
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1-31-2011

Modeling of magnetic field driven simultaneous assembly Modeling of magnetic field driven simultaneous assembly

Rene David Rivero
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Other Physics Commons

Recommended Citation Recommended Citation
Rivero, Rene David, "Modeling of magnetic field driven simultaneous assembly" (2011). Dissertations.
243.
https://digitalcommons.njit.edu/dissertations/243

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.njit.edu%2Fdissertations%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/243?utm_source=digitalcommons.njit.edu%2Fdissertations%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

 ABSTRACT

MODELING OF MAGNETIC FIELD DRIVEN SIMULTANEOUS ASSEMBLY

by

Rene David Rivero

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is a method that offers a

non-statistical and deterministic solution to the problem of assembly via batch

processing; a hybrid of serial and parallel processing. The technique requires the use of

electromagnets as well as soft and hard magnetic materials that are applied to devices and

recesses respectively. The MFDSA approach offers the ability to check and correct errors

in real-time and is capable of scalable, versatile, and high-yield integration.

 Devices, coated with a layer of soft magnetic material, are moved from initial to

final positions along predetermined pathways through the action of an array of

electromagnets. Various devices, of arbitrary geometries, with different physical and

functional properties, are manipulated simultaneously toward specific desired locations

and then dropped onto a template under the influence of gravity by weakening the local

applied field. Locations on the template correspond to sites on a substrate that contain

recesses. When a number of devices have been dropped onto the template, a substrate is

pressed onto it and the soft magnetic layers on the devices adhere to the hard magnetic

strips in the recesses, completing integration in a single step.

 The objectives of this dissertation are the following: to present the MFDSA

method; comparing and contrasting it with other extant techniques employed by the

semiconductor industry; to discuss key aspects of this solution with respect to the

problem of assembly, and to model the calculations involved with determining both

device pathways and field interactions that are required to implement the approach. The

Fourier Series technique will be used to describe the force of attraction between the

device's soft magnetic layer and the recess's hard magnetic strips. Methodology from

finite element analysis will be employed to calculate the force exerted on a device by an

array of electromagnets. The Swarm Algorithm, which was developed in this work to

calculate device pathways, will be presented as a stable, well-defined solution.

 Other concepts, such as the magnetic retention factor and the collision cross-

section area, will be presented and developed. The solution to the problem of assembly,

via the Swarm Algorithm, will be compared and contrasted with other analogous

problems found in the literature. The results of these models, including software

implementation, will be presented.

MODELING OF MAGNETIC FIELD DRIVEN SIMULTANEOUS ASSEMBLY

by

Rene David Rivero

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

and Rutgers, The State University of New Jersey – Newark

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Applied Physics

Federated Department of Physics

January 2011

Copyright © 2011 by Rene David Rivero

ALL RIGHTS RESERVED

.

APPROVAL PAGE

MODELING OF MAGNETIC FIELD DRIVEN SIMULTANEOUS ASSEMBLY

Rene David Rivero

Dr. Nuggehalli M. Ravindra, Dissertation Advisor Date

Professor and Chair of Physics, NJIT

Dr. Michael R. Booty, Committee Member Date

Professor of Mathematics, NJIT

Dr. Anthony T. Fiory, Committee Member Date

Research Professor of Physics, NJIT

Dr. Martin Schaden, Committee Member Date

Associate Professor of Physics, Rutgers, The State University of New Jersey – Newark

Dr. Vitaly Shneidman, Committee Member Date

Senior University Lecturer of Physics, NJIT

BIOGRAPHICAL SKETCH

Author:	 Rene David Rivero

Degree:	 Doctor of Philosophy

Date:	 January 2011

Undergraduate and Graduate Education:

• Doctor of Philosophy in Applied Physics,
New Jersey Institute of Technology, Newark, NJ, 2011

• Master of Science in Applied Physics,
New Jersey Institute of Technology, Newark, NJ, 2007

• Bachelor of Science in Applied Physics,
New Jersey Institute of Technology, Newark, NJ, 2001

Major:	 Applied Physics

Presentations and Publications:

R. D. Rivero, S. Shet, A. T. Fiory, M. R. Booty and N. M. Ravindra, "Magnetic Field
Simultaneous Assembly: An Overview", Proceedings of the 2010 MS&T
Conference and Exhibition: Dielectric Ceramic Materials and Electronic Devices
October 2010.

R. D. Rivero, S. Shet, A. T. Fiory, M. R. Booty, M. P. Lepselter and N. M. Ravindra,
"Magnetic Assembly of High Performance Solar-Cell Panels", Proceedings of the
2010 Materials Research Society Workshop October 2010.

R. D. Rivero, I. Padron, M. R. Booty, A. T. Fiory and N. M. Ravindra, "Indirect
Template Method of Magnetic Field Assisted Assembly", Advanced Materials
Research 89-91, pp. 431-436 (2010).

R. D. Rivero, M. R. Booty, A. T. Fiory and N. M. Ravindra "Device Integration Using
Magnetically Driven Simultaneous Assembly", Proceedings of the 2010 TMS
Annual Meeting and Exhibition: Coatings for Structural, Biological, and
Electronic Applications February 2010.

iv

v

R. D. Rivero, M. R. Booty, A. T. Fiory and N.M. Ravindra, "Intermediate Template

Magnetic Field Assisted Assembly", CT Volume 221, MS&T (2009).

N. M. Ravindra, R. D. Rivero, A. T. Fiory and M. R. Booty, "An Intermediate Template

Method for Magnetic Field Assisted Assembly" US Provisional Patent

Application 61/152,502 (2009).

R. D. Rivero, M. R. Booty, A. T. Fiory and M. M. Ravindra, "Indirect Template Model

for Magnetic Field Assisted Assembly", Proceedings of the 2009 TMS Annual

Meeting and Exhibition: Recent Advances in Thin Films February 2009.

R. D. Rivero, G. Devrani, M. R. Booty, A. T. Fiory and N. M. Ravindra, "A Two

Dimensional Model for Magnetic Field Assisted Assembly", Proceedings of the

2008 TMS Annual Meeting and Exhibition: Mechanics and Kinetics of Interfaces

in Multi-Component Materials Systems March 2008.

R. D. Rivero, S. Shet, M. R. Booty, A. T. Fiory and N. M. Ravindra, "Modeling of

Magnetic Field Assisted Assembly of Semiconductor Devices", J. Electron.

Mater. 37, pp. 374-378 (2008).

C. Li, B. L. Sopori, R. D. Rivero, P. Rupnowski, A. T. Fiory and N. M. Ravindra, "Role

of the Damage Layer in Bulk and Surface Passivation of Silicon Solar Cells by

SiN:H", Proceedings of the17 Annual Workshop on Crystalline Silicon Solar

Cells and Modules: Materials and Processes, editor: B. L. Sopori, NREL/BK-

520-41973, pp. 303-308 (2007).

S. Shet, R. D. Rivero, M. R. Booty, A. T. Fiory, M. P. Lepselter and N. M. Ravindra,

"Microassembly Techniques: A Review", Materials Science & Technology 1 451-

474 (2006).

vi

To my parents, Rene and Alina Rivero, for taking me out of Cuba.

To my sister, Michelle Nott.

To my advisor, Dr. N. M. Ravindra, for his wisdom and belief in me.

And to those who came before, those who come after.

vii

ACKNOWLEDGMENT

My work in the fields of magnetism and assembly started c. 2005 when I joined the group

led by Dr. N. M. Ravindra. Special thanks are given to the other members of the

committee: Dr. Michael R. Booty, Dr. Anthony T. Fiory, Dr. Martin Schaden, and Dr.

Vitaly Shneidman.

 I want to thank my professors at NJIT, especially Dr. John C. Hensel, Dr. Moses

Fayngold, and the late Dr. V. A. Goldberg; I wish to be as great an educator to others as

they were to me.

 I extend my deepest and sincerest thanks to Dr. Sudhakar Shet, the originator of

Magnetic Field Assisted Assembly, as well as Dr. Ivan Padron and Vijay Kasisomayajula

for their insights.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION .. 1

 1.1 Abstract ... 1

 1.2 Background ... 2

 1.2.1 Serial Assembly .. 3

 1.2.2 Parallel Assembly - General Manipulation .. 4

 1.2.3 Parallel Assembly - Mass Manipulation .. 6

 1.2.4 Magnetism and Assembly .. 9

 1.2.5 Areas of Improvements .. 12

 1.3 Magnetic Field Driven Simultaneous Assembly .. 18

 1.4 Discussion of Magnetic Field Driven Simultaneous Assembly 21

 1.4.1 Enclosure and Lower/Upper Chambers ... 21

 1.4.2 Simultaneous Assembly of Devices ... 22

 1.4.3 Template ... 23

 1.4.4 Injection Ports ... 24

 1.4.5 Error-Correction, Dense/Sparse Population, and Integration ... 26

 1.5 Dissertation Outline .. 27

2 BASIC MODELING .. 28

 2.1 Abstract ... 28

 2.2 The Limitations of Conventional Parallel Processing .. 29

 2.2.1 Areas of Refinement ... 29

ix

TABLE OF CONTENTS

(Continued)

Chapter Page

 2.2.2 Geometric Restrictions ... 30

 2.2.3 Strong and Weak Frustration .. 31

 2.2.4 Moderating the Effect of Frustration .. 32

 2.3 A Solution to Frustration .. 33

 2.4 Basic Soft/Hard Magnetic Field Modeling ... 35

 2.5 Discussion ... 41

3 ADVANCED MODELING ... 47

 3.1 Abstract ... 47

 3.2 The Rules of Assembly ... 48

 3.2.1 First Rule .. 49

 3.2.2 Second Rule .. 50

 3.2.3 Third Rule ... 51

 3.3 Magnetic Field Interaction Modeling ... 51

 3.3.1 The Array ... 54

 3.3.2 The Device ... 54

 3.3.3 Other Parameters .. 55

 3.3.4 The Basic Size Unit .. 57

 3.4 Main Calculators ... 58

 3.4.1 Biot-Savart Law ... 61

 3.4.2 Induced Magnetic Field .. 63

x

TABLE OF CONTENTS

(Continued)

Chapter Page

 3.4.3 Energy .. 63

 3.4.4 Forces ... 64

 3.4.5 Friction ... 64

 3.5 Collision Cross-Section Area .. 65

 3.6 Magnetic Retention Factor .. 68

 3.7 Outline of the Swarm Algorithm .. 73

 3.7.1 Space and Time Abstraction ... 74

 3.7.2 Final Position Offsets ... 75

 3.7.3 Boundary Conditions, Driving Functions, and Other Parameters 76

 3.7.4 The P and Q Tables .. 77

 3.8 Discussion ... 78

4 MAGNETIC FIELD INTERACTION MODEL ... 80

 4.1 Overview ... 80

 4.2 Parameters ... 82

 4.3 Composite Simpson's Rule ... 84

 4.4 Algorithms .. 86

 4.4.1 Magnetic Field Calculations ... 86

 4.4.2 Energy Calculations ... 87

 4.4.3 Force Field Calculations ... 88

 4.5 The Collision Cross-Section Area Calculation ... 92

xi

TABLE OF CONTENTS

(Continued)

Chapter Page

 4.6 Friction .. 94

 4.7 Discussion ... 98

5 THE SWARM ALGORITHM ... 106

 5.1 Overview ... 106

 5.2 Physical and Abstract Parameters ... 108

 5.3 Boundary Conditions and Driving Force Analogies ... 109

 5.4 The Grid/Membrane ... 111

 5.5 Decision Tables ... 112

 5.5.1 P-Table ... 113

 5.5.2 Q-Table ... 114

 5.5.3 Null Movement ... 115

 5.6 Safety Valves .. 115

 5.7 Algorithm .. 119

 5.8 Discussion ... 120

6 CONCLUSIONS AND FUTURE DIRECTIONS ... 125

 6.1 Conclusions ... 125

 6.2 Future Directions .. 126

APPENDIX A DEVICE/RECESS FORCE DERIVATION ... 128

APPENDIX B SWARM APPLICATION CODE .. 144

APPENDIX C MAGSTAT APPLICATION CODE .. 195

xii

TABLE OF CONTENTS

(Continued)

Chapter Page

REFERENCES .. 221

xiii

LIST OF TABLES

Table Page

1.1 Summary of Parallel Assembly Techniques with Gravitational Force 13

1.2 Summary of Parallel Assembly Techniques with Capillary, Type I Forces 14

1.3 Summary of Parallel Assembly Techniques with Capillary, Type II Forces 15

1.4 Summary of Parallel Assembly Techniques with Surface Tension Forces 16

1.5 Summary of Parallel Assembly Techniques with Electric and Magnetic Forces 17

2.1 Parallel Processing Techniques and Strong/Weak Frustration 33

3.1 A Table of Magnetic Materials and Properties ... 73

xiv

LIST OF FIGURES

Figure Page

1.1 An illustration of a typical pick and place robot ... 3

1.2 An illustration of the wafer bonding technique to fabricate Capacitive

Micromachined Ultrasonic Transducers (CMUTs) ..

5

1.3 An illustration of the epitaxial lift-off technique .. 6

1.4 An illustration of the fluidic self-assembly technique .. 8

1.5 An illustration of the Magnetically Assisted Statistical Assembly (MASA)

technique ...

9

1.6 An illustration of the Magnetic Field Assisted Assembly (MFAA) technique to

integrate components into an IC wafer ...

10

1.7 An illustration of the method investigated at Singapore consists of a

combination of self-assembly via external magnetic array and vibration

11

1.8 An illustration of the Magnetic Field Driven Simultaneous Assembly (MFDSA)

technique showing a cross-section of the approach ..

19

1.9 A top-down view of the Magnetic Field Driven Simultaneous Assembly

(MFDSA) that illustrates the simultaneity of the technique ...

20

1.10 A schematic view showing the template with a device placed incorrectly 25

1.11 A schematic view showing the template with a device placed incorrectly 25

1.12 A cross-section view of the Magnetic Field Driven Simultaneous Assembly that

illustrates the integration of devices into recesses in the substrate

26

2.1 Comparison of Assembly Iterations .. 35

2.2 A schematic of the system's physical parameters ... 36

2.3 The effect of soft thickness and hard thickness on the force at contact 43

2.4 The effect of displacement and hard thickness on the force ... 45

xv

LIST OF FIGURES

(Continued)

Figure Page

2.5 A plot of force at contact vs. hard thickness ... 46

3.1 A diagram showing two devices, A and B, which are moving along the

membrane simultaneously ..

48

3.2 A diagram showing two devices, A and B, which are moving along the

membrane simultaneously ..

49

3.3 A diagram showing two devices, A and B; A is on the template while B is on

the membrane ..

50

3.4 A view of the array of electromagnets, the membrane, and the device 52

3.5 A side view of the array of electromagnets, the membrane, and the device 53

3.6 A view of a layer at the xy-plane, divided into 12 segments in x and 11

segments in y ...

56

3.7 A side view of a layer at the xz-plane, divided into 12 segments in x and 5

segments in z ...

57

3.8 The setup of the Biot-Savart law for the solenoid field at point x,y,z 59

3.9 An illustration of the dL vector .. 60

3.10 An illustration depicting the difference between the delta parameter and the

CCA value ...

67

3.11 A schematic demonstrating the test model of interest .. 69

3.12 Applied Magnetic Field vs. Device Weight (a graph of Equation. 3.23) showing

its application to four types of materials (Ferroxcube III, 2-81 Permalloy, iron,

and Supermalloy) modeled as layers 10μm thick with a radius of 50μm

71

3.13 An illustration of the final position offsets ... 76

4.1 A schematic of the forces and torques acting on the device (gray box) 95

xvi

LIST OF FIGURES

(Continued)

Figure Page

4.2 A comparison of analytical (red line) versus calculated (blue box) fields at

various points along the negative z-axis ...

99

4.3 CCA versus Weight with friction factor variation .. 102

4.4 CCA versus Weight with current variation ... 103

4.5 CCA versus Weight with turn variation .. 104

4.6 CCA versus Weight with BSU variation .. 105

5.1 A basic 10 x 10 grid .. 111

5.2 A view of the P Table ... 112

5.3 A view of the Q Table ... 114

5.4 Density is a measure of local population/occupation ... 117

5.5 A graphic representation of the optimized path-length configuration 118

5.6 The ill-posed system ... 121

5.7 The well-posed system .. 121

5.8 The ill-posed system plotted for trigger device values of 10 and 20 122

5.9 The well-posed system plotted for trigger device values of 10 and 20 123

6.1 A schematic showing the method of assembly using programmable magnets 127

A.1 A cross-section of the system involving soft magnetic layers and hard magnetic

strips ..

128

1

CHAPTER 1

INTRODUCTION

1.1 Abstract

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is proposed as a method

to integrate devices utilizing a combination of electromagnetic and gravitational fields. It

is a non-statistical, fully deterministic and controllable parallel assembly technique with

error-correction. It is a versatile system capable of scaling and high-yield integration.

Devices of arbitrary geometries, with different physical properties and

functionalities, are coated with a layer of soft magnetic material. They are moved from

initial to final positions through the action of an array of electromagnets. They are

advanced, simultaneously, toward specific desired locations and then populated onto the

template under the influence of gravity. Specific desired locations on the template

correspond to recesses on the substrate where devices are intended to be placed and that

already contain strips of hard magnetic material.

An error-correction algorithm is invoked to check the placements of devices that

have been populated on top of the template prior to insertion. The substrate is pressed

onto the template and devices are inserted into recesses. Devices are secured within

recesses by the magnetic attraction between the devices' soft magnetic layer and the

recess' hard magnetic strips [1].

2

1.2 Background

The current state of device integration technology is able to produce solid state devices,

circuits and systems from components that are made of a variety of materials. The

standard toolkit for device integration consists mainly of bulk and surface silicon

micromachining, laser-micromachining, and other lithographic techniques. As an

example, compound semiconductor devices tend to be created monolithically from the

substrate [2].

The ability to integrate components into systems is valued by industry due to its

significant applications. Trends indicate that future generations of Micro Electro

Mechanical Systems (MEMS), Lab on a Chip (LOC), System on a Chip (SOC), XYZ on

a Chip, Systems-in-Package (SIP), sensors, and actuators will be integrated along with

other components onto wafers to form powerful and complex systems [3]. Enormous

interest lies in integrating components with CMOS technologies in order to increase the

number of functions on-wafer and, ultimately, to reduce power requirements, costs, sizes,

and weights of systems [2].

Toward that end, methods need to be developed to enable the assembly of

components into systems with dissimilar materials or even materials with incompatible

physical properties. However, combining materials brings with it difficulties, among

which are mismatches between lattice and thermodynamic properties, such as, for

example, the very large differences in thermal expansion coefficients of silicon and III-V

compounds used with optics [4]. The development of heterogeneous, small and large

scale, and room-temperature parallel integration techniques is critical in order to realize

low-cost, high-density systems [2].

3

1.2.1 Serial Assembly

A standard integration strategy, in the industry, is the 'pick and place' serial assembly

approach (see Figure 1.1). The method encounters immediate and insurmountable

constraints with respect to speed and cost. It is slow to use in situations that involve the

assembly of a large number of components with high precision tolerances. It is unable to

deal with situations where devices adhere onto the mechanism of assembly. A variety of

parallel assembly techniques are being investigated and introduced to combat these

limitations [5].

Figure 1.1 An illustration of a typical pick and place robot. A pick and place system

needs to be customized prior to use. First, it is required to fit the environment where it

will be used. Second, it is specialized to perform the task it is intended to do [6].

4

1.2.2 Parallel Assembly - General Manipulation

As the dimensions of micro-electrical, micro-optical, and micro-mechanical components

and systems decrease, there is a need for technologies that simplify the effective

processing of assembly. Several approaches have been proposed for such assembly. They

include selective area growth, wafer bonding, and epitaxial lift-off. All of these

approaches have inherent drawbacks and issues that limit their applicability.

An alternative, non-assembly method of integration is selective area growth. The

technique involves the growth of GaAs or InP devices directly onto silicon. It is limited

by lattice and thermal mismatches between GaAs or InP devices and silicon; further,

devices grown on silicon are not comparable in functionalities or even integrity to

devices grown on a lattice and thermally matched substrate. Additionally, growing GaAs

or InP onto silicon is inherently difficult and costly and is limited to small areas [7-10].

The method of wafer bonding involves the transfer of a primary layer onto a

secondary wafer (see Figure 1.2). The primary layer and secondary wafer are bonded

together and processed into devices. The technique's major drawback is the thermal

expansion coefficient mismatches when the layer and the wafer are comprised of

different kinds of materials [11-13].

5

Figure 1.2 An illustration of the wafer bonding technique to fabricate Capacitive

Micromachined Ultrasonic Transducers (CMUTs). (a) First thermal oxidation step and

cavity definition with photolithography. (b) Second thermal oxidation to create the

insulation. (c) Silicon direct bonding of the patterned prime wafer to the un-patterned

Silicon on Insulator (SOI) wafer. (d) Removal of the handle and the Buried Oxide (BOX)

of the SOI wafer to release the membranes. (e) Ground contact definition, electrode

deposition and patterning. (f) Element definition by photolithography [14].

Another method is epitaxial lift-off (see Figure 1.3). An epitaxial layer is released

out of the substrate. The epitaxial layer, supported by a membrane, is bonded onto the

substrate by van der Waals forces. Devices can be processed either before or after the

transfer of the layer depending on the requirements of the process. The technique suffers

from various disadvantages, including the handling of potentially extremely thin layers,

which is difficult, and the alignment of the devices onto circuitries, which is tedious [15-

18].

6

Figure 1.3 An illustration of the epitaxial lift-off technique. (1) GaAs epitaxial wafer.

(2) Photoresist is spun-on. (3) Photoresist is patterned and developed. (4) Cross section

showing the re-entrant sidewalls of resist windows. (5) Metal deposition. (6) Photoresist

lift-off leaves metal behind [19].

1.2.3 Parallel Assembly - Mass Manipulation

An approach to parallel assembly is to integrate components without individual, device-

by-device manipulation. Systems that follow this paradigm include vector potential parts

manipulation, DNA and electrophoresis assisted assembly, and fluidic self-assembly.

The vector potential parts manipulation method permits the alignment of devices

by using electromagnets to direct and insert units. Components must be charged in order

to use electromagnets effectively. Such charges may damage devices and substrates. The

DNA and electrophoresis assisted assembly uses two sets of matching DNA-like polymer

films. Films are formed onto devices and deposited into recesses. As a result, devices

adhere into recesses only if the films' DNA patterns match. However, the polymers are

fragile and the process is costly and ineffective with respect to time [20-21].

7

The fluidic self-assembly method substitutes geometric patterns for DNA patterns

(see Figure 1.4). Devices, etched as trapezoids, fit into recesses with matching physical

geometry. Separate individual devices are aligned and inserted into the substrate

passively through the aid of a fluid without individual device-by-device manipulation.

The technique requires devices to be formed with a specific type of shape, which may be

costly to achieve. The process of assembly itself is random; therefore, it is not guaranteed

to yield a 100% complete and accurate assembly within a single iteration [4].

8

Figure 1.4 An illustration of the fluidic self-assembly technique. (a) Molecular Beam

Epitaxy (MBE) growth structure with 1µm AlAs etch-stop layer. (b) Trapezoidal GaAs

mesa definition. (c) Bonding to intermediate substrate with wax. (d) Top-side ring contact

metallization. (e) Solution containing the GaAs blocks dispensed over patterned Si

substrate. (f) Si substrate with GaAs, light-emitting diodes (LED) integrated by fluidic

self-assembly [4].

9

1.2.4 Magnetism and Assembly

Other methods utilize magnetism to moderate the randomness of fluidic self-assembly.

The Magnetically Assisted Statistical Assembly (MASA), developed at the

Massachusetts Institute of Technology (Cambridge, Massachusetts), adds layers of

magnetic materials deposited onto devices and into recesses (see Figure 1.5). The fluid

carries devices over recesses and the interactions between the layers cause devices to

adhere into recesses [23].

Figure 1.5 An illustration of the Magnetically Assisted Statistical Assembly (MASA)

technique. (a) The processed integrated circuit (IC) wafer with prepared recesses. (b) The

p-side down vertical-cavity surface-emitting laser (VCSEL) wafer with pillars etched in a

close-packed array. (c) Assembly of freed nanopills into the recesses on the IC wafer. (d)

After completion of device processing and integration [24].

The Magnetic Field Assisted Assembly (MFAA), proposed by the team at the

New Jersey Institute of Technology (Newark, New Jersey), removes the fluid of MASA

and inserts an external magnetic field to help devices to reach recesses (see Figure 1.6)

[2, 25].

10

Figure 1.6 An illustration of the Magnetic Field Assisted Assembly (MFAA) technique

to integrate components into an IC wafer [2].

A third method pursued at the Institute of Microelectronics (Singapore) involves

an array of magnets placed below the substrate. The array drives devices (which have

been coated with a layer of soft magnetic material) toward recesses. A vibration is given

to the substrate to help finalize the assembly (see Figure 1.7) [26].

11

Figure 1.7 An illustration of the method investigated at Singapore consists of a

combination of self-assembly via external magnetic array and vibration [26].

12

1.2.5 Areas of Improvements

Areas of research and development involve a fine-tune of the fluidic self-assembly

methods to increase their yields. Techniques, investigated by the Alien Technology

Corporation, alter standard fluidic self-assembly method by introducing asymmetric

device/recess geometry. The effect of asymmetry is that devices tend to correct their

orientations as they fall into recesses [27].

The work of Zheng et al. employs special auxiliary sites along the substrate to

reorient devices as the fluid carries them into recesses [28]. The work of Lin et al.

combines asymmetric device/recess geometry and surface tension effects to drive a self-

correcting, self-assembly type of integration between devices and recesses [29].

These refinements are not free of important and limiting issues. The standard

fluidic self-assembly method and its variants, including MASA and the method

investigated at Singapore, are statistical and do not guarantee a 100% yield after a single

iteration. Additionally, fluid and non-fluid based methods such as MFAA suffer from

issues with respect to frustration, which involves devices in competition with each other

to reach recesses. The insertion of devices into recesses is subject to other random

effects; for example, components may enter at various angles, which may be impossible

to correct without further assembly steps [30].

13

Table 1.1 Summary of Parallel Assembly Techniques with Gravitational Force

Authors Demonstration Results References

Cohn, et al. 1000 hexagons into lattice not reported 31

Yeh and Smith //

Fonstad

GaAs LED's, GaAs/AlA's RTD's &

VCSEL's

100% yield in 2.5min w.

1mm x 1.2mm x 235μm size

blocks & 90% in 15min w.

150μm x 150μm x 35μm size

blocks

4, 24, 25

Sangjun and Bohringer 2D & 3D dry assembly w.

orientation uniqueness

100% yield in 5min (2 x

redundant parts & 10%

packing density) & 81%

yield (1.5 x redundant parts

& 40% packing density)

34

 2D & 3D dry assembly w.

orientation uniqueness

95% yield w. rotational

orientation error of 17deg &

translational error of ±5μm

35

Baskaran, et al. catalyst enhanced dry assembly

process: parts - 800μm x 800μm x

50μm & catalysts - 2mm x 2mm x

0.5mm

20 - 50% reduction in

acceleration & up to 4 x

increase in number of

activated parts

36

Source: Adapted from [37]. w. = with

14

Table 1.2 Summary of Parallel Assembly Techniques with Capillary, Type I Forces

Authors Demonstration Results References

Tien, et al. 3D mm-scale circuit boards not reported 38

Gracias, et al. mm-sized polyhedra into helical

aggregates w. 1-4 isolated electrical

circuits

not reported 39

Jacobs, et al. cylindrical display - 113 GaAlA's

LED's - 280μm x 280μm x 200μm

assembly of 1500 chips w.

98% yield in 3min (5000

redundant parts)

40

Srinivasan, et al. hexagonal micromirrors (464μm dia

& 200μm thick) onto microactuators

- binding site 200μm dia

fill factor of 95% (7 binding

sites)

41, 42

 Si parts onto Si and quartz

substrates - 150μm x 150μm x 15μm

- 400μm x 400μm x 50μm

100% yield in 1min (array of

98 parts), w. 0.3deg rotational

misalignment

43

Scott, et al. helical & toroidal inductors (450μm

x 950μm) on CMOS wafers

90% yield 44

Xiaorong, et al. surface mount LED's not reported 45

Fang and Bohringer //

Jiandong, et al.

PZT's (4mm square) on pump

chamber on 4" substrate

not reported 46, 47

Sheng-Hsiung, et al. released DRIE comb drives on SOI

wafers (1mm x 1mm x 200μm),

substrate - 4x4 array

93% yield in 30s w. 100

components

48

Lee, et al. 3D assembly of 20μm - 100μm parts not reported 49

Morris and Parviz limitations on molten allowable size 97% yield for 100μm sized

components & 80% yield for

40μm size components & 15%

yield for 20μm size

components

50, 51

Onoe, et al. selective bonding - 3D sequential

micro self assembly of 10μm

components & microchain in two

steps

1st step - 70% yield in 60min,

2nd step - 10% yield in

720min; max length of

microchain - 6 units

52-54

Zheng and Jacobs //

Kneel, et al.

selective bonding - assembly of

300μm sized LED's (36 red, green

& yellow) & Si dies w. 72

interconnects

not reported 55, 56

Source: Adapted from [37]. w. = with; Type I = no shape recognition

15

Table 1.3 Summary of Parallel Assembly Techniques with Capillary, Type II Forces

Authors Demonstration Results References

Zheng and Jacobs AlGaN/GaN LED's (380μm x

330μm)

95% yield in 2min 55

 heterogeneous assembly of 3 non-

identical chips - GaAs, Si, & GaP

(200μm - 500μm)

not reported 57

Wei, et al. //

Zheng, et al.

sequential assembly of 3

components - 600 LED's of 200μm

size onto carries & encapsulation

units onto carries

100% yield in 2min for LED's

& 97% yield for encapsulation

units

58-60

Zheng, et al. angular & lateral orientation - parts

500μm - 2mm

angular orientation - 3deg,

lateral orientation - 19μm

60

Knuesel, et al. assembly of ultra small chips

(20μm in length) & angular

orientation using alignment

pedestals

not reported 61

Fang and Bohringer Si parts (790μm x 790μm x

330μm)

99% yield in 2min for 1000

receptor sites

62, 63

Fang and Bohringer //

Jiandong and Bohringer //

Fang, et al.

semi dry self assembly process

(semi DUO-SPASS) w. orientation

uniqueness (1-2mm square parts)

95% - 99% yield in 3min

translational & rotational

misalignment - 0.25mm &

18deg respectively

64-66

Jiandong and Bohringer //

Fang and Bohringer

completely dry self assembly

process (DUO-SPASS) w.

orientation uniqueness (102mm

square parts)

98% yield in 10min w. 50%

redundant parts translational &

rotational misalignment -

20μm & 2deg respectively

65, 67

Saeedi, et al. //

Stauth and Parviz

heterogeneous assembly of FET's,

diffusion resistors (100μm -

300μm)

97% yield in 3min for FET's &

diffusion resistors

68, 69

Saeedi, et al micro display - LED's (320μm) 65% yield for LED display 68, 70

Kim, et al. //

Hosokawa, et al.

fluorescence detection unites (3x3

array)

not reported 71, 72

Source: Adapted from [37]. w. = with; Type II = shape recognition

16

Table 1.4 Summary of Parallel Assembly Techniques with Surface Tension Forces

Authors Demonstration Results References

Fang and Bohringer 2D assembly of 100 components

made of polyimide & polysilicon of

400μm size

not reported 62

Syms and Yeatman 3D assembly of hinged

microstructures

97% yield in 1min 73

Green, et al. //

Syms

3D assembly of hingeless

microstructures

97% yield in 1min 74, 75

Syms micro-otpomechanical torsion

mirror scanner

not reported 76-78

 refractive collimating microlens

arrays

not reported 79

Dahlman and Yeatman //

Dahlman, et al.

integration of high Q inductors on

IC's

99% yield in 5min 80-83

Source: Adapted from [37]. w. = with

17

Table 1.5 Summary of Parallel Assembly Techniques with Electric and Magnetic Forces

Authors Demonstration Results References

Tien, et al. //

Grzybowski, et al.

10um size gold disks on Si

substrate, 2types of spheres in an

ordered lattice

not reported 84, 85

Bohringer, et al. surface mount capacitors & diodes

(0.75mm - 2mm)

4 surface mount capacitors

assembled in 30sec

86, 87

Nakakubo and

Shimoyama

3D assembly of Si microstructures -

100μm concave & convex cubes

60% yield in 5min with 300

parts of each kind

88

Iwase and Shimoyama //

Iwase, et al.

