
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Summer 2010

Atomic and electronic structure studies of nano-
structured systems : Carbon and related materials
Sumit Saxena
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Materials Science and Engineering Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Saxena, Sumit, "Atomic and electronic structure studies of nano-structured systems : Carbon and related materials" (2010).
Dissertations. 228.
https://digitalcommons.njit.edu/dissertations/228

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.njit.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/228?utm_source=digitalcommons.njit.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

ATOMIC AND ELECTRONIC STRUCTURE STUDIES OF NANO-
STRUCTURED SYSTEMS: CARBON AND RELATED MATERIALS 

by 
Sumit Saxena 

Modeling in the framework of density functional theory has been conducted on carbon 

nanotubes and graphene nano-structures.  The results have been extended to non-carbon 

systems such as boron nanostructures.  Computational studies are complemented by 

experimental methods to refine the structural models and obtain a better understanding of 

the electronic structure. 

 It is observed that the zigzag edged bilayered graphene nanoribbons are highly 

unstable as compared to their armchair counterparts. A novel approach has been proposed 

for the patterning of chirality/diameter controlled single walled carbon nanotubes. 

Nanotube formation is found to be assisted by edge ripples along with the intrinsic edge 

reactivity of different types of bilayered GNRs.  

 The effect of bundling on the electronic structure of single walled carbon 

nanotubes in zigzag single walled carbon nanotubes has been studied. Hydrostatic 

pressure effects were examined on bundled single walled carbon nanotubes. Nanotubes 

with chiral indices (3n + 3, 3n + 3) acquire hexagonal cross-sections on application of 

hydrostatic pressures. The formation of a novel quasi two-dimensional phase of carbon 

during hydrostatic compression of small and large nanotubes under extreme conditions of 

pressure is modeled and is understood to be dictated by breaking of symmetry during 

compression. Nanoscale materials with anisotropic compressibility do not exhibit 

symmetric compression as in bulk materials. 



  Structural stability of boron nanoribbons derived from ‘α-sheet’ and 

reconstructed {1221} sheets was studied. Antiaromatic instabilities were found to 

destabilize nanoribbons constructed from reconstructed {1221} sheets when compared to 

those obtained from the ‘α-sheet’. The stability of the nanoribbons was found to increase 

with increasing width and increase in the hole density (η) of the boron nanoribbons. The 

study of electronic structure reveals the presence of semiconducting nanostructures. 

 The presence of nanoscale crystalline domains due to random functionalization 

has made it difficult to resolve the chemical structure of graphene oxide and it remains a 

much debated topic to date. A combination of analytical, spectroscopic and density 

functional techniques have been used to determine the structure and properties of such 

nano materials. Graphene oxide has unusual exotic properties and belongs to this class of 

materials. Investigations reveal that the chemical structure of graphene oxide can be 

visualized as puckered graphene sheets linked by oxygen atoms. Density functional 

theory has been used to calculate the site projected partial density of states for carbon and 

oxygen atoms involved in different types of bonding. A comparison of these simulations 

with carbon and oxygen K-edge absorption spectra has led to an understanding of the 

basic electronic structure of this material. 
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CHAPTER 1  

INTRODUCTION 

Nanotechnology was envisioned as early as 1959 by Richard Feynman [1] in his talk 

“There’s Plenty of Room at the Bottom” at the American Physical Society meeting held 

at Caltech. Feynman had a clear perception of the tools required and was aware of the 

scaling issues that would arise due to changes in magnitude of different physical 

phenomenon. Carbon compounds form the basis of most, so far known life on earth. 

Carbon is one of the simplest elements to look on the periodic table with two valence 

electrons. Nanotechnology has become a buzz word and carbon nanostructures have 

become synonymous to nanotechnology today. Preliminary investigations have suggested 

that carbon based devices can be looked upon as an alternative for miniaturization of 

present silicon technology. Much effort has been put in this area to lay out the frame 

work for next generation of highly efficient and compact devices based on carbon 

nanostructures. These devices will feature high strength, flexibility, good conductivity 

and low cost production in terms of energy. 

Research for carbon nanostructures was catalyzed with the discovery of 

Buckminsterfullerene also known as bucky ball or C60, by Richard Smalley in 1985 [2] 

for which the Nobel Prize for Chemistry was awarded to Harold W. Kroto, Robert F. Curl 

and Richard E. Smalley in 1996. The pursuit of producing novel forms of carbon and 

exploring their properties gained further momentum with the discovery of carbon 

nanotubes (CNT) by Iijima in 1991 [3]. Since then the area of carbon nanostructure 

research have prospered with the discovery of graphene [4] and its chemical derivatives 

such as graphane [5] and graphene oxide (GO). The study of carbon nanostructures
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 such as carbon nanotubes and graphene has evolved into a one of the frontier areas of 

interdisciplinary research today. Since the discovery of carbon nanotubes in 1991, several 

theoretical and experimental studies have focused on both fundamental properties and 

potential applications in varied areas. 

From the science perspectives, carbon nanotubes are excellent candidates to study 

and understand the physics of one dimensional system. Carbon nanotubes are unique 

nanostructures with remarkable electronic and mechanical properties. As other useful 

properties were discovered, interest has grown in the potential applications (Figure 1)  

that exploit both the electronic and mechanical properties such as nanotweezers [6], mass 

sensors [7] memory devices [8], molecule sensors [9], actuators and switches [10]. These 

results have shown that carbon nanotubes hold great promise for nanoelectromechanical 

systems (NEMS) application [11]. 

 

Figure 1.1 Different applications of carbon nanotubes (a) as mass sensors [6], (b) as 
nanotweezers [5], (c) as sensor for molecule detection [8] and (d) as switches [9]. 
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The exploration of carbon nanotubes for biological applications is just underway. 

Cells do not adhere to carbon nanotubes this helps in using them as coatings for 

prosthetics. The ability to chemically modify the sidewalls of the carbon nanotubes also 

leads to biomedical applications such as vascular stents and growth as well as 

regeneration of neurons [12]. Carbon nanotubes have also been recently used for drug 

delivery applications of cancer drugs [13]. Recently carbon nanotubes are also being 

explored to be used as cell probes [14]. 

Graphene is an ideal system to study the physics of two dimensional systems. The 

application of graphene as sheets and nanoribbons are tremendous. Graphene 

nanoribbons (GNRs) can be produced by constraining one of the dimensions of the two 

dimensional infinite graphene sheets. Graphene and hence graphene nanoribbons have 

been used in fabricating electronic devices like transistors [15], resonant tunneling double 

barrier (RTDB) devices [16] (Figure 1.2), single molecule detection devices, transparent 

and conducting electrodes, ultra capacitors, and biosensors to name a few.  

 

Figure 1.2 Different applications of graphene nanoribbons in devices such as FET 
[http://www.nanotech-now.com/news.cgi?story_id=29516]and resonant tunneling double 
barrier (RTDB) devices [16]. 

 

Functionalized graphene in form of recently discovered GO show unusual and 

exotic properties [17]. This makes it a promising materials system for fundamental 
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advances and an attractive platform for novel nano device technologies. GO has shown 

promising applications in multidisciplinary research such as transparent flexible 

electronic devices [18, 19], nano mechanical devices (NEMS) [20] and in delivery of 

water insoluble cancer drugs [21]. Recent studies have shown non-linear effects in GO 

samples at 532 nm in the nanosecond and picoseconds regime [22] indicating its 

futuristic applications in optoelectronic nano devices. Partially reduced GO samples have 

also demonstrated the ability to absorb gasses [23] at low concentrations, a key to nano-

sensor applications. GO has also been used as precursor for large scale production of 

graphene by reduction [24]. The unprecedented success of using carbon as a 

multifunctional in different structural forms have led to the exploration of properties of 

other related materials for producing smart devices. Building on these results work on 

boron nanosystems is beginning to move forward. 

Boron is a trivalent metalloid and neighbor of carbon in the periodic table. It is a 

fairly complex element and exists in 16 known polymorphs [25]. High pressure 

experiments on bulk boron samples have brought to light the occurrence of a high 

pressure ionic phase [26] and low temperature superconductivity [27] with a critical 

temperature of 6K at about 175 GPa. This element has been investigated both 

theoretically [28, 29] and experimentally [30] in various forms like bulk boron, nanotubes 

[31], clusters, and quasi planar sheets. It is used in a wide variety of applications and well 

known as trivalent dopant in the semiconductor industry. Boron compounds are important 

constituents for light structural materials, armors, insecticide and preservatives. To 

optimize the search for new nanosystems detailed modeling must be conducted. 
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Scientific computing is an inseparable and an essential part of scientific activity 

and can be used to predict and understand the properties or phenomenon within a given 

set of constraints. Density functional theory (DFT) is one of the most widely used first 

principles calculation technique used to investigate the structure of materials systems, in 

particular atoms, molecules, condensed phases and their interactions. It is a quantum 

mechanical theory, the conceptual roots of which can be traced back to the Thomas Fermi 

model developed by Thomas and Fermi in 1927. In the Kohn – Sham formulation of DFT 

the many electrons system is approached by replacing the interacting electrons in an 

external potential by non interacting electrons in an effective potential. DFT has been 

able to successfully predict and reproduce experimental data for many systems [32] 

including a few carbon nanostructures [33]. The beauty of DFT is that its formulation is 

exact and efficient with all the complexity hidden in the exchange correlation functional. 

The form of exchange correlation function holds the key to success or failure of DFT. 

This exchange arises from the antisymmetry due to Pauli’s exclusion principle which 

states that for two identical fermions the wave function is antisymmetric. Despite huge 

success of DFT in predicting material properties, its applications suffer from pervasive 

errors that are not due to the breakdown of the theory itself but due to the deficiency of 

the exchange correlation functional. However, for many systems including carbon, 

specific approaches have been found to be quite reliable for atomic and electronic 

structure studies [34]. 
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CHAPTER 2  

CARBON NANOSTRUCTURES 

2.1 Overview 

Carbon is a versatile element and can exist in various nano forms as bucky ball, 

nanotubes, sheets and nanoribbons to name a few (Figure 2.1).  Carbon atom has six 

electrons with two of them located in the core 1s orbital with an electronic configuration 

[He] 2s2 p2. In complex systems, the remaining four valence electrons fill the sp3, sp2 or 

sp hybrid orbital, which are responsible for bonding in different type of structures. Three 

dimensional network of carbon linked by strong bonds is attributed to the sp3 form of 

carbon which possesses tetrahedral geometry. The sp2 type of hybrid orbital participate in 

forming layered structures such as in graphite with strong in-plane bonds and weak out of 

plane van der Waals (vdW) type of interactions. 

 

Figure 2.1 Different forms of nano scaled carbon (a) single walled carbon nanotube, (b) 
portion of indefinite graphene sheet, (c) Bucky ball also known as C60. 
 

Graphene is a single atom thick layer of carbon atoms packed in a honeycomb 

lattice and forms the basic structural element for GNR, CNT and the oxidized chemical 

derivative of graphene namely GO. Graphene can be visualized as periodic arrangement 
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of hexagonal aromatic rings. Intrinsic graphene is a semi metal or a zero band gap 

semiconductor. The electronic properties of GNR, CNT or GO, can be understood from 

band structure of graphene sheets. The unit cell of graphene honeycomb lattice is spanned 

by two vectors1a
�

, 1a
�

 and contains two carbon atoms (Figure 2.2(a)) at the positions 

( )1 2

1

3
a a+� �

and ( )1 2

2

3
a a+� �

, where the basis vectors of length 1a
�

= 2a
�

= oa =2.46Å form an 

angle of 60°. 

 

Figure 2.2 Graphene lattice showing (a) unit cell marked by red lines containing two 
atoms shown in green. (b) Shows the first Brillouin zone with high symmetry points 
marked as Γ, K and M. 
 

This unit cell when repeated in space produces graphene sheets and is the basis 

for the carbon nanostructures discussed in this work. To a first approximation, the 

properties of carbon nanotubes are related to those of graphene. The Brillouin zone (BZ) 

of graphene (Figure 2.2(b)) is hexagonal and consists of high symmetry points namely 

the Γ, K (corner) and M (middle) points. In order to understand the electronic properties 

of graphene based carbon nanostructures such as single walled carbon nanotubes 

(SWCNTs) and GNRs a thorough understanding of tight binding (TB) model of graphene 
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is required, a brief overview of which is discussed below.  This model provides a 

qualitative understanding of the electronic structure. 

The valence electronic wave functions of different carbon atoms overlap when 

brought into close proximity on a hexagonal lattice of graphene. However, the overlap 

between the pz wave functions with that of s, px and py is zero. The pz electrons form the 

π bonds and can be treated independently of other valence electrons. In order to 

determine the electronic band structure of the π orbital, the Schrödinger equation 

( ) ( ) ( )H k E k kΨ = Ψ
� � �

is solved. Here k
�

is the wave vector and the wave function ( )kΨ
�

is 

written as a linear combination of Bloch functions which in turn are written as linear 

combination of atomic wave functions. For graphene unit cell containing two atoms say 

A and B and the Bloch function for sublattice A is written as (where the atomic orbitals 

φΑ are centered at site A) 

 

( ).1
A

A

ik R
A A

R

e r R
N

φ ϕ= −∑
� �

 (2.1) 

 

here N is the number of unit cells and RA is the lattice vector. The secular equation for the 

π orbital becomes 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )* *

AA AA AB AB

AB AB AA AA

H k E k S k H k E k S k

H k E k S k H k E k S k

− −

− −

� � � � � �

� � � � � �  

 

with ij i jH Hφ φ=  and ij i jS φ φ= .  
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This yields the energy eigenvalues as below 

 

( ) ( ) ( )2

0 1 0 1 2 3

3

2 2 4

2

E E E E E E
E k

E

± − − + ± − + −
=

�
 (2.2) 

 

where 

 

* *
0 1

2 * 2 *
2 3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

AA AA AB AB AB AB

AA AB AB AA AB AB

E H k S k E S k H k H k S k

E H k H k H k E S k S k S k

= = +

= − = −

� � � � � �

� � � � � �  (2.3) 

 

The ( )E k +
�

denotes symmetric combination of wave functions and are energies of the 

valence band while( )E k −
�

denote the energies of the conduction band. The assumption 

that the overlap of wave functions between different atoms is negligible 

i.e. 2 *
0 1 2 3( ); 0; ( ) ( ) ( ); 1AA AA AB ABE H k E E H k H k H k E= = = − × =

� � � �
, simplifies to 

 

( ) ( ) ( )AA ABE k H k H k± = ±
� � �

 (2.4) 

 

Considering the nearest neighbor approximation (short range approximations only) will 

further simplify Eq. (2.2). Under this assumption the atom interacts with itself and 

neighboring three carbon atoms. The matrix elements IJH  and the overlap integral IJS  

are calculated from the Bloch functions in Eq. (2.1).  
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For atom at sublattice A, the matrix element AAH  and the overlap integralAAS  are 

 

' 2( )AA A A A pA
H k H Hφ φ ϕ ϕ ε= = =

�
 

 

(2.5) 

( ) 1AA A AS k ϕ ϕ= =
�

 (2.6) 

 

The value of AAH  is not exactly the energy of 2pz states of isolated carbon atoms 

due to the periodic potential in the crystal Hamiltonian. For interactions of atom at 

sublattice A with atoms at sublattice B, the matrix element ABH  is given as 

 

( ).1
( ) B A

A B

ik R R

AB A B A B
R R

H k H e H
N

φ φ ϕ ϕ−= = ∑∑
� � ��

 (2.7) 

 

The vectors ( )
11 ; 1,2,3

ii B AR R R i= − =
� � �

point from A to one of its neighboring atom B1i and 

can be written as ( ) ( ) ( )11 1 2 12 1 2 13 1 2

1 1 1
2 ; 2 ;

3 3 3
R a a R a a R a a= − = − + = − −
� � �� � � � � �

. Substituting 

this in Eq. 2.6 and summing over the B neighbors and the A atoms together with the fact 

that φ functions are radially symmetric and that the distance is the same for all three 

neighbors, the expression becomes 

 

( ) ( )1 2
1 2

1
. . .3( ) 1

ik a a ik a ik a
AB oH k e e eγ

− + 
= + + 

 

� � � � �� ��
 (2.8) 
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Where γo is the carbon – carbon interaction energy and is written 

as ( ) ( )11o A A B Ar R H r R Rγ ϕ ϕ= − − −
� � �� �

. This is often also known as the tight binding 

integral. The overlap integral can be similarly written as follows with 
1io A Bs ϕ ϕ=  

 

( ) ( )1 2
1 2

1
. . .3( ) 1

ik a a ik a ik a
AB oS k s e e e

− + 
= + + 

 

� � � � �� ��
 (2.9) 

 

Inserting the overlap integral and the Hamiltonian matrix elements in Eq. (2.3) and 

subsequently in Eq. (2.2) the energy eigenvalues within the nearest neighbor is  

 

( )
( )

2

1

p o

o

f k
E

s f k

ε γ
±

±
=

±

�

�  (2.10) 

 

where ( ) ( ) ( ) ( )1 2 1 22cos . 2cos . 2cos . 3u k k a k a k a a and f k u k= + + −    = +
� � � � � �� � � �

. The Eq. 

(2.10) is widely used tight binding approximation of graphene. 

2.2 Single Walled Carbon Nanotubes (SWCNTs) 

SWCNTs can be considered as rolled up sheets of graphene such that graphene lattice 

vector 1 1 2c n a n a= +� � �
becomes the circumference of the nanotube (Figure 2.3(a)). This 

vector also known as chiral vector is usually denoted by pair of indices ( )1 2,n n and 

uniquely defines a particular nanotube. The chiral vector determines the structural 

parameters like diameter, unit cell, number of carbon atoms as well as size and shape of 
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the BZ. The nanotubes can be broadly classified as achiral and chiral. Achiral nanotubes 

consist of armchair and zigzag nanotubes for which the chiral angle θ is 30o and 0o. 

Nanotubes with chiral angle in the range 0o < θ < 30o are termed as chiral nanotubes. The 

unit cell of SWCNT can be thought of as a cylindrical surface with height 

( )2 2
1 1 2 23

o

n n n n
a a

nR

+ +
=  and diameter 2 20

1 1 2 2

a
d n n n n

π
= + + . Where n is the order of the 

principal axis and 1 2 1 2(2 , 2 )GCD n n n n
R

n

+ += . 

 

Figure 2.3 Two dimensional sheet of graphene showing the lattice vectors a1 and a2, the 
chiral vector C and the translational vector T in the real space [35]. 
 

The reciprocal lattice vector along the length of the nanotube is given as 

2zk aπ=  where a  is the translational period of the nanotube along the tube axis. Any 

wave vector along the circumference of the tube is expected to satisfy circular boundary 

conditions satisfying . .m c dλ π= =� and , 2mk π λ⊥ = . The quantized wave vector k⊥

�
and 

the reciprocal lattice vector zk
�

 satisfy the conditions . 2k c π⊥ =
� �

, . 0k a⊥ =
� �

, 

. 0zk c =
� �

, . 2zk a π=
� �

. 
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Properties of Single Walled Carbon Nanotubes 

The atoms in carbon nanotubes are bonded by σ bonds along the surface of the nanotube 

while the π bonds lie normal to the surface of the nanotube and are responsible for weak 

vdW interactions in bundles. The π states being close to the Fermi level play an important 

role in determining the properties of carbon nanotubes. The allowed wave vectors around 

the circumference of the nanotubes are quantized whereas along the axis, the wave 

vectors are continuous. The allowed wave vectors of the nanotube appear as series of 

lines parallel to the tube axis on the BZ of graphene. The length, number and orientation 

of these lines depend on the chiral indices (n, m) of the nanotube (Figure 2.4). 

 

Figure 2.4 First Brillouin zone of the hexagonal lattice with superimposed cross section 
of the nanotube, c denotes the chiral vector, T is the translational vector along the tube 
axis, b1 and b2 represents the reciprocal lattice vectors.  
 

