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ABSTRACT

PATTERN FORMATION IN OSCILLATORY SYSTEMS

by
Hui Wu

Synchronization is a kind of ordinary phenomenon in nature, the study of it includes many

mathematical branches. Phase space is one of the most powerful inventions of modern

mathematical science. There are two variables, the position and velocity, that can describe

the 2-dimensional phase space system. For example, the state of pendulum may be specified

by its position and its velocity, so its phase space is 2-dimensional. The state of the system

at a given time has a unique corresponding point in the phase space. In order to describe

the motion of an oscillator, we can talk about its motion in phase space. Self-sustained

oscillators exhibit regular rhythms- they revisit the same points time after time. So the

stable oscillation state of a self sustained oscillator can be expressed as some closed curve in

phase space, and this closed curve is defined as a limit cycle.

There are two topics in this dissertation: Kuramoto model and FitzHugh-Nagumo

(FHN) model. Kuramoto’s original analysis of his model gives the critical synchronization

value for K (K is the coupling constant ). He also gives an estimate for the value of order

parameter r when K is close to critical point Kc. However when we give different initial

values for the oscillators, the order parameters are different after a long time. The objective

of the first topic is to give the distribution of the value of order parameter r under different

initial conditions. We divide the oscillators to synchronized part and unsynchronized part,

and find that the order parameter satisfies a Gaussian distribution.

For the second topic, we start with an introduction for oscillatory clusters in the

Belousov-Zhabotinsky reaction. The main idea of this topic is to find the phase property

of oscillators in the Oregonator and FHN type models with global inhibitory feedback.

Numerical simulations suggest that, in many cases, the cubic system has the same phase

value as the piecewise linear system. To simplify this model, we reduce the cubic FHN

system to piecewise linear system.



In a network of two mutually-coupled neural oscillators, a spike time response curve

(STRC) describes the period change of an oscillator given by a perturbation of another

oscillator. The STRC is used to predict the phase relations of the two-cell network. We

also create a spike time difference map that describes the evolution of the neuron’s network

based on the STRC.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

The focus of this thesis is to investigate the effects of global coupling in oscillatory system

[14],[8].

An ‘oscillator’ is a circuit that behaves periodically - i.e. which repeats its behaviour

at regular intervals. A differential equation may have a solution which behaves periodically,

in which case we can say that it describes an oscillator. Oscillators are useful for describing

real-world objects which periodically repeat their actions - e.g neurons (sometimes), certain

electrical circuits, waves, cells, etc. They can also be used as crude models of more complicated

real-world objects.

Oscillators are ‘coupled’ if they are allowed to interact with each other in some way.

For example one neuron might send a signal to another at regular intervals. Mathematically

speaking, the differential equations have coupling terms which represent how one oscillator

interacts with all the others.

A set of oscillators are globally coupled if every oscillator is coupled to every other

oscillator in a symmetric way. In other words the ‘force’ an oscillator experiences from all

the other oscillators is not dependent on the identity of that oscillator. In the simplest case,

all the oscillators are identical, but this is not necessarily so [14] [15].

Systems of globally coupled oscillators can exhibit complicated behavior that cannot be

deduced by analyzing the dynamics of individual elements but emerges from the interactions

between the oscillators.

One of the major challenges in neuroscience today is to understand how coherent

activity emerges in neural networks from the interactions between their neurons, as well as

its role in normal and pathological brain function. There are two most relevant examples

of coherent activity in the brain: Synchronization and Phase-locking. The phase oscillator

1
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approximation used in physics and the mathematical models provide a powerful tool to

investigate the biophysical mechanisms underlying these phenomena. In particular, the

experimental or numerical determination of the spike time response curve, which derives

from the intrinsic properties of a real or a simulated neuron, allows one to greatly simplify

the analytical treatment of their dynamics, as well as their computational modeling. In

this way, it is possible to predict the existence and stability of phase-locked states and of

synchronized assemblies in real and simulated neural networks with electrical or chemical

synapses. The spike time response curve also determines the stability of repetitive neuronal

firing thereby affecting spike time reliability and noise-induced synchronization. Moreover,

for neurons that fire repetitively, the spike time response curve is directly related to the

waveform of the input that most likely precedes an action potential.

Our research on globally coupled oscillators include two parts: the Kuramoto model

and the models of Belousov-Zhabotinsky (BZ) reaction.

In the Kuramoto model, each oscillator has the same amplitude, so we only need to

consider the phases. In contrast, in the BZ model, we consider both phases and amplitudes.

To investigate the effects of globally coupling in the BZ reaction, I will use a ‘toy’ model- the

FitzHugh-Nagumo (FHN) model- with global inhibitory feedback. The FHN model has an

explicit phase via a given set of parameters ε, γ, α, λ, and α1. To further simplify this model,

I used the piecewise-linear (PWL) model for analysis. In most cases, specifically, when ε is

less than 0.1, we get the same pattern in both of piecewise linear and cubic cases. However

when ε is not less than 0.1, sometimes we get large amplitude oscillations and mixed-mode

oscillations in piecewise-linear case but the amplitude shrinks to zero in smooth systems.

In order to investigate the mechanism of synchronization of our results we used spike-

time response curves and spike-time difference maps. These techniques have been borrowed

from the neurosciences. We use spike-time difference maps to predict the oscillatory pattern

in FHN model.
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1.2 The Kuramoto Model

The Kuramoto model describes the synchronization behavior of a large population of coupled

limit-cycle oscillators whose natural frequencies satisfy some certain distribution [19]. The

Kuramoto model predicts that, if the oscillators have strong coupling, they will become

phase-locked. The model gives a condition for synchronization to happen. It is possible to

solve the critical coupling value needed for synchronization to happen. There is an order

parameter to measure the extent these oscillators coupling, Kuramoto gave a mathematical

formula of order parameter. But the real result of order parameter always have a little

difference from Kuramoto’s estimation. My research involved studying the basics of Kuramoto’s

analysis and then investigating how the order parameter is distributed by given different

initial conditions. There are some examples of numerical simulation of the distribution and

these simulations are consistent with my analytical result. In the deduction process, to use

the central limit theory, I showed that these variables are independent.

1.3 The Belousov-Zhabotinsky Reaction

The field of nonlinear dynamics studies the time evolution of systems whose behavior depends

on a nonlinear fashion on the value of some key variables [41, 36, 25, 20]. Examples of these

variables are concentrations in a chemical reaction, and voltage and gating variables in neural

systems [26].

Nonlinear chemical dynamics studies chemical systems far from equilibrium[10]. A

major focus area of nonlinear chemical dynamics is the study of how complex structures

arise, both in time and space. Important examples of these spatio-temporal patterns are

chemical oscillations where the concentrations of one or more species vary periodically, or

nearly periodically, in time.

The Belousov-Zhabotinsky (BZ) reaction, is one of a class of reactions of non-equilibrium

thermodynamics. It generates oscillations and propagating pulses (chemical waves). It is the

prototypical oscillatory system in nonlinear chemistry [2, 3, 50, 51], and has been utilized

primarily to understand the dynamics of patterns and spiral waves. The BZ reaction consists
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on the oxidation of malonic acid, in an acid medium, by bromate ions, and catalized by

Cerium. Cerium has has 2 ionization states: Ce3+ and Ce4+. Sustained periodic relaxation

oscillations are observed in the concentration of these cerium ions. These oscillations are

reflected in the periodic change of color of the solution from yellow (Ce4+) to colorless

(Ce3+). When ferroin ([Fe(phen)2+
3 ]) is used as catalyst, instead of Ce, the concentration

color changes from red to blue. Using this catalyst, spatial patterns consisting of spirals

or concentric rings (target patterns) can be observed [48]. In these patterns blue spirals or

rings are spontaneously generated in an initially homogeneous red dish.

1.4 Oscillatory Clusters in the BZ reaction with Global Inhibitory Feedback

Oscillatory cluster patterns have been recently discovered in the BZ reaction with photochemical

global feedback (coupling) [43, 44] and the periodically illuminated BZ reaction [45]. Photochemical

global feedback is imposed through illumination using the photosensitive catalyst Rubipy

(Ru(bipy)2+
3 ). The average spatial concentration of Rubipy, < w >, is employed to control

the intensity of the so called actinic light according to a function of < w > −w̄ where w̄ is

set close to the equilibrium value in such a way that < w > −w̄ is positive.

Oscillatory clusters are sets of oscillators, or spatial domains, where all elements in

each domain oscillate with nearly the same amplitude and phase. Cluster patterns resemble

standing waves, except that they lack a characteristic wavelength [43]. Three important

cluster patterns observed in the BZ reaction with global inhibitory feedback are two-phase,

three-phase and localized clusters[15]. The former two consist of two or three clusters

oscillating synchronously out of phase. This is the focus of this project. The latter consists

of a two-phase clusters in one region of the reactor while the reminder appears uniform or

oscillate with very small amplitude. Note that each cluster can occupy multiple fixed spatial

domains.
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1.5 The Oregonator Model for the BZ reaction

The most widely accepted kinetic scheme for the BZ reaction is the Fields-Koros-Noyes

(FKN) mechanism [11]. It involves many chemical species and reactions (equations), but

it can be simplified by applying quasi-steady-state and rate-limiting-step approximations

[11]. The Oregonator, is the simplest realistic model of oscillatory chemical dynamics in

the oscillatory BZ reaction. This network is obtained by reduction of the complex chemical

mechanism of the BZ reaction suggested by Field, Koros and Noyes (1974) and referred to

as the FKN mechanism.

The Oregonator model consists of the following reaction steps and associated rate

equations:

BrO−
3 + Br− → HBrO2 + HOBr, Rate = k1[BrO−

3 ][Br−]

HBrO2 + Br− → 2HOBr, Rate = k2[HBrO2][Br−]

BrO−
3 + HBrO2 → 2HBrO2 + 2Ce4+, Rate = k3[BrO−

3 ][HBrO2]

2HBrO2 → BrO−
3 + HOBr, Rate = k4[HBrO2]

2B + Ce4+ → 1/2fBr−, Rate = kc[Z][Ce4+]

Here B represents all oxidizable organic species present and f is stoichiometric factor

that encapsulates the organic chemistry involved.

Let the various chemical entities be given by:
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A : [BrO−
3 ]

B : [All oxidizable organic species]

P : [HOBr]

X : [HBrO2]

Y : [Br−]

Z : [Ce4+]

If we treat the concentrations of the reactants A and B as constant and rescale the

time t to τ : τ = εt, the rate equations for X, Y, and Z become [26]:





dX

dτ
= k1AY − k2XY + k3AX − 2k4X

2

dY

dτ
= −k1AY − k2XY + 1

2
fkcBZ

dZ

dτ
= 2k3AX − kcBZ

(1.1)

We follow [26] and nondimensionalize the model (1.1). So let the dimensionless parameters

ε, σ′, and q be given by:





ε =
kcB

k3A

σ′ =
2kck4B

k2k3A

q =
2k1k4B

k2k3A

(1.2)
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Let us define variables x, y, z, and t as follows:





x =
2k4x

k3A
,

y =
k4Y

k3A

z =
kck4BZ

(k3A)2

t = kcBτ

(1.3)

The dimensionless kinetic equations are given by 1.4.

By substituting (1.2) and (1.3) into system (1.1) and rearranging terms we obtain





ε
dx

dt
= q y − x y + x (1− x),

σ
dy

dt
= −q y − x y + f z,

dz

dt
= x− z.