3D assembly of hinged

microstructures, 3D assembly of

600μm x 800μm x 4.5um plates &

800μm long rectangular

tetrahedrons

not reported 89-91

Grzybowski, et al. //

Grzybowski and

Whitesides

mm-scale magnetic disks not reported 92, 93

Boncheva and

Whitesides

assembly of planar elastomeric

sheets into 3D objects and electrical

circuit with LED's

3min for folding of sheets into

an electrical circuit sphere

94

Fonstad //

Rumpler, et al.

integration of semiconductor

devices w. IC's

not reported 95, 96

Nichol, et al. //

Anthony, et al.

folding of membranes pattered w.

soft magnetic arrays using external

magnetic field

translation alignment - 200nm 97, 98

Shet, et al. assembly of GaAs or InP devices on

semi-process or processes wafers w.

integrated circuits

not reported 2, 99

Ramadan, et al. parts of 1mm x 1mm x 0.5mm size

w. electroplated CoNiP (1μm)

not reported 26

Source: Adapted from [37].

18

1.3 Magnetic Field Driven Simultaneous Assembly

The Magnetic Field Driven Simultaneous Assembly (MFDSA) contrasts all proposed

parallel assembly techniques by seeking a non-statistical, deterministic solution to the

problem of assembly.

MFDSA is a dry and not a wet process. It employs an array of electromagnets to

drive the assembly process. It removes restrictions involving geometry, size and shape,

including issues regarding orientation and symmetry/asymmetry. It is a room temperature

process and therefore materials with different lattice and thermal properties can be

integrated without physical damage. It uses programmed rather than random pathways

and, therefore, is able to achieve a 100% yield after a single iteration. The only special

preparation required to use MFDSA involves adding layers and strips of soft and hard

magnetic material to devices and recesses respectively.

MFDSA adds soft and hard magnetic material on devices and in recesses

respectively. The hard magnetic strips retain devices within recesses. The soft magnetic

layers allow an array of electromagnets to direct the motions of devices.

An array of electromagnets suspends devices against the underside of a membrane

and carries them toward their destinations. At the appropriate final locations, fields are

weakened and devices are populated onto the template where they are kept temporarily.

The template allows the method to correct errors if they arise. To complete the process,

the substrate is pressed onto the template; devices adhere into recesses through the

attraction between soft and hard magnetic materials.

19

Figure 1.8 An illustration of the Magnetic Field Driven Simultaneous Assembly

(MFDSA) technique showing a cross-section of the approach [1].

20

Figure 1.9 A top-down view of the Magnetic Field Driven Simultaneous Assembly

(MFDSA) that illustrates the simultaneity of the technique [1].

21

1.4 Discussion of Magnetic Field Driven Simultaneous Assembly

1.4.1 Enclosure and Lower/Upper Chambers

The process of assembly is controlled within the enclosure (see Figure 1.8). The

enclosure is encircled with the injection ports that are situated at intervals about its

perimeter and through which devices enter (see Figure 1.9). The enclosure is divided by

the membrane into two chambers. The lower chamber contains devices, substrate, and

template and should be in vacuum. The upper chamber contains an array of

electromagnets. The membrane itself is kept rigid between these chambers by a suitable

construction or framework.

The upper chamber contains an array of electromagnets along with a function to

cool its elements, such as a heat sink or a heat bath. It contains various other leads that

connect the equipment to an external control unit, which programs each and every

element of the array of electromagnets. The array produces localized magnetic fields that

can be varied in magnitude, direction, and forces and can be used to manipulate the

positions of devices along the underside of the membrane. Optionally, the elements of the

electromagnetic array may terminate with materials shaped into geometries that intensify

and localize their magnetic fields. Also, the elements of the electromagnetic array may

contain internal auxiliary mechanisms to aid the dislodging of devices away from the

membrane toward the template.

The membrane separates the upper and lower chambers of the enclosure. The

purpose of the membrane is two-fold; first, to protect devices from damage that may be

caused through direct physical contact with the electromagnetic array; second, to provide

a surface across which devices are moved.

22

The lower chamber is where devices are injected, positioned, and inserted into the

substrate. Although not depicted in the figures, the lower chamber contains various

electronic components, which are connected to and controlled by an external control unit.

Such components would be the following: accuracy control sensors and mechanisms,

pressure and temperature regulators, and other real-time sensing feedback equipment

required to facilitate assembly.

1.4.2 Simultaneous Assembly of Devices

Devices are coated with a layer of soft magnetic material; the permeability of the material

and the thickness of the layer are to be such that it allows an array of electromagnets to

suspend the component against gravity while minimizing its contribution to its weight as

a whole.

Devices enter the enclosure through the injection ports and are held against the

underside of the membrane by an array of electromagnets. The array generates localized

magnetic fields that engulf each and every device at the membrane. These fields are

generated at certain rates, at certain paths and draw devices from initial to final positions

immediately above matched recess sites at the template. The process of assembly consists

of manipulation of multiple devices independently provided such that the localized

magnetic fields are short-ranged with respect to dimensions of devices and that devices

are separated beyond distances referred to as Collision Cross-Section Areas (CCAs) (see

Figure 1.9).

23

Devices are advanced toward their final desired locations and are then disengaged

from the membrane by weakening the localized magnetic field below a threshold. Each

and every device requires a minimum strength of the localized magnetic field to keep it

suspended against gravity and if that field is weakened below that threshold, they fall. In

the absence of an atmosphere, they land without deflection onto the template (see Figure

1.8). Note that sticktion is only an issue with devices of very light masses and sizes;

modifications to the apparatus would be required to overcome sticktion if it arises.

1.4.3 Template

The template is a magnetically passive construction upon which devices are populated

temporarily. Locations on the template correspond to matched recess sites along the

substrate. Essentially, they serve as a negative of the substrate. The orientation of the

template can be altered and the distance between the membrane and the template can be

varied. The template can be a sheet, a strip, or a collection attached to a mechanism that

switches among different templates. The template can be a single piece of material or

composed of interchangeable and/or interlocked parts.

24

1.4.4 Injection Ports

The injection ports are located at intervals about the perimeter of the enclosure. They can

be operated either mechanically or electromagnetically. They connect the enclosure to the

bins (not depicted by the figures) which contain devices prior to assembly. Note that the

bins may contain either one type of device or a known and/or controllable pattern of

devices and are to be kept evacuated to preserve the vacuum of the enclosure. The

interface between the injection ports and the enclosure is a partition that maintains the

integrity of the vacuum within the enclosure.

25

Figure 1.10 A schematic view showing the template with a device placed incorrectly.

An error within a densely populated template will be difficult to fix because there are

many devices around the error that would be affected [100].

Figure 1.11 A schematic view showing the template with a device placed incorrectly.

An error within a sparsely populated template will not be difficult to fix because there are

few devices around the error that could be affected [100].

26

Figure 1.12 A cross-section view of the Magnetic Field Driven Simultaneous Assembly

(MFDSA) that illustrates the integration of devices into recesses in the substrate [1].

1.4.5 Error-Correction, Dense/Sparse Population, and Integration

If devices are not populated onto the template within a certain allowable tolerance, then

an error-correction algorithm is activated (see Figures 1.10 and 1.11). The template is

raised toward the membrane and the array activates above those devices that were not

properly populated. These devices reattach onto the membrane and may be repositioned

within tolerance.

To complete assembly, the template may be densely or sparsely populated by

devices (see Figures 1.10 and 1.11). In the case where the template is densely or fully

populated, then integration is completed through a single insertion step. In the case where

the template is sparsely or partially populated, then integration is accomplished through

stages. Whether the assembly is accomplished by densely or sparsely populated

variations (controlled by the fraction of devices which have been dropped onto the

template), the integration requires that the substrate is placed in contact with the template;

for example, by pressing or rolling (see Figure 1.12).

27

On the substrate, devices are physically secured into recesses by the attraction of

soft magnetic layers and hard magnetic strips between devices and recesses respectively.

1.5 Dissertation Outline

Chapter 1 is an introduction to serial and parallel assembly methods including their

history, status, and trends. It thoroughly presents and discusses an overview of the

Magnetic Field Driven Simultaneous Assembly technique.

Chapter 2 discusses previously published work involving the development of

Magnetic Field Driven Simultaneous Assembly.

Chapter 3 outlines advanced, unpublished work about the magnetic interaction

model and the Swarm Algorithm, covering many core concepts including the Collision

Cross-Section Area, the role of friction and the Magnetic Retention Factor.

Chapter 4 presents an in-depth development of the magnetic interaction model as

well as a summary of comparative results.

Chapter 5 presents the Swarm Algorithm, which is used to calculate the pathways

that are required by the devices as they move from initial to final positions, along with

the results of several cases.

Chapter 6 is devoted to the conclusions of the study and recommendations for

future work.

28

CHAPTER 2

BASIC MODELING

2.1 Abstract

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is a parallel assembly

technique that emerged out of advances in research and development regarding the

standard fluidic self-assembly method and its variants. It is a synthesis of such

approaches as the Magnetically Assisted Statistical Assembly (MASA), developed at the

Massachusetts Institute of Technology (Cambridge, Massachusetts), and the Magnetic

Field Assisted Assembly (MFAA), proposed by the team at the New Jersey Institute of

Technology (Newark, New Jersey). The feature that sets the MFDSA technique separate

and apart from its predecessors is an emphasis on deterministic assembly as opposed to a

reliance on statistical assembly.

In a deterministic process, the pathways that devices follow as they move from

initial to final positions, including the rate at which they are injected, populated, and

inserted, need to be calculated. In a statistical process, these device-by-device, move-by-

move details are ignored because randomness dictates the act of assembly as devices seek

recesses. For example, in fluidic self-assembly, devices are carried by the fluid; the

pathways they take, their success or failure to locate a recess, and whether they enter it

correctly or incorrectly is random (strong frustration). Further, they may be clumped

together or they may be scattered away; in either case, they do not participate in assembly

(weak frustration).

29

The ostensible advantage of statistical techniques over deterministic methods is

that they are 'quick and dirty'; therefore, they do not require solutions to the problem of

assembly. Its ease-of-use is invalidated, however, by such factors as device/recess

requirements, strong and weak frustration, and the fact that a single iteration of the

approach is not enough to achieve high-yield integration. Yet, while a deterministic

method does require solutions to the problem of assembly that a statistical technique is

free to ignore, that aspect of its implementation is ultimately the cause of its flexibility,

scalability, and high-yield gain.

2.2 The Limitations of Conventional Parallel Processing

2.2.1 Areas of Refinement

All refinements to fluidic self-assembly have been attempts to moderate its randomness.

Two models have been developed to achieve that goal. First, to control the way that

devices enter recesses (strong frustration). Second, to increase the probability that devices

enter recesses (weak frustration).

Techniques, investigated at the Alien Technology Corporation, alter the standard

fluidic self-assembly method through the introduction of asymmetric device/recess

geometry. The effect of the asymmetry is to correct the orientations of devices while they

fall into recesses [27]. The work of Zheng et al. adds special auxiliary sites about the

surface of the wafer to allow the fluid to correct the orientations of devices while they

advance toward recesses [28]. The work of Lin et al. combines asymmetric device/recess

geometry and surface tension effects to drive a self-correcting, self-assembly type of

integration of devices into recesses [29].

30

Another refinement is the MASA method of Cheng et al. [30]. The objective of

the MASA approach is to increase the probability of assembly by aiding devices along

their otherwise random search of recesses. It is accomplished by adding soft and hard

magnetic materials onto devices and into recesses respectively. As they are carried by the

fluid, the magnetic attractions between those soft and hard magnetic layers drive devices

in the direction of recesses. The attraction retains devices inside recesses thus

counteracting a tendency of the fluid to dislodge already assembled components.

2.2.2 Geometric Restrictions

The inability to integrate various devices of different types, geometries, and sizes onto a

single substrate is an issue that remains intractable with respect to the standard fluidic

self-assembly method and its variants. The conventional parallel assembly methodology

is useful if and only if all of the devices, to be integrated, are identical. This restriction is

fundamental and is due to the fact that the act of assembly is random, i.e., a square device

would be just as likely to reach a square recess as a circular recess. If that restriction is

not enacted, then, clumps of devices of various geometries could be competing for a

recess even if it is incompatible; further, smaller devices could be entering larger

recesses, which creates potentially irreversible defects especially if an approach like

MASA is used.

31

2.2.3 Strong and Weak Frustration

The examples above represent the two facets of frustration.

Strong frustration arises when there is a mismatch between device and recess,

including errors caused by a misaligned (or distorted) insertion. It is 'strong' because

these errors are 'permanent', i.e., difficult if not impractical to correct without destroying

the assembly already completed.

Weak frustration manifests when there is a competition among a number of

devices (of similar or dissimilar types) for access to a single recess. It is 'weak' because it

is an error of the process, not of the assembly. It is temporary and due to the medium

carrying the devices; clumps of devices may appear and then scatter as the fluid carries

them across the surface of the substrate.

The conventional parallel assembly paradigm addresses the strong side of

frustration by prohibiting variation in type, geometry, and size. Essentially, all devices

are identical, all recesses are identical, and are built to match. For example, fluidic self-

assembly demands that devices and recesses are built with matching trapezoidal

geometry (see Figure 1.4); devices enter recesses if and only if they approach with a

certain orientation, any other orientation and those misalignments are carried away by the

fluid [4].

32

2.2.4 Moderating the Effect of Frustration

The MFAA technique, as proposed by Shet et al. [2], exemplifies an attempt to

circumvent the issue of frustration and remove the device type, geometry, and size

restrictions imposed by the other parallel assembly methods. It employs ideas from

MASA, specifically, the soft magnetic layer on devices and the hard magnetic strips in

recesses. It adds a novelty that transforms it into a different, more deterministic than

statistical approach, namely, an external magnetic field to direct devices into recesses as

they move along the surface of the substrate.

The external magnetic field represents a fundamental conceptual advancement

over the standard fluidic self-assembly method and its variants. It is the tool through

which the nature of assembly shifts from statistical to deterministic; however, it fails to

address the issue of frustration thoroughly. It does improve strong frustration, as the field

is able to direct the pathways devices take to reach recesses. It does not improve weak

frustration, as devices are able to clump about recesses.

The MFAA technique is able to resolve the limitation imposed on device type,

geometry, and size. To achieve that practicality requires the assembly of the largest

devices first, the next largest devices second, and so forth until the smallest devices are

last. It requires several iterations to achieve a complete assembly; each type of device

would be its own iteration.

33

Table 2.1 Parallel Processing Techniques and Strong/Weak Frustration

Technique Frustration Comments

Fluidic Self-Assembly strong and weak devices and recesses must be symmetric [4]

Zheng, Lin Refinement weak uses sites/forces to address strong frustration [28, 29]

MASA strong and weak magnetism is used to retain devices into recesses [24]

MFAA weak magnetism is used to drive assembly [25]

2.3 A Solution to Frustration

The MFDSA technique, developed by Rivero et al. [5], addresses frustration and other

fundamental limitations of extant parallel assembly methods. It emphasizes total and

indiscriminant simultaneity as it is capable of assembling a wide variety of devices at any

given time. The template, upon which devices are populated and then inserted into the

substrate, divides the assembly into stages; therefore, it is a batch processing approach, a

hybrid of serial and parallel assembly. While this may appear to be a regression,

however, the advantage of the template is manifold, including the ability to check and

correct errors in placement before the actual integration of devices into recesses occurs.

The MFDSA technique eliminates the issue of frustration. The standard fluidic

self-assembly method and its variants do not control the act of assembly; where the

devices enter and exit, the directions they take and the recesses they seek are examples of

its unpredictability; thus, its randomness is the cause of its frustration. The determinism

of MFDSA is the opposite of the statistics of fluidic self-assembly; therefore, it does not

suffer the effect of frustration.

34

Implementing a non-statistical regime of assembly is the key to eliminate all

forms of frustration. It can be accomplished if and only if there is a plan for where

devices enter and exit, the order of devices, and the pathways they take toward recesses.

It requires another level of preparation embodied by the solution to the problem of

assembly itself, which will be presented as the Swarm Algorithm (SA).

The batch processing approach is a trade-off that allows a high-yield with a single

iteration of the system, a throughput matched only by 'pick and place'. Figure 2.1

illustrates a comparison of pure serial, pure parallel and hybrid batch assembly

techniques. It is based on an attempt to assemble a hundred components onto a grid of ten

by ten squares where each component and each square is identical. Pure parallel assembly

attempts to integrate all components simultaneously. Pure serial assembly integrates each

and every component individually. Hybrid assembly integrates a number of devices on a

per-batch basis until all of the devices have been integrated.

35

Figure 2.1 Comparison of Assembly Iterations. The figure is based on the assembly of a

hundred components into a grid of ten by ten boxes. Pure Serial Processing requires a

hundred iterations while Pure Parallel processing requires a single iteration. Batch

Processing, a hybrid of serial and parallel methods, requires ten iterations of ten

components per insertion [100].

2.4 Basic Soft/Hard Magnetic Field Modeling

The point of intersection between MFAA, MASA, and MFDSA involves the retention

force between devices and recesses given by the interaction of soft and hard magnetic

materials. A detailed discussion of that interaction is required to understand the force

involved and how it can be maximized.

36

Figure 2.2 A schematic of the system's physical parameters. The regions are as follows:

Region I is the device (of permeability μo), Region II is the soft magnetic layer (of

permeability μs and thickness b), Region III is the 'air' between the device and the recess

(of permeability μo and variable displacement d), Region IV is the hard magnetic strip (of

permeability μh, thickness a, and width αL), Region V is the 'air' gap between the strips

(of permeability μo, thickness a, and width (1-α)L), and Region VI is the substrate (of

permeability μo).

The parameters of the device/recess system are summarized by Figure 2.2. The

soft magnetic layer is uniform and coats the bottom of the device. The thickness of the

layer is b and is of permeability μs (Region II). The hard magnetic strips are patterned

evenly with a periodic size scale at the bottom of the recess. The thickness of the strip is a

and is of permeability μh (Regions IV and V). L is the periodic size scale of the pattern,

where αL is the width of the strip, and (1-α)L is the width of the gap; α is a parameter

with a range of 0 ≤ α ≤ 1. The variable displacement between the layer and the strips is d

in the y-axis (Region III). Note that the simplification of the problem is that the devices

and recess extend indefinitely from end to end in the x-axis; also Region I represents the

body of the device and Region VI represents the wafer.

37

An approach to the model that gives an estimate of the attraction between the

layer and the strips will be developed below. Since there are no current sources and no

electric fields or charges, Maxwell's equations reduce to:

 (2.1)

Therefore, there exists a magnetostatic potential, φ, such that H = -grad φ everywhere.

Considering linear, isotropic relations between the magnetic field H and the magnetic

induction B, then:

 (2.2)

 (2.3)

 (2.4)

where, μs is the permeability of the soft magnetic layer and M0 is the known permanent

magnetization of the strips. Equation 2.2 is valid in air, Equation 2.3 is valid in the soft

magnetic layer, and Equation 2.4 is valid in the hard magnetic strips.

Generally, φ satisfies the Poisson's equation, with source term div M0. The

magnetization, M0 = M0 y, is considered constant, with y as the unit normal vector in the

y-axis, so that the source tem is zero and Poisson's equation becomes Laplace's equation.

38

 (2.5)

The boundary conditions at the interfaces between the air and either the soft or the

hard magnetic material follows from Equation 2.1, which implies that, at an interface, the

tangential components of H and the normal components of B are continuous.

In terms of the potential, φ, using Equations 2.2-4, we have the condition that φ is

continuous at the interfaces y = a + d (the bottom surface of the soft magnetic layer) and

y = a + b + d (the top surface of the soft magnetic layer):

 (2.6)

At the vertical sides, x = 0, x = αL and x = (1-α)L of the hard magnetic strips:

 (2.7)

At the horizontal sides, 0 < x < αL, y = 0 and y = a of the hard magnetic strips:

 (2.8)

where, the A, S, H denote the evaluation at the air, soft or hard interfaces.

The only forcing or inhomogeneity term in the model to calculate φ comes from

the boundary condition at Equation 2.8.

39

The problem is periodic, with period L in the x-axis, and can be solved by

constructing a Fourier Series in each of the regions shown in Figure 2.2 and then

applying the continuity and boundary conditions at the interfaces with the extra condition

that φ is constant as y goes to ±∞. These conditions lead to a linear algebraic system for

the coefficients that can be found in closed form.

An expression for the force acting on the soft magnetic layer in response to the

magnetization of the hard magnetic strips follows by evaluating the integral of the

Maxwell stress-tensor over the layer's top and bottom surfaces. The general expression of

the force is:

(2.9)

where, ∂Ω is a surface immediately outside of the region of interest, n is the outward unit

normal vector and μ is the local permeability. Then, in terms of φ,

(2.10)

where the integrals over the top and bottom surfaces are evaluated at y = a + d and y = a

+ b + d respectively with 0 ≤ x ≤ L.

40

When the constructed Fourier Series is substituted into φ of Equation 2.10, the

expression for force is given by:

(2.11)

The terms with n > 1 drop rapidly to zero leaving the most significant term as the

n = 1 term.

(2.12)

The force is strong short-ranged and weak long-ranged. It falls to zero rapidly

beyond a distance of d/L > 0.5, which is reflected by its use in MASA as a bond to keep

devices and recesses together. While the device and the recess are assembled

mechanically, when the magnetic materials make contact, they are secured in place as

long as |F| ≥ |W|, where W is the weight of the device.

41

2.5 Discussion

The force expressed through Equation 2.12 is maximized when α = 0.5; it follows after a

derivative, dF/dα, is set to zero. The extrema within the range of α are 0, 0.5 and 1;

however, α = 0 and α = 1 lead to a force equal to zero. When α = 0, F is zero, which

follows because α = 0 is equivalent to a hard magnetic strip without a width. When α = 1,

F is zero, again, that is because α = 1 implies a uniform hard magnetic layer and a

uniform potential; as force is related to the gradients of potentials, a constant potential

yields a zero force.

The ratio of hyperbolic sines, which cannot explode to infinity, yields a condition

that relates the soft magnetic layer's thickness and permeability:

(2.13)

or:

(2.14)

42

The relationships expressed by Equations 2.13-14 limit the lowest values of

thickness and permeability, which lead to a physically valid solution and will be

important to the Magnetic Retention Factor (MRF) developed later. Two behaviors

should be noted. First, when μS is significantly larger than μ0, then the logarithm term is

effectively zero and the hyperbolic sine ratio is unity. Second, when b/L is significantly

larger than the logarithm term, then, again, the hyperbolic sine ratio is unity. In either

case, neither the thickness nor the permeability of the soft magnetic layer contributes to

the force, a fact that is reflected by Figure 2.3.

43

Figure 2.3 The effect of soft thickness and hard thickness on the force at contact (d/L =

0). This plot was found for a situation where α = 0.5 and the relative permeability of the

soft magnetic layer is 500. The scaled soft thickness (b/L, y-axis) and hard thickness (a/L,

x-axis) varies from 0 to 1. The plot shows the scaled force (numbers within the plot)

remaining virtually constant at any given scaled hard thickness through a range of scaled

soft thickness values. (Note blue region is minimum, green to yellow is increasing force

values.)

44

With respect to total scaled force output, the scaled soft magnetic thickness (b/L)

is not as important a factor as the scaled hard magnetic thickness (a/L). As depicted by

Figures 2.4 and 2.5, however, upon contact, i.e., d/L = 0, the scaled force is maximized at

a/L = 0.8; a thickness greater than that value does not increase the force. That is because

the force is stronger at the edges and weaker at the flat (or uniform) areas. Increasing the

thickness leads to a situation where there is more flat area than edge area; eventually,

only the edges on the top contribute, as the edges on the bottom will be too far away.

Cutting the hard magnetic layer into a pattern maximizes the force of attraction by

increasing the number of edges where the force is strong.

45

Figure 2.4 The effect of displacement and hard thickness on the force. This plot was

found for a situation where α = 0.5, the scaled soft thickness (b/L) is 1, and the relative

permeability of the soft magnetic layer is 500. The scaled displacement (d/L, y-axis)

varies from 0 to 0.25. The scaled hard thickness (a/L, x-axis) varies from 0 to 1. The plot

shows that the scaled force (numbers within the plot) at contact (d/L = 0) saturates as a/L

increases. (Note blue region is minimum, green to yellow is increasing force values.)

46

Figure 2.5 A plot of force at contact vs. hard thickness. This plot was found for a

situation where α = 0.5, the scaled soft thickness (b/L) is 1, and the relative permeability

of the soft magnetic layer is 500. The scaled hard thickness (a/L, x-axis) varies from 0 to

1. The plot shows that the scaled force (y-axis) at contact (d/L = 0) saturates at about a/L

= 0.8.

47

CHAPTER 3

ADVANCED MODELING

3.1 Abstract

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is a complex problem to

study due to its various layers of abstraction. MFDSA is divided into two general areas in

order to model the topic efficiently and effectively. The first area is the magnetic field

interaction between the array of electromagnets and devices. The second area is the

calculation of pathways that devices are required to follow from initial to final positions.

The array/device interaction is the mechanism that drives the process of assembly.

The magnetic field suspends devices below the membrane and above the template; it

moves them from initial to final positions. The magnetic field interaction model

calculates the forces involved with suspension and motion. Friction is a component of the

motion and is factored into the algorithm. Additionally, such concepts as the Collision

Cross-Section Area (CCA) and the rules of assembly are developed as prerequisites to

achieve a successful hybrid assembly solution.

The pathways are determined by the Swarm Algorithm (SA) coined, developed,

and encoded by the author. SA is an abstraction that separates the array/device interaction

from the motion; however, certain features are connected to real, physical aspects like

space, time, and the CCA. The goal is to extract the solution of the problem of assembly

as a sequence of predetermined, precalculated 'quantized' (discrete and step-wise)

movements which would be translated into real, physical movements.

Finally, MFDSA itself is compared and contrasted with topics from other

branches of science.

48

3.2 The Rules of Assembly

The rules of assembly must be followed to assure that the MFDSA method does not fail.

They are logical, as opposed to empirical, and follow from a consideration for the

physical act of assembly. The magnetic field interaction model and SA as developed

incorporate these rules within their algorithms.

Figure 3.1 A diagram showing two devices, A and B, which are moving along the

membrane simultaneously. To conform to the first rule of assembly, devices A and B

must be kept a certain minimum lateral distance apart.

49

3.2.1 First Rule

Devices, as they move along the membrane, cannot collide physically with each other.

Following this rule prevents weak frustration. The effect of this rule is that MFDSA

maintains a low device density (defined as the number of devices within an area of the

membrane). Devices are kept at a minimum lateral distance to avoid collision and to yield

freedom of movement (see Figure 3.1); this combination of factors prevent the conditions

that give rise to weak frustration. The minimum lateral distance is given by the CCA

calculation of the magnetic field interaction model. The low device density is

implemented by SA.

Figure 3.2 A diagram showing two devices, A and B, which are moving along the

membrane simultaneously. The concentric colored circles around devices are a

representation of the magnitude of the fields; red is the strongest region, blue is the

weakest region. To conform to the second rule of assembly, the fields manipulating

devices A and B must be kept a certain minimum lateral distance apart.

50

3.2.2 Second Rule

Fields, that suspend and move a device, cannot interact with any other device (see Figure

3.2). If there were to be a 'collision' between fields, then the result would be non-linear

and uncorrectable interference among devices. The MFDSA approach is deterministic,

therefore, requires detailed, step-by-step control over the process of assembly. Allowing

fields that act on a device to effect other nearby devices would be equivalent to the

introduction of chaos. The CCA is calculated to account for the extents of the device and

the field together.

Figure 3.3 A diagram showing two devices, A and B; A is on the template while B is on

the membrane. The concentric colored half-circles around device B are a representation

of the magnitude of the fields; red is the strongest region, blue is the weakest region. To

conform to the third rule of assembly, the fields manipulating device B must be kept a

certain minimum lateral distance apart from device A.

51

3.2.3 Third Rule

Fields, suspending and moving a device, cannot interact with devices already populated

at the template (see Figure 3.3). Following this rule prevents strong frustration. If a

device is misaligned on the template, then it will be misaligned in the recess as they

reflect each other. Collisions, whether they are physical or magnetic, represent an

encroachment of chaos that MFDSA seeks to eliminate. The CCA is applied vertically as

well as horizontally with respect to the plane of the device.

3.3 Magnetic Field Interaction Modeling

The task of the model is to calculate the interactions between the array of electromagnets

and the soft magnetic layer of the device. The field, induced within the layer by the array,

is used to calculate energy and force. The mathematics employed are numerical

integration via the Composite Simpson's Rule and finite element analysis.

The array of electromagnets are modeled as a two dimensional lattice (any

regular, repeating arrangement) with a constant period length termed the Basic Size Unit

(BSU); see Figure 3.4. The elements of the array occupy the positive z region of space

above the xy-plane of the membrane; the ends of the elements, which are considered to

be air core solenoids, adjoin the xy-plane. The soft magnetic layer, and the device

attached onto it, occupy the negative z region of space below the xy-plane of the

membrane; the surface of the device adjoins the xy-plane. The membrane is the xy-plane

and serves only to restrict the z component of motion as the device is suspended and

moved. (See Figure 3.5.) The membrane is considered to be thin and inflexible

(idealization) and does not contribute to magnetism in either the elements or the devices.

52

Figure 3.4 A top-down view of the array of electromagnets, the membrane, and the

device. The array is depicted by a square lattice of circles (blue) with constant period

length. (The circles are the elements and reflect their relative size.) The device is

represented by a square (yellow). Pn is the vector from the origin to the n
th

 element of the

array. O is the vector from the origin to the center of the layer at the top of the device. Rn

= O - Pn.

53

Figure 3.5 A side view of the array of electromagnets, the membrane, and the device.

The elements of the array are solenoids that occupy the positive z region of space and are

separated by a constant period length, 1 BSU, from center to center. The device occupies

the negative z region of space and; O is the vector from the origin to the center of the

layer (black) at the top of the device (gray).

54

3.3.1 The Array

The model is designed to admit cases where the array is uniform, where each and every

element is unique with respect to its individual physical properties, and any mixture of

those two extremes. The model only calculates field, energy, and force generated at

points beyond the location of the elements; therefore, to achieve simplicity without loss

of generality, they will be air core solenoids. The properties required to define a single

element of the array are: Rn, the position vector of the element (pointing from the origin

to the center of its circular cross-section area), L, the length, N, the number of turns, I the

current applied, Imax, the maximum value of current the element allows, and, a, the radius.

3.3.2 The Device

The model considers the soft magnetic layer to be rectangular. The size of the layer is

independent of the size of the array; further, it is free to be located anywhere at the

negative z region of the xy-plane, even at locations beyond the array. The parameters that

define the layer are: O, the vector from the origin to the center of the top of the layer,

xmax, ymax, and zmax, which define the extent of the layer, N, the number of segments that

x, y, and z will be partitioned into, and χm, the susceptibility of the layer; additionally, the

friction and weight of the device are required.

55

3.3.3 Other Parameters

The device's soft magnetic layer volume is divided into N
3
 cubes of differential volume

Δx, Δy, and Δz, where:

(3.1)

(3.2)

 (3.3)

Each individual cube is parameterized by the ijk indexes: i for x-space, j for y-

space, k for z-space; see Figures 3.6-7. The model employs the center of the cube when

calculating field, energy, and force at that cube. The ijk indexes can be converted to xi, yj,

and zk coordinates via:

(3.4)

(3.5)

(3.6)

56

where, x0 and y0 (and z0 = 0) represent the components of the O vector. It is seen that x

ranges from x0 - xmax to x0 + xmax, y ranges from y0 - ymax to y0 + ymax, and z ranges from

0 to -zmax. The uniqueness of the z range reflects the fact that the device abuts the

negative side of the xy-pane and extends into the negative z region of space.

Figure 3.6 A top-down view of a layer at the xy-plane, divided into 12 segments in x

and 11 segments in y. The dx and dy indicate the width of the segments. The yellow

square represents the 11,8,0 (at the xy-plane k = 0) differential cube. O is a vector from

the origin to the center of the 11,8,0 differential cube.

57

Figure 3.7 A side view of a layer at the xz-plane, divided into 12 segments in x and 5

segments in z. The dx and dz indicate the width of the segments. The yellow square

represents the 8,0,1 (at the xz-plane j = 0) differential cube. O is a vector from the origin

to the center of the 8,0,1 differential cube.

3.3.4 The Basic Size Unit

The BSU is relevant only when the array is a regular, periodic lattice, although it may be

defined for a non-regular array. The BSU is the period length of the array, which is

defined as the center-to-center distance between elements (see Figure 3.5). Alternatively,

if the array is irregular, i.e., the elements of the array are arranged in a non-repeating

pattern, the square of the BSU is the smallest possible constant value of area that

encompasses all of the elements without overlaps. If the array is packed, i.e., the

separation between elements of the array tends to zero, then the BSU approaches the

threshold theoretical limit of 2a, where a is the radius of the element.

The BSU, which must be given to the magnetic field interaction model as a

parameter, is used to calculate the size of the CCA. It is also the direct physical link

between the SA's abstract view of space and the real physical space.

58

3.4 Main Calculators

The Biot-Savart law is used to calculate the field of the array at the layer. As depicted by

Figures 3.8 and 3.9, the elements are solenoids of length L, turns N, and radius a, located

at the positive z region of space. The field is evaluated at the point of interest xi, yj, and

zk, at the center of the ijk differential cube. The field's x, y, and z components are solved

numerically by the Composite Simpson's Rule applied to a two variable system; the

variables are η and φ, where η represents the turns and ranges from 0 to N and φ

represents the angle and ranges from 0 to 2π.

