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ABSTRACT 
 

U	DERWATER COMMU	ICATIO	 VIA PARTICLE VELOCITY 
CHA		ELS: PRI	CIPLES, CHA		EL MODELS, A	D SYSTEM DESIG	 

 

by 

Huaihai Guo 

A vector sensor is capable of measuring important non-scalar components of the acoustic 

field such as the particle velocity, which cannot be obtained by a single scalar pressure 

sensor. In the past few decades, extensive research has been conducted on the theory and 

design of vector sensors. On the other hand, underwater acoustic communication systems 

have been relying on scalar sensors only, which measure the pressure of the acoustic 

field. By taking advantage of the vector components of the acoustic field, such as the 

particle velocity, the vector sensor can be used for detecting the transmitted data. In this 

dissertation, the concept of data detection and equalization in underwater particle velocity 

channels using acoustic vector sensors was developed. System equations for such a 

receiver were derived and channel equalization using these sensors was formulated. A 

multiuser system using vector sensors and space time block codes was also developed, 

which does not use spreading codes and bandwidth expansion. This is particularly 

important in bandlimited underwater channels. 

With regard to channel models for particle velocity channels, characterization of 

particle velocity channels and their impact on vector sensor communication systems 

performance were therefore of interest.  In multipath channels such as shallow waters, a 

vector sensor receives the signal through several paths and each path has a different delay 

(travel time). Motion of the transmitter or receiver in a multipath channel introduces 

different Doppler shifts as well. Those introduce different levels of correlation in an array 

of vector sensors. Therefore, in this dissertation, a statistical framework for mathematical 

characterization of different types of correlations in acoustic vector sensor arrays was 

developed. Exact and closed-form approximation correlation expressions were derived 



 

which related signal correlations to some key channel parameters such as mean angle of 

arrivals and angle spreads. Using these expressions, the correlations between the pressure 

and velocity channels of the sensors could be calculated, in terms of element spacing, 

frequency and time separation. The derived closed-form parametric expressions for the 

signal correlations can serve as useful tools to estimate some important physical 

parameters as well.  

Knowledge of the delay and Doppler spreads in acoustic particle velocity channel 

is also important for efficient design of underwater vector sensor communication system. 

In this dissertation, these channel spreads were characterized using the zero crossing rates 

of channel responses in frequency and time domain. Useful expressions for delay and 

Doppler spreads were derived in terms of the key channel parameters, mean angle of 

arrivals and angle spreads. These results are needed for design and performance 

predication of communication systems in time-varying and frequency-selective 

underwater particle velocity channels.  
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CHAPTER 1  

 I�TRODUCTIO� 

1.1 Introduction 

1.1.1 Overview of Underwater Communication 

Data communication is of interest in numerous naval and civilian applications. Examples 

include communication among autonomous underwater vehicles (AUVs) for 

collaborative operations, harbor security systems, tactical surveillance applications, 

oceanographic data retrieval from underwater sensors over geographically large areas, 

offshore oil and gas explorations, … The harsh multipath, with delay spreads up to 

hundreds of symbols for high data rates, and temporal variations of the underwater 

acoustic channels, with Doppler spreads up to several ten Hz, are major issues in 

underwater acoustic communication [1]. After the first generation of analog modems, 

second generation digital modems in 80’s used non-coherent techniques such as 

frequency shift keying and differentially coherent schemes like DPSK [1]. Due to the 

need for higher spectral efficiencies, coherent systems with phase shift keying and 

quadrature amplitude modulation were developed in 90’s [2] [3]. Spatial diversity with 

arrays of hydrophones and different types of equalization, beamforming, coding, channel 

estimation and tracking are also used for underwater communication [1]. Underwater 

multiple-input multiple-output (MIMO) systems using spatially separated pressure 

sensors are also recently investigated [4]-[7]. 

1.1.2 Overview of Vector Sensor 

The development of vector sensors dates back to 30’s [8]. Since late 60’s, the Navy has 

been using vector sensors in systems such as Directional Frequency Analysis and 

Recording (DIFAR) and Directional Command Activated Sonobuoy System (DICASS) 

[9] [10]. In the past few decades, a large volume of research has been conducted on 



2 

theory, performance evaluation, and design of vector sensors, mainly used in SONAR 

systems (see, for example, [11] and [12]). Examples include accurate azimuth and 

elevation estimation of a source [13] [14], avoiding the left-right ambiguity of linear 

towed arrays of scalar sensors, significant acoustic noise reduction due to the highly 

directive beam pattern [19] [20], etc. All these advantages are due to the directional 

information that vector sensors provide, by measuring the three orthogonal components 

of velocity, for example, as well as the pressure component, at a single point. 

In general, there are two types of vector sensors: inertial and gradient [21]. 

Inertial sensors truly measure the velocity or acceleration by responding to the acoustic 

particle motion, whereas gradient sensors employ a finite-difference approximation to 

estimate the gradients of the acoustic field such as velocity and acceleration. Each sensor 

type has its own advantages and disadvantages. Inertial sensors offer a broad dynamic 

range, but proper supporting and packaging of the sensor without affecting its response to 

the motion is an issue. Furthermore, since they do not distinguish between acoustic waves 

and non-acoustic motion sources such as support structure vibrations, they must be 

properly shielded from such disturbances. Making accurate yet small inertial sensors at 

high frequencies could be challenging as well. On the other hand, gradient sensors can be 

manufactured in smaller sizes and thus are more suitable for high frequencies. However, 

the finite-difference approximation which is the basis of operation of these sensors limits 

their operating dynamic range. Moreover, the individual elements of a gradient sensor are 

required to have low self-noise and should be well calibrated and matched. 

Recent progress in material science and manufacturing technologies for vector 

sensors is offering small size, low noise, and robust sensors (see [44] as an example). All 

these manufacturing advances certainly encourage the widespread use of vector sensors 

in many more underwater naval and civilian applications, including the vector sensor 

communication system proposed and developed in this dissertation. However, the 

proposed ideas, to take advantage of the vector components of the field at the receiver, 
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are not restricted to a particular sensor type. Of course the noise properties, input 

dynamic range, bandwidth, sensitivity, and other characteristics of a vector sensor affect 

the reception performance, but the principles, models, and concepts developed in this 

dissertation remain nearly the same. Depending on the application, system cost, required 

precision, etc., one can choose the proper sensor type and technology. 

1.2 Motivation 

A vector sensor is capable of measuring important non-scalar components of the acoustic 

field such as the particle velocity, which cannot be obtained by a single scalar pressure 

sensor. In the past few decades, extensive research has been conducted on the theory and 

design of vector sensors (see, for example, [11]-[13]). They have been used for SONAR 

and target localization [13]-[20], to accurately estimate the azimuth and elevation of a 

source [13] [14], to avoid the left-right ambiguity in linear towed arrays of scalar sensors, 

and to reduce acoustic noise due to their directive beam pattern [20].  

On the other hand, underwater acoustic communication systems have been relying 

on scalar sensors only, which measure the pressure of the acoustic field. By taking 

advantage of the vector components of the acoustic field, such as the particle velocity, 

sensed by a vector sensor at the receiver, the vector sensor can be used for detecting the 

transmitted data. The small size of such receivers is due to the fact that a vector sensor 

measures the scalar and vector components of the acoustic field in a single point in space, 

therefore can serve as a compact multichannel receiver. This is different from the existing 

multichannel underwater receivers [2]-[22], which are composed of spatially separated 

pressure-only sensors, which may result in large-size arrays. 

The exiting trend in multiuser underwater communication is to use a spread 

spectrum technique, which allows multiple users to communicate via spreading codes and 

bandwidth expansion. Examples include code division multiple access (CDMA) systems 

[23]. Bandwidth expansion is not a problem in radio frequency (RF) channels, due to the 
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very large bandwidths of such channels. However, spectrum spreading in seriously 

bandlimited underwater channels reduces the data rate of each user.  

Recently, a multiple access scheme is developed which does not rely on 

bandwidth expansion [24] [25]. Therefore, it can accommodate multiple high data rates 

users, without reducing their transmission rates. The key idea is to use space time block 

codes [24] [25], to communicate over acoustic particle velocity channels using vector 

sensors [30] [31]. The algebraic structure of space-time block codes allows for multiple 

access without bandwidth expansion, whereas vector sensor receivers serve as compact 

multichannel equalizers. The smaller delay spread of some particle velocity channels [31] 

helps reduce the equalizer complexity as well. Reducing the size and complexity of the 

receiver is particularly important in systems which have serious size limitations. 

An important underwater channel is the shallow water acoustic channel. It is 

basically a waveguide, bounded from bottom and the top. The sea floor is a rough surface 

which introduces scattering, reflection loss, and attenuation by sediments, whereas the 

sea surface is a rough surface that generates scattering and reflection loss and attenuation 

by turbidity and bubbles [32]. When compared with deep waters, shallow waters are 

more complex, due to the many interactions of acoustic waves with boundaries, which 

result in a significant amount of multipath propagation. 

In underwater multipath channels, a vector sensor receives the signal through 

multiple paths. This introduces different levels of correlation in an array of vector 

sensors. Depending on the angle of arrivals (AOAs) and other channel characteristics, 

different types of correlation appear in a vector sensor array. These correlations affect the 

performance of a vector sensor communication system. Characterizations of these 

correlations in terms of the physical parameters of the channel are needed for proper 

system design, to achieve the required performance in the presence of correlations [33]-

[35]. Furthermore, closed-form parametric expressions for the signal correlations serve as 
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useful tools to estimate some important physical parameters of the channel such as angle 

spread, mean angle of arrival, etc. [36]-[38].  

In multipath channels such as shallow waters, a vector sensor receives the signal 

through several paths and each path has a different delay (travel time). Motion of the 

transmitter or receiver in a multipath channel introduces different Doppler shifts as well. 

Knowledge of the delay and Doppler spreads in acoustic particle velocity channel is 

important for efficient design of underwater vector sensor communication system. 

Characterization of delay and Doppler spreads in terms of the physical parameters of 

propagation environment is needed for system performance predication as well. It is well 

known that delay and Doppler spreads are proportional to the zero crossing rates (ZCRs) 

of the channel in frequency [39][40] and time [41][42] domains, respectively. By 

estimating the corresponding ZCRs, one can evaluate the delay and Doppler spreads in 

particle velocity channels. 

Overall, as a new application of vector sensor in underwater communication area, 

in this dissertation, the new vector sensor communication system will be built up and the 

performances will be evaluated in several aspects. Also characterizations of pressure and 

particle velocity channels will be modeled and investigated in this dissertation. 

1.3 Organization 

This dissertation discusses in detail about the vector sensor underwater acoustic (UWA) 

communication system and the corresponding channel characteristics. It is organized as 

following: 

Chapter 1 introduces the importance of and the issues leading to this study, 

illustrates application background and research objectives and outlines the organizations. 

In Chapter 2, first, the new compact underwater acoustic communication system 

via vector sensor receiver for single user is established. Basic system equations are 

derived, including channel detection and equalization. Signal and noise power 
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characteristics in such sensors are also investigated. Via extensive simulations under 

different propagation scenarios, the performance of a vector sensor receiver is determined 

while some channel characteristics are given for different scenarios. Based on the single 

user system, by taking the advantage of space time block coding, the multiuser 

communication system with one vector sensor receiver but multiple pressure transmitters 

is derived also in this chapter. 

The vector sensor collects the single via multipath environment, therefore 

different correlations of vector sensor receivers are analyzed and simulated in Chapter 3. 

First the statistical frame work for correlation analysis is built up and complete exact 

expressions are given to obtain the actual correlations. Then the closed non-integral 

forms for correlations are derived upon the small angle of arrival (AOA) spread. Finally 

the comparison example of this model with the experiment correlation is given to verify 

this mathematical model. 

Based on the frequency and temporal correlations given in Chapter 3, a zero 

crossing rate (ZCR) framework is developed to model the channel delay and Doppler 

spreads in Chapter 4. Similar to Chapter 3, first the exact frequency and time domain 

ZCRs are obtained, then closed-form integral-free expressions are derived. The delay 

spreads and Doppler spreads are presented and discussed as the functions of mean of 

AOA and AOA spread.  

Finally, the conclusion and remarks are given in Chapter 5. The future research 

and the possible study directions are provided also. 
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CHAPTER 2  

U�DERWATER ACOUSTIC COMMU�ICATIO� VIA VECTOR SE�SOR 

RECEIVER 

2.1 Single Vector Sensor Communication System 

Our research starts with a single user underwater acoustic communication system via a 

vector sensor receiver.  Since the vector sensor receiver measures not only the pressure of 

the acoustic wave but also the particle velocities, one vector sensor receiver can provide 

multiple signal outputs which can be considered as a multiple antenna receiver in the RF 

communication. 

2.1.1 System Equations for Vector Sensor Receiver 

In this section we derive basic system equations for data detection via a vector sensor. To 

demonstrate the basic concepts of how both the vector and scalar components of the 

acoustic field can be utilized for data reception, we consider a simple system in a two-

dimensional (2D) depth-range underwater channel. As shown in Figure 2.1, there is one 

transmit pressure sensor, shown by a black dot, whereas for reception we use a vector 

sensor, shown by a black square, which measures the pressure and the y and z 

components of the particle velocity. This is basically a 1 3×  single-input multiple-output 

(SIMO) system. With more pressure transmitters, one can have a multiple-input multiple-

output (MIMO) system, which will be shown in Section 2.2. 

 
Figure 2.1 A 1×3 vector sensor communication system, with one pressure transmitter 
and one vector sensor receiver. 

∑

n

p

z

y

yr
Tx

• ∑

sea surface

sea bottom

Rx

zn

zr∑

yn
r

yp
zp

s
∑∑

n

p

z

y

yr
Tx

• ∑∑

sea surface

sea bottom

Rx

zn

zr∑∑

yn
r

yp
zp

s



8 

2.1.1.1 Pressure and velocity channels and noises 

There are three channels in Figure 2.1: the pressure channel p, represented by a straight 

dashed line, and two pressure-equivalent velocity channels p
z
 and p

y
, shown by curved 

dashed lines. To define p
z
 and p

y
, we need to define the two velocity channels v

z
 and v

y
, 

the vertical and horizontal components of the particle velocity, respectively. According to 

the linearized momentum equation [19], the z and y component of the velocity at the 

frequency f0 are given by 

1 1
0 0 0 0( ) / , ( ) /z yv j p z v j p yρ ω ρ ω− −= − ∂ ∂ = − ∂ ∂ .                        (2.1) 

In the above equations, 0ρ  is the density of the fluid, 2 1j = −  and 0 02 fω π= . Eq. 

(2.1) simply states that the velocity in a certain direction is proportional to the spatial 

pressure gradient in that direction [19]. To simplify the notation, similar to [19], the 

velocity channels in (2.1) are multiplied by 0cρ− , the negative of the acoustic impedance 

of the fluid, where c is the speed of sound. This gives the associated pressure-equivalent 

velocity channels as 0
z zp c vρ= −  and 0

y yp c vρ= − . With λ  as the wavelength and 

02 / /k cπ λ ω= =  as the wavenumber, we finally obtain 

1 1( ) / , ( ) /z yp jk p z p jk p y− −= ∂ ∂ = ∂ ∂ .                                   (2.2) 

The additive ambient noise pressure at the receiver is shown by n in Figure 2.1. 

At the same location, the z and y components of the ambient noise velocity, sensed by the 

vector sensor are 1
0 0( ) /z j n zη ρ ω −= − ∂ ∂  and 1

0 0( ) /y j n yη ρ ω −= − ∂ ∂ , respectively, 

derived in the same manner as (2.1). So, the vertical and horizontal pressure-equivalent 

ambient noise velocities are 1
0 ( ) /z zn c jk n zρ η −= − = ∂ ∂  and 

1
0 ( ) / ,y yn c jk n yρ η −= − = ∂ ∂ respectively, which resemble (2.2). 

2.1.1.2 Input-Output system equations 

According to Figure 2.1, the received pressure signal at Rx in response to the signal s 

transmitted from Tx can be written as r p s n= ⊕ + , where ⊕  stands for convolution in 
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time. We also define the z and y components of the pressure-equivalent received velocity 

signals as 1( ) /zr jk r z−= ∂ ∂  and 1( ) /yr jk r y−= ∂ ∂ , respectively. Based on (2.2) and by 

taking the spatial gradient of r  with respect to z and y we easily obtain the key system 

equations 

        , ,y y y z z zr p s n r p s n r p s n= ⊕ + = ⊕ + = ⊕ + .                        (2.3) 

It is noteworthy that the three output signals , andy zr r r  are measured at a single 

point in space. 

2.1.1.3 Pressure and velocity noise correlations 

We define the spatial pressure noise correlation between the two locations ( , )y zy z+ +ℓ ℓ  

and ( , )y z  as *( , ) [ ( , ) ( , )]n y z y zq E n y z n y z= + +ℓ ℓ ℓ ℓ , where * is the complex conjugate 

and andy zℓ ℓ  are real numbers. Using the correlation properties of a differentiator in p. 

