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ABSTRACT

USING FEED-FORWARD NETWORKS TO INFER THE ACTIVITY
OF FEEDBACK NEURONAL NETWORKS

by
Xinxian Huang

The nervous system is one of the most important organ systems in a multicellular

body. Animals, including human beings perceive, learn, think and deliver motion

instructions through their nervous system. The basic structural units of the nervous

system are individual neurons which constitute different neuronal networks with

distinct functions. In each network, constituent neurons are coupled with different

connection patterns, for example, some neurons send feed-forward information to the

coupling neurons while others are mutually coupled. Because it is often difficult to

analyze large interconnected feedback neuronal networks, it is important to derive

techniques to reduce the complexity of the analysis. My research focuses on using

the information of different feed-forward neuronal networks to infer the activity of

feedback networks. To accomplish this objective, I use geometric analysis combined

with numerical simulations for some typical neuronal systems to determine the activity

of the feedback neuronal network in the context of central pattern generating networks.

In my study, I am interested in deriving reduced methods to understand the

combined effect of short-term plasticity on the phase-locked activity of networks. I

consider a network of two reciprocally coupled heterogenous neurons, A and B, with

synaptic depression from neuron A to neuron B. Suppose we are given two pieces

of feed-forward information, the effect of neuron A on the activity of neuron B in

the feed-forward network of A entraining B and vice versa. Moreover, suppose these

effects are not limited to the weak coupling regime. We have developed a method

to combine these pieces of feed-forward information into a 2D map that predicts the

activity phase of these two neurons when they are mutually coupled. The analysis



of the map is based on certain geometric constructs that arise from each of the

feed-forward processes. Our analysis has two parts corresponding to different intrinsic

firing patterns of these two neurons. In the first part, we assume that neuron A is

oscillatory, while neuron B is not. In the second part, both neurons A and B are

assumed to be oscillatory. Both sets of assumptions lead to different feedback maps.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

Most rhythmic movements are produced by central pattern generating circuits [8, 39,

54, 52, 62]. Central pattern generators (CPGs) can be defined as neural networks that

can produce rhythmic patterned outputs without rhythmic sensory or central input

[37, 38, 54]. It was first shown by Wilson in 1961 that the rhythmic motor pattern

could be generated without sensory input. He showed that the locust nervous system

could still produce rhythmic output resembling that during flight when it is isolated

from the animal [54]. In addition to flying, many other rhythmic motor patterns

are generated by CPGs, e.g., chewing, swallowing, walking, breathing [39, 54]. Some

motor rhythms are generated by an endogeneous pacemaker neuron. For example, the

pyloric network of the stomatogastric ganglion of crabs is driven by a pacemaker pair,

AB and PD, which are electrically coupled. Some others are driven by the coordinated

activity of several neurons. The leech heartbeat rhythm generator is driven by two

arrays of inter neurons, one of which produces the basic rhythm of the network and

the other generates the actual rhythm of network in response to the input from the

first group [8, 39]. The rhythm of a CPG is associated with the activity of an animal

or human being and it can be isolated from the entire complex neural network to

some extent, so it is approachable and important to study the intrinsic properties of

its component neurons and the synaptic connections between them.

Phase-locked activity is essential for producing a coordinated activity and can

be widely found in the central nervous system [8, 18, 28, 54, 52, 62]. The phase-

locked activities of different neurons or neuronal groups are related to rhythmic

behaviors. For instance, in the mollusk clione limacina, the two rhythmically active

1
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feeding structures, grabbing and pulling are highly coordinated to the phase-locked

activities of hook protractor motor neurons, hook retractor motor neurons, radula

protractor motor neurons and radula retractor motor neurons. Hook protractor are

always co-active with radula retractor and hook retractor always coincide with radula

protractor [50]. In the crustacean stomatogastric ganglion, neuronal activity of the

pyloric network is correlated with the movement of the pylorus region in the animal’s

stomach. The tri-phasic pattern of the pyloric network is used to constrict and dilate

the muscles in the pylorus of the stomach [23, 40]. The phase-locked activity of

neurons depends on the intrinsic properties of the component neurons as well as the

properties of the synaptic connections between them.

Phase-locked activity of neurons could be in the form of synchronization, anti-

phase or with a fixed delay time. Each of these three forms is ubiquitous in the

neuronal networks in which neurons are connected by excitatory synapses or inhibitory

synapses [9, 43, 59, 62]. It is believed that the theta rhythm in the brain is related

to the synchronized activity of a large amount of neurons in the hippocampal region

[10]. The neurons in the pyloric network of the stomatogastric ganglion of crabs are

not exactly synchronized, but lock at some phase delay [62].

Synchronous activity can be observed in many regions of the brain and is

correlated to some behavior and cognition [9, 33, 46]. There is much research focusing

on the conditions for the synchronization of coupled neurons as well as the factors

for the loss of synchrony in a network. Intuitively, neurons coupled with excitatory

synapses lead to synchronization, but many studies have shown that inhibitory synaps-

es could also produce synchronous firing of neurons. Van Vreeswijk et al. showed that

when the duration of an action potential is shorter than the rising time of the synapse,

inhibition instead of excitation leads to the synchronous firing of neurons [76]. In [72],

Terman et al. presented that the appropriate interaction of the intrinsic timescales

of neurons and the rates of onset and decay of inhibition yields stable synchronous
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coupling of neurons, for which, they proposed two parameter regimes of different

combinations of time constants for the intrinsic properties and those for the inhibitory

synapses. Besides the fact that properties of neurons and the synapses between them

affect the synchrony of neurons, it was found that the stability of synchrony also

depends on the number of cells in the network [2, 20, 31]. Chandrasekaran et al.

proved that the reciprocal coupling between two neuronal groups helps to stabilize the

synchronization of the pulse coupled neurons within each group [14]. Strong inhibitory

coupling between neurons destabilize the synchronization of neurons and even breaks

the phase locking between them. In [63], it was examined how increasing synaptic

strength causes the loss of synchrony. From the view of intrinsic properties, it is

relatively harder for heterogeneous neurons to be synchronized than for homogeneous

neurons. With mild heterogeneity, synchrony is never perfect and is fragile [78].

Moreover, the pattern in which two neurons are coupled depends on the ratio of the

synaptic decay time of inhibition and the network period. In [68], it was showed that

heterogeneity has a strong influence on the synchronization of neurons and the ability

to synchronize with heterogeneity non-monotonically depends on the synaptic time

constants, synaptic conductances and some other parameters in the network.

Beside exact synchrony, neurons can be anti-phase locked or locked with some

time delay. The phase-locked activity of neurons often determines the output of the

network and the behavior of the animal [23, 40, 50]. Both excitation and inhibition

can yield synchronization of two coupled neurons, depending on the rising time of the

synapse and the duration of the action potential [76]. Dror et al. examined the criteria

for 1:1 phase locking of a two cell network and the conditions for the network with N

oscillators pulse-coupled in a ring. The conditions for 2:2 phase locking with preserved

firing order or with alternating order were investigated in [53, 63]. It was showed

that the synaptic properties between neurons play an important role in generating

the firing pattern of the network. Ermentrout studied a more general coupled firing
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pattern, n : m phase locking in a two oscillator network with weak coupling and found

the conditions based on the natural frequencies of the oscillators for the n : m phase

locking pattern [24]. In this work, we examine the conditions for 1:1 phase-locked

pattern of two mutually coupled neurons. But we incorporate the short-term synaptic

plasticity in our feedback network, which was not included in the previous works.

Except the neurons with spiking firing pattern, bursting oscillations are widely

observed in many neurons [4, 47, 59]. For this type of firing pattern of neurons,

Matveev et al. proposed a method to investigate the existence and stability for

the anti-phase locking of two mutually inhibiting neurons [57]. The Morris-Lecar

model is widely used to model the envelope of the burst without describing the

intraburst activity. It is a reduced two dimensional biological model producing the

neuronal activity related to the Ca2+ and K+ ionic currents [41, 43, 69]. Zhang et al.

investigated the dependence of the activity phase of a follower neuron on the period

and duty cycle of the pacemaker neuron in a feed-forward network with A-current

[80]. In [62], Mouser et al. studied the phase-locked activity of the tri-phasic pyloric

network of the crustacean stomatogastric ganglion and derived analytic expressions

for the locked phase of two follower neurons.

1.2 Short-term Synaptic Plasticity

Information is transmitted through synapses between neurons in neural networks.

The information transmission is not necessarily uniform, but may depend on the

pattern of the presynaptic potentials. This is known as short-term synaptic plasticity

[1, 5, 48]. With short-term plasticity, the synaptic strength from the presynaptic

neuron to the postsynaptic cell depends on the firing rate of the presynaptic input.

On the other hand, for the same presynaptic input, the postsynaptic neurons code

the information in different ways according to their distinct properties of the synapses
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between them. It has been established experimentally [22, 73] and theoretically

[29] that short-term synaptic plasticity contributes to temporal filtering of synaptic

transmission.

Short-term plasticity is a universal property of synapses in all animals [16,

55, 81]. For example, in the weakly electric fish, cerebellar granule cells provide

parallel fiber inputs to the electrosensory lateral line lobe and the parallel fibers

provide feedback input onto apical dendritic spines of the electrosensory lateral line

lobe pyramidal neurons [44, 45]. Synapses between them exhibit multiple forms of

synaptic plasticity on multiple time scales. Three synapses in the rat brain were

examined in [19], the climbing fiber to Purkinje cell synapse, the parallel fiber to

Purkinje cell synapse and the Schaffer collateral to CA1 pyramidal cell synapse.

These three synapses exhibit different responses to the same periodic stimulation.

The first synapse depresses during the stimulation train, the second synapse exhibits

enhancement during the stimulation, and the strength of the last one first increases

and then decreases during the stimulus train. Thus, the types of short-term plasticity

may be very diverse even within an animal.

Short-term synaptic plasticity results from the variation in presynaptic neurotra-

nsmitter release [19, 77] and from the different postsynaptic responses to a given

stimulus [19, 49]. The mechanism underlying the short-term synaptic plasticity could

be very complicated [73]. Some simplified phenomenological models were proposed

for its kinetics [55, 56, 75]. Suppose the pre- and postsynaptic neurons are connected

by synaptic resources which are divided into three states, effective, inactive and

recovered. If all resources can be activated by an action potential, the postsynaptic

neuron receives maximal input, which is defined as absolute synaptic efficacy. There

is no synaptic plasticity in this case. Otherwise, the action potential activates and

makes effective certain fraction of resources. This portion instantly becomes inactive

and recovers with some time constant in the recovery state[75]. Many mathema-tical
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models have been proposed to describe this dynamical process [30, 42, 55, 56, 67, 75]

in the form of differential equations, discrete maps or the combination of them. One

of the ordinary differential equation models derived in [42] is

R′ = (1−R)/D −Ruδ(t− tn)

u′ = (U − u)/F + U(1− u)δ(t− tn)

where R represents the recovered resources, called the depression variable and u

represents the fraction activated by the action potential, called the facilitation variable.

D and F are the recovery time constants for the depression R and facilitation u.

When an action potential is elicited at t = tn, it activates a fraction u of the available

synaptic resources, i.e., uR, by which amount the resources in the recovery state

reduce. At the same time, the action potential increases the facilitation variable

by U(1 − u). For a burst with five spikes, the traces for R, u, synaptic efficacy and

synaptic conductance are shown in Figure 1.1(a). At the moment the action potential

appears, the synaptic conductance adjusts its value according to the synaptic efficacy

at that time. If the facilitation variable u is fixed, the synapse is called a depressing

synapse, behaving as a low-pass filter (red curve in Figure 1.1(b)). If the depression

variable R is a constant, the synapse acts as a high-pass filter (blue curve in Figure

1.1(b)). Otherwise, the synaptic conductance reaches its maximum at a preferred

burst frequency, called the resonant frequency. [21, 42]

Synaptic depression is ubiquitous in the central and peripheral nervous system

[32]. Synapses between neocortical pyramidal cells often exhibit depression property

in response to the presynaptic input [74]. Short-term synaptic depression is also

observed in the pyloric network of the stomatogastric ganglion [6, 37, 38, 62]. Depressi-

on has been suggested to play a role in both the coordination and timing of oscillatory

events [32]. In the responses of neurons in the primary visual cortex, short-term

synaptic depression is an important element for enhancement of transient responses,



7

Figure 1.1 Kinetics of short-term synaptic plasticity. (a) The upper left panel are
the dynamics of depression and facilitation variables in response to a burst of five
spikes. The middle left panel is the response of synaptic efficacy to the burst. The
lower left panel is the response of synaptic conductance to the burst. (b) Integral
of synaptic conductance for bursts of five spikes with various intra-burst frequencies.
Reprinted from [42].

temporal phase shifts and direction selectivity [13]. Slow synaptic depression contribu-

tes to the regulation of spontaneous episode activity in the embryonic chick spinal

cord [71]. Short-term synaptic depression plays an important role in determining the

frequency of a globally inhibitory network and bistability of its solutions [15]. It was

showed in [6] that a single depressing synapse can produce oscillation bistability in a

network consisting of an excitatory neuron and an inhibitory neuron.

Phase-locked activity is important for producing a coordinated activity. For

instance, phase-locked activity is necessary to produce a smooth and coordinated

movement of the ventilatory system in crabs [18]. Hooper investigated the extent to

which neuronal networks of the stomatogastric ganglion can produce phase-constant

motor patterns as cycle frequency is altered [37, 38]. The maintenance of phase

in a computational model in which an oscillator neuron inhibits a follower neuron

was studied by examining the dependency of phase on cycle period in two cases

[51]. The locked phase is generally a monotonically decreasing function of the period
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with a non-depressing synapse and there is always a parameter regime in which the

phase is a non-monotonic function of the cycle period with a depressing synapse.

In [7], it is showed how the interaction between synaptic depression and a transient

potassium current in the follower neuron determines the activity phase of this neuron

in a simplified network of an oscillator neuron inhibiting a follower neuron. The

presence of synaptic depression increases the range of oscillator periods over which

phase maintenance of the neurons in a feed-forward network occurs [6, 62].

1.3 Phase Response Curve

Consider a periodically spiking neuron and give a small brief perturbation at a precise

time during its oscillation. The next spike of the neuron may be advanced or delayed

by the perturbation. Moreover, the extent to which the perturbation affects the

oscillation period depends on the timing of the perturbation or the phase of the neuron

when it receives the perturbation [11, 41]. A phase response curve (PRC) measures

the transient change in the period of an oscillator induced by a weak perturbation

[11]. Using mathematical convention, it is defined as

F (φ) =
T0 − T1

T0

where T0 is the period of the oscillator without a perturbation and T1 is the cycle

period of the oscillation with the perturbation which is a function of the time when

oscillator receives the perturbation, or the phase. Usually, the phase concept is used

to denote the perturbation time, defined as φ = ts/T0, where ts represents the elapsed

time after the previous spiking of the oscillator to the moment the perturbation comes

(Figure 1.2).

The shape of PRCs could be very different according to various models [41].

For neurons, Hansel et al. [35] identified two neural PRCs, Type I and Type II
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Figure 1.2 Voltage trace of a spiking neuron with a perturbation given at ts/T0.
Reprinted from [11].

(Figure 1.3). For the neurons with Type I PRC, the phase is only advanced by

a small depolarization (Figure 1.3(a)), while for Type II, the phase either can be

advanced or can be delayed by a small depolarization, depending on the arriving

time of the perturbation (Figure 1.3(b)). If a perturbation comes early, the phase

is delayed and if it comes late, the phase is advanced. Ermentrout showed that this

classification of PRCs for neurons is closely related to the classification for membrane

properties of neurons [26]. When a neuron is depolarized by an applied current, it

will repetitively fire with some frequency if the current is big enough. For gradually

increasing currents, if the firing frequency can be arbitrarily small near the onset of

firing (Figure 1.4(a)), it is called Type I excitable membrane. If the frequency starts

with some non-zero number, i.e., there is a threshold firing frequency below which

the neuron can not fire (Figure 1.4(b)), it is called Type II excitable membrane [36].

Visually, the f − I curve is continuous for Type I and discontinuous for Type II.

Ermentrout showed that neurons with Type I PRCs exhibit Type I excitability and

neurons with Type II PRCs exhibit Type II excitability.

The strength of the perturbation is ignored in the phase response curve. It is

assumed to be small and can be applied to the weak coupling oscillatory neurons
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Figure 1.3 (a) Type I phase response curve of a neuron. (b) Type II phase response
curve of a neuron. Reprinted from [11].

(a) (b)

I I

ff

Figure 1.4 The relation between the firing frequency of a neuron and the applied
current. (a) Type I excitability. (b) Type II excitability.

[27]. When one considers the synaptically coupled neurons, the postsynaptic neuron

is affected by the action potential from the presynaptic one. This influence may not

be as small as the assumption needed to define the PRC. But the idea can still be

used to measure the change in the period of the postsynaptic neuron induced by the

action potential. The PRC generated using an action potential or without the weak

coupling assumption is often called spike time response curve (STRC). In our work,

we consider the neurons coupled by chemical synapses, the strength of which are not

necessarily weak. Thus we use the name ‘STRC’ without the weak coupling condition,
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but many definitions and theories not related to the weak coupling on the PRCs can

be applied on the STRCs.

There are many different ways to obtain the PRCs for model oscillators. If the

perturbation is weak, some typical mathematical approaches are proposed to calculate

the PRCs, e.g., Winfree’s approach [41] and Kuramoto’s approach [41]. Without the

weak coupling condition, PRCs for some simple model oscillators can be analytically

calculated, e.g., integrate-and-fire model and the radial isochron clock, etc [31]. But

for most biological models, the PRCs can not be exactly calculated, but can be

generated numerically or experimentally [31, 41].

PRCs and STRCs are often used to predict the phase-locked activity of neuronal

networks [2, 3, 12, 14, 20, 53]. For a network in which all homogeneous neurons

are identically coupled, exact synchrony can be obtained only when the PRC has

positive slope at phase zero [2]. Furthermore, the stability of synchrony can be lost by

increasing the slope of the PRC [2]. Maran and Canavier derived the conditions based

on the PRCs of two neurons for the existence and stability of four different phase-

locked modes when the neurons are mutually coupled [53]. Oprisan and Canavier [64]

considered the effect of synaptic perturbation on the burst duration of an oscillator

and proposed the definition of burst resetting curve which was used to analyze the

phase locking of two reciprocally coupled neurons. In the above work, the PRCs

are all generated using a perturbation approximating the input from the presynaptic

neuron, so they are equivalent to STRCs. For neurons coupled in a network, given

the information how a single presynaptic action potential affects the status of the

postsynaptic, the network activity can be predicted.
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1.4 Overview of Thesis

It is often difficult to analyze a large network directly. Analyzing reduced small

networks is a useful way to understand the dynamics of the larger network. In our

work, given a large feedback network, we want to study smaller feed-forward networks

and then combine any obtained information to understand the feedback network.

Feed-forward networks may produce different kinds of information, for example, the

cycle period of the activity, the firing time, the activity phase the PRC, or the STRC,

etc. We use the information from the feed-forward network to predict the phase-locked

activity of the feedback network. We are also interested in the effects of short-term

plasticity, in particular of synaptic depression of the synapse.

There is much research on predicting the phase-locked activities of feedback

networks using the feed-forward information, e.g. phase response curves or spike

time response curves [2, 3, 11, 12, 20]. There are also many studies focusing on the

effect of the synaptic plasticity on the activity of the postsynaptic neuron as well as

their contributions on the associated networks [6, 7, 19, 22, 30, 37, 38]. But so far,

few work has connected these two subjects together to investigate the dynamics of a

network. In this study, we will consider these two topics together. We are combining

pieces of feed-forward information to predict the phase-locked activity of the feedback

network in which synapses show the properties of short-term synaptic plasticity.

In the network we consider, there are two neurons, A and B, reciprocally

coupled by inhibitory synapses. The activity phase of one neuron has an effect on

the activity of the other one, and vice versa. We determine the phase of activity

of the mutually inhibitory network from information obtained from two different

feed-forward inhibitory networks. The locked phase in the inhibitory network can

be determined by approximately combining the two functions of the feed-forward

systems. Our analysis has two parts corresponding to different intrinsic firing patterns

of these two neurons. In the first part (Chapters 2, 3 and 4), we assume that neuron
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A is oscillatory, while neuron B is not in Chapters 2 and 3. In Chapter 4, we apply the

method derived in the previous chapters to the pyloric network of the stomatogastric

ganglion, which consists of three neurons in our simplified model. The pacemaker

AB is an oscillator and the two followers, LP and PY, both have high-voltage resting

potentials. In the second part (Chapter 5), both neurons A and B are assumed to be

oscillatory.

The outline of this work is as follows. In Chapter 2, we study the phase of

activity in a reciprocally inhibitory network. We examine the conditions for the

existence and stability of phase-locked activity in a feed-forward inhibitory network

in which neuron A receives inhibition from neuron B by analyzing the dependence of

the period of A on the relative firing time of B. We obtain this dependency in the

feed-forward inhibitory network of B inhibiting A using the software XPPAUT [25].