59

Figure 3.8 The setup of the Biot-Savart law for the solenoid field at point x,y,z. The

solenoid occupies the positive z region of space. The point x,y,z is at the negative z

regions of space. a is the radius of the solenoid. L/N is the density of length per turn. P1 =

(L/N)ηz, P2 = a cos(φ)x + a sin(φ)y, O = xx + yy + zz, and R = O - P1 - P2.

60

Figure 3.9 An illustration of the dL vector. The current flows through the turn along the

length of the solenoid. The radius is a, the angle is A, and dA is the differential change in

angle. dL = -a sin(A)dAx + a cos(A)dAy

61

3.4.1 Biot-Savart Law

The Biot-Savart Law, specialized for the solenoid, is [101]:

(3.7)

where, μ is the permeability at the point of interest, I is the current in the element, R is

the distance vector between the element and the point of interest (see Figure 3.8) and dL

is a segment of arc (see Figure 3.9).

The x, y, and z components of the field are [101]:

(3.8)

(3.9)

(3.10)

where, x, y, and z are the components of R, a is the radius of the element, and Δ is the

ratio of length, L, per turn, N. The limits of integration for φ is 0 to 2π and for η is 0 to N.

62

Let f be a function of variables A and B, where A ranges from 0 to Amax and B

ranges from 0 to Bmax. The step-sizes are hA and hB, with the indexes i and j, ranging from

0 to nA and 0 to nB; therefore, Ai = 0 + hA i and Bj = 0 + hB j.

The Simpson's Rule approach is applied to f on A [102]:

(3.11)

then applied to F0 on B:

(3.12)

thus:

(3.13)

To find the field within the region occupied by the soft magnetic layer is a two-

step process. First, the layer is divided into N
3
 differential cubes indexed by ijk. Second,

the field contributions from each and every element of the array is calculated at each and

every ijk differential cube.

63

3.4.2 Induced Magnetic Field

The magnetization, m, of the soft magnetic layer due to the field is given by [101]:

(3.14)

where, χm is the susceptibility of the layer and v is the volume within which the field acts.

This expression is parameterized for the ijk differential cube as:

(3.15)

3.4.3 Energy

The energy of the field acting on the layer is given by [101]:

 (3.16)

or, parameterized for the ijk differential cube:

(3.17)

64

3.4.4 Forces

The force of the field acting on the layer is given by [101]:

 (3.18)

or, parameterized for the ijk differential cube:

(3.19)

3.4.5 Friction

Device weight and friction need to be considered as they affect the acceleration,

therefore, the motion. The z-component of the force exerted at the layer by the array must

be such that |Fz| > |W|, where W is the weight; otherwise, the device falls off of the

membrane. Also, for the device to move in either the x or y direction, |Fx| > |Fz|μ or |Fy| >

|Fz|μ respectively, where μ is the coefficient of friction.

Let F be the applied force at the layer by the array and |Fz|μ be the force of

friction; acceleration is:

(3.20)

65

3.5 Collision Cross-Section Area Calculator

The first phase is to determine the least amount of field required to suspend a weight of

W η, where W is the weight of the soft magnetic layer and η is a factor related to the

effect of friction (η ≥ 1) and is a parameter of the calculation. The second phase is to seek

the points where the magnitude of the field is Bmax σ, where Bmax is the maximum value

of the field within the soft magnetic layer and σ is a parameter of the calculation (0 ≤ σ ≤

1). The distance from the center of the soft magnetic layer to these points is used to

calculate the CCA.

First, the positions and the constructions of the soft magnetic layer and the array

are altered respectively. The center of the layer is placed at the origin. The array is built

symmetrically about the origin with the zeroth element at the origin above the center of

the soft magnetic layer. The array's period length is still the BSU.

Second, the parameter Δ, which controls the number of elements that are

activated, is set to zero. All of the elements about the origin whose distance from the

origin is equal to or lesser than Δ∙BSU are ramped up to Imax α where Imax is the element's

maximum current tolerance and α is a parameter of the calculation set between 0 and 1.

The field within the soft magnetic layer is calculated; then the force is calculated. If |Fz| <

|W| η, then, Δ is incremented by 1 and the next ring of elements are activated. The loop

stops as soon as |Fz| > |W| η.

66

Third, the currents applied to the elements are reduced by a factor of 1/α, until the

least amount of field required to suspend W η is achieved. This step is important for two

reasons: first, it reduces the CCA size to a reasonable and manageable value and, second,

by reducing the field and the force it exerts, it also reduces unwanted contributions due to

friction (which is due to the normal force |Fz|μ) and prevents the elements from

employing currents that are too strong for too long.

Fourth, the maximum magnitude of the field is found within the soft magnetic

layer. The field in the air around the device on the xy-plane is sampled about the x and y

axis. Starting at the edge of the layer, the process samples the field and stops when it

finds the point on the x and y axis where the magnitude of the field is equal to or lesser

than Bmax σ. The largest value of length, either from the x or y axis, is chosen; it is

converted to BSU and rounded to the next odd integer; it is the delta value (delta is not Δ,

delta has the dimensions of length, Δ is related to the number of activated elements)

through which the CCA is calculated as (see Figure 3.10):

 (3.21)

While the CCA is the actual size, in BSU, of the area reserved for the device,

delta is the parameter that is given to SA. The CCA is always overestimated by 1 BSU to

allow the fine turning of position that may be required to accurately place a device on the

template (and in the substrate).

67

The effect of hysteresis is not considered by this algorithm; it is a static model and

does not consider dynamic or second order effects. The CCA as considered by the

algorithm admits both static and kinetic friction; however, as static friction is stronger

than kinetic friction, it is advisable to use static friction and not kinetic friction when

formulating the value of η.

Figure 3.10 An illustration depicting the difference between the delta parameter and the

CCA value. The CCA is the length of the square around the device. The delta is the

distance between the center and the edge. (The scale of the grid is 1 BSU). The

relationship between CCA and delta is CCA = 2 delta + 1.

68

3.6 Magnetic Retention Factor

Because |Fz| must be equal to or greater than the weight, it follows that the force of

friction |Fz|μ is also proportional to the weight. A way to minimize |Fz|, and by extension,

friction, and to reduce the size of the CCA (which is also proportional to weight) is to

minimize the mass of the device. MFDSA is a passive tool to integrate devices into

recesses; it cannot mandate how device/recess pairs are to be designed. The only avenue

left to optimize the system is to reduce the soft magnetic layer's contribution to the

weight.

The concept called the Magnetic Retention Factor (MRF) is proposed as a method

to characterize the material used to fabricate the soft magnetic layer in order to chose the

material that maximizes the magnetization while reducing its contribution to weight.

The addition of hard and soft magnetic material is a feature of MFDSA that is

necessary to achieve assembly, yet thereafter, it represents a permanent passive

component retained within the system. The goal is to minimize the impact of those

materials. Aside from increasing friction, the layer increases the total weight of the

system, especially the device itself. The heavier the device, the stronger the applied

magnetic field needs to be both when the array suspends and moves it and when the

recess retains it. Lighter devices reduce the effect of friction, the CCA, and require

weaker or fewer amounts of hard magnetic materials.

69

A concise and abstract consideration of the MRF follows. The test electromagnet

is a solenoid with an air core of radius r, length L, and turns N; a current of I flows

through it. The test soft magnetic layer, at the top of the device, is a cylinder with a radius

r, thickness t, volume v, and susceptibility χm. The solenoid and the device are on-axis

without separation.

Figure 3.11 A schematic demonstrating the test model of interest. A device (with a layer

of soft magnetic material) is suspended against gravity by the core of the electromagnet.

A membrane of negligible thickness separates device and core. The device and the core

are shown with equal radius.

70

Basic electromagnetic theory gives an approximate expression for force given at a

situation as found in Figure 3.11 as [101]:

(3.22)

where, B is the field induced in the soft magnetic layer; secondary interactions between

the solenoid and the device are ignored.

The force must be equal to the weight, W, of the device at the very least. The

weight itself is split into two components: Wd is the weight of the bare device without a

layer and Wl is the weight of the layer alone.

(3.23)

71

Figure 3.12 Applied Magnetic Field vs. Device Weight (a graph of Equation. 3.23)

showing its application to four types of materials (Ferroxcube III, 2-81 Permalloy, iron,

and Supermalloy) modeled as layers 10μm thick with a radius of 50μm. The device

weight varies from 0 to 2nN. The calculated applied magnetic fields range from 1.2 to

1.9mT.

Figure 3.12 summarizes the results of Equation 3.23 for a soft magnetic layer with

thickness 10μm and radius 50μm for each of the following materials: Ferroxcube III, 2-

81 Permalloy, iron, and Supermalloy. Note that the abscissa is only the bare device

weight, Wd, and when it is equal to zero, there is still a Wl which requires an induced

magnetic field to suspend. Given the parameters of Table 3.1, Ferroxcube III is the

material that requires the least magnetic field to support the total weight of the device.

72

The MRF is introduced as a way to determine those materials that generate the

greatest magnetization while contributing the least weight to the system. MRF is defined

as:

(3.24)

where, ρ is the material's mass density. Since Wl = ρvg, Equation 3.24 follows from

Equation 3.23 where the soft magnetic layer volume v and radius r are fixed. MRF is

simply a function of material properties; for the materials considered in Table 3.1 the

susceptibly, χm, is larger than unity; therefore, MRF is dependent on mass density.

Table 3.1 gives values of MRF of several magnetic materials. It further

demonstrates what is shown in Figure 3.12 and confirms the interpretation given for

MRF. The Ferroxcube III has the largest value of MRF while iron yields the smallest

value of MRF.

A further connection can be made between the permeability of the soft magnetic

layer and the thickness required to adhere to the hard magnetic strips as found in

Equations 2.13-14. A relationship developed between MRF and b/L, the scaled soft

magnetic layer thickness, is:

(3.25)

73

Table 3.1 A Table of Magnetic Materials and Properties.

Material μr

at 20Gs

ρ

kg/m
3

MRF

m
2
/ s

2
/T

2

b/L TC

°C

Ferroxcube III 1000 5000 159.0 0.0005 ~135

2-81 Permalloy 125 7800 101.2 0.0027 460

Iron 200 7880 100.5 0.0017 622

Supermalloy 100000 8770 90.7 0.0003 400

Source: Adapted from [103-107].

Note: the Curie Temperature (TC) imposes a limit with respect to further thermal

processing unless the wafer is secured with a protective layer or film; beyond TC, the

materials are not magnetic and the integration could be destroyed.

3.7 Outline of the Swarm Algorithm

The Swarm Algorithm (SA) represents the other half of the MFDSA modeling program.

SA is an iterative solution to the problem of assembly. It calculates the pathways devices

need to follow as they travel from initial to final positions. SA is invoked prior to

assembly; its output is the complete process reduced to step-by-step, 'quantized'

movements.

The output is fed into the external control unit, along with such data as device

mass, friction, size, and delta, which is used to convert the abstract solution into a real-

time solution. The external control unit translates the movements into instructions that

operate the array and that manipulate the field accordingly thereby moving devices. The

actual methodology of translation is a problem with respect to engineering that further

research and development is intended to address.

It is important to reiterate that SA is an abstraction of the problem.

74

3.7.1 Space and Time Abstractions

SA attempts to solve the simultaneous hybrid assembly process by imposing a sequential

approach to calculate movement. The apparent sizes of devices is in fact the CCA, and,

the grid-size is equal to 1 BSU. The 'space', as in distances from grid point to grid point,

is connected to a true distance via the BSU.

The most important abstraction, however, cannot be easily reconciled and that is

SA's notion of time. The analog of time is the step (STP), which is not a unique temporal

duration. There does not exist a factor to convert steps into seconds like the BSU converts

grid-size into meters. To SA, the step is an interval of iteration within which a set of

movement occurs simultaneously. Although SA only moves devices 1 BSU length per

step, devices of various inertias and frictions require different accelerations to displace

that 1 BSU length. Ultimately, they require different times to displace their 1 BSU

movement. It is possible to convert steps into seconds only on a step-per-step basis; it is

found by calculating the time required for the slowest device with the weakest

acceleration to move a distance of 1 BSU.

At a step, all of the movement occurs simultaneously; however, the fastest devices

and the slowest devices complete their 1 BSU movements at different durations. The

fastest devices actually spend a fraction of a step at rest delayed until the slowest devices

complete their motion. The external control unit is required to wait until all devices

complete their motion in order to advance. The effect is that the simultaneity of the

assembly is not achieved by continuous motion but by grainy, quantized motion; it must

be accomplished that way to keep control of the process and prevent occurrences of

collision and frustration events.

75

3.7.2 Final Position Offsets

Another layer of abstraction includes the exact position of devices. The important rule of

thumb is that the actual geometric center of a device is kept at the center of the CCA.

When SA prescribes to move a device from grid to grid, it shifts the location of the CCA

and the device by 1 BSU; before and after the motion, the centers of the device and the

CCA coincide. To verify the positions of devices to ensure that they indeed always move

by the 1 BSU distance, sensors are employed on the membrane to measure pressure and

other effects which reveal the location of a device; algorithms within the external control

unit would be able to follow the devices by keeping track of their sensors.

Related to the step-by-step motions of devices is the issue of the final position.

The final position on the template represents the final position in the substrate. It may

appear that the centers of the grids need to correspond with or align to the recess, which

would be a subtle way that MFDSA constraints the design of wafers.

This difficulty is eliminated with the inclusion of offsets. Offsets are a way to

fine-tune, if necessary, the final positions of devices. Offsets are fractional values of BSU

and may be either positive or negative denoting the direction for the position to be

corrected prior to dropping the device onto the template (see Figure 3.13). The actual

offset value that can be reached is limited by the dexterity of the array; however, it

simply needs to be within the allowable placement tolerance and is subject to the error

checking/correction algorithm of MFDSA. When a device is brought into its final

position, an additional set of motion in invoked, controlled by the offset values, which

change the final position to its true desired value. The CCA is deliberately over-estimated

to allow for these offset corrections without violating the rules of assembly.

76

Figure 3.13 An illustration of the final position offsets. The CCA is outlined by the large

square. The device is given by the small square. When the device reaches its final

position it may be necessary to fine-tune that location by fractional BSU motions in either

the x or y directions. The offsets allow the device to be placed at a location that

corresponds to the recess.

3.7.3 Boundary Conditions, Driving Functions, and Other Parameters

The order of devices as they enter the enclosure functions in a way analogous to a driving

force. The initial and final positions of devices are equivalent to the boundary conditions.

The number of devices that actually enter from step to step is controlled by a pair of

parameters: the maximum device and the trigger device values. The maximum device

value controls the maximum number of devices that are moved on the grid at any given

step. The trigger device value controls when an insertion is invoked; essentially, after a

certain number of devices have been populated on top of the template, the insertion will

be triggered. When the number of active devices left on the grid plus the populated

devices on the template is equal to the trigger value, then no new devices are added to the

enclosure until insertion is triggered.

77

3.7.4 The P and Q Tables

SA determines how to move devices simultaneously by constructing the pathways

iteratively from step to step. The active devices on the grid are placed in a cue and are

processed, sequentially, from first to last as prescribed by order of entry. For each device

at a step, SA generates the P and Q Tables. These tables contain answers to logical yes/no

questions out of which motion will be decided. The P-Table is first. The Q-Table is

second if and only if the P-Table fails to yield a movement.

The P-Table is concerned with the long range motion and avoids frustration by

choosing pathways that are not blocked. The Q-Table is mostly a short-sided view and

circumvents frustration by avoiding motions into areas with high device density.

The pathways created by SA are composed of five discrete or 'quantized' 1 BSU

movements whose units are: up, down (along the horizontal plane's y-direction), left,

right (along the horizontal plane's x-direction), and null (diagonal movement is not

allowed). Null is a special kind of movement indicating no movement; it is a safety valve

designed to keep the method from failing. If all devices yield null motion, then the

method is said to fail. As with an ordinary differential equation, the problem of assembly

may be ill-posed and SA will not converge to solution. Typically, this occurs if there are

more larger devices than smaller devices present at a given step or if devices are

attempting to move through or around crowded areas to reach their destinations. These

failures can be resolved by changing maximum and trigger device values and altering the

order of device entry.

78

3.8 Discussion

In conjunction with the problem of assembly tackled by SA are a class of problems called

'parking lot' problems. The literature that exists regarding the parking lot problem is

mainly concerned with optimizing the distribution of spaces given a parking lot of fixed

shape and area [108]. Further, no formulation of the parking lot problem, or the solution

to that problem, attempts to describe how exactly the cars move to obtain their spot [109-

110]. The details of the placement of cars into spaces to fill a parking lot (the pathways)

is ignored. Such details, if discussed, are left as random or based on the first-come, first-

served paradigm. This is justified because, in general, all cars and all spaces are

interchangeable [109].

The MFDSA is a tool for assembly. It does not impose any conditions regarding

how devices and recess are distributed about a wafer; the pattern of the distribution is

arbitrary. The initial and final positions are fixed boundary conditions that must be

specified and not random. MFDSA is not a first-come, first-served method where devices

are scattered onto the nearest recesses that will accept them. The MFDSA problem is

about the minutiae of assembly itself. It is concerned with the choices of motion the

devices are required to follow to attain their final desired positions.

MFDSA is also not analogous to the problem of obtaining travel directions with a

global positioning system (GPS) navigator.

79

When a GPS determines a route, it does not take into account the way that cars

need to maneuver about immediate real-time traffic or how to deal with other roadway

obstacles that suddenly appear. Instead it compiles a series of 'turn here, turn there'

directions which may be somewhat analogous to the output of SA but there are two areas

of difference.

First, there are fixed immovable roadways with fixed directional flows; there are

no fixed pathways in SA; the entire grid is open to motion in all directions. Second, there

are no reverses in GPS navigation, the car is always on drive, moving forward and

forward, even as it makes left or right turns; in SA, devices can go backward if required.

The GPS is very much a reduced 1D problem whereas the MFDSA solves the full 2D

problem.

80

CHAPTER 4

MAGNETIC FIELD INTERACTION MODEL

4.1 Overview

A numerical, magnetostatic approach is developed to model the magnetic field interaction

between the array of electromagnets and the soft magnetic layer. The model contains

functions that calculate magnetic field, energy, force field, and net force. A combination

of array and layer definitions are required to complete the calculations.

The model requires two major inputs, the definitions of the array of

electromagnets and the soft magnetic layer. It does not impose restrictions with respect to

size and location of the array and the layer. The only constraints are that the array is

above the xy-plane and the layer is below the xy-plane. The feedback between the

elements of the array is ignored as that effect is concerned with torques and

repulsive/attractive forces within the array that do not act on the layer. The material of the

layer is assumed to be linear.

The xy-plane at z = 0 represents the location of the membrane, which separates

the array of electromagnets and the soft magnetic layer. While the actual, physical

membrane is finite, the model does not impose any limit with respect to the size of the

xy-plane. A further set of simplifications are that its thickness is negligible and its

susceptibility is zero.

81

The model is free to deal with any condition regarding the structure of the array of

electromagnets. It may be homogenous, inhomogeneous, and a mixture of those extrema.

If the array is homogenous then it is a regular, repeating 2D lattice, with a constant period

length called the Basic Size Unit (BSU). If the array is inhomogeneous, then it is more

amorphous than crystalline; the square of the BSU is the smallest constant area that

encompasses each and every element without overlap (there could be gaps). The BSU of

a dense array approaches the limit of D, the diameter of the element. (Note: the model

allows non-homogenous array distributions as part of its overall design generality and

does not reflect what would be ordinarily employed by the MFDSA technique.)

The array is considered to be an air core solenoid; it can be adjusted to admit a

core; however, it is omitted for simplicity without too great a loss to generality. The

properties that define the n
th
 element are: Rn, the vector of position pointing from the

origin to the center of its bottom circular cross-section area, L, the length, N, the number

of turns, I the current supplied, Imax, the maximum value of current the element allows,

and, a, the radius.

The layer is considered to be a rectangle. The properties that define the layer are:

O, the vector of position pointing form the origin to the center of its top area, xmax, ymax,

and zmax, which specify the size of the layer, N, the partitions it will be broken into along

the x, y, and z axis, and χm, the susceptibility.

82

4.2 Parameters

The xmax, ymax, and zmax are divided by the N to obtain the step-sizes:

(4.1)

(4.2)

 (4.3)

The Δx, Δy, and Δz define the volume of the differential cube. A differential cube

is indexed by ijk, where i, j, and k range from 0 to N - 1 such that there will be a total of

N
3
 cubes within the layer.

O is the vector from the origin to the center of the top of the layer; however, the

model requires O'ijk, the position vector from the origin to the center of the ijk differential

cube. If O = x0x + y0y + 0z, then:

(4.4)

(4.5)

83

(4.4)

where, the 1/2 factor reflects the fact that the terminus of the O'ijk vector is the center of

the ijk differential cube. Any point within the ijk differential cube could be chosen as the

point of interest; for symmetry and to avoid vertexes and surfaces, the center is chosen.

The components of the O'ijk vector range in x from x0 - xmax / 2 to x0 + xmax / 2, in y from

y0 - ymax / 2 to y0 + ymax / 2, and in z from 0 to -zmax.

Rn,ijk is the vector from the center of the n
th

 element to the center of the ijk

differential cube; it is defined as Rn,ijk = O'ijk - Rn. If Rn = xnx + yny + 0z, then:

(4.7)

(4.8)

(4.9)

Pn is the vector from the origin to a segment of current within the n
th

 element. It is

a combination of two vectors. First, a vertical vector that describes the height with respect

to the number of turns. Second, a polar vector that describes a segment of current.

84

 (4.10)

where, φ is from 0 to 2π, Δ is the ratio of length per turn, and η is from 0 to N.

R'n,ijk is the displacement vector from the segment of current within the n
th

element to the center of the ijk differential cube; it is required to compute the magnetic

field vector at the ijk differential cube.

 (4.11)

dL is the vector that defines the arc of current along a loop within the solenoid:

 (4.12)

4.3 Composite Simpson's Rule

At the center of the magnetic field interaction model is the Biot-Savart law. The field's

components, in x, y, and z, are to be calculated with respect to the n
th

 element and the ijk

differential cube. The net field at an ijk differential cube will be found by adding the

contributions of the elements onto that ijk differential cube. The vector field will be found

through the volume of the layer, i.e., a total of N
3
 centers of ijk differential cubes.

The Biot-Savart law, specialized to fit a solenoid, is [101]:

85

(4.13)

where, R is R'n,ijk (Equation 4.11) and dL is as defined by Equation 4.12.

The components of the field are [101]:

(4.14)

(4.15)

(4.16)

The solutions of Equations 4.14-16 are analytical only at a few, specific cases.

The model must be able to calculate fields at any given point; therefore, a numerical

quadrature scheme must be invoked to proceed further. The Composite Simpson's Rule is

developed as that scheme.

Let f be a function of variables A (from 0 to Amax) and B (from 0 to Bmax), with

step-sizes hA and hB such that Ai = 0 + hA i (i from 0 to n) and Bj = 0 + hB j (j from 0 to

m). The integral of f over A and B is [102]:

86

(4.17)

The functions of Equations 4.14-16 are substituted in place of f.

4.4 Algorithms

4.4.1 Magnetic Field Calculations

Due to the size of the array of electromagnets, and the volume of the soft magnetic layer,

the magnetic field calculator is slow to converge computationally. The function evaluates

the net magnetic field at the ijk differential cube as a result of the entire array. It is

general to regions occupied by the layer (where χm ≠ 0) and the vacuum (where χm = 0).

The convergence of the calculation is controlled by the SR2 parameter; SR2 determines

the number of partitions used by the numerical integration scheme, hence, its tolerance

and error.

87

The algorithm is summarized as:

for i, j, k = 0 to N - 1

 find the O'ijk vector

 set the Bijk vector to zero

 for n = 1 to M

 find the Rn,ijk vector

 calculate the Bn,ijk vector

 update Bijk by Bn,ijk

 loop n

loop i, j, k

4.4.2 Energy Calculations

The energy between a soft magnetic material and an applied field is given by [101]:

 (4.18)

where, m is the induced magnetization at the layer and B is the field.

Assuming that the material is linear and that the field is weaker than stronger,

then the magnetization of the layer is a function of B:

(4.19)

where, v is the volume of the layer.

88

Substituting Equation 4.19 into Equation 4.18 and expanding B:

(4.20)

or, parameterized for the ijk differential cube:

(4.21)

The algorithm is summarized as:

for i, j, k = 0 to N - 1

 calculate the Uijk from Bijk and parameters

loop

4.4.3 Force Field Calculations

The force between a soft magnetic material and an applied field is given by [101]:

 (4.22)

where, m is the induced magnetization at the layer and B is the field.

89

Substituting Equation 4.19 into 4.22 and expanding B:

(4.23)

which is expanded into the x, y, and z components as:

(4.24)

(4.25)

(4.26)

or, parameterized for the ijk differential cube:

 (4.27)

 (4.28)

90

 (4.29)

A backward in space scheme is employed to represent the gradient operator:

(4.30)

(4.31)

(4.32)

where, again, the ijk range from 0 to N - 1.

91

With respect to the x and y components of the force, the boundary conditions will

be cyclical, i.e., i, j = -1 is i, j = N - 2. With respect to the z component, however, the

force is clamped to zero at k = -1. A cyclic type of boundary condition is not imposed at

the z component of the force due to the fact that the force is significantly different

between the end-points of the k-range. The k = N - 1 is closest to the array and yields the

strongest value of field and force while the k = 0 is farthest to the array and yields the

weakest value of field and force. Without clamping the force at k = -1 to zero, the

calculation returns an artificially strong value of force which skews the net force

calculations.

The algorithm for the force at the ijk differential cube is summarized as:

for i, j, k = 0 to N - 1

 calculate the Fijk from the Bijk and parameters

 if k = 0 then set Fijk to zero

loop

The algorithm for the net force is summarized as:

set the F vector to zero

for i, j, k = 0 to N - 1

 update F by Fijk

loop

92

4.5 The Collision Cross-Section Area Calculations

The Collision Cross-Section Area (CCA) is calculated by a function of the model. This

function requires the weight and friction of the layer. Additionally, it requires the array of

electromagnets to be built symmetrically about the origin, with a zeroth element at the

origin. The definition of the soft magnetic layer does not need to be altered; rather, the

function shifts its position such that its center is at the origin.

The CCA calculation is a sequence that involves computing fields and adjusting

forces. The CCA value is the buffer that surrounds the layer, which is implemented in

order to enforce the three rules of assembly and to allow the offset final position. Beyond

weight and friction, several other parameters specific to the calculation are required: η,

the weight and friction factor (η ≈ 1 + μ, where μ is friction), α, the current ramp up/down

factor (0 < α ≤ 1), and σ, the maximum field tolerance (0 < σ ≤ 1).

The algorithm is divided into three phases:

First Phase, Δ parameter estimate

1. set the array symmetrically about the origin

2. set the layer at the origin

3. set the Δ parameter to zero

4. loop:

 set the elements Δ x BSU from the origin to a current of Imax α

 calculate the Bijk, Fijk, and F of the layer

 if |Fz| < |W| η then increment the delta parameter by 1

 if |Fz| ≥ |W| η then exit loop

93

Second Phase, delta parameter fine-tune

1. loop:

 reduce the currents of the elements by a factor of α

 calculate the Bijk, Fijk, and F of the layer

 if |Fz| < |W| η then exit loop

2. increase the currents of the elements by a factor of α

Third Phase, CCA value

1. scan the Bijk at the surface of the layer (k = N - 1)

2. find the maximum field magnitude, Bmax

3. at the positive x edge:

 move outward along the axis

 sample the field magnitude until the field is Bmax σ (distance is x')

4. at the positive y edge:

 move outward along the axis

 sample the field magnitude until the field is Bmax σ (distance is y')

5. select the larger of the x', y' distances

6. convert distance to BSU, round to the next largest integer

7. set distance as the value of the delta parameter

8. the CCA value is 2 x delta + 1

The first phase is an estimate of the Δ parameter. The elements are activated with

a maximum value of current. The field and force are calculated to ensure that the layer is

supported by that configuration. If it is not supported, then another batch of elements are

activated. If it is supported, then it moves onto the second phase.

94

The second phase is a fine-tune of the Δ parameter. The currents of the elements

are reduced systematically until the force it generates is just enough to support the layer.

The reduction of current leads to the reduction of force and field. The result is two-fold.

First, the current will be minimized therefore minimizing the heat generated by the array.

Second, the overall delta and CCA values will be shortened into a value that is feasible.

The third phase actually calculates the true delta parameter and CCA value. The

field is sampled at locations beyond the edges at the x and y axis until the value of field is

below a threshold. The larger of the x and y distances is chosen as the basis of the new

delta parameter. The CCA value is calculated out of the delta parameter. The CCA value

is always larger by at least 1 BSU to ensure that neither physical nor magnetic collisions

occur and to allow the offset final position.

4.6 Friction

The z component of the net force, Fz, is the action that keeps the layer attached to the

membrane. It is also the normal force of contact between the layer and the membrane;

therefore, the force of friction is:

 (4.33)

95

Figure 4.1 A schematic of the forces and torques acting on the layer (gray box). The

layer's length is L and thickness is T. Fn is the force acting to move the layer toward the

left. Fz is the normal contact force between the layer and the membrane (black line). The

pivot is the point (yellow circle) at the edge toward the direction of motion. Fn and Fz

generate torques on the pivot which may or may not flip the layer.

Fz should be greater than the weight, W, to factor the effect of friction. If Fz is not

greater than W, then the device could be flipped. A layer intended to move along the

direction n encounters friction at the edge closest to the direction n. Let L be the length of

the layer, from edge to edge, along the direction n, T be the thickness of the layer, and Fn

be the force moving the layer toward the direction n: then,

 is the torque acting at the

edge rotating the layer toward the membrane and

 is the torque acting at the edge

flipping the layer (see Figure 4.1).

96

The device will not flip if:

(4.34)

If Fn is Fx,y - |Fz|μ, where Fx,y is the field generated force in x or y and |Fz|μ is the

friction, then:

(4.35)

If Fz is W σ, then:

(4.36)

The Fx,y represents a force that acts to move the device in the x or y direction. The

Swarm Algorithm (SA) returns 'quantized' motion, up, down, left, and/or right, diagonal

motion is not allowed. The Fx,y is moderated by friction, f, into Fn, which represents the

actual, physical acceleration that displaces the device.

97

To move the device either in the x or y direction, the opposite component force

must be zero. The left/right motion (along the x axis) requires Fy to be zero. The up/down

motion (along the y axis) requires Fx to be zero. Directed motion of the kind is possible

through a symmetric adjustment of the currents in the elements within the device's CCA

and the elements at the destination.

To stop the device, the z component of the field is increased so that the friction

eliminates the motion across a given distance:

(4.37)

where, V is the velocity of the device at the moment where the deceleration is to be

triggered and d is the distance across which the deceleration is to act.

The acceleration, in general, is:

(4.38)

98

4.7 Discussion

The magnetic field interaction model is calibrated with respect to a known, analytical

solution involving the field and force along the axis of a solenoid.

The magnetic field along the z-axis of a solenoid is:

(4.39)

where, I is the current, N is the number of turns, L is the length and a is the radius.

The magnetic force along the z-axis of a solenoid is:

(4.40)

where, V is the volume of the layer.

99

Figure 4.2 A comparison of analytical (red line) versus calculated (blue box) fields at

various points along the negative z-axis. The solenoid's parameters are: L, length, 0.20m,

N, turns, 50, I, current, 0.005mA. The SR2 MagStat parameter was 50 (SR2 controls the

sizes of the partitions used with the Composite Simpson's Rule).

As depicted in Figure 4.2, the analytical and calculated solutions agree.

0.01 0.008 0.006 0.004 0.002 0
0

2 10
8

4 10
8

6 10
8

8 10
8

1 10
7

1.2 10
7 Force vs. Displacement

Displace ment (m)

F
o

rc
e

(N
)

100

The CCA calculator of the magnetic field interaction model yields the exact

numerical value; however, it is a tedious operation to perform with devices that are either

too large or too heavy and arrays that are weaker rather than stronger. A CCA

approximation is developed through a ratio that combines device and array properties.

First, the device contribution is the product of the total weight, friction factor, and layer

area. Second, the array contribution is the product of the maximum contact force, the

square of the CCA value, and the BSU area. An additional factor is included to account

for the ratio of layer to BSU areas.

 (4.41)

where, F0 is the maximum contact force of the solenoid, ABSU is the area of the BSU, and

f
2
 is a factor that accounts for the ratio of device to BSU area. The product of F0 and the

square of the CCA value is approximately equal to the net force of attraction of the

activated array elements. (The square of the CCA value represents the total number of

activated array elements.) The square of the f value is unity when the layer area is less

than the BSU area or BSU area divided by layer area when device layer is greater than

the BSU area. An f value less than unity is balanced by a larger CCA value in order to

keep the ratio balanced.

