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ABSTRACT

OPTIMIZING INTEGRATED SERVICE FOR A TRANSIT ROUTE
WITH HETEROGENEOUS DEMAND

by
Yavuz Yusuf Ulusoy

The methodology developed in this dissertation attempts to optimize integrated service

that minimizes the total cost, including user and supplier costs, of a transit route with

heterogeneous demand. While minimizing total cost, a set of practical constraints, such as

capacity, operable fleet size and frequency conservation, are considered.

The research problem is presented in three scenarios, consisting of various service

patterns (e.g., all-stop, short-turn and express) under heterogeneous demand. A logit-

based model was used to estimate passenger transfer demand. An exhaustive search

method was developed to find the optimal solutions for a simplified transit route with six

stops, and a Genetic Algorithm (GA) was developed to find the optimal solution for a

real-world, large scale transit route. The optimized variables include the combination of

service patterns, the associated service frequencies, and stops skipped by the express

service.

A six-stop transit route was designed and analyzed via a proof-of-concept

demonstration to ensure that the developed models are capable of finding the optimal

solutions. A sensitivity analysis was conducted, which enables transit planners to

quantify the impact of various model parameters (e.g., user value of time, vehicle

capacity, operating cost, etc.) to the decision variables and the objective function. Finally,

the developed models and solution algorithm were applied to optimize integrated service

for a real world bus route in New Jersey.
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CHAPTER 1

INTRODUCTION

1.1 Background

Improving public transportation system efficiency and level of service attempts to

stimulate transit demand at the least operating cost, which has been recognized as a

potential way of mitigating traffic congestion, increasing mobility and reducing

environmental impacts. The development of efficient and convenient transit service has

been frequently discussed in past decades (Vuchic and Newell, 1968; Byrne, 1976;

Wirashinghe, 1980; Tsao and Schonfeld, 1984; Kuah and Perl, 1988; Spasovic and

Schonfeld, 1993; Spasovic at al, 1994; Chien and Spasovic, 2002; Chien, 2005; Zhao and

Zeng, 2006 and 2008) to achieve sustainable public transportation systems.

Daily travel demand is increasing in the United States. From 1995 to 2005, daily

travel on major US roadways increased 34% from 2.79 to 3.73 billion vehicle miles of

travel. This increase worsened the congestion problem in regions of all sizes, especially

in highly populated metropolitan areas. Congestion caused urban Americans to travel

4.16 billion hours more, which resulted in purchasing and burning an extra 2.81 billion

gallons of fuel for a congestion cost of $87.2 billion in 2007. Congestion mostly impacts

the people who typically travel during the peak hours. The annual delay for the peak-

period traveler was 38 hours and the same traveler wasted 26 gallons of fuel (Schrank

and Lomax, 2007 and 2009).

Public transportation modes play an important role in providing travel options,

specifically to people in congested regions. Without public transportation services, the

1



2

urban areas would have suffered an additional 646 million person-hours of delay and

consumed 398 million more gallons of fuel. This brings an additional $13.7 billion

congestion cost, which is a 16 percent increase over 2007 levels in urban areas.

The growth of transportation problems, including congestion, increasing gasoline

prices and vehicle emissions, is forcing transportation agencies at all levels to consider

better public transportation initiatives to reduce the impact to our environment. Thus,

sustainable transportation considerations started to shift the emphasis in public spending

and actions on increasing capacity to improving service efficiency, which encourages

high value land use, increases productivity, reduces transportation and infra-structure

costs, and offers cost effective services (GDRC, 2008).

As a major player in the urban transportation system, public transit has been

widely recognized as a potential mode that may increase productivity, provide more job

opportunities, promote retail sales, and rationalize urban development patterns, in

addition to reducing air pollution, lowering energy consumption, improving mobility, and

mitigating traffic congestion. Moreover, providing mobility for people with low incomes,

disabled or unable to drive, elderly, children, or those who do not own a car, public

transit offers meaningful travel alternatives.

There were approximately 51 billion passenger-miles of travel on public

transportation systems in the urban areas in 2005 (NTD, 2007). The annual travel ranges

from an average of 18 million passenger miles per year in small urban areas to about 2.7

billion miles in metropolitan areas. With suburban sprawl and dispersion of employment,

automobile use is challenging public transportation systems. An operationally and
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economically efficient transit system can help to meet these requirements while

potentially reducing congestion and energy consumption.