On the other hand, the relationship between the phase of B and the period of A in

A to B feed-forward network was previously given in [51]. Given this information, in

Chapter 3, we determine the period of A and the activity phase of B in the mutually

coupled network using a simplified Morris-Lecar model [51, 61, 69]. By analyzing

this model, we adjust the relation function obtained from the feed-forward network

to be applicable to the feedback network. In chapter 4, we extend the work to the

pyloric network and construct a 4-dimensional map for the phase-locked activity of

a pacemaker driven feed-forward network. We then derive a 6-dimensional map for

the phase-locked activity of the network in the presence of a feedback synapse to the

pacemaker. We show how feedback can stabilize the ensuing periodic solution. In

Chapter 5, the two neurons we consider are both oscillators with tonic spiking patterns

but having slightly different intrinsic periods. We use STRCs of these two neurons

to infer the activity of the feedback neuronal networks with inhibitory synapses. We

compare the phase-locked activity of the feedback network with and without the

synaptic depression and investigate the role of this synaptic plasticity in regulating
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the activity of the network. Chapter 6 is the discussion of this study and our future

work.



CHAPTER 2

PHASE-LOCKED ACTIVITY OF NEURONS IN A FEED-FORWARD

NETWORK

In order to understand the phase of activity in a reciprocally inhibitory network, first

we want to examine the conditions for the existence and stability of phase-locked

activity in a feed-forward inhibitory network in which neuron B inhibits neuron A.

We denote P̃ as the intrinsic period of neuron A (in the absence of input from B) and

T̃ as the intrinsic period of neuron B (in the absence of input from A). A schematic

plot of the voltage versus time is shown in Figure 2.1 for these two neurons.

T
~

P
~

Figure 2.1 Voltage traces for the two uncoupled neurons A and B.

2.1 Phase-locked Activity of a Feed-forward Network if the Period of

the Postsynaptic Neuron Linearly Changes with the Relative Firing

Time of the Presynaptic Neuron

Suppose that when t = 0 neuron A fires. Let t0 denote the time of B firing. P1 is the

time between subsequent A firings when the inhibition from B exists. t1 is the time

of B firing after the second A firing as shown in Figure 2.2. P1 depends on t0, the

relative firing time of B, so we can express P1 as a function of t0, f(t0).
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Figure 2.2 Voltage traces of neurons A and B, where B is the presynaptic cell and
A is the postsynaptic one with oscillatory trajectory.

For simplicity, first we suppose that f(t0) is a linear function, f(t0) = kt0+b (b >

0) shown in Figure 2.3. We let π be the mapping which maps t0 to t1. The fixed

point of this map satisfies t∗ = π(t∗). From Figure 2.2, t1 = π(t0) = (1− k)t0 + T̃ − b

and t∗ = T̃−b
k

.

b

0
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Figure 2.3 P1 = f(t0), where f is a linear function of t0. The fixed point is the
intersection of f(t0) and T̃ .

Results

We analyze the mapping π using some mathematical tools and obtain the

following conditions for 1:1 firing phase-locked activity of the feed-forward network.

For different k values, the specific phase-locked conditions are different.

When 0 < k < 1, the necessary conditions for the phase-locked activity are as

follows: If T̃ ≤ P̃ , then (1−k)T̃ ≤ b ≤ T̃ . If T̃ > P̃ and k ≥ P̃ /T̃ , then T̃−P̃ < b ≤ T̃ .
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If T̃ > P̃ and k < P̃/T̃ , then (1 − k)T̃ < b ≤ T̃ . The sufficient conditions are as

follows: If T̃ ≤ P̃ , then (1 − k)T̃ ≤ b < T̃ . If T̃ > P̃ and (1 − k)T̃ < P̃ , then

(2− k)T̃ − P̃ < b < T̃ . If T̃ > P̃ and (1− k)T̃ ≥ P̃ , no sufficient condition exists for

this case.

When 1 < k < 2, the necessary condition for the phase-locked activity is (2 −

k)T̃ − P̃ < b < T̃ . The sufficient condition is T̃ − P̃ < b < (2− k)T̃ .

For the special case when k = 0, 1, 2, we have the following analysis.

When k = 0, if b = T̃ , for any value of t0, (0 ≤ t0 ≤ T̃ ), t0 is a fixed point

which is neutrally stable. If b 6= T̃ , no fixed point exists.

When k = 1, the necessary condition and the sufficient condition are the same,

T̃ − P̃ < b < T̃ and the fixed point is t∗ = T̃ − b which is stable.

When k = 2, t1 = −t0 + T̃ − b. The necessary condition is b < T̃ and no

sufficient condition was found. If we pick appropriate initial value t0 guaranteeing 1:1

firing, there exists another type of periodic solution t1 = π(t0) and t0 = π(t1). In this

case, the period is 2T̃ , as shown in Figure 2.4, and 2T̃ = f(t0)+f(t1). The conditions

for guaranteeing 1:1 firing are T̃ − P̃ − b < t0 < T̃ − b and T̃ − P̃ − b < t1 < T̃ − b.

Combining these two inequalities, we obtain t0 should satisfy Max(T̃ − P̃ − b, 0) <

t0 < Min(T̃ − b, P̃ ).

Example

Suppose in the feed-forward network of B inhibiting A, B is a square wave with

the period 300 (time units) and the duration 100 and A is an oscillating neuron

governed by the Morris-Lecar model:
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Figure 2.4 When k = 2, there exists a period-2 solution, i.e., t1 = π(t0) and
t0 = π(t1) and the period of the network is 2T̃ .

dVA

dt
= −ḡCam∞(VA)(VA − ECa)− ḡKwA(VA − EK)− gLwA(VA − EL)− Isyn + Iext

dWA

dt
=

W∞(VA)−WA

τA

m∞(VA) = 0.5(1 + tanh
VA − 1

14.5
)

W∞(VA) = 0.5(1 + tanh
VA − 20

15
)

Isyn = ḡsyns(VA − Esyn)

ds

dt
=

 − s
τκ

Neuron B is non-active

1−s
τη

Neuron B is active

where the maximal conductances are ḡCa = 0.3, ḡK = 0.6, gL = 0.15, ḡsyn = 0.185;

the reversal potentials are ECa = 100, EK = −70, EL = −50, Esyn = −70, and

Iext = 7.5, τA = 150, τκ = 1 and τη = 1.
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We obtained the f function as shown in Figure 2.5, and k = 1, b = 160, i.e.

f(t0) = 160+t0. We calculated t∗ = T̃−b
k
≈ 240 using the mapping π described above.

On the other hand, the relative firing time at the steady state obtained directly from

the simulation by XPPAUT is 240 (Figure 2.6). These two results are consistent.
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Figure 2.5 Function f(t0) obtained from simulation by XPPAUT, which is a linear
function.

V

t

Figure 2.6 Simulation by XPPAUT. The black trace is the voltage of neuron A
and the red trace is the square wave for the voltage of neuron B. The right panel is
the zoom-in of the circled part in the left panel.
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2.2 Phase-locked Activity of a Feed-forward Network if the Relation

between the Period of the Postsynaptic Neuron and the Relative

Firing Time of the Presynaptic Neuron Is Nonlinear

Generally, the relationship between t0 and P1 is nonlinear. Let P1 = f(t0), then

t1 = π(t0) = t0 + T̃ − f(t0).

Necessary and sufficient conditions

To guarantee 1:1 firing, T̃ can not be too large, otherwise, A may fire twice

for every B firing. Therefore, T̃ must satisfy f(t0) > t0 + T̃ − P̃ . Since 0 ≤ t0 ≤ T̃ ,

T̃− P̃ ≤ t0+ T̃− P̃ ≤ 2T̃− P̃ . Let the maximum of f(t0) in the domain 0 ≤ t0 ≤ T̃ be

M and the minimum be m, i.e. m ≤ f(t0) ≤ M . The necessary condition for 1:1 firing

is M > T̃−P̃ and the sufficient condition is m > 2T̃−P̃ . Also, T̃ can not be too small.

The condition t0 + T̃ > f(t0) must be satisfied. Since 0 ≤ t0 ≤ T̃ ⇒ T̃ ≤ t0 + T̃ ≤ 2T̃

and m ≤ f(t0) ≤ M , the necessary condition for 1:1 firing is m < 2T̃ and the sufficient

condition is M < T̃ .

Existence and stability of the fixed point corresponding to a 1:1 phase-

locked firing solution

The fixed point t∗ satisfies t∗ = π(t∗) which implies f(t∗)− T̃ = 0. Let g(t0) =

f(t0)− T̃ , then t∗ is the root of g(t0). So the condition for the existence of the fixed

point is the same as the condition for the existence of the root of the new function

g(t0) in the domain 0 ≤ t0 ≤ T̃ . The number of the fixed points is the number of the

roots of g(t0) in 0 ≤ t0 ≤ T̃ . The necessary condition for the existence of the fixed

point is M > T̃ and m < T̃ .

From above, one of the sufficient conditions for 1:1 firing is M < T̃ , which

conflicts with the existence condition. Therefore, there does not exist sufficient

condition for 1:1 firing periodic solution.
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For the stability of the fixed point, if |π′(t∗)| < 1, i.e., 0 < f ′(t∗) < 2, the fixed

point t∗ is stable.

The curve of the function f(t0) has various shapes associated with different

models. The conditions we derived above can be applied to any relation function.

If the function is explicitly formulated, the fixed point can be calculated and the

stability conditions can be analytically checked. For the models in Chapter 3, we

find the function f(t0) is a piecewise linear function (Figure 2.7(a)), so existence and

stability of the fixed point can be analytically calculated. But for most models, the

relation between the new period of the postsynaptic neuron and the relative firing

time of the presynaptic neuron is non-linear and it is hard to analytically express their

relation. Figure 2.7(b) shows the dependence of the new period of a R15 neuron on

the relative firing time of a stimulus [17, 20]. It is impossible to find a mathematical

function to describe this curve, but the existence and stability of the fixed point can

still be examined by geometric methods. The intersection of the curve and the line

for the period of the presynaptic cell yields the fixed point and the stability can be

checked by observing the slope of the curve at the fixed point.
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Figure 2.7 (a) f(t0) is a piecewise linear function. (b) The relation of the new
period of a R15 neuron with the relative firing time of a stimulus. Reprinted from
[20].



CHAPTER 3

PHASE-LOCKED ACTIVITY OF NEURONS IN A FEEDBACK

NETWORK

We consider two reciprocally inhibitory neuronal networks and try to find the phase-

locked activity of the feedback system from the two feed-forward systems. Here, we

suppose neuron A oscillates through its intrinsic properties and B has a high-voltage

resting potential. We examine the phase-locked activities of A and B when they

are reciprocally coupled by two different synapses. In section 3.1, we consider non-

depressing synapses both from neuron A to B and from B to A. In section 3.2, the

synapse from neuron B to A is kept non-depressing, while the synapse from A to B

is allowed to be depressing.

3.1 Phase-locked Activity of Two Neurons in a Feedback Network with

No Synaptic Depression

Model

Each neuron is modeled with equations of the form:

ε
dV

dt
= f(V, W )

dW

dt
= g(V, W )

(3.1)

where V denotes the voltage and W is the recovery variable. f(V, W ) = 0 is the

V -nullcline and assumed to be of cubic shape and g(V, W ) = 0 is the W -nullcline and

assumed to be sigmoidal [69]. We study the network dynamics in the phase plane

by setting ε small enough. Thus, the above equation has two time scales, i.e. the

system is singularly perturbed [34, 65, 79]. It is known that for ε small and positive,

22
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there is a periodic solution near the solution of the degenerate system, i.e. the system

obtained from Equations (3.1) by setting ε = 0 [60]. We can use reduced equations

to analyze the original dynamics of Equation (3.1). The slow reduced equations are

obtained by setting ε = 0 in Equation (3.1) to obtain

f(V, W ) = 0

dW

dt
= g(V, W )

(3.2)

The fast reduced equations are obtained by rescaling time in Equation (3.1) by ξ =

t/ε, and then setting ε = 0,

dV

dξ
= f(V, W )

dW

dξ
= 0

(3.3)

Equation (3.1) can have a stable fixed point on the left branch of the V -nullcline

(Figure 3.1(a)) or on the right branch (Figure 3.1(b)), or on the middle branch leading

to a stable oscillation (Figure 3.1(c)) [60, 69]. We suppose A is an oscillating neuron

and B has a stable fixed point on the right branch of the V -nullcline. If there exists

Figure 3.1 Three different stable steady states of free system. The trajectories
with one arrow correspond to the solutions for the slow reduced Equations (3.2). The
trajectories with two arrows correspond to the solutions for the fast reduced Equations
(3.3). (a) A stable fixed point on the left branch of the V -nullcline corresponds to
a low-voltage resting potential. (b) A stable fixed point on the right branch of the
V -nullcline corresponds to a high-voltage resting potential. (c) The fixed point on
the middle branch corresponds to a stable oscillation.

inhibitory influence from one neuron to the other, the V equation of the postsynaptic

neuron includes an additional term which represents the synaptic current from the
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presynaptic neuron to it [69, 70].

ε
dV

dt
= f(V, W )− Isyn

dW

dt
= g(V, W )

Isyn = ḡsyns(V − Esyn)

ds

dt
=


−s/τη the presynaptic neuron is active

−s/τκ the presynaptic neuron is inactive

where ḡsyn denotes the maximal synaptic conductance and Esyn denotes the synaptic

reversal potential. s is the gating variable representing the fraction of open synaptic

channels. When the presynaptic neuron fires, s is set to 1. Assume τκ � 1 and τη � 1,

then s decays with fast time constant when the neuron is inactive and remains 1 when

the neuron is active. The effect of inhibition is to lower the V -nullcline in the V −W

phase plane.

First suppose A is the presynaptic neuron and B is postsynaptic. When the

inhibitory synapse is non-depressing, the relative firing time of B, t0, remains constant

as the period of A, P̃ changes. Thus, the phase of B, φ, which is defined as the ratio

of the relative firing time of B to the period of A, i.e., φ = t0
P̃

, is a monotonically

decreasing function of P̃ , as shown in Figure 3.2(a) [51].

On the other hand, assume B is the presynaptic neuron and A is postsynaptic.

Suppose that the speed of the neuron traveling along the cubic nullcline only depends

on the value of W on the left or right branch of the nullcline, and not on the value

of the synaptic variable. From Chapter 2, the period of A, P1, is a function of the

relative firing time of B, t0, thus, P1 = f(t0) as shown in Figure 3.2(b), which is

obtained from simulation of the Morris-Lecar model using XPPAUT [25]. In Figure

3.3, WL 0 is the local minimum of the intrinsic V -nullcline of neuron A, i.e., the

V -nullcline without any synaptic input (the upper cubic curves in Figure 3.3). WR 0
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Figure 3.2 (a) Phase of B as a function of period of A when the synapse from A
to B is non-depressing (b)Period of A as a function of relative firing time of B in
feed-forward network.

is the local maximum of the intrinsic V -nullcline of neuron A. WL 1 represents the

local minimum of the V -nullcline of neuron A when A receives maximum synaptic

inhibition from neuron B (the lower cubic curves in Figure 3.3). WR 1 is the local

maximum of the V -nullcline of A when it is maximally inhibited. T1 is the time when

neuron A reaches WR 1 starting from WL 0 on the right branch, T2 is the time for

neuron A to travel from WR 1 to WL 1 on the left branch. See Figure 3.3. T3 is the

time when neuron A reaches WR 0 from WL 0 on the right branch. T4 is the time

for neuron A to travel from WR 0 to WL 1 on the left branch. On Part I in Figure

3.2(b), neuron B fires when A is between WL 0 and WR 1 on the right branch of the

upper nullcline corresponding to s = 0. The schematic trajectory of A is shown in

Figure 3.3(a). Since the speed on the upper branch is the same as on the lower branch

corresponding to s = 1, the times A spends on the right branches are the same for

different t0 values. The trajectories of A on the left branch are the same, from WR 1

to WL 1. So when t0 < T1, the cycle period is a constant, independent of the relative

firing time of B. On Part II, B fires when A is between WR 1 and WR 0 on the right

branch. At t = t0, A jumps down to the left branch of s = 1 nullcline, as shown in

Figure 3.3(b). The larger t0, the longer the trajectory is and the longer the time is.

That’s why on Part II in Figure 3.2(b), P1 increases with t0. On Part III in Figure
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3.2(b), B fires when A is inactive. The trajectory of A is shown in Figure 3.3(c). For

the same reason as on Part I, the speed on the s = 0 nullcline and the speed on the

s = 1 nullcline are the same on the left part. The time is determined only by WR 0,

WL 0 and WL 1. So the total time is a constant, T3 + T4.
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Figure 3.3 Trajectories of A and B in the feed-forward network B inhibiting A.
(a) Neuron B fires before A reaches WR 1. The period of A is independent of the
relative firing time of B when t0 < T1, corresponding to Part I in Figure 3.2(b). (b)
Neuron B fires after A passes WR 1 and before it reaches WR 0. The period of A
linearly increases with t0, corresponding to Part II in Figure 3.2(b). (c) Neuron B
fires after A jumps from WR 0 to the left branch. The period of A is constant again,
independent of the firing time of B for t0 > T3, corresponding to Part III in Figure
3.2(b). The right panels are schematic plots of voltage traces of A and B for these
three cases.

While in the feedback system, B oscillates too, and A always fires when B is

active. Schematics of the trajectories of A and B in the feedback network are shown

in Figure 3.4.
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Figure 3.4 In the feedback network, A jumps to the right branch from its inhibited
state, i.e., the local minimum of the lower nullcline. B is forced to leave its high-voltage
resting potential and jump to the left branch when A fires and spends t0 time to
recover and fires again. The lower panel is the schematic plot of the traces of A and
B when they mutually inhibit one another.

In the feed-forward network (Figure 3.3), before A receives inhibition from B,

A is on its intrinsic V -nullcline, so at the beginning of a cycle, A jumps from WL 0

to the right branch. In the feedback network, since B has a high voltage resting

potential, A always jumps from the inhibited state, i.e., from the local minimum of

its lower V -nullcline WL 1. Therefore, the time A spends on the right branch of its

V -nullcline is different, namely, the active durations of A are different when in the

feed-forward network and when in the feedback network. Let Tact A be the active

duration of neuron A in the feed-forward network and T̂act A be the active duration

of neuron A in the feedback network and 4T = T̂act A−Tact A. So, we have to adjust

this difference 4T which is the time spent on the right branch for A from the upper

left knee (s = 0) to the lower left knee (s = 1), i.e., from WL 0 to WL 1.
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After adjusting, the new curve P1 = f̂(t0) has the same shape, but different

scale with the original curve obtained from the feed-forward network. See Figure 3.5.

There are three parts on this curve. On Part I, f̂(t0) is a constant, on Part II, f̂(t0)
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Figure 3.5 Period of A as a function of relative firing time of B in a feedback
network.

linearly increases and on Part III, f̂(t0) is constant again.

Combining the feed-forward information, the map π : P0 → P1 can be defined

as: P1 = π(P0) = f̂(P0g(P0)). The fixed point of this map satisfies P ∗ = π(P ∗), i.e.,

P ∗ = f̂(P ∗g(P ∗)). Suppose f̂(t0) = kt0 + b, k 6= 0, then P ∗ = kP ∗g(P ∗) + b ⇒

g(P ∗) = P ∗−b
kP ∗

. So, the fixed point is the intersection point of the function g(P ) and

the function h(P ) = P−b
kP

. See Figure 3.6 and Part II in Figure 3.7.
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Figure 3.6 Solution of the feedback network for part II of f̂ function. The
intersection point of g and h corresponds to the solution of the feedback network.

For Part I of f̂ , k = 0, b = T1 +T2 +4T , P1 = T1 +T2 +4T , ∀t0 ∈ (0, T1 +4T ),

i.e., ∀φ ∈ (0, T1+4T
T1+T2+4T

), corresponding to Part I in Figure 3.7. Similarly, for Part
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III, k = 0, b = T3 + T4 + 4T , P1 = T3 + T4 + 4T , ∀t0 ∈ (T3 + 4T, P̃ + 4T ),

i.e., ∀φ ∈ ( T3+4T
T3+T4+4T

, P̃+4T
T3+T4+4T

), corresponding to Part III in Figure 3.7. Since g

is decreasing and h is increasing, there is only one intersection point for these two

curves. If φ(T1 +T2 +4T ) < T1+4T
T1+T2+4T

, i.e., t0 < T1 +4T , the intersection point is on

Part I and B fires when A is active (Figure 3.3(a)). If φ(T3 + T4 +4T ) > T3+4T
T3+T4+4T

,

i.e., t0 > T3 +4T , the intersection point is on Part III and B fires when A is inactive

(Figure 3.3(c)). Otherwise, the fixed point is on Part II and B fires when A is active

(Figure 3.3(b)) and the activity of A and B are anti-phase. If the fixed point is on

Part I or Part III, f̂ is constant and π′ ≡ 0, thus, the fixed point is stable. Otherwise,

the fixed point is on Part II and P1 = π(P0) = f̂(t0). Since t0 is independent of P0,

π′ ≡ 0 and the fixed point is also stable. From simulation by software XPPAUT, we

also find the fixed point on any part of the three is stable.
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Figure 3.7 Solution of the feedback network of A and B mutually inhibited. The
intersection point of these two curves corresponds to the phase-locked activity of the
feedback network.