101

 (4.42)

where, W is the total weight of the device and layer, ALayer is the area of the layer and σ is

the friction factor.

Equations 4.41-42 are combined to yield the expression for the CCA value:

(4.43)

The CCA value given by Equation 4.43 is to be rounded to the next, odd integer

and increased by two. See Figures 4.3-6 for the results of Equation 4.43.

102

Figure 4.3 CCA versus Weight with friction factor variation. The friction factor varies

from 1 to 4. Array parameters are: L = 0.05m, N = 250, I = 250mA, and BSU = 0.01m.

The devices are solids of various areas and thickness; device is silicon and layer is

Ferroxcube III. As the friction factor increases, the CCA value increases; it is because

more and more elements are required to produce the required attraction. Note that, for

devices of weights below 5N, the CCA values are 3, 5, 7, and 9, in agreement with the

CCA calculator.

0 1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

s=1

s=2

s=3

s=4

CCA vs. Weight, Friction Variance

Devic e We ight (N)

C
C

A

103

Figure 4.4 CCA versus Weight with current variation. The current varies from 50mA to

200mA. Array parameters are: L = 0.05m, N = 250, and BSU = 0.01m. The devices are

solids of various areas and thickness; device is silicon and layer is Ferroxcube III; the

friction factor is unity. As the current increases, the CCA value decreases; it is because,

as the elements become stronger, fewer are needed to produce the attraction.

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

I=0.050

I=0.100

I=0.150

I=0.200

CCA vs. Weight, I Variance

Devic e We ight (N)

C
C

A

104

Figure 4.5 CCA versus Weight with turn variation. The turn varies from 50 to 200.

Array parameters are: L = 0.05m, N = 250, I = 250mA, and BSU = 0.01m. The devices

are solids of various areas and thickness; device is silicon and layer is Ferroxcube III; the

friction factor is unity. As the turn increases, the CCA value decreases; it is because, as

the elements become stronger, fewer are needed to produce the attraction.

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

N=50

N=100

N=150

N=200

CCA vs Weight, N Variance

Devic e We ight (N)

C
C

A

105

Figure 4.6 CCA versus Weight with BSU variation. The BSU varies from 0.002m to

0.008m. Array parameters are: L = 0.05m, N = 250, and I = 250mA. The devices are

solids of various areas and thickness; device is silicon and layer is Ferroxcube III; the

friction factor is unity. As the BSU increases, the CCA value decreases and vice-versa; it

is because the CCA value is measured in units of BSU and as the BSU size varies, the

CCA value is affected accordingly (and linearly).

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

300

350

BSU=0.002

BSU=0.004

BSU=0.006

BSU=0.008

CCA vs. Weight, BSU Variance

Devic e We ight (N)

C
C

A

106

CHAPTER 5

THE SWARM ALGORITHM

5.1 Overview

The Swarm Algorithm (SA) is a method to calculate pathways of devices, which are

constrained to fit within the area of a grid, given known initial and final positions. The

technique prevents collisions among devices by constructing a buffer called the Collision

Cross-Section Area (CCA). The CCA of a device is not allowed to overlap the CCA of

any other device. SA is iterative and, therefore, employs a device-by-device, move-by-

move paradigm to extract a solution. It rejects shortest paths in favor of shortest steps

required to achieve assembly.

SA yields the solution to the problem of assembly as a sequence of movement,

which is to be enacted, simultaneously, at each and every step (STP) of the process. The

'quantized' values of movements are: left/right along the x-axis, up/down along the y-

axis, and null. Null is a directive to keep the device static. The movements are

displacements of, exactly, a Basic Size Unit (BSU).

A device travels either left/right or up/down (on the horizontal xy plane of the

grid) and displaces a distance of a BSU as measured against the initial and the final

positions of the center. To achieve a fine-tuned absolute final position, i.e., the ultimate

alignment with the recess of the substrate, the device may be moved by an offset. The

magnitudes of offsets are to be of values less than a BSU. The sizes of CCAs are inflated

to allow devices the ability to adjust within their buffer.

107

The grid, i.e., the representation of the membrane, is composed of squares 1 BSU

x 1 BSU. The BSU relates SA's concept of length to real, physical length. The BSU is the

period length of the array of electromagnets.

SA computes movements through a device-by-device, move-by-move iteration,

which emphasizes configurations and surroundings. Pathways are calculated by taking

into account the device's current and final positions. SA's goal is a parallel solution found

through a serial operation. To converge to a solution, the boundary conditions (specified

by the device's initial and final positions) and the driving force (specified by device's

order of entry into the system) need to be well-posed. Informal, empirical rules are

demonstrated to assist with the design of a well-posed problem.

It is important to note that SA is not intended to be used 'live' during the act of

assembly. Such a use of SA could be impractical as a set of boundary conditions and

driving forces may not yield a solution. Instead, it is to be invoked as a phase of

preprocessing.

The output of SA is a list of movement organized by step and then by device. It is

designed to be loaded into the memory of an external control unit. The list of movement

is to be translated into commands that control the array as required. Devices are moved

simultaneously; the process of assembly consists of the conversion from abstract,

iterative calculations to real, physical motions.

108

The step is analogous to a time. The physical temporal duration of a step varies

throughout the assembly. The duration of a step is set by the time required of the slowest

device to displace a BSU. To SA, all movement within a step is considered to be

simultaneous even though the fastest devices will not be moving during the entirety of

step. Only the slowest devices move continuously as the fastest devices wait

intermittently.

5.2 Physical and Abstract Parameters

Aside from the boundary conditions and the driving forces, three other parameters

characterize the SA problem: n, the size of the grid (n x n), maximum, the maximum

device, and trigger, the trigger device. The actual, physical size of a unit is a BSU, where

the BSU is the period length of the array of electromagnets. Maximum limits the number

of devices that are active on the grid. Trigger limits the number of devices that are

passive on the template.

Let "total" be the number of devices that are to be assembled. The ratio of

maximum to total determines the assembly factor. An assembly factor of unity indicates

pure parallel processing where all of the devices are assembled together. A value that

tends to zero (as total tends to infinity) indicates pure serial processing, where assembly

is on a device-by-device basis. SA, as implemented, will always converge to a solution

given an assembly factor of zero. Its ability to solve a hybrid assembly process depends

on how well-posed the boundary conditions and driving forces are stated.

109

Note that the grid is finite at n x n and that the device is inflated via its CCA.

Therefore, geometry imposes a limit regarding how many devices may be entered onto

the grid in spite of the values of the parameters. The SA method, as implemented,

contains a check that prevents injecting devices if there is not enough space available.

The maximum and trigger values control the rate at which the process halts to do

an error check/correction and insertion (of devices into recesses). The grid is to be empty

to allow the error check/correction algorithm to act as the array will be used to fix

misalignments if they emerge. The maximum and trigger parameters act in unison to free

the grid of devices prior to the error check/correction and insertion. SA, as implemented,

prevents a device from entering the system if the active (on grid) devices (controlled by

maximum) plus the inactive (on template) devices (controlled by trigger) is equal to

trigger. The effect is that when the number of inactive devices approaches trigger,

devices do not enter the system and those already at the grid are processed and dropped,

leaving it empty.

5.3 Boundary Conditions and Driving Forces Analogies

The combination of boundary conditions and driving forces are critical inputs to the SA

method and take the form of a list: the device and the cue list.

110

The device list enumerates the initial and final positions as well as the offsets and

other properties such as mass, friction, size, and CCA. SA is abstract, except with respect

to CCA; mass, friction, and size are included only to assist the external control unit's

translation from movement to action. The initial and final positions, size, and CCA are in

units of BSU and must be positive. The offset, used to fine-tune position, are fractions of

BSU and may be either positive or negative (along x and y) depending on the intended

direction of adjustment.

The cue list determines the orders that the devices are injected into the system; it

controls the iteration of SA and is not circumventable or adjustable during the

calculations.

111

Figure 5.1 A basic 10 x 10 grid. The grid is composed of two areas: the perimeter (red

boxes) which is the forbidden zone and the field (white boxes) which is where the

devices are free to move.

5.4 The Grid/Membrane

To SA, the grid is the membrane where the size of a unit is defined to be a BSU, the

period length of the array of electromagnets.

The grid is a mirror of the template and the substrate: the final position at the grid

corresponds to a location on the template and a recess in the substrate.

112

Only certain parts of the grid are free to admit a device. The interior of the grid,

from coordinates (1, 1) to (n, n), is referred to as the field. The perimeter of the grid is

referred to as the forbidden zone. A device enters the enclosure and reaches the forbidden

zone. There, it waits until the final insertion into the field. SA, as implemented, restricts

backward (or any other kind of motion) that leads a device in the field to the forbidden

zone. The forbidden zone must be free to admit devices. See Figure 5.1.

5.5 Decision Tables

The SA approach issues a movement based on the results of the P and Q Tables.

Figure 5.2 A view of the P Table. The device is dark purple. The exit is light purple. The

P Table constructs two test pathways: a left/right (green) and an up/down (yellow). The

lengths of these paths are determined by the displacements between current and desired

positions.

113

5.5.1 P Table

The P Table examines two orthogonal pathways: a single up/down and a single left/right

track. Note: it evaluates only up/down or left/right pathways. The P Table is far-sighted

yet does not plan ahead.

The P Table is compiled for up/down and left/right pathways as determined by a

device's current location and final position (see Figure 5.2). It contains the vector

displacement value of the track, which will be used to opt between up or down, left or

right movement. It adds the answers to two yes/no questions. First, is the displacement

equal to zero? Second, is the pathway blocked?

SA chooses the shortest, non-zero pathway that is not blocked. If two or more

pathways are available, then the precedent is up, down, left, and right. If all pathways

fail, then the P Table issues a null movement and SA shifts onto the Q Table.

114

Figure 5.3 A view of the Q Table. The device is dark purple. Various other devices are

light purple. The Q Table examines a region immediately around the device (light and

dark tan). The light tan are the surroundings of the device's current immediate position,

the dark tan is the future position of the four possible movements: up, down, left, and

right.

5.5.2 Q Table

The Q Table examines the perimeter of the device. It evaluates up, down, left, and right.

The Q Table is short-sighted yet does not negate a movement.

The Q Table is compiled for up, down, left, and right as determined by the

device's current location; final position is ignored (see Figure 5.3). It examines the

density of a pathway. It includes the answers to three yes/no questions. First, is a

direction blocked? Second, is a direction forbidden? Third, does the direction negate the

last, known movement?

115

SA chooses the direction that is not blocked and forbidden, that does not undo the

last, known movement, and that leads to the lowest density. If two or more directions are

available, then the precedent is up, down, left, and right. If all directions fail then the Q

Table issues a null movement and SA does not alter the device's position.

5.5.3 Null Movement

The goal of SA is to move devices from step to step as they seek their final destinations.

If the boundary conditions and driving forces are not well-posed, then frustration will be

allowed to enter the system. If a device is stuck due to frustration, then SA issues that

device a null movement to indicate that it will not be moved at that step. SA fails when

all of the devices are issued a null movement. SA passes when all of the devices are

inserted.

5.6 Safety Valves

SA, as implemented, incorporates a set of safety valves the goal of which is to ensure that

the boundary conditions and driving forces are well-posed and that it yields a solution.

The device list is checked against four criteria. First, the initial position must be at

the perimeter of the field excluding its corners. Second, the final position must be within

the field and must be unique. Third, the magnitude of the offset must be fractional units

of BSU. Fourth, device mass, friction, size, and CCA must be equal to or greater than

zero; additionally, the CCA is bounded by:

116

 (5.1)

where, n is the size of the grid.

The cue list is checked to ensure that its contents refer to devices with properly.

inputted positions, offsets, and parameters.

Additionally, devices enter the grid if and only if the full area they occupy is free.

They may move into the field. They may not move into the forbidden zone. To prevent

frustration at the field/forbidden interface, the density of the forbidden zone is twice that

of the field zone as a bias (see Figure 5.4).

117

Figure 5.4 Density is a measure of local population/occupation. A device (dark purple)

is surrounded by: three empty field grids (tan), occupied device grids (light purple), and

three forbidden grids (red). The density is 7; the empty field grids are 0 per grid, the

occupied device grids is 1 per grid, and the forbidden grids are 2 per grid. The inflation of

the forbidden grids is designed to keep devices away from that area of the grid.

SA is not able to detect all errors. Care must be placed on the design of the device

and cue list as well as the max and trig parameters. In general, the fewer the number of

devices, the greater the likelihood of a solution. It is preferable to have more small and

fewer large devices in terms of CCA at any given step. Setting trigger greater than

maximum assures a fast solution. Also, the length that a device needs to travel from

initial to final positions should not be larger than half the length of the grid; therefore,

devices that enter at a side of the grid should be taken only to those spaces closest to that

side (see Figure 5.5).

118

Figure 5.5 A graphic representation of the optimized path-length configuration. The grid

is divided by two main diagonals into four areas (tan, green, blue, and purples). Devices

that enter through an X-colored area of the grid ought to be given final positions within

that X-colored area; for example, green to green, purple to purple, etc.

119

5.7 Algorithm

A simplified version of the SA algorithm follows; various internal steps are omitted.

set variables t_count and w_count to zero (t_count is the total number of devices

to be assembled; w_count is the total number of devices already assembled)

loop:

 A. if possible, inject devices

 B. set variables active to injected and killed to zero (active is the number

of devices waiting to be moved on the grid; killed is the number of devices that were not

able to be moved)

 C. for each active/injected device:

 1. create P and Q Tables

 2. if P Table is not null, issue that movement

 3. if P Table is null:

 a. if Q Table is not null, issue that movement

 b. if Q Table is null:

 1. issue that movement

 2. decrement active by unity

 3. increment killed by unity

 4. if device reached final position:

 a. issue drop directive

 b. increment t_count by unity

 c. decrement active by unity

 d. decrement killed to zero

120

 D. if killed is equal to or greater than active, SA failed, end

 E. if w_count is equal to total, SA passed, end

 F. if t_count is equal to trig:

 1. issue error/insert directive

 2. increment w_count by t_count

 3. decrement t_count to zero

5.8 Discussion

The modeling of two systems will be compared; first, an ill-posed problem, second, a

well-posed problem. Both systems involve twenty devices with identical initial positions.

For the ill-posed system, shown in Figure 5.6, the final positions are random. For the

well-posed system, shown in Figure 5.7, the final positions are within the areas indicated

by Figure 5.5.

121

Figure 5.6 The ill-posed system. A group of twenty devices (represented by colors

where each device is a color) start at the perimeter and move toward their final positions

within the field. The system is ill-posed because the final positions are random and their

displacements (distance from initial to final positions) are on average greater than half the

length of the grid.

Figure 5.7 The well-posed system. A group of twenty devices (represented by colors

where each device is a color) start at the perimeter and move toward their in-area final

positions within the field. The system is well-posed because the final positions are within

their immediate initial regions and their displacements (distance from initial to final

positions) are on average equal to or lesser than half the length of the grid.

122

The systems were compiled under various conditions. First, the trigger device

value was alternated between 10 and 20; trigger device controls the rate of insertions.

Second, the maximum device value was changed, continuously, from 1 to 20; maximum

device controls how many devices are active, simultaneously, on the grid. Figures 5.8 and

5.9 represent the result of the Swarm Algorithm given those systems and its conditions.

Figure 5.8 The ill-posed system plotted for trigger device values of 10 and 20. The total

STP value, the number of steps required to complete assembly, varied from 152 for

maximum device equal to 1 to 46 (for trigger = 10) and 29 (for trigger = 20) for

maximum device equal to 20. At the serial process limit, the STP is equal to 152. At the

parallel process limit, the STP is 46 for trigger = 10 and 29 for trigger = 20.

0 5 10 15 20

50

100

150

200

trigger=20

trigger=10

Total ST P vs. Maximum Device, Ill-Posed

Ma ximum De vice

T
o
ta

l
S
T

P

123

The ill-posed system (see Figures 5.6 and 5.8) contains a bottle-neck caused by

the random mixture of different sized devices and scattered final positions; the bottle-

neck is a condition where the current placement of a device forbids the movement of

other, nearby devices already on the grid. After a maximum device value of 10, the STP

is fairly constant for both trigger device values; an STP, or step, is an iteration of the

method. The bottle-neck must be overcome in order to complete assembly; thereafter,

assembly continues more or less identically.

Figure 5.9 The well-posed system plotted for trigger device values of 10 and 20. The

total STP, the number of steps required to complete assembly, varied from 67 for

maximum device equal to 1 to 11 for maximum device equal to 20. At the serial process

limit, the STP is equal to 67. At the parallel process limit, the STP is 11.

0 5 10 15 20

20

40

60

80

trigger=20

trigger=10

Total ST P vs. Maximum Device, Well-Posed

Ma ximum De vice

T
o
ta

l
S
T

P

124

The well-posed system (see Figures 5.7 and 5.9), however, is not bottle-necked;

the placement of a device does not prevent the movement of other, nearby devices. The

serial processing and parallel processing limit are identical irrespective of the trigger

value, indicating that a well-posed system is scalable. The amount of steps (or total STP)

required to complete assembly is also consistently lower at both processing limits.

Note that the order of entry (driving force) and the initial positions (the first part

of the boundary condition) are identical with the ill-posed and well-posed systems. The

key differences are the final positions (the second part of the boundary condition). For the

ill-posed system, the final positions were random throughout the field. For the well-posed

system, the final positions were constrained to be within the corresponding perimeter to

area sectors as depicted by Figure 5.5.

125

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

The goals of the models presented by this dissertation were: first, to calculate pathways,

second, to calculate magnetic field interaction, third, to calculate the attraction between

devices and recesses, and, fourth, to maximize that attraction while minimizing its

contribution to weight.

The Swarm Algorithm method, introduced, developed, and coded in this thesis,

demonstrated that deterministic, simultaneous assembly is viable. An informal set of

rules were developed to assist the creation of well-posed combinations of boundary

conditions and driving forces. A software toolkit was created to implement the Swarm

Algorithm technique and it was used to model a variety of systems.

The magnetic field interaction model was presented and compared to a system

with a known, analytic solution. The method was used to demonstrate the fields and

forces required to manipulate various example devices and arrays. Additionally, the

Collision Cross-Section Area was calculated for those examples.

The device/recess force was derived. It was used to model the attraction between

soft and hard magnetic materials that retain devices and recesses respectively. It showed

that the force of attraction was weak beyond a certain, critical distance; therefore,

inclusion of such magnetic material will not affect the functioning of the substrate.

The Magnetic Retention Factor was a useful tool in conjunction with the

engineering of the Magnetic Field Assisted Assembly.

126

6.2 Future Directions

The study of the Magnetic Field Driven Simultaneous Assembly method is incomplete

without a significant amount of research and development with respect to its

implementation.

The magnetic field interaction model introduced by this dissertation needs to be

generalized to admit the dynamics of field and device responses. The device/recess force

needs to be extended from one to two dimensions, including arbitrary geometries of

devices and recesses.

It should be noted that the Swarm Algorithm is already dynamic. Improvements

that could be implemented include: the ability to adjust boundary conditions and driving

forces to prevent the failure of the algorithm and the addition of other auxiliary tables to

calculate true, deep-sighted movement. Although not an improvement that would be

useful to the problem of assembly, the Swarm Algorithm is extendable to n dimensional

space and to any set of movement.

The important area of research and development is the engineering of the method.

First, the method of injection must be developed. A device may be contained

either in bins or on tapes and then fed into the system. The act of injection is required to

maintain the integrity of vacuum in the enclosure. Injection, whether through bins or

tapes, ought to be efficient; therefore, the work to implement bins or tapes may not

impose too great a burden to time and cost.

127

Second, the function of the array of electromagnets must be explored. The

methodology to translate 'movement' into real, physical manipulation is to be developed.

Various other aspects of the array, regarding its construction and arrangement, including

the way it would be controlled must be explored as it effects the act of assembly.

Additionally, work involving the other magnetic field based methods proposed by

the team at the New Jersey Institute of Technology should be pursued. It includes the

Magnetic Field Assisted Assembly (MFAA) and the Method of Assembly Using An

Array of Programmable Magnets (see Figure 6.1) [111].

Figure 6.1 A schematic showing the method of assembly using programmable magnets.

A hybrid of Magnetic Field Assisted Assembly and Magnetic Field Driven Simultaneous

Assembly, it remains a work in progress [111].

128

APPENDIX A

DEVICE/RECESS FORCE DERIVATION

The following appendix is a derivation of Equation 2.11; see Figure A.1 for explanation

of terms.

Figure A.1 A cross-section of the system involving soft magnetic layers and hard

magnetic strips. R1 is the device, R2 is the soft magnetic layer, R3 is air-gap, R4 and R5

are the hard magnetic strip and the gap, and R6 is the substrate. The soft magnetic layer's

thickness is b. The hard magnetic strip's thickness is a. The air-gap distance is d. The

period length of the strip/gap pattern is L where αL is the width of the hard magnetic

strip.

The expression for the force is:

(A.1)

129

The following are the simplified magnetic potentials:

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

where:

(A.7)

130

Through Equations A.2-6 (and derivatives), with the boundary condition that

 , relations are found among the constants.

 (A.8)

 (A.9)

(A.10)

(A.11)

 (A.12)

 (A.13)

 (A.14)

 (A.15)

 (A.16)

 (A.17)

131

(A.18)

(A.19)

 (A.20)

 (A.21)

(A.22)

(A.23)

where:

(A.24)

132

The constants of Equations A.8-23 must be solved in terms of which will

be determined by the system. Equations A.8-23 represent simple, linear systems that are

solved algebraically as:

(A.25)

(A.26)

(A.27)

(A.28)

 (A.29)

 (A.30)

 (A.31)

 (A.32)

 (A.33)

(A.34)

133

 (A.35)

(A.36)

Adding Equations A.20 and A.22, simplifying the cosh/sinh terms:

(A.37)

Substituting Equations A.33-34, rearranging terms:

(A.38)

Substituting Equations A.29-30, simplifying and rearranging terms:

(A.39)

Substituting Equations A.25-26, simplifying and rearranging terms:

(A.40)

134

Adding Equations A.21 and A.23, simplifying the cosh/sinh terms:

(A.41)

Substituting Equations A.35-36, rearranging terms:

(A.42)

Substituting Equations A.31-32, simplifying and rearranging terms:

(A.43)

Substituting Equations A.27-28, simplifying and rearranging terms:

(A.44)

Equations A.40 and A.44 are simplified as:

 (A.45)

 (A.46)

135

where:

(A.47)

(A.48)

With Equations A.45-46, Equations A.25-32 are rewritten as:

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

136

(A.55)

(A.56)

Let R and S be defined as:

(A.57)

(A.58)

then:

(A.59)

(A.60)

also:

(A.61)

137

The constants are found by a Fourier Series of the magnetization of the

hard magnetic strip, whose function is:

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

Substituting Equation A.66 into Equation A.61:

(A.67)

138

The general form of the potential is:

(A.68)

(A.69)

(A.70)

The general form of the force is:

 (A.71)

(A.72)

(A.73)

(A.74)

139

The force on the soft magnetic layer (R2) due to the hard magnetic strips (R4 and

R5) is the difference between the force at R3 at the lower boundary of the layer and the

force at R1 at the upper boundary of the layer.

 (A.75)

At R1, the Pn and Qn constants are:

 (A.76)

 (A.77)

 (A.78)

 (A.79)

140

Equations A.76-79 are evaluated at the boundary, y = d + b, as:

 (A.80)

 (A.81)

 (A.82)

 (A.83)

(A.84)

141

At R3, the Pn and Qn constants are:

 (A.85)

 (A.86)

 (A.87)

 (A.88)

 (A.89)

Substituting Equations A.57-58 into Equation A.53-56:

 (A.90)

 (A.91)

 (A.92)

 (A.93)

142

Substituting Equations A.90-93 into Equation A.89:

 (A.94)

 (A.95)

Substituting Equations A.90-93 into Equation A.95:

 (A.96)

(A.97)

Substituting Equation A.47 into Equation A.97:

(A.98)

Substituting Equation A.60 into Equation A.98:

(A.99)

143

Substituting Equation A.66 into Equation A.99:

(A.100)

Substituting Equations A.84 and A.100 into Equation A.75:

(A.101)

The Equation A.101 is maximized when α = 0.5; at that α the terms of the

summation are 0 when n is even and 2 when n is odd.

(A.102)

The n = 1 term dominates the summation; therefore:

(A.103)

144

APPENDIX B

SWARM APPLICATION CODE

The complete Swarm Algorithm program written in freeBASIC; [112] the application is

divided into modules MAIN, DECLIB, APPLIB, CMPLIB, GUILIB, MODLIB,

ZCOMPILE, ZEIPORT, ZLISTANB, ZPROJECT, and ZRECORD.

MAIN is the central function that controls all other

functions; links to all other modules

DECLIB contains structure definitions, variable definitions,

and sub/function prototypes

APPLIB contains functions that define and maintain the

program's file system and databases; used by all modules

 build_idxA builds list of projects, 1st phase

 build_idxB builds list of projects, 2nd phase

 build_dlp builds list of project data

 load loads records from file

 save saves records to file

 sift sifts records based on sift keys

 sort sorts records based on sort keys

 free returns next free record number

 mkcda converts A-code into displayable data

 mkcdz converts Z-code into displayable data

 mkdrp adds * to device symbol if dropped

 mkgnw toggles between grid and window mode

 pack initializes record data

CMPLIB contains functions that define the Swarm Algorithm;

used by the ZPROJECT module

 build_ptable constructs the P Table

 build_qtable constructs the Q Table

 grid_000 resets the grid array

 grid_add inserts device to grid array

 grid_sub removes device from grid array

 grid_upd updates the grid array

 stack_add inserts device to stack array

 stack_sub removes device from stack array

 dense calculates density

 scan_ptable obtains decision from the P Table

 scan_qtable obtains decision from the Q Table

 switch resolves Up/Down, Left/Right from P Table

 test tests if a device can be added to stack

 text$ converts device number to letter

145

GUILIB contains functions that define and maintain the

program's graphical user interface; used by all modules

 prompt_list_A defines the input list screen

 prompt_list_B defines the output list screen

 prompt_main defines the main screen

 prompt_project defines the project screen

 record_list_A1 displays input/lst record data

 record_list_A2 displays input/dev record data

 record_list_B displays output/prc record data

 record_main1 displays main project list data

 record_main2 displays main project file data

 record_project1 displays project grid data

 record_project2 displays project file data

 record_project3 displays project device data

MODLIB contains various low-level functions used by the

program's high-level functions; used by all modules

 export_devl exports the dev input list

 export_lstl exports the lst input list

 export_prcl exports the prc output list

 export_raw exports input dev/lst data to raw format

 export_stat exports statistics

 import_dev imports dev data from raw format

 import_lst imports lst data from raw format

 check_dev integrity - if lst item is valid

 check_fin integrity - if final location is valid

 check_gns integrity - if lst item is unique

 check_ini integrity - if initial location is valid

 check_mfsd integrity - if properties are valid

 check_off integrity - if offset location is valid

 check_sng integrity - if final location is unique

ZCOMPILE is the main body that controls the Swarm Algorithm;

used by the ZPROJECT module

ZEIPORT maintains the data import and export functions; used

by the ZPROJECT and ZLISTANB modules

 zexport the export function

 zimport the import function

 zprntscrn the print screen function

ZLISTANB maintains the input and output lists; used by the

ZPROJECT module

 zlist_A function that displays input data

 zlist_B function that displays output data

ZPROJECT maintains the project's main functions; links to the

ZLISTANB, ZEIPORT, and ZCOMPLIE modules

 proj_grid sets up device data

 proj_trace sets up trace function

 proj_stack sets up stack data

146

ZRECORD maintains the program's database (the project list

and the input/output lists); used by the ZPROJECT, ZCOMPILE, and

MAIN modules

 zrecord_dnl controls the input data records

 zrecord_mfdsa controls the project records

 zrecord_prc controls the output data records

 zreset resets the project input/output records

147

MAIN Module:

defshort a-z

#include "zbasic.bi"

#include "_dec_lib_.bi"

#include "_app_lib_.bi"

#include "_gui_lib_.bi"

#include "_mod_lib_.bi"

#include "_cmp_lib_.bi"

#include "_zlistAnB_.bi"

#include "_zeiport_.bi"

#include "_zrecord_.bi"

#include "_zcompile_.bi"

#include "_zproject_.bi"

RGBA0(MAIN,1)=0: RGBA0(MAIN,2)=15

RGBA0(FRAM,1)=0: RGBA0(FRAM,2)=15

RGBA0(ACT1,1)=14: RGBA0(ACT1,2)=0

RGBA0(ACT2,1)=0: RGBA0(ACT2,2)=14

RGBA0(MENU,1)=0: RGBA0(MENU,2)=15

RGBA0(ERRL,1)=15: RGBA0(ERRL,2)=8

RGBA0(WIRE,1)=0: RGBA0(WIRE,2)=15

RGBA0(DOSX,1)=15: RGBA0(DOSX,2)=0

ZCMD 1,"MFDA-v3.IDX","B",PASS

if lof(1)=0 then gosub initialize

load 1,0,"IDXA"

Zi

gosub main_start

gosub main_fresh

gosub main_prompt

gosub main_record1

gosub main_record2

do

 CTRL$=ZHEAD$("MENU: Add-A Edit-E Del-D Mode-

 [C/Z] Reset-R [ENT] [ESC]",Z_ARU$+Z_ARD$+Z_ARL$+

 Z_ARR$+Z_ARH$+Z_ARE$+Z_PGU$+Z_PGD$+Z_SPC$+"AED"+

 Z_UND$+"R"+Z_ENT$+Z_ESC$)

 select case CTRL$

 case Z_ARU$,Z_ARD$,Z_ARL$,Z_ARR$,Z_ARH$,Z_ARE$,Z_PGU$,

 Z_PGD$:

 ZSYS f0,f1,f2,36,IDX(0,0),CTRL$

 gosub main_record1

 gosub main_record2

 case Z_SPC$:

 gosub main_start

 gosub main_fresh

 gosub main_prompt

 gosub main_record1

 gosub main_record2

148

 case "A":

 zrecord_mfdsa 1,0,"A"

 gosub main_start

 gosub main_fresh

 gosub main_prompt

 gosub main_record1

 gosub main_record2

 case "E","D",Z_UND$,"R",Z_ENT$:

 if IDX(0,0)<>0 then

 select case CTRL$

 case "E":

 zrecord_MFDSA 1,IDX(0,f0),"E"

 gosub main_record1

 gosub main_record2

 case "D":

 zrecord_MFDSA 1,IDX(0,f0),"D"

 gosub main_start

 gosub main_fresh

 gosub main_prompt

 gosub main_record1

 gosub main_record2

 case Z_UND$:

 zrecord_MFDSA 1,IDX(0,f0),Z_UND$

 gosub main_record1

 gosub main_record2

 case "R":

 zreset IDX(0,f0)

 gosub main_record1

 gosub main_record2

 case Z_ENT$:

 zproject IDX(0,f0)

 gosub main_prompt

 gosub main_record1

 gosub main_record2

 end select

 end if

 case Z_ESC$:

 exit do

 end select

loop

Zo

save 1,0,"IDXA"

ZCMD 1,"","",FAIL

end

initialize:

idxA.a_record=0

idxA.r_record=0

idxA.m_record=32767

save 1,0,"IDXA"

return

main_start:

build_idxA 1,0

build_idxB 1,0

sort 0

return

149

main_fresh:

ZSYS f0,f1,f2,36,IDX(0,0),Z_ARH$

return

main_prompt:

prompt_main "Index"

return

main_record1:

record_main1 f0,f1,f2,0

return

main_record2:

record_main2 IDX(0,f0)

return

150

DECLIB Module:

type idxASpace

 a_record as short

 r_record as short

 m_record as short

end type

dim shared idxA as idxASpace

type idxBSpace

 fmfdsa as string*9

 fname as string*32

 cntrl as string*1

end type

dim shared idxB(32767) as idxBSpace

type mfdsaSpace

 acode as short

 zcode as short

 n as short

 m as short

 t as short

 t_dev as short

 t_lst as short

 t_prc as short

 t_stp as short

 c_dte as string*10

 c_tme as string*8

end type

dim shared mfdsa(32767) as mfdsaSpace

type devSpace

 dev_n as short

 ini_x as short

 ini_y as short

 fin_x as short

 fin_y as short

 off_x as single

 off_y as single

 mass as single

 fric as single

 size as single

 delta as short

 cntrl as string*1

end type

dim shared dev(32767) as devSpace

type lstSpace

 lst_n as short

 dev_n as short

 cntrl as string*1

end type

dim shared lst(32767) as lstSpace

151

type prcSpace

 prc_n as short

 dev_n as short

 stp_n as short

 text as string*8

 move as short

 ini_x as short

 ini_y as short

 fin_x as short

 fin_y as short

 t_cnt as short

 w_cnt as short

end type

dim shared prc(32767) as prcSpace

type stackSpace

 dev_n as short

 dev_s as string*1

 delta as short

 move as short

 cur_x as short

 cur_y as short

 fin_x as short

 fin_y as short

 cntrl as short

end type

dim shared stack(32767) as stackSpace

type ptableSpace

 null as short

 blck as short

 leng as short

end type

dim shared ptable(2) as ptableSpace

type qtableSpace

 forb as short

 blck as short

 dense as short

 move as short

 upd_x as short

 upd_y as short

end type

dim shared qtable(4) as qtableSpace

dim shared grid(1024,1024) as short,IDX(8,32767) as short,g as

short,max_dev as short,trg_dev as short,cur_dev as short,tot_dev

as short,cur_prc as short,tot_prc as short

const GF=0

const GB=1

const XK=2

const XF=2

const XB=-2

152

const LR=1

const UD=2

const LD=3

const NL=0

const UP=1

const DN=2

const LT=3

const RT=4

declare sub build_idxA(...)

declare sub build_idxB(...)

declare sub build_dlp(...)

declare sub load(...)

declare sub save(...)

declare sub sift(...)

declare sub sort(...)

declare function free(...)

declare function mkcda$(...)

declare function mkcdz$(...)

declare function mkdrp$(...)

declare function mkgnw$(...)

declare function pack(...)

declare sub prompt_list_A(...)

declare sub prompt_list_B(...)

declare sub prompt_main(...)

declare sub prompt_project(...)

declare sub record_list_A1(...)

declare sub record_list_A2(...)

declare sub record_list_B(...)

declare sub record_main1(...)

declare sub record_main2(...)

declare sub record_project1(...)

declare sub record_project2(...)

declare sub record_project3(...)

declare sub export_devl(...)

declare sub export_lstl(...)

declare sub export_prcl(...)

declare sub export_raw(...)

declare sub export_stat(...)

declare sub import_dev(...)

declare sub import_lst(...)

declare function check_dev(...)

declare function check_fin(...)

declare function check_gns(...)

declare function check_ini(...)

declare function check_mfsd(...)

declare function check_off(...)

declare function check_sng(...)