An effective and efficient transportation mode can provide competitive service

under practical constraints, such as limited operating budget and excessive demand, to

maximize the users' benefits at the lowest supplier cost. Toward this aim, this study

focuses on developing optimal service strategies which minimize total cost, including

user and supplier costs, for a generalized transit route with heterogeneous demand.

1.2 Problem Statement

In metropolitan regions, the demand on a transit route is generally distributed

heterogeneously along the route, and setting a conventional (local) service may not be an

efficient and cost effective way to satisfy the route demand. In designing services for

transit routes, one of the main problems faced by transit planners is developing optimized

service patterns and associated service frequencies to minimize total (including user and

supplier) cost while satisfying the route demand.

In traditional service strategies, the ratio of maximum passenger flow to vehicle

capacity (based on desired occupancy) is deemed as the minimum required frequency to

meet passenger demand. In such a case, operating vehicles from one end of the route to

the other may be inefficient due to low occupancy of segments where demand is lighter.

Implementing integrated transit service patterns (SPs) such as the all-stop, short-turn, and

express (stop-skipping) services, may be beneficial. Most studies (Furth, 1987 and 1988;

Ceder 1988 and 1989, Delle Site et al, 1998) have focused on maximizing the utilization
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of the vehicles and/or minimizing the supplier cost, whereas few ones involved in the

integration of SPs considering potential transfer demand.

The development of an analytical model to optimize integrated (e.g., all-stop,

short-turn, express) SPs and associated service frequencies to minimize the total system

cost is desirable for not only optimizing the problem but also exploring the relationship

among decision variables and model parameters.

1.3 Objective and Work Scope

The objective of this study is to develop an analytical model to optimize transit SPs and

associated service frequencies for a generalized transit route with heterogeneous demand.

The proposed model is aimed to search for the most beneficial service patterns (SPs) and

associated frequencies for efficient and effective operation. Heterogeneous demand

conditions and potential transfer demand are considered within the optimization process.

This dissertation is intended to optimize transit SPs especially for underutilized

operations because of demand heterogeneity and quantify the benefit. The sensitivity of

critical model parameters (e.g., spatial demand distribution, value of user's time, etc.),

affecting the objective total cost is analyzed, while the optimal relationship between the

model parameters and decision variables is investigated.

There are several alternatives to combine various transit SPs to optimize the

transit operation. In this dissertation three SPs (see Table 1.1, in which "A", "S", and "E"

represent all-stop, short-turn, and express SPs, respectively) are used to create two

different models to analyze the integration of SPs shown in Figure 1.1.



Table 1.1 Studied Service Patterns (SPs)

Symbols Service Patterns (SPs)

A All-Stop SP

S Short-Turn SP

E Express (Stop-skipping) SP

Model I

Model II

0 Stop

. SP serves the stop

* SP skips the stop

<----> SP

Figure 1.1 Transit service patterns considered in the proposed models.

5
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Two models are proposed in Table 1.2 to deal with different integrated services.

Model I is developed for optimal integrated all-stop and short-turn SPs to minimize the

total cost. An all-stop SP serves every stop between the end terminals of the studied

route, while a short-turn SPij is a smaller scale all-stop service, which serves every stop

between short-turn points i and j.

Table 1.2 Proposed Models for Integrated Services

Models 	 Integrated Services

I 	 A + S

II 	 A + S + E

Model II, enhanced from Model I, is developed to analyze the integrated SPs

including all-stop, short-turn and express (stop-skipping) services, in which a number of

stops are skipped by the express SP. Similar to Model I, Model II also minimizes the total

cost that is yielded by the optimized SPs, associated service frequencies, and the stops

skipped by the express service. A logit-based model is used to estimate transfer demand.

1.4 Organization of the Dissertation

This dissertation is organized into six chapters. Chapter 1 introduces the research

problem and presents the objective and work scope. Chapter 2 discusses the results of

literature reviews on various models and techniques employed in previous optimization

strategies related to transit operations. Chapter 3 describes the methodology for the

developed models to optimize the SPs and associated service frequencies. A

mathematical model is developed and analytically optimized by considering two different
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models defined in the work scope. Chapter 4 introduces an Exhaustive Search Algorithm

and a Genetic Algorithm (GA) approaches to solve the optimization problems defined in

three scenarios. Chapter 5 presents two case studies. First, a six-stop transit route is

designed and analyzed via a proof-of-concept demonstration to ensure that the developed

models are capable of finding the optimal solutions. Then, a case study of a real world

transit route (New Jersey Transit Springfield Avenue Line) is presented, in which the

developed model is used to search for the optimal solution with GA. Finally, findings and

recommendations are presented, and potential extensions of this study are summarized in

Chapter 6.