Example

In the reciprocally inhibitory network, the equations for the system are the

following.

dVA

dt
=− ḡCam∞(VA)(VA − ECa)− ḡKWA(VA − EK)− gL(VA − EL)

+ Iext A − ḡsyn BsB(VA − Esyn)
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dWA

dt
=


W∞(VA)−WA

τL A
VA < V th

W∞(VA)−WA

τR A
VA > V th

dVB

dt
=− ḡCam∞(VB)(VB − ECa)− ḡKWB(VB − EK)− gL(VB − EL)

+ Iext B − ḡsyn AsA(VB − Esyn)

dWB

dt
=


W∞(VB)−WB

τL B
VB < V th

W∞(VB)−WB

τR B
VB > V th

dsA

dt
=


− s

τκ A
VA < V th

− s
τη A

VA > V th

dsB

dt
=


− s

τκ B
VB < V th

− s
τη B

VB > V th

The maximal conductances are ḡCa = 0.3, ḡK = 0.6, gL = 0.15; the reversal potentials

are ECa = 100, EK = −70, EL = −50, Esyn = −70, and Iext A = 7.5, Iext B =

8.5, ḡsyn A = 0.1, ḡsyn B = 0.08, τL A = 450, τL B = 500, τR A = 300, τR B = 25, τκ A =

τκ B = 1, 1/τη A ≈ 0, 1/τη B ≈ 0.

When A inhibits to B, we obtain the g function as shown in Figure 3.2(a), and

t0 = 374. When B inhibits A, the parameters for f function as shown in Figure 3.2(b)

are: T1 = 113, T3 = 150, T1 +T2 = 1265, T3 +T4 = 1525. After adjusting f , we obtain

f̂ function as shown in Figure 3.5, and 4T = 43.

Combining the feed-forward information, we have two intersecting curves as

shown in Figure 3.7. The intersection point is on Part III of the f̂ function, so the

fixed point for the system is P ∗ = 1568 and φ∗ = t∗

P ∗
= 374

1568
≈ 0.2385. This result is

consistent with the result we obtained directly from the simulation by XPPAUT.
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Figure 3.8 Voltage traces of A and B when they are mutually inhibited, obtained
from the simulation in XPPAUT. Here, φ∗ ≈ 0.2386.

3.2 Phase-locked Activity of Two Neurons in a Feedback Network with

Synaptic Depression

Model

Synaptic depression is a common form of short-term plasticity in the central and

peripheral nervous systems [6, 82]. With synaptic plasticity, the synaptic strength is

not a constant, but depends on the available synaptic resources, which is related to

the period of the oscillatory neuron. Synaptic depression describes the phenomenon

that the synaptic strength decreases as the frequency of the neuron increases. Thus,

the dynamics of s is governed by the following equation.

ds

dt
=


− s

τκ
the presynaptic neuron is inactive

− s
τη

the presynaptic neuron is active

s is set to the value of d when the presynaptic neuron fires. d represents the fraction

of available synaptic resources, which is governed by the following equation [51].

dd

dt
=


1−d
τα

the presynaptic neuron is inactive

− d
τβ

the presynaptic neuron is active

(3.4)
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Now we are considering the reciprocally inhibitory network with depressing synapse

from A to B and non-depressing synapse from B to A. For this case, the trajectories

of A and B are shown in Figure 3.9, where, Pn is the period of A in the nth cycle, tn

is the relative firing time of B in the (n + 1)th cycle and sn
A represents the value of

sA when A fires for the (n + 1)th time.
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Figure 3.9 Reciprocally inhibitory network with depressing synapse. The upper
panel shows the trajectories of neurons A and B in their phase planes. Since the
synapse from A to B is depressing, the inhibitory strength B receives when A fires
depends on the available synaptic resources at that moment, i.e., sn

A. The lower panel
shows the schematic plot of traces of A and B, as well as the traces of sA, sB and d.
When A fires, sn

A is set to the value of dn, n = 0, 1, 2, · · · . sB is a square wave because
the synapse from B to A is non-depressing.

We will again suppose the phase function of B obtained from the feed-forward

network A inhibiting B is φn = tn
P̃

. Since the inhibitory synapse from A to B is

depressing, tn changes with the duration of A (the time when A is active) and the value
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of the gating variable s. Previously, in [51], the relationship between the duration of

A, the gating variable and the relative firing time of B is shown to be

ḡsyn Asn
Aexp(−(tn − Tact A))+/τκ A) + MW0exp(−tn/τL B) = g∗s (3.5)

where sn
A is the value of s when A fires for the (n+1)th time. (tn−Tact A)+ = tn−Tact A

if tn > Tact A or 0 if tn < Tact A. Tact A is the time when A is active; and W0 is the value

of WB when B leaves its high-voltage steady state and jumps to the left branch; M is

a positive constant, the proportionality factor that indicates that a jump point with

a smaller value of WB corresponds to stronger inhibition; g∗s is the critical synaptic

conductance below which the synapse is too weak to keep neuron B inactive. Our

goal is to examine the convergence of the sequence sn
A or tn.

For the system described above, the value of sn
A varies in the next cycle period.

Define G as the relative firing time tn as a function of sn
A which can be numerically

calculated from Equation (3.5).

Suppose the period function of A, P1, obtained from the feed-forward network B

inhibiting A is f(t0). Since the synapse from B to A is non-depressing, we can assume

that the period function of A is of the same shape as that in the non-depressing

case (Figure 3.2(b)). Since the duration of A, Tact A, in the feed-forward network is

different from the duration in the feedback network T̂act A, we have to adjust the curve

in Figure 3.2(b), too. The difference is due to the time spent on the right branches

of V -nullclines for A to go from the left knee of the nullcline with sB = 1 to that of

the nullcline with sB = 0. The time difference 4T = T̂act A − Tact A is a constant,

measuring the time for A to go from WL 1 to WL 0 as shown in Figure 3.10.

After adjustment, the new curve f̂(t0) has the same shape as the original curve

obtained from the feed-forward network as shown in Figure 3.5. Also, for the phase

function of B, since the duration of A changes, we have to adjust it, replacing Tact A
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Figure 3.10 Different duration of A between in feed-forward and feedback networks.
In the feed-forward network, at the beginning of each cycle, neuron A jumps from
WL 0 to the right branch, while in the feedback network, A jumps form WL 1 to the
right branch. 4T is the time difference of the duration of A when in the feed-forward
network and when in the feedback network.

with T̂act A in Equation (3.5). Define Ĝ as the relative firing time tn as a function of

sn
A, tn = Ĝ(sn

A). See Figure 3.11.

0

t

I

1

P

X Y

Figure 3.11 Period of A as a function of the relative firing time of B in the feedback
network. X = T1 +4T and Y = T3 +4T , the same as that in Figure 3.5.

From the d governing equation (3.4), dn+1 = 1−exp(−Pn+1−T̂act A

τα A
)(1−dnexp(− T̂act A

τβ A
)),

since when A fires, the value of sA is reset to the value of d, we obtain the 1-

dimensional map

sn+1
A = π(sn

A) = 1− exp(−Pn+1 − T̂act A

τα A

)(1− sn
Aexp(− T̂act A

τβ A

)) (3.6)

Suppose Pn+1 = kĜ(sn
A) + b

The fixed point of sn
A satisfies
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s∗A = 1− exp(−kĜ(s∗A) + b− T̂act A

τα A

)(1− s∗Aexp(− T̂act A

τβ A

))

⇒

Ĝ(s∗A) =
T̂act A − b + τα Aln

1−s∗Ae
− T̂act A

τβ A

1−s∗A

k
(3.7)

Geometrically, s∗A is the intersection point of Ĝ(sA) and the right hand side

function of Equation (3.7), H(sA) =
T̂act A−b+τα Aln

1−sAe
− T̂act A

τβ A

1−sA

k
. See Figure 3.12.
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Figure 3.12 The intersection point of these two curves is the solution of feedback
inhibitory network with depressing synapse. H is the function on right hand side of
Equation (3.7). Ĝ can be obtained form Equation (3.5).

For Part I or Part III, the period of A, P1, is a constant and s0
A is a constant,

too, which corresponds to the vertical parts of the curve as shown in Figure 3.12,

where s0
A(X) = s0

A(t0 = X) = g∗s−MW0e−X/τL B

ḡsyn Ae−(X−T̂A)+/τκ A
and s0

A(Y ) = s0
A(t0 = Y ) =

g∗s−MW0e−Y/τL B

ḡsyn Ae−(Y−T̂A)+/τκ A
. Since the slope of Ĝ is always less than the slope of H on Part II,

there exists only one intersection point for these two curves.

From the 1D map (3.6), if the fixed point is on Part I or Part III, Pn+1 in (3.6)

is constant and

π′ = exp(− P̃ − T̂act A

τα A

)exp(− T̂act A

τβ A

)
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This value is greater than 0 and less than 1, so the fixed point on Part I or Part III

is stable. If the fixed point is on Part II, Pn+1 = kĜ(sn
A) + b. At the fixed point s∗A,

π′(s∗A) = exp(−kĜ(s∗A) + b− T̂act A

τα A

)[
kĜ′(s∗A)

τα A

(1−s∗Aexp(−−T̂act A

τβ A

))+exp(−−T̂act A

τβ A

)]

Since the relation between tn and sn
A is positive, Ĝ′(sA) > 0 and π′(sA) > 0. When

k

)( As� �

*k

1

Figure 3.13 Dependency of π′(sA) on k on Part II. There exists a peak value of
π′(sA) at k∗.

k = 0, π′(sA) = exp(− b−T̂act A

τα A
)exp(− T̂act A

τβ A
) < 1. When k → ∞, π′(sA) → 0. A

schematic plot of π′(sA) versus k is shown in Figure 3.13. π′(sA) reaches its maximum

at

k∗ =
τα A

Ĝ(sA)
[1−

Ĝ(sA)exp(− T̂act A

τβ A
)

Ĝ′(sA)(1− sAexp(− T̂act A

τβ A
))

]

At the steady state sA = s∗A

π′(s∗A)|k∗ = (1− s∗A)
Ĝ′(s∗A)

Ĝ(s∗A)

The instability happens only when Ĝ′(s∗A) > Ĝ(s∗A) which needs τκ A and τL B are

very large. This will push the fixed point away from Part II to Part III, where the

fixed point is stable. So, realistically, the fixed point of the feedback network with

synaptic depression remains stable in each part.
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Example

Use the same equations as in the example of the non-depressing synapse part

and add the d equation (Equation (3.4)) for the depressing synapse from A to B. The

maximal conductances are ḡCa = 0.3, ḡK = 0.6, gL = 0.15; the reversal potentials

are ECa = 100, EK = −70, EL = −50, Esyn = −70, and Iext A = 7.5, Iext B =

7.5, ḡsyn A = 0.1, ḡsyn B = 0.08, τL A = 1200, τL B = 1500, τR A = 1000, τR B =

25, τκ A = 600, τκ B = 200, 1/τη A ≈ 0, 1/τη B ≈ 0, τα = 1500, τβ = 1800.

The adjusted function f̂ function from the feed-forward network B inhibiting A

is shown in Figure 3.14, where X = 300, Y = 645, and the linear function for Part II

is kt0 + b = 2.1275t0 + 2861.7.

0

t

I

1

P

Figure 3.14 Period of A as a function of relative firing time of B in feedback
network. f̂ is adjusted from f in the feed-forward network.

We obtain the values of the parameters in Equation (3.5) from the feed-forward

network A inhibiting B and replace Tact A with T̂act A. T̂act A = 633.5, M = 0.5687, W0 =

0.384, g∗s = 0.091. With these parameter values, we have the two curves shown in

Figure 3.15 and t∗0 = 453 which is obtained from Matlab.
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Figure 3.15 The starred curve is the Ĝ function and the dotted curve is the H
function, generated numerically in Matlab. The fixed point is the solution of the
feedback network with depressing synapse.



CHAPTER 4

PHASE-LOCKED ACTIVITY OF TRI-PHASIC PYLORIC

NETWORK OF CRUSTACEAN STOMATOGASTRIC GANGLION

We apply our method to the pyloric system of the crustacean stomatogastric ganglion

(STG). The STG of the crab or lobster has been used to investigate the basic

properties of neurons and the synapses between them [58, 23]. In the simplest

network model of this system, there are three groups of neurons. The AB neuron

and PD neuron are co-active and function as the pacemaker pair of this network.

AB sends feed-forward inhibitory synapses to LP and PY. Those two cells mutually

inhibit one another and there is a feedback inhibitory synapse from LP to PD. See

Figure 4.1. The left panel is a schematic diagram of this network. The right panel

is voltages traces of AB, LP and PY taken from experiment. Hooper has shown that

the LP and PY neurons fire at the same phases relative to AB firing over a range of

frequencies of the pacemaker pair AB/PD [37]. In later studies, Manor et al. [51]

and Mouser et al. [62] suggested that synaptic depression could help to maintain

these phase relationships. Neither of these studies included the feedback synapse

from LP to the pacemaker pair AB/PD which we will do in our study. However,

in our model, we simplify AB/PD and assume that the feedback synapse is directly

to AB. We will derive a method of combining a set of feed-forward information to

infer the activity of the tri-phasic network as a whole. In particular, since AB is

the pacemaker of this network, without the feedback synapse from LP to AB, the

phase-locked activity of this network is completely determined by the rhythm of AB.

We consider this partial network without the LP to AB synapse as a feed-forward

network in which AB sends feed-forward inhibitory synapses to LP and PY and those

two cells are mutually inhibited. We take as the other feed-forward network the one

39



40

in which LP sends a feed-forward inhibitory synapse to AB. We then combine these

two pieces feed-forward information to determine activity of the feedback network.

First, in section 4.1 we examine the phase-locked activity of the neurons in the partial

network without the LP to AB synapse. Then, we investigate how the synapse from

LP to AB influences the activity of this network. In sections 4.2 and 4.3, we take this

feedback synapse into account and investigate the phase-locked activity of the entire

network as well as the effect of this feedback synapse on the activity of this network.

Figure 4.1 Triphasic rhythm of the pyloric network of STG. The left panel is a
schematic diagram of the network. AB sends feed-forward inhibitory synapses to LP
and PY which mutually inhibits one another and there is a feedback synapse from LP
to AB/PD. The right panel is voltages traces of biological AB, LP and PY neurons,
reprinted from [62].

4.1 Activity of the Tri-phasic Pyloric Network without the Feedback

Synapse from LP to AB/PD

In this section, we consider the feed-forward network comprised of AB, LP and PY,

in which AB sends feed-forward inhibitory synapses to LP and PY and these two

follower cells are mutually inhibited. Mouser et al. [62] derived the steady state
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phases of LP and PY as a function of the period of AB. Here, we derive a map

that determines these phases cycle by cycle. This map will then allow us to check

the stability of the ensuing phase-locked solutions. Since AB is the pacemaker, the

period of this network is determined by the frequency of AB. We denote the active

duration of AB as TAB and the period of AB as P which is the period of the network

as well. Both are constant in each cycle. In the ith cycle, i = 1, 2, · · ·, the delay firing

times of LP and PY after AB firing are denoted as tiLP and tiPY , respectively, and the

active duration of LP and PY are denoted as T i
LP and T i

PY , respectively. Since we

incorporate the short-term synaptic depression of LP and PY, in this model, there

are two depression variable, dLP for LP and dPY for PY. In the ith cycle, the value

of dLP at the moment LP fires is denoted as di
LP and di

PY represents the value of dPY

when PY fires (Figure 4.2).

Without any synaptic coupling, AB is an oscillator whose phase plane correspon-

ds to the situation in Figure 3.1(c) of Chapter 3, the fixed point on the middle branch

of the V -nullcline. LP and PY have high-voltage resting potentials corresponding

to the situation as shown in Figure 3.1(b) of Chapter 3, fixed points on the right

branches of their V -nullclines in the phase plane. We assume the moment AB fires is

the beginning of each cycle, t = 0. When AB fires, it sends feed-forward inhibitory

synapses to LP and PY, delaying the firing of these two follower neurons. AB remains

active for the time TAB during which time both LP and PY are silent. After the delay

time tiLP , LP fires and also sends an inhibitory synapse to PY. At the time t = tiPY ,

PY escapes from the inhibition of AB and LP and simultaneously sends feedback

inhibition to LP, stopping the bursting activity of LP returning it to its silent state.

After T i
PY time, AB fires again and inhibits LP and PY, so LP is further inhibited

and PY returns the silent state. This time is the end of the ith cycle and also the

beginning of the (i + 1)th cycle. Here, we assume the firing of PY is later than the

firing of LP, i.e., tiLP < tiPY , due to their intrinsic properties, which is experimentally
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shown by Rabbah and Nadim [66]. A schematic plot of the voltage traces of AB, LP

and PY is shown in Figure 4.2.
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Figure 4.2 Voltage traces of neurons AB, LP and PY in the feed-forward tri-phasic
pyloric network of STG. AB is the pacemaker of this network and LP and PY are
followers. P is the period of AB. The superscript i denotes the value of the associated
variable in the ith cycle. tiLP and tiPY are delay firing times of LP and PY, respectively,
after AB spikes. T i

LP and T i
PY are active durations of LP and PY, respectively. di

LP

is the value of the depression variable for LP at the moment it fires and di
PY is the

value of the depression variable for PY at the moment it fires.

The neurons in this network are modeled by Morris-Lecar type equations.

dVx

dt
=− ḡCam∞(Vx)(Vx − ECa)− ḡKWx(Vx − EK)− gL(Vx − EL)

+ Iext x − Isyn x

dWx

dt
=

W∞(Vx)−Wx

τW,x(Vx)

(4.1)

where x represents AB, LP or PY. Vx is the voltage of x, Iext x is the applied current,

EL is the resting potential of the leak current and ECa and EK are reversal potentials

for Ca2+ and K+ currents, respectively. gL is the conductance for the leak current,

ḡCa is the maximal Ca2+ conductance and ḡK is the maximal K+ conductance. If

there is no synaptic input from other neurons, Isyn x = 0, otherwise, Isyn x represents

the inhibitory synaptic currents from the presynaptic neurons. Wx is the recovery



43

variable of K+. m∞ and W∞ are sigmoidal functions of Vx,

m∞(Vx) = 0.5(1 + tanh
Vx − V1

V2

)

W∞(Vx) = 0.5(1 + tanh
Vx − V3

V4

).

where V1, V2, V3 and V4 are constants related to the shape of the sigmoidal functions.

For simplicity, we assume W∞(Vx) = 0 and τW,x(Vx) = τW,x, on the left branch of

the V -nullcline in the phase plane. The synapse for each neuron is modeled by the

following equations.

ddAB

dt
=


d̂AB(P,TAB)−dAB

τα
VAB < Vth

−dAB

τβ
VAB > Vth

(4.2)

dsAB

dt
=


−sAB

τκ
VAB < Vth

−sAB

τζ
VAB > Vth

(4.3)

ddPY

dt
=


d̂PY (P,TPY )−dPY

τa
VPY < Vth

−dPY

τb
VPY > Vth

(4.4)

dsPY

dt
=


−sPY

τ1
VPY < Vth

−sPY

τ2
VPY > Vth

(4.5)

ddLP

dt
=


d̂LP (P,TLP )−dLP

τc
VLP < Vth

−dLP

τd
VLP > Vth

(4.6)

dsLP

dt
=


−sLP

τ3
VLP < Vth

−sLP

τ4
VLP > Vth

(4.7)

where Vth represents the threshold of the active state. sx is the gating variable for

x and dx is the depression variable. They evolve according to the above equations.

When x fires, sx is set to the value of dx at that moment. The traces of these two
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variables were shown in Figure 3.9 of Chapter 3. When Vx < Vth, dx increases towards

d̂x(P, Tx), where d̂x(P, Tx) is an increasing function of P − Tx. Specifically,

d̂AB(P ) = (1 + tanh((P − P1)/x1)/2

d̂LP (P, TLP ) = (1 + tanh((P − TLP − P2)/x2)/2

In these two equations, P1 determines the half-activation time of d̂AB and x1 determines

the steepness of d̂AB. We use this function as d̂AB, instead of a constant value, to

model the dependency of recovery from depression on the cycle period of the neuron,

which provide a better approximation of the two time scales of recovery observed in

the pyloric synapses [62]. Similarly, P2 determines the half-activation time of d̂LP and

x2 determines the steepness of d̂LP . We assume d̂PY = 1 for simplicity.

In this feed-forward network, AB sends feed-forward inhibitory synapses to LP

and PY which mutually inhibit one another. For the LP neuron, it is inhibited by

AB and PY, thus,

Isyn LP = ḡABsAB(VLP − Einh) + ḡPY sPY (VLP − Einh)

where ḡAB and ḡPY are the maximal synaptic conductances of AB and PY, respectively,

and Einh is the reversal potential of the inhibitory synapse. Similarly, the PY neuron

receives inhibition from AB and LP, thus,

Isyn PY = ḡABsAB(VPY − Einh) + ḡLP sLP (VPY − Einh)

where ḡLP is the maximal conductance of LP.

In the following, we derive a 4D map for the activity of this feed-forward

network, based on the delay firing times and depression variable values in a cycle.