(1.4)

Note that the three dimensionless variables x, y and z are normalized concentrations

of HBrO2, Br− and the oxidized form of the catalyst respectively. The constants used

in the dimensionless procedure include the rate equations of the five irreversible steps of

the reduced mechanism and the concentrations of malonic acid. The three dimensionless

parameters have typical values of ε ∼ 10−2, σ ∼ 10−5 and q ∼ 10−4. The parameter f is a

stoichiometric factor that serves as an adjustable parameter. By noting that σ ¿ q ¿ ε ¿ 0,

(1.4) yields

−qy − xy + fz = σ dy/dt ≈ 0
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So

y ≈ f z

q + x
. (1.5)

Plugging this into (1.4) yields





ε
dx

dt
= x (1− x) + f (q − x)/(q + x) z,

dz

dt
= x− z

(1.6)

In the literature, x is usually referred to as the activator variable and z as the inhibitor

variable. System (1.6) is fast-slow(ε = 10−2). The corresponding nullclines are given by

Nx(x) = −x (1− x) (q + x)

f (q − x)
and Nz(x) = x. (1.7)

Examples of phase-planes and traces (x and z vs. t) are shown in Fig. 1.1.

A change of variables ẑ = f z, ẑ → z allows for changes in the parameter f to be

reflected in changes in the z-nullcline (Nz(x)). The resulting equations are





ε
dx

dt
= x (1− x) + (q − x)/(q + x) z,

dz

dt
= f x− z,

(1.8)

with nullclines given by

Nx(x) = −x (1− x) (q + x)

q − x
and Nz(x) = f x. (1.9)
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Figure 1.1 Phase-plane (left) and activator (x) inhibitor (z) traces (right) for the
Oregonator model (1.6) for various representative parameter values. The nullclines are given
by (1.7).
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1.6 A Modified Oregonator Model

A modified version of the Oregonator model was introduced by Zhabotinsky et al [52]. The

dimensionless version of the modified Oregonator model is given by





ε
dv

dτ
= f(v, v),

dw

dτ
= g(v, w),

(1.10)

where

f(v, w) = f̄(v, w, u) = −v2 − α v + δ u2 + η u (1− w)− η v w − (q w + β) ψ(v), (1.11)

u =
2 v (η w + 2 α)

η (1− w) +
√

η2 (1− w)2 + 8 δ v (η w + 2 α)
, (1.12)

ψ(v) =
v − µ

v + µ
, (1.13)

and

g(v, w) = ḡ(v, w, u) = u (1− w)− v w − w. (1.14)

This modified Oregonator model can be reduced to the Oregonator model (1.6) in a

neighborhood of the fixed-point (intersection between the nullclines [35]).

1.7 FitzHugh-Nagumo Type Models

The FitzHugh-Nagumo (FHN) model was proposed independently by FitzHugh [12, 13] and

Nagumo [27] to qualitatively describe the events occurring in an excitable neuron. The
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FHN model is a generic model for excitable media and has been used as a caricature model

in a variety of systems, most notably chemistry biology and neuroscience [9]. The precise

mathematical mechanism involves appearance and disappearance of a limit cycle attractor,

and it is reviewed in detail by Izhikevich [17]. Its fast-slow system version is able to describe

relaxation oscillations in some parameter regimes. These oscillations and the nullclines are

qualitatively similar to the ones displayed by the Oregonator model. For this reason the

FHN model can been used as a toy model for the BZ reaction (1.16). The general form of

the FHN model is





v′ = f(v)− w,

w′ = ε [ g(v; λ)− w ]
(1.15)

where

f(v) = −h v3 + a v2 − b v + c, (1.16)

and

g(v; λ) = α v − λ. (1.17)

with h, a, b, c and α non-negative constants, and 0 < ε ¿ 1. In the classical FHN model,

h = 1/3, a = 1, b = c = 0, so the cubic v-nullcline has a minimum at (0, 0), and intersects

the w-nullcline at this point.

A modified version of the FHN model where g(v; λ) is sigmoid rather than linear has

been used in [34] as a toy model for the modified Oregonator model. More specifically, the

w-nullcline for the modified FitzHugh-Nagumo (MFHN) model is given by



12

g(v; λ) = β

(
tanh

v − λ

η

)
+

1

2
. (1.18)

where η, λ and β are non-negative constants.
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Figure 1.2 Phase-plane (left) and traces (right) for the FHN (1.15) for representative
parameter values.



CHAPTER 2

THE KURAMOTO MODEL

In the past decades, the synchronization in complex networks has been a research topic in

many fields [22]. Among many models that have been proposed to address synchronization

phenomena, one of the most successful models is the Kuramoto model [19]. This model can be

used to understand the emergence of synchronization in networks of oscillators. In particular,

this model presents a second-order phase transition from incoherence to synchronization.

Kuramoto found that there is a certain value of the coupling constant, KC , above which

synchronization can occur, and below which it cannot. For any distribution of the natural

frequencies of the oscillators, he was able to calculate KC . For example, for a Lorentzian

distribution of natural frequencies, KC is just equal to the full width at half-max of the

Lorentzian curve. For other distributions, the formula for KC is more complex, but we can

still calculate it.

In this section we first describe the history of Kuramoto model. Kuramoto also gave

an initial estimate for the value of order parameter for a given value of coupling constant.

i.e. He gave a initial estimate for the value of the order parameter by giving the value of

the coupling constant. But the numerical results for the value of the order parameter are

a little bit different from Kuramoto’s estimation. I gave an estimate for the distribution of

order parameter for different values of initial conditions.

In the 1960s, scientists began to build mathematical models for synchronization in

many natural systems. Particularly, Arthur Winfree’s model become very popular. He gave

a model in which each oscillator’s phase is determined by combining the state of all of the

oscillators. In his model, the rate of change of the phase of an oscillator is determined

by its own natural frequency ωi and the state of all of the other oscillators combined.

Each oscillator’s sensitivity to the combination is represented as a function Y, and its own

contribution to the combination is given by a function X. Then each oscillator has an equation

to describe how its phase changes [39, 40]:

13
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θ′i = ωi +
N∑

j=1

X(θj)Y (θi) (2.1)

Here θi is the phase of oscillator, θ̇i is the rate of change of phase of oscillator, ωi is

the natural frequency of oscillator i, and N is the total number of oscillators.

Winfree made numerical simulations and analytical approximations for this model and

found that if the coupling is large enough, the oscillators could synchronize.

In 1975, Japanese scientist Yoshiki Kuramoto was inspired by Winfree’s works, and he

began exploring the behavior of collective synchronization. He used the following assumptions:

1. The oscillators are almost identical.

2. The coupling among oscillators is small.

After some complicated mathematical averaging, he proved that long term dynamics

of any system of almost identical, weakly coupled limit cycle oscillators system have the

following govern equation [41, 40, 22]:

θ̇i = ωi +
N∑

j=1

Γij(θj − θi) (2.2)

Here the interaction function Γij determines the form of coupling between oscillator i

and oscillator j.

Kuramoto assumed that each oscillator take part in the affecting other oscillators. He

called the interaction ”global coupling”.

He further assumed that the coupling were equally weighted can be expressed by a sin

function of the difference of phases.

Γij(θj − θi) =
K

N
sin(θj − θi) (2.3)
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This derives the govern equations for Kuramoto model:

θ′i = ωi +
K

N

N∑
j=1

sin(θj − θi) (2.4)

Here K is the coupling constant, and N is the total number of oscillators. The model

assumed that N is very large, i.e large number of oscillators. The natural frequencies ωi

distributed by a probability density function g(ω), and it is symmetric about some value Π:

g(Π + ω) = g(Π− ω).

To simplify the governing equation of Kuramoto model, we need to define the order

parameter, the order parameter describes the ”mean field of the system”.

Let us write the governing equations of Kuramoto model in terms of order parameter:

reiψ =
1

N
ΣN

j=1e
iθj (2.5)

Here ψ is the average phase of all the oscillators.

2.1 The Relations between the Order Parameter r and the Critical Point Kc

The modulus of r, is a measure of the coherence of the oscillator system, it describes how

close the oscillators are together. If we increase the order parameter, the phases of the

oscillators will get closer together. The graphs in Fig. 2.1 show the order parameter being

an arrow pointing from the center of the circle.

Let us consider (2.5): Multiplying both sides by e−iθi we get:

rei(ψ−θi) =
1

N
ΣN

j=1e
i(θj−θi) (2.6)

r sin(ψ − θi) =
1

N
ΣN

j=1 sin(θj − θi) (2.7)

Therefore, Equation (2.4) may be rewritten as
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θ̇i = ωi + Kr sin(ψ − θi) for i = 1, 2, ...N. (2.8)

The corresponding stationary density:

ρ =





δ[θ − ψ − sin−1( w
Kr

)] H(cos θ) when |ω| < Kr

C

|ω −Kr sin(θ − ψ)| when |ω| ≥ Kr

(2.9)

Here H(x) is the Heaviside unit step function.

We take the natural frequency density function to be the Lorentzian density, defined

as

g(ω) =
γ

π(γ2 + ω2)
(2.10)

Actually r(t) does not depend on time or ψ(t) and ψ(t) rotates uniformly at an angular

frequency φ. We can set up a frame of reference that is rotating at the same frequency. Hence

r(t) is stationary. So we can set ψ(t) to any constant value. Without loss of generality, set

ψ(t) ≡ 0 in the rotating frame. So we get

θ̇i = ωi −Kr sin θi (2.11)

and correspondingly, the stationary density function is

ρ =





δ[θ − sin−1( w
Kr

)] H(cos θ), when |ω| < Kr

C

|ω −Kr sin θ| , when |ω| ≥ Kr

(2.12)
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then

reiψ = rei0 = r

=
1

N
ΣN

j=1e
iθj =< eiθ >

=< eiθ >lock + < eiθ >unlock

According to (2.12)

ρ(θ + π,−ω) = ρ(θ, ω)

Compute the contribution of unlocked oscillators:

< eiθ >unlock =

∫ π

−π

∫ −Kr

−∞
eiθρ(θ, ω)g(ω) dω dθ (2.13)

+

∫ π

−π

∫ ∞

Kr

eiθρ(θ, ω)g(ω) dω dθ

=I1 + I2

where

I1 =

∫ π

−π

∫ −Kr

−∞
eiθρ(θ, ω)g(ω) dω dθ

= −
∫ π

−π

∫ Kr

∞
eiθρ(θ,−ω)g(−ω) dω dθ

Let θ′ = θ − π, then

I1 = −
∫ 0

−2π

∫ Kr

∞
eiθ′eiπρ(θ′ + π,−ω)g(−ω) dω dθ′

Since ρ(θ′ + π,−ω) = ρ(θ′, ω), g(−w) = g(w), eiπ = −1, we hence have

I1 = −
∫ 0

−2π

∫ ∞

Kr

eiθ′eiπρ(θ′, ω)g(ω) dω dθ′
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Because the periodic boundary condition, we can shift θ′ interval with any constant.

So we can shift the integral interval to right with π.

So

I1 = −
∫ π

−π

∫ ∞

Kr

eiθ′eiπρ(θ′, ω)g(ω) dω dθ′ = −I2 (2.14)

According to (2.13),

< eiθ >unlock= I1 + I2 = 0

So the unlocked oscillators have no contributions.