326 of [45], at the location ( , )y z  one can show * 1[ { } ] ( ) /y
n yE n n jk q−= ∂ ∂ℓ , 

* 1[ { } ] ( ) /z
n zE n n jk q−= ∂ ∂ℓ and * 2 2[ { } ] /z y

n z yE n n k q−= − ∂ ∂ ∂ℓ ℓ , all calculated for 

( , ) (0,0)y z =ℓ ℓ . For an isotropic noise field in the y-z plane we have 

2 2 1/2
0( , ) ( ( ) )n y z y zq J k= +ℓ ℓ ℓ ℓ  [46], with (.)mJ  as the m-order Bessel function of the first 

kind. Using the properties of the Bessel functions and their derivatives [47], it is easy to verify 

that * * *[ { } ] [ { } ] [ { } ] 0y z z yE n n E n n E n n= = = , i.e., all the noise terms in (2.3) are uncorrelated. 

The above noise correlations may be derived using the general formulas of [48]. 

However, we have derived them from the first principles, to make it transparent to the 

readers under what conditions the noise terms in (2.3) are uncorrelated. 

2.1.1.4 Pressure and velocity average powers 

(a) #oise Powers: Using the statistical properties of a differentiator in p. 326 of [45], the 

powers of the y and z components of the pressure-equivalent noise velocity at ( , )y z  can 

be obtained as 2 2 2 2[| | ] /y y
n n yE n k q−Ω = = − ∂ ∂ℓ  and 2 2 2 2[| | ] /z z

n n zE n k q−Ω = = − ∂ ∂ℓ , 

respectively, both calculated at ( , ) (0,0)y z =ℓ ℓ . Based on the nq  of the 2D isotropic 
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noise model described previously, one can show 1/ 2y z
n nΩ = Ω = . Note that the noise 

pressure power in this model is 2[| | ] (0,0) 1n nE n qΩ = = = . This means y z
n n nΩ = Ω +Ω , 

consistent with [48]. 

(b) Channel Powers: The ambient noise is a superposition of several components 

coming from different angle of arrivals (AOAs) [46]. In multipath environments such as 

shallow waters, the channel is also a superposition of multiple subchannels. Based on this 

analogy between n and p, as well as their spatial gradients, one can obtain y z
p p pΩ = Ω +Ω , 

where 2[| | ]p E pΩ = , 2[| | ]y y
p E pΩ =  and 2[| | ]z z

p E pΩ = . The rigorous proof is not 

provided due to space limitations. In the 2D isotropic noise model the distribution of 

AOA is uniform over [0, 2 )π  [46], which yields / 2y z
n n nΩ = Ω = Ω . However, this is not 

necessarily the case in multipath channels such as shallow waters, which means y
pΩ  and 

z
pΩ  could be different. 

2.1.1.5 Signal-to-#oise ratios 

To define the average signal-to-noise ratio (SNR) per channel in BER plots of Section 

2.1.4, let [ (0)... ( 1)]Tp p M= −p , [ (0)... ( 1)]y y y Tp p M= −p   and 

[ (0)... ( 1)]z z z Tp p M= −p  be the taps of the pressure, y- and z-velocity IRs, respectively. 

Then the pressure, y- and z-velocity SNRs are /p p nζ = Ω Ω , /y y y
p p nζ = Ω Ω  and 

/z z z
p p nζ = Ω Ω , respectively, such that †

pΩ = p p , †( )y y y
pΩ = p p  and †( )z z z

pΩ = p p . By 

definition, the average SNR per channel for the vector sensor receiver is 

( ) / 3y z
p p pζ ζ ζ ζ= + + . Also p is normalized such that 1pΩ = . Based on Subsection 

2.1.1.4, this implies that 1y z
p pΩ +Ω =  in our simulations. Since / 2y z

n n nΩ = Ω = Ω  in a 2D 

isotropic noise model, we finally obtain 1/ nζ = Ω , which is the same as the SNR of a 

unit-power pressure channel 
pζ . 

2.1.2 Vector Sensor as A Multichannel Equalizer 

In this section we use the basic zero forcing equalizer. Of course there are different types 

of equalizers [49] [50] and we are not suggesting the zero forcing algorithm as the best 
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possible equalization method. However, since here our emphasis is not on equalizer 

design, we just use a simple equalizer to verify the concept. The idea is just to 

demonstrate the feasibility of multichannel inter-symbol interference (ISI) removal using 

a compact vector sensor. Here the system equation is 

           

1 1 1

2 2 2

3 3 3

, where , , and .

     
     = + = = =     
          

R H �

R HS � R R H H � �

R H �

                 (2.4) 

In (2.4) 0 1[ ... ]TKs s −=S  includes K transmitted symbols and T  is the transpose. 

With M as the number of channel taps, the same for all l, 1, 2,3l = , 

[ (0)... ( 2)]Tl l lr r K M= + −R  and [ (0)... ( 2)]Tl l ln n K M= + −�  are the l-th ( 1) 1K M+ − ×  

received signal and noise vectors, respectively. Also the l-th ( 1)K M K+ − ×  banded 

channel matrix is given by 

                  

(0)

(0)

( 1)

( 1)

l

l

l

l

l

h

h

h M

h M

 
 
 =
 −
 

− 

H
⋮ ⋱

⋱ ⋮
.                    (2.5) 

Note that for a vector sensor receiver, the channel indices 1, 2 and 3 in (2.4) 

represent the pressure, pressure-equivalent horizontal velocity and pressure-equivalent 

vertical velocity, respectively. So, based on (2.3), for an arbitrary discrete time index t we 

have 1( ) ( )r t r t= , 2 ( ) ( )yr t r t= , 3( ) ( )zr t r t= , 1( ) ( )h t p t= , 2 ( ) ( )yh t p t= , 3 ( ) ( )zh t p t= , 

1( ) ( )n t n t= , 2 ( ) ( )yn t n t=  and 3( ) ( )zn t n t= . Furthermore, according to (2.5), the channel 

convolution matrices 1 2 3, , andH H H  in (2.4) for a vector sensor receiver are given by 

1 2

(0) (0)

, ,( 1) (0) ( 1) (0)

( 1) ( 1)

y

y y

y

p p

p M p p M p

p M p M

  
  
  
  = =− −
  
  
  − −   

H H

⋮ ⋮

⋱ ⋱

⋮ ⋮
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3

(0)

.( 1) (0)

( 1)

z

z z

z

p

p M p

p M

 
 
 
 = −
 
 
 − 

H

⋮

⋱

⋮

 

Assuming perfect channel knowledge at the receiver, the zero forcing equalizer is 

given by 

                                        † 1 1ˆ ( )− −=S H Σ H † 1−H Σ R .                           (2.6) 

In this equation Ŝ  is the minimum variance unbiased estimate of S [52], †  is the 

transpose conjugate and †[ ]E=Σ ��  is the covariance matrix of the noise vector � in 

(2.4). The simulations of Subsection 2.1.4.4 show the performance of (2.6).  

Since it is difficult to obtain perfect channel estimates at the receiver, in this 

section we also study the impact of imperfect channel estimate on the vector sensor 

equalizer performance. We model the effect of channel estimation error using an additive 

Gaussian perturbation term 

               

ˆ / (1 ) 1/ (1 ) ,

ˆ (1 ) 1 (1 ) ,

ˆ (1 ) 1 (1 ) ,

p p p

y y y y y y
p p p

z z z z z z
p p p

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

= + + +

= + + +

= + + +

p p e

p p e

p p e

                 (2.7) 

where ˆ ˆ ˆ, , andy zp p p  are imperfect estimates of , , andy zp p p , respectively. Moreover, 

, , andy ze e e  are 1M ×  complex Gaussian random vectors that represent channel 

estimation errors. Note that for each equation in (2.7), when the corresponding SNR is 

small, i.e., 
pζ , y

pζ  or z
pζ , the estimation error term becomes dominant, as expected. On 

the other hand, when SNRs are large, we reasonably get ˆ ˆ ˆ, , andy y z z≈ ≈ ≈p p p p p p . 

The vectors , , andy ze e e  are independent, and elements of each vector are 

independent and identically distributed zero-mean complex Gaussian random variables 
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with standard deviations /
p p

Mσ = Ω , /y y
p p Mσ = Ω  and /z z

p p Mσ = Ω , 

respectively. Note that these choices for the standard deviations guarantee that the powers 

of the true channel coefficient vectors and their estimates are the same, i.e.,

†ˆ ˆ ˆ[ ]p pEΩ = = Ωp p ,  †ˆ ˆ ˆ[( ) ]y y y y
p pEΩ = = Ωp p  and †ˆ ˆ ˆ[( ) ]z z z z

p pEΩ = = Ωp p . 

In the presence of channel estimation error, the zero forcing equalizer can be 

written as 

                             † 1 1
ChEstErr

ˆ ˆ ˆ( )− −=S H Σ H † 1ˆ −H Σ R ,                                             (2.8) 

where ChEstErrŜ  is the estimate of S, when H is not perfectly estimated, and

1 2 3
ˆ ˆ ˆ ˆ[ ]T T T T=H H H H .  

2.1.3 Simulation Setup and Parameters 

In this section we basically simulate and compare the performance of the vector sensor 

equalizer in (2.6) and (2.8) with a vertical three-element pressure-only uniform linear 

array (ULA), as well as a single pressure sensor receiver that perform zero forcing 

equalization (with and without perfect channel estimate). 

The ULA equations and equalizers are the same as (2.4), (2.6) and (2.8), where 

the three channels represent three vertically separated pressure channels. The noise 

vectors 1 2 3, and� � �  in both receivers are considered to be complex Gaussians with 

white temporal auto- and cross-correlations. For the isotropic noise model discussed in 

Subsection 2.1.1.3, the noise vectors 1 2 3, and� � �  are uncorrelated in the vector sensor 

receiver. Therefore its noise covariance matrix †
vector sensor vector sensor vector sensor[ ]E=Σ � �  is 

given by 

                

1

vector sensor 1

1

( / 2)

( / 2)

n K M

n K M

n K M

+ −

+ −

+ −

Ω 
 = Ω 
 Ω 

I 0 0

Σ 0 I 0

0 0 I

,             (2.9) 
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where mI  is an m m×  identity matrix and 0  is a matrix whose elements are all zero. For 

the pressure-only ULA with the element spacing of L, there are some pressure 

correlations of 0 ( )J kL  and 0 (2 )J kL  for the separations of L and 2L , respectively. This 

means that the noise covariance matrix †

pressure-only ULA pressure-only ULA pressure-only ULA[ ]E=Σ � �  can 

be written as 

        

1 0 1 0 1

pressure-only ULA 0 1 1 0 1

0 1 0 1 1

( ) (2 )

( ) ( )

(2 ) ( )

n K M K M K M

K M n K M K M

K M K M n K M

J kL J kL

J kL J kL

J kL J kL

+ − + − + −

+ − + − + −

+ − + − + −

Ω 
 = Ω 
 Ω 

I I I

Σ I I I

I I I

.             (2.10) 

To calculate the velocity channel impulse responses (IRs) yp  and zp  in 

simulations using the p channel IR generated by Bellhop [51], each spatial gradient in 

(2.2) is approximated by a finite difference. Therefore at location ( , )y z  we have 

( , ) /p y z z∂ ∂ ≈ [ ( , 0.2 ) ( , )] / (0.2 )p y z p y zλ λ+ −  and ( , ) /p y z y∂ ∂ ≈

[ ( 0.2 , ) ( , )] / (0.2 )p y z p y zλ λ+ − . 

 
Figure 2.2 Sound speed versus the water depth. 
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With an S vector that includes 200K =  equal-probable 1±  symbols, and the noise 

vector and channel matrix � and H generated as described above, the received vector R 

is calculated using (2.4). Then S is estimated using (2.6) and (2.8), and the bit error rate 

(BER) curves are plotted, as shown in subsection 2.1.4.4. The parameters chosen to 

generate channel IRs are the same as [53] and are listed in Table 2.1. Other receiver 

depths are considered in [54]. The sound speed profile we used was measured during the 

underwater communication experiments conducted on May 10, 2002, in waters off San 

Diego, CA [53], and is shown in Figure 2.2. 

Table 2.1 Simulation and Channel Parameters 

Water Depth (m) 81.158 

Water Density (kg/m
3
) 1024 

Transmitter Depth (m) 25 

Transmit Take-off Angle (degree) -30 to 30 

Number of Beams 2001 

Bottom Types Coarse silt, Very fine sand 

Receiver Depth (m) 63 

Receiver Range (km) 5, 10 

Carrier Frequency (kHz) 12 

Sampling Frequency (kHz) 48 

Data Rate (kbps) 2.4 

Nominal Sound Speed (m/s) 1500 

Wavelength (m) 0.125 

2.1.4 Simulation Results and Performance Comparison 

According to Table 2.1, we have four propagation scenarios:   

Scenario 1: 5 km range and coarse silt bottom;  



16 

Scenario 2: 10 km range and coarse silt bottom;  

Scenario 3: 5 km range and very fine sand bottom;  

Scenario 4: 10 km range and very fine sand bottom. 

In the following subsections, the data and analysis of all four scenarios will be 

given. However, to limit the pages of the whole document, only the figures belong to 

scenario 1 are shown. All the figures for the other scenarios can be found in [31].  

First we show channel impulse responses and frequency responses. Then we study 

the delay spread and the horizontal to vertical velocity power ratio versus range and depth, 

for different bottom types. Afterwards, we present BER and eigenvalue curves, which 

demonstrate the performance of the proposed vector sensor receiver, as well as a 

pressure-only array receiver and a single pressure sensor receiver. At the end the impact 

of channel estimation error is discussed. 

2.1.4.1 Impulse response and frequency response 

The amplitudes of the complex impulse responses for scenario 1 are shown in Figure 2.3, 

which includes the impulse responses of the pressure, horizontal velocity and vertical 

velocity channels, with powers 
pΩ , y

pΩ  and z
pΩ  defined in Subsection 2.1.1.5, 

respectively. The number of channel taps and the powers of horizontal and vertical 

velocity channels in the simulations are given as:  

Scenario 1: 147, 0.42, 0.58y z
p pM = Ω = Ω = ;  

Scenario 2: 197, 0, 1y z
p pM = Ω = Ω = ;  

Scenario 3: 460, 0.39, 0.61y z
p pM = Ω = Ω = ;  

Scenario 4: 846, 0.03, 0.97y z
p pM = Ω = Ω = . 

As mentioned in Section 2.1.3, the pressure channel in simulations is normalized 

to have unit power, i.e., 1pΩ = , and also 1y z
p pΩ +Ω = . The amplitudes of the Fourier 

transforms of the impulse responses of Figure 2.3 are shown in Figure 2.4. 
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Figure 2.3  The amplitude of the impulse responses in Scenario 1. 

 
Figure 2.4  The amplitude of the frequency responses in Scenario 1. 
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2.1.4.2 Delay spread 

Here we look at the root-mean-squared (RMS) delay spread rmsτ  [55] as a measure of the 

frequency selectivity of a channel. Typically a large delay spread indicates a highly 

frequency selective channel. The values of rmsτ  are given in Table 2.2. 

Table 2.2 RMS Delay Spreads (MSEC.) in Four Propagation Scenarios 

 Pressure channel Horizontal velocity channel Vertical  velocity channel 

Scenario 1 7.7 0.26 6.8 

Scenario 2 14.8 12.9 11.4 

Scenario 3 48.1 0.28 44.1 

Scenario 4 90.3 4.3 68.3 

In Figure 2.5, rmsτ  of p, yp  and zp  impulse responses are plotted versus range, at 

20, 40, and 60 m depths, for the coarse silt bottom. Then by averaging over these three 

depths, an average curve versus range is obtained for each of the p, yp  and zp  channels, 

as shown in Figure 2.6 for the coarse silt bottom.  

 
Figure 2.5 Delay spread versus range for the coarse silt bottom at different depths. 
Top: pressure channel, Middle: y-velocity channel, Bottom: z-velocity channel. 
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Figure 2.6 Depth-averaged delay spread versus range for the coarse silt bottom. 

According to Figure 2.5, delay spread of the p channel do not noticeably change 

with depth, compared to the delay spreads of yp  and zp  channels. For the coarse silt 

bottom in Figure 2.6, one can see more variations among the depth-averaged delay 

spreads of all the channels. 

2.1.4.3 Horizontal to vertical velocity power ratio 

The ratio /y z
p pΩ Ω  is plotted versus the receiver range in Figure 2.7 for coarse bottoms. 

First /y z
p pΩ Ω  is presented at three different depths which are 20, 40 and 60 m. Then by 

averaging over these three depths, a single average curve versus range is obtained for 

each bottom. For the coarse silt bottom /y z
p pΩ Ω  can take large values at certain depths 

and ranges, as shown in Figure 2.7. For the very fine sand bottom we have / 1y z
p pΩ Ω < , 

for ranges up to 14 km, which is shown in [30] and [31]. 
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Figure 2.7 Horizontal to vertical velocity power ratio versus range for the coarse silt 
bottom. Top: different depths, Bottom: averaged over different depths. 

2.1.4.4 Bit error rate 

The BER curves versus the average SNR per channel ζ , defined in Subsection 2.1.1.5, 

are shown in Figure 2.8, for Scenarios 1, which includes the BERs of a vector sensor 

receiver, a three-element pressure-only array receiver with element spacing λ, 5λ and 50 

λ and a single pressure sensor receiver. Performance of the three-element pressure-only 

array depends on its element spacing L, as shown in Figure 2.8. As L increases, the noise 

spatial correlation decreases and also the three pressure channels become less correlated. 