CHAPTER 2

LITERATURE REVIEW

Previous studies related to this research are summarized in this chapter, and are discussed

in five sections. The state-of-the-art operating strategies for improving transit services are

discussed in Section 2.1. In Section 2.2, general transit network optimization problems

are investigated and summarized. A number of transit passenger assignment studies

related to this study are reviewed in Section 2.3. To solve the research problem, solution

algorithms and heuristics for non-linear optimization problems are presented in Section

2.4. Finally, the literature review is summarized in Section 2.5.

2.1 Transit Service Strategies

In public transportation systems, adding and/or removing transit facilities (e.g., stop

locations, railway tracks, etc.) to improve system performance is expensive and

sometimes not applicable because of topographic limitations as well as institutional

regulations. It is relatively easier to improve performance by adjusting operating

strategies of transit services. Furth et al. (1984) investigated various transit operating

strategies focusing on downtown-oriented bus routes, in which the advantages and

disadvantages of each strategy were discussed.

The minimum service frequency during peak period on the route level used to be

determined by the demand of the maximum load segment divided by vehicle capacity.

However, poor utilization, in terms of occupancy, may be expected on other route

segments where demand is low. To improve space utilization, Furth et al. (1984)

8
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introduced the short-turn service to serve high demand segments of a conventional all-

stop service.

The short-turn service is particularly suitable for corridors where the demand

peaks at a specific zone/segment and tapers off substantially outside of it. A number of

studies conducted by Ceder (1984, 1987a, and 1987b) focused on designing a transit

frequency and timetable which minimized the fleet size considering short-turn services

subject to a capacity constraint.

Transit planners/schedulers usually considered the short-turn service as a viable

way to reduce supplier cost. However, the passenger wait time may be increased because

of reduced frequency of all-stop trips due to limited operable fleet size. While applying

the short-turn service to high demand segments, Furth (1987) found that the fleet size and

the user wait time significantly reduced, especially during the peak period.

The critical design issue in short-turn service is to determine the turn-back points,

schedule vehicles to balance passenger loads among the services, and minimize fleet size

and passenger wait time. Ceder (1989) identified the turn-back points to design short-turn

services based on passenger load profile. The total number of short-turn services is

optimized to find the minimum fleet size. Delle Site and Filippi (1998) optimized vehicle

size, service frequencies and fare for the short-turn service by considering temporal

demand conditions. A method is proposed to optimize bus operations by explaining the

effects on service patterns and the trade-off between users' and operator's costs.

Another operating strategy for transit services is controlling the stop-skipping for

transit vehicles. In a stop-skipping strategy, also called vehicle expressing, vehicles are

instructed to skip a set of stops along a route. Vuchic (1973) described and evaluated the



10

stop-skipping strategy and concluded that the primary operational characteristics of stop-

skipping were: (1) scheduled speed was increased; (2) the frequency of stopping was

reduced; (3) headways at stations that were not served by all vehicles were increased; (4)

there was no direct connection between those stations served by different vehicles; and

(5) services became more complicated.

The stop-skipping service can be used to balance vehicle loads, minimize fleet

size, and improve schedule adherence or vehicle headway regulation which reduces

passenger wait time. Ercolano (1984) evaluated the stop-skipping service for bus

operations by comparing some performance characteristics (e.g., vehicle operating speed,

passenger travel time, etc.) of stop-skipping and local services. It was found that a stop-

skipping service may reduce the total travel time of passengers, increase average

operating speed, attract more passengers, and reduce the supplier cost. Eberlein (1995)

formulated a non-linear model to identify skipped stops/stations for express service.

Since the dwell time and stop delay are eliminated, the average travel time per passenger

may be reduced.