153

declare sub build_ptable(...)

declare sub build_qtable(...)

declare sub grid_000(...)

declare sub grid_add(...)

declare sub grid_sub(...)

declare sub grid_upd(...)

declare sub stack_add(...)

declare sub stack_sub(...)

declare function dense(...)

declare function scan_ptable(...)

declare function scan_qtable(...)

declare function switch(...)

declare function symbol$(...)

declare function test(...)

declare function text$(...)

declare sub proj_grid(...)

declare sub proj_trace(...)

declare function proj_stack(...)

declare sub zlist_A(...)

declare sub zlist_B(...)

declare sub zexport(...)

declare sub zimport(...)

declare sub zprntscrn(...)

declare sub zrecord_dnl(...)

declare sub zrecord_mfdsa(...)

declare sub zrecord_prc(...)

declare sub zreset(...)

declare sub zcompile(...)

declare sub zproject(...)

154

APPLIB Module:

sub build_idxA(n,u)

 IDX(u,0)=0

 for z0=1 to idxA.a_record

 load n,z0,"IDXB"

 if idxB(z0).cntrl<>"*" then

 IDX(u,0)=IDX(u,0)+1

 IDX(u,IDX(u,0))=z0

 end if

 save n,z0,"IDXB"

 next z0

end sub

sub build_idxB(n,u)

 for z0=1 to IDX(u,0)

 ZCMD 100,idxB(IDX(u,z0)).fmfdsa,"B",PASS

 load 100,IDX(u,z0),"MFDSA"

 save 100,IDX(u,z0),"MFDSA"

 ZCMD 100,"","",FAIL

 next z0

end sub

sub build_dlp(n,u,zmax,CTRL$)

 IDX(u,0)=0

 for z0=1 to zmax

 load n,z0,CTRL$

 if (CTRL$<>"DEV") or (CTRL$="DEV" and dev(z0).cntrl<>

 "*") then

 if (CTRL$<>"LST") or (CTRL$="LST" and lst(z0).cntrl

 <>"*") then

 IDX(u,0)=IDX(u,0)+1

 IDX(u,IDX(u,0))=z0

 end if

 end if

 next z0

end sub

sub load(n,k,CTRL$)

 select case CTRL$

 case "IDXA":

 seek #n,1

 ZGET n,tpx$,2: idxA.a_record=cvshort(tpx$)

 ZGET n,tpx$,2: idxA.r_record=cvshort(tpx$)

 ZGET n,tpx$,2: idxA.m_record=cvshort(tpx$)

 case "IDXB":

 seek #n,42&*(k-1)+10

 ZGET n,idxB(k).fmfdsa,9

 ZGET n,idxB(k).fname,32

 ZGET n,idxB(k).cntrl,1

155

 case "MFDSA":

 seek #n,1

 ZGET n,tpx$,2: mfdsa(k).acode=cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).zcode=cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).n =cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).m =cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).t =cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).t_dev=cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).t_lst=cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).t_prc=cvshort(tpx$)

 ZGET n,tpx$,2: mfdsa(k).t_stp=cvshort(tpx$)

 ZGET n,tpx$,10: mfdsa(k).c_dte=tpx$

 ZGET n,tpx$,8: mfdsa(k).c_tme=tpx$

 case "DEV":

 seek #n,66&*(k-1)+1+36

 ZGET n,tpx$,2: dev(k).dev_n=cvshort(tpx$)

 ZGET n,tpx$,2: dev(k).ini_x=cvshort(tpx$)

 ZGET n,tpx$,2: dev(k).ini_y=cvshort(tpx$)

 ZGET n,tpx$,2: dev(k).fin_x=cvshort(tpx$)

 ZGET n,tpx$,2: dev(k).fin_y=cvshort(tpx$)

 ZGET n,tpx$,4: dev(k).off_x=cvs(tpx$)

 ZGET n,tpx$,4: dev(k).off_y=cvs(tpx$)

 ZGET n,tpx$,4: dev(k).mass =cvs(tpx$)

 ZGET n,tpx$,4: dev(k).fric =cvs(tpx$)

 ZGET n,tpx$,4: dev(k).size =cvs(tpx$)

 ZGET n,tpx$,2: dev(k).delta=cvshort(tpx$)

 ZGET n,tpx$,1: dev(k).cntrl=tpx$

 case "LST":

 seek #n,66&*(k-1)+34+36

 ZGET n,tpx$,2: lst(k).lst_n=cvshort(tpx$)

 ZGET n,tpx$,2: lst(k).dev_n=cvshort(tpx$)

 ZGET n,tpx$,1: lst(k).cntrl=tpx$

 case "PRC":

 seek #n,66&*(k-1)+39+36

 ZGET n,tpx$,2: prc(k).prc_n=cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).dev_n=cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).stp_n=cvshort(tpx$)

 ZGET n,tpx$,8: prc(k).text =tpx$

 ZGET n,tpx$,2: prc(k).move =cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).ini_x=cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).ini_y=cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).fin_x=cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).fin_y=cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).t_cnt=cvshort(tpx$)

 ZGET n,tpx$,2: prc(k).w_cnt=cvshort(tpx$)

 end select

end sub

sub save(n,k,CTRL$)

 select case CTRL$

 case "IDXA":

 seek #n,1

 ZPUT n,mkshort$(idxA.a_record),2

 ZPUT n,mkshort$(idxA.r_record),2

 ZPUT n,mkshort$(idxA.m_record),2

156

 case "IDXB":

 seek #n,42&*(k-1)+10

 ZPUT n,idxB(k).fmfdsa,9

 ZPUT n,idxB(k).fname,32

 ZPUT n,idxB(k).cntrl,1

 case "MFDSA":

 seek #n,1

 ZPUT n,mkshort$(mfdsa(k).acode),2

 ZPUT n,mkshort$(mfdsa(k).zcode),2

 ZPUT n,mkshort$(mfdsa(k).n), 2

 ZPUT n,mkshort$(mfdsa(k).m), 2

 ZPUT n,mkshort$(mfdsa(k).t), 2

 ZPUT n,mkshort$(mfdsa(k).t_dev),2

 ZPUT n,mkshort$(mfdsa(k).t_lst),2

 ZPUT n,mkshort$(mfdsa(k).t_prc),2

 ZPUT n,mkshort$(mfdsa(k).t_stp),2

 ZPUT n,mfdsa(k).c_dte, 10

 ZPUT n,mfdsa(k).c_tme, 8

 case "DEV":

 seek #n,66&*(k-1)+1+36

 ZPUT n,mkshort$(dev(k).dev_n), 2

 ZPUT n,mkshort$(dev(k).ini_x), 2

 ZPUT n,mkshort$(dev(k).ini_y), 2

 ZPUT n,mkshort$(dev(k).fin_x), 2

 ZPUT n,mkshort$(dev(k).fin_y), 2

 ZPUT n,mks$(dev(k).off_x), 4

 ZPUT n,mks$(dev(k).off_y), 4

 ZPUT n,mks$(dev(k).mass), 4

 ZPUT n,mks$(dev(k).fric), 4

 ZPUT n,mks$(dev(k).size), 4

 ZPUT n,mkshort$(dev(k).delta), 2

 ZPUT n,dev(k).cntrl, 1

 case "LST":

 seek #n,66&*(k-1)+34+36

 ZPUT n,mkshort$(lst(k).lst_n), 2

 ZPUT n,mkshort$(lst(k).dev_n), 2

 ZPUT n,lst(k).cntrl, 1

 case "PRC":

 seek #n,66&*(k-1)+39+36

 ZPUT n,mkshort$(prc(k).prc_n), 2

 ZPUT n,mkshort$(prc(k).dev_n), 2

 ZPUT n,mkshort$(prc(k).stp_n), 2

 ZPUT n,prc(k).text, 8

 ZPUT n,mkshort$(prc(k).move), 2

 ZPUT n,mkshort$(prc(k).ini_x), 2

 ZPUT n,mkshort$(prc(k).ini_y), 2

 ZPUT n,mkshort$(prc(k).fin_x), 2

 ZPUT n,mkshort$(prc(k).fin_y), 2

 ZPUT n,mkshort$(prc(k).t_cnt), 2

 ZPUT n,mkshort$(prc(k).w_cnt), 2

 end select

end sub

157

sub sift(u1,u2)

 IDX(u2,0)=0

 for z0=1 to IDX(u1,0)

 if (HASH0$(0)="") or (HASH0$(0)<>"" and prc(IDX(u1,

 z0)).prc_n=cvshort(HASH0$(0))) then

 if (HASH0$(1)="") or (HASH0$(1)<>"" and prc(IDX(u1,

 z0)).dev_n=cvshort(HASH0$(1))) then

 if (HASH0$(2)="") or (HASH0$(2)<>"" and prc(IDX(u1,

 z0)).stp_n=cvshort(HASH0$(2))) then

 if (HASH0$(3)="") or (HASH0$(3)<>"" and

 prc(IDX(u1,z0)).text=HASH0$(3)) then

 if (HASH0$(4)="") or (HASH0$(4)<>"" and

 prc(IDX(u1,z0)).move=cvshort(HASH0$(4))) then

 if (HASH0$(5)="") or (HASH0$(5)<>"" and

 prc(IDX(u1,z0)).ini_x=cvshort(HASH0$(5))) then

 if (HASH0$(6)="") or (HASH0$(6)<>"" and

 prc(IDX(u1,z0)).ini_y=cvshort(HASH0$(6)))

 then

 if (HASH0$(7)="") or (HASH0$(7)<>"" and

 prc(IDX(u1,z0)).fin_x=cvshort(HASH0$(7)))

 then

 if (HASH0$(8)="") or (HASH0$(8)<>"" and

 prc(IDX(u1,z0)).fin_y=cvshort(HASH0$(8)))

 then

 if (HASH0$(9)="") or (HASH0$(9)<>""

 and prc(IDX(u1,z0)).t_cnt=

 cvshort(HASH0$(9))) then

 if (HASH0$(10)="") or (HASH0$(10)<>""

 and prc(IDX(u1,z0)).w_cnt=

 cvshort(HASH0$(10))) then

 IDX(u2,0)=IDX(u2,0)+1

 IDX(u2,IDX(u2,0))=IDX(u1,z0)

 end if

 end if

 end if

 end if

 end if

 end if

 end if

 end if

 end if

 end if

 end if

 next z0

end sub

sub sort(u)

 zgap=IDX(u,0) \ 2

 do

 CTRL=FAIL

 zmax=IDX(u,0)

 do

 CTRL=PASS

 for z0=1 to zmax-zgap

 tpa$=ZSORT$(idxB(IDX(u,z0)).fname)+

 ZSORT$(idxB(IDX(u,z0)).fmfdsa)

158

 tpb$=ZSORT$(idxB(IDX(u,z0+zgap)).fname)+

 ZSORT$(idxB(IDX(u,z0+zgap)).fmfdsa)

 if tpa$>tpb$ then

 CTRL=FAIL

 zmin=z0

 swap IDX(u,z0),IDX(u,z0+zgap)

 end if

 next z0

 zmax=zmin

 loop until CTRL<>FAIL

 zgap=zgap \ 2

 loop until zgap<=0

end sub

function free()

 if idxA.a_record<>idxA.r_record then

 for z0=1 to idxA.a_record

 if idxB(z0).cntrl="*" then

 idxA.a_record=idxA.a_record+0

 idxA.r_record=idxA.r_record+1

 return z0

 end if

 next z0

 else

 if idxA.a_record<>idxA.m_record then

 idxA.a_record=idxA.a_record+1

 idxA.r_record=idxA.r_record+1

 return idxA.a_record

 end if

 end if

 return 0

end function

function mkcda$(CTRL)

 select case CTRL

 case FAIL: return "READONLY"

 case PASS: return " INSERT "

 end select

end function

function mkcdz$(CTRL)

 select case CTRL

 case FAIL: return "FAIL"

 case PASS: return "PASS"

 end select

end function

function mkdrp$(CTRL)

 select case CTRL

 case FAIL: return "Y"

 case PASS: return "N"

 end select

end function

159

function mkgnw$(CTRL)

 select case CTRL

 case 1: return "WINDOW"

 case 2: return " GRID "

 end select

end function

function pack(n,tpx$,zmax,CTRL$)

 select case CTRL$

 case "MFDSA":

 tpx=free

 if tpx<>0 then

 idxB(tpx).fmfdsa="MFDSA"+ZTEXT$(str$(tpx),"0",5,"R")

 idxB(tpx).fname=tpx$

 idxB(tpx).cntrl="#"

 save n,tpx,"IDXB"

 mfdsa(tpx).acode=PASS

 mfdsa(tpx).zcode=FAIL

 mfdsa(tpx).n =10

 mfdsa(tpx).m =0

 mfdsa(tpx).t =0

 mfdsa(tpx).t_dev=0

 mfdsa(tpx).t_lst=0

 mfdsa(tpx).t_prc=0

 mfdsa(tpx).t_stp=0

 mfdsa(tpx).c_dte=date$

 mfdsa(tpx).c_tme=time$

 ZCMD 100,idxB(tpx).fmfdsa,"B",PASS

 save 100,tpx,"MFDSA"

 ZCMD 100,"","",FAIL

 end if

 case "DEV","LST","PRC":

 tpx=ZCOMP(zmax<>32767,zmax+1,0)

 if tpx<>0 then

 select case CTRL$

 case "DEV":

 dev(tpx).dev_n=tpx

 dev(tpx).ini_x=0

 dev(tpx).ini_y=0

 dev(tpx).fin_x=0

 dev(tpx).fin_y=0

 dev(tpx).off_x=0

 dev(tpx).off_y=0

 dev(tpx).mass=0

 dev(tpx).fric=0

 dev(tpx).size=0

 dev(tpx).delta=0

 dev(tpx).cntrl="*"

 save n,tpx,"DEV"

 zmax=tpx

 case "LST":

 lst(tpx).lst_n=tpx

 lst(tpx).dev_n=0

 lst(tpx).cntrl="*"

 save n,tpx,"LST"

 zmax=tpx

160

 case "PRC":

 prc(tpx).prc_n=tpx

 prc(tpx).dev_n=0

 prc(tpx).stp_n=0

 prc(tpx).text=tpx$

 prc(tpx).move=0

 prc(tpx).ini_x=0

 prc(tpx).ini_y=0

 prc(tpx).fin_x=0

 prc(tpx).fin_y=0

 prc(tpx).t_cnt=0

 prc(tpx).w_cnt=0

 save n,tpx,"PRC"

 zmax=tpx

 end select

 end if

 end select

 return tpx

end function

161

CMPLIB Module:

sub build_ptable(j)

 ptable(LR).leng=stack(j).fin_x-stack(j).cur_x

 if ptable(LR).leng=0 then ptable(LR).null=PASS else

 ptable(LR).null=FAIL

 if (stack(j).cur_y=0) or (stack(j).cur_y=g+1) then

 ptable(LR).blck=PASS

 else

 ptable(LR).blck=FAIL

 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y+

 stack(j).delta

 for x0=stack(j).cur_x+sgn(ptable(LR).leng)*

 (stack(j).delta+1) to stack(j).fin_x step

 sgn(ptable(LR).leng)

 if grid(x0,y0)<>GF then ptable(LR).blck=PASS: exit

 for

 next x0

 next y0

 end if

 ptable(UD).leng=stack(j).fin_y-stack(j).cur_y

 if ptable(UD).leng=0 then ptable(UD).null=PASS else

 ptable(UD).null=FAIL

 if (stack(j).cur_x=0) or (stack(j).cur_x=g+1) then

 ptable(UD).blck=PASS

 else

 ptable(UD).blck=FAIL

 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+

 stack(j).delta

 for y0=stack(j).cur_y+sgn(ptable(UD).leng)*

 (stack(j).delta+1) to stack(j).fin_y step

 sgn(ptable(UD).leng)

 if grid(x0,y0)<>GF then ptable(UD).blck=PASS: exit

 for

 next y0

 next x0

 end if

end sub

sub build_qtable(j)

 qtable(UP).upd_x=stack(j).cur_x

 qtable(UP).upd_y=stack(j).cur_y+1

 if (abs(grid(qtable(UP).upd_x,qtable(UP).upd_y))=XK) or

 (qtable(UP).upd_y>g+1) then qtable(UP).forb=PASS else

 qtable(UP).forb=FAIL

 qtable(UP).blck=FAIL

 for z0=qtable(UP).upd_x-stack(j).delta to qtable(UP).upd_x

 +stack(j).delta

 if (abs(grid(z0,qtable(UP).upd_y))=XK) or (grid(z0,

 qtable(UP).upd_y)=GB) then qtable(UP).blck=PASS: exit for

 next z0

 if stack(j).move=DN then qtable(UP).move=PASS else

 qtable(UP).move=FAIL

 qtable(UP).dense=dense(j,qtable(UP).upd_x,qtable(UP).upd_y)

162

 qtable(DN).upd_x=stack(j).cur_x

 qtable(DN).upd_y=stack(j).cur_y-1

 if (abs(grid(qtable(DN).upd_x,qtable(DN).upd_y))=XK) or

 (qtable(DN).upd_y<0) then qtable(DN).forb=PASS else

 qtable(DN).forb=FAIL

 qtable(DN).blck=FAIL

 for z0=qtable(DN).upd_x-stack(j).delta to qtable(DN).upd_x

 +stack(j).delta

 if (abs(grid(z0,qtable(DN).upd_y))=XK) or (grid(z0,

 qtable(DN).upd_y)=GB) then qtable(DN).blck=PASS: exit

 for

 next z0

 if stack(j).move=UP then qtable(DN).move=PASS else

 qtable(DN).move=FAIL

 qtable(DN).dense=dense(j,qtable(DN).upd_x,qtable(DN).upd_y)

 qtable(LT).upd_x=stack(j).cur_x-1

 qtable(LT).upd_y=stack(j).cur_y

 if (abs(grid(qtable(LT).upd_x,qtable(LT).upd_y))=XK) or

 (qtable(LT).upd_x<0) then qtable(LT).forb=PASS else

 qtable(LT).forb=FAIL

 qtable(LT).blck=FAIL

 for z0=qtable(LT).upd_y-stack(j).delta to qtable(LT).upd_y

 +stack(j).delta

 if (abs(grid(qtable(LT).upd_x,z0))=XK) or

 (grid(qtable(LT).upd_x,z0)=GB) then qtable(LT).blck=

 PASS: exit for

 next z0

 if stack(j).move=RT then qtable(LT).move=PASS else

 qtable(LT).move=FAIL

 qtable(LT).dense=dense(j,qtable(LT).upd_x,qtable(LT).upd_y)

 qtable(RT).upd_x=stack(j).cur_x+1

 qtable(RT).upd_y=stack(j).cur_y

 if (abs(grid(qtable(RT).upd_x,qtable(RT).upd_y))=XK) or

 (qtable(RT).upd_x>g+1) then qtable(RT).forb=PASS else

 qtable(RT).forb=FAIL

 qtable(RT).blck=FAIL

 for z0=qtable(RT).upd_y-stack(j).delta to qtable(RT).upd_y

 +stack(j).delta

 if (abs(grid(qtable(RT).upd_x,z0))=XK) or

 (grid(qtable(RT).upd_x,z0)=GB) then qtable(RT).blck=

 PASS: exit for

 next z0

 if stack(j).move=LT then qtable(RT).move=PASS else

 qtable(RT).move=FAIL

 qtable(RT).dense=dense(j,qtable(RT).upd_x,qtable(RT).upd_y)

end sub

163

sub grid_000()

 erase grid

 for x0=0 to g+1

 for y0=0 to g+1

 grid(x0,y0)=XF

 if x0>=1 and x0<=g then

 if y0>=1 and y0<=g then

 grid(x0,y0)=GF

 end if

 end if

 next y0

 next x0

end sub

sub grid_add(j)

 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+

 stack(j).delta

 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y+

 stack(j).delta

 if x0>=0 and x0<=g+1 then

 if y0>=0 and y0<=g+1 then

 if grid(x0,y0)=XF then grid(x0,y0)=XB

 if grid(x0,y0)=GF then grid(x0,y0)=GB

 end if

 end if

 next y0

 next x0

end sub

sub grid_sub(j)

 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+

 stack(j).delta

 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y+

 stack(j).delta

 if x0>=0 and x0<=g+1 then

 if y0>=0 and y0<=g+1 then

 if grid(x0,y0)=XB then grid(x0,y0)=XF

 if grid(x0,y0)=GB then grid(x0,y0)=GF

 end if

 end if

 next y0

 next x0

end sub

sub grid_upd()

 grid_000

 for j=1 to max_dev

 if stack(j).cntrl=PASS then

 grid_add j

 end if

 next j

end sub

164

sub stack_add(n,stp,t_cnt,w_cnt)

 for j=1 to max_dev

 if stack(j).cntrl<>PASS then

 if test(lst(IDX(2,cur_dev+1)).dev_n)<>FAIL then

 if cur_dev<tot_dev then

 cur_dev=cur_dev+1

 stack(j).dev_n=lst(IDX(2,cur_dev)).dev_n

 stack(j).dev_s=symbol$(lst(IDX(2,cur_dev)).dev_n)

 stack(j).delta=dev(lst(IDX(2,cur_dev)).dev_n).delta

 stack(j).move=NL

 stack(j).cur_x=dev(lst(IDX(2,cur_dev)).dev_n).ini_x

 stack(j).cur_y=dev(lst(IDX(2,cur_dev)).dev_n).ini_y

 stack(j).fin_x=dev(lst(IDX(2,cur_dev)).dev_n).fin_x

 stack(j).fin_y=dev(lst(IDX(2,cur_dev)).dev_n).fin_y

 stack(j).cntrl=PASS

 zrecord_prc n,stp,j,"*!INJT!*",t_cnt,w_cnt

 exit for

 end if

 end if

 end if

 next j

end sub

sub stack_sub(j)

 stack(j).dev_n=0

 stack(j).dev_s=""

 stack(j).delta=0

 stack(j).move=NL

 stack(j).cur_x=0

 stack(j).cur_y=0

 stack(j).fin_x=0

 stack(j).fin_y=0

 stack(j).cntrl=FAIL

end sub

function dense(j,cur_x,cur_y)

 tpx=0

 for x0=cur_x-(stack(j).delta+1) to cur_x+

 (stack(j).delta+1)

 for y0=cur_y-(stack(j).delta+1) to cur_y+

 (stack(j).delta+1)

 if x0>=0 and x0<=g+1 then

 if y0>=0 and y0<=g+1 then

 tpx=tpx+grid(x0,y0) ^ 2

 end if

 end if

 next y0

 next x0

 return tpx

end function

165

function scan_ptable()

 tpx=NL

 for z0=LR to UD

 if ptable(z0).null=FAIL then

 if ptable(z0).blck=FAIL then

 tpx=tpx+z0

 end if

 end if

 next z0

 if tpx=LD then if abs(ptable(LR).leng)<abs(ptable(UD).leng)

 then tpx=LR else tpx=UD

 return tpx

end function

function scan_qtable()

 tpx=NL

 for z0=UP to RT

 if qtable(z0).forb=FAIL then

 if qtable(z0).blck=FAIL then

 if qtable(z0).move=FAIL then

 if (tpx=NL) or (tpx<>NL and qtable(z0).dense<

 qtable(tpx).dense) then tpx=z0

 end if

 end if

 end if

 next z0

 return tpx

end function

function switch(CTRL)

 tpx=NL

 select case CTRL

 case LR: if ptable(CTRL).leng<0 then tpx=LT else tpx=RT

 case UD: if ptable(CTRL).leng<0 then tpx=DN else tpx=UP

 end select

 return tpx

end function

function symbol$(CTRL)

 return chr$(asc("A")+((CTRL mod 26)-1))

end function

166

function test(CTRL)

 tpx=PASS

 for x0=dev(CTRL).ini_x-dev(CTRL).delta to dev(CTRL).ini_x+

 dev(CTRL).delta

 for y0=dev(CTRL).ini_y-dev(CTRL).delta to dev(CTRL).ini_y

 +dev(CTRL).delta

 if x0>=0 and x0<=g+1 then

 if y0>=0 and y0<=g+1 then

 if (grid(x0,y0)=XB) or (grid(x0,y0)=GB) then tpx

 =FAIL: exit for

 end if

 end if

 next y0

 next x0

 return tpx

end function

function text$(CTRL)

 tpx$="NL"

 select case CTRL

 case UP: tpx$="UP"

 case DN: tpx$="DN"

 case LT: tpx$="LT"

 case RT: tpx$="RT"

 end select

 return tpx$

end function

sub proj_grid(CTRL)

 erase grid

 for j=1 to CTRL

 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+

 stack(j).delta

 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y

 +stack(j).delta

 grid(x0,y0)=j

 next y0

 next x0

 next j

end sub

sub proj_trace(k,x0,y0)

 if grid(x0,y0)<>0 then

 for z0=1 to mfdsa(k).t_prc

 if prc(z0).dev_n=stack(grid(x0,y0)).dev_n then

 if grid(prc(z0).fin_x,prc(z0).fin_y)=0 then

 grid(prc(z0).fin_x,prc(z0).fin_y)=grid(x0,y0)

 end if

 end if

 next z0

 end if

end sub

167

function proj_stack(k,CTRL)

 tpx=0

 for z0=1 to mfdsa(k).t_prc

 if prc(z0).stp_n=CTRL then

 select case prc(z0).text

 case "MOVEMENT":

 tpx=tpx+1

 stack(tpx).dev_n=prc(z0).dev_n

 stack(tpx).dev_s=symbol$(prc(z0).dev_n)

 stack(tpx).delta=dev(prc(z0).dev_n).delta

 stack(tpx).move=prc(z0).move

 stack(tpx).cur_x=prc(z0).fin_x

 stack(tpx).cur_y=prc(z0).fin_y

 stack(tpx).fin_x=dev(prc(z0).dev_n).fin_x

 stack(tpx).fin_y=dev(prc(z0).dev_n).fin_y

 stack(tpx).cntrl=PASS

 case "*!DROP!*":

 stack(tpx).cntrl=FAIL

 end select

 end if

 next z0

 return tpx

end function

168

GUILIB Module:

sub prompt_list_A(tpx$,tpa,tpb)

 ZWINDOWM "MFDSA-Swarm Algorithm,v3 // List: "+tpx$,"",

 "" '"Error/Message"

 ZWINDOWS "Lst #",5,3,40,10,tpa

 ZWINDOWS "Dev # (ini-X,ini-Y)<=>(fin-X,fin-Y)/(off-X,

 off-Y) Mass Fric Size Delta",5,

 14,40,113,tpb

end sub

sub prompt_list_B(tpx$)

 ZWINDOWM "MFDSA-Swarm Algorithm,v3 // List: "+tpx$,"",

 "" '"Error/Message"

 ZWINDOWS " Prc # Dev # Stp # Instruct MV

 (ini-X,ini-Y) <=> (fin-X,fin-Y) T-Count W-

 Count",5,3,40,124,WIRE

end sub

sub prompt_main(tpx$)

 ZWINDOWM "MFDSA-Swarm Algorithm,v3 // Main: "+tpx$,"",

 "" '"Error/Message"

 ZWINDOWS "Project(s)",5,3,40,36,ACT1

 ZWINDOWS "Summary", 5,40,40,87,ACT2

 ZPRINT " Project Information ",9,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT "=======================",10,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " File MFDSA- ",12,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " File Name- ",13,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " File Mode- ",14,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Comp Date- ",16,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Comp Time- ",17,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Comp Stat- ",18,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Simulator Information ",22,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT "=======================",23,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Grid nxn- ",25,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Max Dev- ",26,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Trg Dev- ",27,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Misc. Information ",31,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT "=======================",32,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Total Dev- ",34,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

169

 ZPRINT " Total Lst- ",35,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Total Prc- ",36,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

 ZPRINT " Total Stp- ",37,42,RGBA0(WIRE,2),

 RGBA0(WIRE,1)

end sub

sub prompt_project(tpx$)

 ZWINDOWM "MFDSA-Swarm Algorithm,v3 // Project: "+tpx$,

 "","" '"Error/Message"

 ZWINDOWS " Project -Grid/View",5,3,40,40,ACT1

 ZWINDOWS "Detail(s)-Simulator",5,44,20,83,ACT2

 ZWINDOWS "Detail(s)- Misc. ",25,44,20,83,ACT2

 ZWINDOW_G 8,32,4,40

 ZPRINT "Grid Size (n,n) [,]",34,6,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT "Cur. Pos. (X,Y) [,]",36,6,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT "Cur. Stp. [/]",38,6,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT "Display Mode: ",41,6,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Project Information ",9,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT "======================= ",10,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " File MFDSA- ",11,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " File Name- ",12,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " File Mode- ",13,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Comp Date- ",14,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Comp Time- ",15,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Comp Stat- ",16,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Simulator Information ",18,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT "======================= ",19,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Grid nxn- ",20,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Max Dev- ",21,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Trg Dev- ",22,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Device- [Symbol:] ",29,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Cur. Pos.-[,] ",31,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Ini. Pos.-[,] ",32,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Fin. Pos.-[,] ",33,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

170

 ZPRINT " Off. Pos.-[,] ",34,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Mass- ",36,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Fric- ",37,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Size- ",38,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Delta- ",39,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