The locked oscillators are centered symmetrically on 0, therefore < sin θ >lock= 0 and

r = < eiθ >lock = < cos θ >lock

=

∫ Kr

−Kr

cos(θ(ω))g(ω)dω

Consider (2.11) and (2.12)

r =

∫ π
2

−π
2

cos θg(Kr sin θ)Kr cos θ dθ (2.15)

= Kr

∫ π
2

−π
2

cos2 θg(Kr sin θ) dθ

This implies

1 = K

∫ π
2

−π
2

cos2 θg(Kr sin θ) dθ

When make r → 0+ in the above equation, we can find the critical point Kc at which

the order parameter rises from zero.
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1 = Kc

∫ π/2

−π/2

cos2 θg(0) dθ

= Kcg(0)

∫ π/2

π/2

cos2 θ dθ = Kcg(0)
π

2

Hence

Kc =
2

πg(0)
(2.16)

Plug in (2.10): the function of g(w)

1 = K

∫ π
2

−π
2

cos2 θ
γ

π(γ2 + K2r2 sin2 θ)
dθ

=
Kγ

π

∫ π
2

−π
2

1− sin2 θ

γ2 + K2r2 sin2 θ
dθ

= − γ

Kr2
+

Kr

π
(1 +

γ2

K2r2
)

∫ π
2

−π
2

dθ

γ2 + K2r2 sin2 θ

= − γ

Kr2
+ 2

Kr

π
(1 +

γ2

K2r2
)

∫ ∞

0

d(tan θ)

γ2 sec2 θ + K2r2 tan2 θ

= − γ

Kr2
+ 2

Kr

π
(1 +

γ2

K2r2
)

∫ ∞

0

du

γ2(1 + u2) + K2r2u2

= − γ

Kr2
+

√
K2r2 + γ2

Kr2

Therefore we have

Kr2 = −γ +
√

K2r2 + γ2

and hence

r =

√
1− 2γ

K
. (2.17)
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To make the process of synchronization clear, the graphs Fig. 2.2 shows how the order

parameter r rises as the coupling K between oscillators is increased. Numerical curves are

taken from 500 oscillators with natural frequencies distributed with Lorentzian distribution:
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0.6

0.7

0.8
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1

K

|r
|

Numerical and Theoretical curve of phase synchronization

 

 
Numerical curve
Theoretical curve

Figure 2.2 Numerical curve and analytical curve for order parameter by changing K

g(ω) =
γ

π(γ2 + ω2)

with γ = 0.5. Analytical curve is given by (2.17), according to (2.16), Kc = 1.

There is another way to visualize the synchronization: There are three graphs in Figure

2.3. The oscillators are numbered from the lowest to highest natural frequency, natural

frequencies also distributed by Lorentzian distribution.

g(ω) =
γ

π(γ2 + ω2)

with γ = 0.5.
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Figure 2.3 The synchronize phase θn of 2000 oscillators, take K=0.7, 1, 1.5



23

So

Kc =
2

πg(0)
= 1

, We can see obvious partial synchronization at or above Kc.

2.2 The Density Functions of Locked Terms and Unlocked Terms

To prove that the locked terms and unlocked terms are independent, we first try to get the

probability density function of locked terms and unlocked terms separately.

Suppose the probability density function of locked terms is f(y), then it satisfies the

following equation:

P (y ≤ cos θ ≤ y + dy| θ locked) = f(y) dy

P (arccos(y + dy) ≤ θ ≤ arccos y)

P (θ locked)
= f(y) dy

For y > 0,

LHS =
2P (sin(arccos(y + dy)) ≤ ω

kr
≤ sin(arccos y))

P (θ locked)

This derives

P (θ locked) =

∫ kr

−kr

γ

π(γ2 + ω2)
dω =

2

π
arctan(

kr

γ
)
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P (sin(arccos(y + dy)) ≤ ω

kr
≤ sin(arccos y)))

= P (kr sin(arccos(y + dy)) ≤ ω ≤ kr sin(arccos y))

= P (kr
√

1− (y + dy)2 ≤ ω ≤ kr
√

1− y2)

=

∫ kr
√

1−y2

kr
√

1−(y+dy)2

γ

π(γ2 + ω2)
dω

=
1

π

∫ kr
γ

√
1−y2

kr
γ

√
1−(y+dy)2

du

1 + u2

=
1

π
(arctan(

kr

γ

√
1− y2)− arctan(

kr

γ

√
1− (y + dy)2))

Let α = arctan(kr
γ

√
1− y2)− arctan(kr

γ

√
1− (y + dy)2)

As dy → 0, α → 0, α → tan α

So

α → tan α =

kr
γ

(
√

1− y2 −
√

1− (y + dy)2)

1 + (kr
γ

)2
√

(1− y2)(1− (y + dy)2)

As dy → 0,

k r y dy

γ
√

1− y2

1

1 + (kr/γ)2(1− y2)
→ k ry γ

√
1− y2 dy

γ2(1− y)2 + (kr(1− y2))2

This derives the density function: for 0 ≤ y ≤ 1,

f(y) =
k r γ y

√
1− y2

arctan(kr
γ

)(γ2(1− y2) + (kr(1− y2))2)

The density function of unlocked term satisfies:

P (y ≤ cos θ ≤ y + dy| θ unlocked) = f̄(y) dy

For 0 ≤ y ≤ 1, y ≤ cos θ ≤ y + dy.

So
√

1− (y + dy)2 ≤ sin θ ≤
√

1− y2, dθ = dy√
1−y2
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or −
√

1− y2 ≤ sin θ ≤ −
√

1− (y + dy)2, dθ = dy√
1−y2

ρ(θ, ω) =
C

|θ′| =
C

|ω − kr sin θ|

So

1 =

∫ π

−π

ρ(θ, ω)dθ = C

∫ π

−π

dθ

|ω − kr sin θ|

Which derives

C =

√
ω2 − (kr)2

2π

So

P (y ≤ cos θ ≤ y + dy|θ unlocked) =
P (y ≤ cos θ ≤ y + dy, |ω| > kr)

P (|ω| > kr)

=
P (−

√
1− (y + dy)2 ≤ sin θ ≤ −

√
1− y2, |ω| > kr)

P (|ω| > kr)

+
P (−

√
1− y2 ≤ sin θ ≤ −

√
1− (y + dy)2, |ω| > kr)

P (|ω| > kr)

=

∫
I
g(ω)

∫
I1

ρ(θ, ω)dθdω +
∫

I
g(ω)

∫
I2

ρ(θ, ω)dθdω

2
∫∞

kr
γ

π(γ2+ω2)
dω

A1 =

∫

I

g(ω)

∫

I1

ρ(θ, ω)dθdω

=
1

2π

∫

I

γ

π(γ2 + ω2)

∫

I1

√
ω2 − (kr)2

|ω − kr
√

1− y2|dθdω

=
1

2π2

∫

I

γ

γ2 + ω2

∫

I1

√
ω2 − (kr)2

|ω − kr
√

1− y2|
dy√
1− y2

dω
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As dy → 0, dθ → 0, I1 → 0, I2 → 0

A1 → 1

2π2
(

∫

I

γ

γ2 + ω2

√
ω2 − (kr)2

ω − kr
√

1− y2

1√
1− y2

dω)dy

=
1

2π2
√

1− y2

∫

I

γ

γ2 + ω2

√
ω2 − (kr)2

|ω − kr
√

1− y2|dωdy

A2 =

∫

I

∫

I2

g(ω)ρ(θ, ω)dθdω

=
1

2π2

∫

I

∫

I2

1√
1− y2

γ

γ2 + ω2

√
ω2 − (kr)2

|ω + kr
√

1− y2|dydω

= (
1

2π2
√

1− y2

∫

I

γ

γ2 + ω2

√
ω2 − (kr)2

|ω + kr
√

1− y2|dω)dy

This derives

A1 + A2 =
1

2π2
√

1− y2
(

∫

I

γ
√

ω2 − (kr)2

γ2 + ω2
(

1

|ω + kr
√

1− y2| +
1

|ω − kr
√

1− y2|))dωdy

Similarly, for −1 ≤ y < 0,

A1 + A2 =
1

2π2
√

1− y2

∫

I

γ
√

ω2 − (kr)2

γ2 + ω2
(

1

|ω + kr
√

1− y2| +
1

|ω − kr
√

1− y2|)dωdy

=
γ

2π2
√

1− y2

∫

I

√
ω2 − (kr)2

γ2 + ω2

2|ω|
ω2 − (kr)2(1− y2)

dωdy

=
2γ

π2
√

1− y2

∫ ∞

kr

ω
√

ω2 − (kr)2

(γ2 + ω2)(ω2 − (kr)2(1− y2))
dωdy

=
γ

π2
√

1− y2

∫ ∞

α

√
t− α

(t + γ2)(t− α(1− y2))
dtdy

=
γ

π2
√

1− y2

∫ ∞

0

√
t

(t + α + γ2)(t + αy2)
dtdy

⇒
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P (y ≤ cos θ ≤ y + dy, |ω| > kr)

P (|ω| > kr)
= f̄(y)dy

=
γ

π2
√

1− y2

1

1− 2
π
arctan(kr

γ
)

∫ ∞

0

√
tdtdy

(t + α + γ2)(t + αy2)

=
γ

π
√

1− y2

1

π − 2arctan(kr
γ

)

∫ ∞

0

√
tdtdy

(t + α + γ2)(t + αy2)

⇒

f̄(y) =
γ

π
√

1− y2(π − 2 arctan(kr/γ))

∫ ∞

0

√
tdt

(t + α + γ2)(t + αy2)

=
γ√

1− y2(π − 2arctan(kr/γ))

1√
α + γ2 +

√
αy2

=
γ√

1− y2(π − 2arctan(kr/γ))

1√
(kr)2 + γ2 + kr|y|

So we have the density function f for locked part and f̄ for unlocked part:

f(y) =
k r γ y

√
1− y2

arctan(kr
γ

)(γ2(1− y2) + (kr(1− y2))2)
(2.18)

f̄(y) =
γ√

1− y2(π − 2arctan(kr/γ))(
√

(kr)2 + γ2 + kr|y|) (2.19)

To prove the locked terms are independent, we want to show that the sum of any two

locked terms satisfies the analytical probability density function derived by convolution law:

If X and Y are two locked terms, Z is the sum of X and Y:

Z = X + Y
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E(etZ) =

∫ ∞

−∞
etufz(u)du (2.20)

=

∫ ∞

−∞

∫ ∞

−∞
etxetyfx(x)fy(y)dxdu (2.21)

=

∫ ∞

−∞
etu

∫ ∞

−∞
fx(x)fy(u− x)dxdu (2.22)

⇒

fz(u) =

∫ ∞

−∞
fx(x)fy(u− x)dx

Similarly, to prove the unlocked terms are independent, we can also get the analytical

probability density function of two unlocked terms by the convolution law:

If X̄ and Ȳ are two unlocked terms, Z̄ is the sum of X̄ and Ȳ :

Z̄ = X̄ + Ȳ

E(etz̄) =

∫ ∞

−∞
etufz̄(u)du (2.23)

=

∫ ∞

−∞

∫ ∞

−∞
etx̄etȳfx̄(x̄)fȳ(ȳ)dx̄du (2.24)

=

∫ ∞

−∞
etu

∫ ∞

−∞
fx̄(x̄)fȳ(u− x̄)dx̄du (2.25)

⇒

fz̄(u) =

∫ ∞

−∞
fx̄(x̄)fȳ(u− x̄)dx̄

In the following figures, we compare the numerical and analytical result for the density

functions, the numerical result of density function for one oscillator satisfies the analytical

result very well. The analytical density function of the sum of two locked oscillators and
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two unlocked oscillators are given by convolution law separately, and we also compare the

results, the numerical curve also approximate the analytical curve very well. This shows the

locked oscillators are independent and unlocked terms are also independent.
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Figure 2.4 Comparison of the numerical and analytical density function for the locked
oscillators and the sum of two locked oscillators

2.3 The Distribution of Order Parameter r

If we set ψ ≡ 0 (in a rotating frame), then
∑N

j=1 sin θj = 0.

The order parameter satisfies the following equation:

r =
1

N

N∑
j=1

eiθj =
1

N

N∑
j=1

cos θj. (2.26)

According to the analysis on the drift term, we know that the contribution of the drift

term is 0. Namely

r =< cos θ >lock + < cos θ >unlock

≈< cos θ >lock
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Figure 2.5 Comparison of the numerical and analytical density function for the unlocked
oscillators and the sum of two unlocked oscillators

There are totally N terms θ1, θ2, ...θN . Without loss of generality, we suppose the

first n terms θ1, θ2, ...θn are synchronized, and the last N − n terms θn+1, θn+2, ...θN are not

synchronized. Here 0 < n < N.