The band structure of carbon nanotubes can be obtained to the first approximation 

from well known tight binding band structure of graphene by applying zone folding 

techniques to understand their properties. The tight binding model of graphene has shown 

that the valence and the conduction band of graphene cross at the K point on the BZ. If 
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the graphene K point is among the allowed states, the carbon nanotubes will show 

metallic behavior else it behaves like a semiconductor. In order to quantify this, the 

quantization condition . 2K c mπ=
� �

along the circumference of the nanotube is used, where 

m is an integer and c
�

is the chiral vector of the nanotube. The K point of graphene is at 

( )1 2

1

3
k k−
� �

thus, a nanotube will show metallic properties only if following condition is 

satisfied [36, 37]. 

 

( )( ) ( )1 2 1 1 2 2 1 2

1 2
. 2

3 3
K c m k k n a n a n n

ππ= = − + = −
� �� � � �

 (2.11) 

 

Similarly, projecting the K point along the tube axis enables to determinezk
�

at which the 

valence band crosses the conduction band. Using the condition . 2 zK a kπ=
� �

(kz is 

continuous) the following condition is finally obtain 

 

1 2

1 2

0 ( ) 3

1 3 ( ) 3z

n n n Integer
k

n n n Integer

− ≠
=  − =

 (2.12) 

 

Thus, in (n, 0) metallic zigzag nanotubes the valence and the conduction band 

crosses at the Γ point, where as armchair (n, n) nanotubes are always metallic and the 

valence and the conduction bands cross each other at 2 3aπ . 

The density of states (DOS) represent the number of available electronic states for 

a given energy level to be occupied. DOS enters critically in experimental verification of 

theoretical predictions of the properties of carbon nanotubes. Experimental verification to 
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test the theoretical predictions of the electronic properties of carbon nanotubes is very 

difficult as they strongly depend on the diameter and chirality of the nanotubes. Scanning 

tunneling spectroscopy (STS) can in principle be used to probe the density of states of 

SWCNTs. This technique also allows one to perform scanning tunneling microscopy 

(STM) to determine the diameter and chirality of the nanotubes at the same location. The 

current – voltage (I-V) measurement [38] suggested a gap in the DOS consistent with 

semiconducting behavior. Combined STS/ STM measurements [39] have provided 

preliminary but detailed test of the theory of electronic properties. These studies were 

further conducted by several groups [40-44] and were successfully able to characterize 

the peaks in the DOS. The plot of dI dV  with V for a SWCNT crudely mimics the one 

dimensional DOS for the nanotube and provides verification for theoretically predicted 

DOS. 

The electronic band structure further away from the Fermi level can be measured 

by absorption and photoluminescence experiments. The vibrational properties are 

obtained using Raman scattering experiments or infrared measurements. The band 

structure of a semiconducting SWCNT shows kinks in the DOS plot represented by C1 

and V1 belonging to different sub bands. These kinks are known as van Hove 

singularities (vHs) (Figure 2.5 (a)). 
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Figure 2.5 Electronic density of states plot for (a) metallic and (b) semiconducting 
carbon nanotube [Wikipedia]. 
 

The magnitude of the projection of the angular momentum along the tube axis is 

labeled by integers. The allowed dipole transitions (electric vector parallel to tube axis) 

promotes an electron from valence sub band to the conduction sub band conserving the 

angular momentum projection. The optical absorption and emission are dominated by 

these allowed dipole transitions. When the photon energy matches with the energy 

difference of the corresponding van Hove singularities, the transitions are predicted to be 

highly intense. Thus one expects the absorption and emission spectra to consist mainly of 

series of sharp features at energies iiE with 1,2,3i = … . For semiconducting nanotubes 

commonly produced (diameter ~1nm), the first three transition appear in the near 

infrared, visible, and ultraviolet region of the electromagnetic spectrum. These non 

dispersive interband optical transitions are the characteristics of diameter and chirality of 

the nanotube. SWCNTs also show dispersive intense near ultraviolet absorptions at 4.5 

eV and 5.2 eV due to the collective plasmon excitation of their π electrons [45, 46]. 
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However, the spectra of bulk samples containing structurally different nanotubes show 

broad optical absorption arising from the strongly overlapped transitions of different 

species. In the absence of emission, the transitions can not be assigned to van Hove 

singularities. a van Hove singularity is a kink in the density of the states (DOS) of a solid. 

The wavevectors at which van Hove singularities occur are often referred to as critical 

points in the Brillouin zone.  

A breakthrough was obtained when nanotubes [47] synthesized by high pressure 

carbon monoxide (CO) conversion (HiPCO), were mechanically dispersed into aqueous 

solution of sodium dodecylsulphate (SDS) and processed to obtain desegregated samples 

[48]. These aqueous samples enriched in individual surfactant displayed near infrared 

photoluminescence. The peaks in their highly structured emission spectra were nearly 

coincident with that of the absorption spectra. This was attributed to the large number of 

emitting species with each contributing one dominant transition and a very small stokes 

shift between its absorption and emission peaks. 

 Spectroscopic assignment is a crucial task for identifying specific nanotube 

structure responsible for each peak. This was achieved using spectrofluorimetry 

techniques by scanning the excitation source wavelength over the range of 22E  

transitions.  When the excitation energy matches the second van Hove transition energies, 

an electron is excited from the second valence sub-band creating a hole and an electron in 

the second conduction sub-band, with the absorption of photon. The electron and hole 

relax into their first conduction and valence sub-band by phonon emission. Subsequently 

a radiative recombination of electron-hole across the semiconducting band gap results in 

the emission spectra corresponding to the 11E transition energies. The variation of the 
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ratio of the 22 11/E E intensities with the excitation wavelengths are further analyzed in the 

light of extended tight binding calculations. This enables in the assignment of the 

observed samples to family of ‘n-m’ nanotubes. Raman Spectroscopy was later employed 

to correctly assign the (n, m) indices. 

One-dimensional confinement of the electronic and phonon states cause unique 

optical and spectroscopic properties observed in SWCNTs. This creates strong 

enhancement of the resonance effect as compared to that observed in graphite and is 

highly selective to nanotube geometric structure. The two first order dominant Raman 

modes that distinguish a SWCNT from other forms of carbon are the radial breathing 

mode (RBM) and the multiple higher frequency features associated with the G-band 

modes. 

 

Figure 2.6 Raman spectrum for an isolated single walled carbon nanotube taken using 
Elaser = 785 nm. The features marked with * are from the Si/SiO2 substrate [39]. 
 

These have been used to characterize the SWCNT samples [49-53]. The RBM 

(100 cm-1 – 350 cm-1) correspond to the symmetric in-phase displacement of all the 

carbon atoms in the radial direction while the G-band (1580 cm-1) corresponds to the 
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tangential vibrational modes (Figure 2.7). One-dimensional quantum confinement 

produces singularities in the DOS. Since the resonant Raman intensity depends on the 

DOS available for optical transitions, the power of this technique became evident when 

the process was shown to be highly selective of specific (n. m) SWCNTs [34, 54]. 

Despite the electronic structure of an (n, m) SWCNT having many van Hove 

Singularities (vHS), symmetry selection rules allows only a few of them to be connected 

by light. Electrons and phonons in carbon nanotubes characterized by their one-

dimensional wave vectors are related to the number of nodes for their wave function 

along the circumference of the nanotube. The totally symmetric states for electrons and 

phonons have no nodes, while the other harmonics usually exhibit double degenerate 

symmetriesEµ , so for levels labeled by 1,2,3.....µ = the eigenvectors have 

2,4,6,.....nodes. When the polarization of the electric field is parallel to the nanotube 

axis, valence and conduction electrons having the same symmetry ( )v cE Eµ µ→ are coupled 

by light. However, when the polarization vector is normal to the tube axis, the absorption 

vanishes and couples 1( )v cE Eµ µ ±→ . 

 

Figure 2.7 Raman modes for single walled carbon nanotube (a) RBM mode (100 cm-1 – 
350 cm-1) and (b) the G mode (1580 cm-1). 
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Because of the selection rules, the optical transitions occur between two peaks 

which are almost symmetrically placed with respect to the Fermi level (Figure 2.5). It 

must be noted that the DOS at the Fermi level is non zero between the highest valence 

band vHS and lowest conduction band vHS. Since the excited electron is a bound hole 

that is left behind during the excitation process, the transition energies are excitonic in 

nature. 

2.3 Graphene Nanoribbons (GNRs) 

GNRs can be formed by limiting one of the dimensions of the two dimensional graphene 

sheets to form stripes of finite width. They may also be considered as unrolled SWCNTs 

[55]. Several techniques such as scanning tunneling microscope lithography [56], 

chemical approach [57, 58] and plasma etching of nanotubes [59] have been used to 

successfully produce GNRs. GNRs are expected to show a band gap due to the quantum 

confinement effect [60, 61]. This confinement of Dirac particles is of particular 

importance for the realization of nano electronic devices as it is possible to tune the 

electronic and optical properties [62]. Experimentally, the presence of a band gap has 

been observed in GNR devices [63, 64]. The edges of GNRs can be armchair, zigzag or a 

combination of the two. The electronic states of GNRs depend largely on the edge 

structures and their widths (armchair or zigzag). 

The width of the nanoribbon is defined by the number of dimer lines for the 

armchair nanoribbon and number of zigzag lines for the zigzag nanoribbon (Figure 2.8).  

The global band structure of each one dimensional graphite nanoribbon can be 

understood by projecting the 2D graphite band along the ribbon axis. 
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Figure 2.8 Structure of armchair edged graphene nanoribbon with 10 dimer lines 
indicating 10AGNR and zigzag edged graphene nanoribbon with 6 zigzag lines 
indicating 6ZGNR. 

 

For armchair nanoribbons, the ribbon axis lies along the M point in the first BZ of 

the graphene sheet. Thus the electronic band structure of graphene can be used to 

understand the properties of the graphene nanoribbons.  

 

Figure 2.9 Electronic band structures for (a) armchair and (b) zigzag edged graphene 
nanoribbon [38]. 
 

For armchair nanoribbons, the highest valence band and the lowest conduction 

band lie close to the Γ point (Figure 2.9 (a)). Since the zigzag nanoribbons are metallic, 

the degeneracy between the valence and conduction band is expected to appear only 

at 2 3k π= ± . However, the two center bands shows degeneracy at k π=  which does not 
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originate from the band structure of two dimensional graphene (Figure 2.9 (b). The flat 

bands sit steadily at the Fermi level and become flatter for wider ribbons in the 

range2 3 kπ π≤ ≤ [65]. 

Properties of Graphene Nanoribbons 

GNRs show a broad range of interesting properties in addition to the metallic or 

semiconducting behavior. In zigzag GNRs, transport is dominated by edge states. 

Moreover owing to their higher degeneracy, these states are expected to be spin-polarized 

making zigzag GNRs attractive for spintronics applications [66].  

 

Figure 2.10 (a) Hall resistance and magnetoresistance measured at T = 30 mK and Vg = 
15 V. The vertical arrows and the numbers on them indicate B and the corresponding 
filling factor υ of the QH states. The horizontal lines correspond to the h/e2 υ values. The 
inset shows the QHE for a hole gas at Vg = -4 V measured at T = 1.6 K. (b) Hall 
resistance and magnetoresistance measured at T = 1.6 K and B = 9 T, measured as a 
function of gate voltage. The upper inset shows a detailed view of high-filling factor 
plateaux measured at 30 mK. (c) Schematic diagram of the landau level density of states 
and the corresponding quantum Hall conductance (σxy) as a function of energy. Note that 
in the QH states 1

xy xyRσ −= − . The landau level index n is shown next to the DOS peak 

[48]. 
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Recent theoretically reports have shown that the zigzag graphene nanoribbons are 

magnetic and can carry a spin current in the presence of a sufficiently large electric field 

[67]. Ideal zigzag GNRs are not efficient spin injectors due to symmetry between the 

edges with opposite magnetization. This symmetry must be broken in order to obtain net 

spin injection. Existing proposals to achieve this involves either application of very large 

transverse electric field or by introducing edge imperfections [68]. It has been observed 

experimentally that high mobility graphene samples exhibit an unusual sequence of 

quantum hall (QH) effects [69, 70]. 

In the presence of a magnetic field perpendicular (B⊥ ) to the plane of graphene, 

QH plateaus at ( )4 1 2nν = ± +  are observed in low magnetic fields 9B T⊥ < . At higher 

magnetic fields, a new set of QH states at0ν = , 1ν = ± and 4ν = ± are observed due to 

the magnetic field induced splitting of the 0n = and 1n = ± landau levels (LL) [71]. 

Landau states occur only when the ribbon width is close to or greater than the distribution 

width of Landau wave function with the wavelength of the Landau wave function 

depending critically on the magnetic field as 2Bl h eBπ= . For graphene nanoribbons in 

a perpendicular magnetic field, the electron motion is confined by both the magnetic 

potential and the ribbon boundary. Hence in the limits of high magnetic 

field
1
2 0Bl B

−
∝ → , the electrons are mainly confined by the magnetic potential and 

reproduce the landau levels of two dimensional graphene sheets. However, this holds 

only until the wave functions do not touch the edges. The electrons deep inside the 

nanoribbons execute cyclotron orbits. These orbits are disrupted when the electrons 
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approach the edges. This forces a competition between the quantum confinement and the 

magnetic confinement effect [72]. 

The finite width of the nanoribbons supports only symmetric or anti-symmetric 

eigenstates along the width of the nanoribbon. Hence the optical absorption of GNRs is 

qualitatively different from that of SWCNTs. Optical absorption peaks occurring due to 

interband transitions at direct band gap does not occur in GNRs. The edge states play an 

important role in optical absorption. The greatest photon energy with which the edge 

states can cause an absorption peak is ~0.11 au [73]. 

 

Figure 2.11 Atomic displacements of graphene nanoribbons for localized mode, E2g like 
modes and radial breathing like modes (RBLM). 

 
Density functional calculations have shown that for all graphene nanoribbons 

there are three typical Raman active modes namely the radial breathing like mode 

(RBLM ~250 – 650 cm-1), the localized mode (~2000 cm-1), and the graphene 2gE (~1580 
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cm-1)like modes. The low frequencies of the RBLM modes are understood to occur due 

to the relative movement of the left and right parts of the GNR. The frequencies of the 

RBLM decreases with the increasing width of GNR and may be used to characterize the 

width of GNRs. Besides the RBLM’s and the graphene 2gE like modes, GNRs also show 

high frequency localized vibrational modes of the edge carbon atoms. Since the edge 

bonds of zigzag graphene nanoribbons (ZGNRs) are slightly shorter than that of the 

armchair graphene nanoribbons (AGNR), the vibrational modes are expected to occur at 

lower energies [74]. 

2.4 Graphene Oxide (GO) 

Graphene oxide derives its origin from graphite oxide which was first prepared by 

treating graphite with mixture of potassium chlorate and fuming nitric acid [75].  Later on 

it was prepared using a mixture of H2SO4, NaNO3, and KMnO4 [76]. Graphite oxide is 

understood to be a layered material consisting of hydrophilic oxygenated graphene 

sheets. Recent reports have shown the fabrication of graphene oxide paper as well [17]. 

Microwave heating for pre-exfoliation of graphite has been used to produce large area 

monolayer GO samples [77]. It has been shown that under suitable conditions graphene 

oxide can undergo complete exfoliation in water producing suspensions of individual GO 

sheets [78, 79]. GO has been successfully suspended in solvents like dimethylformamide 

(DMF). It has been reported that addition of N-methylpyrrolidone (NMP), ethanol, 

dimethylsulfoxide (DMSO) and acetonitrile to aqueous suspension of GO produces stable 

homogenous colloidal suspensions of GO sheets. Addition of Acetone and 

tetrahydrofuran (THF) created suspensions of GO, however, particles visible to eyes were 
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observed after a day. GO tends to agglomerate and precipitate by addition of diethylether 

or toluene to the aqueous solution [80]. Atomic force microscopy (AFM) experiments 

have suggested the vertical stacking of GO sheets in multiples of 1.1 nm. This height has 

been assigned to individual graphite sheets bearing oxygen containing groups on both 

sides of the graphene sheet [81]. 

 

Figure 2.12 AFM images of graphene oxide sample [82]. 
 

AFM images of GO monolayers on atomically flat surfaces have shown 

pronounced roughness which has been accounted due to the sp3 centers and point defects 

in the carbon lattice also causing wrinkling of sheets at nano-scale [83]. It should be 

noted that in the reverse process, GO may be deoxygenated under alkaline conditions to 

produce highly pure graphene sheets [24]. 

Properties of Graphene Oxide 

GO has been characterized using various optical and transport measurements. Individual 

graphene oxide sheets have been characterized electrically [84]. GO monolayers 

deposited on doped silicon substrate with thermally grown SiO2 layer (200nm thick), 

chemically reduced, and then contacted by e beam lithographically defined Au/Pd (60/40) 
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electrodes (300 – 1000 nm separation) show almost insulating behavior with differential 

conductivity values of 1-5 x 10-3 S/cm at a bias voltage of about 10V (assuming layer 

thickness of 1 nm). 

 

Figure 2.13 Current – Voltage (I-V) curve for graphene oxide device at different 
negative gate voltages [63]. 
 

Chemical reduction result in increase of conductivity (85). Non-linear optical 

properties of GO measured using Z-scan technique have revealed that at low intensities 

of 9 22.1 10 W cm× the normalized transmission curve shows a symmetrical peak with 

respect to the focus (z=0), indicating that saturable absorption (SA) dominates nonlinear 

absorption (NLA) mechanism. Increasing the input intensities, a valley between the peak 

appeared indicating reverse saturable absorption (RSA) or two photon absorption (TPA) 

appears following SA and finally NLA transition (22). 
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CHAPTER 3  

THEORETICAL METHODS  

3.1 Theoretical Developments 

Within three years of the discovery of the electron by J. J. Thomson in 1897 [86], Drude 

[79] constructed his theory of electrical and thermal conduction based on kinetic theory 

of gasses for metals. The kinetic theory was applied to the conduction electrons moving 

against a background of heavy immobile ions. The two most significant results of 

Drude’s model were electronic equation of motion 
( )

( )
d P t

P t qE
dt τ

= −
�

�
 and linear 

relationship between the current density J and Electric fieldE ,
2nq

J E
m

τ 
=  
 

. The major 

assumptions involved were the independent particle approximation, and the free electron 

approximation [87]. 

Arnold Sommerfeld combined the classical Drudes model with quantum 

mechanical Fermi-Dirac statistics [88] to explain the properties in metals. Although the 

Free electron theory eliminated some deficiencies, the model still makes many 

quantitative predictions contradicted by observations. This model fails to distinguish 

between metals, semimetals, semiconductors and insulators; occurrence of positive 

values of Hall coefficients; the relation of conduction electrons in the metal to valence 

electrons of free atom and transport properties. 

In free electron model, the allowed energy values are distributed essentially 

continuously from zero to infinity. The band structure of a crystal can be explained by the 

nearly free electron model in which the band electrons are treated as perturbed weakly by 
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the periodic potential of the ion core. This takes care of the interactions between the 

conduction electrons and the ion cores. This model like the free electron model does not 

take into account electron-electron interactions. This leads to the examination of general 

properties of the Schrödinger equation for single electron
2

2
2

( )
8

h
H U r

m
ψ ψ εψ

π
 

= − ∇ + = 
 

 

with the development of quantum mechanics in the 1920s. 

A very different point of view can be taken by considering a solid as a collection 

of weakly interacting neutral atoms. The tight binding approximation deals with the case 

in which the overlap of atomic wave functions is enough to require corrections to the 

picture of isolated atoms, but not so much as to render the atomic description irrelevant. 

3.2 The Tight Binding Method 

The hallmark of this approach is that the wave function can be expanded as linear 

combination of the atomic orbitals each associated with a specific atom in a molecule or 

crystal. The advantages of this method are that not only does it provides a simplistic 

understanding of the fundamental features of electronic bands but also one assumes a 

form for the Hamiltonian and the overlap matrix elements without actually specifying 

anything about the orbitals except their symmetry [89, 90]. 