Suh et al (2002) introduced an express subway system in Seoul, Korea, in which a

stop-skipping service was considered. The total travel time savings were estimated

subject to given origin-destination (OD) demand, distance between stations, headway,

and operating speed. It was found that the total passenger travel time decreased up to 7.8

percent by operating a stop-skipping service.

Wilson et al (1992) explored various operational controls applied to a light rail

line in Boston, Massachusetts, in which stop-skipping was regarded as an important
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option for the transit supplier to improve system performance, albeit it may cause the loss

of some portion of demand because of inconvenience to some passengers.

The stop-skipping strategy was investigated in several studies (Li et al., 1991; Fu

and Liu, 2003; Sun and Hickman, 2005) mainly focusing on dynamic and real-time

scheduling problems. Li et al. (1991) formulated a stochastic programming model for a

real-time scheduling problem using stop-skipping services. The objective was to

minimize schedule deviation on the route and maximize service coverage for passenger

demand. The skipped stops were determined before a vehicle was dispatched from the

terminal. A numerical example was given to demonstrate the results recommended by the

developed stochastic model to improve the transit operation.

Fu and Liu (2003) developed a dynamic scheduling strategy that was aimed to

optimally balance the user and supplier costs, similar to that discussed by Li et al. (1991),

a nonlinear programming approach was used. An exhaustive search algorithm was

developed to find the optimal solution; however, it was only suitable for small scale

transit networks. Sensitivity analysis was conducted based on data collected from a real

world bus route, including passenger demand, the variation of bus travel times, and the

headway at the dispatching terminal. Results indicated that a stop-skipping service may

be effective in the context of high passenger demand with short service headway within a

range of travel time variation.

Sun and Hickman (2005) developed policies for implementing the stop-skipping

strategy in real-time operations. Two policies (basic and alternative) were formulated

with a nonlinear integer programming approach. Under the basic policy, the skipped

segment was defined by a beginning stop and an end stop, within which all stops will be
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completely skipped. Unlike the basic policy, vehicles can drop-off and pick-up

passengers at stops in the skipped segments under the alternative policy. A simulation

approach was used to examine the performance of these two policies, considering

passenger distribution, beginning and end stops for skipped segments and skipped

segment lengths as well as vehicle travel time variability. Possibilities of the improved

stop-skipping policies for real-time operations were investigated.

Chien et al. (2009) optimized integrated service patterns (SPs) (e.g., all-stop and

short-turn SPs) and the associated service frequencies for a transit route with

heterogeneous demand that minimized the total cost, subject to operable fleet size and

capacity constraints. The percentage of transfer demand was determined by a logit-based

model. Later, Ulusoy et al. (2010) introduced an express service into the all-stop and

short-turn services. A model was developed and the objective function was the total cost,

consisting of supplier and user costs. The decision variables included integrated SPs, the

associated service frequencies, and the number of stations skipped by the express service.

The impact of model parameters (e.g., value of time, vehicle operating cost, skipped

stations, transfer stations etc.) affecting the optimal service decisions were evaluated. By

considering aggregate effects of various service patterns and station-based demand

distributions, the developed method offered to quantify the savings and improved system

performance. Compared to a traditional all-stop only service, operating short-turn

services reduced operating costs and vehicle miles traveled, however the waiting cost of

passengers increased because of the reduced service frequency in low demand segments.

Integrating the express service into all-stop services (with short-turn service) significantly
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reduced the in-vehicle time of passengers, which compensated for the increased wait and

transfer times.

2.2 Transit Network Optimization

Transit network optimization has been studied to find the optimal network and route

structure with associated service frequencies that minimize the operator and user costs

(Hurdle, 1973; Newell, 1979; Chien and Schonfeld, 1997), maximize service coverage

(Spasovic and Schonfeld, 1993; Spasovic et al., 1994), maximize user benefits

(Hasselstrom, 1981; Kocur and Hendrickson, 1982), minimize user travel time (Silman,

1974; Dubois et al., 1979; Mandl, 1980; Ceder and Wilson, 1986; Israeli and Ceder,

1991), and maximize the number of direct trips (Van Nes et al., 1988; Zhoa and Ubaka,

2004). An overview of transit network studies is given in Table 2.1.