These both result in a reduction in BER, as L increases. According to Figure 2.8, the 

pressure-only array receiver with 50L λ=  outperforms the vector sensor receiver. By 

changing the simulation scenario, for example the bottom type, the pressure-only array 

may outperform the vector sensor receiver with an element spacing smaller than 50λ . 

However, the general picture does not change, i.e., both the vector sensor and pressure-

only array receivers are much better than a single pressure sensor receiver. The advantage 

of the vector sensor receiver is it smaller size, compared to the pressure-only array. 
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Figure 2.8  Performance comparison of a vector sensor receiver, a single pressure 
sensor receiver, and a uniform linear array receiver with three pressure sensors and 
different element spacings L = λ, 5λ and 50λ in Scenario 1. 

To confirm the accuracy of the BER results shown in Figure 2.8, one can look at 

the level of error in symbol estimates, which are obtained using the equalizer in (2.6). 

The covariance matrix of the symbol estimation error vector ˆ −S S  can be shown to be 

[52] 

                                         †ˆ ˆ[( )( ) ]E − −S S S S † 1 1( )− −= H Σ H ,                                   (2.11) 

where H and Σ  are the channel matrix and the noise covariance matrix, respectively. In 

Figure 2.9 the square root of the sorted diagonal elements of † 1( −H Σ 1)−H  in (2.11) are 

plotted, which are the standard deviations of the symbol estimation errors. As expected, 

the estimation error standard deviations of the pressure-only array decrease as L 

increases. Furthermore, the estimation error standard deviations of the vector sensor are 

much smaller than those of a single pressure sensor and pressure-only arrays with small 

element spacings. All these are consistent with the BER results of Figure 2.8. 
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Figure 2.9 Square root of the sorted diagonal elements of the symbol estimation error 
covariance matrix, given in (2.11). The receivers are a vector sensor, a single pressure sensor and 
a uniform linear array with three pressure sensors and different element spacings L = λ, 5λ and 
50λ. The average SNR per channel for each receiver is 6 dB. 

As expected, the performance of the single pressure sensor receiver is much 

worse than the other two receivers. The performance of the vector sensor receiver is 

slightly worse than the pressure-only array with 50λ element spacing. According to the 

summary of SNRs provided in Table 2.3, the difference in performance ranges from 0.3 

dB to 2.4 dB, among all the four scenarios. By changing the simulation scenario, for 

example the bottom type, frequency of operation, or inclusion of the flow noise and non-

acoustic disturbances which are particularly important for inertial (motion) vector 

sensors, one may observe a worse performance for the vector sensor equalizer, compared 

to the pressure-only array equalizer. 

One simple way of explaining the performance of these three zero forcing 

equalizers is to look at the condition number of †H H  in (2.6). By definition, the 

condition number of a matrix is the ratio of its largest singular value to the smallest one, 

and a large condition number implies that the matrix is nearly singular. This corresponds 
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to more noise enhancement in the zero forcing equalizer, due to the inverse of †H H . 

Based on the condition numbers provided in Table 2.3, calculated in Matlab®, one can 

see a better equalizer typically has a smaller condition number, as expected.  

All the other BER performance for different scenarios can be found in [31]. 

Table 2.3 A Summary of the Required SNRs for Specific BERs 

 
Equalizer Condition no. 

Average. SNR per channel (dB) 

BER = 10
-3

 BER = 10
-2

 

Scenario 1 

Vector sensor 99 4.6 2.1 

Pressure-only array 126 7 4.3 

Single pressure sensor 174 14 9.7 

Scenario 2 

Vector sensor 16 5.2 2.7 

Pressure-only array 292 6.7 4.2 

Single pressure sensor 297 9.2 6.8 

Scenario 3 

Vector sensor 83 4.3 1.8 

Pressure-only array 57 4.6 2.2 

Single pressure sensor 58 9.8 7.4 

Scenario 4 

Vector sensor 12 2.5 0 

Pressure-only array 23 4 1.4 

Single pressure sensor 25 8.6 6 

2.1.4.5 Effect of imperfect channel estimates 

In Figure 2.10 we present the BERs for Scenario 1, with and without perfect channel 

estimates. As expected, equalization without exact knowledge of the channel matrix H 

results in a loss in SNR for all types of receivers. For example, at BER = 10
-2

, the SNR 

loss for the vector sensor receiver is 3 dB. 
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Figure 2.10 The impact of imperfect channel estimate on the performance of vector 
sensor and pressure-only equalizers in Scenario 1. 

2.2 The Multiuser Communication via Vector Sensor Receiver 

In Section 2.1, the vector sensor underwater communication system is introduced as a 

new multiple channels acoustic receiver. Therefore, by taking the advantage of multiple 

input multiple output (MIMO) scheme, multiuser underwater communication system 

without bandwidth expansion can be realized.  

2.2.1 The Multiuser System 

First we explain the system through a three user’s example. Extension to more users is 

straightforward. Consider the scenario shown in Figure 2.11, where three users are 

transmitting data to one receiver. Each user has two pressure sensors, whereas the 

receiver is equipped with only one vector sensor. Extension to three dimension 

propagation is straightforward, where the vector sensor measures the x component of 
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particle velocity channel as well. To make the figure easy to read, only the channels of 

the first transmitter of user 2, i.e., Tx21 are shown. 

 
Figure 2.11  A three-user vector sensor communication system, with two pressure 
sensor transmitters (black dots) per user and a single vector sensor receiver (black 
square). 

Each user transmits its own data from the two pressure sensors using Alamouti 

code. It can be shown that a three channel receiver can separate up to three users [24]-

[26]. Therefore, the proposed three channel vector sensor receiver in Figure 2.11 can 

successfully recover the data of each user. Note that all the users are simultaneously 

sharing the same bandwidth, without spreading codes, and still can be separated at the 

receiver. 

2.2.2 System Equations 

For the users shown in Figure 2.11, Alamouti code is used [28]. Each user has two 

pressure transmitters. Formulas for the channel impulse response of pressure and velocity 

channels and vector sensor equations and communication concepts are given as (2.1)-

(2.2). In this section, we provide the system equations for single and multiple users, both 

with Alamouti code. 
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2.2.2.1 Single user system 

Consider a single user system, where the user is equipped with two pressure transmitter 

in a frequency-selective acoustic channel, and the receiver has K receive channels. The 

Alamouti encoder maps every pair of blocks si(u) and si+1(u) with length u into the 

transmission matrix X at time index i [27]-[28]:  

                                   
*

1

*
1

( ) ( )
,

( ) ( )

i i

i i

s u s u

s u s u

+

+

− 
=  
 

X       (2.12)                       

where * is complex conjugation. Let yk,i and yk,i+1 denote the blocks received by the k
th

 

receive channel, which k = 1,2 …K,  in tow successive slots at instants i and i+1. This 

gives the following I/O relationships [27]-[28]: 

                        
, 1 2 1 ,

* *

, 1 1 1 2 , 1
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y h s h s n
               (2.13) 

where ⊕  stands for convolution in time domain and h1k and h2k are the channel impulse 

responses between transmit antenna 1 and 2 to k
th

 receive channel with the maximum 

channel memory v, respectively. Any channel impulse response h with length less than v 

will be zero-padded to length v. n is the zero mean and 2σ  variance white complex 

Gaussian noise vector with length u+v-1. To avoid the inter-block interference and to 

make all the channel matrix circulant, a cyclic prefix of length v is added to each 

transmitted block s. Each channel impulse response can be written into a circulant 

toeplitz ( -1) ( -1)u v u v+ × + matrix H, [25]  

(0) 0 ... ( ) (1)

( 1) (0) 0 ( )
 ,

( ) ( 1) (0) 0

0 0 ( ) ( 1) (0)

jk jk jk

jk jk jk

jk

jk jk jk

jk jk jk

v

v v

v v

v v

 
 
 
 −

=  
− 

 
  − 

h h h

h h h
H

h h h

h h h

⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋯

 



27 

where j = 1, 2 indicates the j
th

 transmitter. This changes (2.13) to 

                        
, 1 2 1 ,

* *

, 1 1 1 2 ,

 ,

 .1

k i k i k i k i

k i k i k i k i

+

+ +

= + +

=− + + +

y H s H s n

y H s H s n
                     (2.14) 

Now we multiply the received signal blocks y with the #-point orthonormal 

discrete Fourier transform (DFT) matrix Q 

1 2
( , ) exp( ),p q jpq

##

π
= −Q  

where 0 , 1p q #≤ ≤ −   and # = u+v-1 . This allows us to write the I/O relations in 

frequency domain and in terms of frequency-transformed variables [27] 

                           
 , 1 2 1 ,

* *

, 1 1 1 2 , 1

,

 .

k i k i k i k i

k i k i k i k i

+

+ + +

= + +

=− + +

Y Φ S Φ S �

Y Φ S Φ S �
                              

(2.15) 

Here Si = Qsi, �k,i = Qnk,i, Yk,i = Qyk,i , Φjk is a diagonal matrix given by Φjk = QHjkQ
†
, 

and 
†
 denotes complex conjugate transpose. Rewriting (2.15) in matrix form results in: 

            
, ,1 2

* ** *
, 1 , 12 1 1

 .
k i k ik k i

k

k i k ik k i+ ++

     
= = +     −     

Y �Φ Φ S
Y

Y �Φ Φ S
              (2.16) 

2.2.2.2 Multiple user system 

In general, the received data at the k
th

 receiver from m
th

 user in an M user system, which 

1M > , can be written as: 

                                          .m m
k k k= +Y Λ S �                (2.17) 

Here m = 1, 2…M, K ≥ M and  

1 2

* *

2 1

m m

k k
m
k

m m

k k
−

 
= 
 

Φ Φ

Λ

Φ Φ
                                                

(2.18) 
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is the Alamouti-like frequency domain channel impulse response matrix from the m
th

 user 

to the k
th

 receive channel [25]. And  

,

*
, 11

, 
m

k iim
km

k ii ++

  
= =   
   

�S
S �

�S
                                            (2.19) 

are the transmit signal vector from the m
th

 user and the noise vector at the k
th

 receiver, 

respectively. 

m
kΛ  has an Alamouti-like structure, which means that it is an orthogonal matrix. 

So †m m
k kΛ Λ  becomes a diagonal matrix. This characteristic will be used throughout this 

section, to recover the signal from the noisy observations Y via a simple linear operation, 

as explained in Section 2.2.3. 

Overall, the I/O equations in the multiuser system with M users and K receive 

channels are given by  

             

1 2 1
1 1 11 1

21 2
2 22 2 2

1 2

 .
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M

MM
K KK K K

      
      
      = = +      
             

Λ Λ ΛY �S

Y �SΛ Λ Λ
Y

Y �SΛ Λ Λ

⋯

⋯

⋮ ⋮⋮⋮ ⋮ ⋱ ⋮

⋯

              (2.20) 

For the three user system shown in Figure 2.11 with the vector sensor receiver, system 

I/O equation can be written in frequency domain as 

                                   

1 2 3 1

1 2 3 2

1 2 3 3

 ,y y y y y

z z z z z

     
     = +     

     
     

Y P P P S �

Y P P P S �

Y P P P S �

                               

(2.21) 

where the vectors Y, Yy and Yz  are the received signals at the pressure, y-velocity and z-

velocity channels of the vector sensor, respectively. Moreover, with m = 1, 2, 3, P
m
 is the 

pressure channel from the m
th

 user, m
yP  and m

zP   are the y and z component of the 

velocity channel from the m
th

 user, respectively. 
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2.2.3 Interference Cancelation and Equalization  

There are two ways to recover the signal of each user: (a) Decouple the user (interference 

cancelation) and then apply a zero-forcing (ZF) or minimum mean square error (MMSE) 

equalizer to eliminate inter-symbol interference (ISI) [24][29]; (b) apply a joint MMSE 

decoupler and equalizer to overcome the noise enhancement at the decoupling stage of 

(a) and retrieve the signal at the same time. To illuminate the joint MMSE 

decoupler/equalizer, we first explain the approach where decoupling and equalization are 

separated. This shows how the Alamouti-like structure can be used to decouple multiple 

signals at the receiver. 

2.2.3.1 ZF decoupler and MMSE equalizer 

We begin with the ZF decoupler for a single user. Assume that the channel state 

information is completely known at the receiver. By multiplying the both sides of (2.16) 

with Λk
†
, because of the orthogonal structure of the Alamouti-like channel matrix Λk, one 

obtains 

                    †

1

0
 .

0

k i

k k k k

k i+

  
= = +  

  

Ψ S
Y Λ Y �

Ψ S
ɶ ɶ

               

(2.22) 

Here 2 2
1 2| | | |k k k= +Ψ Φ Φ is a ( -1) ( -1)u v u v+ × +  diagonal matrix with (i, i) element 

equal to |Φ1k(i, i)|
2
+|Φ2k(i, i)|

2
, which is the sum of the squared i

th
 DFT coefficients of 

first and second channel impulse responses [27]. 
k�ɶ  is the filtered noise vector with a 

diagonal covariance matrix equal to diag(Ψk,  Ψk). In (2.22), we can see how the signals 

Si and Si+1 of the user are decoupled from the received vector Yk using a ZF algorithm.   

After the ZF decoupling process, the MMSE equalizer for the m
th

 user, by giving 

the decoupled signal vector 
kY
ɶ  in (2.22), can be written as [24]-[29]: 

                              

1

†
1ˆ m m m

k k k

kγ

−
 

= + 
 

S Λ Λ I Yɶ      (2.23) 
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where ˆ mS  includes estimations of Si and Si+1 of the m
th

 user, γk is the signal-to-noise ratio 

(SNR) at the k
th

 receiver, I is the 2( -1) 2( -1)u v u v+ × +  identity matrix. By multiplying 

ˆ mS  with Q
-1

, the inverse DFT matrix, we obtain the original data, i.e. si and si+1 in (2.15), 

in time domain. 

The above ZF decouple process can be extended to multiple user system via an 

iterative algorithm [24]-[29]. Let us rewrite (2.20) as 
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�
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The above equation can be written in the following compact form 

,
M

K K

M
K K

−
− −      

= +      
      

Y �A B S

Y �C D S

                                      

(2.25) 

where Y-K is the 2(K-1) size vector containing the received signal vectors, Y1,Y2,…YK-1. 

Similarly, S
-M

 is the 2(M-1) signal block vector and �-K is the 2(K-1) noise vectors. The 

matrices A, B, C, and D are 2(K-1)×2(M-1), 2(K-1)×2, 2×2(M-1) and 2×2 channel 

impulse response matrices respectively.  Note that to clarify the rough dimension of A, B, 

C, D, Y, S and �, the length of channel output u+v-1 is omitted in above matrices size 

description. The decoupling matrix for the m = M
th

 user can be constructed as [24]-[26]  

                            
1

2( 1)

1
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 .
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−
−

−
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=  − 

I BD
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CA I
    (2.26) 

After multiplying G
M

 with Y in (2.24), an equation similar to (2.22) can be obtained  
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Note that R
M

, which is the received signal from the M
th

 user, is separated out from the 

other users. The matrices A-BD
-1
C and D-CA

-1
B have the Alamouti-like structure also 

[27]. So, by further iteration on the processed received signal vector R
-M

 as (2.22)-(2.27), 

all the data vectors of other users can be recovered.  

According to (2.27), it is clear that the decoupled signal vector R
M

 can be 

considered as the transmitted signal symbol vector S
M

 convolved with the channel

1M −= −Λ D CA Bɶ  in time domain. So, MMSE equalizer for R
M

 can be realized by 

replacing Λ  in (2.23) with MΛɶ .  

2.2.3.2 MMSE joint decoupling and equalizer 

The ZF decouple process enhances the impact of noise. To avoid this, a joint MMSE 

solution can be developed to recover all the data symbols of all the users directly from 

(2.20) as 
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(2.28) 
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and I is the identity matrix with the size as each Λ and γ is the average SNR. Transmitted 

symbols in time domain can be obtained by multiplying S
⌢

 in (2.28) with the inverse DFT 

matrix Q
-1

 with the corresponding size. The disadvantage of joint decoupling and 

equalization is its higher computational complexity. We have used this approach in the 

simulation of next section. 
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2.2.4 Simulation Setup and Performance Comparison 

Monte-Carlo simulations are performed for system performance analysis. The same 

shallow water channel as Section 2.1.3 is used to simulate the proposed multiuser vector 

sensor system. Simulation parameters are shown in Table 2.4. 

The three users are vertically lined up at depths 25, 35 and 45 m below the water 

surface, as shown in Figure 2.11. The vector sensor receiver is 63 m below the water 

surface. The two transmit pressure sensors of each user are vertically separated by λ, the 

wavelength. Each user is transmitting space-time block coded BPSK symbols with a bit 

rate of 2400 bits/sec. The signal vector s for each user includes equi-probable ±1 iid 

symbols. Alamouti’s space-time block code [28] is used in simulations.  