It is assumed that in the vicinity of each lattice point the full periodic crystal 

Hamiltonian (H) and can be approximated by the Hamiltonian of a single atom Hat. It is 

also assumed that the bound levels of Hat are unchanged. The extreme case would be 

when the crystal Hamiltonian differs from the atomic Hamiltonian at distances that 

exceed the range of the atomic wave function. Hence the atomic wave functions ( )n rψ �
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would be an excellent approximation. Considering a Bravais lattice with translational 

vectorR
�

, the wave function would be written as( )n r Rψ −
��

. Considering the corrections 

to the atomic Hamiltonian to produce the full periodic potential of the crystal to 

be ( )U r∆ �
, the crystal Hamiltonian can be written as ( )atH H U r= + ∆ �

. If ( )U r∆ �
 

vanishes whenever ( )n rψ �
 does not, then each atomic level would yield N levels in the 

periodic potential with wave function ( )n r Rψ −
��

for each of N sites in the Bravais lattice. 

The N linear combinations of these degenerate wave functions that satisfy the Blöch 

condition are ( ).( ) ik R
nnk

R

r e r Rψ ψ= −∑
� �

�

�

�� �
where the k

�
ranges through the N values in the 

first BZ satisfying the Born-von Karmon periodic boundary conditions. The energy bands 

obtained are reminiscent of the atomic levels. An improvement towards a more realistic 

approach would to be to consider( )n rψ �
 small and not exactly zero as ( )U r∆ �

becomes 

appreciable. In this case the solution( )n rψ �
 to the full crystal Schrödinger equation, 

satisfying the Blöch conditions can be written as a linear combination of some functions 

( )r Rφ −
��

which are not atomic wave functions but are linear combination of the atomic 

wave functions ( )n rψ �
 i.e. ( ).( ) ik R

n
R

r e r Rψ φ= −∑
� �

�

�� �
 where ( )( ) n n

n

r b rφ ψ=∑
� �

. The full 

crystal Schrödinger equation using the modified wave function is attempted to solve as 

below. 

 

( ) ( )H H U kψ ψ ε ψ= + ∆ =
�

 (3.1) 
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By multiplying the crystal Schrödinger equation by the atomic wave function ( )*
m rψ �

and 

solving the following is obtained 

 

m m at

m at m

m at m m

H H U

H U

H U

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ ψ ε ψ

= + ∆

= + ∆

= + ∆ =

 

 

( )m m m mE U kψ ψ ψ ψ ε ψ ψ+ ∆ =
�

 

 

( ( ) )m m mU k Eψ ψ ε ψ ψ∆ = −
�

 (3.2) 

 

Using the orthonormality condition of the atomic wave functions m n mnψ ψ δ=  

and ( ).( ) ik R
n

R

r e r Rψ φ= −∑
� �

�

�� �
 an eigenvalue equation is obtained that determines the 

coefficients ( )nb k and the Bloch energies ( )kε as 

 

( )( ) ( )( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )

* .

0

*

* .

0

.

.

ik R
m m m m n n

n R

n n n
n

ik R
m n n

n R

k E b k E r r R e dr b

r U r r dr b

r U r r R e dr b

ε ε ψ ψ

ψ ψ

ψ ψ

≠

≠

 − = − − − 
 

+ ∆

 + ∆ − 
 

∑ ∑∫

∑ ∫

∑ ∑∫

� �

�

� �

�

� � �� � �

� � � �

�� � � �

 (3.3) 

 

The above theory has been formulated for a monatomic basis. In solids that are 

not monatomic Bravais lattices as in hexagonal lattices, one constructs linear combination 
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of atomic levels centered at the Bravais lattice points and at the basis points. The 

electronic levels so obtained are within the independent electron approximation. The 

independent approximation fails when it gives at least one partially filled band that 

derives from the well localized atomic levels with small overlap integrals. This might 

tend to fail when dealing with d and f shells in metals.  This constitutes the well known 

electron correlation problem requiring multiple particle treatments. 

3.3 Density Functional Theory 

The problem of electrons in a solid is a many body problem hence a more accurate way 

would be based on solving the many body Schrödinger equation for a general system 

containing M nuclei and N electron. As a convention the position of the nuclei is denoted 

byR
�

while those of the electrons byr
�

. The Schrödinger equation for such a system can 

be written as ( ) ( ) ( ), , ,H R r R r E R rΨ = Ψ , where the Hamiltonian is written as 

 

( )
2 22 2 2 2 21 1

,
2 2 2 2

M N N M
A A B

A i i A i j A BA i i A A Bi j

Z e Z Z ee
H R r

Mn m r R R Rr r≠ ≠

      ∇ ∇
 = − + − + − + +          − −−        

∑ ∑ ∑∑ ∑ ∑
ℏ ℏ

 

 

The above equation is an eigenvalues equation in 3N+3M independent variables which is 

in general impossible to solve exactly and needs approximations. Born and Oppenheimer 

in 1927 proposed that the molecular wave function can be separated into the electronic 

and nuclear components i.e. ( ) ( ) ( ), ;r R r R Rψ χΨ = i . This enables the separation of the 

molecular Schrödinger equation into one equation for the electronic wave 
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function ( );r Rψ and other for nuclear wave function( )Rχ . The physical idea behind this 

is that the electrons move much faster than the nuclei, so for a given set of nuclear 

position the electrons adjust their positions immediately before the nuclei move. The 

independent variables in ( );r Rψ are the coordinates of the electronsr , however, 

( );r Rψ depends parametrically on nuclear coordinatesR thus implying that the electronic 

Schrödinger equation has to be solved for given nuclear geometry.  The electrons can be 

thought of as moving in the effective instantaneous potential of the nuclei while 

interacting with each other. The approximation fails in systems with strong electron 

lattice interactions such as transition metal maganites. Thus the electronic structure can 

be studied by working with the electronic Hamiltonian written as 

 

22 2 21

2 2

N N M
A

i i A i ji i A i j

Z e e
H

m r R r r≠

   ∇
 = − + − +      − −     

∑ ∑∑ ∑
ℏ  (3.4) 

 

With the Hamiltonian figured out it is required to find out an approximate 

solution to the electronic Schrödinger equationH Eψ ψ= . The approximate solution is 

obtained by applying variational methods by minimizing 
Hψ ψ

ψ ψ
 to seek lowest 

estimate of the ground state energy given a choice of wavefunction. Hartree in 1927 

offered one way of constructing the approximate wave function in terms of individual 

orbitals iϕ  such that ( ) ( ) ( ) ( )1 2 1 1 2 2, , N N Nx x x x x xψ ϕ ϕ ϕ=� � � � � �
⋯ i ⋯ , where ix

�
include the 

position coordinates and spin. Applying the variational principles to Hψ ψ would 
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mean imposing ( )1 / 2N N − constraints due the orthonormality constraints 

i j ijϕ ϕ δ= of the orbitals. These constraints can be incorporated by considering the 

quantity 

 

,
ij i j ij

i j

F Hψ ψ λ ϕ ϕ δ = − − ∑  (3.5) 

 

and requiring that any of the derivatives of the quantity F with respect to any one of the 

Lagrange multipliers ijλ be zero. This leads to Hartree equations which in principle 

determine the orbitalsiϕ . The major drawback of Hartree theory is that it does take into 

account the indistinguishability of the electrons, thus violates the fundamental principles 

of quantum mechanics (Pauli’s Exclusion Principle). 

In order to satisfy the antisymmetry condition, the approximate wave function 

constructed by Hartree is improved by writing an antisymmetrized determinant wave 

function for a fixed number N of electrons. This is also known as the Slater determinant 

and written as 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2

1 2

1

!

N

N

N N N N

x x x

x x x

N

x x x

ϕ ϕ ϕ
ϕ ϕ ϕ

ψ

ϕ ϕ ϕ

=

� � �
…

� � �
…

⋮ ⋮ ⋱ ⋮
� � �

⋯

 (3.6) 

 

This Hartree – Fock approximation, like the Hartree approximation relies on the 

approximation of independent particles but still contains a major part of the physics and 
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is useful. So far the attempt has been to solve the Schrödinger equation more or less 

accurately. The approximate solution is an N-electron wave function which depends on 

3N position-space co-ordinates and N spin co-ordinates. This function becomes 

extremely complex even for medium sized systems and can be solved only for simple 

electron systems such as H2 [91]. 

In 1927 Thomas and Fermi working independently used a statistical model to 

approximate the distribution of electrons in an atom. Their formulation in terms of 

electron density was independent of wave function theory.  In the original Thomas – 

Fermi method, the kinetic energy of the electrons is approximated as an explicit 

functional of the density, idealized as non interacting electrons in a homogenous gas with 

density equal to the local density at any given point. This however, was the major error 

within the Thomas – Fermi approach because the kinetic energy represents a substantial 

portion of the total energy of the system so even small error could prove to be disastrous.  

Both Thomas and Fermi neglected exchange and correlation among the electrons which 

was later incorporate by Dirac in 1930.  It resulted in an atomic structure without radial 

shells.  Although Thomas – Fermi model is considered as the basis to the modern density 

functional theory, the famous Hohenberg – Kohn theorem put DFT [92] on firm 

theoretical standing.  

The approach of Hohenberg and Kohn [93] was to formulate density functional 

theory as an exact theory of many-body system for the ground state system. Hohenberg – 

Kohn formulated a universal functional ( )F n r  
�

 of interacting electrons in an external 

potential ( )extV r
�

such that the functional ( ) ( ) ( ) ( )extE n r F n r n r V r dr= +       ∫
� � � � �

 is 
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minimized by the density( )n r
�

 and the minimum value of the functional0E is the ground 

state energy. The two theorems formulated by Hohenberg and Kohn are as follows: 

Theorem I For any system of interacting particles in an external potential ( )extV r
�

, the 

potential ( )extV r
�

is determined uniquely, except for a constant, by the ground state 

particle density ( )0n r
�

 [94]. 

Theorem II  The universal functional for the energy[ ]E n in terms of the density( )n r
�

can 

be defined, valid for any external potential( )extV r
�

. For any particular ( )extV r
�

, the exact 

ground state energy of the system is the global minimum value of this functional and the 

density ( )n r that minimizes the functional is the exact ground state density ( )0n r  [94]. 

Kohn – Sham developed methods for treating inhomogeneous system of 

interacting electrons [95]. These methods are exact for systems of slowly varying or high 

density and for the ground state, lead to self consistent equations analogous to the Hartree 

and Hartree – Fock equations. The exchange and correlation portions of the chemical 

potential of a uniform electron gas appear as an additional effective potential. Kohn and 

Sham separated ( )F n r  
�

 into three distinct parts, so that the functional E becomes (use 

Hartree units 04 1em e π ε= = = =ℏ ). 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
'

'

'

1

2s XC ext

n r n r
E n r T n r dr dr E n r n r V r dr

r r
= + + +          −∫∫ ∫

� �
� � � � � � � �

� �  (3.7) 
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The kinetic energy of the non interacting electron gas with density ( )n r
�

is defined as 

 

( ) ( ) ( )* 2

1

1

2

N

s i
i

T n r r r drψ ψ
=

= − ∇   ∑∫
� � �

 (3.8) 

 

Variational minimization of ( )E n r  
�

and introduction of normalization constraint of 

electron density gives 

 

( ) ( ) ( )

( ) ( )

0E n r n r dr
n r

E n r
n r

δ µ
δ

δ µ
δ

 − =   

⇒ =  

∫
� � �

�

�
�

 (3.9) 

 

The above equation may be written in terms of an effective potential, ( )effV r
�

 as 

 

( )
( ) ( )s

eff

T n r
V r

n r

δ
µ

δ
   + =
�

�
�  (3.10) 

 

The effective potential and the potential due to exchange correlation is defined as 

 

( ) ( ) ( ) ( ) ( ) ( )
( )'

XC
eff ext XC XC

E n rn r
V r V r dr V r and V r

n rr r

δ
δ
  = + +   =

−∫
��

� � � � �
�� �  (3.11) 
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The Kohn – Sham method provides an exact method for finding the exact ground 

state energy of the interacting system. However, the drawback of this method is that the 

form of exchange correlation potential is usually unknown except for simple atoms. For 

practical calculations, the exchange correlation is approximated either within the local 

density approximation (LDA) or generalized gradient approximation (GGA) [96, 97]. 

Recently, the exchange correlation has been approximated within the meta generalized 

gradient approximation (meta-GGA), this uses the Laplacian (second derivative) of the 

density of the density or the kinetic energy density in addition to density and magnitude 

of the gradient of the density [98]. 

3.3.1 Local Density Approximation (LDA) 

The Kohn – Sham (KS) equations while exactly incorporating the kinetic energy 

functional ( )sT n r  
�

, still leaves the exchange correlation functional 

( )XCE n r  
�

unsettled. An explicit form of the exchange correlation functional is required 

to solve the KS equations. Since the kinetic energy is treated rigorously in the KS 

formalism, the uniform electron gas formalism may be used for the unknown part of rest 

of the energy functional. Within the local density approximation (LDA), the exchange 

correlation energy of an electronic system is constructed by assuming that the exchange 

correlation energy per electron at a pointr
�

in the electron gas is equal to the exchange 

correlation energy per electron in a homogenous electron gas that has the same density as 

the electron gas at pointr
�

. This approximation thus ignores corrections to the exchange 

correlation energy at point r
�

 due to inhomogenities. 
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The Exchange correlation functional under the LDA can be written in terms of 

homogenous electron gas density ( )n r
�

 can be written as 

 

( ) ( )( ) ( )LDA
XC XCE n r n r n r drε=   ∫

� � � �
 (3.12) 

 

here ( )( )XC n rε �
is the exchange and correlation energy per particle of a homogenous 

electron gas density. The corresponding exchange correlation potential then becomes 

 

( ) ( )( ) ( ) ( )( )
( )

LDA
XCLDA XC

XC XC

n rE
V n r n r

n r n r

δεδ ε
δ δ

= = +
�

� �
� �  (3.13) 

 

substituting this in the KS equation, the Kohn – Sham local density approximation 

(KSLDA) which is referred to in the literature as the LDA method. The energy 

( )( )XC n rε �
can be decomposed into exchange and correlation parts as 

 

( )( ) ( )( ) ( )( )XC X Cn r n r n rε ε ε= +� � �
 (3.14) 

 

LDA is surprisingly accurate and produce good results for systems with slowly 

varying charge densities. LDA has a tendency to favor more homogenous systems and 

over binds molecules and solids. In weakly bonded systems these errors are large and 

bonds lengths are too short [94]. 
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3.3.2 Local Spin Density Approximation [LSDA] 

The local spin density approximation is the generalization of the local density 

approximation in which the spin degree of freedom is treated in a non trivial way. The 

exchange correlation functional within the LSDA is written as 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

3,  ,

where

LSDA
XC XCE n r n r d r n r n r n r

n r n r n r

ε↑ ↓ ↑ ↓

↑ ↓

  = 

= +

∫
� � � � � �

� � �

 (3.15) 

 

The energy ( ) ( )( ),XC n r n rε ↑ ↑� �
can be decomposed into exchange and correlation parts 

similar to the local density approximation as 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), , ,XC X Cn r n r n r n r n r n rε ε ε↑ ↓ ↑ ↓ ↑ ↓= +� � � � � �
 (3.16) 

 

The LSDA can be formulated in terms of either two spin densities ( )n r↑ �  and ( )n r↓ � , or 

the total density ( )n r
�

 and the fractional spin polarization( ) ( ) ( )
( )

n r n r
r

n r
ζ

↑ ↓−
=

� �
�

�  [94]. 

3.3.3 Generalized Gradient Approximation (GGA) 

The first step beyond the local density approximation is a functional of the magnitude of 

the gradient of the density ( )n r∇ �
 as well as the value of ( )n r

�
at each point. Such a 

gradient expansion approximation (GEA) was suggested by Kohn and Sham and 

developed further by Herman [99]. The GEA did not lead to consistent improvement over 
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the LSDA. The basic problem with GEA is that the gradient in real materials is so large 

that the expansion breaks down. 

Generalized gradient expansion (GGA) modifies the behavior at large gradients in 

such a way to preserve desired properties. The functional of the generalized form is 

represented as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

3

3

,  , , , ,

 , , , ,

GGA
XC xc

X xc

E n r n r d r n r n r n r n r n r

d r n r F n r n r n r n r

ε

ε

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓

  = ∇ ∇ 

= ∇ ∇

∫

∫

� � � � � � � �
⋯

� � � � � �
⋯

 (3.17) 

 

here Xε is the exchange energy of the unpolarized homogenous electron gas and XCF is 

dimensionless. Working in terms of dimensionless reduced density gradients of mth order 

defined by 

 

( )
( )

( )
( ) ( )( )( )3 1 322 2 3

m m

m m m mm
F

n r n r
s

k n n rπ +

∇ ∇
= =

� �

�
 (3.18) 

 

where ( )1 3 13 2 3F sk rπ −=  and sm is proportional to the mth-order fractional variation in 

density normalized to the average distance between the electrons rs. The lowest order 

terms in the expansion of FX has been calculated analytically as 

 

2 2
1 2

10 146
1

81 2025XF s s= + + +⋯  (3.19) 
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Numerous forms of ( )( ),XF n r s
�

have been proposed. The three widely used forms are by 

Becke (B888) [100], Perdew and Wang (PW91) [101], and Perdew, Burke and Enzerhof 

(PBE) [102]. The implementation of the LSDA method requires specific computational 

frameworks. The all electron and pseudopotential methods are two approaches. 

3.4 Plane Wave Pseudopotential Method 

The plane wave pseudopotential method is a reliable tool to study the properties of a 

broad class of materials. This method uses plane wave expansion of the Blöch functions. 

The advantages of plane wave basis set are that there is no basis set superposition error, 

the periodic boundary conditions are trivially implemented, the forces can be obtained 

easily, the calculation of the Hamiltonian matrix elements is fast and plane waves are 

eigenfunctions of the kinetic energy operator. 

 

Figure 3.1 Schematic illustration of the replacement of the all electron wavefunction and 
core potential by pseudo wavefunction and pseudo potential [103] 
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The pseudopotential approach removes the core electrons and the strong nuclear 

potential and replaces them with a weaker pseudopotential which acts on a set of pseudo 

wave functions rather than true wave functions. The pseudopotential approach [104] has 

its roots in well known fact that the valence electrons play dominant role in chemical 

bonding and is based on orthogonalised plane wave (OPW) method [105]. An OPW is 

defined as linear combination of a plane wave and core wave functions summed over all 

core levels with Blöch wave vector k, with the assumption that the core wave functions 

are known (generally obtained from the tight binding approximation of calculated atomic 

levels) In OPW method, the eigenstate of the Schrödinger equation was taken as a linear 

combination of OPW’s. 

In the pseudopotential approach, the exact wave function for the valence level is 

written as linear combination of the OPW’s. Assuming the v
kφ to be the plane wave part of 

the expansion 

 

( ) ( ). .i k K rv
Kk

K

r c eφ +=∑
� � �

� �

�

�
 (3.20) 

 

from OPW formalism, the OPW is defined by 

 

( )

( )

.

