the main advantages of the Weakly 2D model is its gain in the com-

putational speed. Mainly, in Weakly 2D system (2.14)-(2.15) there are only two

terms that depend on the transverse wavenumber variable ky. Because of that, we

can cut down the computation time of all the other remaining terms via 2D FFT

(two-dimensional Fast Fourier Transform) by 50%. In other words, wherever we have

any x-derivative, which would correspond to kx Fourier multiplier, we can elect to

carry out only a 1D (one-dimensional) Fourier transform along the x-direction for



95

every single y-component, thus essentially performing 50% of the operations required

for a 2D FFT.

In summary, in the face of limited computational resources there is a pressing

need to reduce the cost of evaluating hydrodynamic models, without losing the level

of necessary accuracy and preserving the desired coherent structures. The derivation

of the Weakly 2D model was carried out with exactly that in mind. In fact, with

the application to for instance Naval hydrodynamics, this problem becomes even

more acute in the context of ensemble modeling – which requires a large, statistically

significant number of model runs, and variational data assimilation – which itself

requires repeated forward and backward integrations of the model. In such large-scale

computational settings, model reductions that are capable of generating compact

system representations and can capture essential features of the fully articulated high

resolution model with only a small loss of fidelity, offer enormous potential benefits

to the operational utility of computational models.



APPENDIX A

MODULATIONAL INSTABILITY OF STOKES WAVES OF THE

MODIFIED NONLINEAR SCHRÖDINGER (MNLS) EQUATION

Equations (2.22)-(2.23) have a particularly straightforward exact uniform wave solu-

tion known as the Stokes wave, given by

A = A0e−
i|A0|2t

2 . (A.1)

The reconstruction of the surface elevation accurate to third order in wave steepness

(ε) in terms of the Stokes wave can be written as

ζ = ε cos(θ) +
ε2

2
cos(2θ) +

3ε3

8
cos(3θ).

The stability of the Stokes wave can be found by simple perturbation of the both the

amplitude A0 and phase θ. Before that is carried out, we would like to rewrite the

coupling term
(
iA∂φ̄

∂x

)
in the MNLS equation (2.22), so that it is completely uncou-

pled from the Laplace equation for the velocity potential. From the reconstruction

formulae we know that

∂φ̄

∂z
=

1

2

∂|A|2

∂x
at z = 0,

where φ̄ is the velocity potential defined at the mean surface level (z = 0). When we

take the Fourier transform of the above expression, we obtain with the help of our

integral operator (2.9) the following relation

F
[
∂φ̄

∂z

]
=
i

2
kxF

[
|A|2

]
≡ W0 = κ tanh(κh) ˆ̄φ where κ ≡

√
k2
x + k2

y.
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Hence,

ˆ̄φ = ikx

2
(κ tanh(κh))−1F [|A|2]

=⇒ iA∂φ̄
∂x

= −iAF−1
[
k2

x

2
(κ tanh(κh))−1F [|A|2]

]
,

where F and F−1 form the forward and inverse Fourier transform pair. Consequently,

perturbing the amplitude and phase and linearizing we obtain

A = A0(1 + a)eiθe−
i
2
|A0|2t ∼ A0(1 + a+ iθ)e−

i
2
|A0|2t,

where a and θ are infinitesimal perturbations of the amplitude and phase, respectively.

Then, substituting into equation 2.22 and seeking the plane wave solution we impose a

θ

 =

 â

θ̂

 ei(kxx+kyy−ωt) + c.c,

where c.c stands for the complex conjugate and ω ∈ C gives the instability region.

After some algebraic simplifications we arrive at the formula for ω(kx, ky), with the

growth rate of the instability being the imaginary part of it [Im(ω)]

ω(kx, ky) = −
(
α +

1

4
|A0|2kx

)
±
√

1

4
|A0|4k2

x − 4β
(
|A0|2 + 2M̂ − β

)
, (A.2)

where

α = kx

2
+ k3

x

16
− 3

8
kxk

2
y + 5

4
|A0|2kx

β = k2
x

8
− k2

y

4

M̂{·} = −k2
x

2
√
k2

x+k2
y

F{·}.

In turn, the complex value of ω achieved whenever

1

4
|A0|4k2

x − 4β
(
|A0|2 + 2M̂ − β

)
< 0,

will lead to perturbations becoming unstable.
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Figure A.1 shows the instability region for the MNLS equation for various val-

ues of the wave steepness (ε), with imposed color intensity shading to describe larger

areas of instability (occurring in the center).The growth rate is symmetric over the

kx axis, hence we only show the first quadrant. Also, Figure A.2 gives the so-called

stability boundary curve (when the discriminant for the growth rate ω is zero), along

with horizontal and vertical lines indicating where the de-aliasing zero-pad filter was

imposed (according to cubic nonlinearity). In addition, the circular arc, where the

augmented zero-pad filter was imposed in the numerical simulations via the Fourier

pseudo-spectral method of the MNLS to get rid off the growing cascade of energy

(instability), is shown in Figure 4.26. Note that the instability region is discon-

nected from its other branch, as opposed to the hyperbola being uniformly connected

for the case of simple hyperbolic cubic Nonlinear Schrödinger Equation (NLS). The

hyperbolic NLS has the property that the instability regions is unbounded (inside

the stability boundary curve, of course) and that fact contributes to the unlimited

leak/cascade of energy out to large wavenumbers (short-crested waves become ex-

cited), see Martin and Yuen (1980).
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Figure A.1 Instability region of the Modified Nonlinear Schrödinger Equation
(MNLS) for various initial values of the wave steepness ε = 0.025, 0.05, 0.1, 0.2. The
center of the curve resembling the highest intensity shading gives rise to the most
unstable modes.
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Figure A.2 Stability boundary of the Modified Nonlinear Schrödinger Equation
(MNLS) for various initial values of the wave steepness ε = 0.025, 0.05, 0.1, 0.2. Two
vertical and horizontal lines mark the areas of the de-aliasing filter for the cubic
nonlinearity and the circular arc is the augmented filter applied to the Fourier pseudo-
spectral method for suppressing the instabilities appearing in Figure 4.26.
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