Table 2.4 Simulation and Channel Parameters 

Water Depth (m) 81.158 

Transmitters Depth (m), User 1 25 

Transmitters Depth (m), User 2 35 

Transmitters Depth (m), User 3 45 

Bottom Types Coarse silt 

Receiver Depth (m) 63 

Receiver Range (km) 1 

Carrier Frequency (kHz) 12 

Sampling Frequency (kHz) 48 

Data Rate (kbps) 2.4 

Nominal Sound Speed (m/s) 1500 

Wavelength  λ (m) 0.125 

Transmit sensor spacing of each user λ 
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2.2.4.1 System Performance 

Figure 2.12 shows the bit error rate (BER) performance of three systems: a single user 

system with two pressure transmitters and one pressure receiver; a three user system 

similar to Figure 2.11, where the vector sensor receiver is replaced by a three element 

pressure sensor array with λ element spacing; and a three user vector sensor system of 

Figure 2.11. 

 
Figure 2.12 BER performance for single and multiuser systems. 

According to Figure 2.12, the vector sensor system has a better BER performance 

than the pressure only array receiver. This could be because of the correlations among the 

pressure channels. To investigate this, let the normalized channels in the vector sensor be 

defined as ( )p pµ σ= −p pɶ , ( )y y y y
p pµ σ= −p pɶ  and ( )z z z z

p pµ σ= −p pɶ , where µ and σ 

are sample mean and standard deviation, respectively. Also let |A| denote a matrix whose 

elements are the absolute values of the elements of the matrix. In what follows, we 

calculate the average absolute value of the correlation coefficients among all the channels 

of the vector sensor receiver and the pressure-only array receiver, respectively: 
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The high correlations among the elements of the pressure sensor array, 0.97 and 

0.99, may explain the inferior performance of the pressure-only array. By increasing the 

element spacing in the pressure-only array, its BER might be decreased [30]. A statistical 

model for correlations in a vector sensor will be given in Chapter 3. 

2.2.4.2 Impact of Imperfect Channel Estimation 

The BERs in Figure 2.12 are obtained assuming perfect knowledge of the channel 

matrices. Here we study the influence of error in channel estimation. Figure 2.13 shows 

the impact of channel estimation error on the multiuser vector sensor system. It results in 

a 4dB loss in SNR. 

 
Figure 2.13 The impact of imperfect channel estimation on the performance of the 
multiuser vector sensor system. 

0 1 2 3 4 5 6 7 8 9 10
10

-3

10
-2

10
-1

10
0

Average SNR  per channel per user (dB)

B
it
 e
rr
o
r 
ra
te

 

 

Perfect channel estimation 

Imperfect channel estimation



35 

2.2.4.3 Effect of Transmit Sensor Spacing 

In the previous figures the transmit element spacing was fixed at λ. Since spatial 

correlation exists between the transmit pressure sensors also, it is important to study the 

effect of transmit sensor spacing. Figure 2.14 shows BERs for the three user vector 

sensor system with λ, 4λ and 8λ transmit sensor spacing at each user. We see that with the 

increase of the transmit sensor spacing, the system performance increases as well.  

 
Figure 2.14 The impact of transmit element spacing on the multiuser vector sensor 
system. 

2.2.4.4 Individual User Performance 

The BER in Figure 2.12 is the multiuser system performance, obtained by averaging over 

the BERs of three users. In Figure 2.15, however, the individual BER of each user in the 

vector sensor multiuser system is shown. We observe that the performance of user 2 is 

much worse than the other users. This could be because user 2 is located in between the 

other two users in Figure 2.11. So, perhaps it receives more multiple access interference. 
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In Figure 2.16 the BERs performance are shown by using the separate and joint 

decoupling/equalization algorithms. There is a 3 dB SNR loss, possibly because of the 

noise enhancement by the ZF decoupler. 

 
Figure 2.15 Individual BER of each user in the vector sensor multiuser system. 

 
Figure 2.16 Performance of the vector sensor multiuser system with ZF 
decoupler/MMSE equalizer and joint MMSE decoupler/equalizer. 
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2.3 Summary and Conclusion 

In this chapter, we have introduced and developed the concept of data detection and 

equalization in underwater communication channels using acoustic vector sensors. Basic 

system equations for such a receiver are derived and channel equalization using these 

sensors is formulated. Signal and noise power characteristics in such sensors are also 

investigated. Via extensive simulations under different propagation scenarios, the 

performance of a vector sensor equalizer is determined and compared with single and 

multiple pressure sensor receivers.  

Furthermore, based on the new vector sensor receiver, a multiple users system for 

underwater channels is proposed that does not need spreading codes. Performance of a 

vector sensor receiver for three users is investigated also. The BER of the proposed 

multiuser space-time coded vector sensor system is close to the BER of the single user 

system. This means that the data symbols of the three users are successfully separated 

and estimated using a vector sensor. 

In summary, we have shown that using the vector sensor receiver, one new 

underwater acoustic communication system can be built up. And by using space-time 

block codes over the scalar and vector components of the acoustic field, one can have a 

high rate underwater multiuser system without reduction in the transmission rate of each 

user. This is particularly useful in highly bandwidth-constrained underwater channels. 

Small size of the vector sensor receiver in the proposed system is noteworthy, as the 

compact vector sensor measures all particle velocity channels at a single point in space. 

This is important for systems which have size limitations such as unmanned underwater 

vehicles. 
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CHAPTER 3  

CORRELATIO� STUDY FOR VECTOR SE�SOR ARRAY 

3.1 Signal Correlation Model 

The new underwater communication system with vector sensor receivers was introduced 

in Chapter 2, in both single-user and multiuser cases. Since the underwater acoustic 

channel is a typical time-varying multipath channel, the study of the channel correlations 

is necessary to design or optimize the new vector sensor underwater communication 

system. In this chapter, we develop a statistical framework to represent the channel 

transfer functions, then we derive and discuss the spatial, frequency and temporal 

correlations for given scenarios. To discover the channel characteristics, a vector sensor 

array system with one pressure transmitter and three vector sensor receivers is setup 

which is shown in Figure 3.1. Each vector sensor measures the pressure, as well as the y 

and z component of the acoustic particle velocity, all in a single point. 

 
Figure 3.1 A vector sensor array with one pressure transmitter and three vector sensor 
receivers. 
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3.1.1 Statistical Representation of Pressure and Velocity Channels 

First we develop a statistical framework, which concentrates on channel characterization 

using probabilistic models for the random components of the propagation environment. 

In this way, the statistical behavior of the channel can be imitated, and convenient closed-

form expressions for the correlation functions of interest can be derived. These vector 

sensor parametric correlation expressions allow engineers to design, simulate, and asses a 

variety of design schemes under different channel conditions. 

In what follows we provide proper statistical representations for pressure and 

velocity channels in shallow waters. These channel representations will be used in 

Section 3.1.2, to calculate different types of channel correlations. 

3.1.1.1 Pressure-related channel functions 

In this subsection we define and focus on the pressure channel functions over the angle, 

space, delay, frequency and time domains. 

Figure 3.2 shows the system of Figure 3.1, as well as the geometrical details of 

the received rays in a shallow water channel, with three vector sensor receivers. Two-

dimensional propagation of plane waves in the y-z (range-depth) plane is assumed, in a 

time-invariant environment with 0D  as the water depth. Vector sensor 1 is located at 

/ 2yy L=  and ( / 2)zz D L= − , vector sensor 2 is at / 2yy L= −  and ( / 2)zz D L= +  and 

vector sensor Rx is located at 0y =  and  z D= . Here, Ly and Lz are the projections of the 

array length L at y and z axis, respectively, such that 1/2( )y zL L L= + . All the angles are 

measured with respect to the positive direction of y, counterclockwise. We model the 

rough sea bottom and its surface as collections of b#  and s#  scatterers, respectively, 

such that 1b# >>  and 1s# >> . In this work, the small letters b and s  refer to the bottom 

and surface, respectively. In Figure 3.2, for example, the i-th bottom scatterer is 

represented by b
iO , 1, 2,..., bi #= , whereas s

mO  denotes the m-th surface scatterer, 

1, 2,..., .sm #=  Rays scattered from the bottom and the surface toward the vector sensors 
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are shown by solid lines. The rays scattered from b
iO  hit 1Rx  and 2Rx  at the angle of 

arrivals (AOAs) 
,1
b
iγ  and 

,2
b
iγ , respectively. The traveled distances are labeled by 

,1
b
iξ  and 

,2
b
iξ , respectively. Similarly, the scattered rays from s

mO  impinge 1Rx  and 2Rx  at the 

AOAs 
,1

s
mγ  and 

,2
s
mγ , respectively, with 

,1
s
mξ  and 

,2
s
mξ  as the traveled distances shown in 

Figure 3.2. The vector sensor receivers move at the speed u, in the direction specified by 

φ in Figure 3.2. 

2

y
L

u

2

y
L

2

z
L

2

z
L

ϕ

 
Figure 3.2 Geometrical representation of the received rays at a mobile vector sensor 
array in a shallow water multipath channel. 

Let τ  and γ  represent the delay (travel time) and the AOA (measured with 

respect to the positive direction of y, counterclockwise). Then with the consideration of 

amplitude, phase and Doppler shift, in the angle-delay domain, the time varying impulse 

responses of the pressure subchannels 1Tx Rx−  and 2Tx Rx− , represented by 1( , , )tχ γ τ  

and 2 ( , , )tχ γ τ , respectively, can be written as 
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In eq. (3.1) and (3.2), (.)δ  is the Dirac delta, 0 and 0b s
i ma a> >  represent the 

amplitudes of the rays scattered from b
iS  and s

mS , respectively, whereas [0, 2 )b
iψ π∈  

and [0,2 )s
mψ π∈  stand for the associated phases. The four delay symbols in (3.1) and 

(3.2) represent the travel times from the bottom and surface scatterers to the two vector 

sensors. For example, 
,1
b
iτ  denotes the travel time from b

iS  to 1Rx , and so on. As becomes 

clear in Appendix A, the factors 1/2( )b# −  and 1/2( )s# −  are included in (3.1), (3.2) and the 

subsequent channel functions, for power normalization. exp( 2 cos( ) )Mj f tπ γ ϕ−   

corresponds to its Doppler shift introduced by the motion of the receiver [38][43]. Here 

Mf u λ=  is the maximum Doppler shift. Also 0 1b≤ Λ ≤  represents the amount of the 

contribution of the bottom scatterers, as explained immediately after eq. (A.5) in 

Appendix A. A close to one value for bΛ  indicates that most of the received power is 

coming from the bottom. Of course the amount of the contribution of the surface is given 

by 1 b−Λ . 

A Dirac delta in the angle domain such as ( )δ γ γ− ɶ  corresponds to a plane wave 

with the AOA of γɶ , whose equation at an arbitrary point ( , )y z  is 

exp( [ cos( ) sin( )])jk y zγ γ+ɶ ɶ . Using similar plane wave equations for the other angular 

delta functions in (3.1) and (3.2), the impulse responses of the pressure subchannels 

1Tx Rx−  and 2Tx Rx−  in the delay-space domain can be respectively written as 
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(3.4) 

Based on the definition of the spatial Fourier transform [56], 1( , )p tτ  and 2 ( , )p tτ  

can be considered as the spatial Fourier transforms of 1( , , )tχ γ τ  and 2 ( , , )tχ γ τ , 

respectively, with respect to γ . The terms y and z in (3.3) and (3.4) are intentionally 

maintained, as in the sequel we need to calculate the spatial gradients of the pressure with 

respect to y and z, to obtain the velocities. 

By taking the Fourier transform of (3.3) and (3.4) with respect to τ , we 

respectively obtain the complex baseband transfer functions of the pressure subchannels 

1Tx Rx−  and 2Tx Rx−  in the frequency, time and space domain 
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3.1.1.2 Velocity-related channel functions 

Following the definition of the pressure-equivalent velocity in (2.2), the velocity channels 

of interest in the delay-space and frequency-space domains can be written as 

     1 1( , ) ( ) ( , ), ( , ) ( ) ( , ), 1,  2,y z
q q q qp t jk p t p t jk p t qτ τ τ τ− − ′= = =ɺ

          
 (3.7) 

                1 1( , ) ( ) ( , ), ( , ) ( ) ( , ), 1,  2,y z
q q q qP f t jk P f t P f t jk P f t q− − ′= = =ɺ              (3.8) 

where ( , ) and ( , ), 1, 2q qp t P f t qτ = , are given in (3.3)-(3.6). Furthermore, dot and prime 

denote the partial spatial derivatives / and /y z∂ ∂ ∂ ∂ , respectively, of the spatial complex 

plane waves in (3.3)-(3.6). Clearly for 1, 2q = , ( , ) and ( , )y z
q qp t p tτ τ  are the pressure-

equivalent impulse responses of the velocity subchannels in the y and z directions, 

respectively. Moreover, ( , ) and ( , )y z
q qP f t P f t  represent the pressure-equivalent transfer 

functions of the velocity subchannels in the y and z directions, respectively, with 1, 2q = . 

3.1.2 Complete Channel Correlation Expressions 

In a given shallow water channel, obviously the numerical values of all the amplitudes, 

phases, AOAs, delays and Doppler shift in (3.3)-(3.6) are complicated functions of 

environmental characteristics such as the irregular shape of the sea bottom and its 

layers/losses, volume microstructures, etc. Due to the uncertainty and complexity in exact 

determination of all these variables, we model them as random variables. More 

specifically, we assume all the amplitudes { } and { }b s
i i m ma a  are positive uncorrelated 

random variables, uncorrelated with the phases { } and { }b s
i i m mψ ψ . In addition, all the 

phases { } and { }b s
i i m mψ ψ  are uncorrelated, uniformly distributed over [0, 2 )π . The 

statistical properties of the AOAs, delays and Doppler shifts will be discussed later. 

Overall, all the pressure and velocity channel functions in (3.3)-(3.8) are random 

processes in space, frequency and time domains. In what follows, first we derive the 

exact expression for the pressure spatial, frequency and temporal correlation. Then we 

show how other correlations of interest can be calculated from the pressure correlation. 
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3.1.2.1 Pressure channel correlation 

The definition of the pressure channel frequency-space correlation is given by 

2 1

*
2 1( , , , ) [ ( , ) ( , )]P P z yC f t L L E P f f t t P f t∆ ∆ = + ∆ + ∆ . Here f∆  and t∆  are the spacing in 

frequency and time domain, respectively. Lz and Ly are the vertical and horizontal 

distances between the two vector sensors, respectively, * is complex conjugate, and E is 

the expectation calculated over the distribution of AOAs from the bottom and the surface. 

As shown in Appendix A, based on  (3.5) and (3.6),  the complete frequency, temporal  

and spatial correlation of the pressure channel can be shown as  
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∫

  (3.9) 

 Eq. (3.9) is a frequency, temporal and spatial correlation model for the pressure 

field which holds for any AOA probability density functions (PDFs) that may be chosen 

for ( ) and ( )b b s sw wγ γ . In what follows first we use (3.9) to derive expressions for 

various spatial, frequency and temporal correlations, which hold for any AOA PDF. Then 

in Section 3.2 we use a flexible parametric PDF for the AOA, to obtain easy-to-use and 

closed-from expressions for correlations of special case, vertical vector sensor array. 

In (3.9), bγ and sγ  are the AOAs of rays coming from bottom and surface toward 

the vector sensor array center, respectively. Eq. (3.9) can be expressed in terms of bγ  and 

sγ , the bottom and surface AOAs, respectively, and also Lz, Ly, D and D0. According to 

Figure 3.2, it is straightforward to verify 
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where cot( ) cos( ) / sin( )⋅ = ⋅ ⋅ . Moreover, 1
bξ , 2

bξ , 1
sξ  and 2

sξ  are rays travel distances from 

the sea bottom and surface to 1Rx  and 2Rx , respectively, and can be expressed as  
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where, 1/2( )y zL L L= + . Moreover, b
qτ and s

qτ  
in (3.9), q = 1, 2, are the travel times from 

bottom and surface scatterers to the 1Rx  and 2Rx , respectively, which are given by  

1
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where c is the sound speed. 
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Pressure channel correlations of two special cases, vertical and horizontal arrays, 

can be obtained by setting 0yL =  and 0zL = in (3.9), respectively. The results are given 

in (3.19) for a vertical array and (3.20) for a horizontal array. With 0yL =  or 0zL = in 

(3.9), we obtain the pressure channel correlation functions for vertical vector sensor array or 

horizontal vector sensor array respectively. 
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(3.20) 

3.1.2.2 How to obtain velocity channel correlations 

Now we provide the following two formulas derived from [45], needed in the sequel to 

calculate velocity-related correlations. Let ( , )y zβ  denote a random field in the two-

dimensional range-depth plane. Also let *( ) [ ( , ) ( , )]C E y z y zβ β β= +ℓ ℓ  be the spatial 

correlation in the z direction. Then the correlation functions of the derivative of ( , )y zβ  

in the z direction, i.e., ( , ) ( , ) /' y z y z zβ β= ∂ ∂  can be written as 

                               [ ]*( , ){ ( , )} ( )E y z ' y z Cββ β+ = −∂ ∂ℓ ℓ ℓ ,              (3.21) 

                             [ ]* 2 2( , ){ ( , )} ( )E ' y z ' y z Cββ β+ = −∂ ∂ℓ ℓ ℓ .            (3.22) 

Similar results hold for the derivative of ( , )y zβ  in the y direction, i.e., 

( , ) ( , ) /y z y z yβ β= ∂ ∂ɺ . Therefore, to obtain pressure-velocity and velocity-velocity 
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channel correlations, one need to take proper derivatives of the pressure channel 

correlation in (3.9), as summarized below  
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(3.27) 

In equations (3.23) to (3.27), the time-varying transfer functions for the pressure-

equivalent velocity channels at the q-th vector sensor, q = 1, 2, are given in (3.8).  