From equation (2.26), we get

r =
1

N

N∑
j=1

eiθj =
1

N

N∑
j=1

cos θj (2.27)

=
1

N

n∑
j=1

cos θj +
1

N

N∑
j=n+1

cos θj

Suppose S1 =
∑n

j=1 cos θj, S2 =
∑N

j=n+1 cos θj, S =
∑N

j=1 cos θj,

then

S1 + S2 = S = Nr

and

S2 ≈ 0, S1 ≈ S = Nr

.
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For a fixed number N, if we also fix a series of natural frequency ω1, ω2, ...ωN , and these

series of natural frequency satisfies the Lorentzian distribution very well-proportionally, the

density function is

g(ω) =
ν

π(ν2 + ω2)

.

Take different series of initial values of θj, j = 1, 2, ...N .

These series of θj are taken randomly which satisfy uniformly distribution. We will get

different values of order parameter r for each series of θj, j = 1, 2, ...N .

Question: When the value of N is very large, what is the distribution of the value of

order parameter r?

When N is large, n and N-n are large. According to central limit theorem,

S1 − nµ1

σ1

√
n

∼ N(0, 1)

. Here µ1 and σ1 are the mean and variance of locked terms cos θj, j = 1, 2, ...n.

S2 − (N − n)µ2

σ2

√
N − n

∼ N(0, 1)

Here µ2 and σ2 are the mean and variance of unlocked terms cos θj, j = n + 1, n + 2, ...N

We know that S1 and S2 both satisfy Gaussian distribution. From equation (2.27) the

order parameter

r =
1

N
(S1 + S2)

is the linear combination of Gaussian distributed functions. So r also satisfies Gaussian

distribution. The variance of S1 is σ2
1n and the variance of S2 is σ2

2(N − n),

σ satisfies the following equation:

σ =
1

N2
(σ2

1n + σ2
2(N − n))
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.

So the question is reduced to calculate the value of σ1 and σ2.

σ1 is the variance of locked terms cos θ1, cos θ2, ..., cos θn.

σ1 = V ar(θ)locked = E(cos2 θ)locked − (E(cos θ)locked)
2

E(cos2 θ)locked =

∫ π
2

−π
2
cos2 θg(Kr sin θ)Kr cos θ dθ

∫ π
2

−π
2
g(Kr sin θ)Kr cos θ dθ

(2.28)

Here

∫ π
2

−π
2

cos2 θg(Kr sin θ)Kr cos θ dθ =
Krν

π

∫ π
2

−π
2

cos3 θ

ν2 + K2r2 sin2 θ
dθ

=
2ν

πKr
(
ν2 + K2r2

Krν
arctan(

Kr

ν
)− 1)

∫ π
2

−π
2

g(Kr sin θ)Kr cos θ dθ =
Krν

π

∫ π
2

−π
2

cos θ

ν2 + K2r2 sin2 θ
dθ

=
2

π
arctan(

Kr

ν
)

Plug these results into the equation (2.28), we can get

E(cos2 θ)locked =
ν

Kr
(
ν2 + K2r2

Krν
− 1

arctan(Kr
ν

)
) (2.29)

The variance of unlocked terms is

σ2 = V ar(θ)unlocked = E(cos2 θ)unlocked − (E(cos θ)unlocked)
2
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E(cos2 θ)unlocked =

∫ π/2

−π/2

∫

|ω|>Kr

cos2 θ
Cg(ω)

|ω −Kr sin θ| dθ dω

= 2

∫ π/2

−π/2

∫

ω>Kr

cos2 θ
Cg(ω)

|ω −Kr sin θ| dθ dω

and

E(cos θ)unlocked =

∫ π/2

−π/2

∫

|ω|>Kr

cos θ
Cg(ω)

|ω −Kr sin θ| dθ dω

= 2

∫ π/2

−π/2

∫

ω>Kr

cos θ
Cg(ω)

|ω −Kr sin θ| dθ dω

Here g(ω) = ν
π(ν2+ω2)

, C =
√

ω2−K2r2

2π
.

These integrals are relatively hard to simplify, but we can use numerical methods to

get the variance of the unlocked terms.

The variance of order parameter r is σ = 1
N2 (σ

2
1n + σ2

2(N − n)).

i.e

r −mean(r)
1
N

√
σ2

1n + σ2
2(N − n)

∼ N(0, 1) (2.30)

Taking 1000 series of uniformly distributed initial values θ1, θ2, ... θN , we can get

1000 values of order parameter r. The order parameter r approximately satisfies Gaussian

distribution, the equation for this distribution is (2.30).

The graphs in Figure 2.6 compare the LHS of (2.30) with N(0, 1) (standard normal

distribution). The blue line is the density function of standard normal distribution, the red

line is the density function of the distribution of LHS function.
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Figure 2.6 Comparison of distribution of order parameter and normal distribution



CHAPTER 3

OSCILLATORY CLUSTERS IN THE BZ REACTION

Physicochemical systems with coupled processes on different length scales often exhibit

stationary spatially periodic structures [35]. The photosensitive BZ reaction has proven

to be an ideal model system for studies of perturbed excitable media. Numerical simulations

of chaotic states in some low dimensional models are carried out and novel structures of the

first return maps representitive of BZ chaos in a three-variable model are discovered [44].

The FitzHugh-Nagumo model [42],[23] is a generic model for excitable media and can be

applied to a variety of systems. FitzHugh called this simplified model the Bon Hoeffer-van der

Pol model and derived it in the 1960’s as a simplification of the Hodgkin-Huxley equations.

In this chapter, first I will introduce the Oregonator and FHN type models. The classic

FHN model has a cubic shaped function in the inhibitory term, but I used the piecewise

linear function to approximate the cubic term. The piecewise linear system has the same

shape as the cubic oscillators system for most of the parameters. It’s a good method to use

piecewise linear model to approximate the cubic FHN model.

3.1 Oscillatory Clusters in the Oregonator and FHN type Models with Global

Inhibitory Feedback

The modified Oregonator model (1.10) introduced in [52] with diffusion terms added to both

the activator and the inhibitor equations has been extended by Yang et al. to include global

feedback. This model reproduces the experimentally observed stable localized, two-phase

and three-phase clusters referred to above. The following global feedback term

γ(< w > −w̄)ψ(v) (3.1)

Here ψ(v) is defined in 1.13.

35
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was added to the activator (v) equation. In (1.7), < w > represents the instantaneous spatial

average of the activator variable w, and w̄ represents the target value of the oxidized form

of the catalyst, which was set equal to the unstable steady state concentration (unstable

fixed-point). The parameter γ is the global feedback coefficient, which depends on the

maximum actinic light intensity and on the quantum yield of the photochemical reaction.

Note that the global feedback represents the global effect of the inhibitor on the activator

rather than the global effect of the activator onto itself as is commonly encountered.[49]

The modified Oregonator model with global inhibitory feedback in the absence of

diffusion reads





ε1 dvkdτ = f(vk, wk)− γ (< w > −w̄) ψ(vk),

dwk/dτ = g(vk, wk),
(3.2)

for k = 1, . . . , N , where f(v, w) and g(v, w) are given by (1.11) and (1.14) respectively, γ is

the global feedback parameter, ψ(vk) is defined in 1.13.

In a subsequent study, Rotstein et al. [35, 34] studied a mechanism of localized cluster

formation in the modified Oregonator model and in a model of FitzHugh-Nagumo type [34]

with global inhibitory feedback and no diffusion. If the system has N oscillators, the global

feedback term reads

< w > =
1

N

N∑

k=1

wk. (3.3)

The parameter w̄ is the w-coordinate of the intersection point between the nullclines when

γ = 0. Note that the intersection point between nullsurfaces does not change with γ.

In these studies a “cluster simplification” was made. By assuming that all oscillators in a

cluster have the same amplitude and frequency, all the oscillators belonging to the same

cluster are indistinguishable from the dynamic point of view, and can be described by the
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same equations. Thus, a system of N globally coupled oscillators having M clusters can be

described by the following globally coupled system of M -oscillators





v′k = f(vk)− wk − γ [ < w > −w̄ ],

w′
k = ε [ g(vk; λ)− wk ],

(3.4)

for k = 1, . . . , M with

< w > =
M∑

k=1

αk wk (3.5)

where αk, k = 1, . . . , M is the fraction of oscillators belonging to each cluster, note that
∑n

k=1 αk = 1.

If M = 1, single oscillator system reads:





v′ = f(v)− (1 + γ)w − w̄ ],

w′ = ε [αv − λ− w ]
(3.6)

If M = 2 (two clusters) sytem (3.4) reads





v′k = f(vk)− wk − γ [ α1 w1 + α2 w2 − w̄ ],

w′
k = ε [αvk − λ− wk ]

(3.7)

for k = 1, 2. This is a system of two oscillators globally coupled through the inhibitor

variables w1 and w2. Where the function f is given by (1.16). Here we have chosen h = 2

and a = 3, the result of making v′1 = v′2 = w′
1 = w′

2 = 0 are not one-dimensional curves but

higher dimensional objects. In particular, by making v′k = 0 for k = 1, 2 one gets

wk =
f(vk) + γ w̄

1 + αkγ
− γ αjwj

1 + αkγ
(3.8)
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for k, j = 1, 2 and j 6= k. Eq. (3.8) describes a two-dimensional surface wk = Nv,k(vk, wj)

having the shape of the first term in eq. (3.8), which can be thought as curves moving up

and down due to the effect of the second term.

3.2 Piecewise Linear Approximation of Single Oscillator

(i) The exact solution of single oscillator

In order to simplify the analysis, first, we just consider the system without global

feedback term, i.e. γ = 0. The McKean model [23, 42] is the simplest PWL model

with a cubic-like v-nullcline. It has three linear pieces, one for each branch. This

model has been used to study several aspects of neural dynamics, and preserves many

basic dynamic features of the FHN model such as the existence of (large amplitude)

relaxation oscillations (spikes) and a non-smooth version of the Hopf-bifurcation [8,

33, 37, 46, 7].

We substitute the cubic function f(v) with three piecewise linear function as explained

below, and check whether this piecewise linear system still captures the cluster dynamics

observed in the smooth system.

The general form of each linear component is





v̇j = ηj(v − v̂j−1) + ω̂j−1 − ωj,

ω̇j = ε[αvj − λ− ωj], j = 0, 1, 2.
(3.9)

Here η0 = −1, η1 = 1, and η2 = −1.

The corresponding fixed point is given by (v̄, ω̄), where

v̄ =
λ− ηj v̂j−1 + ω̂j−1

α− ηj

ω̄ =
ληj − αηj v̂j−1 + αω̂j−1

α− ηj

.
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For simplicity, we make change of variables with the goal of shifting the fixed point to

the origin to study the dynamics in each linear regime.
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Figure 3.1 Phase-plane (left) and traces (right) for the piecewise-linear approximation of
FHN (3.9) for representative parameter values.

Let us consider V := v − v̄ and W := ω − ω̄ with the following equation





V ′ = ηV −W, V (0) = v0 − v̄

W ′ = ε[αV −W ], W (0) = ω0 − ω̄

The Jacobian matrix of the above piecewise linear equation is

J =




η −1

εα −ε




whose eigenvalues are:

r1,2 =
η − ε±

√
(η − ε)2 − 4ε(α− η)

2

The fixed point is stable (unstable) if η < (>) ε. The eigenvalues are complex if

η ∈ (−ε− 2
√

εα,−ε + 2
√

εα).



40

(a) When (η + ε)2 − 4εα > 0, we have r1 − r2 =
√

(η + ε)2 − 4αε.

The solution is




v

ω


 = c1




1

r2 + ε


 er1t + c2




1

r1 + ε


 er2t +




v̄

ω̄




where c1 =
(v0 − v̄)(r1 + ε)− (ω0 − ω̄)

r1 − r2

, c2 =
−(v0 − v̄)(r2 + ε) + (ω0 − ω̄)

r1 − r2

(b) When (η + ε)2 − 4εα < 0 we have µ =

√
4αε− (η + ε)2

2
.