 ZPRINT " Dropped?- ",41,46,RGBA0(WIRE,

 2),RGBA0(WIRE,1)

end sub

sub record_list_A1(f0,f1,f2)

 for z0=f1 to f2

 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)

 locate 8+(z0-f1),4

 print using " #####! "; lst(z0).dev_n; lst(z0).cntrl

 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)

 next z0

end sub

sub record_list_A2(f0,f1,f2)

 for z0=f1 to f2

 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)

 locate 8+(z0-f1),15

 print using " #####! ####_,#### ####_,####

 #.###_,#.### ##.####^^^^ ##.####^^^^ ##.####^^^^

 #### "; dev(z0).dev_n; dev(z0).cntrl; dev(z0).ini_x;

 dev(z0).ini_y; dev(z0).fin_x; dev(z0).fin_y; dev(z0).off_x;

 dev(z0).off_y; dev(z0).mass; dev(z0).fric; dev(z0).size;

 dev(z0).delta

 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)

 next z0

end sub

sub record_list_B(f0,f1,f2,u)

 for z0=f1 to f2

 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)

 locate 8+(z0-f1),4

 print using " ##### ##### ##### \ \

 \ \ ####_,#### ####_,#### #####

 ##### "; prc(IDX(u,z0)).prc_n; prc(IDX(u,z0)).dev_n;

 prc(IDX(u,z0)).stp_n; prc(IDX(u,z0)).text;

 text$(prc(IDX(u,z0)).move); prc(IDX(u,z0)).ini_x;

 prc(IDX(u,z0)).ini_y; prc(IDX(u,z0)).fin_x; prc(IDX(u,

 z0)).fin_y; prc(IDX(u,z0)).t_cnt; prc(IDX(u,z0)).w_cnt

 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)

 next z0

end sub

171

sub record_main1(f0,f1,f2,u)

 for z0=f1 to f2

 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)

 locate 8+(z0-f1),4

 print using " \ \ "; idxB(IDX(u,

 z0)).fname

 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)

 next z0

end sub

sub record_main2(k)

 locate 12,57

 print using "\ \"; idxB(k).fmfdsa

 locate 13,57

 print using "\ \"; idxB(k).fname

 locate 14,57

 print using "\ \"; mkcda$(mfdsa(k).acode)

 locate 16,57

 print using "\ \"; mfdsa(k).c_dte

 locate 17,57

 print using "\ \"; mfdsa(k).c_tme

 locate 18,57

 print using "\ \"; mkcdz$(mfdsa(k).zcode)

 locate 25,57

 print using "#####"; mfdsa(k).n

 locate 26,57

 print using "#####"; mfdsa(k).m

 locate 27,57

 print using "#####"; mfdsa(k).t

 locate 34,57

 print using "#####"; mfdsa(k).t_dev

 locate 35,57

 print using "#####"; mfdsa(k).t_lst

 locate 36,57

 print using "#####"; mfdsa(k).t_prc

 locate 37,57

 print using "#####"; mfdsa(k).t_stp

end sub

sub record_project1(k,t0,f0,f1,f2,g0,g1,g2,CTRL)

 color RGBA0(MAIN,1),RGBA0(MAIN,2)

 for z0=f1 to f2

 for a0=g1 to g2

 select case grid(z0,a0)

 case is<>0:

 color 0,10

 if z0=f0 and a0=g0 then color 0,14

 locate (31-(a0-g1)*2),(5+(z0-f1)*3)

 print stack(grid(z0,a0)).dev_s+chr$(asc("*")*

 (stack(grid(z0,a0)).cntrl+1));

 if z0=f0 and a0=g0 then color 0,10

172

 case is=0:

 color 0,15

 if z0=f0 and a0=g0 then color 0,14

 locate (31-(a0-g1)*2),(5+(z0-f1)*3)

 print " ";

 if z0=f0 and a0=g0 then color 0,15

 end select

 if ((z0=0 or z0=mfdsa(k).n+1) and (a0>=0 and a0<=

 mfdsa(k).n+1)) or ((a0=0 or a0=mfdsa(k).n+1) and (z0

 >=0 and z0<=mfdsa(k).n+1)) then

 color 4,4

 if z0=f0 and a0=g0 then color 0,14

 locate (31-(a0-g1)*2),(5+(z0-f1)*3)

 print " ";

 if z0=f0 and a0=g0 then color 4,4

 end if

 next a0

 next z0

 color RGBA0(MAIN,1),RGBA0(MAIN,2)

 locate 34,24

 print using "#####"; mfdsa(k).n

 locate 34,30

 print using "#####"; mfdsa(k).n

 locate 36,24

 print using "#####"; f0

 locate 36,30

 print using "#####"; g0

 locate 38,24

 print using "#####"; t0

 locate 38,30

 print using "#####"; mfdsa(k).t_stp

 locate 41,20

 print using "\ \"; mkgnw$(CTRL)

end sub

sub record_project2(k)

 locate 11,59

 print using "\ \"; idxB(k).fmfdsa

 locate 12,59

 print using "\ \"; idxB(k).fname

 locate 13,59

 print using "\ \"; mkcda$(mfdsa(k).acode)

 locate 14,59

 print using "\ \"; mfdsa(k).c_dte

 locate 15,59

 print using "\ \"; mfdsa(k).c_tme

 locate 16,59

 print using "\ \"; mkcdz$(mfdsa(k).zcode)

 locate 20,59

 print using "#####"; mfdsa(k).n

 locate 21,59

 print using "#####"; mfdsa(k).m

 locate 22,59

 print using "#####"; mfdsa(k).t

end sub

173

sub record_project3(k)

 locate 29,59

 print using "#####"; stack(k).dev_n

 locate 29,73

 print using "!"; stack(k).dev_s

 locate 31,60

 print using "#####"; stack(k).cur_x

 locate 31,67

 print using "#####"; stack(k).cur_y

 locate 32,60

 print using "#####"; dev(stack(k).dev_n).ini_x

 locate 32,67

 print using "#####"; dev(stack(k).dev_n).ini_y

 locate 33,60

 print using "#####"; stack(k).fin_x

 locate 33,67

 print using "#####"; stack(k).fin_y

 locate 34,60

 print using "#.###"; dev(stack(k).dev_n).off_x

 locate 34,67

 print using "#.###"; dev(stack(k).dev_n).off_y

 locate 36,59

 print using "##.####^^^^"; dev(stack(k).dev_n).mass

 locate 37,59

 print using "##.####^^^^"; dev(stack(k).dev_n).fric

 locate 38,59

 print using "##.####^^^^"; dev(stack(k).dev_n).size

 locate 39,59

 print using "#####"; stack(k).delta

 locate 41,59

 print using "!"; mkdrp$(stack(k).cntrl)

end sub

174

MODLIB Module:

sub export_devl(n,u)

 print #n,""

 print #n," Dev # (ini-X,ini-Y)<=>(fin-X,fin-Y)/(off-X,

 off-Y) Mass Fric Size Delta "

 print #n,"--

 --"

 for z0=1 to IDX(u,0)

 print #n,using " ##### ####_,#### ####_,####

 #.###_,#.### ##.####^^^^ ##.####^^^^ ##.####^^^^

 #### "; dev(IDX(u,z0)).dev_n; dev(IDX(u,z0)).ini_x;

 dev(IDX(u,z0)).ini_y; dev(IDX(u,z0)).fin_x; dev(IDX(u,

 z0)).fin_y; dev(IDX(u,z0)).off_x; dev(IDX(u,z0)).off_y;

 dev(IDX(u,z0)).mass; dev(IDX(u,z0)).fric; dev(IDX(u,

 z0)).size; dev(IDX(u,z0)).delta

 next z0

 print #n,"--

 --"

 print #n,""

end sub

sub export_lstl(n,u)

 print #n,""

 print #n," Lst # Dev # "

 print #n,"---------------"

 for z0=1 to IDX(u,0)

 print #n,using " ##### ##### "; lst(IDX(u,z0)).lst_n;

 lst(IDX(u,z0)).dev_n

 next z0

 print #n,"---------------"

 print #n,""

end sub

sub export_prcl(n,u)

 print #n,""

 print #n," Prc # Dev # Stp # Instruct MV

 (ini-X,ini-Y) <=> (fin-X,fin-Y) T-Count W-

 Count "

 print #n,"--

 --

 ------"

 for z0=1 to IDX(u,0)

 print #n,using " ##### ##### ##### \ \

 \ \ ####_,#### ####_,#### #####

 ##### "; prc(IDX(u,z0)).prc_n; prc(IDX(u,z0)).dev_n;

 prc(IDX(u,z0)).stp_n; prc(IDX(u,z0)).text;

 text$(prc(IDX(u,z0)).move); prc(IDX(u,z0)).ini_x;

 prc(IDX(u,z0)).ini_y; prc(IDX(u,z0)).fin_x; prc(IDX(u,

 z0)).fin_y; prc(IDX(u,z0)).t_cnt; prc(IDX(u,z0)).w_cnt

 next z0

 print #n,"--

 --

 ------"

 print #n,""

end sub

175

sub export_raw(n,k,u1,u2,u3)

 write #n,mfdsa(k).n,mfdsa(k).m,mfdsa(k).t,IDX(u1,0),IDX(u2,0)

 for z0=1 to IDX(u1,0)

 print #n,dev(IDX(u1,z0)).ini_x,dev(IDX(u1,z0)).ini_y,

 dev(IDX(u1,z0)).fin_x,dev(IDX(u1,z0)).fin_y,dev(IDX(u1,

 z0)).off_x,dev(IDX(u1,z0)).off_y,dev(IDX(u1,z0)).mass,

 dev(IDX(u1,z0)).fric,dev(IDX(u1,z0)).size,dev(IDX(u1,

 z0)).delta

 next z0

 for z0=1 to IDX(u2,0)

 print #n,lst(IDX(u2,z0)).dev_n

 next z0

end sub

sub export_stat(n,k,u1,u2,u3)

 print #n,""

 print #n," Dev # N.Lng C.Lng C.Stp C/N Ratio n^2

 Ratio MAX Ratio Vel. Drg. Wait "

 print #n,"--

 ---"

 tot_n_lng=0

 tot_c_lng=0

 tot_c_stp=0

 tot_c_nll=0

 for z0=1 to IDX(u1,0)

 n_lng=abs(dev(IDX(u1,z0)).fin_x-dev(IDX(u1,z0)).ini_x)

 +abs(dev(IDX(u1,z0)).fin_y-dev(IDX(u1,z0)).ini_y)

 c_lng=0

 c_stp=0

 c_nll=0

 for a0=1 to IDX(u3,0)

 if prc(IDX(u3,a0)).dev_n=dev(IDX(u1,z0)).dev_n then

 select case prc(IDX(u3,a0)).text

 case "MOVEMENT":

 select case prc(IDX(u3,a0)).move

 case is<>NL: c_lng=c_lng+1

 case is=NL: c_nll=c_nll+1

 end select

 c_stp=c_stp+1

 case "*!DROP!*":

 exit for

 end select

 end if

 next a0

 tot_n_lng=tot_n_lng+n_lng

 tot_c_lng=tot_c_lng+c_lng

 tot_c_stp=tot_c_stp+c_stp

 tot_c_nll=tot_c_nll+c_nll

 ratio_1!=c_lng/n_lng

 ratio_n!=ratio_1!/mfdsa(k).n/mfdsa(k).n

 ratio_m!=ratio_1!/mfdsa(k).m

 vel!=c_lng/c_stp

 drg!=c_nll/c_stp

176

 print #n,using " ##### ##### ##### ##### ##.####

 ##.#### ##.#### ##.### ##.### ##### ";

 dev(IDX(u1,z0)).dev_n; n_lng; c_lng; c_stp; ratio_1!;

 ratio_n!; ratio_m!; vel!; drg!; c_nll

 next z0

 print #n,"--

 ---"

 ratio_1!=tot_c_lng/tot_n_lng

 ratio_n!=ratio_1!/mfdsa(k).n/mfdsa(k).n

 ratio_m!=ratio_1!/mfdsa(k).m

 vel!=tot_c_lng/tot_c_stp

 drg!=tot_c_nll/tot_c_stp

 print #n,using " ##### ##### ##### ##.####

 ##.#### ##.#### ##.### ##.### ##### ";

 tot_n_lng; tot_c_lng; tot_c_stp; ratio_1!; ratio_n!; ratio_m!;

 vel!; drg!; tot_c_nll

 print #n,""

 print #n,using " Proc Step=>######"; mfdsa(k).t_prc

 print #n,using " Time Step=>######"; mfdsa(k).t_stp

 print #n,using " Proc/Time=>##.###"; mfdsa(k).t_prc/

 mfdsa(k).t_stp

 print #n,""

 print #n,using " Grid nxn=> ####"; mfdsa(k).n

 print #n,using " Max Dev=> #####"; mfdsa(k).m

 print #n,using " Trg Dev=> #####"; mfdsa(k).t

 print #n,""

end sub

sub import_dev(n1,n2,k,zmax)

 for z0=1 to zmax

 input #n2,ini_x,ini_y,fin_x,fin_y,off_x!,off_y!,mass!,

 fric!,size!,delta

 tpx=pack(n1,"",mfdsa(k).t_dev,"DEV")

 if tpx<>0 then

 dev(tpx).dev_n=tpx

 dev(tpx).ini_x=ini_x

 dev(tpx).ini_y=ini_y

 dev(tpx).fin_x=fin_x

 dev(tpx).fin_y=fin_y

 dev(tpx).off_x=off_x!

 dev(tpx).off_y=off_y!

 dev(tpx).mass=mass!

 dev(tpx).fric=fric!

 dev(tpx).size=size!

 dev(tpx).delta=delta

 dev(tpx).cntrl="*"

 save n1,tpx,"DEV"

 end if

 next z0

end sub

177

sub import_lst(n1,n2,k,zmax)

 for z0=1 to zmax

 input #n2,dev_n

 tpx=pack(n1,"",mfdsa(k).t_lst,"LST")

 if tpx<>0 then

 lst(tpx).lst_n=tpx

 lst(tpx).dev_n=dev_n

 lst(tpx).cntrl="*"

 save n1,tpx,"LST"

 end if

 next z0

end sub

function check_dev(k,dev_n)

 tpx=FAIL

 if dev_n>0 then

 if dev_n<=mfdsa(k).t_dev then

 if dev(dev_n).cntrl<>"*" then

 tpx=PASS

 end if

 end if

 end if

 return tpx

end function

function check_fin(k,cur_x,cur_y)

 tpx=FAIL

 if cur_x>0 and cur_x<mfdsa(k).n+1 then

 if cur_y>0 and cur_y<mfdsa(k).n+1 then

 tpx=PASS

 end if

 end if

 return tpx

end function

function check_gns(k1,k2,dev_n)

 tpx=PASS

 for z0=1 to mfdsa(k1).t_lst

 if z0<>k2 then

 if lst(z0).dev_n=dev_n then

 tpx=FAIL

 exit for

 end if

 end if

 next z0

 return tpx

end function

178

function check_ini(k,cur_x,cur_y)

 tpx=FAIL

 if cur_x=0 and (cur_y>0 and cur_y<

 mfdsa(k).n+1) then tpx=PASS

 if cur_x=mfdsa(k).n+1 and (cur_y>0 and cur_y<

 mfdsa(k).n+1) then tpx=PASS

 if cur_y=0 and (cur_x>0 and cur_x<

 mfdsa(k).n+1) then tpx=PASS

 if cur_y=mfdsa(k).n+1 and (cur_x>0 and cur_x<

 mfdsa(k).n+1) then tpx=PASS

 return tpx

end function

function check_mfsd(k,mass!,fric!,size!,delta)

 tpx=FAIL

 if mass!>=0 then

 if fric!>=0 then

 if size!>=0 then

 if delta>=0 and delta<=(mfdsa(k).n ^ (1/2)-1)/2 then

 tpx=PASS

 end if

 end if

 end if

 end if

 return tpx

end function

function check_off(off_x!,off_y!)

 tpx=FAIL

 if abs(off_x!)<1 then

 if abs(off_y!)<1 then

 tpx=PASS

 end if

 end if

 return tpx

end function

function check_sng(k1,k2,cur_x,cur_y)

 tpx=PASS

 for z0=1 to mfdsa(k1).t_dev

 if z0<>k2 then

 if dev(z0).cntrl<>"*" then

 if dev(z0).fin_x=cur_x then

 if dev(z0).fin_y=cur_y then

 tpx=FAIL

 exit for

 end if

 end if

 end if

 end if

 next z0

 return tpx

end function

179

ZCOMPILE Module:

sub zcompile(n,k)

 if mfdsa(k).acode<>FAIL then

 if mfdsa(k).n<>0 then

 if mfdsa(k).m<>0 then

 if mfdsa(k).t<>0 then

 if IDX(1,0)<>0 then

 if IDX(2,0)<>0 then

 if IDX(3,0)=0 then

 g =mfdsa(k).n

 max_dev=mfdsa(k).m

 trg_dev=mfdsa(k).t

 stp =1

 cur_dev=0

 tot_dev=IDX(2,0)

 cur_prc=0

 tot_prc=0

 t_cnt =0

 w_cnt =0

 erase stack

 for j=1 to max_dev

 stack_add n,stp,t_cnt,w_cnt

 next j

 grid_upd

 do

 active_dev=0

 killed_dev=0

 for j=1 to max_dev

 if stack(j).cntrl=PASS then

 active_dev=active_dev+1

 killed_dev=killed_dev+0

 build_ptable j

 CTRL=scan_ptable

 select case CTRL

 case LR,UD:

 stack(j).move=switch(CTRL)

 zrecord_prc n,stp,j,"MOVEMENT",t_cnt,

 w_cnt

 case NL:

 build_qtable j

 CTRL=scan_qtable

 select case CTRL

 case NL,UP,DN,LT,RT:

 stack(j).move=CTRL

 zrecord_prc n,stp,j,"MOVEMENT",

 t_cnt,w_cnt

 if CTRL=NL then

 active_dev=active_dev+0

 killed_dev=killed_dev+1

 end if

 end select

 end select

180

 if stack(j).cur_x=stack(j).fin_x then

 if stack(j).cur_y=stack(j).fin_y then

 active_dev=active_dev-1

 killed_dev=killed_dev*0

 w_cnt=w_cnt+0

 t_cnt=t_cnt+1

 stack(j).move=NL

 zrecord_prc n,stp,j,"*!DROP!*",

 t_cnt,w_cnt

 stack_sub j

 end if

 end if

 end if

 next j

 if killed_dev=active_dev and active_dev<>0 then

 zrecord_prc n,stp,0,"*!FAIL!*",t_cnt,

 w_cnt

 mfdsa(k).zcode=FAIL

 exit do

 end if

 if w_cnt=tot_dev and tot_dev<>0 then

 zrecord_prc n,stp,0,"*!PASS!*",t_cnt,

 w_cnt

 mfdsa(k).zcode=PASS

 exit do

 end if

 if active_dev=0 then

 w_cnt=w_cnt+t_cnt

 t_cnt=t_cnt*0

 zrecord_prc n,stp,-1,"*!ERR.!*",t_cnt,

 w_cnt

 zrecord_prc n,stp,-1,"*!INS.!*",t_cnt,

 w_cnt

 for j=1 to max_dev

 stack_add n,stp,t_cnt,w_cnt

 next j

 end if

 if (active_dev+t_cnt)<trg_dev then

 stack_add n,stp,t_cnt,w_cnt

 end if

 grid_upd

 stp=stp+1

 loop

 mfdsa(k).t_prc=tot_prc

 mfdsa(k).t_stp=stp

 mfdsa(k).c_dte=date$

 mfdsa(k).c_tme=time$

 end if

 end if

 end if

 end if

 end if

 end if

 end if

end sub

181

ZEIPORT Module:

sub zexport(k,u1,u2,u3)

 CTRL$=ZHEAD$("Select Export Type: Dev-List-1 Lst-list-

 2 Prc-List-3 Statistic-4 RAW-5 [ESC]","12345"+

 Z_ESC$)

 if CTRL$<>Z_ESC$ then

 ZGFILE fl$

 if fl$<>"" then

 ZCMD 200,fl$,"O",PASS

 select case CTRL$

 case "1": export_devl 200,u1

 case "2": export_lstl 200,u2

 case "3": export_prcl 200,u3

 case "4": export_stat 200,k,u1,u2,u3

 case "5": export_raw 200,k,u1,u2,u3

 end select

 ZCMD 200,"","",FAIL

 end if

 end if

end sub

sub zimport(n,k)

 load n,k,"MFDSA"

 if mfdsa(k).t_dev=0 then

 if mfdsa(k).t_lst=0 then

 if mfdsa(k).t_prc=0 then

 ZGFILE fl$

 if fl$<>"" then

 ZCMD 200,fl$,"I",PASS

 input #200,mfdsa(k).n,mfdsa(k).m,mfdsa(k).t,zmax1,

 zmax2

 if zmax1*zmax2<>0 then

 import_dev n,200,k,zmax1

 import_lst n,200,k,zmax2

 end if

 ZCMD 200,"","",FAIL

 end if

 end if

 end if

 end if

 save n,k,"MFDSA"

end sub

sub zprntscrn()

 ZGFILE fl$

 if fl$<>"" then bsave fl$+".BMP",0

end sub

182

ZLISTANB Module:

sub zlist_A(n,k)

 gosub zlist_A_start

 gosub zlist_A_fresh1

 gosub zlist_A_fresh2

 gosub zlist_A_prompt

 gosub zlist_A_record1

 gosub zlist_A_record2

 do

 CTRL$=ZHEAD$("MENU: Add-A Edit-E Del-D Mode-

 [C/Z] Export-X PrntScrn-P [ESC]",Z_ARU$+Z_ARD$

 +Z_ARL$+Z_ARR$+Z_ARH$+Z_ARE$+Z_PGU$+Z_PGD$+

 Z_SPC$+Z_TAB$+"AED"+Z_UND$+"XP"+Z_ESC$)

 select case CTRL$

 case Z_ARU$,Z_ARD$,Z_ARL$,Z_ARR$,Z_ARH$,Z_ARE$,Z_PGU$,

 Z_PGD$:

 select case CTRL

 case 1: ZSYS f0,f1,f2,36,mfdsa(k).t_lst,CTRL$

 case 2: ZSYS g0,g1,g2,36,mfdsa(k).t_dev,CTRL$

 end select

 gosub zlist_A_record1

 gosub zlist_A_record2

 case Z_SPC$:

 gosub zlist_A_start

 gosub zlist_A_fresh1

 gosub zlist_A_fresh2

 gosub zlist_A_prompt

 gosub zlist_A_record1

 gosub zlist_A_record2

 case Z_TAB$:

 select case CTRL

 case 1: CTRL=2: tpa=ACT2: tpb=ACT1

 case 2: CTRL=1: tpa=ACT1: tpb=ACT2

 end select

 gosub zlist_A_prompt

 gosub zlist_A_record1

 gosub zlist_A_record2

 case "A":

 zrecord_dnl n,k,0,0,0,0,"A"

 gosub zlist_A_fresh1

 gosub zlist_A_fresh2

 gosub zlist_A_prompt

 gosub zlist_A_record1

 gosub zlist_A_record2

 case "X":

 zexport k,1,2,4

 case "P":

 zprntscrn

183

 case "E","D",Z_UND$:

 if (CTRL=1 and mfdsa(k).t_lst<>0) or (CTRL=2 and

 mfdsa(k).t_dev<>0) then

 select case CTRL$

 case "E":

 select case CTRL

 case 1: zrecord_dnl n,k,f0,f1,f2,1,"E"

 case 2: zrecord_dnl n,k,g0,g1,g2,2,"E"

 end select

 gosub zlist_A_record1

 gosub zlist_A_record2

 case "D":

 select case CTRL

 case 1: zrecord_dnl n,k,f0,0,0,1,"D"

 case 2: zrecord_dnl n,k,g0,0,0,2,"D"

 end select

 gosub zlist_A_record1

 gosub zlist_A_record2

 case Z_UND$:

 select case CTRL

 case 1: zrecord_dnl n,k,f0,0,0,1,Z_UND$

 case 2: zrecord_dnl n,k,g0,0,0,2,Z_UND$

 end select

 gosub zlist_A_record1

 gosub zlist_A_record2

 end select

 end if

 case Z_ESC$:

 exit do

 end select

 loop

 exit sub

zlist_A_start:

CTRL=1: tpa=ACT1: tpb=ACT2

return

zlist_A_fresh1:

ZSYS f0,f1,f2,36,mfdsa(k).t_lst,Z_ARH$

return

zlist_A_fresh2:

ZSYS g0,g1,g2,36,mfdsa(k).t_dev,Z_ARH$

return

zlist_A_prompt:

prompt_list_A "D&L Input "+"["+idxB(k).fmfdsa+"]",tpa,tpb

return

zlist_A_record1:

record_list_A1 f0,f1,f2

return

zlist_A_record2:

record_list_A2 g0,g1,g2

return

end sub

184

sub zlist_B(n,k)

 ZCLEAR

 gosub zlist_B_start

 gosub zlist_B_fresh1

 gosub zlist_B_fresh2

 gosub zlist_B_prompt

 gosub zlist_B_record

 do

 CTRL$=ZHEAD$("MENU: Export-X PrntScrn-P [ESC]",

 Z_ARU$+Z_ARD$+Z_ARL$+Z_ARR$+Z_ARH$+Z_ARE$+Z_PGU$

 +Z_PGD$+Z_SPC$+"XP"+Z_ESC$)

 select case CTRL$

 case Z_PGU$,Z_PGD$:

 ZSYS f0,f1,f2,mfdsa(k).t_dev+1,mfdsa(k).t_dev+1,

 CTRL$

 gosub zlist_B_fresh2

 gosub zlist_B_prompt

 gosub zlist_B_record

 case Z_ARU$,Z_ARD$,Z_ARL$,Z_ARR$,Z_ARH$,Z_ARE$:

 ZSYS g0,g1,g2,36,IDX(8,u),CTRL$

 gosub zlist_B_record

 case Z_SPC$:

 gosub zlist_B_start

 gosub zlist_B_fresh1

 gosub zlist_B_fresh2

 gosub zlist_B_prompt

 gosub zlist_B_record

 case "X":

 zexport k,1,2,8

 case "P":

 zprntscrn

 case Z_ESC$:

 exit do

 end select

 loop

 ZCLEAR

 exit sub

zlist_B_start:

return

zlist_B_fresh1:

ZSYS f0,f1,f2,mfdsa(k).t_dev+1,mfdsa(k).t_dev+1,Z_ARH$

return

zlist_B_fresh2:

if f0-1<>0 then HASH0$(1)=mkshort$(f0-1) else ZCLEAR

sift 4,8

ZSYS g0,g1,g2,36,IDX(8,u),Z_ARH$

return

zlist_B_prompt:

prompt_list_B "*P* Output "+"["+idxB(k).fmfdsa+"]"+"

D:"+ZTEXT$(str$(f0-1),"0",5,"R")

return

185

zlist_B_record:

record_list_B g0,g1,g2,8

return

end sub

186

ZPROJECT Module:

sub zproject(k)

 ZCMD 100,idxB(k).fmfdsa,"B",PASS

 load 100,k,"MFDSA"

 gosub zproject_start

 gosub zproject_fresh1

 gosub zproject_fresh2

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 do

 CTRL$=ZHEAD$("MENU: D&L Input-A *P* Output -B

 Compile-C Export-X Import-M Trace-T PrntScrn

 -P [ESC]",Z_ARU$+Z_ARD$+Z_ARL$+Z_ARR$+Z_ARH$+

 Z_ARE$+Z_PGU$+Z_PGD$+Z_SPC$+Z_TAB$+"ABCXMTP"+

 Z_ESC$)

 select case CTRL$

 case Z_ARU$,Z_ARD$,Z_ARL$,Z_ARR$:

 select case CTRL

 case 1: gosub zproject_ctrl_space1

 case 2: gosub zproject_ctrl_space2

 end select

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 case Z_ARH$,Z_ARE$,Z_PGU$,Z_PGD$:

 gosub zproject_ctrl_time

 gosub zproject_fresh2

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 case Z_SPC$:

 gosub zproject_start

 gosub zproject_fresh1

 gosub zproject_fresh2

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 case Z_TAB$:

 select case CTRL

 case 1: CTRL=2

 case 2: CTRL=1

 end select

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

187

 case "A":

 zlist_A 100,k

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 case "B":

 zlist_B 100,k

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 case "C":

 zcompile 100,k

 gosub zproject_start

 gosub zproject_fresh1

 gosub zproject_fresh2

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 case "X":

 zexport k,1,2,4

 case "M":

 zimport 100,k

 case "T":

 proj_trace k,f0,g0

 gosub zproject_prompt

 gosub zproject_record1

 gosub zproject_record2

 gosub zproject_record3

 case "P":

 zprntscrn

 case Z_ESC$:

 exit do

 end select

 loop

 save 100,k,"MFDSA"

 ZCMD 100,"","",FAIL

 exit sub

zproject_start:

build_dlp 100,1,mfdsa(k).t_dev,"DEV"

build_dlp 100,2,mfdsa(k).t_lst,"LST"

build_dlp 100,4,mfdsa(k).t_prc,"PRC"

CTRL=1

return

zproject_fresh1:

t0=1: t1=1: t2=mfdsa(k).t_stp: tsize=1: tleng=t2

f0=0: f1=0: f2=mfdsa(k).n+1: fsize=12: fleng=f2: if f2>fsize then

f2=fsize-1

g0=0: g1=0: g2=mfdsa(k).n+1: gsize=12: gleng=g2: if g2>gsize then

g2=gsize-1

return

188

zproject_fresh2:

proj_grid proj_stack(k,t0)

return

zproject_prompt:

prompt_project "["+idxB(k).fmfdsa+"]"

return

zproject_record1:

record_project1 k,t0,f0,f1,f2,g0,g1,g2,CTRL

return

zproject_record2:

record_project2 k

return

zproject_record3:

record_project3 grid(f0,g0)

return

zproject_ctrl_time:

select case CTRL$

case Z_ARH$: t0=t1

case Z_ARE$: t0=t2

case Z_PGU$: if t0<t2 then t0=t0+1

case Z_PGD$: if t0>t1 then t0=t0-1

end select

return

zproject_ctrl_space1:

select case CTRL$

case Z_ARU$: if g0<g2 then g0=g0+1

case Z_ARD$: if g0>g1 then g0=g0-1

case Z_ARL$: if f0>f1 then f0=f0-1

case Z_ARR$: if f0<f2 then f0=f0+1

end select

return

zproject_ctrl_space2:

select case CTRL$

case Z_ARU$: if g2<gleng then g2=g2+1: g1=(g2-gsize)+1: if g0<g1

then g0=g1

case Z_ARD$: if g1>0 then g1=g1-1: g2=(g1+gsize)-1: if g0>g2

then g0=g2

case Z_ARL$: if f1>0 then f1=f1-1: f2=(f1+fsize)-1: if f0>f2

then f0=f2

case Z_ARR$: if f2<fleng then f2=f2+1: f1=(f2-fsize)+1: if f0<f1

then f0=f1

end select

return

end sub

189

ZRECORD Module:

sub zrecord_dnl(n,k,f0,f1,f2,CTRL,CTRL$)

 if mfdsa(k).acode<>FAIL then

 select case CTRL$

 case "A":

 f0=pack(n,"",mfdsa(k).t_lst,"LST")

 f0=pack(n,"",mfdsa(k).t_dev,"DEV")

 case "E":

 select case CTRL

 case 1:

 load n,f0,"LST"

 dev_n=val(ZINPUT$(str$(lst(f0).dev_n),5,5,8+(f0

 -f1),5,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if check_dev(k,dev_n)<>FAIL then

 if check_gns(k,f0,dev_n)<>FAIL then

 lst(f0).dev_n=dev_n

 end if

 end if

 save n,f0,"LST"

 case 2:

 CTRL$=ZHEAD$("Select Edit Type: Ini-X,Ini-Y-1

 Fin-X,Fin-Y-2 Off-X,Off-Y-3

 Mass/Fric/Size/Delta-4 [ESC]","1234"+Z_ESC$)

 if CTRL$<>Z_ESC$ then

 load n,f0,"DEV"

 select case CTRL$

 case "1":

 ini_x=val(ZINPUT$(str$(dev(f0).ini_x),4,4,8+

 (f0-f1),26,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 ini_y=val(ZINPUT$(str$(dev(f0).ini_y),4,4,8+

 (f0-f1),33,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if check_ini(k,ini_x,ini_y)<>FAIL then

 dev(f0).ini_x=ini_x

 dev(f0).ini_y=ini_y

 end if

 case "2":

 fin_x=val(ZINPUT$(str$(dev(f0).fin_x),4,4,8+

 (f0-f1),45,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 fin_y=val(ZINPUT$(str$(dev(f0).fin_y),4,4,8+

 (f0-f1),52,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if check_fin(k,fin_x,fin_y)<>FAIL then

 if check_sng(k,f0,fin_x,fin_y)<>FAIL then

 dev(f0).fin_x=fin_x

 dev(f0).fin_y=fin_y

 end if

 end if

 case "3":

 off_x!=val(ZINPUT$(str$(dev(f0).off_x),5,5,8+

 (f0-f1),61,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 off_y!=val(ZINPUT$(str$(dev(f0).off_y),5,5,8+

 (f0-f1),68,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if check_off(off_x!,off_y!)<>FAIL then

 dev(f0).off_x=off_x!

 dev(f0).off_y=off_y!

 end if

190

 case "4":

 mass!=val(ZINPUT$(str$(dev(f0).mass),11,11,8+

 (f0-f1),76,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 fric!=val(ZINPUT$(str$(dev(f0).fric),11,11,8+

 (f0-f1),89,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 size!=val(ZINPUT$(str$(dev(f0).size),11,11,8+

 (f0-f1),102,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 delta=val(ZINPUT$(str$(dev(f0).delta),4,4,8+

 (f0-f1),119,RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if check_mfsd(k,mass!,fric!,size!,delta)<>FAIL

 then

 dev(f0).mass=mass!

 dev(f0).fric=fric!

 dev(f0).size=size!

 dev(f0).delta=delta

 end if

 end select

 save n,f0,"DEV"

 end if

 end select

 case "D":

 select case CTRL

 case 1:

 load n,f0,"LST"

 lst(f0).lst_n=lst(f0).lst_n

 lst(f0).dev_n=0

 lst(f0).cntrl="*"

 save n,f0,"LST"

 case 2:

 load n,f0,"DEV"

 dev(f0).dev_n=dev(f0).dev_n

 dev(f0).ini_x=0

 dev(f0).ini_y=0

 dev(f0).fin_x=0

 dev(f0).fin_y=0

 dev(f0).off_x=0

 dev(f0).off_y=0

 dev(f0).mass=0

 dev(f0).fric=0

 dev(f0).size=0

 dev(f0).delta=0

 dev(f0).cntrl="*"

 save n,f0,"DEV"

 for z0=1 to mfdsa(k).t_lst

 if lst(z0).dev_n=dev(f0).dev_n then

 zrecord_dnl n,k,z0,0,0,1,"D"

 end if

 next z0

 end select

191

 case Z_UND$:

 select case CTRL

 case 1:

 load n,f0,"LST"

 if dev(lst(f0).dev_n).cntrl="#" then

 select case lst(f0).cntrl

 case "*": lst(f0).cntrl="#"

 case "#": lst(f0).cntrl="*"

 end select

 end if

 save n,f0,"LST"

 case 2:

 if check_ini(k,dev(f0).ini_x,dev(f0).ini_y)<>FAIL

 then

 if check_fin(k,dev(f0).fin_x,dev(f0).fin_y)<>FAIL

 then

 if check_sng(k,f0,dev(f0).fin_x,dev(f0).fin_y)<>

 FAIL then

 if check_off(dev(f0).off_x,dev(f0).off_y)<>FAIL

 then

 if check_mfsd(k,dev(f0).mass,dev(f0).fric,

 dev(f0).size,dev(f0).delta)<>FAIL then

 load n,f0,"DEV"

 select case dev(f0).cntrl

 case "*":

 dev(f0).cntrl="#"

 case "#":

 dev(f0).cntrl="*"

 for z0=1 to mfdsa(k).t_lst

 if lst(z0).dev_n=dev(f0).dev_n then

 load n,z0,"LST"

 lst(z0).cntrl=dev(f0).cntrl

 save n,z0,"LST"

 end if

 next z0

 end select

 save n,f0,"DEV"

 end if

 end if

 end if

 end if

 end if

 end select

 end select

 end if

end sub

192

sub zrecord_mfdsa(n,k,CTRL$)

 if k<>0 then load n,k,"IDXB"

 select case CTRL$

 case "A":

 k=pack(n,"MFDSA00000",idxA.a_record,"MFDSA")

 if k<>0 then

 prompt_main "Add Project"

 record_main2 k

 tpx$=ZINPUT$(idxB(k).fname,32,32,13,57,RGBA0(MAIN,

 2),RGBA0(MAIN,1))

 if trim$(tpx$)<>"" then idxB(k).fname=tpx$

 end if

 case "E":

 if mfdsa(k).acode<>FAIL then

 prompt_main "Edit Project"

 record_main2 k

 CTRL$=ZHEAD$("Select Edit Type: File Name-1 Grid

 nxn-2 Max Dev-3 Trg Dev-4 [ESC]","1234"+

 Z_ESC$)

 if CTRL$<>Z_ESC$ then

 ZCMD 100,idxB(k).fmfdsa,"B",PASS

 load 100,k,"MFDSA"

 select case CTRL$

 case "1":

 tpx$=ZINPUT$(idxB(k).fname,32,32,13,57,

 RGBA0(MAIN,2),RGBA0(MAIN,1))

 if trim$(tpx$)<>"" then idxB(k).fname=tpx$

 case "2":

 if mfdsa(k).t_dev=0 then

 if mfdsa(k).t_lst=0 then

 tpx=val(ZINPUT$(str$(mfdsa(k).n),5,5,25,57,

 RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if tpx>=10 and tpx<=1024 then mfdsa(k).n=tpx

 end if

 end if

 case "3":

 if mfdsa(k).t_prc=0 then

 tpx=val(ZINPUT$(str$(mfdsa(k).m),5,5,26,57,

 RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if tpx>=0 then mfdsa(k).m=tpx

 end if

 case "4":

 if mfdsa(k).t_prc=0 then

 tpx=val(ZINPUT$(str$(mfdsa(k).t),5,5,27,57,

 RGBA0(MAIN,2),RGBA0(MAIN,1)))

 if tpx>=0 then mfdsa(k).t=tpx

 end if

 end select

 save 100,k,"MFDSA"

 ZCMD 100,"","",FAIL

 end if

 end if

193

 case "D":

 if mfdsa(k).acode<>FAIL then

 prompt_main "Del Project"

 record_main2 k

 CTRL$=ZHEAD$("WARNING!! DEL CANNOT BE REVERSED!!