* . .

ik r c
ck k

c

c ik r
c k

e b r

b dr r e

φ ψ

ψ

= +

= −

∑

∫

� �

� �

� �

�

�

�

 (3.21) 
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The exact valence wave function can be written as 

 

( ) ( ) ( ) ( )( ) ( )' * '  v v c v c

k k k k k
c

r r dr r r rψ φ ψ φ ψ= −∑ ∫� � � � �
� � � � �

 (3.22) 

 

This satisfies the Schrödinger equation with eigenvalues v

k
ε �  

 

  v v v

k k k
H ψ ε ψ=� � �  (3.23) 

 

solving the above Schrödinger equation the following expression is obtained 

 

( ) ( )( ) ( ) ( ) ( )( ) ( )' * ' *  =  v c v c c v c v c

k k k k k k k k k
c c

H dr r r H r dr r r rφ ψ φ ψ ε φ ψ φ ψ − − 
 

∑ ∑∫ ∫� � � � � � � � �
� � � � � � � �

 

(3.24) 

 

Since for the exact core levels, one can write  c c c

k k k
H ψ ε ψ=� � � , the above equation becomes 

 

( ) ( ) ( ) ( )R v v v

k k k
H V r r rφ ε φ+ =� � �

� � �
 (3.25) 

 

This is the effective Schrödinger equation satisfied by v
kφ  which is the smooth 

part of the Blöch function.  
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Some of the cumbersome terms have been buried in the term RV  and is defined as 

 

( ) ( ) ( )( ) ( )' * * R v c c
k c k k

c

V dr r r rψ ε ε ψ ψ ψ= −∑ ∫ � �
� � � �

 (3.26) 

 

Also as v
kφ  can be approximated by linear combination of a small number of plane 

waves, one might be tempted in employing the nearly free electron theory to find the 

valence levels of Hamiltonian RH V+ . This forms the starting point for pseudopotentials 

calculations and analysis. The pseudopotential is defined as the sum of actual periodic 

potential and RV [77]. 

The disadvantage of plane wave method is that its usage in the all electron 

treatment is almost impossible because of the strong oscillations of the wave function in 

the core region. This would require too large a basis set to compute. The pseudopotentials 

are constructed such that there are no radial nodes in the pseudo wave function in the core 

region and that the pseudo wave functions and the pseudopotentials are identical to the all 

electron wave function and potential outside a cutoff radius. Care should be taken so that 

the scattering properties of the pseudo wave functions are identical to that of the ion and 

core electrons. This is achieved using non-local pseudopotential which uses a different 

potential for each angular momentum component of the pseudopotential. Such 

pseudopotentials conserving the normalization factor are known as norm conserving 

pseudopotentials. The utility of this approach to systems containing highly localized 

valence orbitals has been limited, because of the difficulty of representing the pseudo 

wave functions in a plane wave basis. Since the norm conserving condition requires that 

the total pseudo charge inside the core matches that of the all electron wave function, it is 
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sometimes impossible to construct a pseudo wave function much smoother than the all 

electron one. Alternate approaches using fully non local separable pseudopotential based 

on given semi local one has been suggested [106]. 

David Vanderbilt [107] constructed first principles pseudopotentials in which the 

non local pseudopotentials are generated directly such that (1) they take the form of a 

sum of few separable terms (2) It becomes local and vanishes outside the core and (3) 

The scattering properties and their energy derivatives are by construction, correct at 

several energies spanning the range of occupied states. (4) The norm conserving 

constraint is removed so that so that the smoothness of the pseudo wave functions can be 

optimized. (5) The pseudopotential itself becomes involved in the self consistent 

screening process. These potentials are known as Vanderbilt’s ultra-soft 

pseudopotentials. 

3.5 Projector Augmented Wave (PAW) Method 

The linear augmented plane wave (LAPW) method provides an efficient representation of 

the highly inhomogeneous wave functions of the all electron electronic structure 

calculations. It is constructed by partitioning the wave function around the atom in two 

parts namely the sphere around each atom where the wave function is rapidly varying and 

the remaining as interstitial region where the wave functions are smooth. Each basis 

function is then defined as a plane wave in the interstitial region connected smoothly to 

the linear combination of atomic like wave functions in the spheres. 

The projector augmented wave method is an extension of the augmented wave 

methods and the pseudopotential approach which combines them into a unified electronic 
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structure method. Just as in the OPW formulation one can define a smooth part of the 

valence wave function ( )v
i rψ �
ɶ and a linear transformation v vTψ ψ= ɶ that relates the set of 

all electron valence functions ( )v
j rψ �

to the smooth function ( )v
i rψ �
ɶ . The transformation is 

assumed to be unity except with a sphere centered on the nucleus, 01T T= + . The 

superscript v and the labels are omitted for the sake of simplicity. Using Dirac notation 

from now onwards the expansion of each smooth function ψɶ in partial waves m within 

each sphere can be written as 

 

m m
m

cψ ψ=∑ɶ ɶ  (3.27) 

 

with the corresponding all electron function  

 

m m
m

T cψ ψ ψ= =∑ɶ  (3.28) 

 

Hence the full wave function in all space can be written as 

 

{ }m m
m

cψ ψ ψ ψ= + −∑ɶ ɶ  (3.29) 

 

If the transformation T is required to be linear, then the coefficients must be given by a 

projection in each sphere 
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m mc P ψ= ɶ ɶ  (3.30) 

 

for some set of projection operators pɶ . If the projection operators satisfy the 

biorthogonality condition, 

 

' 'm m mm
p ψ δ=ɶɶ  (3.31) 

 

then the one center expansion m m
m

pψ ψ∑ ɶ ɶɶ  of the smooth function ψɶ  equals ψɶ  itself. 

Just as for pseudopotentials, there are many possible choices for the projectors. 

The difference from pseudopotentials, however, is that the transformation T still involves 

the full all electron wave function. The expression applies equally well to the core and the 

valence states. 

 

{ }1 m m m
m

T pψ ψ= + −∑ ɶ ɶ  (3.32) 

 

The general form of the PAW equations can be written in terms of transformation 

for any operator ̂A  in the original all electron problem one can introduce a transformed 

operator Aɶ that operates on the smooth part of the wave function [80].  

 

{ }' '

'

† ˆ ˆ ˆ ˆ
m m m mm m

mm

A T AT A p A A pψ ψ ψ ψ= = + −∑ɶ ɶ ɶɶ ɶ  (3.33) 
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This is very similar to the pseudopotential operator. Specific functional forms are used to 

display important chemical properties, given the electron charge density. 

3.6 Electron Localization Function (ELF) 

The study of electron localization is required to systematically study the concept of 

chemical bonds ubiquitous in quantum chemistry specially pair electron localization in 

the spirit of Lewis structures. ELF was introduced by Becke and Edgecombe [108] in 

1990. The original formula is based on the Taylor expansion of spherically averaged 

conditional same-spin pair probability density to find an electron close to a same spin 

reference electron. The main aspect of this formulation is that the ELF so defined is a 

property of the same spin pair density. Topological classification and rationalization of 

ELF was proposed by Silvi and Savin [109] a few years later.  

Becke’s Proposal and Interpretation 

Pauli’s principle suggests that movement of electrons of same spin is more strongly 

correlated than that between electrons of different spins. Therefore, it seems convenient 

to study the electron pair density for electrons of same spin and that of different spins 

separately. The Hartree-Fock probability of finding two particles of the same spin σ 

simultaneously at positions 1 and 2 in a multi-electron system is 

 

( ) ( ) ( ) ( ) 2

2 11,2 1 2 1,2Pσσ σ
σ σρ ρ ρ= −  (3.34) 
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Here ( )2 1,2Pσσ is the same spin pair probability and ( )1 1,2σρ is the σ-spin one body 

density matrix of the Hartree-Fock determinant. 

 

( ) ( ) ( )*
1 1,2 1 2i i

i

σ
σρ ψ ψ=∑  (3.35) 

 

The summation is restricted to orbitals of spin σ only. The conditional probability of 

finding another σ spin electron at position 2, such that an electron of spin σ is located at 

position 1 with certainty is given by dividing the pair probability by total σ-spin density 

at position 1. 

 

( ) ( )
( )

( ) ( )
( )

2

2

1

1,2
1,2

1

1,2
1

1

cond

P
P

P

σσ
σσ

σ

σ

σ
σ

ρ

ρ
ρ

=

= −

 (3.36) 

 

Both the Hartree-Fock density and the density matrix are invariant with respect to the 

unitary transformation of occupied orbitals and thus the pair probability is invariant as 

well. When the position of the electron 2 becomes the reference point i.e. 

( ) ( )1 11,1 1σ σρ ρ= and the integrated value of its squared magnitude 

( ) ( )2

1 11,2 2 1dσ σρ ρ=∫ ensures, respectively, that the conditional probability of finding a 

second σ-spin electron at the reference point vanishes which is also reflection of Pauli’s 

exclusion principle. 
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( )1,1 0condPσσ =  (3.37) 

 

and that the total conditional probability is given by  

 

( )1,2 2 1condP d Nσσ
σ= −∫  (3.38) 

 

Nσ is the total number of σ-spin electrons in the system. The above equation 3.38 implies 

that if a σ-spin electron is at position 1, then the total probability of finding another σ-

spin electron elsewhere is Nσ – 1. Since the electron-electron interaction depends on the 

distance between the electrons, it is convenient to change the co-ordinate system to ones 

defined by ( )1 2

1

2
r r r= +� � �

and ( )1 2s r r= −� � �
. The Taylor expansion of the spherically 

averaged conditional pair probability is given as  

 

( ) ( )2

21 1
,

3 4condP r s sσσσ
σ

σ

ρ
τ

ρ
 ∇

= − + 
  

� �
…  (3.39) 

 

The positive definite kinetic energy is defined as
2

i
i

σ

στ ψ= ∇∑ . The Taylor expansion 

above of spherically averaged pair probability provides information on the electron 

localization. The smaller the probability of a second like-spin electron near the reference 

point, the more highly localized is the reference electron.  
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The electron localization is thus related to the minimum value of the expression 

 

( )2
1

4
D σ

σ σ
σ

ρ
τ

ρ
∇

= −  (3.40) 

 

This is a probability density and is necessarily non negative. The relationship between 

electron localization and above equation 3.40 is an inverse relationship. The following 

definition of electron localization function was proposed by Becke and Edgecombe 

which have somewhat more desirable features. 

 

( ) 121ELF σχ
−

= +  (3.41) 

 

where 
0

D
D

σχ = and ( )2 52 3 3
0

3
6

5
D σπ ρ= , with 0D corresponding to uniform electron gas 

with spin density equal to the local value of ( )rσρ �
. The range of ELF lies between zero 

and one. A value close to one corresponds to region of space where there is high 

probability of finding electron localization (bonding), whereas an ELF value close to one 

half corresponds to a region of electron gas like behavior (non bonding).  
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CHAPTER 4  

CHARACTERIZATION METHODS  

4.1 X-ray Diffraction (XRD) 

X-ray diffraction is non-destructive technique and is based on elastic scattering of 

x-rays from structures that have long range order. X-rays have wavelengths from ~0.1 to 

~100 Å and located between γ-radiation and UV radiation in the electromagnetic 

spectrum. X-rays are produced using x-ray tubes, where the electromagnetic waves are 

produced from impacts of high energy electrons with a metal target. However, such 

sources have low efficiency and their photon flux is limited by thermal properties of the 

target material. Synchrotron sources produces x-rays with intensities which are three 

orders of magnitude higher. These sources are extremely bright, very weakly divergent 

and limited by the electron current in the high energy beam. Another advantage of the 

synchrotron source is in the distribution of beam intensity with the wavelength. The high 

intensity of beam in a broad range of photon energies allows one to select photons 

ranging from infrared to hard x-rays up to 100 KeV. 

X-ray diffraction measurements are performed to study the atomic structure of 

materials. The crystallographic structure of a material is a three dimensional repetition of 

arrangement of atoms with minimal volume, known as primitive unit cell. The unit cell is 

defined in real space by three vectors1a
�

, 2a
�

 and 3a
�

known as the crystal axis. The 

positions of different atoms relative to the cell origin are given by the cell 

vectors1 2 3, , nr r r r
� � � �

… . Fourier transformation provides useful information on the structure. 

The Fourier representation of real space lattice is known as reciprocal lattice.        
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Reciprocal lattice plays an important role in the analytical studies of periodic structures. 

In terms of the crystal axis1a
�

, 2a
�

 and 3a
�

, a set of reciprocal lattice vectors can be defined 

as 1b
�

, 2b
�

and 3b
�

such that 2 3
1

1 2 3.

a a
b

a a a

×=
×

� ��
� � � , 3 1

2
1 2 3.

a a
b

a a a

×=
×

� ��
� � �  and 1 2

3
1 2 3.

a a
b

a a a

×=
×

� ��
� � � . The lattice 

vectors in the real and reciprocal space are related by generalized 

expression .i j ija b δ=
��

[110].  

X-ray diffraction involves the measurement of the intensity of x-rays scattered 

from electrons bound to the atoms. Waves scattered by atoms at different positions reach 

the detector with relative phase shift, hence the measured intensities yield information 

about their relative position. Structural information in powder diffraction can be obtained 

using Bragg equation 2 sinn dλ θ=  which describes the principle of x-ray diffraction in 

terms of reflection of x-rays by a set of lattice planes characterized by the index triplet hkl 

(Figure 4.1). 

 

Figure 4.1 (a) Illustration of geometry used for simplified derivation of Braggs law, (b) 
representation of the crystallographic planes hkl. [111] 
 

Miller Indices (hkl) was first introduced by British mineralogist William Hallowes 

Miller and is used to identify the crystallographic planes. By a set of crystallographic 

planes hkl a parallel set of equidistant planes one of which passes through the origin, and 

the next nearest making intercepts a1/h, a2/k and a3/l on the three crystallographic axes are 
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implied. Two properties of a set of hkl planes involved in using Braggs law are the 

orientation of planes and their spacing. A simple representation of both properties is 

obtained by introducing a vector Hhkl perpendicular to the hkl planes and whose 

magnitude is reciprocal of the spacing. The Hhkl vector in terms of the reciprocal vectors 

and Millers indices is defined as 1 2 3hklH hb kb lb= + +
� � ��

. The spacing of the planes dhkl is the 

perpendicular distance between planes and can be written in terms of the Hhkl vector 

as
1

hkl

hkl

d
H

= � . Assuming that lengths of the crystal axis is known and the angles between 

them, the distance between the panes in terms of usual crystallographic notations can be 

written for a general triclinic lattice below [111].  

 

( )
( )

( ) ( )

2 2 2 2

2 2 2 2 2 2

2 2 2

1 1

1 2cos cos cos cos cos cos

sin sin sin 2
cos cos cos

2 2
cos cos cos cos cos cos

hkld

h k l hk

a b c ab
kl lh

bc ac

α β γ α β γ

α β γ α β γ

β γ α γ α β

=
+ − − −

 
+ + + −  × 

 + − + −
  

 

 

The variables are defined as a1=a, a2=b, a3=c and α23=α, α31=β, and α12=γ. For a 

hexagonal lattice (a=b, α=β=90°, γ=120°) which is the focus of study of this research 

work, the above general formula modifies to  

 

2 2 2

2 2 2

1 4

3hkl

h hk k l

d a c

 + += + 
 
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The atomic structure probed by shining x-ray on the sample results in scattering 

of the incident x-rays from the material. The intensity of the scattered light can be 

formulated in a simple manner by considering the diffraction of plane polarized x-rays 

from a small crystal. Since the source is at a large distance from the crystal, the incident 

x-rays can be assumed to be plane waves with wavelength λ [Figure 4.2]. 

 

Figure 4.2 Diffraction of a parallel primary beam by a small crystal [111]. 
 

Neglecting a 180° jump in phase in the scattering process, the instantaneous value 

of the electric field at the point of observation due to the unmodified scattering from the 

atom is given by ( )
2

0
1 22

2
cos 2p n

E e
f t x x

mc R

πε πυ
λ

 = − +  
. Assuming that the point of 

observation is at a large distance R from the crystal at O the scattered beam can also be 

considered to be a plane wave, and hence( ) ( )'
1 2 1 2x x x x+ = + . In terms of the complex 

exponential, the instantaneous field at P due to the unmodified scattering from the atom is 

given by
( ) ( ) ( ){ }0 1 1 2 2 3 3

2
2 2 / .0

2
ni t R s s m a m a m a r

p n

E e
f e

mc R

πυ π λε  − − − + + + =
� � �

. The resultant field at P due to all 

atoms in the crystal can be obtained by summing over n to include all atoms in the unit 

cell, and sum over m1, m2 and m3 to include all unit cells. For simplicity the cell is 

assumed to be a parallelepiped with edges N1a1, N2a2 and N3a3.  
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Separating the four summations, the instantaneous field is expressed by 

 

( ) ( )( ) ( )( )

( )( ) ( )( )

1
0 0 1 1

1

32
0 2 2 0 3 3

2 3

2 1
2 / 2 / . 2 / .0

2
0

11
2 / . 2 / .

0 0

n

N
i t R i s s r i s s m a

p n n
n m

NN
i s s m a i s s m a

n n
m m

E e
e f e f e

mc R

f e f e

π υ λ π λ π λ

π λ π λ

ε
−

−  − − 

=

−−
− −

= =

=

×

∑ ∑

∑ ∑

� � � � � �

� � � � � �

 

 

The summation over n involves the positions of all atoms in the unit cell and hence it 

varies from one structure to the other. The summations over m1, m2 and m3 have the form 

of geometric progressions. The instantaneous field at P can be written as  

 

( )
( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

0 1 1 0 2 2 0 3 3

0 1 0 2 0 3

2 / . 2 / . 2 / .2
2 /0

2 2 / . 2 / . 2 / .

1 1 1

1 1 1

i s s N a i s s N a i s s N a
i t R

p i s s a i s s a i s s a

E e e e e
e F

mc R e e e

π λ π λ π λ
π υ λ

π λ π λ π λε
− − −

−  
− − −

− − −=
− − −

� � � � � � � � �

� � � � � � � � �  

 

The complex conjugate of the instantaneous filed at P is  

 

( )
( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

0 1 1 0 2 2 0 3 3

0 1 0 2 0 3

2 / . 2 / . 2 / .2
2 /* *0

2 2 / . 2 / . 2 / .

1 1 1

1 1 1

i s s N a i s s N a i s s N a
i t R

P i s s a i s s a i s s a

E e e e e
e F

mc R e e e

π λ π λ π λ
π υ λ

π λ π λ π λε
− − − − − −

− −  
− − − − − −

− − −=
− − −

� � � � � � � � �

� � � � � � � � �  

 

The complex conjugate of the structure factor is ( )( )02 / . ni s s r
n

n

F f e π λ− −=∑
� � �

. The amplitude of 

the field at point P is 2 *
P PE ε ε= . The Intensity at the point of observation is written 

as 2 / 8pI E c π= . The intensity of the primary beam can be written as 2
0 0 / 8I E c π= . The 

above expression was derived for primary beam polarized with electric field 

perpendicular to the plane of paper. A similar derivation for the primary beam with 
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electric field polarization within the plane of the paper would have resulted in additional 

factor of 2cos 2θ . For an unpolarized light, E0 takes all orientations introducing a 

polarization factor of( )21 cos 2 / 2θ+ . For an unpolarized primary beam of intensity I0, 

the intensity Ip from a small parallelepiped crystal is given by 

 

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

2 2 2
0 1 1 0 2 2 0 3 32

2 2 2
0 1 0 2 0 3

sin / . sin / . sin / .

sin / . sin / . sin / .p e

s s N a s s N a s s N a
I I F

s s a s s a s s a

π λ π λ π λ
π λ π λ π λ

− − −
=

− − −

� � � � � � � � �

� � � � � � � � �  

 

where 
4 2

0 2 4 2

1 cos 2

2e

e
I I

m c R

θ +=  
 

 and FF* has been abbreviated by F2. The structure 

factors depend upon the atomic positions represented by the cell vectorsnr
�

. For the hkl 

reflection one is interested in the value of the structure factor when the Braggs law is 

satisfied for this set of planes. Expressing the cell vectors in terms of fractional 

coordinates, and using the ( )0s s−� � value which correspond to an hkl –reflection, the 

expression for the structure factor is written as ( )2 n n ni hx ky lz
hkl n

n

F f e π + +=∑ . The intensity of 

the Bragg’s peak is given by |Fhkl|
2. 