Hasselstrom (1981) optimized a set of bus routes and associated service

frequencies simultaneously. Optimal bus routes and their frequencies were determined

for maximum user benefits in the context of a variable demand formulation. Kocur and

Hendrickson (1982) considered elastic demand while optimizing transit networks using a

linear approximation of logit mode share model. The revenue, cost and user benefits

considering optimal route spacing and bus frequency were analyzed.
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Table 2.1 Studies Related to Transit Network Optimization and Design

Year Authors Objectives Decision Variables Constraints

1979 Dubois et al Minimize travel time
Route design, Frequency
settings

Operating budget

1979 Newell Minimize total cost Route design Operating budget

1981 Hasselstrom
Minimize transfer,
maximize service coverage

Route design, Frequency
settings

Operating budget

1986
Ceder &
Wilson

Minimize travel, transfer
and waiting time

Route design, Frequency
settings Minimum frequency

1988 LeBlanc Minimize operator cost,
maximize transit usage

Frequency settings Fleet size

1988
Van Nes et
al

Maximize number of direct
trips

Route design, Frequency
settings

Fleet size, Operating
budget

1991
Israeli &
Ceder

Minimize travel time, and
fleet size

Route design, Frequency
settings

-

1991
Baaj &
Mahmassani

Route network AI-based
representation

Transit network design Multi-constraints

1992
Bookbinder
& Desilets

Disutility function to
optimize transfer

Timetable, Headway
Passenger Demand,
Fleet Size

1995
Shih &
Mahmassani

Minimize travel time and
fleet Size

Route Design, Frequency
settings Multi-constraints

1995
Baaj &
Mahmassani Multi-object approach

Route design, Frequency
settings Multi-constraints

1995
Constantin
& Floran

Minimize the total travel
and waiting time

Frequency Settings Fleet size

1997
Chien &
Schonfeld

Minimize total cost
Route and station spacing,
Headway Capacity

1998
Pattnaik et
al

Minimize operator costs
and passenger travel time

Route design
Frequency, Load
factor

2001 Chien et al Minimize total cost Route Location, Headway Capacity, Budget

2001
Ngamchai
& Lovell

Minimize total cost Route design, Frequency
settings

Fleet Size, Capacity

2002 Chien &
Spasovic

Maximize operator profit
and social welfare

Headway, Route spacing,
Fare Capacity

2002
Chakroborty
& Dwivedi

Minimize waiting time Fleet Size, Route Schedules Headways, Transfer
time

2004
Agrawal &
Mathew

Minimize total cost
Route Design and
Frequency settings

Load Factor,
Capacity, Minimum
frequency

2005
Lee &
Vuchic

Minimize passenger's
travel time

Route design, Frequency
settings

Fleet Size, Capacity

2005 Chien Minimize total cost
Headway, Vehicle size,
Route Choice

Capacity, Budget,
Vehicle schedule

2006
Fan &
Machemehl

Minimize user costs
Route Design and
Frequency settings

Fleet size, Headways,
Load factor

2006
Zhoa &
Zeng

Minimize transfers,
maximize service coverage

Route Design and
Frequency settings

Passenger demand,
Budget, Level of
service

2008
Zhoa &
Zeng Minimize user costs

Route Design, Frequency
and Timetable settings

Fleet size, Load
factor, Capacity
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Several studies (Silman, 1974; Dubois et al, 1979; Mandl, 1980; Ceder and

Wilson, 1986; Israeli and Ceder, 1991; Zhoa and Ubaka, 2004) were conducted to

minimize passenger travel time by altering the route structure. Silman et al. (1974)

developed a model for planning urban bus systems, which minimizes the total travel time

through a recursive route addition and deletion process. The service frequencies

associated with the generated routes were optimized by a gradient search method subject

to a limited number of buses.

Van Nes et al. (1988) proposed a method to design an optimal transit network,

which maximizes the number of direct trips subject to a given fleet size and operating

budget. The relationship between the supply and demand sides for different transit

services was examined. Route design, service frequency settings, and passenger

assignment were evaluated using a modal split model considering variable demand.

Silman et al. (1974) developed a method to generate bus routes between zones

which yield the minimized total vehicle travel time. Considering rectangular grid

networks, several studies (Fawaz and Newell, 1976; Wirasinghe, 1980; Chien and

Schonfeld, 1997; Chien and Spasovic, 2002) analyzed transit service areas with

heterogeneous land use and demand characteristics. Chien and Schonfeld (1997) divided

a service region into small rectangular zones to analyze the impact of land use, service

area, demand pattern, and travel speed on user and operator costs. As an extension of that

study, Chien and Spasovic (2002) optimized a transit network considering a

heterogeneous urban environment and demand elasticity.