 CONTINUE? Y-1 N-2 [ESC]","12"+Z_ESC$)

 if CTRL$="1" then

 idxA.a_record=idxA.a_record-0

 idxA.r_record=idxA.r_record-1

 idxB(k).fmfdsa=""

 idxB(k).fname=""

 idxB(k).cntrl="*"

 kill "MFDSA"+ZTEXT$(str$(tpx),"0",5,"R")

 end if

 end if

 case Z_UND$:

 ZCMD 100,idxB(k).fmfdsa,"B",PASS

 load 100,k,"MFDSA"

 select case mfdsa(k).acode

 case FAIL: mfdsa(k).acode=PASS

 case PASS: mfdsa(k).acode=FAIL

 end select

 save 100,k,"MFDSA"

 ZCMD 100,"","",FAIL

 end select

 if k<>0 then save n,k,"IDXB"

end sub

sub zrecord_prc(n,stp,j,tpx$,t_cnt,w_cnt)

 cur_prc=pack(n,tpx$,tot_prc,"PRC")

 select case j

 case is<=0:

 prc(cur_prc).dev_n=-1

 prc(cur_prc).stp_n=stp

 prc(cur_prc).move=NL

 case is> 0:

 prc(cur_prc).dev_n=stack(j).dev_n

 prc(cur_prc).stp_n=stp

 prc(cur_prc).move=stack(j).move

 end select

 if j>0 then

 prc(cur_prc).ini_x=stack(j).cur_x

 prc(cur_prc).ini_y=stack(j).cur_y

 grid_sub j

 select case stack(j).move

 case UP: stack(j).cur_y=stack(j).cur_y+1

 case DN: stack(j).cur_y=stack(j).cur_y-1

 case LT: stack(j).cur_x=stack(j).cur_x-1

 case RT: stack(j).cur_x=stack(j).cur_x+1

 end select

 grid_add j

 prc(cur_prc).fin_x=stack(j).cur_x

 prc(cur_prc).fin_y=stack(j).cur_y

 end if

194

 prc(cur_prc).t_cnt=t_cnt

 prc(cur_prc).w_cnt=w_cnt

 save n,cur_prc,"PRC"

end sub

sub zreset(k)

 if mfdsa(k).acode<>FAIL then

 CTRL$=ZHEAD$("WARNING!! RESET CANNOT BE REVERSED!!

 CONTINUE? Y-1 N-2 [ESC]","12"+Z_ESC$)

 if CTRL$="1" then

 CTRL$=ZHEAD$("Select Reset Type: D&L Input-1 *P*

 Output-2 [ESC]","12"+Z_ESC$)

 if CTRL$<>Z_ESC$ then

 ZCMD 100,idxB(k).fmfdsa,"B",PASS

 ZCMD 200,"MFDSA00000","B",PASS

 load 100,k,"MFDSA"

 select case CTRL$

 case "1":

 mfdsa(k).acode=PASS

 mfdsa(k).zcode=FAIL

 mfdsa(k).t_dev=0

 mfdsa(k).t_lst=0

 mfdsa(k).t_prc=0

 mfdsa(k).t_stp=0

 mfdsa(k).c_dte=date$

 mfdsa(k).c_tme=time$

 case "2":

 mfdsa(k).acode=PASS

 mfdsa(k).zcode=FAIL

 mfdsa(k).t_dev=mfdsa(k).t_dev

 mfdsa(k).t_lst=mfdsa(k).t_lst

 mfdsa(k).t_prc=0

 mfdsa(k).t_stp=0

 mfdsa(k).c_dte=date$

 mfdsa(k).c_tme=time$

 end select

 for z0=1 to mfdsa(k).t_dev

 load 100,z0,"DEV"

 save 200,z0,"DEV"

 next z0

 for z0=1 to mfdsa(k).t_lst

 load 100,z0,"LST"

 save 200,z0,"LST"

 next z0

 save 200,k,"MFDSA"

 ZCMD 200,"","",FAIL

 ZCMD 100,"","",FAIL

 kill idxB(k).fmfdsa

 name "MFDSA00000",idxB(k).fmfdsa

 end if

 end if

 end if

end sub

195

APPENDIX C

MAGSTAT APPLICATION CODE

The complete MagStat program written in freeBASIC [112]; the application is divided

into modules MAIN, TYPE, VECT, FILE, CALB, CALU, CALF, CALS, and CALCCA.

MAIN controls all functions and modules

 command_break decodes the inputted line

 command_parse executes the inputted line

 command_ready obtains the inputted line

TYPE contains data type struture, variable, and function

definitions

VECT contains functions that define and maintain the

vector data structure and its functions

 xVect initializes a vector

 aVect adds two vectors

 sVect subtracts two vectors

 mVect multiplies a vector by a scalar

 dVect divides a vector by a scalar

 dProd the dot product of two vectors

 xProd the cross product of two vectors

 magRt returns the magnitude of a vector

 angRt returns the angle of a vector

 magSt sets the magnitude of a vector

 nrmSt normalizes a vectors

FILE contains the functions that define the file system's

input and output functions; used by the MAIN module

 load_file_ema loads the array data file

 load_file_sml loads the layer data file

 out1d_r outputs "y v. x" plot, scalar input

 out1d_v outputs "y v. x" plot, vector input

 out2d_r outputs "surface" plot, scalar input

 out2d_v outputs "surface" plot, vector input

 read_data_r reads scalar data from file

 read_data_v reads vector data from file

 save_file_ema saves the array data file

 save_file_sml saves the layer data file

 write_data_r writes scalar data to file

 write_data_v writes vector data to file

196

CALB contains the functions that calculate the magnetic

field; used by the CALCCA and MAIN modules

 f_D calculates the denominator factor

 f_N calculates the numerator factor

 f_X calculates the magnetic field x-component

 f_Y calculates the magnetic field y-component

 f_Z calculates the magnetic field z-component

 B_INT integrates the magnetic field components

 B_CAL calculates the magnetic field

 f_B magnetic field calculator

CALU contains the functions that calculate the energy;

used by the MAIN module

 U_CAL calculates the magnetic energy

 f_U magnetic energy calculator

CALF contains the functions that calculate the magnetic

force; used by the CALCCA and MAIN modules

 F_CAL calculates the magnetic force

 f_F magnetic force calculator

CALS contains the functions that calculate the total

force; used by the CALCCA and MAIN modules

 S_CAL calculates the total force

 f_S total force calculator

CALCCA contains the functions that calculate the exact CCA;

used by the MAIN module

 BF_CAL calculates the magnetic field and force

 I_rampD decreases the element current

 I_rampU increases the element current

 I_setup initializes the element current

 swap_e sets up the array data

 swap_s sets up the layer data

 f_CCA CCA calculator

197

MAIN Module:

defint a-z

#define declarefunc declare function

#define declarevoid declare sub

#define func function

#define void sub

#define global dim shared

#define cvr cvd

#define mkr mkd

#define cvn cvi

#define mkn mki

#define real double

#define nmbr integer

#define char string

option base 1

#include "type.bi"

#include "vect.bi"

#include "file.bi"

#include "calB.bi"

#include "calU.bi"

#include "calF.bi"

#include "calS.bi"

#include "calCCA.bi"

global AX$, BX$(0 to 10)

cls

print "=================================="

print " *** MFDSA - MagStat *** "

print " Build Ver. #3.0 (in freeBASIC) "

print " Completed - 2010-10-18 "

print " Program by Rene David Rivero "

print "=================================="

print

print

do

 command_ready tp0$

 command_break tp0$, AX$, BX$()

 command_parse AX$, BX$()

 print

loop until AX$ = "Q"

198

void command_break(tp0$, AX$, BX$())

 tp0 = instr(tp0$, " ")

 if tp0 = 0 then tp0 = len(tp0$) + 1

 AX$ = trim$(mid$(tp0$, 1, tp0 - 1))

 tp0$ = trim$(mid$(tp0$, tp0 + 1))

 if tp0$ <> "" then

 BX$(0) = mkn(0)

 do

 BX$(0) = mkn(cvn(BX$(0)) + 1)

 tp0 = instr(tp0$, ",")

 if tp0 = 0 then tp0 = len(tp0$) + 1

 BX$(cvn(BX$(0))) = trim$(mid$(tp0$, 1, tp0 - 1))

 tp0$ = trim$(mid$(tp0$, tp0 + 1))

 loop until tp0$ = ""

 end if

end void

void command_parse(AX$, BX$())

 select case AX$

 case "NEW":

 erase ema, sml

 eMax = 0

 sMax = 0

 TOL = 10e-12

 sigma1 = 0.95

 sigma2 = 0.05

 omega0 = 0.50

 alpha0 = 1

 sr2 = 50

 case "LOADEMA":

 if cvn(BX$(0)) = 1 then load_file_ema BX$(1)

 case "SAVEEMA":

 if cvn(BX$(0)) = 1 then save_file_ema BX$(1)

 case "EMA":

 if cvn(BX$(0)) = 9 then

 ema(val(BX$(1))).R0 = nullV

 ema(val(BX$(1))).R1.x = val(BX$(2))

 ema(val(BX$(1))).R1.y = val(BX$(3))

 ema(val(BX$(1))).R1.z = val(BX$(4))

 ema(val(BX$(1))).L = val(BX$(5))

 ema(val(BX$(1))).N = val(BX$(6))

 ema(val(BX$(1))).LN = ema(val(BX$(1))).L /

 ema(val(BX$(1))).N

 ema(val(BX$(1))).I0 = 0

 ema(val(BX$(1))).I1 = val(BX$(7))

 ema(val(BX$(1))).Im = val(BX$(8))

 ema(val(BX$(1))).a = val(BX$(9))

 magSt ema(val(BX$(1))).R0

 magSt ema(val(BX$(1))).R1

 end if

199

 case "EMA?":

 if cvn(BX$(0)) = 2 then

 print "EMA R1.x R1.y R1.z L N

 I1 Im a "

 print "--

 -----------------------"

 for Z = val(BX$(1)) to val(BX$(2))

 print using "### +#.##^^^^ +#.##^^^^ +#.##^^^^ #.##^^^^

 #### #.##^^^^ #.##^^^^ #.##^^^^"; Z; ema(Z).R1.x;

 ema(Z).R1.y; ema(Z).R1.z; ema(Z).L; ema(Z).N; ema(Z).I1;

 ema(Z).Im; ema(Z).a

 next Z

 print "--

 -----------------------"

 end if

 case "EMAX":

 if cvn(BX$(0)) = 1 then eMAX = val(BX$(1))

 case "EMAX?":

 print eMAX

 case "EBSU":

 if cvn(BX$(0)) = 1 then eBSU = val(BX$(1))

 case "EBSU?":

 print eBSU

 case "LOADSML":

 if cvn(BX$(0)) = 1 then load_file_sml BX$(1)

 case "SAVESML":

 if cvn(BX$(0)) = 1 then save_file_sml BX$(1)

 case "SML":

 if cvn(BX$(0)) = 10 then

 sml(val(BX$(1))).R0 = nullV

 sml(val(BX$(1))).R1.x = val(BX$(2))

 sml(val(BX$(1))).R1.y = val(BX$(3))

 sml(val(BX$(1))).R1.z = val(BX$(4))

 sml(val(BX$(1))).M.x = val(BX$(5))

 sml(val(BX$(1))).M.y = val(BX$(6))

 sml(val(BX$(1))).M.z = val(BX$(7))

 sml(val(BX$(1))).N = val(BX$(8))

 sml(val(BX$(1))).MN = dVect(sml(val(BX$(1))).M,

 sml(val(BX$(1))).N)

 sml(val(BX$(1))).W = val(BX$(9))

 sml(val(BX$(1))).x0 = 0

 sml(val(BX$(1))).x1 = val(BX$(10))

 magSt sml(val(BX$(1))).R0

 magSt sml(val(BX$(1))).R1

 magSt sml(val(BX$(1))).M

 magSt sml(val(BX$(1))).MN

 end if

 case "SML?":

 if cvn(BX$(0)) = 2 then

 print "SML R1.x R1.y R1.z M.x M.y

 M.z N W x1 "

 print "--

 ---------------------------"

200

 for Z = val(BX$(1)) to val(BX$(2))

 print using "### +#.##^^^^ +#.##^^^^ +#.##^^^^ #.#^^^^

 #.#^^^^ #.#^^^^ #### #.#^^^^ #.#^^^^"; Z; sml(Z).R1.x;

 sml(Z).R1.y; sml(Z).R1.z; sml(Z).M.x; sml(Z).M.y;

 sml(Z).M.z; sml(Z).N; sml(Z).W; sml(Z).x1

 next Z

 print "--

 ---------------------------"

 end if

 case "SMAX":

 if cvn(BX$(0)) = 1 then sMAX = val(BX$(1))

 case "SMAX?":

 print sMAX

 case "SBSU":

 if cvn(BX$(0)) = 1 then sBSU = val(BX$(1))

 case "SBSU?":

 print sBSU

 case "TOL":

 if cvn(BX$(0)) = 1 then TOL = val(BX$(1))

 case "TOL?":

 print TOL

 case "SR2":

 if cvn(BX$(0)) = 1 then sr2 = val(BX$(1))

 case "SR2?":

 print sr2

 case "SIGMA1":

 if cvn(BX$(0)) = 1 then sigma1 = val(BX$(1))

 case "SIGMA1?":

 print sigma1

 case "SIGMA2":

 if cvn(BX$(0)) = 1 then sigma2 = val(BX$(1))

 case "SIGMA2?":

 print simga2

 case "OMEGA0":

 if cvn(BX$(0)) = 1 then omega0 = val(BX$(1))

 case "OMEGA0?":

 print omega0

 case "ALPHA0":

 if cvn(BX$(0)) = 1 then alpha0 = val(BX$(1))

 case "ALPHA0?":

 print alpha0

 case "B":

 if cvn(BX$(0)) = 2 then f_B BX$(1), sml(val(BX$(2)))

 case "U":

 if cvn(BX$(0)) = 3 then f_U BX$(1), BX$(2), sml(val(BX$(3)))

 case "F":

 if cvn(BX$(0)) = 3 then f_F BX$(1), BX$(2), sml(val(BX$(3)))

 case "S":

 if cvn(BX$(0)) = 3 then f_S BX$(1), BX$(2), sml(val(BX$(3)))

 case "CCA":

 if cvn(BX$(0)) = 2 then f_CCA BX$(1), sml(val(BX$(2)))

 case "1DR":

 if cvn(BX$(0)) = 6 then out1d_r BX$(1), BX$(2), BX$(3),

 val(BX$(4)), val(BX$(5)), sml(val(BX$(6)))

201

 case "1DV":

 if cvn(BX$(0)) = 7 then out1d_v BX$(1), BX$(2), BX$(3),

 BX$(4), val(BX$(5)), val(BX$(6)), sml(val(BX$(7)))

 case "2DR":

 if cvn(BX$(0)) = 5 then out2d_r BX$(1), BX$(2), BX$(3),

 val(BX$(4)), sml(val(BX$(5)))

 case "2DV":

 if cvn(BX$(0)) = 6 then out2d_v BX$(1), BX$(2), BX$(3),

 BX$(4), val(BX$(5)), sml(val(BX$(6)))

 case "FEED":

 if cvn(BX$(0)) = 1 then

 open BX$(1) for input as #100

 do

 line input #100, tp0$

 command_break tp0$, AX$, BX$()

 if AX$ <> "FEED" then command_parse AX$, BX$()

 loop until AX$ = "END" or EOF(100)

 close #100

 end if

 case "END":

 case "Q":

 end select

end void

void command_ready(tp0$)

 print "Ready : ";

 line input tp0$

 tp0$ = ucase$(trim$(tp0$))

end void

202

TYPE Module:

type ema_space

 R0 as vect

 R1 as vect

 L as real

 N as real

 LN as real

 I0 as real

 I1 as real

 Im as real

 a as real

end type

global ema(32767) as ema_space, eMAX as nmbr, eBSU as real

type sml_space

 R0 as vect

 R1 as vect

 M as vect

 N as real

 MN as vect

 W as real

 x0 as real

 x1 as real

end type

global sml(32767) as sml_space, sMAX as nmbr, sBSU as real

global PI as real, u0 as real, TOL as real, sigma1 as real,

sigma2 as real, omega0 as real, alpha0 as real, sr2 as nmbr

PI = 3.14159

u0 = 1.25663 * 10^(-6)

TOL = 10e-12

sigma1 = 0.95

sigma2 = 0.05

omega0 = 0.50

alpha0 = 1

sr2 = 50

declarevoid load_file_ema(...)

declarevoid load_file_sml(...)

declarevoid out1d_r(...)

declarevoid out1d_v(...)

declarevoid out2d_r(...)

declarevoid out2d_v(...)

declarevoid read_data_r(...)

declarevoid read_data_v(...)

declarevoid save_file_ema(...)

declarevoid save_file_sml(...)

declarevoid write_data_r(...)

declarevoid write_data_v(...)

203

declarefunc f_D(...) as real

declarefunc f_N(...) as real

declarefunc f_X(...) as real

declarefunc f_Y(...) as real

declarefunc f_Z(...) as real

declarefunc B_INT(...) as vect

declarefunc B_CAL(...) as vect

declarevoid f_B(...)

declarefunc U_CAL(...) as real

declarevoid f_U(...)

declarefunc F_CAL(...) as vect

declarevoid f_F(...)

declarefunc S_CAL(...) as vect

declarevoid f_S(...)

declarefunc BF_CAL(...) as vect

declarevoid I_rampD(...)

declarevoid I_rampU(...)

declarevoid I_setup(...)

declarevoid swap_e(...)

declarevoid swap_s(...)

declarevoid f_CCA(...)

declarevoid command_break(...)

declarevoid command_parse(...)

declarevoid command_ready(...)

204

VECT Module:

type vect

 x as real

 y as real

 z as real

 m as real

end type

declarefunc xVect(...) as vect

declarefunc aVect(...) as vect

declarefunc sVect(...) as vect

declarefunc mVect(...) as vect

declarefunc dVect(...) as vect

declarefunc dProd(...) as real

declarefunc xProd(...) as vect

declarefunc magRt(...) as real

declarefunc angRt(...) as vect

declarevoid magSt(...)

declarevoid nrmSt(...)

global unitI as vect, unitJ as vect, unitK as vect, nullV as vect

unitI = xVect(1, 0, 0)

unitJ = xVect(0, 1, 0)

unitK = xVect(0, 0, 1)

nullV = xVect(0, 0, 0)

global lengR as nmbr, lengN as nmbr, lengV as nmbr

lengR = len(real)

lengN = len(nmbr)

lengV = len(vect)

func xVect(x as real, y as real, z as real) as vect

 redim tp0 as vect

 tp0.x = x

 tp0.y = y

 tp0.z = z

 magSt tp0

 return tp0

end func

func aVect(A as vect, B as vect) as vect

 redim tp0 as vect

 tp0.x = A.x + B.x

 tp0.y = A.y + B.y

 tp0.z = A.z + B.z

 magSt tp0

 return tp0

end func

205

func sVect(A as vect, B as vect) as vect

 redim tp0 as vect

 tp0.x = A.x - B.x

 tp0.y = A.y - B.y

 tp0.z = A.z - B.z

 magSt tp0

 return tp0

end func

func mVect(A as vect, B as real) as vect

 redim tp0 as vect

 tp0.x = A.x * B

 tp0.y = A.y * B

 tp0.z = A.z * B

 magSt tp0

 return tp0

end func

func dVect(A as vect, B as real) as vect

 redim tp0 as vect

 tp0.x = A.x / B

 tp0.y = A.y / B

 tp0.z = A.z / B

 magSt tp0

 return tp0

end func

func dProd(A as vect, B as vect) as real

 redim tp0 as real

 tp0 = A.x * B.x + A.y * B.y + A.z * B.z

 return tp0

end func

func xProd(A as vect, B as vect) as vect

 redim tp0 as vect

 tp0.x = A.y * B.z - A.z * B.y

 tp0.y = A.z * B.x - A.x * B.z

 tp0.z = A.x * B.y - A.y * B.x

 magSt tp0

 return tp0

end func

func magRt(A as vect) as real

 return dProd(A, A) ^ (1/2)

end func

func angRt(A as vect) as vect

 return xVect(atn(A.y / A.x), atn(A.z / A.y), atn(A.x / A.z))

end func

void magSt(A as vect)

 A.m = dProd(A, A) ^ (1/2)

end void

void nrmSt(A as vect)

 A = dVect(A, magRt(A))

end void

206

FILE Module:

void load_file_ema(file$)

 open file$ for input as #1

 input #1, eMAX

 input #1, eBSU

 for Z = 1 to eMAX

 input #1, ema(Z).R1.x, ema(Z).R1.y, ema(Z).R1.z, ema(Z).L,

 ema(Z).N, ema(Z).I1, ema(Z).Im, ema(Z).a

 ema(Z).R0 = nullV

 ema(Z).LN = ema(Z).L / ema(Z).N

 ema(Z).I0 = 0

 magSt ema(Z).R0

 magSt ema(Z).R1

 next Z

 close #1

end void

void load_file_sml(file$)

 open file$ for input as #1

 input #1, sMAX

 input #1, sBSU

 for Z = 1 to sMAX

 input #1, sml(Z).R1.x, sml(Z).R1.y, sml(Z).R1.z, sml(Z).M.x,

 sml(Z).M.y, sml(Z).M.z, sml(Z).N, sml(Z).W, sml(Z).x1

 sml(Z).R0 = nullV

 sml(Z).MN = dVect(sml(Z).M, sml(Z).N)

 sml(Z).x0 = 0

 magSt sml(Z).R0

 magSt sml(Z).R1

 magSt sml(Z).M

 magSt sml(Z).MN

 next Z

 close #1

end void

void out1d_r(fileI$, fileO$, l$, arg1 as nmbr, arg2 as nmbr, s as

sml_space)

 redim R as real

 open fileI$ for binary as #1

 open fileO$ for output as #2

 select case l$

 case "X":

 for i = 0 to s.N - 1

 read_data_r R, 1, s.N, i, arg1, arg2

 print #2, i, R

 next i

 case "Y":

 for j = 0 to s.N - 1

 read_data_r R, 1, s.N, arg1, j, arg2

 print #2, j, R

 next j

207

 case "Z":

 for k = 0 to s.N - 1

 read_data_r R, 1, s.N, arg1, arg2, k

 print #2, k, R

 next k

 end select

 close #2

 close #1

end void

void out1d_v(fileI$, fileO$, l$, mode$, arg1 as nmbr, arg2 as

nmbr, s as sml_space)

 redim V as vect

 open fileI$ for binary as #1

 open fileO$ for output as #2

 select case l$

 case "X":

 for i = 0 to s.N - 1

 read_data_v V, 1, s.N, i, arg1, arg2

 select case mode$

 case "X": print #2, i, V.x

 case "Y": print #2, i, V.y

 case "Z": print #2, i, V.z

 case "M": print #2, i, V.m

 end select

 next i

 case "Y":

 for j = 0 to s.N - 1

 read_data_v V, 1, s.N, arg1, j, arg2

 select case mode$

 case "X": print #2, j, V.x

 case "Y": print #2, j, V.y

 case "Z": print #2, j, V.z

 case "M": print #2, j, V.m

 end select

 next j

 case "Z":

 for k = 0 to s.N - 1

 read_data_v V, 1, s.N, arg1, arg2, k

 select case mode$

 case "X": print #2, k, V.x

 case "Y": print #2, k, V.y

 case "Z": print #2, k, V.z

 case "M": print #2, k, V.m

 end select

 next k

 end select

 close #2

 close #1

end void

208

void out2d_r(fileI$, fileO$, p$, arg as nmbr, s as sml_space)

 redim R as real

 open fileI$ for binary as #1

 open fileO$ for output as #2

 select case p$

 case "XY":

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 read_data_r R, 1, s.N, i, j, arg

 print #2, R,

 next j

 print #2, ""

 next i

 case "XZ":

 for i = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_r R, 1, s.N, i, arg, k

 print #2, R,

 next k

 print #2, ""

 next i

 case "YZ":

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_r R, 1, s.N, arg, j, k

 print #2, R,

 next k

 print #2, ""

 next j

 end select

 close #2

 close #1

end void

void out2d_v(fileI$, fileO$, p$, mode$, arg as nmbr, s as

sml_space)

 redim V as vect

 open fileI$ for binary as #1

 open fileO$ for output as #2

 select case p$

 case "XY":

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 read_data_v V, 1, s.N, i, j, arg

 select case mode$

 case "X": print #2, V.x,

 case "Y": print #2, V.y,

 case "Z": print #2, V.z,

 case "M": print #2, V.m,

 end select

 next j

 print #2, ""

 next i

209

 case "XZ":

 for i = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_v V, 1, s.N, i, arg, k

 select case mode$

 case "X": print #2, V.x,

 case "Y": print #2, V.y,

 case "Z": print #2, V.z,

 case "M": print #2, V.m,

 end select

 next k

 print #2, ""

 next i

 case "YZ":

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_v V, 1, s.N, arg, j, k

 select case mode$

 case "X": print #2, V.x,

 case "Y": print #2, V.y,

 case "Z": print #2, V.z,

 case "M": print #2, V.m,

 end select

 next k

 print #2, ""

 next j

 end select

 close #2

 close #1

end void

void read_data_r(R as real, n as nmbr, size as real, i as nmbr, j

as nmbr, k as nmbr)

 seek #n, 1 + lengN + i * lengR * (size ^ 0) + j * lengR * (size

 ^ 1) + k * lengR * (size ^ 2)

 R = cvr(input$(lengR, #n))

end void

void read_data_v(V as vect, n as nmbr, size as real, i as nmbr, j

as nmbr, k as nmbr)

 seek #n, 1 + lengN + i * lengV * (size ^ 0) + j * lengV * (size

 ^ 1) + k * lengV * (size ^ 2)

 V.x = cvr(input$(lengR, #n))

 V.y = cvr(input$(lengR, #n))

 V.z = cvr(input$(lengR, #n))

 V.m = cvr(input$(lengR, #n))

end void

210

void save_file_ema(file$)

 open file$ for output as #1

 print #1, eMAX

 print #1, eBSU

 for Z = 1 to eMAX

 print #1, ema(Z).R1.x, ema(Z).R1.y, ema(Z).R1.z, ema(Z).L,

 ema(Z).N, ema(Z).I1, ema(Z).Im, ema(Z).a

 next Z

 close #1

end void

void save_file_sml(file$)

 open file$ for output as #1

 print #1, sMAX

 print #1, sBSU

 for Z = 1 to sMAX

 print #1, sml(Z).R1.x, sml(Z).R1.y, sml(Z).R1.z, sml(Z).M.x,

 sml(Z).M.y, sml(Z).M.z, sml(Z).N, sml(Z).W, sml(Z).x1

 next Z

 close #1

end void

void write_data_r(R as real, n as nmbr, size as real, i as nmbr,

j as nmbr, k as nmbr)

 seek #n, 1 + lengN + i * lengR * (size ^ 0) + j * lengR * (size

 ^ 1) + k * lengR * (size ^ 2)

 tp0$ = mkr(R): put #n, , tp0$

end void

void write_data_v(V as vect, n as nmbr, size as real, i as nmbr,

j as nmbr, k as nmbr)

 seek #n, 1 + lengN + i * lengV * (size ^ 0) + j * lengV * (size

 ^ 1) + k * lengV * (size ^ 2)

 tp0$ = mkr(V.x): put #n, , tp0$

 tp0$ = mkr(V.y): put #n, , tp0$

 tp0$ = mkr(V.z): put #n, , tp0$

 tp0$ = mkr(V.m): put #n, , tp0$

end void

211

CALB Module:

func f_D(V as vect, a as real, b as real, e as ema_space, s as

sml_space) as real

 redim R as real

 R = ((e.a ^ (2)) + (V.m ^ (2)) + ((e.LN * b) ^ (2)) - 2 * (e.a

 * V.x * cos(a) + e.a * V.y * sin(a) + e.LN * V.z * b)) ^ (3/2)

 return R

end func

func f_N(V as vect, a as real, b as real, e as ema_space, s as

sml_space) as real

 redim R as real

 R = u0 * (1 + s.x1) * e.I1 * e.a / 4 / PI

 return R

end func

func f_X(V as vect, a as real, b as real, e as ema_space, s as

sml_space) as real

 redim R as real

 R = f_N(V, a, b, e, s) / f_D(V, a, b, e, s) * (V.z - e.LN * b)

 * cos(a)

 return R

end func

func f_Y(V as vect, a as real, b as real, e as ema_space, s as

sml_space) as real

 redim R as real

 R = f_N(V, a, b, e, s) / f_D(V, a, b, e, s) * (V.z - e.LN * b)

 * sin(a)

 return R

end func

func f_Z(V as vect, a as real, b as real, e as ema_space, s as

sml_space) as real

 redim R as real

 R = f_N(V, a, b, e, s) / f_D(V, a, b, e, s) * (e.a - V.x *

 cos(a) - V.y * sin(a))

 return R

end func

func B_INT(R as vect, e as ema_space, s as sml_space) as vect

 redim V as vect, g as real, h as real

 g = 2 * PI / sr2

 h = 1 / sr2

 V = xVect(0, 0, 0)