The solution is




v

ω


 = c1







1

(η + ε)/2


 cos µt +




0

µ


 sin µt


 e(η−ε)t/2

+c2







1

(η + ε)/2


 sin µt +




0

µ


 cos µt


 e(η−ε)t/2 +




v̄

ω̄




where

c1 = v0 − v̄, c2 =
(v0 − v)(η + ε)− 2(ω0 − ω)

2µ

.

(ii) Comparison of Numerical Solution and Analytical Solution of Single Oscillator

In equation (3.9), we take λ = 0.2, ε = 0.01, α = 2, η0 = η2 = −1 and η1 = 1. The

initial conditions are V (0) = −1 and ω(0) = 0.5

The numerical and analytical solutions are shown in the Fig. 3.2, from which we can

tell that they are very close to each other.
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Figure 3.2 Comparison between the analytical and numerical solutions for a single PWL
oscillator evolving according to eq. (3.8) with α = 2, ε = 0.01 and A λ = 0.01, B: λ = 0.1,
and C: λ = 0.2. The cubic-like PWL function f(v) is given by (3.10) with β1 = β2 = 1. For
each value of λ, the numerical (Ṽ ,dashed-red) and analytical (V , dashed-blue) solutions are
presented in the top panels. The corresponding absolute errors, defined as |V (t)− Ṽ (t)| and
|W (t) − W̃ (t)| presented in the bottom panels. The numerical and analytical solutions are
in good agreement.
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Figure 3.3 Comparison between the analytical and numerical solutions for a single PWL
oscillator evolving according to eq. (3.8) with α = 4, ε = 0.01 and A λ = 0.01, B: λ = 0.1,
and C: λ = 0.2. The cubic-like PWL function f(v) is given by (3.10) with β1 = β2 = 1. For
each value of λ, the numerical (Ṽ ,dashed-red) and analytical (V , dashed-blue) solutions are
presented in the top panels. The corresponding absolute errors, defined as |V (t)− Ṽ (t)| and
|W (t) − W̃ (t)| presented in the bottom panels. The numerical and analytical solutions are
in good agreement.
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Figure 3.4 Comparison between the analytical and numerical solutions for a single PWL
oscillator evolving according to eq. (3.8) with α = 2, ε = 0.1 and A λ = 0.01, B: λ = 0.1,
and C: λ = 0.2. The cubic-like PWL function f(v) is given by (3.10) with β1 = β2 = 1. For
each value of λ, the numerical (Ṽ ,dashed-red) and analytical (V , dashed-blue) solutions are
presented in the top panels. The corresponding absolute errors, defined as |V (t)− Ṽ (t)| and
|W (t) − W̃ (t)| presented in the bottom panels. The numerical and analytical solutions are
in good agreement.
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Figure 3.5 Comparison between the analytical and numerical solutions for a single PWL
oscillator evolving according to eq. (3.8) with α = 4, ε = 0.1 and A λ = 0.01, B: λ = 0.1,
and C: λ = 0.2. The cubic-like PWL function f(v) is given by (3.10) with β1 = β2 = 1. For
each value of λ, the numerical (Ṽ ,dashed-red) and analytical (V , dashed-blue) solutions are
presented in the top panels. The corresponding absolute errors, defined as |V (t)− Ṽ (t)| and
|W (t) − W̃ (t)| presented in the bottom panels. The numerical and analytical solutions are
in good agreement.
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3.3 Comparison of Two Globally Coupled Cubic Oscillators and the Piecewise

Linear Approximation

In this section, we study the FHN type model with two coupled oscillators. The globally

coupled system functions are given in equations (3.7). Let us also choose a piecewise linear

function f̄(v) to approximate the cubic function f(v) = −hv3 + av2 − bv + c. In particular,

when the coefficients h = 2, a = 3 and b = c = 0, we define f̄(v) as

f̄(v) =





−β1v, when v < 0

v, when 0 ≤ v ≤ 1

1 + β2 − β2v, when v > 1

(3.10)

For simplicity we fix β1 = β2 = 1. We illustrate the numerical solutions with different values

of parameters.

In this case the globally coupling system is





v′k = f̄(vk)− wk − γ [ α1 w1 + α2 w2 − w̄ ],

w′
k = ε [αvk − λ− wk ], k = 1, 2

(3.11)
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Figure 3.6 Anti-phase oscillations for the globally coupled system (3.9) for a PWL (left
panel) and smooth (right panel) cubic-like functions given by (3.11) respectively, in both
cases the oscillators go anti-phase for the following parameters N = 2, α = 2, ε = 0.01,
λ = 0.01, γ = 0.1, and α1 = α2 = 0.5
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Figure 3.7 Out of phase oscillations for the globally coupled system (3.9) for a PWL (left
panel) and smooth (right panel) cubic-like functions given by (3.11) respectively, and for the
following parameters N = 2, α = 2, ε = 0.01, λ = 0.01, γ = 0.1, and α1 = 0.8, α2 = 0.2
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Figure 3.8 Anti-phase oscillations for the globally coupled system (3.9) for a PWL (left
panel) and smooth (right panel) cubic-like functions given by (3.11) respectively, and for the
following parameters N = 2, α = 4, ε = 0.01, λ = 0.01, γ = 0.1, and α1 = α2 = 0.5
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Figure 3.9 Anti-phase oscillations for the globally coupled system (3.9) for a PWL (left
panel) and smooth (right panel) cubic-like functions given by (3.11) respectively, and for the
following parameters N = 2, α = 4, ε = 0.01, λ = 0.1, γ = 0.1, and α1 = α2 = 0.5
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Figure 3.10 Different dynamic behavior between the PWL (left panel) and smooth (right
panel) globally coupled system (3.11). The cubic like functions are given by (3.9)respectively,
and for the following parameters N = 2, α = 4, ε = 0.1, λ = 0.01, γ = 0.1, and α1 =
α2 = 0.5. The smooth system exhibits oscillation death while the PWL system exhibits
persistent oscillations. In the PWL system, the ”red” oscillator displays only large amplitude
oscillations while the ”blue” one displays both small amplitude oscillations interspersed with
large amplitude oscillations (mixed-mode oscillations).
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Figure 3.11 Oscillation death for the globally coupled system (3.11) for a PWL (left panel)
and smooth (right panel) cubic-like functions given by (3.9) and (number) respectively, and
for the following parameters N = 2, α = 4, ε = 0.5, λ = 0.01, γ = 0.1, and α1 = α2 = 0.5.
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Figure 3.12 Out of phase (phase locked) oscillators for the globally coupled systems (3.11)
between the PWL(left panel) and smooth (right panel) : N = 2, γ = 0.1, λ = 0.01, ε =
0.01, α = 4, α1 = 0.6, α2 = 0.4. The phase of cubic case is 0.5208, the phase of piecewise-
linear is 0.5852.
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Figure 3.13 Out of phase (phase locked) oscillators for the FHN model (3.11) between the
PWL(left panel) and smooth (right panel) : N = 2, γ = 0.1, λ = 0.01, ε = 0.01, α = 4, α1 =
0.7, α2 = 0.3. The phase of cubic case is 0.5407, the phase of piecewise-linear is 0.6252.
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Figure 3.14 Out of phase (phase locked) oscillators for FHN model (3.11) between the
PWL(left panel) and smooth (right panel) : N = 2, γ = 0.1, λ = 0.01, ε = 0.01, α = 4, α1 =
0.8, α2 = 0.2. The phase of cubic case is 0.5579, the phase of piecewise-linear is 0.6504.
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Figure 3.15 Out of phase (phase locked) oscillators for FHN model (3.11) between the
PWL(left panel) and smooth (right panel) : N = 2, γ = 0.1, λ = 0.01, ε = 0.01, α = 4, α1 =
0.9, α2 = 0.1. The phase of cubic case is 0.5646, the phase of piecewise-linear is 0.6691.

In Fig. 3.6 to Fig. 3.15 we compare the numerical solutions to the Fitzhugh-Nagumo

(FHN) model and the piecewise linear approximation described above in (3.10) and (3.11).
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In Fig 3.16, in all panels, green lines correspond to the w-nullclines. Red and blue

PWL functions correspond to the V -nullclines of the V1 and V2 respectively. Red and blue

points correspond to the tip of the trajectory at different time. The two oscillators starts on

the left branch as shown in panel (A), in panel (B), and panel (C), they move down together

close to the point v = 0. In panel (D), the first oscillator leaves the w-nullcline and starts to

go to the right branch. In panel (E), the second oscillator stays around the point v = 0 for a

long time when the first oscillator is moving fast to the right branch. In panel (F) and (G),

the second oscillator still stays around the point v = 0 when the first oscillator crosses the

w-nullcline again and moves to the left branch. In panel (H), the second oscillator crosses

the w-nullcline when the first oscillator moving down through the left branch. In panel (I)

and (J), the first oscillator stays around the point v = 0 when the second oscillator reaches

the right branch and moves up. In panel (K), the first oscillator still moves along the left

branch while the second oscillator crosses the w-nullcline and reaches the left branch, so the

two oscillators are moving together on the left branch again.

We explain the mechanism of generation of anti-phase solutions for the globally coupled

system Eq.(3.11) in the context of Figure 3.16 which corresponds to α = 4, γ = 0.1 and

α1 = α2 = 0.5. The nullclines N1 and N2 corresponding to the two oscillators, O1 and O2

respectively, are given by The following nullcline equation; i.e.,

Nk(vk, wj) =
f(vk) + γw̄

1 + γαk

− γαjwj

1 + γαk

(3.12)

For γ = 0 (no global coupling), the two oscillators have the same nullcline. When

γ > 0, the shape of the two nullclines changes and they ”move up and down” according to

the second term in Eq.(3.12). Since for each oscillator this term contains the w-coordinate of

the other oscillator, Eq.(3.12) then each nullcline becomes dynamic; i.e., the motion of each

oscillator affects the height of the nullcline of the other one. Note that strictly speaking,

Eq.(3.12) describes a surface rather than a curve. We interpret the non-constant height of

this surface as curves moving up and down, and we refer to this curves as nullclines.
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Figure 3.16 Two globally coupled oscillators moving with equation (3.11) in piecewise-
linear case, and two anti-phase clusters for the following parameters: α = 4, γ = 0.1, α1 =
0.5, α2 = 0.5

Fig. 3.16-A shows the initial location of the two oscillators. We set the initial conditions

lying in a vicinity of the left branch of the corresponding nullclines N1 and N2. In Fig. 3.16,

oscillator O1 is marked in red and oscillator O2 is marked in blue. The full dots correspond

to the tip of the trajectory for the time shown in the top of the panel. When appropriate for

the geometric description of the dynamics we will refer to the w-coordinates of the red and

blue oscillators as wr and wb respectively and to the corresponding nullclines as Nr and Nb.

Since ε << 1 the trajectories of the two oscillators will evolve in a vicinity of Nr and

Nb. As time increases the two oscillators move down along these nullclines and get closer

together (the distance between their locations decreases) but the order is preserved; i.e., the

red oscillator is ahead of the blue oscillator as long both are moving along the left branch of

the v-nullclines (Fig. 3.16-B, Fig. 3.16-C and Fig. 3.16-Cz).

The red oscillator arrives to the minimum of Nr before the blue oscillator arrives to

the minimum of Nb. This is due to the fact that wr < wb. When the red oscillators reaches

the minimum of Nr it moves along a fast direction of motion towards the right branch of Nr.

This direction is almost horizontal with a small vertical component. This slight increase in

the value of wr causes Nb to move down (Fig. 3.16-E and Fig. 3.16)-Ez thus preventing the
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blue oscillator from crossing to the middle branch regime. Once the red oscillator arrives to

a vicinity of the right branch of Nr it moves in moves along it in the upward direction (Fig.