The line profile analysis can be used to investigate the microstructure and lattice 

defects in materials. The main study is related to the study of crystalline domain size, 

shape and the size distribution, planar defects (twin and stacking faults). For a perfect 

infinite crystal the reciprocal lattice is made up of points each representing a set of planes 

with Miller indices (hkl). Diffraction takes place when the incident and diffracted beams 

are such that the scattering vector d*= (ν-ν0)/λ connects the origin with an (hkl) point.  
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Figure 4.3 Reciprocal space (2D) representation of the diffraction condition: Ewald 
sphere (radius 1/λ), limiting sphere (radius 2/λ) and powder diffraction sphere (double 
line radius d*). Left: Enlargement of the intersection between powder diffraction sphere 
and reciprocal space point with approximating tangent plane. The arrow shows the 
direction of expansion of the diffraction sphere during a powder diffraction measurement 
[112]. 

 

In powder diffraction, this condition holds for all equivalent points lying on the 

Ewald sphere leads to the concept of peak multiplicity and systematic overlap. The size 

of the points, for a perfect crystal, is uniquely determined by instrumental factors and 

absorption, so the diffraction intensity is confined to a small region around each point, 

and the FWHM is quite small as illustrated below (Figure 4.4).  

When the crystalline domains have a finite extension the diffracted intensity is no 

longer confined to a point, but spread over a region whose size and shape are related to 

the crystallite size and shape. If the crystalline domains of a cubic phase are cubes of 

edge D=Na (N is a positive no.), the corresponding reciprocal space have the same 
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symmetry and the diffracted intensity in the reciprocal space is give by the so called 

interference function, for a (00l) point the intensity can be written as 

 

( ) ( )
( )

2
*

2

sin ool

ool

Nas
Y d

as

π
π

∝  (4.1) 

 

The expression is different for different (hkl) and crystallites shapes thus providing 

intensity profiles with different width and shapes [112]. 

 

 

Figure 4.4 (a) Schematic representation of the (001) diffraction condition (right) and 
amplitude of the diffracted intensity (left) in reciprocal space for an ideally perfect 
crystal. (b) For cubic crystalline domains of edge D (left inset). The profile of a dispersed 
system of cubic crystallites is sketched (dash) out [112]. 
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4.2 Electron Microscopy 

Microscopy is visual perception of objects. The invention of microscopes dates back to 

1590 in Netherlands. In 1873, German physicist Ernst Abbe published his theory of the 

formation of images by microscopes in which he related the diffraction limited resolving 

power of the microscope as0 0.61
sind n

λ
α= , where λ = wavelength of the 

electromagnetic wave, n = refractive index and α = half angle subtended by the objective 

at the object. The typical magnification of an optical microscope is up to 1500x with a 

theoretical resolution limit of about 200 nm. For visualization of nano scaled objects 

smaller wavelengths of probe beam is required. Utilizing the wave nature of particles, 

electrons with wavelengths /h pλ = can fill this role. 

A beam of moving electrons can be regarded as a beam of invisible radiation 

which, given the means of focusing it could be used to form an image. The wavelength 

varies inversely with the square root of the accelerating voltage. The driving force behind 

the development of electron microscopes was the desire to exploit shorter wavelength 

radiations to reveal finer structural details. The generation, manipulation and use of 

electron beams can only take place in vacuum. The direction of travel of a moving 

electron can be altered either by applying a magnetic or an electric field. This makes 

possible two different types of lenses in electron-optical systems, the magnetic lenses and 

the electrostatic lenses. 

A beam of electrons from an electron gun is focused by a condenser lens on to a 

specimen. In the transmission electron microscope (TEM) the electron transmitted 

through an entire image field are focused by objective and projector lenses into an 

enlarged image on a fluorescent screen. In the scanning electron microscope (SEM) a 
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finely focused beam of electrons is scanned across the specimen and gives rise to 

electron-matter interactions which are used to reconstruct the image from the signal. 

In optical microscopes, the light falling on an object is reflected, transmitted, 

scattered, absorbed, or re-emitted at another wavelength. The main modes of light 

microscopy result from these effects. However, in electron microscopy, the electron 

bombardment produces a large number of effects from the target material. The incident 

electron beam interacts with the sample and are significantly scattered by them. Most of 

the energy of the incident beam ends up heating the sample. The electrons undergo two 

types of scattering namely (a) elastic and (b) inelastic. In elastic scattering, the electron 

trajectory changes but the energy and momentum is conserved. This process is known as 

electron back scattering. In Inelastic scattering, the trajectory of the incident electrons is 

slightly perturbed but the energy is lost through interactions with valence or lightly bound 

electrons of the atoms in the sample. Inelastic scattering produces diverse effects such as 

(a) Phonon excitation (heating), (b) cathodoluminescence (visible light fluorescence), (c) 

continuum radiation (bremsstrahlung), (d) characteristics x-ray radiations, (e) Plasmon 

production (secondary electrons), and (f) Auger electron production. Below two types of 

electron microscopes namely, the transmission electron microscope (TEM) and the 

scanning electron microscope (SEM) are briefly discussed [113].  

4.2.1 Transmission Electron Microscope (TEM) 

The first TEM was built by Max Knoll and Ernst Ruska in 1931. A sketch of Ruska’s 

design from his original notebook is shown (Figure 4.5 (a)). In a TEM a beam of 

electrons is transmitted through an ultra thin sample. The electron beam interacts with the 

specimen as it passes through the sample.  
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Figure 4.5 (a) Sketch of the first electron microscope originally from Ruska’s notebook 
in 1931 [Wikipedia], (b) cross section of modern TEM column [http://barrett-
group.mcgill.ca/teaching/nanotechnology/nano02.htm].  

 
The sample is deposited on a standard TEM grid (3.05 mm diameter) made of 

copper, molybdenum, gold or platinum. The TEM samples are required to be at most few 

nanometers thick. High quality samples have thickness comparable to the mean free path 

of the electrons travelling through the sample. Imaging methods in TEM utilize the 

information contained in the electron waves exiting from the sample to form the image. 

The observed intensity of the image, I, assuming sufficiently high quality of imaging 

device, can be approximated as proportional to the time-average amplitude of the electron 

wave function, the wave function of the exit beam is indicated by ψ. 

 

( )
1

0

*

1 0

t

t

k
I x dt

t t
ψψ=

− ∫  (4.3) 
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Different imaging methods attempt to modify the electron waves exiting from the 

sample to obtain useful information. Thus the observed image depends not only on the 

amplitude of the beam, but also the phase of the electrons. High resolution image requires 

thin samples and higher energies of incident electrons.  

By adjusting the magnetic lenses such that the back focal plane of the lens is 

placed on the imaging device, a diffraction pattern can be generated. For thin crystalline 

samples, an image is produced which either may consist of pattern of dots indicating 

crystalline sample or may consist of series of rings indicating poly crystalline or 

amorphous material. These images provide information about the space group 

symmetries for crystalline materials. 

 

4.2.2 Scanning Electron Microscope (SEM) 

The earliest SEM was constructed in late 1930s and early 1940s. A very fine probe of 

electrons with energies from few hundred eV to tens of keV is focused at the surface of 

the specimen and scanned across it in a ‘raster’ or pattern of parallel lines. A wide range 

of phenomenon occurs on interaction of electron beam with the sample and signal due to 

electrons or radiations can be collected for every position of the incident electron probe. 

The magnification produced by a SEM is the ratio between the dimensions of the final 

image display and the field scanned on the specimen. In a typical SEM the magnification 

varies from 20X to 100 000X at a working distance of 11mm. 

The SEM is most commonly operated in low energy (< 50 eV) secondary electron 

(SE) mode. These electrons are ejected from the K shell of the sample atoms by inelastic 



65 
 

 
 

scattering and originate within a few nanometers from the sample surface. Such electrons 

are detected using scintillator-photomultiplier system Everhart-Thornley detectors.  

Back scattered electron (BSE) are high energy electrons that are reflected or back 

scattered by elastic scattering. SEM can be operated by collecting these electrons. Heavy 

elements back scatter electrons more than the lighter elements and thus appear brighter in 

BSE images. Everhart-Thornley detectors are inefficient for BSE electron detection, 

dedicated BSE detectors (semiconductor or scintillator types) are positioned above the 

same in a “doughnut” type arrangement.  

4.3 UV – Vis Spectroscopy 

UV – Vis spectroscopy involves the spectroscopy of photons in the UV – Vis region of 

the electromagnetic spectrum. Different molecules absorb radiations of different 

wavelengths. An absorption spectrum shows a number of absorption bands corresponding 

to structural groups within the molecule. The absorption of UV-Visible radiations 

corresponds to the excitation of outer electrons to the excited states (Figure 4.6). Three 

types of electronic transitions can be considered namely (a) transitions involving p, s and 

n electrons, (b) transitions involving the charge transfer electrons, and (c) transitions 

involving d and f electrons. 

 

Figure 4.6 Possible electron transitions containing p, s and n electrons. 
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In this method the spectrometer measures the intensity of light passing through 

the sample and compares it to the original intensity of the light (before passing the 

sample). The ratio 0% /T I I= is called the transmittance while the absorbance can be 

obtained using the Beer’s Law I = I0 e
-µx. 

4.4 Raman Spectroscopy 

C. V. Raman in 1928 discovered Raman effect, which is inelastic scattering of photons 

from molecules. Raman spectroscopy is used to study vibrational, rotational and other 

low frequency modes in a system.  Raman effect occurs due to the interaction of 

electromagnetic field of the incident radiation with the molecule. This is a two photon 

scattering process involving one photon absorption and one photon emission. In Raman 

scattering the final state is different usually by a change in the vibrational state, the 

electronic state being changed. 

The electric field of the incident radiation polarizes the molecule and induces a 

dipole moment (µin) in the atom or molecule. 

 

in Eµ α=  (4.4) 

 

At some distance ∆r away from the molecule’s equilibrium geometry, the instantaneous 

polarization α is given as 

 

in Eµ α=  (4.5) 
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0 r
r

αα α ∂ = + ∆ ∂ 
 (4.6) 

 

If the molecule is vibrating or rotating in some sinusoidal fashion, ∆r can be written in 

terms of vibrational frequency as  

 

( )max

max

cos 2r r t

r maximum vibrational amplitude

πυ∆ =
 −   

 (4.7) 

 

The sinusoidal behavior of the electric field can be written as 

 

( )0 cos 2 inE E tπυ=  (4.8) 

 

E0 is the amplitude and υin is the frequency of the electric field. Substituting equations 

4.2, 4.3 and 4.4 in equation 4.1 the following expression is obtained 
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r
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αµ α πυ πυ πυ

αα πυ π υ υ π υ υ

∂ = +  ∂ 

∂ = + + + − ∂ 

 (4.9) 

 

This can be used as a dipole moment operator in a transition moment integral. Analyzing 

the above equation it is seen that the first term contains υin, which is the frequency of the 

incoming light. This relates the outgoing scattered photon to the incoming photon with 

the same frequency (elastic scattering of light). This explains the Rayleigh scattering. The 
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second term contains two cosine terms one containing inυ υ+ which relates to outgoing 

scattered photon with increased frequency (inelastic scattering, Stokes) and the last term 

containing inυ υ−  which represents scattered photon with reduced frequency (inelastic, 

antiStokes). 

The Intensity of scattered radiations from a system of randomly oriented 

molecules is given by the rotational average of the intensities expression  
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It is to be noted that ij
υ υα ′  is i,j- symmetric for conventional Raman scattering and the 

rotational averaging is then essentially the same as that for Rayleigh scattering, giving the 

scattered intensity as  
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where I is the irradiance and Nυ is the number of molecules in the initial vibrational state 

υ. For non-totally symmetric modes, the scalar part ( )0 υ υ
µλα ′  is zero; the entire scattering 

intensity comes from the symmetric term. Under the near resonant conditions, when the 

incident energy ckℏ  is close to one of the molecular excitation energies the vibrational 

energies cannot be ignored and ij
υ υα ′ has an antisymmetric as well as symmetric part . 
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Rotational averaging gives an angular dependence similar to that for two photon 

absorption from two beams. The scattered intensity expression becomes 

 

( )
4

'
2 2

01440

NIk
I k A B Cυ υ υ υ υ υ υ υ υ υ υ υ

λλ µµ µλ µλ µλ µλα α α α α α
π ε

′ ′ ′ ′ ′ ′− − −′
 = + +   

 

here A, B and C are polarization dependent coefficients. In terms of the irreducible parts 

of υ υ
µλα ′ , the intensity expression can be written as  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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The three terms are the contributions from scalar, antisymmetric, and symmetric 

scattering. The selection rules follow from a consideration of the integral 

00
o oυ λµ υχ α χ′ associated with the transition0 0o oυ υφ χ φ χ′ ← . For fundamental 

transitions 1υ υ′ − = ± , the product of the vibrational wavefunctions transform as the 

corresponding normal mode coordinate [114].  

4.5 X-ray Absorption Spectroscopy (XAS) 

X-ray absorption spectroscopy (XAS) is a widely used experimental technique for 

determining the local atomic and/ or electronic structure of materials using synchrotron 

radiations which are highly intense and provide tunable x-ray energy beams. In this 

technique x-ray beam hits a sample which could be in liquid, gaseous or condensed 

phase. The oscillating field of the electromagnetic radiation interacts with the electrons in 



70 
 

 
 

the atoms and either gets scattered by the electrons or gets absorbed and excite the 

electrons (Figure 4.7).  

 

Figure 4.7 Schematic showing different phenomena on interaction of incident x-ray 
beam with sample. 
 

When discussing the x-ray absorption, the absorption coefficient, µ which give the 

probability that x-rays will be absorbed according to the Beer’s Law I = I0 e
-µx, where I0 

is the intensity of the incident beam, x is the sample thickness and I is the intensity of the 

transmitted beam, is of primary concern. At most x-ray energies the, the absorption 

coefficient µ = P0σ (P0 is number density and σ is atomic absorption cross-section) is a 

smooth function of energy, with a value that depends on the sample density ρ, the atomic 

number Z, atomic mass A and the x-ray energy E as 

 

4

3

Z

AE

ρµ ≈  (4.10) 

 

When the incident x-ray has energy equal to the binding energy of a core-level 

electron, there is a sharp line in absorption: an absorption edge corresponding to the 

promotion of this core level to the continuum. Since every atom has core-level electrons 
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with well defined binding energies, one can select the element to probe by tuning the x-

ray energy to the appropriate absorption edge. Following an absorption event, the atom is 

said to be in an excited state, with one of the core electron levels left empty (core hole), 

and a photo-electron. The excited state eventually decays within a few femtoseconds 

through two main mechanisms namely as x-ray fluorescence and Auger effect.  

In x-ray fluorescence, a higher energy core level electron fills the deeper core hole 

ejecting an x-ray of well defined energy. The fluorescence energies so emitted are 

characteristics of the atom and used to identify the atoms in the system along with 

quantifying their concentrations. The second process for de-excitation of core hole is 

predominantly the Auger effect, in which an electron drops from a higher electron level 

and a second electron is emitted into the continuum. In the hard x-ray regime (> 2keV), 

x-ray fluorescence is more likely the path to de-excitation while in the soft x-ray regimes 

Auger process is dominant. The energy dependence of the absorption coefficient µ(E) in 

transmission can be determined as µ(E) = log (I0/I) and in x-ray fluorescence (or Auger 

emission) as ( ) 0fE I Iµ ∝ .  

XAS is generally thought to be composed of two distinct portions namely, the 

near-edge spectra (XANES) typically lying within 30 eV of the main absorption edge 

dominated by strong photon electron scattering and the extended fine-structure (EXAFS). 

The limiting energy that divides XANES from EXAFS is by no means exactly defined 

since the transition from one regime to the other is smooth. A representative XAFS 

spectrum for fluorine K-edge is shown below (Figure 4.8). 
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Figure 4.8 Fluorine K-edge XAFS spectrum for LiF [115]. 
 

XANES is of great interest as it is capable of providing local chemical and atomic 

structure in complex and disordered materials. In this kind of spectrometry interaction of 

photons with matter are studied by measuring the photoabsorption coefficient. For 

incident light with polarization ε�  and frequency ω  the absorption cross section given by 

Fermi golden rule is ( )22 ˆ4 . f i
f

i r f E Eσ π α ω ε δ ω= − +∑
�

ℏ ℏ . Here thei , f , 

iE and fE denote the initial and final states and their energies. On excitation of the atom 

using a x-ray source, the core shell electrons can be excited first to empty bound level 

(localized) and then into the continuum. This results in sharp and broad features 

respectively. The photoelectrons are sensitive to the charge distribution and arrangement 

of the neighboring atoms around the absorbing atom.  
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The high energy region can be more readily interpreted quantitatively. For the 

EXAFS, one is interested in the oscillations well above the absorption edge and is 

defined as follows. 

 

( ) ( ) ( )
( )

atomic

atomic

E E
E

E

µ µ
χ

µ
−

=  (4.11) 

 

In a molecule or solid, a part of the photo-electron wave may be backscattered 

from the neighboring atoms thereby modulating the matrix element for the absorption. 

The back scattered wave may interfere with the out going wave constructively or 

destructively, depending on the wave vector and distance (Figure 4.8). 

 

Figure 4.9 Schematic showing constructive and destructive interference of photo-
electron scattering. 
 

The presence of photoelectron scattered back from the neighboring atoms will 

alter the absorption coefficient and is the origin of XAFS. X-ray absorption is a transition 

between the initial quantum state i  (with an x-ray and core electron) to a final state f  
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(with a core hole and a photoelectron). Fermi Golden rule is a way to calculate transition 

rate from an initial eigenstate to final eigenstate. The absorption coefficient is thus 

described as 

 

( ) 2
E i H fµ ∝  (4.12) 

 

H represents the interaction term. The core level electrons being very tightly bound to the 

absorbing atom, the initial state is not altered by the presence of neighboring atoms; 

however, the final state is influenced because the photoelectrons are able to see the 

neighbors. Hence, decomposing the final state into two parts, one the “bare atom” portion 

0f and the other due to the effect of neighboring atoms f∆  as  

 

0f f f= + ∆  (4.13) 

 

Expanding equation 4.8 using equation 4.9 the following expression is obtained 
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2 0
0 2
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1  complex conjugate
f H i

E i H f i H f
i H f

µ
 
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 (4.14) 

 

Comparing the above equation 4.10 to the definition of EXAFS (equation 4.7), the “bare 

atom absorption” can be written as 
2

0 0i H fµ = , which depends only on the 

absorbing atom irrespective of the presence of neighboring atoms. 
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The fine structure χ can be written as  

 

( )E i H f CCχ ∝ ∆ +  (4.15) 

 

The interacting Hamiltonian can be written from the field theory as: 

 

2

2
. . .

2

e e
H A p A A B

mc mc
µ−= + −
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 (4.16) 

 

For low intensities in zero magnetic fields, the interaction term needed is.A p
� �

, where A
�

is 

a quantized vector potential and reduces to a term that is proportional to eikr. The initial 

state is a tightly bound core-level which can be approximated by delta function. The 

change in final state is just the wave function of the scattered photoelectron. Putting all 

these together [116] a qualitative expression for EXAFS is obtained below 

 

( ) ( ) ( ) ( )0ikr
scatt scattE dr r e rχ δ ψ ψ∝ =∫  (4.17) 

 

In a real system usually more than one type of neighboring atoms surround a particular 

atom which is accommodated in the XAFS formalism by summing the contributions from 

each scattering atom type. The final form of the EXAFS expression for a system with a 

single shell of neighbors is given by equation 4.18. 
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where j represents the individual coordination shell of identical atoms at approximately 

the same distance from the central atom. The higher order terms correspond to multiple 

scattering events [116]. 
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CHAPTER 5  

DENSITY FUNCTIONAL STUDIES OF CARBON NANOSTRUCTURES  

5.1 Introduction 

DFT has been successfully used to study the structural and electronic properties of carbon 

nanostructures namely SWCNTs [117] and GNRs [118] to mention a few. The properties 

of SWCNTs are known to depend on the rolling/chiral angle [38]. The availability of a 

wide range of properties for different SWCNTs produced during synthesis imposes 

bottleneck and has stranded the development of carbon nanotube devices [119]. Recently 

a lot of effort such as chemical functionalization [120], dielectrophoresis [121] use of 

bimetallic catalysts for growth [122], has been made in production/extraction of 

monodispersed single walled carbon nanotubes. However, theoretical predictions have 

shown that it is very difficult to produce SWCNTs using a bottom – up approach 

(building up from atomic level) because the thermal vibration of the catalyst particles and 

the complex nature of growth prevent the preparation of monodispersed SWCNTs. The 

search for alternative methods is highly desirable for the preparation of monodispersed 

SWCNTs. 