 V.x = f_X(R, 0, 0, e, s) + f_X(R, 2 * PI, 0, e, s) + f_X(R, 0,

 e.N, e, s) + f_X(R, 2 * PI, e.N, e, s)

 for j = 1 to sr2 / 2 - 1

 V.x = V.x + 2 * (f_X(R, (2 * j) * g, 0, e, s) + f_X(R, (2 *

 j) * g, e.N, e, s))

 next j

 for k = 1 to sr2 * e.N / 2 - 1

 V.x = V.x + 2 * (f_X(R, 0, (2 * k) * h, e, s) + f_X(R, 2 *

 PI, (2 * k) * h, e, s))

 next k

212

 for j = 1 to sr2 / 2

 V.x = V.x + 4 * (f_X(R, (2 * j - 1) * g, 0, e, s) + f_X(R, (2

 * j - 1) * g, e.N, e, s))

 next j

 for k = 1 to sr2 * e.N / 2

 V.x = V.x + 4 * (f_X(R, 0, (2 * k - 1) * h, e, s) + f_X(R, 2

 * PI, (2 * k - 1) * h, e, s))

 next k

 for j = 1 to sr2 / 2 - 1

 for k = 1 to sr2 * e.N / 2 - 1

 V.x = V.x + 4 * f_X(R, (2 * j) * g, (2 * k) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2 - 1

 for k = 1 to sr2 * e.N / 2

 V.x = V.x + 8 * f_X(R, (2 * j) * g, (2 * k - 1) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2

 for k = 1 to sr2 * e.N / 2 - 1

 V.x = V.x + 8 * f_X(R, (2 * j - 1) * g, (2 * k) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2

 for k = 1 to sr2 * e.N / 2

 V.x = V.x + 16 * f_X(R, (2 * j - 1) * g, (2 * k - 1) * h,

 e, s)

 next k

 next j

 V.x = g * h / 9 * V.x

 if abs(V.x) <= TOL then V.x = 0

 V.y = f_Y(R, 0, 0, e, s) + f_Y(R, 2 * PI, 0, e, s) + f_Y(R, 0,

 e.N, e, s) + f_Y(R, 2 * PI, e.N, e, s)

 for j = 1 to sr2 / 2 - 1

 V.y = V.y + 2 * (f_Y(R, (2 * j) * g, 0, e, s) + f_Y(R, (2 *

 j) * g, e.N, e, s))

 next j

 for k = 1 to sr2 * e.N / 2 - 1

 V.y = V.y + 2 * (f_Y(R, 0, (2 * k) * h, e, s) + f_Y(R, 2 *

 PI, (2 * k) * h, e, s))

 next k

 for j = 1 to sr2 / 2

 V.y = V.y + 4 * (f_Y(R, (2 * j - 1) * g, 0, e, s) + f_Y(R, (2

 * j - 1) * g, e.N, e, s))

 next j

 for k = 1 to sr2 * e.N / 2

 V.y = V.y + 4 * (f_Y(R, 0, (2 * k - 1) * h, e, s) + f_Y(R, 2

 * PI, (2 * k - 1) * h, e, s))

 next k

 for j = 1 to sr2 / 2 - 1

 for k = 1 to sr2 * e.N / 2 - 1

 V.y = V.y + 4 * f_Y(R, (2 * j) * g, (2 * k) * h, e, s)

 next k

 next j

213

 for j = 1 to sr2 / 2 - 1

 for k = 1 to sr2 * e.N / 2

 V.y = V.y + 8 * f_Y(R, (2 * j) * g, (2 * k - 1) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2

 for k = 1 to sr2 * e.N / 2 - 1

 V.y = V.y + 8 * f_Y(R, (2 * j - 1) * g, (2 * k) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2

 for k = 1 to sr2 * e.N / 2

 V.y = V.y + 16 * f_Y(R, (2 * j - 1) * g, (2 * k - 1) * h,

 e, s)

 next k

 next j

 V.y = g * h / 9 * V.y

 if abs(V.y) <= TOL then V.y = 0

 V.z = f_Z(R, 0, 0, e, s) + f_Z(R, 2 * PI, 0, e, s) + f_Z(R, 0,

 e.N, e, s) + f_Z(R, 2 * PI, e.N, e, s)

 for j = 1 to sr2 / 2 - 1

 V.z = V.z + 2 * (f_Z(R, (2 * j) * g, 0, e, s) + f_Z(R, (2 *

 j) * g, e.N, e, s))

 next j

 for k = 1 to sr2 * e.N / 2 - 1

 V.z = V.z + 2 * (f_Z(R, 0, (2 * k) * h, e, s) + f_Z(R, 2 *

 PI, (2 * k) * h, e, s))

 next k

 for j = 1 to sr2 / 2

 V.z = V.z + 4 * (f_Z(R, (2 * j - 1) * g, 0, e, s) + f_Z(R, (2

 * j - 1) * g, e.N, e, s))

 next j

 for k = 1 to sr2 * e.N / 2

 V.z = V.z + 4 * (f_Z(R, 0, (2 * k - 1) * h, e, s) + f_Z(R, 2

 * PI, (2 * k - 1) * h, e, s))

 next k

 for j = 1 to sr2 / 2 - 1

 for k = 1 to sr2 * e.N / 2 - 1

 V.z = V.z + 4 * f_Z(R, (2 * j) * g, (2 * k) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2 - 1

 for k = 1 to sr2 * e.N / 2

 V.z = V.z + 8 * f_Z(R, (2 * j) * g, (2 * k - 1) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2

 for k = 1 to sr2 * e.N / 2 - 1

 V.z = V.z + 8 * f_Z(R, (2 * j - 1) * g, (2 * k) * h, e, s)

 next k

 next j

 for j = 1 to sr2 / 2

 for k = 1 to sr2 * e.N / 2

 V.z = V.z + 16 * f_Z(R, (2 * j - 1) * g, (2 * k - 1) * h,

 e, s)

 next k

 next j

214

 V.z = g * h / 9 * V.z

 if abs(V.z) <= TOL then V.z = 0

 magSt V

 return V

end func

func B_CAL(R as vect, s as sml_space) as vect

 redim V as vect

 V = xVect(0, 0, 0)

 for Z = 1 to eMAX

 V = aVect(V, B_INT(sVect(R, ema(Z).R1), ema(Z), s))

 next Z

 magSt V

 return V

end func

void f_B(file$, s as sml_space)

 redim V as vect

 open file$ for binary as #1

 seek #1, 1: tp$ = mkn(s.N): put #1, , tp$

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 V = xVect(0, 0, 0)

 V.x = (s.R1.x - (s.M.x / 2)) + s.MN.x * (i + 0.5)

 V.y = (s.R1.y - (s.M.y / 2)) + s.MN.y * (j + 0.5)

 V.z = (s.R1.z - (s.M.z / 1)) + s.MN.z * (k + 0.5)

 magSt V

 write_data_v B_CAL(V, s), 1, s.N, i, j, k

 next k

 next j

 next i

 close #1

end void

215

CALU Module:

func U_CAL(V as vect, s as sml_space) as real

 redim R as real

 R = -s.x1 / (u0 * (1 + s.x1)) * s.MN.x * s.MN.y * s.MN.z * V.m

 * V.m

 return R

end func

void f_U(fileI$, fileO$, s as sml_space)

 redim V as vect

 open fileI$ for binary as #1

 open fileO$ for binary as #2

 seek #2, 1: tp$ = mkn(s.N): put #2, , tp$

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_v V, 1, s.N, i, j, k

 write_data_r U_CAL(V, s), 2, s.N, i, j, k

 next k

 next j

 next i

 close #2

 close #1

end void

216

CALF Module:

func F_CAL(R as vect, A as vect, B as vect, C as vect, s as

sml_space) as vect

 redim V as vect

 V = xVect(0, 0, 0)

 V.x = 2 * s.x1 / (u0 * (1 + s.x1)) * s.MN.y * s.MN.z * (R.x *

 (R.x - A.x) + R.y * (R.y - A.y) + R.z * (R.z - A.z))

 if abs(V.x) <= TOL then V.x = 0

 V.y = 2 * s.x1 / (u0 * (1 + s.x1)) * s.MN.x * s.MN.z * (R.x *

 (R.x - B.x) + R.y * (R.y - B.y) + R.z * (R.z - B.z))

 if abs(V.y) <= TOL then V.y = 0

 V.z = 2 * s.x1 / (u0 * (1 + s.x1)) * s.MN.x * s.MN.y * (R.x *

 (R.x - C.x) + R.y * (R.y - C.y) + R.z * (R.z - C.z))

 if abs(V.z) <= TOL then V.z = 0

 magSt V

 return V

end func

void f_F(fileI$, fileO$, s as sml_space)

 redim V as vect, A as vect, B as vect, C as vect

 open fileI$ for binary as #1

 open fileO$ for binary as #2

 seek #2, 1: tp$ = mkn(s.N): put #2, , tp$

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_v V, 1, s.N, i, j, k

 if i = 0 then read_data_v A, 1, s.N, s.N - 2, j, k else

 read_data_v A, 1, s.N, i - 1, j, k

 if j = 0 then read_data_v B, 1, s.N, i, s.N - 2, k else

 read_data_v B, 1, s.N, i, j - 1, k

 if k = 0 then read_data_v C, 1, s.N, i, j, 0 else

 read_data_v C, 1, s.N, i, j, k - 1

 write_data_v F_CAL(V, A, B, C, s), 2, s.N, i, j, k

 next k

 next j

 next i

 close #2

 close #1

end void

217

CALS Module:

func S_CAL(n as nmbr, s as sml_space) as vect

 redim V as vect, R as vect

 V = xVect(0, 0, 0)

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_v R, n, s.N, i, j, k

 V.x = V.x + R.x

 if abs(V.x) <= TOL then V.x = 0

 V.y = V.y + R.y

 if abs(V.y) <= TOL then V.y = 0

 V.z = V.z + R.z

 if abs(V.z) <= TOL then V.z = 0

 next k

 next j

 next i

 magSt V

 return V

end func

void f_S(fileI$, fileO$, s as sml_space)

 redim V as vect

 open fileI$ for binary as #1

 open fileO$ for output as #2

 V = S_CAL(1, s)

 print #2, "** Net Force Calculator **"

 print #2, "--------------------------"

 print #2, "Fx -> "; V.x

 print #2, "Fy -> "; V.y

 print #2, "Fz -> "; V.z

 print #2, "|F| -> "; V.m

 close #2

 close #1

end sub

218

CALCCA Module:

func BF_CAL(n1 as nmbr, n2 as nmbr, s as sml_space) as vect

 redim V as vect, A as vect, B as vect, C as vect

 seek #n1, 1: tp$ = mkn(s.N): put #n1, , tp$

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 V = xVect(0, 0, 0)

 V.x = (s.R1.x - (s.M.x / 2)) + s.MN.x * (i + 0.5)

 V.y = (s.R1.y - (s.M.y / 2)) + s.MN.y * (j + 0.5)

 V.z = (s.R1.z - (s.M.z / 1)) + s.MN.z * (k + 0.5)

 magSt V

 write_data_v B_CAL(V, s), n1, s.N, i, j, k

 next k

 next j

 next i

 seek #n2, 1: tp$ = mkn(s.N): put #n2, , tp$

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 read_data_v V, n1, s.N, i, j, k

 if i = 0 then read_data_v A, 1, s.N, s.N - 2, j, k else

 read_data_v A, 1, s.N, i - 1, j, k

 if j = 0 then read_data_v B, 1, s.N, i, s.N - 2, k else

 read_data_v B, 1, s.N, i, j - 1, k

 if k = 0 then read_data_v C, 1, s.N, i, j, 0 else

 read_data_v C, 1, s.N, i, j, k - 1

 write_data_v F_CAL(V, A, B, C, s), n2, s.N, i, j, k

 next k

 next j

 next i

 V = S_CAL(n2, s)

 return V

end func

void I_rampD(dlt as nmbr, s as sml_space)

 for Z = 1 to eMAX

 if (abs(ema(Z).R1.x - s.R1.x) / eBSU <= dlt) or

 (abs(ema(Z).R1.y - s.R1.y) / eBSU <= dlt) then

 ema(Z).I1 = ema(Z).I1 * omega0

 else

 ema(Z).I1 = 0

 end if

 next Z

end void

219

void I_rampU(dlt as nmbr, s as sml_space)

 for Z = 1 to eMAX

 if (abs(ema(Z).R1.x - s.R1.x) / eBSU <= dlt) or

 (abs(ema(Z).R1.y - s.R1.y) / eBSU <= dlt) then

 ema(Z).I1 = ema(Z).I1 / omega0

 else

 ema(Z).I1 = 0

 end if

 next Z

end void

void I_setup(dlt as nmbr, s as sml_space)

 for Z = 1 to eMAX

 if (abs(ema(Z).R1.x - s.R1.x) / eBSU <= dlt) or

 (abs(ema(Z).R1.y - s.R1.y) / eBSU <= dlt) then

 ema(Z).I1 = ema(Z).Im * sigma1

 else

 ema(Z).I1 = 0

 end if

 next Z

end void

void swap_e()

 for Z = 1 to eMAX

 swap ema(Z).I0, ema(Z).I1

 next Z

end void

void swap_s(s as sml_space)

 swap s.R0.x, s.R1.x

 swap s.R0.y, s.R1.y

 swap s.R0.z, s.R1.z

 swap s.R0.m, s.R1.m

end void

void f_CCA(file$, s as sml_space)

 redim V as vect, xMAX as real, yMAX as real, cnt as nmbr, dlt

 as nmbr, CCA as nmbr

 cnt = -1

 dlt = -1

 CCA = 0

 swap_e

 swap_s s

 open "CCA-B.txt" for binary as #1

 open "CCA-F.txt" for binary as #2

 open file$ for output as #3

 do

 dlt = dlt + 1

 I_setup dlt, s

 V = BF_CAL(1, 2, s)

 loop until (abs(V.z)>= s.W * alpha0 or dlt = 1000)

 I_setup dlt, s

 do

 cnt = cnt + 1

 I_rampD dlt, s

 V = BF_CAL(1, 2, s)

 loop until (abs(V.z) < s.W * alpha0 or cnt = 1000)

220

 I_rampU dlt, s

 sBSU = 0

 for i = 0 to s.N - 1

 for j = 0 to s.N - 1

 for k = 0 to s.N - 1

 V = xVect(0, 0, 0)

 V.x = (s.R1.x - (s.M.x / 2)) + s.MN.x * (i + 0.5)

 V.y = (s.R1.y - (s.M.y / 2)) + s.MN.y * (j + 0.5)

 V.z = (s.R1.z - (s.M.z / 1)) + s.MN.z * (k + 0.5)

 magSt V

 V = B_CAL(V, s)

 if abs(V.m)> abs(sBSU) then sBSU = V.m

 next k

 next j

 next i

 swap s.x0, s.x1

 i = -1: j = -1: k = 0

 do

 i = i + 1

 V = xVect(0, 0, 0)

 V.x = (s.M.x / 2) + s.MN.x * (i + 0.5)

 V.y = 0

 V.z = -s.MN.z * 0.5

 magSt V

 V = B_CAL(V, s)

 loop until (abs(V.m) < abs(sBSU) * sigma2)

 xMAX = abs((s.M.x / 2) + s.MN.x * (i + 0.5))

 do

 j = j + 1

 V = xVect(0, 0, 0)

 V.x = 0

 V.y = (s.M.y / 2) + s.MN.y * (j + 0.5)

 V.z = -s.MN.z * 0.5

 magSt V

 V = B_CAL(V, s)

 loop until (abs(V.m) < abs(sBSU) * sigma2)

 yMAX = abs((s.M.y / 2) + s.MN.y * (j + 0.5))

 swap s.x0, s.x1

 if xMAX > yMAX then sBSU = xMAX else sBSU = yMAX

 dlt = sBSU / eBSU

 if dlt / 2 = int(dlt / 2) then dlt = dlt + 1

 CCA = 2 * dlt + 1

 print #3, "** CCA Calculator **"

 print #3, "--------------------"

 print #3, "delta -> "; dlt

 print #3, " CCA -> "; CCA

 print #3, "";

 print #3, "count -> "; cnt - 1

 close #3

 close #2

 close #1

 kill "CCA-B.txt"

 kill "CCA-F.txt"

 swap_e

 swap_s s

end void

221

REFERENCES

1. N. M. Ravindra, R. D. Rivero, A. T. Fiory, M. R. Booty, "An Intermediate Template

Method for Magnetic Field Assisted Assembly", US Patent Provisional

Application 61/152,502 (2009).

2. S. Shet, V. R. Mehta, A. T. Fiory, M. P. Lepselter, N. M. Ravindra, J. Miner. Met.

Mater. Soc. 56 32-34 (2004).

3. F. Roozeoom, W. Dekkers, Y. Lamy, J. H. Klootwijk, E. van Grunsven, H.-D. Kim,

Solid State Technology 38 (2008).

4. H.-J. J. Yeh, J. S. Smith, IEEE Photon. Tech. Lett. 6 706 (1994).

5. R. D. Rivero, S. Shet, M. R. Booty, A. T. Fiory, N. M. Ravindra, J. Electron. Mater.

37 374-378 (2008).

6. "Pacepacker Pick & Place Solutions", http://www.pacepacker-services.co.uk /

products / pick-and-place-details.htm; Internet; accessed 1 December 2010.

7. R. Fischer, Electronic Letters 20 945–947 (1985).

8. H. P. Lee, X. Liu, S. Wang, Appl. Phys. Lett. 56 1014–1016 (1990).

9. D. G. Deppe, Appl. Phys. Lett. 56 740–742 (1990).

10. S. F. Fang, J. Appl. Phys. 68(7) R31–R58 (1990).

11. J. Salmi, J. Salonen, Workshop on Bonding and Die Attach Technologies, CERN

(2003).

12. R. Pu, IEEE Photon. Tech. Lett. 9(12) 1622-1624 (1997).

13. A. Singh, International Conference on Solid-State Sensors and Actuators 265–268

(1997).

14. "Sacrificial-Etch Fabrication Process for CMUTs", http://www-kyg.stanford.edu /

khuriyakub / opencms / en / research / fabrication_and_packaging /

Bulk_Micromachining / index.html; Internet; accessed 1 December 2010.

15. D. L. Mathine, R. Droopad, G. N. Maracas, IEEE Photon. Tech. Lett. 9 869–871

(1997).

16. C. Camperi-Ginestet, Y. W. Kim, N. M. Jokerst, M. G. Allen, M. A. Brooke, "Three

Dimensional Integrated Circuits: Epitaxial Lift Off GaAs Photodetectors

Integrated Directly On Top Of Silicon Circuits", http://www.ee.duke.edu /

~mbrooke / papers / 1999 / 00697487.pdf; Internet; accessed 1 December 2010.

17. E. Yablonovitch, Appl. Phys. Lett. 51(26) 2222–2224 (1987).

18. M. C. Hargis, IEEE Photon. Tech. Lett. 5(10) 1210–1212 (1993).

222

19. A. Bavin, "Cluster Tool Sputtering for Compound Semiconductors",

http://www.electroiq.com / index / display / semiconductors-article-display /

107519 / articles / solid-state-technology / volume-44 / issue-7 / features /

materials / cluster-tool-sputtering-for-compound-semiconductors.html; Internet;

accessed 1 December 2010.

20. S. C. Esener, D. Hartmann, M. J. Heller, J. M. Cable, Critical Reviews of Optical

Engineering, edited by Anis Husain and Mahmoud Fallahi (San Jose, CA: SPIE

Optical Engineering Press) CR70 113-140 (1998).

21. C. Edman, Electronic Pick and Place Technology for Molecular Electronics (2000)

22. "ELI Tech Group EPOCH Biosciences", http://www.nanogen.com; Internet; accessed

1 December 2010.

23. J. M. Perkins, "Magnetically Assisted Statistical Assembly of III-V Heterostructures

on Silicon: Initial Process and Technology Development" Master's thesis,

Massachusetts Institute of Technology, Cambridge, MA (2002).

24. C. G. Fonstad, "Magnetically-Assisted Statistical Assembly – A New Heterogeneous

Integration Technique", http://dspace.mit.edu / bitstream / handle / 1721.1 / 3978 /

AMMNS013.pdf

25. C. G. Fonstad, Heterogeneous Integration: Critical Reviews of Optical Engineering

edited by Elias Tone (Bellingham, WA: SPIE Optical Engineering Press) R76

(2000).

26. Q. Ramadan, Y. S. Uk, K. Vaidyanathan, APL 90 172502 (2007).

27. M. Mastrangeli, S. Abbasi, C. Varel, C. van Hoof, J-P. Celis, K. F. Bohringer, J.

Micromech. Microeng. 19 5-14 (2009).

28. W. Zheng, O. H. Jacobs, Adv. Mater. 18 1387-138792 (2006).

29. C. Lin, F.-G. Tsent, C-C. Chieng, J. Micromech. Microeng. 19 2 (2009).

30. D. I. Cheng, J. J. Rumpler II, J. M. Perkins, M. Zahn, C. G. Fonstad, J. Appl. Phys.

105 2 (2009).

31. M. B. Cohn, C. J. Kim, A. P. Pisano, IEEE International Conference on Solid-State

Sensors and Actuators, TRANSDUCERS 490-493 (1991).

32. A. K. Verma, M. A. Hadley, H. J. Yeh, J. S. Smith, Electronic Components and

Technology 1263-1268 (1995).

33. J. J. Talghader, J. K. Tu, J. S. Smith, IEEE Photon. Tech. Lett. 7 1321-1323 (1995).

34. P. Sangjun, K. F. Bohringer, IEEE International Conference on Solid-State Sensors,

Actuators, and Microsystems, TRANSDUCERS 2079-2082 (2007).

35. P. Sangjun, K. F. Bohringer, IEEE International Conference on Micro Electro

Mechanical Systems, MEMS 1077-1080 (2008).

36. R. Baskaran, H. Ji Hao, C. Bowen, K. F. Bohringer, IEEE International Conference

on Micro Electro Mechanical Systems, MEMS 1069-1072 (2008).

223

37. S. B. Shetye, "Magnetic Self-Assembly of Small Parts" PhD thesis, University of

Florida, Gainesville, FL (2009).

38. J. Tien, T. L. Breen, G. M. Whitesides, Journal of the American Chemical Society

120 12670-12671 (1998).

39. D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, G. M. Whitesides, Science 289 1170-

1172 (2000).

40. H. O. Jacobs, A. R. Tao, A. Schwartz, D. H. Gracias, G. M. Whitesides, Science 296

323-325 (2002).

41. U. Srinivasan, M. A. Helmbrecht, C. Rembe, R. S. Muller, R. T. Howe, IEEE/LEOS

International Conference on Optical MEMS 59-60 (2000).

42. U. Srinivasan, M. A. Helmbrecht, C. Rembe, R. S. Muller, R. T. Howe, IEEE Journal

of Selected Topics in Quantum Electronics 8 4-11 (2002).

43. U. Srinivasan, D. Liepmann, R. T. Howe, Journal of Microelectromechanical

Systems 10 17-24 (2001).

44. K. L. Scott, T. Hirano, H. Yang, H. Singh, R. T. Howe, A. M. Niknejad, Journal of

Microelectromechanical Systems 13 300-309 (2004).

45. X. Xiaorong, Y. Hanein, F. Jiandong, Y. Wang, W. Wang, D. T. Schwartz, K. F.

Bohringer, Journal of Microelectromechanical Systems 12 117-127 (2003).

46. J. Fang, K. F. Bohringer, Tech. Dig. Solid-State Sensor, Actuator, and Microsystems

208-211 (2004).

47. F. Jiandong, W. Kerwin, K. F. Bohringer, Journal of Microelectromechanical

Systems 15 871-878 (2006).

48. L. Sheng-Hsiung, K. Wang, K. F. Bohringer, IEEE International Conference on

Micro Electro Mechanical Systems, MEMS 592-595 (2005).

49. Y. C. Lee, B. A. Parviz, J. A. Chiou, A. S. Chen, IEEE Transactions on Advanced

Packaging 26 217-226 (2003).

50. C. J. Morris, B. A. Parviz, IEEE International Conference on Solid-State Sensors,

Actuators, and Microsystems, TRANSDUCERS 411-414 (2007).

51. C. J. Morris, B. A. Parviz, J. Micromech. Microeng. 18 015022 (2008).

52. H. Onoe, K. Matsumoto, I. Shimoyama, IEEE International Conference on Micro

Electro Mechanical Systems, MEMS 5-8 (2004).

53. H. Onoe, K. Matsumoto, I. Shimoyama, Journal of Microelectromechanical Systems,

13 603-611 (2004).

54. H. Onoe, K. Matsumoto, I. Shimoyama, Small 3 1383-1389 (2007).

55. W. Zheng, H. O. Jacobs, Appl. Phys. Lett. 85 3635-3637 (2004).

56. R. Kneel, S. Bose, W. Zheng, H. O. Jacobs, Materials Research Society Symposium

313-318 (2007).

57. H. O. Jacobs, W. Zheng, Advanced Functional Materials 15 732-738 (2005).

224

58. Z. Wei, C. Jaehoon, H. O. Jacobs, Journal of Microelectromechanical Systems 15

864-870 (2006).

59. Z. Wei, C. Jaehoon, H. O. Jacobs, IEEE International Conference on Micro Electro

Mechanical Systems, MEMS 8-11 (2005).

60. W. Zheng, P. Buhlmann, H. O. Jacobs, Proceedings of the National Academy of

Sciences 101 12814-12817 (2004).

61. R. Knuesel, S. Bose, W. Zheng, H. O. Jacobs, Proceedings of NSTI-Nanotech

Conference (2007).

62. J. Fang, K. F. Bohringer, J. Micromech. Microeng. 16 721-730 (2006).

63. J. Fang, K. F. Bohringer, IEEE International Conference on Micro Electro

Mechanical Systems, MEMS 250-253 (2006).

64. J. Fang, K. F. Bohringer, IEEE International Conference on Micro Electro

Mechanical Systems, MEMS 12-15 (2005).

65. F. Jiandong, K. F. Bohringer, Journal of Microelectromechanical Systems 15 531-540

(2006).

66. J. Fang, S. Liang, K. Wang, X. Xiong, K. F. Bohringer, Conference on Foundations

of Nanoscience: Selfassembled Architectures and Devices (2005).

67. J. Fang, K. F. Bohringer, IEEE International Conference on Solid-State Sensors,

Actuators, and Microsystems, TRANSDUCERS 956-959 (2005).

68. E. Saeedi, S. Kim, J. R. Etzkorn, D. R. Meldrum, B. A. Parviz, IEEE Conference on

Automation Science and Engineering 375-380 (2007).

69. S. A. Stauth, B. A. Parviz, Proceedings of the National Academy of Sciences 103

13922-13927 (2006).

70. E. Saeedi, S. Kim, B. A. Parviz, IEEE International Conference on Micro Electro

Mechanical Systems, MEMS 755-758 (2007).

71. S. S. Kim, E. Saeedi, D. R. Meldrum, B. A. Parviz, IEEE International Conference

on Nano/Micro Engineered and Molecular Systems, NEMS 927-931 (2007).

72. K. Hosokawa, I. Shimoyama, H. Miura, Artificial Life 1 413-427 (1994).

73. R. A. Syms, E. M. Yeatman, Electronics Letters 29 662-664 (1993).

74. P. W. Green, R. A. Syms, E. M. Yeatman, Journal of Microelectromechanical

Systems 4 170-176 (1995).

75. R. A. Syms, Journal of Microelectromechanical Systems 4 177-184 (1995).

76. R. A. Syms, Journal of Microelectromechanical Systems 8 448-455 (1999).

77. R. A. Syms, Electronics Letters 35 1157-1158 (1999).

78. R. A. Syms, IEEE Photon. Tech. Lett. 12 1519-1521 (2000).

79. R. A. Syms, IEEE Photon. Tech. Lett. 12 1507-1509 (2000).

225

80. G. W. Dahlmann, E. M. Yeatman, IEEE International Symposium on High

Performance Electron Devices for Microwave and Optoelectronic Applications

128-133 (2000).

81. G. W. Dahlmann, E. M. Yeatman, Electronics Letters 36 1707-1708 (2000).

82. G. W. Dahlmann, E. M. Yeatman, P. Young, I. D. Robertson, S. Lucyszyn, Sensors

and Actuators 97-98 215-220 (2002).

83. G. W. Dahlmann, E. M. Yeatman, P. R. Young, I. D. Robertson, S. Lucyszyn,

Proceedings of Microwave Symposium Digest, 2001 IEEE MTT-S International 1

329-332 (2001).

84. J. Tien, A. Terfort, G. M. Whitesides, "Microfabrication Through Electrostatic Self-

Assembly", http://sws1.bu.edu / jtien / Tien_Langmuir1997_13_5349.pdf;

Internet; accessed 1 December 2010.

85. B. A. Grzybowski, A. Winkleman, J. A. Wiles, Y. Brumer, G. M. Whitesides, Nat

Mater. 2 241-245 (2003).

86. K. F. Bohringer, M. Cohn, K. Goldberg, R. Howe, A. Pisano, Proceedings of AVS

National Symposium (1997).

87. K. F. Bohringer, K. Goldberg, M. Cohn, R. Howe, A. Pisano, IEEE International

Conference on Robotics and Automation 1204-1211 (1998).

88. T. Nakakubo, I. Shimoyama, Sensors and Actuators 83 161-166 (2000).

89. E. Iwase, I. Shimoyama, Journal of Microelectromechanical Systems 14 1265-1271

(2005).

90. E. Iwase, I. Shimoyama, IEEE International Conference on Micro Electro

Mechanical Systems, MEMS 588-591 (2005).

91. E. Iwase, S. Takeuchi, I. Shimoyama, IEEE International Conference on Micro

Electro Mechanical Systems, MEMS 188-191 (2002).

92. B. A. Grzybowski, H. A. Stone, G. M. Whitesides, PNAS 99 4147-4151 (2002).

93. B. A. Grzybowski, G. M. Whitesides, J. Phys. Chem.106(6) 1188-1194 (2002).

94. M. Boncheva, G. M. Whitesides, PNAS 102 3924-3929 (2005).

95. C. G. Fonstad, Advanced Materials for Micro- and Nano-Systems (2002).

96. J. Rumpler, J. M. Perkins, C. G. Fonstad, Conference on Lasers and Electro-Optics 2

2 (2004).

97. A. J. Nichol, W. J. Arora, G. Barbastathis, J. Vac. Sci. Technol. 24 3128-3132 (2006).

98. J. N. Anthony, S. S. Paul, J. A. William, B. George, Microelectron. Eng. 84 1168-

1171 (2007).

99. S. Shet, V. R. Mehta, R. D. Rivero, M. R. Booty, A.T. Fiory, M. P. Lepselter, N. M.

Ravindra, Materials Science And Technology - Association For Iron And Steel

Technology 1 451-474 (2006).

226

100. R. D. Rivero, I. Padron, M. R. Booty, A. T. Fiory, N. M. Ravindra, Advanced

Materials Research 89-91 431-436 (2010).

101. D. J. Griffiths, Introduction to Electrodynamics (Upper Sadder River, New Jersey:

Prentice Hall) pp. 196-270 (1989).

102. J. D. Faires, R. Burden, Numerical Methods (United States: Brooks/Cole) pp. 150-

161 (2003).

103. CRC Handbook of Chemistry and Physics, 68th edition edited by R.C. Weast (Boca

Raton, Florida: CRC Press) E-118 (1988).

104. "Curie Temperature", http://en.wikipedia.org / wiki / Curie_temperature; Internet;

accessed 1 December 2010.

105. Bieniosek, O. Kurnaev, A. Cherepakhin, J. Dinkel, "Development of a Beam

Sweeping System for the Fermilab Antiproton Source Target",

http://accelconf.web.cern.ch / accelconf / pac97 / papers / pdf / 8P010.PDF;

Internet; accessed 1 December 2010.

106. E. Watkinson, "Design of Radio Frequency Inductors", http://www.ax84.com / static

/ rdh4 / chapte11.pdf; Internet; accessed 1 December 2010.

107. "Large Impeder Cores for Inductive Pipe Welding", http://www.ferroxcube.com /

appl / info / impeders.pdf; Internet; accessed 1 December 2010.

108. R. T. Fumble, "A Computer Solution of the Parking Lot Problem",

http://www.eric.ed.gov / PDFS / ED046067.pdf; Internet; accessed 1 December

2010.

109. M. Arbatskaya, K. Mukhopadhaya, E. Rasmusen, "The Parking Lot Problem",

http://www.rasmusen.org / papers / parking-rasmusen.pdf; Internet; accessed 1

December 2010.

110. "Activities in Algebra", http://www.math.wichita.edu / history / activities / algebra-

act.html; Internet; accessed 1 December 2010.

111. US Patent 7,737,515.

112. "FreeBASIC", http://www.freebasic.net/; Internet; accessed 1 December 2010.

	Modeling of magnetic field driven simultaneous assembly
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Basic Modeling
	Chapter 3: Advanced Modeling
	Chapter 4: Magnetic Field Interaction Model
	Chapter 5: The Swarm Algorithm
	Chapter 6: Conclusions and Future Directions
	Appendix A: Device/Recess Force Derivation
	Appendix B: Swarm Application Code
	Appendix C: Magstat Application Code
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