3.16)-F which further prevents the blue oscillator from crossing to the left branch of Nb due

to the increase in the value of wr. Only when the red oscillator returns to a vicinity of the

left branch of Nr moves down along it decreasing value of wr (Fig.3.16-G to Fig. 3.16)-I the

nullcline Nb moves up and allows the blue oscillator to move to the right branch of Nb (Fig.

3.16)-I and move up along it while the red oscillator moves down along Nr (Fig. 3.16)-J.

When the blue oscillator returns to the left branch of Nb the red oscillators is close to the

minimum of Nr. The distance between the their location is larger than initially (Compare

Fig. 3.16-K and Fig. 3.16)-A so the oscillators will never synchronize in phase.

The similar dynamical process is shown in Fig. 3.17 to Fig. 3.19 in both of piecewise

linear case and cubic case.
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In the figures Fig. 3.20 to Fig. 3.23, α1 6= 0.5 and α2 6= 0.5, so we get out of phase

pattern instead of anti-phase pattern.
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Figure 3.17 Two globally coupled oscillators moving with equation (3.11) in cubic case,
and two anti-phase clusters for the following parameters: α = 4, γ = 0.1, α1 = 0.5, α2 = 0.5
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Figure 3.18 Two globally coupled oscillators moving with equation (3.11) in piecewise-
linear case, and two anti-phase clusters for the following parameters: α = 2, γ = 0.1, α1 =
0.5, α2 = 0.5

In Fig. 3.20 to Fig. 3.23, the oscillators go out of-phase instead of anti-phase in both

of cubic oscillators and the piecewise linear approximated oscillators, but the dynamical

process is the same as Fig. 3.16 to Fig. 3.19.
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Figure 3.19 Two globally coupled oscillators moving with equation (3.11) in cubic case,
and two anti-phase clusters for the following parameters: α = 2, γ = 0.1, α1 = 0.5, α2 = 0.5
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Figure 3.20 Two globally coupled oscillators moving with equation (3.11) in piecewise-
linear case, and two out of phase clusters for the following parameters: α = 4, γ = 0.1, α1 =
0.8, α2 = 0.2

3.4 Solution of Piecewise Linear Oscillators

The equations of two globally coupled piecewise oscillators can be expand as:





v′1 = a(v1 − v0)− ω1 − γ(α1ω1 + α2ω2 − ω̄)

v′2 = b(v2 − v̄0)− ω2 − γ(α1ω1 + α2ω2 − ω̄)

ω′1 = ε(αv1 − λ− ω1)

ω′2 = ε(αv2 − λ− ω2)

(3.13)

Where parameter a, v0 are determined by the position or the branch of the first

oscillator, b, v̄0 are determined by the position or the branch of the second oscillator.

The above equation (3.13) can be written to a matrix form:




v1
′

v2
′

ω1
′

ω2
′




=




a 0 −(1 + γα1) −γα2

0 b −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε







v1

v2

ω1

ω2




+




−av0 + γω

−bv0 + γω

−ελ

−ελ



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Figure 3.21 Two globally coupled oscillators moving with equation (3.11), and two out of
phase clusters for the following parameters:α = 4, γ = 0.1, α1 = 0.8, α2 = 0.2

Theorem 1 Consider a four variable ODE system given as follows:




v1
′

v2
′

ω1
′

ω2
′




= D




v1

v2

ω1

ω2




+ L

The matrix D can be diagonalized:

D =




a 0 −(1 + γα1) −γα2

0 b −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε




= A




λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




A−1

where A is a matrix whose columns are eigenvectors of D.

The solution of this ODE system is:
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Figure 3.22 Two globally coupled oscillators moving with equation (3.11) in piecewise-
linear case, and two out of phase clusters for the following parameters: α = 2, γ = 0.1, α1 =
0.8, α2 = 0.2




v1

v2

ω1

ω2




= A




1
λ1

0 0 0

0 1
λ2

0 0

0 0 1
λ3

0

0 0 0 1
λ4



·








eλ1t 0 0 0

0 eλ2t 0 0

0 0 eλ3t 0

0 0 0 eλ4t










λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




A−1




v1(0)

v2(0)

ω1(0)

ω2(0)




+ A−1L



− A−1L





(3.14)

The sketch of the proof is given in Appendix (A.1).

The value of matrix D and vector L is determined by the position of the oscillators,

so we consider nine cases:
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Figure 3.23 Two globally coupled oscillators moving with equation (3.11), and two out of
phase clusters for the following parameters:α = 2, γ = 0.1, α1 = 0.8, α2 = 0.2

(i) If both of v1, v2 are moving on the left branch, a = b = −β1,

D =




−β1 0 −(1 + γα1) −γα2

0 −β1 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε




L =




γω̄

γω̄

−ελ

−ελ




(ii) v1 is moving on the left branch, v2 is moving on the middle branch: a =

−β1, b = 1,

D =




−β1 0 −(1 + γα1) −γα2

0 1 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε






83

L =




γω̄

γω̄

−ελ

−ελ




(iii) Both of v1 and v2 are moving on the middle branch, a = b = 1

D =




1 0 −(1 + γα1) −γα2

0 1 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε




L =




γω̄

γω̄

−ελ

−ελ




(iv) v1 is moving on the middle branch, v2 is moving on the right branch, a =

1,b = −β2

D =




1 0 −(1 + γα1) −γα2

0 −β2 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε



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L =




γω̄

γω̄ + 1 + β2

−ελ

−ελ




(v) Both of v1 and v2 are moving on the right branch, a = b = −β2

D =




−β2 0 −(1 + γα1) −γα2

0 −β2 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε




L =




γω̄ + 1 + β2

γω̄ + 1 + β2

−ελ

−ελ




(vi) v2 is moving on the middle branch, v1 is moving on the right branch, a = −β2,

b = 1

D =




−β2 0 −(1 + γα1) −γα2

0 1 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε



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L =




γω̄ + 1 + β2

γω̄

−ελ

−ελ




(vii) v2 is moving on the left branch, v1 is moving on the middle branch, a = 1,

b = −β1

D =




1 0 −(1 + γα1) −γα2

0 −β1 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε




L =




γω̄

γω̄

−ελ

−ελ




(viii) v1 is moving on the left branch, v2 is moving on the right branch, a = −β1,

b = −β2

D =




−β1 0 −(1 + γα1) −γα2

0 −β2 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε



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L =




γω̄

γω̄ + 1 + β2

−ελ

−ελ




(ix) v2 is moving on the right branch, v1 is moving on the left branch, a = −β1,

b = −β2

D =




−β2 0 −(1 + γα1) −γα2

0 −β1 −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε




L =




γω̄ + 1 + β2

γω̄

−ελ

−ελ




This is the exact solution of v1(t), v2(t), ω1(t), ω2(t). To see whether two oscillators

can synchronize after a long time, we need to see whether limt→∞ v1(t)− v2(t) = 0.

3.5 Comparison of Analytical Solution and Numerical Solution for Two

Piecewise Linear Coupling Oscillators

We use piecewise linear system to approximate cubic system, so we want to check the patterns

of piecewise linear coupling oscillators. The analytical solution for two piecewise linear

coupling oscillators is given in equation (3.14).

In order to check if numerical simulations accurately predicts the analytical solutions

of the oscillators, an important step is to check the error of the numerical simulation.
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The equations of dynamical system with global coupling terms are given in (3.10) and

(3.11). We fix the coefficients and the initial conditions as follows:

The graph is shown in Fig. 3.24. The analytical solution is given by the (3.14) above.

The error of functions v(t) and ω(t) between the numerical (2-stage-Runge-Kutta(RK2)

scheme [5, 6] and the analytical solutions is very small. So the numerical simulation makes

accurate prediction for the phase property of the analytical solutions. If the numerical

solutions of two oscillators go anti-phase(same phase), the exact solutions will also go anti-

phase(same phase).

3.6 The Moving Nullclines Approach

Lemma of moving nullclines

Lemma 3.6.1 For the two piecewise linear oscillators system (3.10),(3.11), the nullcline of

one oscillator (vk, ωk) is moving up(moving down) ⇔ The other oscillator (vi, ωi) lies on the

left side (right side) of ω nullcline.

The sketch of the proof is given in the appendix (A.2).

The moving nullclines graphs are shown in Fig 3.25.

The function of global feedback oscillators is:





v′k = f(vk)− ωk − 0.2 · (1
2
ωk + 1

2
ωi − ω̄)

ω′k = 0.01(10vk − 0.2− ωk)
(3.15)

where

f(v) =





−v, when v < 0

v, when 0 ≤ v ≤ 1

2− v, when v > 1

(3.16)

When both of the initial points are on the left branch, both oscillators lie on the

left side of the ω- nullcline, ω′j = αvj − λ − ωj < 0, both v-nullclines move up in the
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Figure 3.24 Comparison of the numerical solution and exact solution of two oscillators
system by initial conditions:v1(0) = −1, ω1(0) = 0.5, v2(0) = −0.65, ω2(0) = 0.35 There
are three set of parameters: (A) λ = 0.2, (B) λ = 0.1 and (C) λ = 0.01; other parameters
γ = 0.1, ε = 0.01, α = 2, β1 = 1, β2 = 1
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Figure 3.25 The v-nullclines are moving, the equations are (3.15),(3.16)
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beginning. The first oscillator cross the ω-nullcline fast, because it has already been away

from the left branch of v nullcline and go along the fast direction before it passing through

the ω-nullcline. The v-nullcline of the second oscillator begin to move down when the first

oscillator has passed ω nullcline above the v-nullcline.

In the piecewise-linear case: Fig A.1, the two oscillator starts on the left branch, the

v-nullclines are moving up together. The first oscillator crosses the ω-nullcline fast, however,

when the first oscillator is moving on the right side of the ω-nullcline, the v-nullclines of the

second oscillator is moving down. The second oscillator is moving down with the v-nullcline,

that makes ω′2(t) < 0. To cross the ω-nullcline from the left side to right side, ω′(t) should

be changed from negative to positive, so the second oscillator takes more time to cross the

ω-nullcline, and this makes the two oscillators separate. The same process happens in the

cubic case: Fig 3.17, Fig A.2 and Fig 3.21.

In Fig 3.25, two oscillators start far away, they get closer on the first branch before the

first oscillator (v1, ω1) passing the ω-nullcline, both of the v-nullclines move up. When the

first oscillator (v1, ω1) has passed the ω-nullcline, the v-nullcline of second oscillator (v1, ω1)

continue to move up, and the v-nullcline of (v2, ω2) begin to move down. and it continue to

move down until (v1, ω1) passing the ω-nullcline through the top of v-nullcline.



CHAPTER 4

SPIKE-TIME RESPONSE CURVES (STRC) AND SPIKE-TIME

DIFFERENCE MAPS (STDM)

Spike time difference curves (STRCs) allow one to predict the dynamical behavior of neuronal

networks with mutual synaptic connections from relatively simple measurements in single

neurons. In the FHN model, we don’t have the synaptic shaped inhibitory term, but our

w- term is synaptic shaped. we have used spike-time difference maps method in the FHN

model. we extended our work on the phase estimation in the piecewise linear FHN model.

4.1 Introduction for Spike Time Response Method

Phase response curve (PRC) methods have been widely used in various fields of science to

investigate the synchronization properties of coupled oscillators. These include [47],[24].

A classical experiment was preformed in 1960 by Patricia DeCoursey. She created an

experiment to investigate how flying squirrels respond to light pulses. The flying squirrels

were running free in a dark environment which occasionally received light pulses. DeCoursey

found that when these nocturnal animals were exposed to light at the beginning of their

daily activity, the phase of the onset of activity would be delayed on subsequent days.