5.2 Computational Details 

First Principles calculations have been performed using Vienna ab-initio simulation 

package (VASP) [123] within the LDA. The calculations were performed using the plane 

wave basis set. The BZ was sampled using the Monkhorst – Pack scheme.
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For ionic relaxations, the conjugate gradient (CG) method was used and the forces acting 

on the atoms are calculated using the Hellmann – Feynman theorem. The convergence 

criteria were set such that the forces in the optimized structure were less than 0.001 eV/Å. 

For the convergence criteria for the electronic self consistency cycle a value of 10-7 was 

taken. Complete relaxation was done by relaxing the lattice as well as the atomic 

positions without preserving the symmetry of the super cell. The carbon nanotubes 

bundles were modeled using a hexagonal cell such that each super cell consisted of one 

nanotube with vacuum layer of about 3.3 Å. The GNRs were modeled in orthorhombic 

cells ensuring a vacuum layer of more than 10 Å between the two ribbons. SWCNTs 

were subjected to hydrostatic pressure by equating the diagonal elements of the stress 

tensor to the desired pressure values. The pressure was increased in steps of 2GPa. GNRs 

were sandwiched between two rigid graphene sheets representing rigid substrates [124] 

and pressure was applied by physically moving the two rigid layers in steps ~ 1 Å. The 

electron localization function was calculated using the formulation of Savin and Silvi 

[109]. 

At graphitic separations vdW interactions are expected to become significant. The 

lattice constants calculated for normal and compressed nanotube bundles using above 

mentioned DFT methods were compared with those using the Lennard – Jones (LJ) 

potentials 2
1 26 12

A B
V dS dS

r r
σ  = − + 

 
∫∫ ( A = 15.2 eV Å, B = 24x103 eV Å and σ = 

0.3724) [125, 126] which take into account the vdW interactions. The plot (Figure 5.1) 

shows the equilibrium lattice constants (minima) for different nanotubes, in good 

agreement to the DFT calculations [127]. 



79 
 

 
 

 

Figure 5.1 LJ potentials calculated for nanotube bundles with different chirality. 1010 
denotes (10, 10) SWCNT. Potentials plotted for (4, 4) SWCNT at different lattice angles. 

5.3 Edge Reactivity of Armchair and Zigzag Graphene Nanoribbons 

The edges in graphene nanoribbons are primarily armchair or zigzag or a combination of 

the two for the most general case. The properties of edge carbon atoms in large 

hexagonally symmetric systems depend strongly on the local electronic structure [128]. 

Hence one may expect varying reactivity for different type of edges in the nanoribbons. 

Understanding the reactivity can be achieved through electron localization function 

(ELF). 

ELF was first introduced in 1990 [108] is a “chemically intuitive” way to analyze 

the electron localization and has values in the range 0 – 1. A high value implies the 

existence of a localized electron pair and that there exists a high probability of finding 

two electrons of opposite spins in a given region of space and for which there is a small 

probability of exchange with other electrons that are outside of this region. The ELF is 

calculated for both armchair (Figure 5.2) and zigzag edged nanoribbons (Figure 5.3). 
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Figure 5.2 Electron localization function for 19AGNR with ELF value plotted at 0.75. 
The Z axis represents the ribbon axis. The Plot of ELF shows that the ELF at the edges 
tends to heal. 

 
The ELF is plotted at value of 0.75 and the ribbon axis is plotted along the z axis. 

 

Figure 5.3 Electron localization function for 8ZGNR with ELF value plotted at 0.75. The 
Z axis represents the ribbon axis. Highly reactive edge dangling bonds are observed. 

 
The core and binding point attractors are found to be located at positions indicated 

by atoms and the regions shown by the isosurface between pair of atoms respectively. 

The ELF for ZGNRs shows the presence of highly directional edge dangling bonds where 

as for the AGNRs, the dangling bonds seem to heal at the edges hence passivating the 

edges [129]. Experimental evidences in form of scrolled and staggered edges of graphene 

[130] have been observed. 

Attempts have been made to exploit the edge reactivity of GNRs to form carbon 

nanotubes. Theoretical studies of site specific functionalization of graphene nanoribbons 

have indicated the possibilities of the formation of carbon nanotubes [131]. Experiments 

based on this concept have shown the formation of nano scrolls instead of nanotubes 
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[132]. The two major probable reasons for failure of this proposed method of site specific 

functionalization is that it is difficult to precisely functionalize the nanoribbons 

experimentally at specific sites at atomic scale (problems such as steric hindrance come 

into play). However, the concept is important in the sense that it is investigated for the 

first time a top down approach for the formation of nanotubes. 

5.4 Reconstructing Graphene Nanoribbons to form Tailored Single Walled 

Carbon Nanotubes 

Recent experiments have suggested the closing of edges of graphene multi-layers at very 

high temperatures [133, 134]. Motivated by these experimental results, a novel 

conceptual methodology for preparation of SWCNTs is proposed [135]. This 

methodology simplifies the top down process of nanotubes by using bilayered GNRs 

instead of mono-layered GNR. In this method the nanotubes are produced either by self 

interaction of the reactive zigzag edges of graphene nanoribbons or by uniaxially 

compressing  the bilayer nanoribbons normal to ribbon surface, between a pair of rigid 

surfaces for armchair edges of the graphene nanoribbons to form carbon nanotubes 

(Figure 5.4).  

The advantage of using bilayered system is that now rolling angle is limited to a 

rotation of only 90° at edges of each nanoribbon. Bi-layers of AGNRs at graphitic 

separation enclosed in a cell were considered as precursors for zigzag SWCNTs. The cell 

was chosen such that the separation between the bilayered nanoribbons in the adjacent 

cells was at least 10 Å. Such large separation ensures minimal interactions between the 

bilayers in adjacent cells.   
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Figure 5.4 Proposed method for preparation of patterned carbon nanotubes by 
reconstructing the edges of graphene nanoribbons. 
 

These nanoribbons were compressed between a pair of graphene sheets 

representing highly rigid surfaces, by moving these sheets in discrete steps towards each 

other.  

 

Figure 5.5 Variation of total energy of the bilayered 11AGNR is plotted as function of 
top and bottom substrate layer separation “d”. The bilayer (represented by A) patterned 
on lower substrate is compressed graphene sheets (shown as B). As “d” decreases, the 
total energy of the compressed bilayered system (shown as C) is found to increase. Once 
“d” is reduced sufficiently, bonds form at edges to form compressed tubular structure 
(shown as D). Relaxing “d” lowers the energy and tubes start to inflate (shown as E). 
Finally tube acquires a circular tubular cross-section (shown as F) on complete 
relaxation. 
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It is observed that as the separation between the sheets representing the rigid 

surfaces “d” decreases an increase in the total energy of the bilayer is observed (Figure 

5.5). On the basis of previously reported experimental results [136] the pressure on the 

compressed nanotube was estimated to be in the range of 7 GPa – 10 GPa. 

In order to understand this process, the ELF, electronic band structure and 

projected density of states for the bilayered GNRs is investigated below. The ELF is 

calculated for armchair bilayered GNR and plotted along different planes at reduced 

separation (Figure 5.6). It is observed that for bilayer AGNRs there is no overlap of the 

ELF at normal graphitic separation of 3.3 Å. However, at reduced separation of 2.4 Å 

corresponding to the distance between the two ribbons in the bilayered ribbon, the 

electron cloud of each of the nanoribbon constituting the bilayered system starts to 

overlap with each other only at the edges (plane B, Figure 5.6). No overlap of electron 

cloud is observed at other sites (plane C and D, Figure 5.6). The ELF on the plane (plane 

A, Figure 5.6) containing the nanoribbon shows the healed edges of the AGNR. 

 

Figure 5.6 ELF plotted along different planes for 11AGNR at different separations. 
 

Finite element model [137] has predicted the presence of edge ripples of about 1.2 

Å for mono-layered nanoribbons with armchair edges. Considering the bilayered GNR as 
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composed of two identical nanoribbons and assuming normal modes of vibration, it 

would mean that the nanoribbons will start to interact with each other at a separation of 

about 2.4 Å. Hence the normal graphitic separation of the armchair edged bilayered 

graphene nanoribbons need to be reduced to about 2.4 Å. Calculations have shown that 

when the bilayered AGNR is compressed from normal graphitic separations to about 2.4 

Å, the bilayered AGNR system slips into compressed tubular cross section without 

further compression.  

For monolayer ZGNR the predicted amplitude of edge ripples using the finite 

element model [137] is ~2.4 Å. Bilayered GNR system may be considered as a 

combination of two mono-layered GNRs vibrating with amplitude of ~ 2.4 Å. Such a 

bilayered system with highly reactive edges can be considered to be unstable at normal 

graphitic separation of 3.3 Å (Figure 5.7). Our calculations have shown that the bilayered 

ZGNRs are unstable at normal graphitic separation and form nanotubes instantaneously. 

Our calculations for bilayered ZGNRs are well supported by the nudged elastic band 

method calculation [138] which takes into account the interaction of a mono-layered 

GNR with its image.  

 

Figure 5.7 ELF for ZGNR at 3.3 Ǻ separation. 
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The formation of nanotubes from bilayered GNRs is accompanied by 

rehybridization of the carbon atoms from sp2 to sp3 hybrid state. In order to develop a 

further insight into this process of rehybridization, the electronic band structure and the 

site projected lm decomposed electronic density of states is analyzed. The density of 

states near the Fermi level provides a quantitative estimate of the chemical reactivity for a 

given system [139]. All structures with edge states crossing the Fermi level or in its 

immediate vicinity are expected to be highly reactive. The band structure plot shows that 

the bilayer 11AGNR has a very small band gap at the Fermi level (Figure 5.8 (a)). The 

edges of these nanoribbons were terminated by hydrogen atoms to look at the edge states. 

It is observed that the edge states corresponding to the dangling bonds lie far away from 

the Fermi level making them relatively chemically inert. Bilayered 11 AGNR when 

compressed forms semiconducting (11, 0) zigzag SWCNT, which is observed in the 

electronic band structure diagram (Figure 5.8 (b)). 

 

Figure 5.8 Electronic band structure diagram for (a) Bilayered 11AGNR, (b) (11, 0) 
zigzag SWCNT, (c) Bilayered 8 ZGNR and (d) (8, 8) armchair SWCNT. Magenta arrow 
indicates the states due to dangling edge bonds while the Green arrows indicate localized 
edge states. 
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The band structure of bilayered 8ZGNR shows the availability of edge dangling 

states as well as bands due to the localized edge states (Figure 5.8 (c)) at the Fermi level 

suggesting highly reactive edges. At normal graphitic separation a small split is observed 

in the states representing the edge dangling bonds marked by magenta arrows and the 

localized edge states marked by green arrows. As the layers approach each other the split 

increases further and finally metallic bands structure of armchair SWCNT is observed 

(Figure 5.8 (d)) due to crossing of bands corresponding to π and π* orbitals. 

Site projected partial density of states (PDOS) was analyzed in details to 

understand the process of rehybridization in the nanotube formation. Representative plots 

of PDOS have been shown indicating the changes in the PDOS with interaction induced 

sp3 hybrid character of the edge atoms in bilayered 11AGNR. Narrowing of the electronic 

band gap of bilayered 11AGNR at reduced separation is observed while compressing the 

bilayered system. This can be understood due to the py electron states which lie closer to 

the Fermi level as seen in the site projected PDOS (Figure 5.9). The py orbitals are 

oriented normal to the plane of the GNRs. Modification of PDOS corresponding to s, px, 

py and pz orbitals is also observed. At reduced separation of 2.4 Å a significant increase 

in the DOS for the py orbital is observed indicating rehybridization of the edge atom. 

 

Figure 5.9 Site projected electron density of states at one of the edge atom at different 
interlayer separation for the bilayered AGNR system. 
 



87 
 

 
 

5.5 From Isolated to Bundled Single Walled Carbon Nanotubes 

Properties of isolated single walled carbon nanotubes have been extensively studied. 

However, carbon nanotubes like to remain bundled such that the separation between the 

walls of two nanotubes is ~ 3.3 Å. The formation of nanotubes is understood to be due to 

the strong van der Waals interactions. Experimental studies have shown recently that the 

width of line widths of the Raman G' modes increases with bundling [140]. The effects of 

bundling on the electronic properties of isolated single walled carbon nanotubes were 

predicted for (10, 10) SWCNT using tight binding model as early as 1998. The properties 

of single walled carbon nanotubes modify when bundled because each nanotube can feel 

the potential due to the other nanotube as a result of this the Hamiltonian is perturbed, the 

quantum mechanical level repulsion leads to the opening of a pseudo gap for armchair 

metallic SWCNTs [141].  

 

Figure 5.10 Electronic band structure diagram for bundles of different armchair single 
walled carbon nanotubes. 

 

The effect of bundling is observed not only in armchair SWCNTs but also zigzag 

SWCNTs. Ab initio density functional calculations have shown the opening of band gap 

in small and large diameter nanotubes (Figure 5.10). Modification of electronic band 

structure in semiconducting nanotubes is also observed. 
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5.6 Effect of Hydrostatic Pressure on Bundled Single Walled Carbon Nanotubes 

SWCNTs have remarkable mechanical properties and shows extraordinary strength along 

the axial direction with commonly accepted axial Young’s modulus value of ~1TPa [142, 

143]. Radial deformation of carbon nanotubes has attracted a lot of attention due to its 

possible influence on the electronic properties. The deformation of large diameter 

SWCNTs under pressure to interacting elliptic, racetrack and peanut shaped cross-

sections have been reported both experimentally [144]and theoretically [145, 146]. These 

structural changes for large diameter nanotubes have also been observed indirectly using 

Raman spectroscopy, and directly using x-rays [147] and neutron diffraction [148] 

experiments.  

 

Figure 5.11 Hexagonal cross-section for (a) (12, 12) (b) (9, 9) and (c) (6, 6) armchair 
nanotubes at different hydrostatic pressure. 
 

It is observed that some nanotubes behave distinctly as compared to others. 

Studies have shown that carbon nanotubes with chiral indices (3n+3, 3n+3) when 

subjected to hydrostatic pressure form hexagonal cross sections. This phenomenon is 

observed in small as well a larger diameter SWCNTs (Figure 5.11). 

The onset of the hexagonal cross-section phase decreases as the diameter of the 

nanotubes increases due to the decreasing stiffness of the nanotube [127]. This hexagonal 

cross-section is a reversible metastable phase and is expected to convert to peanut/ 

racetrack cross-section at higher pressure. The onset of cross-section phase is gradual and 
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no abrupt changes in the energy or volume is observed. Direct observation of the 

presence of hexagonal cross-sections has been reported in literature [149]. 

5.7 Quasi Two Dimensional Form of Carbon: A Novel Phase 

Carbon is known to exist in many stable one, two and three dimensional allotropic forms. 

High pressure experiments on carbon nanotubes have been conducted to explore the 

possibilities of presence of additional stable phases of carbon. Super-hard form of carbon 

along with addition unidentified phases have been observed. There is a need to 

understand these unidentified phases of carbon expected to have superior mechanical 

properties. The study of SWCNTs under pressure has gained significant momentum in 

order to search for novel forms of carbon other than diamond, graphite, carbon nanotubes 

etc. consisting of mixture of sp2 and sp3 hybrid states of carbon atoms. Recent ab-initio 

studies have predicted the formation of interlinked structures of only small diameter 

zigzag single walled carbon nanotubes [150].  

In order to search for the novel phases of carbon containing mixture of sp2 and sp3 

hybridized carbon atoms; systematic studies of hydrostatic pressure on a large number of 

SWCNT bundles were performed. It is observed that as the pressure is increased on the 

carbon nanotube bundles, novel interlinked structures comprising of mixture of sp2 and 

sp3 hybridized carbon atoms is observed for large as well as small diameter nanotubes. 

The formation of novel interlinked quasi two dimensional structures is accompanied by 

abrupt changes in energy and volume with pressure for both small and large diameter 

nanotubes [127] (Figure 5.12). 
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Figure 5.12 Abrupt changes in energy and volume observed with hydrostatic pressure for 
(a) armchair (5, 5) SWCNT, (b) zigzag (7, 0) SWCNT, (c) armchair (12, 12) SWCNT 
and (d) ELF showing interacting quasi two dimensional interlinked structure. 
 

The abrupt changes in total energy – pressure and volume – pressure diagrams 

suggests first order phase transformation indicating formation of a new structural phase. 

At the onset of these structural phase transformations the nanotube forms chemical bonds 

with each other. The atoms at highly stressed edges link tetrahedrally by forming bonds 

with similarly stressed atoms in the neighboring nanotubes. The stability of this novel 

phase was verified by releasing the hydrostatic pressure. It is observed that when the 

pressure is released to ambient conditions, the interlinked structure is maintained. These 

observations are supported by recent experimental observations of quenchable superhard 
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phase of carbon obtained by cold compression [151]. The Raman spectra of 

experimentally reported quenchable superhard carbon phase have two broad peaks 

centered at 1581 cm-1 and 1355 cm-1 with the peak intensity of 1355 cm-1 (D band) much 

higher than that at 1581 cm-1(G band). Studies on amorphous tetrahedral carbon films 

have shown that the ratio of the intensity of the peak in D band to that in the G band 

indicates the ratio of sp2/sp3 bonding [152]. The quasi two dimensional sheets of 

interlinked nanotubes obtained in our calculations are found to have sp3 bonding only at 

stressed edges. These observations are in accordance with the ratio of the peak intensity 

in the Raman spectra of the compressed samples reported earlier [151].  

Changes in electronic properties are expected to occur with changes in the atomic 

structure. The π – π* hybridization effect is understood to be a small contributing factor in 

changing the already existing band gap [153]. In order to understand the modification of 

the electronic properties the electronic band structure along with the partial density of 

states (PDOS) is analyzed. An Abrupt phase transition is observed at a critical pressure Pc 

around 10 GPa for (7, 0) nanotube. A detailed investigation of the electronic properties at 

6 GPa and 10 GPa for this system reveals that at 6 GPa the distance between the adjacent 

atoms at the highly curved edges is about 2.76 Å hence the possibility of bond formation 

at this stage can be ruled out. The plot of electron localization function (Figure 5.13 (a)) 

shows that the tubes are not bonded to the neighbors under these conditions. The 

lectronic band structure clearly shows (inset of Figure 5.13 (a)) the presence of a small 

band gap at 6 GPa. These individual carbon nanotubes are semiconducting [154] under 

ambient conditions. As the pressure is increased the symmetry of the nanotubes break 

such that highly directional charge distributions occurs at stressed edges resulting in 
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strong bond formation between the atoms at highly stressed atoms with their neighbors in 

adjacent tubes as seen in ELF plot (Figure 5.13 (b)). 

 

Figure 5.13 (a) Electron localization function (ELF) for (7, 0) nanotube at 6 GPa. The 
nanotubes are not bonded to each other however, interaction cannot be ruled out at 
separation of about 2.74 Å.  The electronic band structure inset shows a small bandgap at 
the Fermi level. (b) ELF shows the interlinking of the tubes due to bond formation at 10 
GPa along with the crossing of the conduction and the valence band at the Fermi level in 
the inset. The unit cells are marked with black (Fig. a) and pink (Fig. b) lines.  PDOS for 
one of the highly stressed edge atom (c) at 6 GPa and (d) at 10 GPa. 
 