Using (3.9)-(3.18) and (3.23)-(3.27), one can numerically analyze the spatial, 

frequency and temporal correlations for pressure and velocity channels in an arbitrary 

vector sensor array. In the following subsection, for a given scenario, the numerical 

results of those correlations are shown and compared with the corresponding correlation 

results provided by Monte-Carlo simulation of (3.5),  (3.6) and (3.8). 

3.1.2.3 #umerical results 

 We still consider the case where the three-element vector sensor array in Figure 3.2 

receives signal through two beams: one from the bottom with mean AOA bµ  and angle 

spread bσ , and the other one from the surface with mean AOA sµ  and angle spread sσ . 

For small angle spreads, we model AOAs as Gaussian distributions for both bottom and 
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surface components with means bµ and sµ and variances 2
bσ  and 2

sσ , respectively , which 

the PDFs are given as  

                       
2 1/2 2 2

2 1/2 2 2

( ) (2 ) exp[ ( ) (2 )], 0 ,

( ) (2 ) exp[ ( ) (2 )], 2 .

b b b b
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γ πσ γ µ σ γ π

γ πσ γ µ σ π γ π

−

−

= − − < <

= − − < <
              (3.28) 

For large angle spreads, once can use the von Mises PDF [57] [58]. In Figure 3.3 

these two PDFs are plotted in both linear and polar coordinates. The bottom and surface 

mean AOAs are 10 and 348 degrees, whereas the corresponding angle spread are 2 and 

1.5 degrees. The center of the array is place at y = 0 and D = 50 meters, while the water 

depth is D0 = 100m. The power ratio is 0.4bΛ = . 

 
Figure 3.3 The bottom and surface angle-of-arrival Gaussian PDFs: (a) linear plot, 
(b) polar plot. 

Figure 3.4 shows the spatial correlation magnitude of the pressure channel of the 

oblique array. Particle velocity channel correlations can be calculated by taking 

derivatives of the pressure channel correlation function in (3.9) with respect to Lz or Ly. 

Figure 3.5 and Figure 3.6 show the numerical results of frequency and temporal 

correlations for pressure and velocity channels. 
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Figure 3.4 Magnitude of the pressure spatial correlations of a vector sensor array. 

 
Figure 3.5 Magnitude of frequency correlations in a single vector sensor. 
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Figure 3.6 Magnitude of temporal correlations in a single vector sensor. 

From Figure 3.5 and Figure 3.6, it is clear that for the given scenario and small 

AOA spread, velocity-y channel has similar correlations as the pressure channel whereas 

velocity-z channel correlations are significantly different. 

3.2 Correlations in Vertical Vector Sensors 

Exact correlation expressions include integrals over AOAs which are time consuming to 

compute. For small angle spread and under certain conditions such as small spacing 

between array elements, useful integral-free approximation, for vertical and horizontal 

arrays can be obtained using (3.19) and (3.20). The high order approximations of those two 

special cases are given in Appendix B. However, the most common use for vector sensor 

receiver is vertical vector sensor array, which the vector sensors are placed vertical to the 

sea surface. In this subsection, the detailed analyses for spatial, frequency and temporal 

correlations for vertical vector sensor array are given, based on the simple closed-form 

approximation of correlations from eq. (3.9). 
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3.2.1 Correlations Functions for A Vertical Vector Sensor Array 

In what follows, first we derive a closed-form expression for the pressure correlation. 

Then we show how other correlations of interest can be calculated from the pressure 

correlation. 

From (3.9) and Appendix A, we have derived the following expression 

2 1

2

2

0

( , , , )

( ) exp[ ( cos( ) sin( ))]

exp[ 2 ]exp[ 2 cos( ) ]

( )exp[ ( cos( ) sin( ))]
+ (1 ) ,

exp[ 2 ]exp[ 2 cos( ) ]

b

P P z y

b b b b
y z

b b b b
M

s s s s
y z

b s s s
M

C f t L L

w jk L L

j f j f t d

w jk L L

j f j f t d

π

γ

γ γ γ

π τ π γ ϕ γ

γ γ γ

π τ π γ ϕ γ

=

∆ ∆

+  
= Λ  

− ∆ − ∆  

+  
−Λ  

− ∆ − ∆  

∫
2

 as 0,
s

yL

π

γ π=

→∫

      (3.29) 

Eq. (3.29) is a spatial, frequency and temporal correlation model for the pressure 

field which holds for any AOA PDFs. In what follows first we use (3.29) to derive 

expressions for various spatial frequency and temporal correlations. Then in Section 3.2.2 

we use a flexible parametric PDF given as (3.28), to obtain easy-to-use and closed-from 

expressions for correlations of practical interest. Please note that, Ly is still kept in the 

correlation functions to help describing the differentiation process.  

3.2.1.1 Spatial correlations for two vector sensors at the same frequency 

(a) Pressure Correlation: At a fixed initial position with 0f∆ = and 0t∆ = , the spatial 

pressure correlation for vertical vector sensor array can be obtained from (3.29) as 

2 1 2 1

2

0
( ) (0,0, , ) ( ) exp( ( cos( ) sin( ))) , as 0,P P z P P z y y z yC L C L L w jk L L d L

π

γ
γ γ γ γ

=
= = + →∫

 
(3.30) 

where the overall AOA PDF ( )w γ  is defined as follows, to include both the bottom and 

surface AOAs and shorten the correlation expressions 

                ( ) ( ) (1 ) ( )b s
b bw w wγ γ γ= Λ + −Λ .   (3.31) 

Of course ( ) 0 for 2bw γ π γ π= < < , whereas ( ) 0 for 0sw γ γ π= < < .  
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(b) Pressure-Velocity Correlations: First we look at the z-component of the velocity. 

Here we are interested in * 1 *
2 1 2 1[ ( , ){ ( , )} ] ( ) [ ( , ){ ( , )} ]zE P f t P f t jk E P f t P f t− ′= − , where 

1 ( , )zP f t  is replaced according to (3.8). On the other hand, using (3.23)-(3.27), one has 

2 1

* *
2 1 2 1[ ( , ){ ( , )} ] [ ( , ) ( , )] / (0,0, , ) /z P P z y zE P f t P f t E P f t P f t L C L L L′ = −∂ ∂ = −∂ ∂ . Therefore 

2 12 1

* 1
2 1

2

0

( ) [ ( , ){ ( , )} ] ( ) (0,0, , ) /

              ( )sin( ) exp( [ cos( ) sin( )]) , as  0,

z

z
z P P z y zP P

y z y

C L E P f t P f t jk C L L L

w jk L L d L
π

γ
γ γ γ γ γ

−

=

= = ∂ ∂

= + →∫
        (3.32) 

where the integral in (3.32) is coming from (3.30). An interesting observation can be 

made when ( )w γ  is even-symmetric with respect to the y axis (symmetry of the AOAs 

from the bottom and the surface with respect to the horizontal axis y). Then with 0zL =  

in (3.32) we obtain *
1 1[ ( , ){ ( , )} ] 0zE P f t P f t = , i.e., the co-located pressure and the z-

component of the velocity are uncorrelated. 

Now we focus on the y-component of the velocity. The correlation of interest is 

* 1 *
2 1 2 1[ ( , ){ ( , )} ] ( ) [ ( , ){ ( , )} ]yE P f t P f t jk E P f t P f t−= − ɺ , where 

1 ( , )yP f t  is replaced 

according to (3.8). Note that according to the representations for 2 1( , ) and ( , )P f t P f t  in 

(3.5) and (3.6), respectively, the location of the second vector sensor can be thought of as 

0( , ) ( 2, 2), as 0y z yy z L D L L= − + → , whereas the first vector sensor is located at 

0( , ) ( 2 , 2), as 0y z yy z L D L L= − → . So, using the analogous of (3.21) in the y direction 

we obtain *
2 1[ ( , ){ ( , )} ]E P f t P f tɺ  = *

2 1[ ( , ) ( , )] / ,yE P f t P f t L−∂ ∂ as 0yL → =

2 1
(0,0, , ) / ,P P z y yC L L L−∂ ∂ as 0yL → . Differentiation of (3.30) with respect to 

yL  results in 

2 12 1

* 1
2 1

2

0

( ) [ ( , ){ ( , )} ] ( ) (0,0, , ) /

          ( ) cos( )exp( [ cos( ) sin( )]) , as 0.

y

y

z P P z y yP P

y z y

C L E P f t P f t jk C L L L

w jk L L d L
π

γ
γ γ γ γ γ

−

=

= = ∂ ∂

= + →∫          

(3.33) 

If ( )w γ  is even-symmetric around the z axis, then with 0yL =  in (3.33) we obtain 

*
1 1[ ( , ){ ( , )} ] 0yE P f t P f t = , i.e., the co-located pressure and the y-component of the 

velocity become uncorrelated. 
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(c) Velocity Correlations: Here we start with the z-component of the velocity. We are 

going to calculate * 2 *
2 1 2 1[ ( , ){ ( , )} ] [ ( , ){ ( , )} ]z zE P f t P f t k E P f t P f t− ′ ′= , where 2 ( , )zP f t  and 

1 ( , )zP f t  are replaced according to (3.8). On the other hand, similar to (3.22), one can 

write
2 1

* 2 * 2 2 2
2 1 2 1[ ( , ){ ( , )} ] [ ( , ) ( , )] / (0,0, , ) / .z P P z y zE P f t P f t E P f t P f t L C L L L′ ′ = −∂ ∂ = −∂ ∂ Hence 

2 12 1

* 2 2 2
2 1

2
2

0

( ) [ ( , ){ ( , )} ] (0,0, , ) /

               ( ) sin ( ) exp( [ cos( ) sin( )]) , as 0,

z z

z z
z P P z y zP P

y z y

C L E P f t P f t k C L L L

w jk L L d L
π

γ
γ γ γ γ γ

−

=

= = − ∂ ∂

= + →∫
           (3.34) 

where (3.30) is used to write the integral in (3.34). 

Let us now concentrate on the y-component of the velocity. In this case the 

correlation is * 2 *
2 1 2 1[ ( , ){ ( , )} ] [ ( , ){ ( , )} ]y yE P f t P f t k E P f t P f t−= ɺ ɺ , in which 

2 ( , )yP f t  and 

1 ( , )yP f t  are replaced using to (3.8). As mentioned before (3.33), the second and the first 

vector sensors are located at 
0

( , ) ( 2, 2)y zy z L D L= − + , and 

0( , ) ( 2 , 2), as 0y z yy z L D L L= − → , respectively. Thus, by using the equivalent of 

(3.22) in the y direction we obtain *
2 1[ ( , ){ ( , )} ]E P f t P f tɺ ɺ = 2 * 2

2 1[ ( , ) ( , )] / yE P f t P f t L−∂ ∂  

as 0yL → = 
2 1

2 2(0,0, , ) /P P z y yC L L L−∂ ∂ as 0yL → . Taking the second derivative of  (3.30) 

with respect to Ly results in 

2 12 1

* 2 2 2
2 1

2
2

0

( ) [ ( , ){ ( , )} ] (0,0, , ) /

( ) cos ( )exp( [ cos( ) sin( )]) , as 0.

y y

y y

z P P z y yP P

y z y

C L E P f t P f t k C L L L

w jk L L d L
π

γ
γ γ γ γ γ

−

=

= = − ∂ ∂

= + →∫
            (3.35) 

The (average) received powers via the pressure-equivalent velocity channels in 

the z and y directions are 2 2
1 1[| ( , ) | ] and [| ( , ) | ]yzE P f t E P f t , respectively. Using (3.34) 

and (3.35) with 0yL = , and since 2 2sin ( ) 1 and cos ( ) 1γ γ< < , one can easily show 

       2 2 2 2
1 1 1 1[| ( , ) | ] 1, [| ( , ) | ] 1, [| ( , ) | ] [| ( , ) | ] 1y yz zE P f t E P f t E P f t E P f t< < + = . (3.36) 

Therefore, the received powers via the two velocity channels are not equal. 

However, through both of them together we receive the same total power that a pressure 

sensor collects, as shown by the last equation in (3.36). Note that in this dissertation the 
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power received by a pressure sensor is 
2 1

2
1[| ( , ) | ] (0,0,0,0) 1P PE P f t C= = , obtained from 

(3.30). 

Finally, the correlation between the z and y components of the velocity is 

* 2 *
2 1 2 1[ ( , ){ ( , )} ] [ ( , ){ ( , )} ]yzE P f t P f t k E P f t P f t− ′= ɺ , with 

2 1( , ) and ( , )yzP f t P f t  substituted 

according to (3.8). A straightforward generalization of (3.22) results in 

*
2 1[ ( , ){ ( , )} ]E P f t P f t′ ɺ = 2 *

2 1[ ( , ) ( , )] / ,z yE P f t P f t L L−∂ ∂ ∂ as 0yL →  = 

2 1

2
2(0,0, , ) /P P z y yC L L L L−∂ ∂ ∂ , as 0yL → . By taking the derivatives of (3.30) with respect 

to Lz and Ly we obtain 

  
2 12 1

* 2 2
2 1

2

0

( ) [ ( , ){ ( , )} ] (0,0, , ) /

                = ( )sin( ) cos( )exp( [ cos( ) sin( )]) , as  0.

yz

yz
z P P z y z yP P

y z y

C L E P f t P f t k C L L L L

w jk L L d L
π

γ
γ γ γ γ γ γ

−

=

= = − ∂ ∂ ∂

+ →∫
 (3.37) 

With 0zL = , there are two possibilities for which (3.37) becomes zero: ( )w γ  is even-

symmetric with respect to the y axis, or ( )w γ  is even-symmetric around the z axis. In 

both cases the co-located z and y components of the velocity are uncorrelated. 

3.2.1.2 Frequency correlations for one vector sensor 

(a) Pressure Correlation: Simply with 0y zL L= = and 0t∆ = , equations (3.10)-(3.18) 

in Section 3.1.2 result in 2 1
b b bγ γ γ= = , 2 1

s s sγ γ γ= = , 2 1
b b bτ τ τ= = , 2 1

s s sτ τ τ= = , the 

frequency correlation of pressure channel for vertical vector sensor array can be obtained 

from (3.9) as 

0

2

( ,0, , ) ( )exp[ ( cos( ) sin( ))]exp[ 2 ]

+ (1 ) ( )exp[ ( cos( ) sin( ))]exp[ 2 ] ,as , 0.

b

s

b b b b
PP z y b y z

s s s s
b y z y z

C f L L w jk L L j f d

w jk L L j f d L L

π

γ

π

γ π

γ γ γ π τ γ

γ γ γ π τ γ

=

=

∆ = Λ + − ∆

−Λ + − ∆ →

∫

∫
 

(3.38) 

The component exp( [ cos( ) sin( )])y zjk L Lγ γ+  is remained here to help illustrating the 

differentiation process for the velocity channel correlations.  
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(b) Pressure-Velocity Correlations: Still we look at the z-component of the velocity 

first. Now we need * 1 *
1 1 1 1[ ( , ){ ( , )} ] ( ) [ ( , ){ ( , )} ]zE P f t P f t jk E P f t P f t− ′= − . Similar to the 

spatial correlation derivation, using (3.23) with  0y zL L= = and 0t∆ = , one can obtain  

2 1

* 1
1 1

0

2

( ) [ ( , ){ ( , )} ] ( ) ( ,0, , ) /

              ( ) sin( ) exp[ 2 ]

               + (1 ) ( ) sin( ) exp[ 2 ] .

z

b

s

z
P P z y zPP

b b b b b
b

s s s s s
b

C f E P f t P f t jk C f L L L

w j f d

w j f d

π

γ

π

γ π

γ γ π τ γ

γ γ π τ γ

−

=

=

∆ = = ∂ ∆ ∂

= Λ − ∆

−Λ − ∆

∫

∫

              (3.39) 

Similarly, replacing 0y zL L= = and 0t∆ =  in (3.24) results in 

2 1

* 1
1 1

0

2

( ) [ ( , ){ ( , )} ] ( ) ( ,0, , ) /

              ( ) cos( ) exp[ 2 ]

               + (1 ) ( )cos( ) exp[ 2 ] .

y

b
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P P z y yPP

b b b b b
b

s s s s s
b

C f E P f t P f t jk C f L L L

w j f d

w j f d

π

γ

π

γ π

γ γ π τ γ

γ γ π τ γ

−

=

=

∆ = = ∂ ∆ ∂

= Λ − ∆

−Λ − ∆

∫

∫
             

(3.40) 

 (c) Velocity Correlations: Using (3.9) and (3.23)-(3.27), with 0y zL L= = and 0t∆ = , 

the frequency auto-correlations of z-velocity and y-velocity channel can be expressed as 