Conversely, when these animals received light pulses at the end of their daily activity, their

phase of activity onset would be advanced on subsequent days. Phase response curve and

spike time response curve methods have been used in neuroscience and other fields. In

order to get a PRC, we divide the circadian clock into discrete number of points, then

administer a perturbation at these points, and measure the phase shift in the circadian clock,

i.e., the phase difference between the perturbed and non-perturbed oscillators. Example of

perturbation include pulses of light, drugs, chemicals, or temperature. PRC is a standard

tool to study biological rhythms, such as synchrony of mutually coupled neurons.

94
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Some people used PRCs to investigate the synchronization properties of neurons [31],

[18]. PRCs describe the relationship between the timing and the effect of a perturbation

administered to affect periodic rhythms. A variation of the PRC method are the so called

spike-time response curves (STRCs) and spike-time difference maps (STDMs). In a Spike

Time Response Curve (STRC) one measures time differences between neurons instead of

phase-differences. More specifically, if a neuron is perturbed δt units of time after a spike

has occurred, then we plot the time difference between the next spike time of the perturbed

neuron and the corresponding spike time of the unperturbed neuron as a function of δt. [38],

[16], [21], [47].

4.2 Definition of the Spike Time Response Curve and Spike Time Difference

Map

If we have two neurons interacting we can construct a STRC for each one of them as a result

of the perturbation received from the other one. More specifically, let us call t1 and t2 the

spike times of the two neurons during a given cycle, t̄1 and t̄2 the spike times of these two

oscillators in the next cycle, and T1 and T2 the spiking periods of the two oscillators, and

we consider them to be equal (and both equal to T). Neuron 1 is perturbed by neuron 2 at

a time t2.

The next spike of neuron 1 will occur at

t̄1 = t1 + T − P (t2 − t1) (4.1)

Here P is the STRC. Note that in the absence of any perturbation, t̄1 = t1 + T ; i.e., P

measures spike time advances and delays with respect to the spike times of the unperturbed

oscillators. Conversely, assuming the second spike of neuron 2 arrives after the second spike

of neuron 1 (t2 > t̄1), then

t̄2 = t2 + T − P (t̄1 − t2). (4.2)
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STRCs can be used to construct STDMs in the following way. We follow [1], subtracting

(4.2) from (4.1) we obtain

t̄2 − t̄1 = t2 − t1 + P (t2 − t1)− P (t̄1 − t2) (4.3)

Substituting (4.1) into the last term in (4.3) we get:

t̄2 − t̄1 = t2 − t1 + P (t2 − t1)− P (t1 − t2 + T − P (t2 − t1)). (4.4)

Calling ∆ = t2 − t1 and ∆̄ = t̄2 − t̄1 and substituting in (4.4) we get the STDM

∆̄ = ∆ + P (∆)− P (∆ + T − P (∆)). (4.5)

For simplicity, let us call

F (∆) = P (∆)− P (∆ + T − P (∆)). (4.6)
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Thus the STDM (4.5) reads

∆̄ = ∆ + F (∆) (4.7)

The function F in (4.7) can be computed and the stability properties of the STDM

can be analyzed.

We can determine equilibrium solutions ∆0, which satisfies F (∆0) = 0 and describe

the time difference between the neurons at steady state.

Stable solutions for STDM satisfy:

−2 <
d

d∆
F < 0

STRCs and STDM have been used to investigate the synchronization properties of

coupled neurons [1], [4], [30], [28], [29].

In our Fitzhugh-Nagumo(FHN) model, because the ω-function has a synaptic-like

shape, Here we explore the possibility of using STDM methods to examine the stability

of any solutions.





v′k = f(vk) + γw̄ − (1 + γαk)wk − γαjwj,

w′
k = ε(αvk − λ− wk) k, j = 1, 2, j 6= k.

(4.8)

We refer to the period of an unperturbed oscillator as its natural period, T is the

natural period without forcing term:





v′k = f(vk) + γw̄ − (1 + γαk)wk

w′
k = ε(αvk − λ− wk)

(4.9)

When α1 6= α2, T1 is the period of first oscillator without the perturbation of the

second oscillator:
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Figure 4.1 The synaptic shaped ω-function





v′1 = f(v1) + γw̄ − (1 + γα1)w1

w′
1 = ε(αv1 − λ− w1)

(4.10)

T2 is the period of the second oscillator without the perturbation of the first oscillator:





v′2 = f(v2) + γw̄ − (1 + γα2)w2

w′
2 = ε(αv2 − λ− w2)

(4.11)

4.3 The Analytical Approach for Three Piecewise Linear Systems

To build the spike time difference map, we first build the spike time response curve. We

neglect the time the oscillators spend on the slow trajectory when ε is very small. We

perturb the second oscillator by the uncoupled first oscillator at different times in the cycle
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and measure the change in its next spike time. Let us consider the function of uncoupled

first oscillator:





v′1 = f(v1)− w1 − rα1w1 + rw̄

w′
1 = ε(αv1 − λ− w1)

(4.12)

Here ε → 0, rescale the time value: τ = εt,

f(v1) = w1 + rα1w1 − rw̄ = (1 + rα1)w1 − rw̄

(1 + rα1)
dw1

dτ
= f ′(v1)

dv1

dτ

So

(1 + rα1)(αv1 − λ− w1) = η
dv1

dτ

⇒





dv1

dτ
=

1

η
(1 + rα1)(αv1 − λ− w1)

dw1

dτ
=

1

1 + rα1

f ′(v1)
dv1

dτ
=

1

η
f ′(v1)(αv1 − λ− w1)

(4.13)

⇒





dv1

dτ
=

1

η
(1 + rα1)αv1 − 1

η
(1 + rα1)w1 − λ

η
(1 + rα1)

dw1

dτ
= αv1 − λ− w1

(4.14)
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d




v1

w1




dτ
=




α
η
(1 + rα1) − 1

η
(1 + rα1)

α −1







v1

w1


 +



−λ

η
(1 + rα1)

−λ




So

d




v1

w1




dτ
= T−1




λ1 0

0 λ2


 T




v1

w1


 +



−λ

η
(1 + rα1)

−λ




dT




v1

w1




dτ
=




λ1 0

0 λ2


 T




v1

w1


 + T



−λ

η
(1 + rα1)

−λ




T




v1

w1


 =




v̄1

w̄1




Which derives:





dv̄1

dτ
= λ1v̄1 − a1λ

η
(1 + rα1)− b1λ

dw̄1

dτ
= λ2w̄1 − c1λ

η
(1 + rα1)− d1λ

(4.15)

In the case λ2 = 0,





d(λ1v̄1 − a1λ
η

(1 + rα1)− b1λ)

dτ
= λ1(λ1v̄1 − a1λ

η
(1 + rα1)− b1λ)

dw̄1

dτ
= −c1λ

η
(1 + rα1)− d1λ

(4.16)

w̄1 = −(
c1λ

η
(1 + rα1) + d1λ)τ + w̄1(0)

So

λ1v̄1 − a1λ

η
(1 + rα1)− b1λ = k1e

λ1τ
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k1 = λ1v̄1(0)− a1λ

η
(1 + rα1)− b1λ

v̄1(τ) =
1

λ1

(
a1λ

η
(1 + rα1) + b1λ + (λ1v̄1(0)− a1λ

η
(1 + rα1)− b1λ)eλ1τ )

T =




a1 b1

c1 d1




v̄1(0) = a1v1(0) + b1w1(0)

w̄1(0) = c1v1(0) + d1w1(0)




v1

w1


 = T−1




v̄1

w̄1








v′2 = f(v2)− w2 − r(α1w1 + α2w2 − w̄)

w′
2 = ε(αv2 − λ− w2)

(4.17)

If we let τ = εt,





ε
dv2

dτ
= f(v2)− w2 − r(α1w1 + α2w2 − w̄)

dw2

dτ
= αv2 − λ− w2

(4.18)

ε → 0 ⇒
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f(v2) = w2 + r(α1w1 + α2w2 − w̄) = (1 + rα2)w2 + rα1w1 − rw̄

(1 + rα2)
dw2

dτ
= f ′(v2)

dv2

dτ
− rα1

dw1

dτ

(1 + rα2)(αv2 − λ− w2) = η
dv2

dτ
− rα1(αv1 − λ− w1)





dv2

dτ
=

1

η
((1 + rα2)(αv2 − λ− w2) + rα1(αv1 − λ− w1))

dw2

dτ
= αv2 − λ− w2

(4.19)

d




v2

w2




dτ
=




α(1+rα2)
η

− (1+rα2)
η

α −1







v2

w2


 +




rα1

η
(αv1 − λ− w1)− λ(1+rα2)

η

−λ




dT




v2

w2




dτ
=




λ1 0

0 λ2


 T




v2

w2


 + T




rα1

η
(αv1 − λ− w1)− λ(1+rα2)

η

−λ




d




v̄2

w̄2




dτ
=




λ1 0

0 λ2







v̄2

w̄2


 +




s1

s2




If α1 = α2 = 0.5, λ2 = 0,





dv̄2

dτ
= λ1v̄2 + s1,

dw̄2

dτ
= s2

(4.20)

Here
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s1 = a1(
rα1

η
(αv1 − λ− w1)− λ(1 + rα2)

η
)− λb1

s2 = c1(
rα1

η
(αv1 − λ− w1)− λ(1 + rα2)

η
)− λd1





v̄1(τ) = 1
λ1

(a1λ
η

(1 + rα1) + b1λ + (λ1v̄1(0)− a1λ
η

(1 + rα1)− b1λ)eλ1τ )

w̄1(τ) = −( c1λ
η

(1 + rα1) + d1λ)τ + w̄1(0)

(4.21)

T−1 =




a′1 b′1

c′1 d′1







v1

w1


 = T−1




v̄1

w̄1


 =




a′1 b′1

c′1 d′1







v̄1

w̄1




v̄1(τ) is a linear combination of eλ1τ and 1, w̄1(τ) is a linear combination of τ and 1.

v1 and w1 are linear combination of v̄1 and w̄1, so v1 and w1 are linear combination of eλ1τ ,

τ and 1. s1 and s2 are also linear combination of eλ1τ , τ and 1.

dv2

dτ
= λ1v2 + aeλ1τ + bτ + c

If we make v2 = eλ1τf ,

dv1

dτ
= λ1e

λ1τf + eλ1τf ′ = λ1e
λ1τf + aeλ1τ + bτ + c

f ′ = e−λ1τ (aeλ1τ + bτ + c) = a + bτe−λ1τ + ce−λ1τ
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f = aτ − bτ

λ1

e−λ1τ − b

λ2
1

e−λ1τ − c

λ1

e−λ1τ + s

s = v1(0) +
b

λ2
1

+
c

λ1

so

v1 = aτeλ1τ − bτ

λ1

+ v1(0)

dw̄2

dτ
= āeλ1τ + b̄τ + c̄

w̄2 =
ā

λ1

eλ1τ +
b̄τ 2

2
+ c̄τ + w̄2(0)− ā

λ1

4.4 Comparison of Numerical and Analytical Results

We can numerically and analytically compute the effect of perturbation of the second

oscillator with respect to the first oscillator and build the spike time response curve and

spike time response map and compare these results. The error between the two curves is

close to 0.

Consider the piecewise-linear systems, here are two examples:

When α1 = 0.3, α2 = 0.7, if λ ≥ 1.4, we can get in phase pattern, however, if λ ≤ 1.3,

we get out of phase-pattern. In the Spike time difference map, when λ = 1.4, the slope of

STDM at the two endpoints are negative, and if λ = 1.3, the slope of STDM at the endpoints

are non-negative.