This is accompanied by crossing of the lowest conduction and valence band at the 

Fermi level indicating metallic state of the interlined structure along the axis. It is 

interesting to note that the nanotubes interlink to form 2D layers of interlinked flattened 

tubes. Although no bond formation is observed between the sheets themselves, the sheets 

may interact with each other due to reduced separation between them. The PDOS at the 

highly stressed sites at 6 GPa (Figure 5.13 (c)) and at 10 GPa (Figure 5.13 (d)) is 

analyzed to understand the role of these atoms and the states associated with these atoms. 

It is found that at 10 GPa the states move far away from the Fermi level. This is in 

accordance with the observation that the edge carbon atoms become stable sp3 hybridized 
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as found in diamond. The contribution to the DOS at the Fermi level is almost 

insignificant due to the pure px, py and pz orbitals at highly stressed edge atoms hence 

most of the contribution to the DOS at Fermi level due to pure px, py and pz orbitals is 

expected from other atoms at flattened surfaces. 

When (5, 5) SWCNT is compressed the symmetry of the nanotube is lost and the 

band gap widens to about 0.26 eV (inset of Figure 5.14 (a)) indicating semiconducting 

behavior at about 16 GPa. At this stage the neighboring tubes with separation of about 

2.3 Å are not linked to each other as seen in the ELF plot (Figure 5.14 (a)) however, 

increased interaction among the nanotubes can be seen. As the pressure is increased the 

tubes in the neighboring atoms link with each other forming highly interacting sheets as 

also observed in zigzag (7, 0) nanotube. However, in this case the polygon enclosing the 

tetrahedral carbon atoms are slightly distorted, as seen in (Figure 5.14 (b)).  At this stage, 

this sheet composed of interlinked (5, 5) nanotubes is found to show metallic properties 

with bands crossing the Fermi level. Interlinking of nanotubes is also found to occur for 

larger nanotubes as discussed earlier. 

 

Figure 5.14 (a) Electron localization function (ELF) for (5, 5) nanotube at 16 GPa. The 
nanotubes are not bonded to each other however, interaction cannot be ruled out at 
separation of about 2.74 Å.  The electronic band structure inset shows a small bandgap at 
the Fermi level. (b) ELF shows the interlinking of the tubes due to bond formation at 20 
GPa. The unit cells are marked with pink lines. Bonds labeled O-1 implies bond length 
from atom O to atom 1. 
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The breaking of symmetry depends on the chiral indices of the nanotubes which 

determines the formation of directional bonds and hence the interlinking of nanotubes 

under compression. The nanotubes thus form interlinks with the neighboring tubes when 

highly directional dangling bonds are formed at the stressed edges of the cross-sections. 

The availability of highly directional dangling bonds in close vicinity enables bond 

formation thereby reducing the energy of the system causing abrupt changes in the 

energy – pressure diagrams. 
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CHAPTER 6  

DENSITY FUNCTIONAL STUDY OF BORON NANORIBBONS 

6.1 Introduction 

The general perception of a boron sheet is that it occurs in a buckled plane of a triangular 

lattice to form monolayer boron sheet [155]. It had been demonstrated that the 

reconstructed {1221} sheets of boron are more stable than the idealized {1212} sheets 

[156]. Investigations of bare boron clusters have revealed that the two basic units of 

boron, hexagonal and pentagonal pyramids may hold the key to form stable boron 

structures [157, 158]. Recently it has also been shown theoretically that monolayer sheets 

of boron are composed of triangular and hexagonal motifs attached to the lattice [159]. 

This novel form of sheet known as ‘α sheets’ has been predicted to be energetically more 

stable than the flat triangular sheets and has also successfully interpreted the stability of 

B80 fullerenes [160]. Constraining one of the dimensions of these sheets to form boron 

nanoribbons (BNRs) is expected to reveal interesting properties due to the edges as also 

observed in graphene nanoribbons [63, 161].  

6.2 Computational Details 

DFT calculations have been performed using VASP [123]. First principle spin restricted 

calculations within the LDA with plane wave basis set were carried out using highly 

efficient ultra soft pseudo potentials (USPP) employing the exchange correlation form of 

Ceperley and Alder as parameterized by Perdew and Zunger. Calculations were also 

verified using PAW potentials with exchange correlation of Perdew-Burke-Ernzerhof 
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(PBE) within the GGA formalism as well as with exchanges correlation of Ceperley and 

Alder within the LDA. A super cell approach is used such that the distance between two 

nanoribbons is about 2 nm so as to minimize the interactions between neighboring 

nanoribbons. The geometry was relaxed using the conjugate gradient algorithm and K – 

points sampling was done using the Monkhorst Pack scheme. K-point mesh of 1x1x31 

was taken to calculate the electronic structure. To assess the charge localization and 

bonding, the electron localization function (ELF) has been calculated using the 

formulation of Savin and Silvi [109]. 

The charge transfer in the system was studied using Bader charge analysis, an 

intuitive scheme to divide molecules into atom purely based on electronic charge density 

[162, 163, 164]. This formulation was provided by Richard Bader. Bader charge analysis 

has been used to calculate the total electronic charge on each atomic site in the ‘α-sheet’ 

lattice. 

6.3 Nomenclature of Boron Nanoribbons 

The nomenclature followed for naming the BNRs merits a small review before 

proceeding any further. The BNRs are categorized by the arrangement of atoms and 

hence the width of the nanoribbons. These nanoribbons are derived from ‘α-sheet’ 

(Figure 6(a)). The nomenclature criteria similar to that of the graphene nanoribbons [60] 

are followed. Boron nanoribbons with linear edges are named as NzLBNR where Nz is 

specified by the number of zigzag chains across the ribbon width (Figure 6(b)) by 

including additional boron atoms across the ribbon width at the vacant sites in ‘α-sheets’. 
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For the LBNRs, the atoms at the edges have four neighbors as seen in the B20 double ring 

structure [165]. 

 

Figure 6.1 (a) ‘α-sheet’ of boron showing unit cell marked in red (b) linear edged BNR 
(c) armchair edged BNR. 
 

The armchair edged BNRs are obtained by cutting ‘α-sheets’ along cells 

containing vacant sites. Likewise the armchair edged BNRs, NdABNR are named after 

the number of dimer lines Nd of additional center boron atoms across the ribbon width 

(Figure 1(c)). 

6.4 Structural Stability and Anti-Aromaticity in Boron Nanoribbons 

Cyclic systems with 4nπ electrons that do not fit Huckel’s 4n+2 rule for aromaticity are 

known as anti-aromatic [166] systems. Nanoribbons of approximately the same width up 

to ~1nm were constructed by restricting the edges of the reconstructed {1221} and the 

‘α-sheets’ in order to compare the stability of both the structures. Based on ab initio 

calculations it is found that the nanoribbons with linear edges obtained from ‘α−sheets’ 

are more stable with respect to those obtained from the reconstructed {1221} sheets by 

~0.4eV/atom and those obtained from triangular sheets by ~0.11 eV/atom. The electronic 

band structure and density of states showed that both the systems having linear edges are 

metallic. The delocalization of the π orbital from the ELF plot (Figure 6.2(a)) is seen to 
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be more in nanoribbons derived from α sheets as compared to those from the 

reconstructed {1221} sheets containing weaker square interlinks (Figure 6.2(b)).  

 

Figure 6.2 Electron localization function plotted for nanoribbon obtained from (a) the 
reconstructed {1221} sheet (b) the ‘α-sheet’. 
 

This delocalization of the π orbital is understood to provide stability to the ‘α-

sheet’. Boron has an electronic configuration of 1s22s2p1 and undergoes sp2 hybridization. 

This leaves one empty p orbital and the chemical bonding of boron is electron deficient in 

character.  This results in three center triangular BBB units to form an important 

constituent of boron atomic structures. The instability of reconstructed {1221} 

nanoribbons can be understood due to the anti-aromaticity associated to the presence of 

triangle-square-triangle network. The isosurface of the ELF is plotted at value of 0.7. The 

absence of dangling bonds at the edges in either of the nanoribbons (Figure 6.2(a) and 

Figure 6.2(b)) suggests that the linear edges of nanoribbons are stable.  

The stability of the boron nanoribbons derived from ‘α-sheet’ is also compared to 

the nanoribbon structures based on triangular sheets. Flat nanoribbons formed using 

triangular sheets were relaxed completely. It is observed that these form one of the local 
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minimum energy states and hence is a metastable state. The positions of the atoms were 

displaced randomly by about 10% along the three co-ordinate axis and then relaxed we 

found that a lower energy structure using both USPP and PAW potentials and remains 

puckered towards the center of the ribbon while it tries to flatten towards the free edges. 

These structures were however found to be metastable when compared to those obtained 

from the ‘α sheets’, with energy/atom 0.04 eV higher. In these puckered structures the 

atoms towards the edges release the stress by pushing the neighboring atoms away from 

them. This is observed as increased puckering height of 0.93 Å (Figure 6.3) as compared 

to 0.82 Å reported earlier for puckered infinite sheets. This tends to form flattened 

structure toward the ribbon edges while still maintaining the triangular lattice. The atoms 

at the center remain buckled as the atoms towards the center are pushed inside by atoms 

at both the edges 

 

Figure 6.3 Atomic lattice for (a) atomically flat and (b) puckered nanoribbons obtained 
from triangular sheets. 

 

The stability of the BNRs obtained from the ‘α sheets’ is determined by the 

energy of formation, which is defined as ∆E = EBNRs - Eα−sheet for LBNRs with different 

widths derived from the ‘α-sheet’. The energy of formation was calculated using both 

PAW (GGA) and USPP (LDA) potentials for LBNRs with different widths (Figure 

6.4(a)). A similar trend for energy of formation is observed in nanoribbons with LBNRs 

with asymmetric edges (Figure 6.4(b)). It is observed that the symmetric LBNRs are 
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more stable as compared to the LBNRs with asymmetric edges. Defining the “hexagon 

hole density” similar to that for ‘α-sheet’ as in equation 6.1    

 

.

.

no of hexagon holes

No of atoms in unit cell of origional triangular lattice
η    =

         
 (6.1) 

 

For nanoribbons with symmetric linear edges, as η approaches a value of 1/9, the 

LBNRs achieve stability as one approach an infinite ‘α-sheet’. The value of η = 1/9 is 

important because the hexagonal sites can be most symmetrically placed in infinite ‘α-

sheet’. The inverse of the width also varies linearly with η. Similar trends in variation of 

η are observed for boron nanoribbons with asymmetric linear edges (Figure 6.4 (b)). The 

calculated value using GGA-PAW potentials are in excellent agreement with previously 

published theoretical results [167].  

The stability of the nanoribbons is found to increases with increasing width of the 

nanoribbons and the energy of formation decrease as inverse of the ribbon width. In order 

to understand the increasing stability of the nanoribbons with increasing width, the bond 

formation in these nanoribbons is revisited. This can be understood due to increasing the 

aromaticity by increasing the number of hexagonal boron motifs in the structure. From a 

doping perspective, the three centered triangular motifs act as donors with surplus of 

electrons in the antibonding state, while the two centered hexagonal motifs acts as 

acceptors thus explaining the stability with increasing width of the nanoribbon. Bader 

charge was calculated for atoms in a unit cell of ‘α-sheet’.  
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Figure 6.4 (a) Variation of inverse of width with energy of formation shows that the 
stability of the LBNR is inversely proportional to the width of the nanoribbon. (b) 
Increase in hole density (η) and stability with increasing width of the nanoribbon for 
LBNRs with symmetric edges represented by boxes and that for LBNRs with asymmetric 
edges represented by circles. 
 

A Helium atom, being inert, neither attracts nor donates charge, was placed inside 

the hole of the hexagonal motif of bare boron ‘α-sheet’ to determine the transfer of 

charge from the donor to the acceptor site. It was found that the charge of the He atom 

increased by ~0.2 electrons while the charge on corresponding boron atom in the bare 

boron sheet was found to decrease by ~0.5 electrons with rest of the charge being 

distributed to the neighboring boron atoms on the hexagonal ring. In pure boron ‘α-sheet’ 

all the ~0.5 electron charge was found to distribute on the neighboring atoms forming the 

hexagonal ring. 

6.5 Electronic and Atomic Structure of Boron Nanoribbons from ‘α-sheet’ 

The electronic and atomic structure of LBNRs and ABNRs derived from ‘α sheet’ is 

further investigated. Each edge atom in LBNRs has four neighboring atoms (Figure 6.5 

(a)) for 4LBNR. The electronic band structure and total density of states (TDOS) of 
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4LBNR is plotted (Figure 6.5 (b)). Similar to boron sheets, the LBNRS are metallic with 

bands crossing over from conduction band to valence band across the Fermi level. A 

comparison of the electronic band structure plot and TDOS with 7LBNR and 10LBNR 

(Figure 6.5 (c) and Figure 6.5 (d)) respectively has been made. Larger concentration of 

the electronic bands near the Fermi level is observed with increasing width indicating 

increasing stability of the nanoribbons with the width. 

 

Figure 6.5 (a) Atomic structure of isolated bare 4LBNR with unit cell marked by two red 
lines across the cross-section. The electronic band structure and the TDOS are shown for 
(b) 4LBNR, (c) 7LBNR, and (d) 10 LBNR. The Fermi level is adjusted to 0 eV. G is the 
Gamma point and the ribbon axis is along the Z axis. The Fermi level has been adjusted 
to 0 eV and is shown by dotted line. 
 

The electronic structure of the armchair edge nanoribbons is investigated to 

understand their properties. Each edge atoms on the apex in ABNR is surrounded by 

three neighbors while each atom at the bowl of the edge is surrounded by five atoms. 

This offers the possibility of edge dangling bonds and the electronic states corresponding 
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to the edge dangling bonds in the electronic band structure diagram. Further investigation 

of armchair edged nanoribbons revealed the occurrence of semiconducting behavior in 

7ABNR. The electronic band structure of 7ABNR (Figure 6.6 (b)) shows the presence of 

indirect band gap of about 0.37 eV. 

 

Figure 6.6 (a) Atomic structure of bare 7ABNR with unit cell marked by red lines. (b) 
Electronic band structure for bare 7ABNR shows indirect band gap of 0.37 eV (c) 
Electronic band structure for bare 4ABNR and each edge atom saturated by 1H (Olive 
circles) and 2H atoms (Blue squares). (d) Electronic band structure for bare 9ABNR. The 
Fermi level is adjusted to 0 eV. G is the Gamma point and the ribbon axis is along the Z 
axis. The Fermi level is adjusted to 0 eV and shown by dotted line. 

 

It is interesting to note that this semiconducting behavior is neither observed for 

the narrower 4ABNR nanoribbon as seen in the electronic band structure diagram (Figure 

6.6 (c)) nor in wider nanoribbon 9ABNR (Figure 6.6 (d)). The electronic band structure 

for both these ribbons displays metallic character. Since each apex atom in the armchair 

edged nanoribbon has three nearest neighbors, up to two Hydrogen (H) atoms can be 

added to study the contribution of the armchair edges in the band structure of boron 
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nanoribbons [168, 61]. The changes in the stability and electronic properties of simplified 

4ABNR are explored by saturating each apex atom by 1H and 2H atoms. The electronic 

band structure diagram (Figure 6.6(c) (Olive circles)) shows that although 4ABNR 

remains metallic when saturated by 1H atom, the number of states crossing the Fermi 

level decreases with the modification of electronic band structure, thereby indicating the 

presence of edge states due to the armchair edges near the Fermi level. The optimized B-

H bond length was found to be about 1.18 Å, this is very close to the B-Hterminal bond 

length in Diborane [169].However, when 2H atoms are used to saturate the armchair 

edges the opening of band gap at the Fermi level (Figure 6.6(c) (Blue squares)) is 

observed indicating semiconducting behavior of the 2H saturated 4ABNR. It is observed 

that addition of one more H atoms leads to slight weakening of the B-H bond. The 

stability of the nanoribbons is found to decrease as the edges are saturated with increasing 

number of H atoms.  
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CHAPTER 7   

ATOMIC AND ELECTRONIC STRUCTURE OF GRAPHENE OXIDE ( GO): 
COMBINED COMPUTATIONAL AND EXPERIMNTAL APPROACH 

7.1 Introduction 

GO is an important material to study not only because it shows interesting and 

extraordinary properties by itself, but the underlying graphene sheet also show excellent 

properties from the perspectives of both fundamental and applied research [135, 170]. 

There has been much speculations on the chemical structure of GO based only on indirect 

experimental interpretations [82]. Several attempts have been made experimentally to 

understand the structural and electronic properties of GO. Based on the analysis of these 

experimental results several different models have been suggested in which planar 

graphene sheet have been proposed to bind to oxygen atoms through different functional 

groups including recently claimed  in-plane five- and six- membered-ring lactols [171]. 

The chemical structure and hence the electronic properties of GO remains a much 

debated topic to date. The study of GO is important as preliminary investigations suggest 

interesting promising application and hence a detailed investigation will enable tailoring 

its properties and help in unleashing its potential device applications. 

7.2 Synthesis and Characterization Methodology of GO 

GO samples were synthesized by following the modified Hummers method [172] in 

which large area graphite flakes (Alfa Aesar, 10 mesh, 5g) were oxidized using NaNO3 

(3.75g), concentrated H2SO4 (375ml) and KMnO4 (22.5g) and vigorously stirred at room 

temperature for about 72 hrs. Further 700ml of 5 wt% H2SO4 solution was added with 
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continued stirring. The oxidation was further completed by reacting with H2O2 (5 wt%) 

solution under vigorous stirring. The sample was washed several times with 3 wt% HCl 

in MilliporeTM water by ultrasonication and centrifugation. The sample was washed 

finally with MilliporeTM water under ultrasonication and centrifugation at 18,000 RPM 

many times. This resulted in the suspension of GO flakes in distilled water.  

The sample obtained was dried and checked for impurities using energy 

dispersive x-ray analysis. SEM measurements were performed using JEOL SEM 5300 

scanning electron microscope. The chemical composition of the prepared GO samples 

was determined by CHNS and O measurement. In this technique sample is placed in a tin 

sample boat. Combustion additive of tungstic anhydride or tin powder is added. The 

combustion conditions are optimized by increasing oxygen purge and the combustion 

time. Carbon, hydrogen and nitrogen composition is determined using Perkin-Elmer 2400 

element analyzer. The analyzer converts these elements to simple gasses. The product 

gasses are separated under steady state conditions and measured as a function of thermal 

conductivity. The oxygen content is determined by pyrolysis to convert oxygen to carbon 

monoxide. The carbon monoxide is then separated from the pyrolozates under steady 

state conditions and measured as function of thermal conductivities.  The C:O ratio using 

this technique was determined to be ~2.7:1. The structural phase of GO has been studied 

using transmission electron microscopy (TEM), selected area electron diffraction (SAED) 

and synchrotron radiation based x-ray diffraction (XRD) measurements. X-ray diffraction 

measurements were performed at X14A beam line while the XAS measurements were 

done at U4B beamline at the National Synchrotron Light Source (NSLS) at Brookhaven 

national laboratory (BNL).  The UV-Vis absorption spectrum was recorded using a 
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Shimadzu UV-3600 spectrophotometer. The micro Raman measurements were 

performed using a 2400 grating SPEX 500M spectrometer coupled with liquid nitrogen 

cooled Spectrum1 CCD detector together with SONY DXC101 camera. 

7.3 Computational Details 

First principle spin restricted calculations were performed using VASP [123] that 

implements the pseudopotential approximation and plane wave basis set into the 

framework of density functional theory. A high energy cutoff of 550 eV was chosen for 

the plane wave basis. The atoms were relaxed using the CG algorithm such that the forces 

on each atom were smaller than 0.001 eV/Å. Highly accurate PAW potentials using 

exchange correlation of Ceperley and Alder were used. The irreducible BZ was sampled 

using K points generated by the Monkhorst Pack scheme. The accuracy of the 

calculations were verified by comparing the DOS calculated for AB stacked graphite 

using VASP (PAW+PBE potentials) to the all electron treatment implemented in 

WEIN2k [173] (Figure 7.1). 