Mandl (1980) expressed a transit network structure by "nodes", "links" and

"routes". A node represented a specific point for loading or unloading and/or transfer in
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the network, a link connected a pair of nodes and represented a particular mode of

transportation between nodes, and a route was a sequence of nodes. With these

definitions, Fan and Machemehl (2006) developed a route generation procedure to find

feasible routes and the associated service frequencies. A heuristic algorithm was used to

optimize the set of routes from a very large solution space.

Several models (Lampkin et al, 1967; Last, 1976; Scheele, 1977, 1980) have been

developed for simultaneously optimizing choice of routes and frequencies. Frequency

settings for transit operations were devoted to the satisfaction of maximum passenger

demand. Scheele (1980) developed a non-linear model to determine the routes and

service frequencies to minimize the total travel time of passengers for a given fleet size

and demand conditions.

Minimization of passenger waiting time is an important objective in setting the

frequency problem. Salzborn (1972) determined frequencies, given passengers' arrival

rate, to minimize passenger waiting time. Furth and Wilson (1981) formulated the

problem of determining route frequencies and they developed a method that aimed to

maximize the social benefits, including wait time savings. Han and Wilson (1982)

presented a model which aimed to minimize the passenger waiting time. An algorithm

which consisted of the base allocation to minimize fleet size, and the surplus allocation to

minimize the maximum crowding level was developed to design the frequencies.

Constantin and Floran (1995) presented a model and solution method for the

frequency setting problem to minimize the passengers' total expected travel and waiting

time under fleet size constraints. A non-linear non-convex mixed integer programming



17

model was formulated and a projected sub-gradient algorithm was used to find optimal

line frequencies considering the passengers route choices.

Gao et al. (2003) proposed a bi-level programming technique to deal with the

frequency setting problem. In the upper-level problem the objective was to minimize the

total deterrence of the transit system (consisting of in-vehicle and waiting time) and the

cost caused by frequency setting. The lower-level model was a transit equilibrium

assignment model to describe the route alternatives to transit users. A heuristic algorithm

was designed to help transit planners to adjust an existing transit network to evolutions in

the demand and in various other parameters.

2.3 Passenger Assignment in Transit Networks

The allocation of vehicles and their frequencies are highly dependent on the number of

passengers assigned to the services on a transit route (Shih et al., 1998). Several studies

investigated the problem of selecting transit service for passengers, which was considered

either as a separate problem (Dial, 1967; Rapp and Gehner, 1976), or as a sub-problem of

more complex models, such as transit network design problem (Lampkin and Saalmans,

1967; Scheele, 1977; Mandl, 1979; Hasselstrom, 1981).

Transit service choice models, also called transit assignment models (see Table

2.2), aim to present the decisions made by passengers for selecting transit services.

Lampkin and Saalmans (1967) assumed that the passenger at the stop ignored transit

services that were obviously bad and chose the first vehicle to arrive from among other

routes.
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Table 2.2 Transit Passenger Assignment Models

Year Author
(Year)

Methodology Objective
Decision
Variables

Constraints

1975 Chriqui and
Robillard Common Lines

Minimize total travel
(wait+ in-vehicle) time
of passengers

Link
Frequency

Common Line
Set

1982 Han and
Wilson Lexicographic Minimize number of

transfers
Service
Frequency

Fleet Size,
Vehicle
Capacity

1988 Nguyen and
Pallottino Hyperpath

Minimize total travel
(wait+ in-vehicle) time
of passengers

Link
Frequency Link Volume

1989
Speiss and
Floran
(1989)

Optimal
Assignment /
Frequency-Based

Minimize total travel
(wait+ in-vehicle) time
of passengers

Link
Frequency

Link Volume

1990 Baaj and
Mahmassani

Frequency-Based
+ Lexicographic

Minimize total travel
(wait+ in-vehicle+
transfer penalty) time of
passengers

Route
Frequency

Policy
headways, Load
Factor.