When α1 = 0.2, α2 = 0.8, if λ ≥ 1, we can get in phase pattern, however, if λ ≤ 0.9, we

get out of phase-pattern. In the Spike time difference map, when λ = 1, the slope of STDM

at the two endpoints are negative, and if λ = 0.9, the slope of STDM at the endpoints are

non-negative.
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If the slope of the STDM between -2 and 0 , the two oscillators are stable. When the

slope of STDM is negative, the pattern is stable. When α1 = 0.3, α2 = 0.7, if λ ≥ 1.4, we

get in phase pattern. When α1 = 0.2, α2 = 0.8, if λ ≥ 1, we get in phase pattern. So the

result using STDM method is consistent in the phase figures Fig. 4.3 and Fig. 4.4.

For cubic systems, here are also two examples:

When α1 = 0.5, α2 = 0.5, if λ > 0.45, we can get in phase pattern, however, if λ ≤ 0.45,

we get out of phase-pattern. In Fig. 4.6, the Spike time difference map shows that when

λ = 0.5, the slope of STDM at the two endpoints are negative, and if λ = 0.45, the slope of

STDM at the endpoints are non-negative.

For α1 = 0.3, α2 = 0.7, if λ > 0.25, we can get in phase pattern, however, if λ ≤ 0.25,

we get out of phase-pattern. In Fig. 4.8, the Spike time difference map shows that when

λ = 0.3, the slope of STDM at the two endpoints are negative, and if λ = 0.25, the slope of

STDM at the endpoints are non-negative.

These examples shows that the result of phases by using STDM method is consistent

with the result in the phase picture. So we can use the STDM method to estimate the



106

Figure 4.2 The phase of two piecewise-linear oscillators system with parameters: γ =
0.1,ε = 0.005,α = 4
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Figure 4.3 The spike time difference map of two piecewise-linear oscillators with
parameters: γ = 0.1,ε = 0.005,α = 4,α1 = 0.3,α2 = 0.7, λ = 1.4 and λ = 1.3
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Figure 4.4 The spike time difference map of two piecewise-linear oscillators with
parameters: γ = 0.1,ε = 0.005,α = 4,α1 = 0.2,α2 = 0.8, λ = 1 and λ = 0.9
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Figure 4.5 The phase of two cubic oscillators system with parameters: γ = 0.1,ε =
0.005,α = 4
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Figure 4.6 The spike time difference map of two cubic oscillators with parameters:γ = 0.1,
ε = 0.005, α = 4, α1 = 0.5, α2 = 0.5, λ = 0.5 and λ = 0.45
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Figure 4.7 The spike time difference map of two cubic oscillators with parameters:γ =
0.1,ε = 0.005,α = 4,α1 = 0.3,α2 = 0.7, λ = 0.3 and λ = 0.25
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critical value of λc: When λ < λc, We can get an out of phase pattern; when λ ≥ λc, We

could only get the in phase pattern.

The STDM method can also be used to estimate the phase, Here α goes from 0.15

to 0.5. We estimate the phases using STDM method and the result is consistent with the

numerical phases.
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Figure 4.8 Comparison of the phase estimation of piecewise-linear systems by using the
spike time difference map and the numerical result with parameters:γ = 0.1,α = 4,λ = 1,ε =
0.01 and ε = 0.005

Table 4.1 Phase values of STDM estimation and numerical result of phase in
Fig. 4.8-A

The value of α1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Phase values in
STDM estimation

0.7969 0.7385 0.7077 0.6615 0.6308 0.5606 0.5303 0.5000

Phase values in
numerical result

0.7817 0.7379 0.7007 0.6672 0.6273 0.5685 0.5280 0.5000

In our FHN model, when the coupling is strong enough, in other words, if γ is large

enough, the two oscillators will separate and we could get anti-phase pattern. The more the

nullclines are moving up and down, the more quickly the oscillators will separate.
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Table 4.2 Phase values of STDM estimation and numerical result of phase in
Fig. 4.8-B

The value of α1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Phase values in
STDM estimation

0.7623 0.7131 0.6748 0.6423 0.6048 0.5564 0.5280 0.5000

Phase values in
numerical result

0.7718 0.7264 0.6879 0.6539 0.6181 0.5567 0.5264 0.5000

We know that in STDM, the more the slope of the middle point of the STDM is close

to value −1, the more quickly two oscillators will separate. In Fig. 4.9, the slope of the

middle point of the curve in the STDM approaching to −1 by increasing the value of γ, so

two oscillators separate more quickly by increasing the value of γ. That’s because that the

extend the V -nullclines moving up and down is increasing by increasing the value of γ. That

makes the ”moving nullclines” strong enough to make the second oscillator stay around the

point v = 0 for more time while the first oscillator moves on to the right branch, which

makes the two oscillators separate more quickly.
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Figure 4.9 STDM for different values of γ: λ = 0.5;ε = 0.005; α = 4



CHAPTER 5

CONCLUSION

5.1 Summary of Results and Discussion

The Kuramoto model describes the synchronization behavior of a large population of coupled

limit-cycle oscillators whose natural frequencies satisfy some certain distribution. The

Kuramoto model predicts that, if the oscillators have strong coupling, they will become

phase-locked. Kuramoto gave an estimate for the distribution for the order parameter,

but the order parameter has an error from Kuramoto’s estimation. My research involved

studying the basics of Kuramoto’s analysis and then investigating how the order parameter

is distributed around Kuramoto’s estimation by given different initial conditions.

The Belousov-Zhabotinsky reaction is a laboratory example of pattern formation in a

chemical system that involves nothing more than chemical reaction and molecular diffusion.

The FitzHugh-Nagumo (FHN) model is a generic model for excitable media and can be

applied to a variety of systems, most notably chemistry, biology and neuroscience. My

research focuses on the synchronization of FHN model. I use piecewise linear systems to

approximate the cubic systems in FHN model. In both cases, the ‘motion’ of the nullclines

cause the two oscillators to separate. Especially, when the value of γ is large enough, the

‘moving nullcline’ is strong enough to make the second oscillator stay around the origin for

a while and the two oscillators separate.

The nervous system is a very efficient and massively parallel computational device.

Models may capture this property to solve a certain class of problems. The system contains

only 302 neurons, and it forms about 7000 chemical synapses. The synapses are the

connections made by an axon to another neuron. When an action potential arrives at a

synapse from the postsynaptic cell, neurotransmitter is released into the synaptic cleft. The

neurotransmitter will interact with ion channels on the membrane of the postsynaptic cell

causing them to open letting some ions into the cell while letting other ions escape. In [1]

and [32], they use a synaptic perturbation on the timing of subsequent spikes to predict

the behavior of synchronization of neurons. Changes in firing times depend nonlinearly
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on synaptic strength. They apply ”spike time response methods” on the model. In our

model, there are two oscillators coupled with each other. We don’t have the synaptic input.

However, the coupling term includes the w-function, which has a synaptic-like shape, so we

can also use the spike time response method. The spike time response method can predict

oscillatory patterns and the values of phases.

5.2 Future Work

There are several open questions in these problems which are very interesting and useful to

consider.

In the present work of Kuramoto model, we explored the distribution of the order

parameter of the Kuramoto model without noise terms. We still need to see how the order

parameter changes with the noise term. We only numerically verified the locked terms and

the unlocked terms, which are independent. Works have to be continued on seeing whether

analytical proof is possible.

In the project of Belousov-Zhabotinsky (BZ) reaction, we focused on a system of two

oscillators, systems of three and more oscillators should be explored in the future. We

only tried three piecewise linear approximations, In the future, it is possible to increase the

number of linear pieces to produce a better approximation.
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APPENDIX A

PROOFS AND EXAMPLES

A.1 Proof of Lemma 1

Proof 


v1
′

v2
′

ω1
′

ω2
′




= D




v1

v2

ω1

ω2




+ L

Because the matrix D can be diagonalized:

D =




a 0 −(1 + γα1) −γα2

0 b −γα1 −(1 + γα2)

εα 0 −ε 0

0 εα 0 −ε




= A




λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




A−1

Plug D into the above equation and multiply both sides by A−1:

A−1




v1
′

v2
′

ω1
′

ω2
′




=




λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




A−1




v1

v2

ω1

ω2




+ A−1L

If we let

A−1




v1

v2

ω1

ω2




=




v̄1

v̄2

ω̄1

ω̄2



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Then 


v̄1
′

v̄2
′

ω̄1
′

ω̄2
′




=




λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4







v̄1

v̄2

ω̄1

ω̄2




+ A−1L

⇒







λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4







v̄1

v̄2

ω̄1

ω̄2




+ A−1L




′

=




λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4







v̄1
′

v̄2
′

ω̄1
′

ω̄2
′




=




λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4










λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4







v̄1

v̄2

ω̄1

ω̄2




+ A−1L




⇒




λ1 0 0 0

0 λ2 0 0

0 0 λ3 0
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=




eλ1t 0 0 0

0 eλ2t 0 0

0 0 eλ3t 0

0 0 0 eλ4t










λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4







v̄1(0)

v̄2(0)

ω̄1(0)

ω̄2(0)




+ A−1L




=




eλ1t 0 0 0

0 eλ2t 0 0

0 0 eλ3t 0

0 0 0 eλ4t










λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




A−1




v1(0)

v2(0)

ω1(0)

ω2(0)




+ A−1L




⇒

A−1




v1

v2

ω1

ω2




=




v̄1

v̄2

ω̄1

ω̄2




=




1
λ1

0 0 0

0 1
λ2

0 0

0 0 1
λ3

0

0 0 0 1
λ4



·








eλ1t 0 0 0

0 eλ2t 0 0

0 0 eλ3t 0

0 0 0 eλ4t










λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




A−1




v1(0)

v2(0)

ω1(0)

ω2(0)




+ A−1L



− A−1L





⇒
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


v1

v2

ω1

ω2




= A




1
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0 0 0

0 1
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λ4



·








eλ1t 0 0 0

0 eλ2t 0 0

0 0 eλ3t 0

0 0 0 eλ4t










λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




A−1




v1(0)

v2(0)

ω1(0)

ω2(0)




+ A−1L



− A−1L





A.2 Proof of Lemma 3.6.1

Proof Consider the moving v-nullclines function (3.8):

wk =
f(vk) + γ w̄

1 + αkγ
− γ αjwj

1 + αkγ

The above function f(v), parameters ω̄, αk,γ are all fixed, it is the term −γαjωj that

makes the v-nullcline moving. The v-nullcline of (vk, ωk) is moving up(down) is equivalent

to ω′k positive(ω′k negative) for any value of vk fixed. It is also equivalent to −γαjωj

increasing(decreasing), it is equivalent to ωj
′ = αvj − λ− ωj positive (negative).

The position of the point(vj, ωj) determines whether it is positive, zero, or negative:

(i) When the point (vj, ωj) lies on the left side of ω nullcline, ω′j = αjv − λj − ωj < 0,

(ii) When the point (vj, ωj) lies on the ω nullcline, ω′j = αjv − λj − ωj = 0,

(iii) When the point (vj, ωj) lies on the right side of ω nullcline, ω′j = αjv − λj − ωj > 0.

So whether the nullcline of one oscillator (vk, ωk) is moving up (moving down) is

determined by the position of the other oscillator (vj, ωj), if the other oscillator lies on
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the left side of ω-nullcline, the v-nullcline of the oscillator (vk, ωk) move up; if the other

oscillator lies on the right side of ω-nullcline, the v-nullcline of this oscillator (vk, ωk) move

down.
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A.3 Example of Piecewise-linear Oscillators
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Figure A.1 Two globally coupled oscillators moving with equation (3.11)in piecewise-linear
case, and two out of phase clusters for the following parameters: α = 3, γ = 0.1, α1 =
0.5, α2 = 0.5
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Figure A.2 Two globally coupled oscillators moving with equation (3.11), and two out of
phase clusters for the following parameters: α = 3, γ = 0.1, α1 = 0.5, α2 = 0.5
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Figure A.3 Two globally coupled oscillators moving with equation (3.11), and two anti-
phase clusters for the following parameters: α = 3, γ = 0.1, α1 = 0.5, α2 = 0.5
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