 

Figure 7.1 DOS calculated for AB stacked graphite using VASP (PAW+PBE potentials) 
and WEIN2k [173] 



108 
 

 
 

 
The comparison shows the presence of all the essential features in DOS calculated 

using VASP. The electron localization function (ELF) has been calculated using the 

formulation of Savin and Silvi [109].  

7.4 Atomic Structure of GO: DFT Calculations 

The chemical composition of the prepared GO samples determined by CHNS and O 

measurement provided constraints on structural model for theoretical investigations using 

ground state DFT. several different models were then constructed by sandwiching 

graphene sheet between layers of oxygen atoms such that the oxygen atoms are as far 

apart from each other as possible in the unit cell to avoid interactions amongst 

themselves. The structure was relaxed completely by minimizing the forces to achieve 

ground state. The ground state energies of different structures obtained from an 

exhaustive set of structures were compared to determine the lowest ground state 

structure. The lowest energy relaxed structure is shown (Figure 7.2 (a)). 

Analyzing the relaxed structure it is observed that the oxygen atoms are 

distributed unequally on both sides of the buckled graphene sheets. Formation of 1, 2 – 

epoxy bonds as seen in the ELF plot (Figure 7.2(b)) and 1, 3 – diether bridges as seen in 

ELF plot (Figure 7.2(c)) causes ripples on the graphene sheet straining the graphene 

lattice with C – C bond lengths up to ~1.52Å. The formation of such 1, 3 – diether 

bridges due to binding of oxygen dimers have also been reported in ab initio studies of 

carbon nanotubes [174]. The O – O bond length in the 1, 3 – diether bonds are typically 

1.49 Å which is much larger than the experimental bond length of free O2 (1.207 Å). 
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Formation of epoxy bonds was found to occur in all configurations of atomic 

arrangement that were studied. 

 

Figure 7.1 (a) Two unit cells showing the relaxed geometry for the lowest ground state 
atomic structure with oxygen atoms marked as blue and carbon atoms marked as red. 
Slice showing the ELF for (b) 1, 2 – epoxide bonds, (c) 1, 3 – diether, and (d) peroxide 
like linkages between different sheets. 

 

It is observed that the GO sheets tend to stick to each other due to the formation 

of peroxide (R – O – O – R) like linkages between the two mono-layered GO sheets with 

the O – O bond lengths ~ 1.5 Å. The formation of epoxy bonds is supported by NMR 

measurements which have shown a 13C chemical shift of ~59.7 ppm corresponding to the 

chemical shift of 13C epoxide [175, 176]. Based on the calculations it is found that the 

intercalation of some of free oxygen atoms between two GO sheets is unlikely to occur as 
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they tend to increase the overall energy of the structure. Analysis of the ab initio 

calculations leads to the following two major conclusions about the nature of chemical 

bonding of oxygen with the graphene sheets in GO: 

1) Oxygen is bonded to the graphene sheets by 1, 2-epoxide and 1, 3-diether bonds   
    causing the buckling of the graphene sheets. 
 
2) The few layer GO sheets themselves are linked to each other by weak peroxide like   
     linkages. 

7.5 Structural Characterization of GO 

The structural coherence of the sample was investigated using TEM. GO sample was 

deposited on the standard holey – carbon – film covered copper grids and loaded into the 

microscope for TEM measurements to study the GO lattice. The TEM images showed 

large surface area GO sheets stretching over a few hundred to a few thousand of square 

nanometers. The TEM image (Figure 7.3 (a)) illustrates large folded sheet of GO sample. 

The electron diffraction rings obtained from SAED measurements yielded ‘d’ spacing of 

about 1.2 Å and 2.1 Å. X-ray powder diffraction measurements were performed using 

synchrotron source with the wavelength of 0.72838 Å for the powdered samples of GO 

and graphite samples. 

The finely powdered sample of GO was placed in Kapton capillary tubes for XRD 

measurements. The x-ray pattern of the Kapton tube is shown, which was used as the 

sample holder (Figure 7.3 (c)). The XRD pattern of graphite shows the presence of sharp 

peaks indicating highly crystalline structure of graphite (Figure 7.3 (d)), while that of GO 

(Figure 7.3 (e)) shows a combination of broader peaks at higher ‘d’ spacing along with 

few very sharp features at smaller ‘d’ spacing. 
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Figure 7.3 (a) TEM micrograph of GO nano sheets (b) electron diffraction pattern from 
SAED measurements for GO sample.  X-ray diffraction pattern for (c) Kapton tube 
(sample holder), (d) graphite and (e) GO sample measured on X14A beamline of NSLS 
at BNL using wavelength of 0.72838 Å. The peak positions marked ‘1’ through ‘5’ 
corresponds to d pacing of 1.2 Å, 2.1 Å, 3.35 Å, 4.65 Å and 7.89 Å respectively. (f) 
Comparison of calculated (black) and measured (red) x-ray diffraction pattern. (g) 
HRTEM image of GO. 
 

The XRD peaks marked as ‘1’ and ‘2’ (Figure 7.3 (e)) correspond to the ‘d’ 

spacing of 1.2 Å and 2.1 Å as also obtained from SAED measurements.  The XRD 

pattern was calculated for the relaxed structure obtained (Figure 7.2(a)) using DFT is 

found to be in good qualitative agreement with the measured pattern (Figure 7.3(f)). The 

presence of broader diffraction peaks in the diffraction pattern indicates very short range 

atomic coherence.  There is a loss of coherence between graphene-like layers. However, 

in-plane peaks are sharper, showing larger in-plane structural coherence as also observed 

in a representative HRTEM image (Figure 7.3(g)). 

SEM images were acquired to study the surface morphology of the GO samples. 

The micrographs reveal large area wrinkled sheets (inset Figure 7.4). Energy dispersive 
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x-ray spectroscopy (EDS/EDX) was performed to perform the elemental analysis. The 

EDS spectrum reveals the presence of peaks corresponding to carbon, oxygen and silicon 

(Figure 7.4). The presence of large silicon peak is understood to arise due to the silicon 

substrate on which the sample was deposited. The absence of any other peaks indicates 

that the sample is not contaminated with impurities. 

 

Figure 7.4 EDX/EDS spectrum for the GO sample. The inset shows the SEM micrograph 
of large area wrinkled sheet. 

7.6 Optical Characterization of GO 

UV-Vis-NIR absorption spectrum of suspension of GO in distilled water was recorded to 

estimate the transitions from ground state to the excited states of the chromophores in the 

sample. The spectrum obtained is in agreement with the previously reported results with 

characteristic sharp absorption peak at about 233 nm and a broad shoulder at ~290 – 305 

nm (Figure 7.5 (a)). The absorption peak at ~233 nm has been assigned to the 

*π π→ transition of the C = C bonds in the previously reported results. This assignment 

of the absorption peak at ~233 nm to the *π π→ transition of the C = C bonds seems 

reasonable in accordance with the predicted structure of our density functional 

calculation results and are logical when compared to the UV-Vis absorption spectrum of 

graphene which shows absorption peak ~270nm [177]. This blue shift of the absorption 
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peak can be understood due to the reduced electronic conjugation increasing the HOMO 

and LUMO further away. This broad shoulder in the range 295 – 305 nm to the 

*n π→ transitions is understood to be due to the presence of epoxide (C – O – C) and 

peroxide (R – O – O – R) like linkages which is also in accordance to the ab initio 

calculations. 

 

Figure 7.5 (a) UV-Vis absorption spectra of aqueous GO solution with sharp absorption 
peak ~ 233 nm and a shoulder in the range ~ 295 nm – 305 nm. The inset shows the 
absorption spectra for GO film indicating the prominence of shoulder in the film sample. 
(b) Micro Raman measurements for different layers of GO with D band ~1349 cm-1 and 
G band at ~1602 cm-1. The inset below shows the micro Raman spectrum for Graphite 
flakes with sharp G band at ~ 1574 cm-1. 

 
The broad shoulder becomes very prominent when the spectrum was recorded for 

a film sample due to the formation of large number of peroxide like linkages in 

multilayered GO. The broadening of the peaks is also observed with the ageing of the 

sample over a long period. However, on ultrasonicating and vortexing the aged solution 

the shoulder diminishes indicating the formation of monolayer GO sheets. 

Raman spectroscopy has been employed for non destructive estimation of sample 

thickness. Micro Raman spectroscopy has been used to qualitatively differentiate 

different layers of GO in conjugation with an optical microscope. The sample was excited 
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using green 514.5 nm wavelength of Ar+ laser. The Raman spectra of GO shows first 

order D and G bands at 1349 cm-1 and 1602 cm-1, where as graphite flakes displays 

prominent G peak due to tangential vibration of the as the only feature at 1574 cm-1 

(Figure 7.5 (b)). The D band at ~ 1349 cm-1 is very prominent in GO indicating the 

reduction in size of the in plane sp2 domains. The Raman spectra were taken at different 

places on the sample to correlate the optical contrast. The optical contrast between 

different GO layers was obtained by shining light from a normal white light source and 

the images were captured using a camera. The intensity of Raman signal was found to 

change with the sample thickness as observed by different optical contrast detected in the 

camera. No appreciable shift in the peaks was observed with sample thickness. 

7.7 Electronic Structure of GO 

The use of soft x-ray measurements can be used to extract the formal valence, co-

ordination and subtle geometric distortions. Thus the XANES spectrum can be used to 

probe the unoccupied band structure of the material. The XANES spectrum for GO 

sample is measured (Figure 7.6(a)). Since in XANES measurement the electrons are 

excited to the unoccupied bound and continuum states, the XANES spectrum is analyzed 

by comparing it to the partial density of states (PDOS) of atoms involved in different 

types of chemical bonds. The 2p (PDOS) (Figure 7.6(b)) was calculated for the optimized 

GO structures as well as the most stable Bernal (AB) stacked graphite supercell 

containing 24 carbon atoms. Before discussing the results any further a sharp rise in the 

x-ray absorption spectra at ~286.2 eV is noted indicating the K shell threshold of carbon. 

The C K-edge absorption edge is proportional to density of unfilled p states. 
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Figure 7.6 (a) The carbon K-edge XANES cross section of GO. The peaks are indicated 
by green arrows and labeled ‘1’-‘4’. The absorption edge at 286.2 eV marked as ‘1’ is 

due to
*1s π→ . The broadening of absorption peak at ~289.3 eV marked as ‘2’ 

corresponds to C – O and C – O – O – C linkages while the absorption peaks around 
292.5 eV and ~293.5 eV marked as ‘3’ and ‘4’ respectively indicates presence of σ* and 
high energy π* resonances. (b) Calculated PDOS for p orbitals for carbon atoms in the 
relaxed GO structure and the Bernal stacked graphite. (c) Calculated PDOS for graphitic 
carbon atoms in GO. (d) Calculated PDOS for carbon atoms bonded to oxygen atoms 
forming 1, 2-epoxy; 1, 3-diether and peroxide like linkages in GO. 
 

The site projected PDOS for graphitic carbon atoms (Figure 7.6(c)) shows a 

prominent edge corresponding to the edges at 286.2 eV in the XANES spectra marked as 

‘1’ (Figure 7.6(a)); hence, this can be assigned to the out of plane *1s π→ transition 

indicating the presence of graphitic regions. The hypsochromic shift of the absorption 

edge observed in the experiment for GO is also observed in the calculated site projected 

PDOS for the carbon atoms in the relaxed GO lattice (Figure 7.6(b)) indicating reduced 

electronic conjugation (higher ionization). 
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Analysis of site projected PDOS for carbon atoms indicate that the absorption 

peaks at 292.5eV and 293.5 eV marked as ‘3’ and ‘4’ (Figure 7.6(a)) are associated with 

the presence of σ* and high energy π* resonances in agreement with the electron energy 

loss spectra (EELS) in GO [82] sample and is also observed in graphite [178, 179] 

samples. Along with the π* and σ* resonance peaks an additional broadened peak at 

~289.3 eV marked as ‘2’ (Figure 7.6(a)) was observed. A detailed analysis of the site 

projected PDOS (Figure 7.6(d)) for carbon atoms linked to oxygen atoms in the relaxed 

GO lattice reveal that this broadening of the absorption peak at ~289.3 eV in the 

measured XANES spectrum is related to the 1, 2 epoxy; 1, 3 diether and peroxide like 

linkages in accordance with previously reported results for C – O bonds [180] and C – O 

– C bonds [181]. This is in agreement with the previously reported results that the species 

containing ether groups are more thermally stable than species containing π*carbonyl 

orbitals [182]. These observations support the nature of oxygen bonding as predicted by 

our density functional calculations. The peak itself at ~289.3 eV marked as ‘2’ (Figure 

7.6(a)) in GO matches exactly with the corresponding sharp peak in graphite and has 

been attributed to the inter layer state by theoretical predictions [183]. Similar features 

have been reported previously in carbon K-edge near edge XAS studies of graphite [184, 

185] in agreement to the measurements.  

The oxygen K-edge near edge x-ray absorption (XAS) spectrum was used to 

further develop insight into the nature of oxygen bonding with the graphene sheet in GO 

[172]. Three distinctive features in the O K-edge XAS spectrum at ~540.5 eV, ~536.7 

eV, and ~533.2 eV are observed (Figure 7.7(a)). 
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Figure 7.7 (a) Oxygen K-near edge XANES spectrum for GO sample shows absorption 
resonances at ~533.2 eV, ~536.7 eV, and ~540.5 eV. (b) Site projected PDOS for 
Oxygen atoms bonded to puckered graphene sheets. The dotted lines show the pz, while 
the solid lines display the pxy component. 
 

Detailed analysis of the PDOS of the oxygen atoms (Figure 7.7(b)) shows that the 

absorption peaks at ~540.5 eV may possibly be due to higher order π * (pz) resonance of 

the 1, 2 – epoxy, 1, 3 – diether and the peroxide like linkages in the GO sample, while the 

peak at and ~536.7 eV seems to arise form σ*(pxy) resonance of diether bonds. Where as 

the absorption peak at 533.2 we believe may be possibly due to the σ*(pxy) or π*(pz) 

resonance of the C – O bonds from the peroxide and epoxide bonds respectively. The O 

K-edge XANES spectrum is expected to be modified for purely monolayer sheets of 

graphene with the disappearance of peaks corresponding to σ* (pxy) resonances due to the 

disruption of peroxide like linkages. No absorption edges corresponding to that of 

molecular oxygen [186] are observed suggesting the possibility of intercalation of 

molecular oxygen can be ignored safely. 
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CHAPTER 8  

SUMMARY AND FUTURE WORK 

8.1 Summary of the Electronic and Atomic Structure Studies  

Density functional studies were performed on different nanostructures of carbon such as 

nanoribbons and nanotubes. These studies were further extended to other nanosystems 

such as functionalized graphene sheets namely GO and nanosystems made of boron. 

Experiments were performed to compliment the findings obtained using DFT 

calculations.  

GNRs are widely accepted as precursors to single walled nanotubes. A novel 

method describing the production of chirality/ diameter controlled SWCNTs from 

bilayered GNRs have been investigated using ground state DFT. The proposed method 

may also be used to prepare an array of such tailored SWCNTs. It is observed that the 

unsaturated edges of zigzag edged graphene nanoribbons are highly reactive due to the 

presence of states corresponding to unsaturated dangling bonds near the Fermi level. 

Interactions between the layers in the bilayered system due to intrinsic edge reactivity 

coupled with the presence of dangling bonds is found to be responsible for nanotube 

formation. However, in the case of armchair edged nanoribbons, the dangling bonds at 

the edges are healed slightly as well as the amplitude of the intrinsic edge ripples is also 

found to be smaller, demanding an external stimulus to overcome the energy barrier of 

~0.1 eV/atom for nanotube formation. The proposed study explores pressure as an 

external stimulus to achieve this. The advantage of the proposed method is that it does 

not require any precise functionalization or rolling of the nanoribbons for nanotube 

formation.
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SWCNTs contains sp3 hybridized carbon atoms with one unsaturated sp3 hybrid 

orbital. This makes the nanotubes ‘sticky’ in order to saturate the dangling sp3 hybrid 

orbital. Thus the carbon nanotubes like to be bundled; however, the interaction between 

two nanotubes is understood to be mostly vdW interactions. This bundling of the 

nanotubes is understood to perturb the Hamiltonian at any k point where two bands cross, 

resulting in opening of a pseudo band gap at the Fermi level for armchair SWCNTs. The 

band structure is also found to be influenced in the case of zigzag SWCNTs. This 

opening of the band gap is in agreement with the previously reported experimental and 

tight binding results. 

Systematic studies of the effect of hydrostatic pressure on SWCNT bundles have 

suggested that nanotubes with chiral indices (3n+3, 3n+3) deform to hexagonal cross-

sections at very low pressures before deforming to flattened racetrack/ peanut shaped 

cross-sections. Analysis reveals that the hexagonal cross-section phase is a metastable 

phase and the prediction of occurrences of such phases is in agreement to the experiment 

results published by other groups. 

High pressure studies on SWCNTs have brought to light a highly stable and a 

novel quasi two-dimensional phase of carbon containing interacting flattened sheets of 

interlinked carbon nanotubes. The occurrence of a high pressure phase of carbon similar 

to that investigated using DFT techniques is in agreement with the experimentally 

observed phase under extremely high pressures conditions reported recently. Theoretical 

results indicate that the formation of such phase is marked by abrupt changes in the 

relative energy/Pressure and relative volume/ pressure graphs indicating first order phase 

transition. The formation of the interlinked quasi two-dimensional phase is dictated by 
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breaking of symmetry assisting in availability of highly localized electron cloud density 

enabling in formation of interlinked structures. The formation of this novel phase is also 

found to influence the electron band structure.  

The atomic and electronic structure studies were extended to boron nanosystems 

and functionalized carbon nanostructures. The structural stability of boron nanoribbons 

was studied. It is observed that nanoribbons obtained from the ‘α-sheet’ stabilize due to 

the localization of the π electrons. Charge transfer from the donor three centered 

triangular motifs to the acceptor two centered hexagonal motifs was understood to 

provide stability to these nanoribbons. This was also observed as increasing stability of 

nanoribbons with the width of the ribbon which was associated with increasing acceptor 

hexagonal sites into the structure. DFT studies also have indicated the presence of 

semiconducting boron nanostructures.  

 GO belongs to the category of functionalized carbon nanosystems with random 

functionalization. A combined theoretical and experimental approach was adopted to 

determine the chemical structure and local electronic structure of this material. Structural 

optimization has revealed that the ground state structure of GO is a puckered sheet linked 

to oxygen atoms by epoxy and diether bonds. Multilayered sheets of graphene oxide are 

understood to be linked by peroxide like linkages. Structural characterizations such as 

TEM, SAED and XRD have shown the absence of long range order in the atomic 

structure of GO, hence indicating random functionalization of the underlying graphene 

sheets in GO. Synchrotron radiation was used to study the electronic structure of GO 

based on carbon and oxygen K-edge XANES spectra. DFT derived site projected PDOS 

has been utilized to interpret and understand the electronic states. The data exhibits 
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characteristics spectral features reflecting the specific properties of unoccupied PDOS in 

GO and point to its unique structural features relative to graphene. 

8.2 Proposed Future Studies 

Comprehensive studies of carbon and boron nanostructures have been presented using 

ground state DFT techniques and state of the art synchrotron radiation based techniques. 

The current research topic which is still being explored is GO. The following tasks needs 

to be completed as a future work to substantiate our present findings on this material.  

a) Accurate simulations of XANES at O and C K-edges using multiple scattering  
    methods. 
 

b) Simulation of infrared (IR) and Raman spectra.    
      

c) More detailed structural analysis using wide angle x-ray diffraction measurements up  
    to long 4 sinq π θ λ= . The pair distribution function method will enable both local  
    and long range structure determination 0 → 50 Å [187].  
 

d) Extension of present studies of graphene and boron nanoribbons to other systems such  
     as silicon. 
 

e) Acquisition and studies of single chirality single walled carbon nanotubes under  
    pressure to test the DFT predictions. Studies will include XRD, IR and x-ray  
    absorption measurements. 
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