2

0

2
2

( ) ( )sin ( )exp[ 2 ]

                + (1 ) ( )sin ( )exp[ 2 ] ,

z z
b

s

b b b b b
bP P

s s s s s
b

C f w j f d

w j f d
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γ γ π τ γ
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−Λ − ∆

∫

∫
          (3.41) 

2
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2
2

( ) ( ) cos ( ) exp[ 2 ]

                + (1 ) ( )cos ( )exp[ 2 ] ,

y y
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s

b b b b b
bP P
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γ π

γ γ π τ γ

γ γ π τ γ

=

=
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∫

∫
          (3.42) 
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2

( ) ( )sin( ) cos( )exp[ 2 ]

                + (1 ) ( )sin( ) cos( )exp[ 2 ] .

z y
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b b b b b b
bP P

s s s s s s
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C f w j f d
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π

γ

π

γ π

γ γ γ π τ γ

γ γ γ π τ γ

=

=

∆ = Λ − ∆

−Λ − ∆

∫

∫
             (3.43) 
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3.2.1.3 Temporal correlations for one vector sensor 

(a) Pressure Correlation: Simply with 0y zL L= = and 0f∆ = , and using the same 

approach, the temporal correlation of pressure channel for vertical vector sensor array can 

be obtained from (3.9) as 

0

2

( ) ( ) exp[ ( cos( ) sin( ))]exp[ 2 cos( ) ]

+ (1 ) ( ) exp[ ( cos( ) sin( ))]exp[ 2 cos( ) ]

, as , 0

b

s

b b b b
PP b y z M

s s s s
b y z M

y z

C t w jk L L j f t d

w jk L L j f t d

L L

π

γ

π

γ π

γ γ γ π γ ϕ γ

γ γ γ π γ ϕ γ

=

=

∆ = Λ + − ∆

−Λ + − ∆

→

∫

∫  

(3.44) 

(b) Velocity Correlations: From (3.9), using (3.23)-(3.27), with 0y zL L= = and 0f∆ = , 

the time domain auto-correlations of z-velocity and y-velocity channel can be expressed 

as 

2

0

2
2

( ) ( )sin ( )exp[ 2 cos( ) ]

               + (1 ) ( )sin ( )exp[ 2 cos( ) ] ,

z z
b

s

b b b b b
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γ γ π γ ϕ γ
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∫

∫
      (3.45) 

2

0

2
2

( ) ( )cos ( )exp[ 2 cos( ) ]
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γ γ π γ ϕ γ
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=

=
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∫

∫
      (3.46) 

The temporal crossing-correlation between the pressure and velocity channels and 

within the velocity channels are not concerned in this dissertation, but the interesting 

reader can derive it out simply following the principle of spatial correlation derivation. 

3.2.2 A Closed-from Integral-free Correlation Expression 

Similarly by using the small spread AOAs by Gaussian PDFs as (3.28) and taking the 

first-order and second-order Taylor expansion, as shown in Appendix C, and using the 

characteristic function of a zero-mean Gaussian variable, which is 

2 1/2 2 2 2 2exp( ) (2 ) exp[ / (2 )] exp( / 2)j x x dxθ π σ σ σ θ− − = −∫  [45] , one can obtain the 
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closed-from integral-free correlation expressions. Since in this section, only the vertical 

vector sensor array are concerned, which means 0 and y zL L L= = , here we use L instead 

of Lz to represent the element spacing to simplify the notations. 

In what follows we focus on the closed-form integral-free expressions of the 

spatial correlations for two vector sensors at the same frequency as well as the frequency 

and temporal correlations for a single vector sensor. 

3.2.2.1 Spatial correlations for two vector sensors at the same frequency 

(a) Pressure correlation: With 0f t∆ = ∆ =  and 0yL =  from (3.28), (3.30) and (3.31), 

similar to Appendix C, using L to replace Lz, one can obtain the approximated integral-

free spatial correlation of pressure channel  as 

                  
[ ]

[ ]
2 1

2 2 2 2

2 2 2 2

( ) exp sin( ) 0.5 cos ( )

        (1 ) exp sin( ) 0.5 cos ( ) .

P P b b b b

b s s s

C L jkL k L

jkL k L

µ σ µ

µ σ µ

= Λ −

+ −Λ −
        (3.47) 

The magnitude of (3.47) is plotted in Figure 3.7 with the comparing of the exact 

pressure correlation. The close agreement between the two curves verifies the usefulness 

of the approximate yet simpler pressure spatial correlation model in (3.47). 

 (b) Pressure-Velocity Correlations: From (3.28), (3.31) and (3.32) we obtain 

[ ]
[ ]

2 1

2 2 2 2 2 2

2 2 2 2 2 2

( ) [sin( ) cos ( )]exp sin( ) 0.5 cos ( )

(1 )[sin( ) cos ( )]exp sin( ) 0.5 cos ( ) .

z b b b b b b bP P

b s s s s s s

C L j kL jkL k L

j kL jkL k L

µ σ µ µ σ µ

µ σ µ µ σ µ

=Λ + −

+ −Λ + −
    (3.48) 

Moreover,  (3.28), (3.31) and (3.33) results in 

[ ]
[ ]

1

2 2 2 2 2

2 2 2 2 2

( ) [cos( ) sin( )cos( )]exp sin( ) 0.5 cos ( )

(1 )[cos( ) sin( ) cos( )]exp sin( ) 0.5 cos ( ) .
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b s s s s s s s

C L j kL jkL k L

j kL jkL k L

µ σ µ µ µ σ µ

µ σ µ µ µ σ µ
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+ −Λ − −

(3.49)

 

For 0zL L= = , i.e., a single vector sensor, co-located pressure/vertical-velocity and co-

located pressure/horizontal-velocity correlations are sin( ) (1 )sin( )b b b sµ µΛ + −Λ  and 
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cos( ) (1 ) cos( )b b b sµ µΛ + −Λ , respectively. As an example, let 0.4bΛ =  , 

o

/ 90 (2 )bσ π= , 
o

/18 (10 )bµ π= , o/120 (1.5 )sσ π= , and 348 /180sµ π=

o o(348 12 )≡ − . This results in 0.055−  and 0.98 for 1 1/ zP P  and 
1 1/ yP P  correlations, 

respectively. Plots of the magnitudes of (3.48) and (3.49) are provided in Figure 3.7. 

Those correlation results confirm that the upon the small AOA spread and near horizontal 

mean of AOAs, the velocity-y channel is almost the same as the pressure channel and the 

velocity-z channel is totally different with them. This phenomenon has been indicated 

and proved by several figures, for example Figure 3.5 and Figure 3.6. 

 
Figure 3.7 The magnitudes of the pressure spatial autocorrelation in (3.47) and 
pressure-velocity spatial crosscorrelations in (3.48) and (3.49) versus L / λ. 

(c) Velocity Correlations: Similarly, from (3.34), (3.35) and (3.37), we can get 
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 (3.50) 
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For a single vector sensor, by plugging 0zL L= =  into the above equations we 

obtain 

   

2 2 2 2 2 2

2 2

(0) [sin ( ) cos ( )] (1 )[sin ( ) cos ( )]

sin ( ) (1 )sin ( ),

z z b b b b b s s sP P

b b b s

C µ σ µ µ σ µ

µ µ

=Λ + + −Λ +
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      (3.53) 
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y y b b b b b s s sP P
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µ µ
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     (3.54)  

2 2(0) (1 )sin( ) cos( ) (1 )(1 )sin( ) cos( )

 (1/ 2)[ sin(2 ) (1 )sin(2 )].

z y b b b b b s s sP P

b b b s

C σ µ µ σ µ µ

µ µ

= Λ − + −Λ −

≈ Λ + −Λ
   (3.55) 

The almost equal sign ≈  in (3.53)-(3.55) comes from the assumption of , 1b sσ σ ≪  in this 

case study. As a numerical example, let 0.4bΛ = , 
o

/ 90 (2 )bσ π= , 
o

/18 (10 )bµ π= , 

o/120 (1.5 )sσ π= , and o o348 /180 (348 12 )sµ π= ≡ − . According to (3.53) and (3.54), 

the average powers of the vertical and horizontal velocity channels are 0.038 and 0.962, 

respectively. Furthermore, the correlation between the vertical and horizontal channels is 

0.0536− , calculated using (3.55). Plots of the magnitudes of (3.50)-(3.52) are provided in 

Figure 3.8. 
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Figure 3.8 The magnitudes of the velocity spatial autocorrelations in (3.50) and 
(3.51), and velocity-velocity spatial crosscorrelation in (3.52) versus L / λ. 

3.2.2.2 Frequency correlations for one vector sensor 

(a) Pressure correlation: From (3.38),  using the same approach as the spatial 

correlations, one can obtain 
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 (3.56) 

Here 1csc( ) sin ( )b bµ µ−= , 1csc( ) sin( )s sµ µ −= , 1cot( ) tan( )b bµ µ −=  and 

1cot( ) tan( )s sµ µ −= . 0( ) /bT D D c= −  is the vertical travel time from bottom to Rx and 

/sT D c=  is the vertical travel time from surface to Rx. The magnitude of (3.56) is 

plotted in Figure 3.9, with the comparison of the exact correlation. The close agreement 

between the two curves verifies the usefulness of the approximate yet simpler pressure 

frequency correlation model in (3.56). 

(b) Pressure-Velocity correlations: From (3.39) and (3.40), one can obtain the 

following results, respectively 
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        (3.58) 

For 0f∆ = , (3.57) and (3.58) can be simplified to the results given in Subsection 3.2.2.1. 

The magnitudes of (3.57) and (3.58) are plotted in Figure 3.9. 

 
Figure 3.9 The magnitudes of the pressure frequency autocorrelation in (3.56) and the 
pressure-velocity frequency crosscorrelations in (3.57) and (3.58) versus ∆f /f0. 

(c) Velocity correlations: From (3.41), (3.42) and (3.43), one can obtain the following 

results at 0zL = , respectively 
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      (3.61) 

When 0f∆ = , (3.59)-(3.61) reduce to (3.53)-(3.55). The plots of the magnitudes 

of (3.59)-(3.61) are given in Figure 3.10. 

3.2.2.3 Temporal correlations for one vector sensor 

(a) Pressure correlation: Similar to (3.47)-(3.61), from (3.44) the following closed-form 

pressure channel temporal correlations can be obtained 

2 2 2 2 2

2 2 2 2 2

( )

exp[ 2 cos( )]exp[ 2 sin ( )]
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π µ ϕ σ π µ ϕ

π µ ϕ σ π µ ϕ

∆

= Λ ∆ − − ∆ −

+ −Λ ∆ − − ∆ −

           (3.62) 

The pressure channel temporal correlation, eq. (3.62),  is plotted in Figure 3.11 for 0ϕ °=

and 2.5 /u m s= . 
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Figure 3.10 The magnitudes of the velocity frequency autocorrelations in (3.59) and 
(3.60), and velocity-velocity frequency crosscorrelation in (3.61) versus ∆f /f0. 

 
Figure 3.11 The magnitudes of the approximated pressure and velocity channel 
temporal autocorrelations. 

(b) Velocity correlation: By using (3.45) and (3.46), the following closed-form velocity 

channel temporal correlations can be obtained respectively 
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(3.64) 

Analytical temporal correlations in (3.62) - (3.64) are plotted in Figure 3.11 as 

well. Please note that as discussed in Chapter 2, the average pressure channel power is 

equal to the sum of the average powers of z and y particle velocity channels. This can also 

be observed here by having 0t∆ =  in (3.62) - (3.64).  Simulation results are also 

provided to verify analytical expressions.  

In the ambient noise field, correlations among the elements of a vector sensor 

array are calculated in [48]. The emphasis of this manuscript, however, is the 

development of a geometrical-statistical model for the shallow water waveguide, as 

shown in Figure 3.2 and analyzed in appendices. Upon using Gaussian PDFs for small 

spread AOAs, a set of closed-form integral-free expressions are derived. Another focal 

point of the present dissertation is the emphasis on the frequency domain representation 

of the acoustic field, e.g., the frequency transfer functions in (3.5) and (3.6). This allows 

to derive frequency domain correlations that are important for communication system 
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design. For example, eq. (3.56) can be used to determine the correlation between two f∆

-separated tones received by a vector sensor, in a multi-carrier system such as OFDM 

(orthogonal frequency division multiplexing). Overall, the proposed shallow water 

geometrical-statistical channel model provides useful expressions for space, frequency  

and time domain vector sensor correlations, in terms of the physical parameters of the 

channel such as mean angle of arrivals and angle spreads. 

3.2.2.4 Comparison with measured data 

To experimentally verify the proposed model, in this section we compare the derived 

pressure correlation function in (3.47) with the measured data of [59]. Once the accuracy 

of the pressure correlation function is experimentally confirmed, one can take the 

derivatives of the pressure correlation, to find different types of correlations in a vector 

sensor array, as discussed in previous sections. 

A uniform 33-element array with 0.5 m element spacing was deployed at a 10 km 

range, where the bottom depth was 103 m [59]. The measurements were conducted at the 

center frequency of 0 1.2 kHzf = . The empirical vertical correlation of the pressure field, 

estimated from the measured data, is shown in Figure 3.12. The vertical correlation in 

[59] is measured with respect to the eighth element from the bottom of the 33-element 

array. This explains the horizontal axis in Figure 3.12 and the peak value at the eight 

element. To compare the proposed correlation model in (3.47) with measured correlation, 

its parameters need to be determined. We chose o o o3 and 353 7b sµ µ= = ≡ − , as according 

to [59], there are two dominant arrivals from these directions. After inserting these 

numbers into (3.47), the remaining parameters were estimated using a numerical least 

squares approach. Similarly to [59], the model was compared with the measured 

correlation over the eight neighboring receivers (elements one to fifteen in Figure 3.12). 

This resulted in 0.56, 0.04 and 0.14 radb b sσ σΛ = = = . The magnitude of the proposed 

model in (3.47) is plotted in Figure 3.12. The close agreement between the model and 



66 

measured correlations in Figure 3.12 indicates the usefulness of the model. As a 

reference, the exponential model of [59], i.e., 2 2exp( / (2 ) )L λ−  is also included in Figure 

3.12. Here 1.2 mλ =  is the wavelength.  

 
Figure 3.12 Comparison of the proposed model with measured data. 

One can observe the proposed model provides a closer match to experimental 

correlation at the first and fifteenth elements. The main advantage of the proposed model 

is that it expresses the acoustic field correlation as a function of important physical 

parameters of the channel such as angle of arrivals and angle spreads. This allows system 

engineers to understand how these channel parameters affect the correlation, which in 

turn provides useful guidelines for proper array and system design. 

3.3 Summary and Conclusion 

In this chapter we have presented a ray-based statistical/geometrical framework for 

characterization of acoustic vector sensor array correlations in shallow waters. Exact 

correlation expressions for an arbitrary vector sensor array are derived which relate signal 

correlations to some key channel parameters such as mean angle of arrivals and angle 

spreads. Using these expressions one can calculate the correlations of pressure and 
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velocity channels, in terms of element spacing, frequency separation, time separation, 

angle of arrivals, water depth and array locations. Closed-form expressions are derived as 

well for vertical vector sensor array in case of exact correlation expression calculation 

complex and time consuming. Using those approximated expressions, one can simply 

calculate the correlations of the pressure and velocity channels. The results of those 

studies are useful for the design and performance analysis of vector sensor systems and 

array processing algorithms. 

Overall, depending on the AOA of the pressure wave, correlations among 

pressure and velocity components vary. In the numerical example of Section 3.2, the 

mean AOA of impinging waves is almost horizontal, as shown in Figure 3.3. This is why 

in Figure 3.7 and Figure 3.9, crosscorrelation among P and yP  channels are high, 

whereas P and zP  channels are less correlated. Figure 3.8 and Figure 3.10 further 

confirm that yP  and zP  channels are almost uncorrelated. 

To further confirm the above argument, let us focus on a single vector sensor. 

Without loss of generality we consider 1bΛ = . Then according to the paragraph 

immediately after (3.49), / yP P  and / zP P  crosscorrelations are given by cos( )bµ  and 

sin( )bµ , respectively. For small values of bµ , i.e., mostly horizontal wave propagation 

towards the receiver, we note that / yP P  crosscorrelation is high whereas / zP P  

crosscorrelation is small. On the other hand, as bµ  approaches o90 , i.e., nearly vertical 

AOAs, / yP P  crosscorrelation becomes small whereas / zP P  crosscorrelation is large. 