First, we examine how the relative firing time of LP in the (i + 1)th cycle ti+1
LP

depends on the variables in the ith cycle. As shown in Figure 4.2, at the beginning

of the (i + 1)th cycle, LP is silent, inhibited by AB and PY. The firing of AB sends
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Figure 4.3 Trajectory of LP in the phase plane VLP − WLP . Without synaptic
input, LP has a high-voltage resting potential. When PY fires, LP jumps to the left
branch of the lower VLP -nullcline. When t = 0, AB fires and LP gets inhibited more,
LP fires until it reaches its jump curve (blue line). The arrowed trajectory shows the
trajectory of LP during a cycle. The red part is the trajectory of LP after AB firing
and before it turns active, corresponding to the time ti+1

LP .

LP an inhibitory synapse with strength ḡABs∗AB, where s∗AB = d∗AB, which we assume

constant in the feed-forward network. According to Equation (4.3), sAB decays with

time constant τζ during the time AB is active, then after the active duration of AB,

sAB decays with time constant τκ, usually, τζ � τκ. The synapse from PY decays

with time constant τ1. LP escapes from the inhibition and becomes active at t = ti+1
LP .

In the phase plane analysis, the trajectory of LP is shown in Figure 4.3. (V̂LP , ŴLP )

is the fixed point of the dynamical system for LP without synaptic input. When

PY fires, LP jumps from (V̂LP , ŴLP ) to the lower VLP -nullcline and travels along

the gradually rising nullclines. When AB fires, i.e., t = 0 in the (i + 1)th cycle,

LP is pushed away to a lower nullcline due to the inhibition from AB, then travels

downwards along the rising VLP -nullclines until it reaches its jump curve at t = ti+1
LP .

The jump curve is formed by the local minima of the V -nullclines with different

synaptic strength values from presynaptic neurons. The cell can jump to the active

state when it reaches any local minimum of the V -nullcline, i.e., when it reaches
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its jump curve [7, 62]. Therefore, ti+1
LP is determined by the synaptic strength from

AB neuron, the active duration of AB and the position of LP on the left branch of

the V -nullcline at the instant AB fires. The first two factors are fixed if there is no

feedback synapse from LP to AB, therefore, ti+1
LP is determined by the last factor, the

initial position of LP at the beginning of the (i + 1)the cycle. In the ith cycle, the

firing of PY stops the active state of LP and forces LP to jump to the left branch of its

V -nullcline. There it evolves in the silent state along the slowly rising nullclines due

to the decay of sPY . Therefore, the position of LP when AB fires is determined by

di
PY , the synaptic strength of PY when it fires, and T i

PY , the duration of PY (Figure

4.2) and T i
PY = P − tiPY , where P is the period of AB. So, the delay firing time of LP

in the (i+1)th cycle is determined by the delay firing time of PY in the previous cycle

tiPY as well as the synaptic strength from PY di
PY . We use the function h to denote

this relation, ti+1
LP = h(tiPY , di

PY ). Now we derive the specific form of this function

according to the equations of the model. ti+1
LP is the time for LP to evolve from the

initial position when t = 0 to reach the jump curve. In [7, 62] this curve is assumed

to be a linear relation that can be expressed as

ḡABsAB + ḡPY sPY + M1WLP = g∗syn1 (4.8)

where M1 is related to the slope of the LP jump curve and g∗syn1 is related to the

level of inhibitory synaptic input needed to make the VLP -nullcline tangent to the

WLP -nullcline. Both are positive numbers and determined by the intrinsic properties

of the neuron. At the time t = ti+1
LP , according to Equations (4.3) and (4.5),

sAB(ti+1
LP ) = d∗ABexp(−TAB

τζ

)exp(−ti+1
LP − TAB

τκ

)

sPY (ti+1
LP ) = di

PY exp(−T i
PY

τ2

)exp(−ti+1
LP

τ1

)
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Since T i
PY = P − tiPY , the second equation can be rewritten as

sPY (ti+1
LP ) = di

PY exp(−P − tiPY

τ2

)exp(−ti+1
LP

τ1

)

With the assumption that in Equation (4.1), W∞(VLP )=0 and τW,LP (VLP ) is a constant

τW,LP on the left branch of the V -nullcline,

WLP (ti+1
LP ) = ŴLP exp(−T i

PY + ti+1
LP

τW,LP

)

= ŴLP exp(−P − tiPY + ti+1
LP

τW,LP

)

So, at the moment LP fires in the (i + 1)th cycle, (4.8) can be expressed as the

following equation

ḡABd∗ABexp(−TAB

τζ

)exp(−ti+1
LP − TAB

τκ

) + ḡPY di
PY exp(−P − tiPY

τ2

)exp(−ti+1
LP

τ1

)

+ M1ŴLP exp(−P − tiPY + ti+1
LP

τW,LP

) = g∗syn1

(4.9)

The partial derivative of the left-hand side function of (4.9) with respect to ti+1
LP is not

equal to 0, which implies that given the values of tiPY and di
PY in the ith cycle, ti+1

LP can

be obtained from this equation by Implicit Function Theorem. Let ti+1
LP = h(tiPY , di

PY ),

where h function can not be explicitly expressed, but implicitly reflects the relation

between tiPY , di
PY and ti+1

LP .

The depression variable value of LP in the (i + 1)th cycle di+1
LP depends on di

LP ,

T i
LP and the inactive time of LP in the ithe cycle T i

PY + ti+1
LP . From Equation (4.6),

di+1
LP = d̂LP (P, T i

LP )− [d̂LP (P, T i
LP )− di

LP exp(−T i
LP

τd

)]exp(−T i
PY + ti+1

LP

τc

)

where T i
LP = tiPY − tiLP and T i

PY = P − tiPY . So,

di+1
LP = d̂LP (P, T i

LP )− [d̂LP (P, T i
LP )− di

LP exp(−tiPY − tiLP

τd

)]exp(−P − tiPY + ti+1
LP

τc

)

(4.10)
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where

d̂LP (P, T i
LP ) = (1 + tanh((P − tiPY + tiLP − P2)/x2)/2

If we write the right hand side of (4.10) as a function l, then di+1
LP = l(tiLP , di

LP , tiPY , ti+1
LP ),

where ti+1
LP is given by the map h.
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Figure 4.4 Trajectory of PY in the phase plane VPY − WPY . Without synaptic
input, PY has a high-voltage resting potential. When t = 0, AB fires and LP jumps
to the left branch of the lower VPY -nullcline. When t = ti+1

LP , LP fires and PY get
inhibited more, PY fires until it reaches its jump curve (blue line). The arrowed
trajectory shows the trajectory of PY during a cycle. The red part is the trajectory
of PY after AB firing and before it turns active, corresponding to the time ti+1

PY .

Now we derive the delay firing time for PY, ti+1
PY . The termination of the firing of

PY neuron is due to the spiking of AB (Figure 4.2), so PY leaves its high-voltage fixed

point (V̂PY , ŴPY ) when AB fires (Figure 4.4), i.e., at the beginning of the (i + 1)th

cycle. PY is inhibited by AB together with the decreasing synapse from LP before

LP’s firing. The trajectory is shown in Figure 4.4. At t = ti+1
LP , LP fires and sends an

inhibitory synapse to PY with strength ḡLP si+1
LP = ḡLP di+1

LP . This inhibition pushes

down the V -nullcline of PY. PY evolves along the gradually increasing VPY -nullcline

until it reaches the jump curve, which gives the time ti+1
PY . This jump curve is also
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expressed as a linear function,

ḡABsAB + ḡLP sLP + M2WPY = g∗syn2 (4.11)

where M2 and g∗syn2 are positive numbers, M2 related to the slope of the PY jump

curve and g∗syn2 related to the level of inhibitory synaptic input needed to make the

VPY -nullcline tangent to the WPY -nullcline. At t = ti+1
PY , from Equations (4.3) and

(4.7),

sAB(ti+1
PY ) = d∗ABexp(−TAB

τζ

)exp(−ti+1
PY − TAB

τκ

)

sLP (ti+1
PY ) = di+1

LP exp(−T i+1
LP

τ4

)

= di+1
LP exp(−ti+1

PY − ti+1
LP

τ4

)

At this time,

WPY (ti+1
PY ) = ŴPY exp(− ti+1

PY

τW,PY

)

Substituting these three equations into (4.11), we obtain the following equation

ḡABd∗ABexp(−TAB

τζ

)exp(−ti+1
PY − TAB

τκ

) + ḡLP di+1
LP exp(−ti+1

PY − ti+1
LP

τ4

)

+ M2ŴPY exp(− ti+1
PY

τW,PY

) = g∗syn2

(4.12)

This equation implicitly gives the dependence of ti+1
PY on the variables ti+1

LP and di+1
LP .

We express this relation as a function f , ti+1
PY = f(ti+1

LP , di+1
LP ), where ti+1

LP and di+1
LP are

given by the maps h and l, respectively.

The value of the depression variable dPY when PY fires in the (i + 1)th cycle

di+1
PY can be found via Equation (4.4) and the assumption d̂PY = 1.

di+1
PY = 1− [1− di

PY exp(−P − tiPY

τb

)]exp(−ti+1
PY

τa

) (4.13)
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We define this relation as a function g and di+1
PY = g(tiPY , di

PY , ti+1
PY ), where di+1

PY is

given by the map f . Thus,

ti+1
LP = h(tiPY , di

PY )

di+1
LP = l(tiLP , di

LP , tiPY , ti+1
LP )

ti+1
PY = f(ti+1

LP , di+1
LP )

di+1
PY = g(tiPY , di

PY , ti+1
PY )

(4.14)

which can be rewritten as

ti+1
LP = h(tiPY , di

PY )

di+1
LP = l(tiLP , di

LP , tiPY , h(tiPY , di
PY ))

ti+1
PY = f(h(tiPY , di

PY ), l(tiLP , di
LP , tiPY , h(tiPY , di

PY )))

di+1
PY = g(tiPY , di

PY , f(h(tiPY , di
PY ), l(tiLP , di

LP , tiPY , h(tiPY , di
PY ))))

where the functions h, l, f and g are given by (4.9), (4.10), (4.12) and (4.13),

respectively.

Therefore, we have derived a 4D map for the activity of the feed-forward network

in which AB sends inhibitory synapses to LP and PY which are mutually inhibited.

This map is based on the delay firing time of LP and PY as well as the depression

variables at the moment LP or PY fires. The fixed point of this map corresponds to

the phase-locked activity of the feed-forward tri-phasic pyloric network.
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The fixed point of this map (t∗LP , d∗LP , t∗PY , d∗PY ) can be obtained by numerically

solving the following equations.

ḡABd∗ABexp(−TAB

τζ
)exp(− t∗LP−TAB

τκ
) + ḡPY d∗PY exp(−P−t∗PY

τ2
)exp(− t∗LP

τ1
)

+M1ŴLP exp(−P−t∗PY +t∗LP

τW,LP
) = g∗syn1

d∗LP = d̂LP (P, T ∗LP )
1−exp(−P−t∗PY +t∗LP

τc
)

1−exp(−
t∗
PY
−t∗

LP
τd

)exp(−
P−t∗

PY
+t∗

LP
τc

)

ḡABd∗ABexp(−TAB

τζ
)exp(− t∗PY −TAB

τκ
) + ḡLP d∗LP exp(− t∗PY −t∗LP

τ4
)

+M2ŴPY exp(− t∗PY

τW,PY
) = g∗syn2

d∗PY =
1−exp(− t∗PY

τa
)

1−exp(−
P−t∗

PY
τb

)exp(−
t∗
PY
τa

)

(4.15)

The stability of the fixed point can be examined from the eigenvalues of the

Jacobian for the 4D map (4.14).

J=



J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44


=



∂h
∂tLP

∂h
∂dLP

∂h
∂tPY

∂h
∂dPY

∂l
∂tLP

∂l
∂dLP

∂l
∂tPY

∂l
∂dPY

∂f
∂tLP

∂f
∂dLP

∂f
∂tPY

∂f
∂dPY

∂g
∂tLP

∂g
∂dLP

∂g
∂tPY

∂g
∂dPY


(t∗LP ,d∗LP ,t∗PY ,d∗PY )

If the eigenvalues of this matrix are all located inside the unit circle, the fixed point

is stable, otherwise, it is unstable. Below we will consider specific parameter values

and discuss stability.

4.2 Activity of the Tri-phasic Pyloric Network with the Feedback

Synapse from LP to AB/PD

With the feedback synapse from LP to AB, we examine how the relative firing time

of LP with respect to the firing of AB affects the period of AB. In the feedback

network, the period of AB is not fixed but changes cycle by cycle depending on the

different relative firing time of LP. Here we assume the firing of LP affects the inactive
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duration of AB, so the active duration TAB is fixed. But, the synaptic strength will

change cycle by cycle due to the period variation. The period of AB in the ith cycle

is denoted as P i and the value of the depression variable when AB spikes is denoted

as di
AB, i = 1, 2, · · ·. A schematic plot for the voltage traces of AB, LP and PY is

shown in Figure 4.5. Because of the existence of the feedback synapse from LP to

AB, there are two more variables to be considered in the map, the period of AB P i

and its depression variable dAB.

AB
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Figure 4.5 Voltage traces of neurons AB, LP and PY in the feedback tri-phasic
pyloric network of STG. AB sends inhibitory synapses to LP and PY which mutually
inhibited one another and there’s a feedback inhibitory synapse from LP to AB. P i

is the period of AB in ith cycle and di
AB is the depression variable value of AB when

it fires. The other notation is the same as in Figure 4.2.

In the feed-forward network, the relative firing time of LP in the (i + 1)th cycle

is determined by the relative firing time of PY and the depression variable of PY in

the ith cycle, ti+1
LP = h(tiPY , di

PY ). In the feedback network, the inhibitory strength

from AB when it fires is ḡABdi
AB and the active duration of PY is T i

PY = P i − tiPY .

LP fires when it reaches its jump curve (Figure 4.3) and Equation (4.8) is still used
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to calculate the delay firing time of LP. At t = ti+1
LP ,

sAB(ti+1
LP ) = di+1

ABexp(−TAB

τζ

)exp(−ti+1
LP − TAB

τκ

)

sPY (ti+1
LP ) = di

PY exp(−T i
PY

τ2

)exp(−ti+1
LP

τ1

)

Since T i
PY = P i − tiPY , the second equation is rewritten as

sPY (ti+1
LP ) = di

PY exp(−P i − tiPY

τ2

)exp(−ti+1
LP

τ1

)

And

WLP (ti+1
LP ) = ŴLP exp(−T i

PY + ti+1
LP

τW,LP

)

= ŴLP exp(−P i − tiPY + ti+1
LP

τW,LP

)

Substitute the functions for sAB(ti+1
LP ), sPY (ti+1

LP ) and WLP (ti+1
LP ) into (4.8),

ḡABdi+1
ABexp(−TAB

τζ

)exp(−ti+1
LP − TAB

τκ

) + ḡPY di
PY exp(−P i − tiPY

τ2

)exp(−ti+1
LP

τ1

)

+ M1ŴLP exp(−P i − tiPY + ti+1
LP

τW,LP

) = g∗syn1

(4.16)

The delay firing time of LP in the (i + 1)th cycle ti+1
LP depends on tiPY , di

PY , P i and

di+1
AB . Let ti+1

LP = h̃(tiPY , di
PY , P i, di+1

AB ), where h̃ implicitly expresses the dependence of

ti+1
LP on the other four variables.

To determine the value of the depression variable of LP in the (i + 1)th cycle

di+1
LP , the information needed from the previous cycle is tiLP , T i

LP = tiPY − tiLP and the

inactive duration of LP T i
PY + ti+1

LP = P i − tiPY + ti+1
LP . According to (4.6),

di+1
LP = d̂LP (P i, T i

LP )− [d̂LP (P i, T i
LP )− di

LP exp(−tiPY − tiLP

τd

)]exp(−P i − tiPY + ti+1
LP

τc

)

(4.17)

where

d̂LP (P i, T i
LP ) = (1 + tanh((P i − tiPY + tiLP − P2)/x2))/2
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If we write the right hand side function as l̃, then di+1
LP = l̃(tiLP , di

LP , tiPY , P i,

ti+1
LP ), where ti+1

LP is given by h̃.

The synaptic strengths of LP to PY and AB are different, so here we use different

maximal synaptic conductances to discriminate between these two types of synapses.

ḡLP→PY is used to denote the maximal synaptic conductance of LP to PY and ḡLP→AB

is denoted as the maximal synaptic conductance of LP to AB. We still use Equation

(4.11) to derive the maps for the relative firing time of PY in the (i+1)th cycle, ti+1
PY .

When t = ti+1
PY ,

sAB(ti+1
PY ) = di+1

ABexp(−TAB

τζ

)exp(−ti+1
PY − TAB

τκ

)

sLP (ti+1
PY ) = di+1

LP exp(−ti+1
PY − ti+1

LP

τ4

)

WPY (ti+1
PY ) = ŴPY exp(− ti+1

PY

τW,PY

)

So, Equation (4.11) at the time t = ti+1
PY is

ḡABdi+1
ABexp(−TAB

τζ

)exp(−ti+1
PY − TAB

τκ

) + ḡLP→PY di+1
LP exp(−ti+1

PY − ti+1
LP

τ4

)

+ M2ŴPY exp(− ti+1
PY

τW,PY

) = g∗syn2

(4.18)

Let ti+1
PY = f̃(ti+1

LP , di+1
LP , di+1

AB ), where ti+1
LP is given by h̃, di+1

LP is given by l̃ and di+1
AB will

be determined later.

di+1
PY can be calculated from Equation (4.4).

di+1
PY = 1− [1− di

PY exp(−P i − tiPY

τb

)]exp(−ti+1
PY

τa

) (4.19)

Let the right hand side function as g̃, thus, di+1
PY = g̃(tiPY , di

PY , P i, ti+1
PY ), where ti+1

PY is

give by the map f̃ .

So far, we have derived the maps for the four variables, ti+1
LP , di+1

LP , ti+1
PY and di+1

PY

corresponding to the same variables in the feed-forward network. In the following,
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we will derive the maps for the other two variables in the feedback network, P i+1 and

di+1
AB .

First, we derive the map for di+1
AB . From Equation (4.2), di

AB increases with time

constant τα to d̂AB(P i, TAB) during AB is active and decreases with time constant τβ

when AB is inactive, so

di+1
AB = d̂AB(P i)− [d̂AB(P i)− di

ABexp(−TAB

τβ

)]exp(−P i − TAB

τα

) (4.20)

where

d̂AB(P i) = (1 + tanh((P i − P1)/x1))/2

The above function gives the map for di+1
AB , di+1

AB = q̃(P i, di
AB).
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Figure 4.6 Trajectory of AB in the phase plane VAB − WAB in the feedback
network with an inhibitory synapse from LP to AB. Without synaptic input, AB
is an oscillator. When t = 0, AB fires and remains active until t = TAB, then
AB jumps to the left branch of its V -nullcline. At t = ti+1

LP , AB jumps to a lower
nullcline because of the firing of LP, then AB evolves to reach the jump curve. The
red trajectory is a cycle of AB.

Now we derive the map for the last variable P i+1. Since we assume that the

feedback synapse from LP to AB only affects the inactive duration of AB, we focus
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on examining the trajectory of AB on its left branches of V -nullclines. AB is an

oscillator, so in the phase plane, VAB-nullcline and WAB nullcline intersect on the

middle branch of the VAB-nullcline (Figure 4.6). When t = 0, AB jumps to the active

state and spends TAB time on the right branch of the VAB-nullcline to reach the local

maximum of VAB-nullcline, (V̂AB, ŴAB), then AB jumps to the left branch and travels

down according to the WAB equation in (4.1). At t = ti+1
LP , LP spikes and sends an

inhibitory synapse to AB, pushing AB to jump to a lower VAB-nullcline. It takes

AB P i+1 − TAB time to evolve along the rising VAB-nullclines and reach its jump

curve, the blue line in Figure 4.6. The (i + 1)th cycle ends. The arrowed cycle is the

trajectory of AB during (i + 1)th cycle, which takes P i+1 time, i.e., the period of AB

in the (i + 1)th cycle. Let the linear function for the jump curve of AB be

ḡLP→ABsLP + M3WAB = g∗syn3 (4.21)

where M3 is related to the slope of the jump curve and g∗syn3 is related to the level

of inhibition needed to make VAB-nullcline tangent to the WAB-nullcline. Both are

positive numbers. At t = P i+1, AB jumps to the active state and at that time, by

Equations (4.7) and (4.1)

sLP (P i+1) = di+1
LP exp(−T i+1

LP

τ4

)exp(−T i+1
PY

τ3

)

= di+1
LP exp(−ti+1

PY − ti+1
LP

τ4

)exp(−P i+1 − ti+1
PY

τ3

)

WAB(P i+1) = ŴABexp(−P i+1 − TAB

τW,AB

)

Substitute the above two equations into (4.21), we obtain the equation for the relation

between ti+1
LP , di+1

LP , ti+1
PY and P i+1.