1993 De Cea and
Fernandez

User Equilibrium
(UE)

Minimize total travel
(wait+ in-vehicle) time
of passengers

Line
Frequency

Transit
Operation
Condition
(Congestion)

1999 Lam et al
Stochastic User
Equilibrium
(SUE)

Minimize total travel
(wait +in-vehicle+
passenger overload
delay) time of
passengers

Line
Frequency

Link Capacity,
Vehicle
Capacity

A passenger at a stop frequently has a choice between a number of lines

(services), referred to as common lines, which will get him/her directly or indirectly to

his/her destination. Chriqui and Robillard (1975) presented a framework for the common

lines problem. In that study, the passenger at a stop selected the sub-set of lines which

minimized passenger's expected travel time. They introduced a heuristic algorithm to

find the optimal choice set.

In their passenger assignment study, Han and Wilson (1982) proposed a

lexicographic methodology, in which passengers aimed to minimize the number of

transfers during their trips. Shih et al (1998) presented a trip assignment model for timed-

transfer transit systems using a lexicographic methodology. They found that while more
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trips are assigned to the routes with high frequency in uncoordinated transit networks, in

fully coordinated network with a common route frequency, demand is completely

assigned to the competing path with the minimum travel cost. Baaj and Mahmassani

(1990 and 1995) adapted a lexicographic strategy and frequency-based approach with

modifications to account for the undesirability of paths with excessive travel times.

Nguyen and Pallottino (1988) demonstrated the optimal strategies by using a

graph theoretic approach. They introduced the concept of hyper-paths and proposed an

equilibrium model, in which passenger waiting times were considered constant and

independent of passenger volumes. A hyper-path connecting an origin to a destination

included all the paths that could be used by a passenger. This methodology was able to

solve the transit assignment problem, especially in congested conditions.

In the frequency-based approach, the simulation of path choice for high-frequency

transit systems has been commonly performed on the basis of the concept of optimal

assignment strategies presented by Spiess and Florian (1989). In the optimal assignment

strategy, passengers were allowed to reach their destination at the minimum expected

cost. They formulated waiting time and service route selection probabilities using service

frequencies.

De Cea and Fernandez (1993) presented a user equilibrium assignment model for

the transit assignment problem on congested systems, in which "effective frequency" was

introduced to determine passenger waiting times at stations. A lower value of frequency

was formulated and used to calculate waiting time in the model, because it will become

harder for a passenger to get on a bus belonging to a congested line.
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Lam et al. (1999) expanded the De Cea and Fernandez's (1993) study by

developing a stochastic user equilibrium (SUE) transit assignment model. The logit-based

model was used to evaluate the passenger route choice probability. Later, Lam et al.

(2002) expanded that study and developed a capacity restraint transit assignment model

with elastic line frequency. Line frequencies were affected by passenger flows. They

considered congestion for strategic planning with the assumption of fixed OD demand.

They defined that the line frequency should be dependent on the vehicle dwelling time at

each station. A numerical example was illustrated for the solution algorithms and to

demonstrate the applicability of the model.

2.4 Optimization Algorithms and Heuristics

The transit network design problem is a combinatorial problem in nature and many

parameters (e.g., route spacing, route length, stop spacing, vehicle size, vehicle headway

or frequency, and passenger waiting times) need to be determined to solve the realistic

size networks. A number of previous studies (Lampkin and Saalmans, 1967; Byrne and

Vuchic, 1972; Silman et al, 1974; Byrne, 1976; Rapp and Gehner, 1976; Dubois et al.,

1979; Mandl, 1979; Hasselstrom, 1981; Oldfield and Bly, 1988; LeBlanc, 1988;

Bookbinder and Désilets, 1992; Kuah and Perl, 1988; Chang, 1990; and Ceder and

Israeli, 1998) in transit network design involved various mathematical optimization

techniques. They also introduced heuristic algorithms or certain simplification

assumptions to limit the solution search space or to reduce the optimization objectives to

a particular network structure. Complex problems were converted to a solvable problem

using heuristic algorithms.
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The advantage of applying heuristic approaches is to achieve relatively faster

acceptable solution to problems of any size. It is relatively easy to incorporate various

constraints into the solution procedures, since heuristic approaches usually select

solutions from a possible solution space that already meets most of the design constraints

(Zhao and Gan, 2003). On the other hand, the solution from a heuristic approach may not

be always globaly optimal, which is the main disadvantage of heuristic approaches.