To look at the /y zP P  crosscorrelattion under the above setup, we use (3.55), 

which results in a crosscorrelation proportional to sin(2 )bµ . As expected, for the two 

extreme cases of mostly horizontal ( o0bµ ≈ ) and vertical ( o90bµ ≈ ) AOAs, yP  and zP  

are almost uncorrelated. Crosscorrelation between yP  and zP  reaches its maximum 

when o45bµ = , as expected. This is the case where AOAs are not biased towards 

horizontal and vertical directions. 
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Vector sensor correlations that are calculated in this chapter provide useful 

guidelines which are highly needed for transceiver design. For example, in the numerical 

example of Section 3.1.2.3, also discussed at the beginning of this section, the y and z 

components of the acoustic particle velocity are nearly uncorrelated for different element 

spacings and frequency separations. This is true even for a single vector sensor. This 

means that y and z channels of a single vector sensor receiver can provide a diversity gain 

of order two in our numerical example, which in turn reduces the symbol detection error 

probability. 
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CHAPTER 4  

CHARACTERIZATIO� OF DELAY A�D DOPPLER SPREADS 

4.1 Principle and Preparation 

In the previous chapter, the complete spatial, frequency and temporal correlations are 

established and the closed-form integral-free expressions for those correlations are 

derived as well. Since the frequency and time domain zero crossing rates can be obtained 

by using the corresponding correlations, and the frequency and time domain zero 

crossing rates are proportional to the delay and Doppler spreads. One can analyze the 

delay and Doppler spreads of the underwater pressure and particle velocity channels 

mathematically by calculating the frequency and time domain ZCRs, respectively. In this 

chapter, we derive the frequency and time domain ZCRs first, then based on those ZCRs, 

the channel delay and Doppler spreads of particle velocity channels are discussed. 

4.1.1 Zero Crossing Rate 

Let ( )tα  be a real random process with the temporal autocorrelation 

( ) [ ( ) ( )]t E t t tα α αΓ ∆ = + ∆ . Then the ZCR of ( )tα , the average number of times that 

( )tα  crosses the threshold zero per unit time, can be calculated according to [45] 

0
( )1

,
(0)

tt
t

n
α

α
απ

∆ =
′′−Γ ∆

=
Γ

                                                          (4.1) 

where double prime is the second derivative. Similarly, if ( )fα  is a real random process 

is the frequency domain, then its ZCR, fnα , the average number of times that ( )fα  

crosses the threshold zero per unit frequency, is given by  

0
( )1

,
(0)

ff
f

n
α

α
απ

∆ =
′′−Γ ∆

=
Γ

                                                       (4.2) 

where ( ) [ ( ) ( )]f E f f fα α αΓ ∆ = + ∆  is the frequency autocorrelation of ( )fα . 
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4.1.2 Review of Frequency and Temporal Correlations 

Now, we focus on the vector sensor receiver Rx, to calculate the delay and 

Doppler spreads of particle velocity channels. With Lz = Ly = 0 in (3.9), it is straight 

forward to obtain the frequency-time autocorrelation of ( ),P f t , the time-varying 

transfer function of the pressure channel, at Rx  

[ ]
[ ]

( , )

 = exp[ 2 / sin( )]exp[ 2 cos( ) ]
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b
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∆ ∆
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                 (4.3) 

Here 0( ) /bT D D c= − , the vertical travel time from bottom to Rx and /sT D c= , the 

vertical travel time from surface to Rx. Eq. (4.3) is obtained because when Lz = Ly = 0, 

equations (3.10)-(3.18) in Section 3.1.2 result in 2 1
b bγ γ= , 2 1

b bτ τ= , 2 / sin( )b b
bTτ γ= , 

2 1
s sγ γ= , 2 1

s sτ τ=  and 2 / sin( )s s
sTτ γ= . As shown in (3.8),  using (3.25) and (3.26), second 

derivative of  (3.9) at Lz = Ly = 0 provide the following frequency-time autocorrelations 

of ( , )zP f t  and ( , )yP f t  at Rx, respectively. 
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γ π γ π γ ϕ
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+ −Λ − ∆ − ∆

     (4.4) 
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γ
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(4.5) 

4.1.3 Correlation of Real Part of Channel Transfer Function 

To calculate the ZCRs, the correlations between the real parts of ( )1 ,P f t  and 

( )2 ,P f t  in (3.5) and (3.6) have to be derived first. This will be needed to compute the 

ZCR of real channel functions in the next section. If W is complex, then 

{ } *Re ( ) / 2W W W= + . This results in  
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{ } { }

{ } [ ]{ }
2 1

2 1

2 1

Re ( , ) Re ( , )

1 1
   Re ( , , , ) Re ( , ) ( , ) ,

2 2
P P z y

E P f f t t P f t

C f t L L E P f f t t P f t

+ ∆ + ∆  

= ∆ ∆ + + ∆ + ∆
             (4.6) 

where 
2 1

( , , , )P P z yC f t L L∆ ∆  is given in (3.9). Based on the statistical properties of phases 

b
iψ  and s

mψ , independent and uniformly distributed over [0, 2π), it can be verified that the 

second term on the right hand side of (4.6) is zero. This yields  

{ } { } { }
2 12 1

1
Re ( , ) Re ( , ) Re ( , , , ) .

2
P P z yE P f f t t P f t C f t L L+ ∆ + ∆ = ∆ ∆                  (4.7) 

Similarly, based on the definitions of ( , )z
qP f t  and ( , )y

qP f t , q = 1, 2, provided 

after (3.5), we obtain  

{ } { } { }
2 1

2 1

1
Re ( , ) Re ( , ) Re ( , , , ) ,

2
z z

z z
z yP P

E P f f t t P f t C f t L L + ∆ + ∆ = ∆ ∆             (4.8) 

           { } { } { }
2 1

2 1

1
Re ( , ) Re ( , ) Re ( , , , ) ,

2
y y

y y

z yP P
E P f f t t P f t C f t L L + ∆ + ∆ = ∆ ∆            (4.9) 

where 
2 1

( , , , )z z z yP P
C f t L L∆ ∆  and 

2 1

( , , , )y y z yP P
C f t L L∆ ∆  are given as  (4.4) and (4.5), 

respectively. 

4.2 Frequency and Time Domain ZCRS 

To study the delay and Doppler spreads of particle velocity channels, we need to 

calculate frequency and time domain ZCRs of the real parts of the complex channels 

( , )zP f t  and ( , )yP f t . To do this, first the autocorrelation of the real part of the pressure 

channel, { }Re ( , )P f t , should be determined. Using (3.9) and (4.7) we have 

{ } { } { } { }Re

1
( , ) Re ( , ) Re ( , ) Re ( , ) .

2
PPP

f t E P f f t t P f t C f tΓ ∆ ∆ = + ∆ + ∆ = ∆ ∆        (4.10) 

The autocorrelation of the real part of the vertical particle velocity channel, { }Re ( , )zP f t

, can be written using (4.4) and (4.8) 
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{ } { } { } { }Re

1
( , ) Re ( , ) Re ( , ) Re ( , ) .

2
z zz

z z

P PP
f t E P f f t t P f t C f t Γ ∆ ∆ = + ∆ + ∆ = ∆ ∆    (4.11) 

Similarly, based on (4.5) and (4.9), the autocorrelation of the real part of the horizontal 

velocity channel, { }Re ( , )yP f t , is given by 

{ } { } { } { }Re

1
( , ) Re ( , ) Re ( , ) Re ( , ) .

2
y yy

y y

P PP
f t E P f f t t P f t C f t Γ ∆ ∆ = + ∆ + ∆ = ∆ ∆    (4.12) 

In what follows, first we derive the general expressions for the frequency and time 

domain ZCRs. Then we show how to obtain the simple closed-form ZCRs for given 

small spread AOAs. 

4.2.1 General Expressions of ZCRs 

4.2.1.1 Frequency domain ZCRs 

Here we have 0t∆ = . By inserting (4.3) into (4.10), taking derivative with respect to f∆  

twice and then replacing f∆  with zero, for the pressure channel we obtain 

2 2

Re{ } 2 20

(2 ) (1 )(2 )1 1
( ,0) .

2 sin ( ) 2 sin ( )
b s

b b b s
P b sf

T T
f E Eγ γ

π π
γ γ∆ =

   Λ −Λ
′′−Γ ∆ = +   

   
   (4.13) 

Similarly, by inserting (4.4) into (4.11) (or (4.5) into (4.12)), differentiation with respect 

to f∆  twice and then replacing f∆  with zero, for the vertical (or the horizontal) velocity 

channel we obtain 

2 2

Re{ } 0

(2 ) (1 )(2 )
( ,0) ,

2 2
z

b b b s

P f

T T
f

π π
∆ =

Λ −Λ
′′−Γ ∆ = +                             (4.14) 

2 22 2

Re{ } 2 20

(2 ) (1 )(2 )cos ( ) cos ( )
( ,0) .

2 sin ( ) 2 sin ( )
y b s

b s
b b b s

P b sf

T T
f E Eγ γ

π πγ γ
γ γ∆ =

   Λ −Λ
′′−Γ ∆ = +   

   
   (4.15) 

Moreover, by inserting  (4.3) ,(4.4) and (4.5)  into (4.10), (4.11) and (4.12), 

respectively, it is easy to verify 
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Re{ }

1
(0,0) ,

2
PΓ =                                                           (4.16) 

[ ] [ ]2 2
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z b s
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E Eγ γγ γ

Λ −Λ
Γ = +                           (4.17) 

[ ] [ ]2 2
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2 2
y b s

b bb s
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E Eγ γγ γ

Λ −Λ
Γ = +                          (4.18) 

To obtain Re{ }

f

Pn , 
Re{ }z
f

P
n  and 

Re{ }y

f

P
n , frequency domain ZCRs, one needs to simply divide 

(4.13), (4.14) and (4.15) by (4.16), (4.17) and (4.18), respectively. 

4.2.1.2 Time domain ZCRs 

Now we have 0f∆ = . Similarly to the previous frequency domain derivations, we can 

obtain the following results in time domain 
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By dividing (4.19), (4.20) and (4.21) by (4.16), (4.17) and (4.18), respectively, 

time domain ZCRs 
Re{ }
t

Pn , 
Re{ }z
t

P
n  and 

Re{ }y

t

P
n  will be obtained. 

4.2.2 �umerical Results 

Similar to Section 3.2.2, for Gaussian AOA PDFs with small angle spreads, mathematical 

expectations in (4.13) - (4.21) can be calculated in closed-forms, using the Taylor series 

expansions of bγ  and sγ  around bµ  and sµ , respectively. For example 
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( )2 2 2 4 2csc ( ) csc ( ) 2csc ( )cot( )( ) cos(2 ) 2 csc ( )( ) ,b b b
b b b b b b bγ µ µ µ γ µ µ µ γ µ≈ − − + + −  

(4.22) 

where csc( ) 1/ sin( )⋅ = ⋅  and cot( ) cos( ) / sin( )⋅ = ⋅ ⋅ . Since [ ] 0b

b
b

Eγ γ µ− =  and 

2 2[( ) ]b

b
b b

Eγ γ µ σ− = , (4.22) simplifies to  

[ ] ( )2 2 4 2csc ( ) csc ( ) cos(2 ) 2 csc ( )b

b
b b b bEγ γ µ µ µ σ≈ + +                            (4.23) 

Following the same approach, one can calculate other [ ]bEγ ⋅  in (4.15) - (4.21) as 
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b
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−
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 (4.29) 

Clearly, similar results can be obtained for sγ , in terms of  sµ  and sσ . 

To obtain some insight, we consider a case where the bottom components are 

dominate, i.e., 1bΛ = . Then we provide closed-form frequency and time domain ZCRs in 

the following subsections. 

4.2.2.1 Frequency domain ZCRs 

By inserting (4.13) - (4.18) into the ZCR formula in (4.2), and using the small angle 

spread results in , one can show that 
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Equations (4.30) - (4.32), normalized by bT , are plotted in Figure 4.1. Simulation results 

are also included, which show the accuracy of derived formulas. 

 

Figure 4.1 Frequency-domain zero crossing rates of particle velocity and pressure 
channels versus the angle spread bσ  ( 5bµ °= ). 

Figure 4.1 shows the dependence of frequency domain ZCRs on the angle spread. 

As expected, the ZCRs of y-velocity and pressure channels are very close. This is 

because the waves are coming through an almost horizontal direction ( 5bµ = ). Increase 

of ZCRs with the angle spread can be related to the fact that as the angle spread increases, 
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more rays from different directions reach the receiver. This means larger delay spreads, 

which results in large ZCRs in the frequency domain. Since in the case considered in 

Figure 4.1, most of the angle of arrivals are horizontal, the coming rays do not contribute 

much to the z-velocity channel. This explains the lower values of the frequency domain 

z-velocity ZCR. This can be better understood by comparing the impulse responses of 

particle velocity and pressure channels in Figure 4.2. This figure is obtained by plotting 

(3.5), and its derivatives with respect to y and z, for 5bµ °=  and 3bσ °= . Clearly the 

impulse response of the z channel is spread over a small range of delays in this example. 

These are consistent with the delay spread results in [62], obtained via a different 

approach.  

 

Figure 4.2 Normalized impulse responses of particle velocity channel and pressure 
channel. 

4.2.2.2 Time domain ZCRs 

By inserting  (4.19) - (4.21) and (4.16) - (4.18) into the ZCR formula in (4.1), and using 

the small angle spread results in (4.25) - (4.29), the following results can be obtained 

[ ]
1

2 2 2
Re{ } 2 cos ( ) cos(2 2 ) ,t

P M b b bn f µ ϕ µ ϕ σ= − + −                                  (4.33) 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0
0

0.5

1
Pressure channel impulse response magnitude

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.5

1
y-velocity channel impulse response magnitude

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.5

1
z-velocity channel impulse response magnitude

τ (second)



77 

1
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Equations (4.33) - (4.35), normalized by Mf  are plotted Figure 4.3, along with 

simulation results, which demonstrate the accuracy of the analytical results. According to 

this figure, time domain ZCRs of particle velocity and pressure channels are about the 

same, and not dependent much on the angle spread, for the case considered. The analysis 

conducted in next section for other conditions provides more insight on Doppler spread in 

these communication channels. 

 

Figure 4.3 Time-domain zero crossing rates of particle velocity and pressure channels 
versus the angle spread bσ  ( 5bµ °= , 0ϕ °= ). 
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4.2.3 Comparison of Velocity Channel ZCRs 

To better understand delay and Doppler spreads of acoustic particle velocity channels, 

here we consider the practical case where most of the rays in shallow water come along 

the horizontal direction. This implies that mean AOAs are relatively small, which enable 

us to further analyze velocity channel ZCRs. Similarly to Section 4.2.2, we consider the 

case where the bottom rays are dominant. With pressure channel ZCR as a reference, in 

what follows we compare the ZCRs of particle velocity channels. 

4.2.3.1 Frequency Domain ZCRs: 

Without less of generality and to simplify the notation, we consider the square value of 

ZCRs. Using (4.30) - (4.32), the frequency domain ZCRs of velocity channels with 

respect to the pressure channel can be written as 

2
2 2
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f

P b b b
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P b b b b

n

n

µ µ σ
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                             (4.36) 
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Using the first-order Taylor series expansions sin( )b bµ µ≈ , and cos( ),  cos(2 ) 1b bµ µ ≈ , 

when  µb  is small, it is straightforward to verify,  

2
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2 4
Re{ }

1
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                                                       (4.39) 
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According to (4.38), ZCR of the z-velocity channel can be smaller than the 

pressure channel, whereat (4.39) shows the ZCRs of the y-velocity channel and pressure 

channels are nearly the same.  

4.2.3.2 Time Domain ZCRs: 

Based on (4.33) - (4.35), time-domain ZCRs of z and y velocity channels with respect to 

the pressure channel are given  

( ) ( )

2
2 2 2
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2 2 2 2
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(4.41) 

For 0ϕ =  and using the first order Taylor series mentioned previously, equations (4.40) 

and (4.41)  simplify to 
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On the other hand, 
2

π
ϕ =  simplifies (4.40) and (4.41) to 

( )

2

Re{ }

4

Re{ }

1
,

1

z

t

P

t
P b b

n

n σ µ

 
≈   − 

                                                 (4.44) 

( )
( )

2 2

Re{ }

2

Re{ }

1
.

1

y

t

P b b

t
P b b

n

n

σ µ

σ µ

  +
≈   − 

                                                (4.45) 
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Here we observe that when the receiver moves horizontally towards the 

transmitter, ZCRs of z and y velocity channels are almost the same as the pressure 

channel ZCR, according to (4.42) and (4.43). When the receiver moves vertically towards 

the bottom, there ratios could be somewhat different. Given the shallow depth of the 

channel, this holds only over a short period of time. 

4.3 Summary and Conclusion 

In this chapter, a zero crossing framework is developed to study the delay and Doppler 

spreads in multipath underwater acoustic particle velocity and pressure channels. The 

delay and Doppler spreads are calculated by deriving closed-form expressions for the 

channel zero-crossing rates in frequency and time, respectively. These expressions show 

how velocity channel delay and Doppler spreads may depend on some key parameters of 

the channel such as mean angle of arrival and angle spread. The advantage of the 

proposed velocity channel delay spread analysis here via frequency domain ZCR is that it 

provides analytical expressions such as (4.31) and (4.32). These types of expressions 

quantify the delay spreads of acoustic particle velocity and pressure channels in terms of 

key channel parameters such as mean angle of arrivals and angle spreads. The results are 

useful for design and performance predication of vector sensor systems that operate in 

acoustic particle velocity channels. 
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CHAPTER 5  

CO�CLUSIO� A�D FUTURE WORKS 

5.1 Conclusion and Remarks 

In this dissertation, the new idea about the underwater acoustic communication is 

introduced and developed by using the acoustic vector sensor receiver and taking the 

advantage of the particle velocity channels. Basic system equations for such a receiver 

are derived and channel equalization using these sensors is formulated. Signal and noise 

power characteristics, delay spread and channel correlations in such sensors are also 

investigated. Via extensive simulations under different propagation scenarios, the 

performance of a vector sensor equalizer is determined and compared with single and 

multiple pressure sensor receivers. 