ḡLP→ABdi+1
LP exp(−ti+1

PY − ti+1
LP

τ4

)exp(−P i+1 − ti+1
PY

τ3

)

+ M3ŴABexp(−P i+1 − TAB

τW,AB

) = g∗syn3

(4.22)
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Express P i+1 as a function p̃ of ti+1
LP , di+1

LP and ti+1
PY , P i+1 = p̃(ti+1

LP , di+1
LP , ti+1

PY ), where

ti+1
LP is given by h̃, di+1

LP is given by l̃ and ti+1
PY is given by f̃ . Thus,

ti+1
LP = h̃(tiPY , di

PY , P i, di
AB)

di+1
LP = l̃(tiLP , di

LP , tiPY , P i, ti+1
LP )

ti+1
PY = f̃(ti+1

LP , di+1
LP , di+1

AB )

di+1
PY = g̃(tiPY , di

PY , P i, ti+1
PY )

di+1
AB = q̃(P i, di

AB)

P i+1 = p̃(ti+1
LP , di+1

LP , ti+1
PY )

(4.23)

where the functions h̃, l̃, f̃ , g̃, q̃ and p̃ are given by (4.16), (4.17), (4.18), (4.19),

(4.20) and (4.22), respectively. Although there are some variables in the (i + 1)th

cycle appearing in the functions on the right hand side, they all can be substituted

by the functions only including the terms in the ith cycle, e.g., the term ti+1
LP in l̃ can

be replaced by h̃ which only includes the variables in the ith cycle. Therefore, for

the network with the feedback inhibitory synapse from LP to AB, we have derived

a 6D map based on the delay firing times of LP and PY, the period of AB and the

depression variable for each neuron. The fixed point of this map corresponds to the

phase-locked activity of the feedback tri-phasic pyloric network.

The fixed point of this 6D map (t∗LP , d∗LP , t∗PY , d∗PY , d∗AB, P ∗) can be obtained by

numerically solving the following equations, which are the corresponding steady state
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equations.

ḡABd∗ABexp(−TAB

τζ
)exp(− t∗LP−TAB

τκ
) + ḡPY d∗PY exp(−P ∗−t∗PY

τ2
)exp(− t∗LP

τ1
)

+M1ŴLP exp(−P ∗−t∗PY +t∗LP

τW,LP
) = g∗syn1

d∗LP = d̂LP (P ∗, T ∗LP )
1−exp(−P∗−t∗PY +t∗LP

τc
)

1−exp(−
t∗
PY
−t∗

LP
τd

)exp(−
P∗−t∗

PY
+t∗

LP
τc

)

ḡABd∗ABexp(−TAB

τζ
)exp(− t∗PY −TAB

τκ
) + ḡLP d∗LP exp(− t∗PY −t∗LP

τ4
)

+M2ŴPY exp(− t∗PY

τW,PY
) = g∗syn2

d∗PY =
1−exp(− t∗PY

τa
)

1−exp(−
P∗−t∗

PY
τb

)exp(−
t∗
PY
τa

)

d∗AB = d̂AB(P ∗)
1−exp(−P∗−TAB

τα
)

1−exp(−TAB
τβ

)exp(−P∗−TAB
τα

)

ḡLP→ABd∗LP exp(− t∗PY −t∗LP

τ4
)exp(−P ∗−t∗PY

τ3
)

+M3ŴABexp(−P ∗−TAB

τW,AB
) = g∗syn3

(4.24)

The stability of the fixed point can be examined from the eigenvalues of the

Jacobian for the 6D map (4.23).

J =



J11 J12 J13 J14 J15 J16

J21 J22 J23 J24 J25 J26

J31 J32 J33 J34 J35 J36

J41 J42 J43 J44 J45 J46

J51 J52 J53 J54 J55 J66

J61 J62 J63 J64 J65 J66
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=



∂h
∂tLP

∂h
∂dLP

∂h
∂tPY

∂h
∂dPY

∂h
∂dAB

∂h
∂P

∂l
∂tLP

∂l
∂dLP

∂l
∂tPY

∂l
∂dPY

∂l
∂dAB

∂l
∂P

∂f
∂tLP

∂f
∂dLP

∂f
∂tPY

∂f
∂dPY

∂f
∂dAB

∂f
∂P

∂g
∂tLP

∂g
∂dLP

∂g
∂tPY

∂g
∂dPY

∂g
∂dAB

∂g
∂P

∂q
∂tLP

∂q
∂dLP

∂q
∂tPY

∂q
∂dPY

∂q
∂dAB

∂q
∂P

∂p
∂tLP

∂p
∂dLP

∂p
∂tPY

∂p
∂dPY

∂p
∂dAB

∂p
∂P


If the eigenvalues of this matrix are all located inside the unit circle, the fixed

point is stable, otherwise, it is unstable. If the fixed point in the feedback network

is the same as that in the feed-forward network, each entry of the 4 × 4 submatrix

consisting of the first four rows and columns in the above 6× 6 matrix has the same

value as the corresponding entry of the 4× 4 matrix for the feed-forward network.

4.3 Effect of the Inhibitory Feedback Synapse from LP to AB/PD

In the feed-forward network without the inhibitory synapse from LP to AB, we

examine how the period of the pacemaker AB affects the phase of LP or PY, which is

defined as the proportion of the relative firing time to the network period. Figure 4.7

is an example of the relation between the period of AB and the phases of LP and PY.

The magenta solid curve shows the dependence of the phase of LP on the period of

AB, obtained by directly solving Equation (4.15) for the fixed point. The cyan solid

curve shows the dependence of the phase of PY on the period of AB from solving

Equation (4.15). The red dotted curve and the green starred curve are obtained

from the iteration of the map (4.14). The red curve shows the phase of LP and the

green curve shows the phase of PY. They overlap with the magenta solid curve and

the cyan solid curve, respectively, in most of the domain, except in a small range,

1205 ≤ P ≤ 1317. In this range, the map does converge to a fixed number, but
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Figure 4.7 The relationship between the phases of LP and PY and the period of
AB in the feed-forward network. The solid curves are obtained from directly solving
Equation (4.15), the magenta curve for the phase of LP and the cyan curve for the
phase of PY. The dotted and starred curves are obtained from iteration of map
(4.14), the red dotted curve is for the phase of LP and the green starred curve is for
the phase of PY. Note that the feed-forward synapses from AB to LP and PY are
non-depressing. When 1205 ≤ P ≤ 1317, the map does not converge, corresponding
to a period-2 phase-locked solution. The upper right panel of the zoom-in of this part
is for the phase of LP and the lower right panel of the zoom-in of this part is for the
phase of PY.

alternates between two numbers, which implies a period-2 phase-locked solution for

the network. Later we will prove that the fixed point in this region is not stable by

calculating the eigenvalues of the Jacobian for the map and showing one of the four

eigenvalues is outside of the unit circle.

In the feedback network, we use the same parameter values as in the feed-forward

network and increase the synaptic strength from LP to AB, ḡLP→AB. The period-2

region becomes smaller with a stronger synapse and disappears when ḡLP→AB is big

enough. Figure 4.8 shows the dependence of the phases on the period for ḡLP→AB = 20

and ḡLP→AB = 27. When ḡLP→AB = 20, the period-2 region is much smaller than in
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Figure 4.8 The relationship between the phases of LP and PY and the period of
AB in the feed-forward network. (a) When ḡLP→AB = 20, the period-2 region is much
smaller than in Figure 4.7. The right panel is the zoom-in of the period-2 region. (b)
When ḡLP→AB = 27, there is no period-2 region. The different line styles are the
same as the description in Figure 4.7.

Figure 4.7 where ḡLP→AB = 0 and when ḡLP→AB increases to 27, the map converges

in the entire domain. So the unstable fixed point in the feed-forward network is

stabilized in the feedback network if the feedback synapse from LP to AB is strong

enough.

Setting the synapse of AB is depressing in the network without the feedback

synapse from LP to AB, we obtained the dependency of the phase of PY on the period

of AB as shown in Figure 4.9(a). The synaptic depression of AB affects the phase of

LP when the period is short. The phase curve of LP becomes to be of cubic shape,
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which is consistent with the results shown in [51]. But there still exists a period-2

region, since the presence of this region is induced by the synaptic depression of LP

and the interaction of LP and PY. In the feedback network with the synapse form

LP to AB, this period-2 region gradually shrinks and disappears. As shown in Figure

4.9(b), where ḡLP→LP = 27, the period-2 region almost vanishes and the neurons are

period-1 phase-locked with each other in the entire period domain. As an extensive

work, we are going to increase the time constants for AB to move the cubic part to

overlap with the period-2 region. We will investigate the activity of the tri-phasic

network under the interaction between the synaptic depression of AB and that of LP.
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Figure 4.9 The relationship between the phase of PY and the period of AB in the
feed-forward and feedback networks. (a) In the feed-forward network without the
synapse from LP to AB, where ḡLP→AB = 0, there exists a period-2 region over the
period of AB. (b) In the feedback network with the synapse from LP to AB, when
ḡLP→AB = 27, there is no period-2 region.

In the following, we provide a proof for the stabilization of the fixed point from

the feed-forward network to the feedback network for a specific set of parameter

values. We choose the parameters as follows:

TAB = 300, τW,AB = 360, τW,LP = 102, τW,PY = 126, ŴAB = 1, ŴLP = 1, ŴPY = 1,

M1 = 3.12, M2 = 3.12, M3 = 3.12, g∗syn1 = 3.12, g∗syn2 = 1.5, g∗syn3 = 0.76, τζ =
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600000, τκ = 120, τ1 = 60, τ2 = 1350, τ3 = 330, τ4 = 60, τa = 1350, τb = 240, τc = 60,

τd = 60, P2 = 1140, x2 = 10. The synapse of AB in non-depressing. d∗AB = 0.38,

ḡAB = 1.4, ḡPY = 11, ḡLP→PY = 13. In the feed-forward network, ḡLP→AB = 0, while

in the feedback network, ḡLP→AB is a positive number. We change the period of AB

by varying τW,AB, the time constant for WAB on the left side of the threshold.

The entries in the 4×4 Jacobian for the 4D map and those in the 6×6 Jacobian

for the 6D map are the following.

J11 =0

J12 =0

J13 =[
1

τ2

ḡPY d∗PY exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

) +
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗LP − TAB

τκ

)

+
1

τ1

ḡPY d∗PY exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)

+
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

J14 =[ḡPY exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)]/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗LP − TAB

τκ

)

+
1

τ1

ḡPY d∗PY exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)

+
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

J21 =
∂d̂LP

∂tLP

− [
∂d̂LP

∂tLP

− 1

τd

d∗LP exp(−t∗PY − t∗LP

τd

)]exp(−P ∗ − t∗PY + t∗LP

τc

)

where
∂d̂LP

∂tLP

= sech2(
P ∗ − t∗PY + t∗LP − P2

x2

)/(2x2)

J22 =exp(−t∗PY − t∗LP

τd

)exp(−P ∗ − t∗PY + t∗LP

τc

)

J23 =
∂d̂LP

∂tPY

− [
∂d̂LP

∂tPY

+
1

τd

d∗LP exp(−t∗PY − t∗LP

τd

)]exp(−P ∗ − t∗PY + t∗LP

τc

)

− 1

τc

[d̂LP − d∗LP exp(−t∗PY − t∗LP

τd

)](1− J13)exp(−P ∗ − t∗PY + t∗LP

τc

)

where
∂d̂LP

∂tPY

= −sech2(
P ∗ − t∗PY + t∗LP − P2

x2

)/(2x2)
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J24 =
1

τc

[d̂LP − d∗LP exp(−t∗PY − t∗LP

τd

)]J14exp(−P ∗ − t∗PY + t∗LP

τc

)

J31 =[ḡLP J21exp(−t∗PY − t∗LP

τ4

)]/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+
1

τ4

ḡLP d∗LP exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)

+
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

J32 =[ḡLP→PY J22exp(−t∗PY − t∗LP

τ4

)]/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+
1

τ4

ḡLP→PY d∗LP exp(−t∗PY − t∗LP

τ4

) +
1

τW,PY

M2ŴPY exp(− t∗PY

τW,PY

)]

J33 =[ḡLP→PY J23exp(−t∗PY − t∗LP

τ4

) +
1

τ4

ḡLP→PY d∗LP J13exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)]

/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+
1

τ4

ḡLP→PY d∗LP exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)

+
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

J34 =[ḡLP→PY J24exp(−t∗PY − t∗LP

τ4

) +
1

τ4

ḡLP→PY d∗LP J14exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)]

/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+
1

τ4

ḡLP→PY d∗LP exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)

+
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

J41 =
1

τa

[1− d∗PY exp(−P ∗ − t∗PY

τb

)]J31exp(−−t∗PY

τa

)

J42 =
1

τa

[1− d∗PY exp(−P ∗ − t∗PY

τb

)]J32exp(−−t∗PY

τa

)

J43 =
1

τb

d∗PY exp(−P ∗ − t∗PY

τb

)exp(−−t∗PY

τa

)

+
1

τa

[1− d∗PY exp(−P ∗ − t∗PY

τb

)]J33exp(−−t∗PY

τa

)

J44 =exp(−P ∗ − t∗PY

τb

)exp(−−t∗PY

τa

) +
1

τa

[1− d∗PY exp(−P ∗ − t∗PY

τb

)]J34exp(−−t∗PY

τa

)
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These entries are for the 4× 4 Jacobian of the 4D map as well as the 4× 4 submatrix

for the 6× 6 Jacobian of the 6D map. The other twenty entries only appearing in the

6× 6 matrix are the following.

J15 =ḡABJ11exp(−TAB

τζ

)exp(−t∗LP − TAB

τκ

)

/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗LP − TAB

τκ

)

+
1

τ1

ḡPY d∗PY exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)

+
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

J16 =[ḡABJ56exp(−TAB

τζ

)exp(−t∗LP − TAB

τκ

)

− 1

τ2

ḡPY d∗PY exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)− 1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗LP − TAB

τκ

)

+
1

τ1

ḡPY d∗PY exp(−P ∗ − t∗PY

τ2

)exp(−t∗LP

τ1

)

+
1

τW,LP

M1ŴLP exp(−P ∗ − t∗PY + t∗LP

τW,LP

)]

J25 =
1

τc

− [d̂∗LP − d∗LP exp(−t∗PY − t∗LP

τd

)]J15exp(−P ∗ − t∗PY + t∗LP

τc

)

where d̂∗LP = (1 + tanh(
P ∗ − t∗PY + t∗LP − P2

x2

))/2

J26 =
∂d̂LP

∂P
[1− exp(−P ∗ − t∗PY + t∗LP

τc

)]

+
1

τc

[d̂LP − d∗LP exp(−t∗PY − t∗LP

τd

)](1 + J16)exp(−P ∗ − t∗PY + t∗LP

τc

)

where
∂d̂LP

∂P
= sech2(

P ∗ − t∗PY + t∗LP − P2

x2

)/(2x2)

J35 =[ḡABJ∗55exp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+ ḡLP→PY J∗25exp(−t∗PY − t∗LP

τ4

) +
1

τ4

ḡLP→PY d∗LP J15exp(−t∗PY − t∗LP

τ4

)]

/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+
1

τ4

ḡLP→PY d∗LP exp(−t∗PY − t∗LP

τ4

) +
1

τW,PY

M2ŴPY exp(− t∗PY

τW,PY

)]
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J36 =[ḡABJ∗56exp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+ ḡLP→PY J∗26exp(−t∗PY − t∗LP

τ4

) +
1

τ4

ḡLP→PY d∗LP J16exp(−t∗PY − t∗LP

τ4

)]

/[
1

τκ

ḡABd∗ABexp(−TAB

τζ

)exp(−t∗PY − TAB

τκ

)

+
1

τ4

ḡLP→PY d∗LP exp(−t∗PY − t∗LP

τ4

) +
1

τW,PY

M2ŴPY exp(− t∗PY

τW,PY

)]

J45 =
1

τa

[1− d∗PY exp(−P ∗ − t∗PY

τb

)]J35exp(−−t∗PY

τa

)

J46 =− 1

τb

d∗PY exp(−P ∗ − t∗PY

τb

)exp(−−t∗PY

τa

)

+
1

τa

[1− d∗PY exp(−P ∗ − t∗PY

τb

)]J36exp(−−t∗PY

τa

)

J51 =0

J52 =0

J53 =0

J54 =0

J55 =exp(−TAB

τβ

)exp(−P ∗ − TAB

τα

)

J56 =
∂d̂AB

∂P
[1− exp(−P ∗ − TAB

τα

)]

+
1

τα

[d̂AB − d∗ABexp(−TAB

τβ

)]exp(−P ∗ − TAB

τα

)

where
∂d̂AB

∂P
= sech2(

P ∗ − P1

x1

)/(2x1)

J61 =[ḡLP→ABJ21exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

− 1

τ4

ḡLP→AB(J31 − J11)
∗exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τ3

ḡLP→ABd∗LP J31exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)]

/[
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τW,AB

M3ŴABexp(−P ∗ − TAB

τW,AB

)]
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J62 =[ḡLP→ABJ22exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

− 1

τ4

ḡLP→AB(J32 − J12)
∗exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τ3

ḡLP→ABd∗LP J32exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)]

/[
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τW,AB

M3ŴABexp(−P ∗ − TAB

τW,AB

)]

J63 =[ḡLP→ABJ23exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

− 1

τ4

ḡLP→AB(J33 − J13)
∗exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τ3

ḡLP→ABd∗LP J33exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)]

/[
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τW,AB

M3ŴABexp(−P ∗ − TAB

τW,AB

)]

J64 =[ḡLP→ABJ24exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

− 1

τ4

ḡLP→AB(J34 − J14)
∗exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τ3

ḡLP→ABd∗LP J34exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)]

/[
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τW,AB

M3ŴABexp(−P ∗ − TAB

τW,AB

)]

J65 =[ḡLP→ABJ25exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

− 1

τ4

ḡLP→AB(J35 − J15)
∗exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)]

/[
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τW,AB

M3ŴABexp(−P ∗ − TAB

τW,AB

)]
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J66 =[ḡLP→ABJ26exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

− 1

τ4

ḡLP→AB(J36 − J16)
∗exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τ3

ḡLP→ABd∗LP J36exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)]

/[
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τW,AB

M3ŴABexp(−P ∗ − TAB

τW,AB

)]

For the parameter values from the biological model, the Jacobian for the above

example is in the form of

J =



0 0 J13 J14 0 J16

J21 0 J23 J24 0 J26

J31 0 J33 J34 0 J36

J41 0 J43 J44 0 J46

0 0 0 0 0 0

J61 0 J63 J64 0 J66


J11 = J12 = 0 because ti+1

LP is independent of tiLP and di
LP . The fifth row is a zero

vector because the synapse of AB is non-depressing. The fifth column is zero for the

same reason. The value of each element in the second column is almost zero because

the time constants for dLP , τc and τd are much smaller than other time constants and

the depression of LP affects the other variables very slightly.
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To find the eigenvalues of this matrix, note

|λI − J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 −J13 −J14 0 −J16

−J21 λ −J23 −J24 0 −J26

−J31 0 λ− J33 −J34 0 −J36

−J41 0 −J43 λ− J44 0 −J46

0 0 0 0 λ 0

−J61 0 −J63 −J64 0 λ− J66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −J61λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −J13 −J14 −J16

λ −J23 0 −J26

0 λ− J33 −J34 −J36

0 −J43 λ− J44 −J46

∣∣∣∣∣∣∣∣∣∣∣∣∣
− J63λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 −J14 −J16

−J21 λ 0 −J26

−J31 0 −J34 −J36

−J41 0 λ− J44 −J46

∣∣∣∣∣∣∣∣∣∣∣∣∣

+J64λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 −J13 −J16

−J21 λ −J23 −J26

−J31 0 λ− J33 −J36

−J41 0 −J43 −J46

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (λ− J66)λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 −J13 −J14

−J21 λ −J23 0

−J31 0 λ− J33 −J34

−J41 0 −J43 λ− J44

∣∣∣∣∣∣∣∣∣∣∣∣∣
We write this entire determinant as a function of λ, fb(λ). The last term is the

characteristic polynomial of the 4× 4 Jacobian for the feed-forward network, written
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as a function of λ, ff (λ). Then,

fb(λ) = λ{J61λ[−J13J34J46 − J16(λ− J33)(λ− J44)− J43J14J36

− J16J34J43 − J14J46(λ− J33)− J13J36(λ− J44)]

− J63λ[J36J46λ− J31J16(λ− J44)− J41J14J36

+ J16J34J41 − J14J31J46 + J36λ(λ− J44)]

+ J64λ[−J46λ(λ− J33)− J31J43J16 − J41J13J36

− J16J41(λ− J33) + J13J31J46 − J36J43λ]

+ (λ− J66)ff (λ)}

where,

ff (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 −J13 −J14

−J21 λ −J23 0

−J31 0 λ− J33 −J34

−J41 0 −J43 λ− J44

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λCu(λ)

where Cu(λ) is a cubic function,

Cu(λ) =

∣∣∣∣∣∣∣∣∣∣
λ −J13 −J14

−J31 λ− J33 −J34

−J41 −J43 λ− J44

∣∣∣∣∣∣∣∣∣∣
Then,

fb(λ) = λ2[Aλ2 + Bλ + C + (λ− J66)Cu(λ)] (4.25)
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where

A =− J61J16 − J63J36 − J64J46

B =J61J16J33 + J61J16J44 − J61J14J46 − J61J13J36 − J63J34J46

− J63J31J16 + J63J36J44 + J64J46J33 − J64J16J41 − J64J36J43

C =J61(−J13J34J46 − J16J33J44 − J43J14J36 + J16J34J43 + J14J46J33 + J13J36J44)

− J63(−J31J16J44 − J41J14J36 + J16J34J41 + J14J31J46)

+ J64(−J31J43J16 − J41J13J36 + J16J41J33 + J13J31J46)

From (4.25), λ = 0 is a double root for fb(λ) = 0 which is inside the unit circle. Let

f̃b(λ) = Aλ2 + Bλ + C + (λ− J66)Cu(λ)

We will prove how the unstable fixed point in the feed-forward network is

stabilized by the feedback synapse from LP to AB, as shown in the period-2 region. In

the feed-forward network, A = B = C = J66 = 0, ff (λ) = f̃b(λ) = λCu(λ). The fixed

point is unstable. Two roots of Cu(λ) are near zero and the other unstable one is less

than −1. A schematic plot of the function f̃b(λ) is shown in Figure 4.10 (the black

curve). We are proving as ḡLP→AB increases, the curve of f̃b(λ) moves downwards

and rightwards and a saddle node bifurcation occurs near 0, which implies there are a

pair of complex conjugate roots near 0 as ḡLP→AB continue increasing. At this stage,

the curve of f̃b(λ) looks like the red curve in Figure 4.10, so for f̃b(λ) = 0, there

are two small complex conjugate roots inside the unit circle and two real roots, the

intersection points of the curve with the abscissa. To force these two roots inside the

region (−1, 1), we need the conditions f̃b(−1) > 0 and f̃b(1) > 0 to be satisfied. The

following shows the process of the detailed proof.
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Let

k(λ) = (λ− J66)Cu(λ)

= (λ− J66)(λ− λ1)(λ− λ2)(λ− λ3)

where J66 > 0, 0 < λ1 < λ2 � 1 and λ3 < −1. The rough plot of this fourth order

polynomial is shown in Figure 4.10. J66 may be less then λ1, greater than λ2 or

between λ1 and λ2 (black curve in Figure 4.9).
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Figure 4.10 Schematic plot of the function f̃b(λ) (k(λ) in the feed-forward network.
J66 > 0, 0 < λ1 < λ2 � 1 and λ3 < −1. Black curve is for the feed-forward case where
ḡLP→AB = 0. Red curve is for the feedback case where ḡLP→AB 6= 0 and sufficiently
large.