Following the single user vector sensor system, a multiple users system is 

proposed that does not need spreading codes. Performance of a vector sensor receiver for 

three users is investigated as well. The BER of the proposed multiuser space-time coded 

vector sensor system is close to the BER of the single user system. This means that the 

data symbols of the three users are successfully separated and estimated using a vector 

sensor without reduction in the transmission rate. This is particularly useful in highly 

bandwidth-constrained underwater channels.  

In Chapter 3 we have presented a ray-based statistical/geometrical framework for 

characterization of acoustic vector sensor array correlations in shallow waters. Exact 

correlation expressions for an arbitrary vector sensor array are derived. Using these 

expressions one can calculate the exact correlations of pressure and velocity channels, in 

terms of element spacing, frequency and time separation, angle of arrivals, water depth 

and array locations. Then the useful approximate correlation expressions for vertical 

vector sensor arrays are also derived, when angle spreads are small. The simple close-

form approximation provides the sub-accurate but much easier method to calculate those 
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correlations. The comparison with the exact correlation and the experiment correlation 

results prove the usefulness of the approximation. The results of those correlation 

analysis are required for the design and performance assessment of single user [30][31] 

and multiuser [60][61] underwater communication systems that operate through acoustic 

particle velocity channels. 

Based on the frequency and temporal correlations, a zero crossing framework is 

developed to study the delay and Doppler spreads for multipath underwater acoustic 

particle velocity and pressure channels in Chapter 4. The delay and Doppler spreads are 

calculated by deriving closed-form expressions for the channel zero-crossing rates in 

frequency and time, respectively. These expressions show how velocity channel delay 

and Doppler spreads may depend on some key parameters of the channel such as mean 

angle of arrival and angle spread. The results are useful for design and performance 

predication of vector sensor systems that operate in acoustic particle velocity channels 

In summary, we have shown that small size of the vector sensor receiver in the 

proposed system is noteworthy, as the compact vector sensor measures all particle 

velocity channels at a single point in space. This is important for systems which have size 

limitations such as unmanned underwater vehicles. 

5.2 Suggestion for Future Researches 

With this new underwater communication system setup, all aspects of this 

communication system need to be investigated such as channel estimation methods, 

better equalizer, etc. At the same time, with the introducing of the particle velocity 

channels into the wireless acoustic communication area, more detailed channel 

characteristics are waiting for uncover. Through the different ways, mathematical and 

experimental, the more channel characteristics, for example, channel capacities, need to 

be figured out. 
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As the RF communication, when a new communication system is built up, from 

transmitter to the receiver, there are a lot of possible optimizations for each part of the 

communication system. Since the shallow water acoustic channel is a multipath channel 

with severe delay spread, which is usually defined as sparse channel. The channel 

estimation is important for system performance. Using any possible the channel 

estimation methods for sparse channel, introduced in the literatures, one needs to 

establish a way for the particle velocity channels estimation.  

On the other hand, when the channel estimation is not easy to obatin, the equalizer 

will be the major issue to improve the system performance. In this dissertation, the simple 

zero forcing and MSE equalizer are applied to evaluate the system BER performance. 

However, both of above equalizer are according to the perfect acknowledgement of 

channel information. In case of channel information absent, the blind and less complex 

equalizers are necessary. Or when the first order channel information is unknown but the 

second order channel information can be extracted, how can we design the optimal 

equalizer? Similar to the wireless RF communication, there are many possible 

optimizations, such that coding and interleaving methods, modulation schemes, etc.  For 

this new underwater acoustic communication system via vector sensor receiver, there are 

still a lot of blank need to be fulfilled. 
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APPE�DIX A  

A CLOSED-FORM CORRELATIO� FOR THE PRESSURE CHA��EL 

When angle spreads are small and 0min( , )L D D D−≪ , one can approximate the AOAs 

in (3.5) and (3.6) as 
,1 ,2
b b b
i i iγ γ γ≈ ≈  and 

,1 ,2
s s s
m m mγ γ γ≈ ≈ , where b

iγ  and s
mγ  are shown in 

Figure 3.2. Furthermore, the traveled distances can be approximated as 
,1 ,2
b b b
i i iξ ξ ξ≈ ≈  and 

,1 ,2
s s s
m m mξ ξ ξ≈ ≈ , with b

iξ  and s
mξ  depicted in Figure 3.2. Note that each delay is the 

traveled distance divided by the sound speed c. Therefore all the delays in (3.5) and (3.6) 

can be approximated by 
,1 ,2
b b b
i i iτ τ τ≈ ≈  and 

,1 ,2
s s s
m m mτ τ τ≈ ≈ , where /b b

i i cτ ξ=  and 

/s s
m m cτ ξ= . According to Figure 3.2, it is easy to verify that 0sin( ) ( ) /b b

i iD Dγ ξ= −  and 

sin( ) /s s
m mDγ ξ− = . Hence 

                                 
sin( ) , 0 ,

sin( ) , 2 .

b b b
i b i i

s s s
m s m m

T

T

τ γ γ π

τ γ π γ π

= < <

= − < <
                                  (A.1) 

The parameters 0( ) / and /b sT D D c T D c= − =  in (A.1) denote the vertical travel 

times from the sea bottom to the array center, and from the sea surface to the array center, 

respectively. Clearly the range of s
mγ  in (A.1) implies that 1 sin( ) 0s

mγ− ≤ < , which makes 

s
mτ  non-negative, as expected. In general we have ,b

b iT iτ≤ < ∞ ∀ , and ,s
s mT mτ≤ < ∞ ∀ . 

Now (3.5) and (3.6) can be simplified as follows 

1/2

1 1
/2,

/2

1/2

exp( ) exp( [ cos( ) sin( )])
( , )

exp( 2 sin( )) exp( 2 cos( ) )

exp( )exp( [ cos( ) sin( )])1
           

exp( 2

b

y

z

b b b b
# i i i ib

ib b b
y Lb i M i
z D L

s s s s
m m m mb

s
s

a j jk y z
P f t

# j fT j f t

a j jk y z

# j fT

ψ γ γ

π γ π γ ϕ

ψ γ γ

π

=
=
= −

+Λ =   − − 

+−Λ +  
 

∑

1
/2,

/2

,
sin( )) exp( 2 cos( ) )

s

y

z

#

m s s
y Lm M m
z D L

j f tγ π γ ϕ=
=
= −

−∑
  

(A.2) 

1/2

2 1
/2,

/2

1/2

exp( )exp( [ cos( ) sin( )])
( , )

exp( 2 sin( )) exp( 2 cos( ) )

exp( )exp( [ cos( ) sin( )])1
           

exp( 2

b

y

z

b b b b
# i i i ib

ib b b
y Lb i M i
z D L

s s s s
m m m mb

s

a j jk y z
P f t

# j fT j f t

a j jk y z

# j fT

ψ γ γ

π γ π γ ϕ

ψ γ γ

π

=
=−
= +

+Λ =   − − 

+−Λ +  
 

∑

1
/2,

/2

.
sin( )) exp( 2 cos( ) )

s

y

z

#

m s s
y Ls m M m
z D L

j f tγ π γ ϕ=
=−
= +

−∑
    

(A.3) 
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Due to the uniform distribution of all the phases { } and { }b s
i i m mψ ψ  over [0, 2 )π  

we have [exp( )] [exp( )] 0, ,b s
i mE j E j i mψ ψ± = ± = ∀ . This results in 

[exp( )exp( )] 0, ,b s
i mE j j i mψ ψ± ± = ∀ , because all the phases are independent. Similarly 

we have [exp( ) exp( )] 0,b b
i i

E j j i iψ ψ− = ∀ ≠ɶ
ɶ  and [exp( ) exp( )] 0,s s

m mE j j m mψ ψ− = ∀ ≠ɶ ɶ . 

Clearly the last two expressions become 1, when andi i m m= =ɶ ɶ . Therefore, after 

substituting (A.2) and (A.3) into 
2 1

*
2 1( , , , ) [ ( , ) ( , )]P P z yC f t L L E P f f t t P f t∆ ∆ = + ∆ + ∆ , only 

the following two single summations remain 

2 1

2

1

2

( , , , )

[( ) ]exp( [ cos( ) sin( )])

exp( 2 / sin( )) exp( 2 cos( ) )

[( ) ]exp( [ cos( ) sin( )])(1 )

exp( 2 / sin( )) exp( 2

b

P P z y

b b b
# i y i z ib

ib b b
b i M i

s s s
m y m z mb

s s
s m M

C f t L L

E a jk L L

# jT f j f t

E a jk L L

# jT f j f

γ γ

π γ π γ ϕ

γ γ

π γ π

=

∆ ∆

+ Λ  
=  

− ∆ − ∆  

+−Λ
+

∆

∑

1
,

cos( ) )

s#

m s
m tγ ϕ=

  
 

− ∆  
∑

        (A.4) 

The terms 2[( ) ] /b b
iE a #  and 2[( ) ] /s s

mE a #  in (A.4) represent the normalized 

(average) powers received from the two scatterers b
iS  and s

mS  on the sea bottom and its 

surface, respectively. Let 2 2

1 1
[( ) ] / 1 and [( ) ] / 1

b s# #
b b s s
i mi m

E a # E a #
= =

= =∑ ∑ . We also 

define ( ) and ( )b b s sw wγ γ  as the probability density functions (PDFs) of the AOAs of the 

waves coming from the sea bottom and its surface, respectively, such that 

0 and 2b sγ π π γ π< < < < . When andb s# #  are large, one can think of 

2 2[( ) ] / and [( ) ] /b b s s
i mE a # E a #  as the normalized powers received through the 

infinitesimal angles andb sd dγ γ , respectively, centered at the AOAs andb s
i mγ γ . Thus, 

with the chosen normalizations 2

1
[( ) ] / 1

b#
b b
ii

E a #
=

=∑  and 2

1
[( ) ] / 1

s#
s s
mm

E a #
=

=∑ , we 

can write 2 2[( ) ] / ( ) and [( ) ] / ( )b b b b b s s s s s
i i m mE a # w d E a # w dγ γ γ γ= = . These relations 

allow the summations in (A.4) to be replaced by integrals 
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2 1

0

( , , , )

( ) exp[ ( cos( ) sin( ))]

exp[ 2 / sin( )]exp[ 2 cos( ) ]

( ) exp[ ( cos( ) sin( ))]
(1 )

exp[ 2 / sin( )]exp[ 2 cos( ) ]

b

P P z y

b b b b
y z

b b b b
b M

s s s s
y z

b s s
s M

C f t L L

w jk L L

jT f j f t d

w jk L L

jT f j f t

π

γ

γ γ γ

π γ π γ ϕ γ

γ γ γ

π γ π γ ϕ

=

∆ ∆

− +  
= Λ  

− ∆ − ∆  

− +
+ −Λ

∆ − ∆

∫
2

.
s

sd

π

γ π γ=

  
 
  

∫

 (A.5) 

Note that according to (A.5) we have (0,0,0,0) (1 ) 1P b bC = Λ + −Λ = , which 

represents the convenient unit (total average) received pressure power. The factor 

0 1b≤ Λ ≤  was defined to stand for the amount of the power coming from the sea bottom, 

whereas 1 b−Λ  shows the power coming from the surface. 
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APPE�DIX B  

THE HIGH ORDER APPROXIMATIO� OF THE PRESSURE CHA��EL 
CORRELATIO�S 

Exact correlation expressions include integrals over AOAs which are time consuming to 

compute. For small angle spread and under certain conditions such as small spacing 

between array elements, useful integral-free approximation, for vertical and horizontal 

arrays can be obtained using (3.19) and (3.20). 

B.1  Vertical Vector Sensor Array 

For 0min( , )zL L D D D= << −
 and 0yL =  and using 1 1 ( / 2)x x+ ≈ +  when | | 1x << , 

distances 1
bξ
, 2

bξ
, 1

sξ
 and 2

sξ
 given in (3.14)-(3.17) can be approximated as 

2
1 0

2
2 0

2
1

2
2

[( ) sin ( ) / 2] / sin( ),

[( ) sin ( ) / 2] / sin( ),

[ ( sin ( ) / 2)] / sin( ),

[ ( sin ( ) / 2)] / sin( ).

b b b

b b b

s s s

s s s

D D L

D D L

D L

D L

ξ γ γ

ξ γ γ

ξ γ γ

ξ γ γ

≈ − +

≈ − −

≈ − −

≈ − +

                                (B.1) 

Then substituting (B.1) into (3.10)-(3.13), results in 

3
2 1 0

3
2 1

sin( ) sin( ) sin ( ) / ( ),

sin( ) sin( ) sin ( ) / ,

b b b

s s s

L D D

L D

γ γ γ

γ γ γ

− ≈ −

− ≈ −
                                   (B.2) 

2 1

2 1

sin( ) sin( ) 2sin( ),

sin( ) sin( ) 2sin( ),

b b b

s s s

γ γ γ

γ γ γ

+ ≈

+ ≈
                                                 (B.3) 

                  
1 2

1 2

sin( ) / ,

sin( ) / ,

b b b

s s s

L c

L c

τ τ γ

τ τ γ

− ≈

− ≈
                                                    (B.4) 

2 0

2

( ) / ( sin( )),

/ ( sin( )).

b b

s s

D D c

D c

τ γ

τ γ

≈ −

≈ −
                                              (B.5) 

By substituting (B.2)-(B.5) into (3.19), we obtain the approximation given in (B.6) 

below.  



88 

[ ]

[ ]

2 1

3

0

0 0

3

( ) exp sin ( ) 2 sin( )

( , , )
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exp exp 2 cos( )
sin( )

( ) exp sin ( ) 2 sin( )
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  ∆

− ∆  
  

∫
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B.2  Horizontal Vector Sensor Array 

Here, we have 
0min( , ) and 0y zL L D D D L= << − = . The distances 1

bξ , 2
bξ , 1

sξ  and 2
sξ  

given in (3.14)-(3.17) can be similarly approximated as 

1 0

2
2 0

1

2
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                               (B.7)                  

Substitution (B.7) into (3.10)-(3.13), results in 

2 1

0

2 1

cos( ) cos(3 )
sin( ) sin( ) ,

4

cos( ) cos(3 )
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4
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γ γ
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2 1
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2 0

2

( ) / ( sin( )),

/ ( sin( )).

b b

s s

T D D c

T D c

γ

γ

≈ −

≈ −
                                              (B.11)                               

Therefore, the space-frequency correlation in (3.20) for the horizontal array can be 

approximated as (B.12). 
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APPE�DIX C  

THE APPROXIMATIO� CORRELATIO� DERIVATIO� 

Similarly we model the small spread AOAs by Gaussian PDFs as (3.28). And the first-

order Taylor expansion of bγ  around bµ  gives the following results 

                                   

cos( ) cos( ) sin( )( ),

sin( ) sin( ) cos( )( ),

1 1 1 1
( )

sin( ) sin( ) sin( ) tan( )

cos( ) cos( ) sin( )( )

b b
b b b

b b
b b b

b
bb

b b b

b b
b b b

γ µ µ γ µ

γ µ µ γ µ

γ µ
γ µ µ µ

γ ϕ µ ϕ µ ϕ γ µ

≈ − −

≈ + −

≈ − −

− ≈ − − − −

,             (C.1) 

Of course similar relations can be obtained for sγ . The utility of these first-order 

expansions comes from the considered small angle spreads, which means the AOAs 

andb sγ γ  are mainly concentrated around andb sµ µ , respectively. By substituting these 

relations into (3.9), 
2 1

( , , , )P P z yC f t L L∆ ∆  can be written as 
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∆ ∆
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∫
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T f f t

π
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µ µ π π µ ϕ

µ µ
γ γ µ γ

π µ µ π µ ϕ=

+ + ∆ + − ∆

 − + 
× −  

− ∆ + − ∆   
∫

 (C.2) 

Here, csc( ) 1 sin( )=i i  and cot( ) 1 tan( )=i i .The integrals in (C.2) resemble the 

characteristic function of a zero-mean Gaussian variable, which is 

2 1/2 2 2 2 2exp( ) (2 ) exp[ / (2 )] exp( / 2)j x x dxθ π σ σ σ θ− − = −∫  [45] . This simplifies (C.2)  to 

the following closed form 



91 
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∆ ∆
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+ −Λ + +( )

( )2
2

2 2 cos( )

exp 0.5 sin( ) cos( ) 2 csc( ) cot( ) 2 sin( ) .

s M s

s y s z s s s s M s

T f j f t

kL kL T f f t

π π µ ϕ

σ µ µ π µ µ π µ ϕ

 ∆ + − ∆ 

 × − − + − ∆ + − ∆  
            (C.3) 

According to (C.3), we have 
2 1

(0,0,0,0) 1P PC = , consistent with the convention of 

unit (total average) received pressure power, introduced in Appendix A. By taking the 

derivatives of (C.3) with respect to Lz and Ly as listed in (3.23)-(3.27), closed-form 

expressions for a variety of correlations in vector sensor receivers can be obtained. 
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