We investigate how ḡLP→AB changes the values of A, B and C and change the

slope and location of k(λ) to force all roots to lie inside the unit circle. In order

to consider the same fixed point when increasing ḡLP→AB, we decrease the value of

τW,AB. So, in the Jacobian matrix, two parameters change their values, ḡLP→AB and

τW,AB which are only involved in the new entries in the 6× 6 Jacobian. Further, J16,

J26, J36, J46 and J56 are independent of these two parameters. J61, J63, J64 and J66

have linear relation with ḡLP→AB and the change of τW,AB does not affect these values
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too much. For example, in the expression for J61,

J61 =[ḡLP→ABJ21exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

− 1

τ4

ḡLP→AB(J31 − J11)
∗exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τ3

ḡLP→ABd∗LP J31exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)]

/[
1

τ3

ḡLP→ABd∗LP J35exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

+
1

τW,AB

M3ŴABexp(−P ∗ − TAB

τW,AB

)]

=
J21 − 1

τ4
d∗LP (J31 − J11) + 1

τ3
d∗LP J31

1
τ3

d∗LP +
M3ŴABexp(−P∗−TAB

τW,AB
)

τW,AB ḡLP→ABexp(−
t∗
PY
−t∗

LP
τ4

)exp(−
P∗−t∗

PY
τ3

)

where 1
τ3

d∗LP is much smaller than
M3ŴABexp(−P∗−TAB

τW,AB
)

τW,AB ḡLP→ABexp(−
t∗
PY
−t∗

LP
τ4

)exp(−
P∗−t∗

PY
τ3

)
, so

J61 ≈ τW,AB ḡLP→AB

J21 − 1
τ4

d∗LP (J31 − J11) + 1
τ3

d∗LP J31

M3ŴABexp(−P ∗−TAB

τW,AB
)

exp(−t∗PY − t∗LP

τ4

)exp(−P ∗ − t∗PY

τ3

)

The same reasoning holds for J63, J64 and J66. A, B and C are also linear functions

of ḡLP→AB.

Let A = kAḡLP→AB, B = kB ḡLP→AB, C = kC ḡLP→AB, J66 = k66ḡLP→AB and

f̃b(λ)
.
= z(ḡLP→AB, λ) = kAḡLP→ABλ2+kB ḡLP→ABλ+kC ḡLP→AB+(λ−λ1)(λ−λ2)(λ−

λ3)(λ − k66ḡLP→AB). There is a saddle-node bifurcation when ḡLP→AB = g∗, where

(g∗, λ∗) satisfies 
z(g∗, λ∗) = 0

∂z
∂λ

(g∗, λ∗) = 0
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which is equivalent to

− λ∗(kAλ∗2 + kBλ∗ + kC)[(λ∗ − λ2)(λ
∗ − λ3)

+ (λ∗ − λ1)(λ
∗ − λ3) + (λ∗ − λ1)(λ

∗ − λ2)]

+ (kAλ∗2 − kC)(λ∗ − λ1)(λ
∗ − λ2)(λ

∗ − λ3)

+ k66(λ
∗ − λ1)

2(λ∗ − λ2)
2(λ∗ − λ3)

2 = 0

(4.26)

We use asymptotic methods to prove λ∗ is close to 0. For the choice of parameters,

kA = 0.14965, kB = −0.00526, kC = −0.000033829 and k66 = 0.07674. They are

O(1), O(ε), O(ε2) and O(1), respectively, where ε = 0.01. Also, we find λ1 = O(ε),

λ2 = O(ε), λ3 = O(1). Let kA = CA, kB = CBε, kC = CCε2, λ1 = C1ε, λ2 = C2ε and

λ3 = C3, where CA, CB, CC , C1, C2, C3 = O(1).

Let λ∗ = x1 + εx2 + ε2x3 + · · ·. Substituting into Equation (4.26), we find x1 = 0

and x2 = [C66C3(C1 + C2) − CB]/[2(CA + C66C3)]. Thus, λ∗ = εx2 + ε2x3 + · · ·,

which implies λ∗ is close to 0. Thus, two small real roots λ1 and λ2 of f̃b(λ) coincide

as λ∗ when ḡLP→AB = g∗, then as ḡLP→AB increases more, λ1 and λ2 become to be

two complex conjugate roots of f̃b(λ) with a sufficiently small modulus (red curve in

Figure 4.10). So, the condition for all roots of f̃b(λ) to be within the unit circle is

f̃b(−1) > 0 and f̃b(1) > 0, which implies that the negative real root is greater than

−1 and the positive real root is less than 1.

In the following, we will derive the conditions based on the values of A, B and

C.

Cu(λ) =

∣∣∣∣∣∣∣∣∣∣
λ −J13 −J14

−J31 λ− J33 −J34

−J41 −J43 λ− J44

∣∣∣∣∣∣∣∣∣∣
=λ3 − (J33 + J44)λ

2 + (J33J44 − J34J43 − J13J31 − J14J41)λ

+ J13J31J44 − J13J34J41 − J14J31J43 + J14J41J33



75

Since we find Cu(λ) has two roots near 0, λ3 − (J33 + J44)λ
2 ≈ 0 ⇒ λ ≈ J33 + J44.

Moreover, it can be observed that 0 < J44 � 1, therefore, λ ≈ J33 and Cu(λ) ≈

λ2(λ− J33). Then,

f̃ b(λ) ≈ Aλ2 + Bλ + C + (λ− J66)λ
2(λ− J33)

To satisfy f̃b(−1) > 0, we need

B < A + C + 1 + J33 + J66 + J33J66 (4.27)

For f̃b(1) > 0,

B > −A− C − 1 + J33 + J66 − J33J66 (4.28)

But in the feed-forward network ḡLP→AB = 0 and A = B = C = J66 = 0. In this

specific case, (4.27) is 0 < 1+J33 which is not satisfied since J33 < −1. (4.28) turns out

to be 0 > −1+J33 which is satisfied. Using the linear relationship of A, B, C and J66

with ḡLP→AB, (4.27) can be written as ḡLP→AB(kB−kA−kC−k66−J33k66) < 1+J33.

Since kB − kA − kC − k66 − J33k66 < 0, when ḡLP→AB increases, the left hand side

of the inequality decreases. Therefore, when ḡLP→AB is sufficiently large, (4.27) and

(4.28) are satisfied and all roots of f̃b(λ) are within the unit circle, and the fixed point

is stabilized. Thus, we have the following conjecture:

Conjecture: There exists a value g∗LP→AB, such that, for ḡLP→AB > g∗LP→AB, the

fixed point of the 6D map (4.23) is stable.

To conclude, when the feedback synapse from LP to AB is strong enough, the

unstable fixed point of the 4D map (4.14) for the feed-forward network is stabilized

and the period-2 region in the feed-forward network vanishes. Therefore, the fixed

point in the entire region of the period is stable, then the tri-phasic network exhibits

phase-locked activity.



CHAPTER 5

USING SPIKE TIME RESPONSE CURVES OF NEURONS TO INFER

ACTIVITY OF FEEDBACK NEURONAL NETWORKS

We consider a network consisting of two heterogenous neurons which are both oscillato-

rs with tonic spiking patterns but having slightly different intrinsic periods. The

period of a postsynaptic neuron is mainly affected by the relative firing time of the

presynaptic neuron and the synaptic strength at the time it spikes. The spike time

response curve (STRC) describes how the period of the postsynaptic neuron is affected

by a single spike from the presynaptic neuron [3]. We will use STRCs to measure the

period change of the postsynaptic neuron in response to the firing of the presynaptic

neuron. The synaptic strength at the time the presynaptic neuron fires is constant if

the synapse is non-depressing and varies with the period of the neuron if the synapse

is depressing. We will consider these two situations respectively and also construct

the relationship between the phase-locked activities of the network with these two

different synapses.

5.1 Phase-locked Activity of Two Neurons in a Feed-forward Network

First, we examine the conditions for the phased-locked activity of the two neurons,

A and B, in the feed-forward network of A inhibiting B where the synapse from A to

B is non-depressing.

Denote P̃ and T̃ as the intrinsic periods of neuron A and neuron B, respectively

(Figure 5.1). Ti is the new period of neuron B in the ith cycle due to the input from

neuron A. ti is the delay firing time of B after the last spike of A and τi is the relative

firing time of A after B fires. The phase of neuron A is defined as θ = τ/T̃ or θi = τi/T̃

in the ith cycle. Similarly, the phase of neuron B is defined as φ = t/P̃ or φi = ti/P̃

76
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Figure 5.1 Feed-forward network of neuron A inhibiting neuron B, exhibiting 1:1
firing.

in the ith cycle. Using mathematical convention, the STRC of neuron B is defined

as T̃−T
T̃

which can be represented as a function of the phase of A, zB(θ) = T̃−T
T̃

. In

the (i + 1)th cycle of B, Ti+1 is affected by τi or θi and Ti+1 = T̃ (1− zB(θi)). Then,

θi+1 = τi+1

T̃
= P̃−ti+1

T̃
= P̃−(Ti+1−τi)

T̃
= P̃

T̃
− 1 + θi + zB(θi). The phase-locked activity

of this feed-forward network corresponds to a stable fixed point of this map, i.e.,

θ∗ = P̃
T̃
− 1 + θ∗ + zB(θ∗) or zB(θ∗) = 1− P̃

T̃
. If |1 + z′B(θ∗)| < 1 or −2 < z′B(θ∗) < 0,

this fixed point is stable.

Since the map is constructed under the 1:1 firing situation, the conditions to

guarantee 1:1 firing should be examined. Two situations that break 1:1 firing are

shown in Figure 5.2. Ti+1 should not be too small (Figure 5.2(a)) or too large (Figure

5.2(b)). To avoid these two cases, we need Ti+1 + T̃ > τi + P̃ and Ti+1 < τi + P̃ . In

terms of the phase of A and STRC of B, the conditions for 1:1 firing are 1− θ− P̃
T̃

<

zB(θ) < 2− θ − P̃
T̃
.

P
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(b)

Figure 5.2 Firing pattern that are not 1:1 (a) One A firing and two subsequent B
firings. (b) One B firing and two subsequent A firings.
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Combining the 1:1 condition with the stability condition for the fixed point,

to obtain 1:1 phased-locked activity in the feed-forward network of A inhibiting B,

the STRC of neuron B needs to satisfy: 1 − θ∗ − P̃
T̃

< zB(θ∗) < 2 − θ∗ − P̃
T̃

and

−2 < z′B(θ∗) < 0, where zB(θ∗) = 1 − P̃
T̃
. Geometrically, the fixed point is the

intersection point of the STRC of neuron B and the horizontal line 1 − P̃
T̃

in the

zB − θ plane (Figure 5.3). The STRC of B at the fixed point θ∗ should be located in

the bounded region by the two lines zB = 1− θ − P̃
T̃

and zB = 2− θ − P̃
T̃
. Moreover,

the slope of the STRC at θ∗ should be negative but greater −2.
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Figure 5.3 Conditions on the STRC of neuron B for the 1:1 phase-locked activity
of the feed-forward network. The intersection of the curve zB(θ) with the line 1− P̃

T̃
determine fixed point θ∗ corresponding to the phase of the solution.

5.2 Phase-locked Activity of Two Neurons in a Feedback Network with

No Synaptic Depression

Here, we consider the feedback network in which neurons A and B are mutually

inhibited with non-depressing synapses. Different from Figure 5.1, in the feedback
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Figure 5.4 Feedback network of neurons A and B inhibiting each other with non-
depressing synapses.

network, the period of neuron A is not a constant, but varies due to the firing time

of neuron B as shown in Figure 5.4. The new period of A in each cycle is denoted

as Pi, i = 1, 2, · · ·. In the ith cycle of neuron A, the phase of neuron B, φi = ti/P̃ ,

determines the period of A, Pi. This effect can be measured by the STRC of A,

P̃−Pi

P̃
= zA(φi), where zA is the STRC function of neuron A. On the other hand,

the spiking of A at the phase θi = τi/T̃ determines the period of B, Ti+1, which is

similarly expressed by the STRC of B, T̃−Ti+1

T̃
= zB(θi). Hence,

θi+1 =
τi+1

T̃

=
Pi+1 − ti+1

T̃

=
P̃ (1− zA(φi+1))− P̃ φi+1

T̃

=
P̃

T̃
(1− φi+1 − zA(φi+1))
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and

φi+1 =
ti+1

P̃

=
Ti+1 − τi

P̃

=
T̃ (1− zB(θi))− T̃ θi

P̃

=
T̃

P̃
(1− θi − zB(θi))

Substitute this relation into the above θ function, a 1D map for θi is obtained.

θi+1 = π(θi) =
P̃

T̃
(1− zA(

T̃

P̃
(1− θi − zB(θi))))− 1 + θi + zB(θi) (5.1)

The fixed point of this map satisfies:

P̃

T̃
(1− zA(

T̃

P̃
(1− θ∗ − zB(θ∗))))− 1 + zB(θ∗) = 0 (5.2)

The stability condition of the fixed point is |π′(θ∗)| < 1 ⇔ |(1+z′A(φ∗))(1+z′B(θ∗))| <

1, where φ∗ = T̃
P̃
(1− θ∗ − zB(θ∗)). These results are equivalent to the results in [20].
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Figure 5.5 Firing patterns that are not 1:1. (a) A fires once, followed by two
subsequent firings of B. (b) One firing of B and two subsequent firings of A.

In a manner similar to that in the feed-forward network, the conditions for 1:1

phase-locked activity should be considered. Figure 5.5 shows the two phase-locked

situations that are not 1:1 in which the inhibition from neuron B delays the firing

of A too much (Figure 5.5(a)) and that the inhibition from A delays the firing of B

too much (Figure 5.5(b)). To avoid the case in Figure 5.5(a), we need the condition
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τi + Pi+1 < Ti+1 + T̃ . Use the phase notations, τi + Pi+1 < Ti+1 + T̃ ⇔ zA(φi+1) >

1− T̃
P̃
(2− θi − zB(θi)). Since φi+1 = T̃

P̃
(1− θi − zB(θi)), zA(φi+1) > 1− T̃

P̃
− φi+1. So,

to obtain a 1:1 phase-locked solution, the fixed point φ∗ = T̃
P̃
(1− θ∗ − zB(θ∗)) should

satisfy zA(φ∗) > 1− T̃
P̃
−φ∗. Geometrically, at the fixed point, the STRC of A, zA(φ),

should be above the line zA = 1 − T̃
P̃
− φ as shown in Figure 5.6(a). To avoid the

case in Figure 5.5(b), we need the condition Ti+1 < τi + P̃ ⇔ zB(θi) > 1 − P̃
T̃
− θi,

or locally, zB(θ∗) > 1− P̃
T̃
− θ∗, i.e., the STRC of B, zB(θ), should be above the line

zB = 1− P̃
T̃
− θ at the fixed point (Figure 5.6(b)).
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Figure 5.6 Conditions on the STRCs of neurons for the 1:1 phase-locked activity
of the feedback network. (a) The STRC of A should be above the dashed line zA =

1− T̃
P̃
− φ. (b) The STRC of B should be above the dashed line zB = 1− P̃

T̃
− θ.

5.3 Phase-locked Activity of Two Neurons in a Feedback Network with

Synaptic Depression

In this section, we consider the network involving short-term synaptic depression.

Assume in the feedback network of two mutually inhibitory neurons A and B, the

synapse from B to A is still non-depressing, while the synapse from A to B is

depressing. With non-depressing synapse, the synaptic strength from A to B at

the time A fires is determined by the gating variable s (red trace in Figure 5.7)

representing the fraction of open synaptic channels. In Figure 5.7, when A fires, s
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is set to a constant, without loss of generality, say 1, then s decays to 0 with some

time constant. With depressing synapse, when A fires, s is not set to a constant, but

the value of the depression variable d (green trace in Figure 5.7) which represents the

fraction of available synaptic resources when the neuron fires. It is reset by a fraction

f (0 < f < 1) at the instant that A fires and recovers towards 1 with time constant

τd after A fires. 
ḋ = 1−d

τd
after neuron A fires

d+ = f · d− when neuron A spikes

(5.3)

The value of the depression variable at the moment neuron A fires changes with the

period of A. The longer the period of A, the larger the value d recovers to 1, as do

the s value and the synaptic strength. Thus, the change in the period of A leads to

different delay firing time of B.

0�t

d

s

s
0s 1s 2s

Figure 5.7 Non-depressing synapse and depressing synapse.

The 1D map derived from the non-depressing synapse case in section 5.2 should

be revised due to the synaptic depression from neuron A to neuron B. Since the

synaptic strength changes cycle by cycle, besides depending on the relative firing

time of A, the new period of B also depends on the value of the depression variable
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at the moment A spikes (Figure 5.8). Therefore, the STRC of B is a two variable

function, zB(θ, d), due to the synaptic depression of neuron A. The STRC of A, zA

stays the same as in the previous map because the synapse from B to A is still

non-depressing. Hence,

θi+1 =
P̃

T̃
(1− zA(

T̃

P̃
(1− θi − zB(θi, di))))− 1 + zB(θi, di) + θi.

Now, we are deriving the map for the value of the depression variable when A fires in

each cycle, di, i = 1, 2, · · ·. According to Equation (3), di+1 = 1− (1− di)exp(−Pi+1

τd
)

and Pi+1 = P̃ (1− zA( T̃
P̃
(1− θi − zB(θi, di)))). Thus,

di+1 = 1− (1− fdi)exp(− P̃

τd

(1− zA(
T̃

P̃
(1− θi − zB(θi, di))))).

So, for a feedback network with synaptic depression, to examine the phase-locked

activity of neurons, there is a 2D map based on θ, the phase of neuron A and d, the

value of its depression variable.
θi+1 = π1(θi, di) = P̃

T̃
(1− zA( T̃

P̃
(1− θi − zB(θi, di))))− 1 + zB(θi, di) + θi

di+1 = π2(θi, di) = 1− (1− fdi)exp(− P̃
τd

(1− zA( T̃
P̃
(1− θi − zB(θi, di)))))

(5.4)

The fixed points of this 2D map (θ∗, d∗) satisfy the equations:


P̃
T̃
(1− zA( T̃

P̃
(1− θ∗ − zB(θ∗, d∗))))− 1 + zB(θ∗, d∗) = 0

zA( T̃
P̃
(1− θ∗ − zB(θ∗, d∗))) = 1− τd

P̃
ln(1−fd∗

1−d∗
)

(5.5)

The stability of the obtained fixed points can be investigated by the Jacobian of the

2D map.
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J=

 A11 A12

A21 A22

 =

 ∂π1

∂θ
∂π1

∂d

∂π2

∂θ
∂π2

∂d


(θ∗,d∗)

If the two eigenvalues of this matrix are within the unit circle, i.e., eigenvalues

λ1 and λ2 satisfy |λ1| < 1 and |λ2| < 1 or 2 > 1 + det(A) > |tr(A)|, where

det(A) = A11A22 − A12A21, tr(A) = A11 + A22, then the fixed point is stable. We

next consider a specific model to investigate this further.
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Figure 5.8 Feedback network with depressing synapse from neuron A to neuron B.

5.4 Quadratic Integrate-and-fire (QIF) Model

To verify the validity of our method and examine the role of the synaptic depression,

we use the Quadratic Integrate-and-fire Model to generate the STRCs and investigate

the solutions of the maps given in (1) and (4).

Quadratic Integrate-and-fire Model [31]:


dV
dt

= 1 + V 2 + a · δ(t− ts)

V + = V r, when V = V t(V r < V t)

(5.6)

where V t is the threshold and V r is the resting potential. As soon as the voltage V

reaches the threshold V t, V is reset to the resting potential V r. At the time t = ts,
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a perturbation a is given a the voltage V . If a is positive, V is added by the amount

of a, corresponding an excitatory synapse. If a is negative, V is subtracted by the

amount of |a|, which delays the next firing of the neuron and represents an inhibitory

synapse. The intrinsic period of the neuron is T = arctanV t−arctanV r and the new

period with a perturbation given at the time t = ts or at the phase θ (ts = Tθ) is

T = arctanV t− arctan(tan(Tθ + arctanV r) + a) + Tθ. So the STRC of the neuron

can be analytically calculated:

STRC(θ) =
arctan(tan(Tθ + arctanV r) + a)− arctanV r

T
− θ (5.7)

If the perturbation is small, the STRCs generated by this model are typical Type I

phase response curves (PRCs) [26] as shown in Figure 5.9.

phase

Figure 5.9 STRCs (PRCs) generated by Quadratic Integrate-and-fire Model.
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5.4.1 Apply Quadratic Integrate-and-fire Model to a Feedback Network

with No Synaptic Depression

From section 5.2, the 1D map for the phase-locked activity of a feedback network

with no synaptic depression is:

θi+1 = π(θi) =
P̃

T̃
(1− zA(

T̃

P̃
(1− θi − zB(θi))))− 1 + θi + zB(θi)

Using QIF, the STRCs of neurons A and B can be analytically expressed.

zA(φ) =
arctan(tan(P̃ φ + arctanV rA) + aB)− arctanV rA

P̃
− φ

zB(θ) =
arctan(tan(T̃ θ + arctanV rB) + aA)− arctanV rA

T̃
− θ

The phased-locked activity can be found by looking for the fixed point of this map

which is the intersection point of the curve π(θ) (blue curve in Figure 5.10) and the

line θ (red line in Figure 5.10) as shown in Figure 10. If the slope of the curve π(θ)

at the intersection point is greater than −1 and less than 1, i.e., |π(θ∗)| < 1, the fixed

point is stable.

The fixed point θ∗ must also satisfy the 1:1 firing condition zA(φ∗) > 1− T̃
P̃
−φ∗

and zB(θ∗) > 1 − P̃
T̃
− θ∗. Here we assume the intrinsic frequency of neuron A

is less than that of neuron B, i.e., P̃ > T̃ , and the synapse is inhibitory a < 0.

Under this assumption, at φ = 0, zA(0) < 0 and 1 − T̃
P̃

(Figure 5.11(a)), thus, there

must exist an intersection point φ1 of the curve zA(φ) with the line 1 − T̃
P̃
− φ. To

satisfy the condition zA(φ∗) > 1− T̃
P̃
− φ∗, the fixed point φ∗ should be greater than

φ1, φ∗ > φ1, where φ1 = arctan(tan(P̃−T̃+arctanV rA)−aB)−arctanV rA

P̃
. Using the relation

φ∗ = T̃
P̃
(1 − θ∗ − zB(θ∗)) and Equation (5.2), we proved that the condition φ∗ > φ1

is equivalent to θ∗ < 1. Therefore, if we find a valid value of θ∗, 0 ≤ θ∗ < 1, the

conditions φ∗ > φ1 and zA(φ∗) > 1 − T̃
P̃
− φ∗ are automatically satisfied. On the
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Figure 5.10 Phase-locked solution of the feedback network with no synaptic
depression. The intersection of the curve π(θ) with the line θ determines the fixed
point θ∗ corresponding to the phase locked solution.

STRC of neuron B, the fixed point θ∗ should satisfy zB(θ∗) > 1 − P̃
T̃
− θ∗ (Figure

5.11(b)). At θ = 0, zB(0) < 0 and 1 − P̃
T̃

< 0, so there are two possibilities for

the locations of zB(θ) and 1 − P̃
T̃
− θ. One possibility is 1 − P̃

T̃
< zB(0) (the lower

dashed line in Figure 5.11(b)), then zB(θ) and 1 − P̃
T̃
− θ don’t intersect and the

curve is always above the line. zB(θ) > 1 − P̃
T̃
− θ holds for all 0 ≤ θ < 1. If

1 − P̃
T̃

> zB(0), there exists an intersection point θ1 of zB(θ) with 1 − P̃
T̃
− θ (the

upper dashed line in Figure 5.11(b)). To obtain 1:1 phase-locked solution, the fixed

point θ∗ should satisfy θ∗ ≥ θ1, where θ1 = arctan(tan(T̃−P̃+arctanV rB)−aA)−arctanV rB

T̃
.

Whether zB(θ) and 1 − P̃
T̃
− θ intersect depends on the inhibitory synaptic strength

from neuron A to B, the value of aA, aA < 0. When the synapse is weak, aA > a1,

where a1 = tan(T̃ − P̃ + arctanV rB) − V rB, 1 − P̃
T̃

< zB(0) and zB(θ) > 1 − P̃
T̃
− θ

for all 0 ≤ θ < 1. Otherwise, if aA < a1, 1− P̃
T̃

> zB(0) and the condition θ∗ ≥ θ1 is

needed. These results are summarized in the following propositions.
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Figure 5.11 Conditions on the STRCs of neurons for the 1:1 phase-locked activity
of the feedback network. (a) The fixed point φ∗ should be greater than φ1. (b) The
fixed point θ∗ should be greater than θ1.

Proposition 1: If there exists a fixed point θ∗ ∈ [0, 1) for the 1D map (5.1) and

aA > a1, where a1 = tan(T̃ − P̃ + arctanV rB) − V rB, θ∗ corresponds to a 1:1

phase-locked solution of the feedback network.

Proposition 2: If there exists a fixed point θ∗ ∈ [0, 1) for the 1D map (1), aA < a1

and θ∗ ≥ θ1, where θ1 = arctan(tan(T̃−P̃+arctanV rB)−aA)−arctanV rB

T̃
, θ∗ corresponds to a

1:1 phase-locked solution of the feedback network.

Examples

(1). The parameter values for neurons A and B: V tA = 7, V rA = −8, V tB =

4.23, V rB = −8. The synapse from A to B aA = −10 and the synapse from B to A

aB = −8. So, a1 = −21.3077. From the 1D map or the fixed point obtained from the

geometric method, the intersection of the curve and the line in Figure 5.12(a), the

phase of A at the steady state in the feedback network is θ∗ = 0.9982 ∈ [0, 1). Since

aA > a1, from Proposition 1, θ∗ is the 1:1 phase-locked solution. From simulation in
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the software XPPAUT, Figure 5.12(b) shows the voltage traces of two neurons at the

steady state, which is consistent with the analytical result.
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Figure 5.12 An example for the 1:1 phase-locked activity of the feedback network.
(a) Solution from 1D map. (b) Voltage traces of neurons A and B from simulation in
XPPAUT.

Note that we define θ as the proportion of the relative firing time of A to the

intrinsic period of B, i.e., θ∗ = τ∗

T̃
, while in the feedback network, the period is T ∗

which is different from T̃ . That’s why the solution θ∗ seems inconsistent with what we

visibly see in Figure 5.12(b), where the two neurons exhibit near anti-phase locking.

We define θ̂∗ = τ∗

T ∗
. From the analytical solution, τ ∗ = 2.7800 and T ∗ = 5.5206, thus,

θ̂∗ = 0.5036. From simulation in XPP, we also find that θ̂∗ = 0.5036.

(2). Use the same intrinsic parameter values for the two neurons, but change

the synaptic strength value aA = −30 and aB = −4. Since a1 is independent of

the synaptic connection, it keeps the same value as in (5.1), a1 = −21.3077 and

θ1 = 0.7382. From the 1D map, the fixed point θ∗ = 0.0573 ∈ [0, 1). Here aA < a1,

but θ∗ < θ1. According to Proposition 2, θ∗ is not a 1:1 phase-locked solution. This

prediction can be verified by the simulation result in Figure 5.13(b), where A and B

are 2:1 phase-locked.
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Figure 5.13 An example for the activity of the feedback network in which neurons
A and B are not 1:1 phase-locked. (a) Solution from 1D map. (b) Voltage traces of
neurons A and B from simulation in XPPAUT.

5.4.2 Apply Quadratic Integrate-and-fire Model to a Feedback Network

with Synaptic Depression

In the feedback network without synaptic depression, the phase-locked activity of

neurons is obtained from the fixed point of a 1D map (5.1), which is the intersection

point of the curve π(θ) and the line θ (Figure 5.10). In the feedback network with

synaptic depression, the phase-locked activity of two neurons can be determined by

a 2D map (5.4) and the fixed point of this map satisfies Equation (5.5). Using the

specific QIF model, the STRC of neuron A is the same as Equation (5.7), while the

STRC of B is a two variable function zB(θ, d). Without synaptic depression, the

STRC of B can be represented as Equation (5.7). With synaptic depression, the

synaptic strength from A to B is the product of maximum synaptic strength aA and

the available synaptic resources, i.e., the value of d. Therefore,

zB(θ, d) =
arctan(tan(T̃ θ + arctanV rB) + aAd)− arctanV rA

T̃
− θ (5.8)

Plotting the two equations (5.5) in θ − d plane (Figure 5.14), there are two curves,

the red curve corresponding to the first equation and the blue corresponding to the

second equation. The intersection of these two curves is the fixed point of the 2D
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map.
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Figure 5.14 Phase-locked solution of the feedback network with synaptic
depression. The intersection of the two curves determines the fixed point (θ∗, d∗)
corresponding to the phase locked solution.

Example

Take the parameter values: V tA = 7, V rA = −8, V tB = 4.23, V rB = −8,

aA = −12, aB = −4, f = 0.5, τd = 5. From the fixed point of the 2D map or the

intersection of the two curves plotted by Equation (5.5), the two neurons are locked

at the phase θ∗ ≈ 0.3614, d∗ ≈ 0.6951 as shown in Figure 5.15(a), the intersection

of the red curve and the blue curve. From simulation by XPPAUT, we obtained the

same result (Figure 5.15(b)), θ∗ ≈ 0.3614, d∗ ≈ 0.6951. The green dots in Figure

5.15(a) are obtained from XPPAUT, representing the values of (θi, di) in each cycle

at the moment neuron A spikes. This sequence quickly converges to the fixed point

from some initial value.
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Figure 5.15 An example for the 1:1 phase-locked activity of the feedback network
with synaptic depression. (a) Solution from 2D map. (b) Voltage traces of neurons
A and B from simulation in XPPAUT.

5.4.3 Relationship between the Phase-locked Activities of the Feedback

Network with and without Synaptic Depression

Since the 2D map (5.4) for the feedback network with synaptic depression is very

complicated, we will try to find the relationship between the 1D map without synaptic

depression and the 2D map with synaptic depression. Then, we will analyze the

phase-locked activity of the feedback network with depression through the 1D map,

instead of analyzing the 2D map directly.

When the synapse is non-depressing, at the steady state, the phase of A, θ∗

decreases with increasing inhibitory synaptic strength from neuron A to neuron B

(Figure 5.16(a)). As shown in the upper panel of Figure 5.16(b), when the inhibitory

synaptic strength is small, it does not delay the firing of B too much and B fires right

after the firing of A. The θ value is near 1. On the other hand, when the synaptic

strength is large, the firing of B is delayed a lot, right before the next firing of A and

θ value is close to 0, as shown in the lower panel of Figure 5.16(b).

To distinguish the parameter notation for the synaptic strength in the non-

depressing synapse case and in the depressing synapse case, in the following, we

denote the synaptic strength in the network without synaptic depression or in the 1D
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Figure 5.16 Relation between the phase of A and the inhibitory synaptic strength
from A to B in the feedback network without synaptic depression. (a) From the 1D
map (1), the phase of A decreases with increasing synaptic strength. (b) Schematic
plot of the relation between the phase of A and the synaptic strength from A to B.

map as āA and denote the maximal synaptic strength in the network with synaptic

depression or in the 2D map as aA. In the feedback network with depression, the

synaptic strength when A fires is the product of the maximal synaptic strength and

the value of the depression variable, i.e., aAd∗, which yields the same phase-locked

activity in the network without depression, if āA = aAd∗. This proposition is verified

in Figure 5.17(a). The blue curve represents the relationship between θ∗ and āA in

the θ∗ − āA plane obtained from the 1D map (5.1). There always exists a pair of

(aA, d∗) in the 2D map corresponding to the same θ∗ value for the 1D map and they

satisfy the relation āA = aAd∗ except in a very small region near θ∗ = 1. The red

curve in Figure 5.17(a) is the relationship between θ∗ and aAd∗, obtained from the 2D

map (5.4) which overlaps the blue curve for the 1D map in almost the entire domain

except a small region near θ∗ = 1 which is zoomed in Figure 5.17(b). To explain

this, first, we construct the relationship between aA, d∗ and āA. Compare the first

equation in Equations (5.5) for the fixed point of the 2D map with Equations (5.2) for

the fixed point of the 1D map, the only difference is that with a depressing synapse,

the STRC of neuron B is a two variable function zB(θ∗, d∗) instead of zB(θ∗). Here,
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Figure 5.17 Comparison of the result from the 1D map and that from the 2D map.
(a) The relation curve of θ∗ and aAd∗ from the 2D map overlaps the relation curve
of θ∗ and āA from the 1D map, where āA = aAd∗, except a small region near θ∗ = 1.
(b) Zoom-in of the inconsistent part of (a).

zB(θ∗) =
arctan(tan(T̃ θ∗ + arctanV rB) + āA)− arctanV rA

T̃
− θ∗

zB(θ∗, d∗) =
arctan(tan(T̃ θ∗ + arctanV rB) + aAd∗)− arctanV rA

T̃
− θ∗

Therefore, to obtain the same phase θ∗, we need āA = aAd∗. Rewrite the first

equation in (5.5) as

zA(
T̃

P̃
(1− θ∗ − zB(θ∗, d∗))) = 1− T̃

P̃
(1− zB(θ∗, d∗)).

Combining with the second equation in (5.5), d∗ should satisfy

1− T̃

P̃
(1− zB(θ∗, d∗)) = 1− τd

P̃
ln

1− fd∗

1− d∗

⇔ ln
1− fd∗

1− d∗
=

T̃

τd

(1− zB(θ∗, d∗))

=
T̃

τd

(1− zB(θ∗)|āA)
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⇔ d∗ =
exp( T̃

τd
(1− zB(θ∗)|āA)− 1

exp( T̃
τd

(1− zB(θ∗)|āA)− f

So, for a synaptic strength āA in the feedback network without synaptic depression,

there is a fixed point θ∗ of the 1D map. To obtain the same fixed point θ∗ in the 2D

map, d∗ and aA should satisfy the following two equations:

d∗ =
exp( T̃

τd
(1− zB(θ∗)|āA)− 1

exp( T̃
τd

(1− zB(θ∗)|āA)− f
(5.9)

aA =
āA

d∗
(5.10)

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aa

*

�

(-5.213,0.9799)

(-5.49,0.9995)

-30 -25 -20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

*

�

Aa

4,8,23.4,8,7 �������� BBBAA aVrVtVrVt 5.0,5,4,8,23.4,8,7 ���������� faVrVtVrVt dBBBAA �

Figure 5.18 Comparison of the 1D map and the 2D map. (a) The relation curve
of θ∗ and āA from the 1D map. (b) The relation curve of θ∗ and aA obtained from
equations (5.9) and (5.10). The inset is the enlargement of the right end part, where
each aA value corresponds to two θ∗ values. The fixed point corresponding to the
bigger θ∗ value is stable, while that corresponding to the smaller one is unstable.

In Figure 5.18(a), the curve is obtained from the 1D map (5.1), showing the

relation between θ∗ and āA. Figure 5.18(b) is the dependence of θ∗ on the synaptic

strength aA in the depressing synapse case which is obtained from the above relation

formulae (5.9) and (5.10). The right end part of the curve bends up due to the

decreasing of d∗, meaning that for the aA values in this part, there are two fixed
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Figure 5.19 Plotting of the two curves from Equations (5.5). (a) When aA = −5.8,
there is one intersection point. (b) When aA = −5.3, there are two intersection points.

points, θ∗1 and θ∗2, θ∗1 < θ∗2. Through checking the stability, we found the smaller

value θ∗1 is stable and the bigger value θ∗2 is unstable. This explains why we can not

obtain phase-locked activities in the region where θ∗ is close to 1 (Figure 5.17(b)).

In Figure 5.19, we directly plot the curves for (5.5) and find the intersection points.

When aA < −5.49, there is one intersection of the two curves (Figure 5.19(a)). When

aA > −5.49, there are two intersections and the bigger θ∗ value is unstable (Figure

5.19(b)). This domain of aA corresponds to the enlarged part in Figure 5.18(b) where

one aA value corresponds to two θ∗ values. With increasing aA value or decreasing

strength |aA|, the two intersection points get closer and finally the curves become

tangent and then don’t intersect with each other. In Figure 5.20(a), aA = −5.3706

and there are two intersections. When aA value increases to −5.2390, the upper

intersection moves down and the lower intersection moves up and they are getting

closer. This phenomenon is also shown in the curves from Formulae (5.9) and (5.10)

in Figure 5.18(b). These analytical results can be verified by the simulations in

XPPAUT. Figure 5.21(a) shows the dependency of θ∗ on the synaptic strength of A,

aA. θ∗ decreases as |aA| increases and neurons A and B are not phase-locked when
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Figure 5.20 The intersection points get closer with increasing aA value. (a) aA =
−5.3706. (b) aA = −5.2390.

aA > −5.21. Figure 5.21(b) is the voltage traces of A and B when aA = −5.209,

which shows they are not phase-locked.

To conclude, we have the following propositions.

Proposition 1: In the feedback network of A and B with no synaptic depression,

there exists a synaptic strength ā∗A, such that, when āA < ā∗A, the two neurons are

phase-locked. Moreover,

lim
āA→ā∗A

θ∗ = 1

Proposition 2: In the feedback network with depression in the synapse from A to

B, there exists a synaptic strength a∗A, such that, when aA < a∗A, the two neurons are

phase-locked. Moreover,

lim
aA→a∗A

θ∗ = b

where b < 1.
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Figure 5.21 Simulation results from XPPAUT. (a) The dependency of the phase
of A, θ∗ on the synaptic strength of A, aA. (b) The voltage traces of A and B when
aA = −5.209. The black trace is for neuron A and the red trace is for neuron B.

5.5 Morris-Lecar Model

In this section, we apply our method to the Morris-Lecar biological model. The

equations for neuron A or B are the following.

dV

dt
= −ḡCam∞(V )(V − ECa)− ḡKW (V − EK)− gL(V − EL) + Iext

dW

dt
= λ(V )(W∞(V )−W )

dsA

dt
=

1− s

τ1

Heav(V − Vth)−
s

τ2

Heav(Vth − V )

m∞(V ) = 0.5(1 + tanh
V − V1

V2

)

W∞(V ) = 0.5(1 + tanh
V − V3

V4

)

λ(V ) = φcosh
V − V3

2V4

If there is an inhibitory synaptic input from the presynaptic neuron, another

term Isyn = −ḡsyns(V −Esyn) is added to the right hand side of the first equation, the

V equation. This model can generate oscillatory spiking patterns as shown in Figure
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Figure 5.22 A typical STRC generated by Morris Lecar model.

5.23. To generate STRCs of this type of neuron, the synaptic input is modeled by

a square-wave pulse. For consistency with the synaptic input from the presynaptic

neuron in the model, the width of the square-wave pulse is set to the active duration

of the presynaptic neuron which is short and fixed for the spiking pattern and the

magnitude of the square-wave pulse is the synaptic strength of the presynaptic neuron.

A typical shape of the STRC generated by this model looks like type I (Figure 5.22)

and very similar to the STRCs generated by QIF model (Figure 5.9).

First we assume the synapses both from neuron A to B and that from B to A

are non-depressing. The synaptic strength is constant with non-depressing synapses.

Although the explicit or analytical functions for the STRCs of neurons A and B

are unknown, we numerically generate the STRCs using the adjoint method [25] in

XPPAUT. The values of zB(θi) and zA(φi) in 1D map (5.1), where φi = T̃
P̃
(1− θi−1−

zB(θi−1)), i = 1, 2, · · ·, can be obtained from the numerically generated STRCs of

the corresponding neurons. So, the map (5.1) and the equation (5.2) can still be

used to find the fixed point and the phased-locked solution. The relation between
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Figure 5.23 Voltage traces of two neurons generated by Morris-Lecar model.

the steady state phase θ∗ and the synaptic strength from A to B ḡsynA is shown in

Figure 5.24. Figure 5.24(b) is the zoom-in of Figure 5.24(a). In this figure, there

are three curves. The blue curve is the solution obtained from 1D map (5.1). The

red and green curves are simulation results of Morris-Lecar model in XPPAUT. The

red curve is generated by a simplified formula for the synapse, Isyn = −ḡsyns and the

green one is obtained by setting Einh ≈ Vrest − 1. The reason for this choice is we

need the synaptic input form in the model to be consistent with the synaptic input

used to produce the STRCs. The solution from 1D map (5.1) is very close to the

simulation results.

When the synapse from A to B is depressing, in the 2D map (5.4), the synaptic

strength di varies cycle by cycle. Different di values correspond to different STRCs.

zB(θi, di) in (5.4) is determined by choosing the appropriate STRC corresponding

to the di value. Figure 5.24 shows the dependance of θ∗ on the synaptic strength

ḡsynA in the depressing synapse case. The blue curve is from the 2D map and the

numerically generated STRCs and the red and green curves are from XPP simulation

with different setting as described in the above paragraph.
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Figure 5.24 The relation between the phase of A θ∗ and the synaptic strength of A
ḡsynA when the synapses are non-depressing. (a) The blue curve is the solution of the
1D map (5.1). The red curve is obtained by setting Isyn = −ḡsyns in the Morris-Lecar
model. The green curve is obtained by setting Einh ≈ Vrest − 1 in the Morris-Lecar
model. (b) The zoom-in of (a).

The phase-locked solution can also be obtained using geometric methods. Plotting

the two equations in (5.5) in the θ−d plane as shown in Figure 5.26(a), the intersections

of these two curves are the fixed points of the map (5.4). The red curve corresponds

to the first equation in (5.5) and the blue curve corresponds to the second equation.

There are two fixed points and the one with smaller θ value is stable. Different from

the QIF model, the PRC functions zA(φ) and zB(θ, d) in (5.5) do not have analytical

expressions, but numerically generated by the adjoint method in XPP. The green

stars in the figure are the θ, d values in each cycle obtained from simulation. They

quickly converges to the stable fixed point obtained from the analytical method with

consistent parameter values. Figure 5.26(b) is the voltage traces of neurons A and B

modeled by the Morris-Lecar model. The black trace represents the voltage of A and

the red one is for neuron B. The stable fixed point in (a) (θ∗, d∗) ≈ (0.86, 0.868) and

the simulation result in (b) is (θ∗, d∗) ≈ (0.8498, 0.8679) which are very close.

Comparing the results obtained from QIF model in Section 5.4 and the results

from the Morris-Lecar model, we find they are very similar as shown in Figure
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Figure 5.25 The relation between the phase of A θ∗ and the synaptic strength of
A ḡsynA when the synapse from neuron A to B is depressing. (a) The blue curve is
the solution of the 2D map (5.4). The red curve is obtained by setting Isyn = −ḡsyns
in the Morris-Lecar model. The green curve is obtained by setting Einh ≈ Vrest − 1
in the Morris-Lecar model. (b) The zoom-in of (a).

5.27. Figure 5.27(a) shows the results of the Morris-Lecar model by using either

V − Einh = 1 or Einh = −1.275 as described in Figure 5.24, showing the dependence

of the phase on the synaptic strength and Figure 5.25(b) show results from the QIF

model. In these two models, the steady state phase both decreases with increasing

synaptic strength. Figure 5.26 shows a comparison of the depression variable d∗ at

the steady state from the two models. The curves in Figure 5.28(a) are the solution

of Morris-Lecar model and Figure 5.28(b) is from QIF model. Both show d∗ first

increasing and then decreasing with increasing synaptic strength. The similarity

between the results of two very different models is due to the fact that they have

similar STRCs.
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Figure 5.26 Phase-locked activity of the feedback network with synaptic depression
modeled by the Morris-Lecar model. (a) Solution from 2D map. (b) Voltage traces
of neurons A and B from simulation in XPPAUT.

5.6 Geometric Method of Predicting Phase-locked Activity of a Two

Neuron Feedback Network

Given the STRC of the neuron or how it is affected by the spiking of the presynaptic

neuron in the feed-forward network as well as the information of the feed-forward

network in the opposite direction, we can predict the phase-locked activity of the

feedback network through geometric methods.

First, we examine the non-depressing synapse case. Let φ∗ = T̃
P̃
(1−θ∗−zB(θ∗)).

Equation (5.2) can be rewritten as two equations.


φ∗ = T̃

P̃
(1− θ∗ − zB(θ∗))

θ∗ = P̃
T̃
(1− φ∗ − zA(φ∗))

Each equation provides feed-forward information. The first equation involves the

information how neuron A affects neuron B or the STRC of B, zB(θ) and the second

one includes the information in the other direction zA(φ). Plot the curves for each

equation on the φ−θ plane and the intersection of these two curves is the phase-locked

solution of the feedback network. In Figure 5.29, the blue curve corresponds to
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Figure 5.27 Comparison of results from two models. (a) The dependance of θ∗ on
ḡsynA from Morris-Lecar model. (b) The dependance of θ∗ on aA from QIF model.
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Figure 5.28 Comparison of results from two models. (a) The dependance of d∗ on
ḡsynA from Morris-Lecar model. (b) The dependance of d∗ on aA from QIF model.

the first equation φ = T̃
P̃
(1 − θ − zB(θ)) and the red one is for the equation θ =

P̃
T̃
(1−φ−zA(φ)). The intersection (θ∗, φ∗) is the phase-locked solution of the feedback

network.

When the synapse from A to B is depressing, substitute φ∗ = T̃
P̃
(1−θ∗−zB(θ∗))

into the two equations (5.5), which is then rewritten as the three equations
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Figure 5.29 Geometric method of predicting the phase-locked activity of a
feedback network without synaptic depression. The intersection of these two curves
corresponds to a phase-locked solution of the feedback network.



φ∗ = T̃
P̃
(1− θ∗ − zB(θ∗, d∗))

θ∗ = P̃
T̃
(1− φ∗ − zA(φ∗))

d∗ =
exp( P̃

τd
(1−zA(φ∗)))−1

exp( P̃
τd

(1−zA(φ∗)))−f

(5.11)

The first equation involves the information how neuron A affects neuron B

with synaptic depression. The second one is the same as the second equation for

the non-depressing synapse case. The last equation describes the dependence of the

depression on the phase of B through the PRC function of A. Figure 5.30 shows an

example for the intersection of these three surfaces generated by the QIF model in

Matlab. The surface parallel with the d-axis is generated by the second equation

θ = P̃
T̃
(1 − φ − zA(φ)), the surface parallel with the θ-axis corresponds to the third

equation d =
exp( P̃

τd
(1−zA(φ)))−1

exp( P̃
τd

(1−zA(φ)))−f
and the other one is generated by the first equation

φ = T̃
P̃
(1− θ − zB(θ, d)), which includes all three variables. The intersection of these

three surfaces corresponds to a phase-locked solution of the feedback network with
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(a) (b)

Figure 5.30 Geometric method of predicting the phase-locked activity of a feedback
network with synaptic depression. (a) The intersection of these three surfaces
corresponds to a phase-locked solution of the feedback network. The surface parallel
with the d-axis is generated by the second equation in (5.11). The surface parallel with
the θ-axis corresponds to the third equation in (5.11). The other one is generated by
the first equation in (5.11), which is related all three variables and plotted separately
in (b).

synaptic depression. Geometrically, we can analyze how the parameter values affect

the phase-locked activity of the network by observing how the surfaces move with the

alteration of the parameter values.



CHAPTER 6

DISCUSSION

6.1 Conclusion and Discussion

The rhythmic behaviors of animals or human beings are related to the coordinated

activities of neurons in Central Pattern Generators(CPGs) [39, 54]. Exploring the

dynamics of neuronal systems is important to understand the generation of rhythmic

patterns. For a large complex network, it is often more tractable to examine the effects

of component networks from the simplified system rather than from the system as

a whole. In this study, we provided a method of combing information about feed-

forward networks to infer the phase-locked activity of a feedback network. Based on

the information on how the presynaptic neuron affects the activity of the postsynaptic

neuron as well as the feed-forward information in the other direction, we predicted

the phase-locked activity of neurons in a feedback network. Also, we examined the

contributions of the feedback synapse and the short-term synaptic depression to the

activity of the network. Moreover, we investigated the circumstances under which

neurons are phase-locked in a specific pattern.

We considered a network of two reciprocally coupled heterogenous neurons A

and B. Our analysis was done in two parts: In the first part, we assumed neuron

A is oscillatory while neuron B is not. As an application, we extended this work to

the analysis of a reduced three neuron model for the pyloric network of the STG, in

which there are one oscillator and two follower neurons. In the second part, both

neurons A and B are assumed to be oscillatory and they are pulse coupled with each

other. For both cases, we examined the conditions for the phase-locked activity of

these neurons with a focus on the 1:1 firing pattern. We derived specific maps for the

phase-locked activity when they are reciprocally coupled. A stable fixed point of the
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map corresponds to the phase-locked solution of the feedback network. We examined

the conditions for the existence and stability of the fixed point for each case. The fixed

point can be obtained by analytically solving certain equations or geometrically found

from the intersection of two curves or three surfaces associated with difference pieces

of feed-forward information. Further, the stability of the fixed point can be checked

by observing the slope of the curves at the fixed point or through the eigenvalues of

the Jacobian matrix for the map. Synaptic depression, a common form of short-term

synaptic plasticity [6, 32, 37, 74], is incorporated in our work. Previously, it has

been shown that the presence of synaptic depression promotes phase maintenance of

neurons [6, 62] in an oscillatory feed-forward network as the period of the network

is changed. Here, we found that synaptic depression may destabilize the stability

of the fixed point due to the property of frequency dependence. Without synaptic

depression, there exist stable fixed points close enough to the synchronous phase

locked solution, but these fixed points lose their stability when synaptic depression is

present in the network.

Specifically, in the first part of this study, neuron A is oscillatory while neuron

B is of high-voltage resting potential. In the feed-forward network of A inhibiting B,

we found that the relation between the period of A and the firing time of B relative

to the last spike of A is piecewise linear. For the feed-forward information in the

other direction, the dependency of the relative firing time of B on the period of A

was examined in [51]. We combined these two pieces information to derive a map of

the relative firing time of B when the synapses are non-depressing on feed-forward

networks. Assuming the synapse from A to B is depressing, the map is constructed

based on the synaptic strength of neuron A at the moment it fires in one cycle. We

found that without synaptic depression, the fixed point of the map is always stable,

while with synaptic depression, the slopes of the intersection curves at the fixed point

need to bounded in an appropriate region for the solution to be stable. This implied
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that the effect of the relative spiking time of B on the period of A can not be too

large, and vice versa.

In this part, we used separate time scales for different parameters. For example,

for the synapse of neuron B, we set the time constants for the gating variable sB, τη B

and τκ B in different time scales, thus, the trace of sB is modeled by a square wave,

which leads to the constant change in the period of A on Part I and Part III as shown

in Figure 3.2(b). Without this extreme assumption, we expect the period curve in

Figure 3.2(b) to be piece-wise linear with different slopes in distinct parts as shown

in Figure 2.5 in Chapter 2. But this does not affect the application of our method,

the period curve can still be transformed to predict the phase-locked solution by the

map.

There is much work on the pyloric rhythm of the crustacean stomatogastric

ganglion (STG). Hooper [38] found from experiments that the neurons in this network

show strong phase maintenance as the cycle frequency is altered. Manor et al. [51]

investigated a two neuron model consisting of an oscillator and a follower. They

examined how the phase of the follower changes as the period of the oscillator is

altered and found that the depressing synapse helps the phase maintenance between

neurons. Mouser et al. [62] examined the relation between the phases of LP and PY

with the period of AB. Mathematical equations were derived for the steady state of

this tri-phasic network. In the network they studied, AB sends feed-forward inhibitory

synapses to LP and PY which reciprocally inhibit one another. In our work, we looked

for the phase-locked activity of this network by constructing a map cycle by cycle and

found that in some parameter regimes, the steady state of the feed-forward network

is unstable. These three neurons ar not period-1 phase-locked, but display a period-2

1:1 locking pattern, in which the cycle period of LP is first lengthened and then

shortened in the next cycle, while PY does in the opposite way. It is an 1:1 phase

locking pattern, but the repetitive period is twice the period of AB/PD. We found
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that the occurrence of this period-2 solution is due to the dependency of recovery of

LP neuron from depression on the cycle period, which is a sigmoidal function of the

period.

We incorporated the synapse from LP to the pacemaker pair AB/PD into this

network and examined the role of this feedback synapse to the activity of the network.

Without this inhibitory feedback synapse, the network is driven by AB and the

network frequency is completely determined by the frequency of AB. In the presence

of this feedback synapse, the spiking of AB is delayed by the inhibition from LP and

the rhythm of the network is slowed down. We constructed a 6D map based on the

four variables in the 4D map and two additional variables, the period of AB and the

depression variable when AB fires in one cycle, which both appear as parameters in

the 4D map. The fixed point of this map corresponds to the phase-locked activity

of the tri-phasic feedback network. Interestingly, we found that the period-2 region

shrinks as the strength of the LP to AB feedback synapse increases, and this region

eventually vanishes when the synapse is strong enough. A small perturbation in the

period of the network induces the rapid variation of the depression variable of LP

under certain parameter regimes and subsequent variation of the depression variable

of PY, leading to instability of the phase-locked solution. The presence of the feedback

synapse from LP to AB/PD slows down the rhythm of the network, which alleviates

the variation in the depression of PY and helps to obtain a stable, 1:1 phase-locked

activity of the feedback network.

From the view of experiments, under the circumstance that the recovery of LP

from depression is nonlinearly dependent on the period of the network, the intact

pyloric network is regularly 1:1 phase-locked, blocking the feedback synapse from LP

to the pacemaker pair AB/PD may lead to a period-2 phase-locked pattern. Also,

gradually weakening the synapse from LP to AB/PD is expected to break down the

period-1 phase-locked pattern and the neurons would exhibit a period-2 phase locking.
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In this part, the maps for the phase-locked activity of the network were derived

under the two time scale assumption. We neglected the time neurons spend on the

trajectories with double arrows which represents a fast time scale. See Figure 4.3.

Two time scale assumption also guarantees the neurons to travel along their nullclines

and jump from the local minimum of one nullcline which constitute the jump curve.

Although the map is based on this simplified circumstance, our findings are not

related to the two time scale assumption or restricted to this specific model. The

roles of synaptic depression and feedback inhibitory synapses can be generalized to

more realistic models.

In the second part, we considered two neurons A and B which are both oscillators

with tonic spiking patterns but having slightly different periods. PRCs and STRCs

of neurons are often used to analyze the phase-locked activity of the network [3, 20,

31, 53]. Since the neurons we consider are not necessarily weakly coupled, we used

STRCs as our feed-forward information, and the perturbation used to generate the

STRCs of neurons are similar to the effect of the action potential of the presynaptic

neuron. We constructed a 1D map for the phase-locked activity of the feedback

network of A and B connected by non-depressing synapses using the STRCs of these

two neurons. We found that the conditions for 1:1 firing pattern of A and B are

looser in the feedback network than in a feed-forward network (compare Figure 5.3

and Figure 5.6). In the feedback network, the STRC should be above a line, while

in the feed-forward network, the STRC should be bounded by two lines. This result

is consistent with the results in Chapter 4, i.e., the feedback synapse from LP to

AB/PD helps to regulate 1:1 phase-locked activity of the pyloric network. When

the synapse from A to B is depressing, we derived a 2D map for the phase-locked

activity of the feedback network with an additional variable, the depression variable

of AB. The presence of this short-term synaptic depression destabilize the fixed points

θ∗ near 1. Thus, the stable phase-locked solution for two heterogeneous neurons is
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bounded away from synchrony. When B fires right after A fires, it does not change

the period of A too much according to the STRC of A, which is close to 0 near φ = 0

or 1. So the depression resources do not have much time to recover, which leads

to smaller depression strength, thus the synapse is too weak to keep the neurons

phase-locked. We used the QIF model and the Morris-Lecar model to generate Type

I STRCs for the neurons and found that these two very different models yield similar

results. Therefore, the information about the STRCs of the component neurons can

be used to predict the phase-locked activity of the network, independent of the specific

models. Here, we also found that the neurons with slightly different periods are not

exactly synchronized, which is consistent with the previous findings [20, 78].

In many studies, phase response curves and spike time response curves were used

to predict the phase-locked activity of feedback networks. Dror et al. [20] derived

mathematical criterion for the stability of phase-locked activity in a ring of pulse

coupled neurons. The conditions are based on the slope of the PRCs at the steady

state. Maran and Canavier [53] investigated the activity of two mutually coupled

heterogenous neurons. Under the interaction of intrinsic frequencies of neurons and

the synaptic strength between them, these two neurons exhibit preserved firing order

or alternating firing order, each of which includes two patterns, near synchrony and

near anti-phase. For a busting neuron, a stimulus may change not only the period

of the postsynaptic neuron, but also the burst duration. The dependency of the

burst duration change on the stimulus phase was examined in [64] using Type II

Morris-Lecar model, which is named as burst resetting curve (BRC). A stability

condition based on PRCs and BRCs for the phase-locked activity of two mutually

coupled neurons was derived. All these works assumed the strength of the stimulus is

fixed, thus the frequency of the postsynaptic neuron is only affected by the timing of

the stimulus. But in most networks, the synaptic strength between coupled neurons

is not constant, but depends on the frequency of the presynaptic neuron which is



113

in turn affected by the synaptic strength. In our work, we incorporated synaptic

depression into our work. We constructed the map for the depression variable cycle

by cycle and examined the influence of this short-term synaptic plasticity on the

activity of the network. We found that in the presence of synaptic depression, the

stable phase-locked solution for two heterogeneous neurons is bounded away from

synchrony.

Our method of combining known information from simplified or smaller systems

provides an approachable way to predict the activity of the large complex system.

Moreover, through this method, we can analyze the contributions and roles of the

variables or parameters involved in the network. Although we used some specific

models in our analysis and in the simulation, e.g., the QIF and Morris-Lecar models,

this method is not restricted to any specific model. As long as we know the feed-

forward information, we can combine these pieces of information to predict the

activity of a large feedback network. The feed-forward information can be generated

by mathematical or biological models or obtained from experiments. If it cannot

be analytically formulated, the phase-locked activity can still be predicted using

geometric methods.

6.2 Future Work

In this study, we have not taken into account the effect of the active duration of a

neuron. In the first part, we assume the relative firing time of B does not affect the

active duration of neuron A. In the second part, we assume the two neurons are pulse

coupled. As an extension of the first part, I am going to take the duration as an

additional variable in our method. Manor et al. [51] investigated the relationship

between the phase of the follower and the period of the oscillator by changing the

period in three different ways. Beside the situation we already utilized in this work

that the period is changed by varying the inactive time and fixing the active duration,
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there are two more ways to change the period. One is fixing the inactive time and

varying the active duration and the other is varying both and keeping the duty cycle

constant. We are going to utilize these information in our method as a piece of

feed-forward information. For the second part, we will explore the activity phase

of two mutually coupled bursting neurons from the STRCs as well as the bursting

resetting curves (BRCs) [64]. The concept of BRC was proposed by Oprisan and

Canavier in [64], describing how the burst duration changes with the stimulus phase.

We are going to use the STRCs as well as BRCs of neurons to predict the phase-locked

activity of the network. Presumably, the map for the phase-locked activity should be

two dimensional without the short-term synaptic plasticity and be three dimensional

with the synaptic depression from A to B.

Another natural extension of our current work is to consider depressing synapses

in both directions in a mutually coupled network. For this network, another depression

variable is needed to represent depression of the synapse from neuron B to neuron A.

This variable also changes with the period of neuron B. Thus, the map would be three

dimensional, including the phase and two depression variables. The phase-locked

activity of the feedback network can be predicted by the fixed point of this 3D map.

We are also interested in the resonance phenomenon in neurons. It was proposed

that synapses with short-term dynamics can preferentially respond to input currents

at a given frequency [42]. This property is called synaptic resonance, which is caused

by the competing effects of short-term depression and facilitation. We are going to

investigate how the synaptic resonance affects the feed-forward and feedback networks

in the context of central pattern generating networks.

Finally, we would like to generalize our method applicable to any form of firing

patterns. In my current research, the map is constructed based on 1 : 1 firing

patterns. Ermentrout [24] found the conditions based on the natural frequencies

of the oscillators for the n : m phase locking pattern of two weakly coupled neurons.
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Without the weak coupling assumption, Maran and Canavier [53] found the conditions

for 2 : 2 phase locking of two heterogenous oscillators with preserved firing order or

alternating firing order. We aim to find a general method applicable to n : m firing

patterns of two mutually coupled neurons and find the circumstances under which

some specific firing pattern occurs.
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