Heuristic approaches are usually a combination of applications of guidelines and

procedures for the route selection and bus frequency/headway determination, based on

criteria established from past experience, ridership and demand data, cost and feasibility

constraints, intuition of the transit planners, as well as some policies out of certain social

and/or political considerations (Chua and Silcock, 1982; Axhausen and Smith, 1984;

Baaj, 1990). The route network structures obtained from heuristic approaches tend to be

of certain types that are intuitive and conceptually easy to understand or accept by

planners. They are usually shaped by historical reasons or affected by existing systems

that have evolved gradually with demographic changes in the urban areas they serve.

Pearl (1984) developed heuristics methods as "criteria, methods, or principles for

determining which among several alternative courses of action promises to be the most

effective in order to achieve some goals." Heuristic methods are usually problem

dependent since their search criteria, principles, and guidelines are domain or problem

specific.

The last three decades have witnessed an increasing interest in meta-heuristic

approaches (such as Tabu Search, Genetic Algorithm, etc.) for solving optimization

problems. The main differences between the heuristic methods and meta-heuristic
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algorithms are that traditional heuristic approaches are strong problem-specific and

depend heavily on personal knowledge and experiences, while meta-heuristic algorithms

are relatively less problem-specific since these methods usually apply to a variety of

applications in different fields with little or no modifications in their basic search criteria

and principles (Zhao and Zeng, 2006).

The meta-heuristic approaches tend to follow one of two different outlines. The

first set generates a large set of possible routes and then iteratively examines different

subsets of the routes in an attempt to find a near-optimal solution. In the second

approach, a potential route layout is generated, and then one or more of the routes in the

solution are changed in an attempt to find better solutions. Many techniques have been

developed to approximate the optimal solutions for the transit network problems. These

include Tabu Search (Fan and Machemehl, 2004; Lei and Yan, 2007), Simulated

Annealing (Fan and Machemehl, 2004, 2006b), Hill Climbing (Zhao and Ubaka, 2004),

Ant Colony (Yu et al., 2005), and Genetic Algorithm (GA) (Pattnaik et al, 1998; Chien et

al, 2001; Bielli et al, 2002; Ngamchai and Lovell, 2003; Fan and Machemehl, 2006a).

GAs are search and optimization methods based on the principle of natural

selection (Holland, 1975). The basic idea behind GAs is that individuals and their off-

springs that best fit or adapt to the surrounding environment have the best chance to

survive. In a typical GA, a population of individuals (usually potential solutions)

undergoes a sequence of transformations through the application of "genetic operators"

and a selection process. Those individuals that best fit the surrounding environments

(usually defined by a problem's objective functions and constraints) will have a better

chance to survive the selection process, and their off-springs may have a better chance to
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survive the transformation and selection processes of the next generation. After some

number of generations, the solutions converge, and the individual with the best fitness

score represents the optimum solution of the system.

Unlike the mathematical solution search schemes (Haupt and Haupt, 1998), GA

formulations do not require the calculation of the gradient matrix and any other higher

order derivative matrices, or their approximation, of the objective function with respect to

all the unknowns. The calculation of the gradient matrix or its approximation is a major

computational burden in traditional mathematical optimization approaches. A GA-based

method directly carries out its search on a population of individuals (i.e., potential

solutions) and the objective functions themselves, not their derivatives. Therefore, there

is no need to formulate a system of governing equations that represent or simulate the

relationship between various parameters and unknowns mathematically. This is

particularly attractive for practical applications where it is difficult to establish a

mathematical formulation to accurately and effectively simulate complex situations.

Transit network design problems are good examples of such cases. Constraints are

relatively easy to incorporate into GA. By imposing large penalties on potential solutions

that violate certain constraints reduces their survival possibility in the selection process.

This may be especially suitable to problems where constraints are complicated and

unable to be properly defined. Finally, GA has been an active research field for the past

several decades and results have been widely used in various application fields. There are

many existing algorithms and computer codes.

Integrating different service strategies and setting their frequencies is a large

combinatorial problem, especially for a long distance route with a large number of stops.
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The solution space increases exponentially as the number of stops increases. GA is very

efficient and effective in solving combinatorial optimization problems (Gen and Cheng,

1997). Chakroborty et al.(1995) used GA in bus route network scheduling problems and

indicated that GA is an efficient tool for solving transit network optimization problems.

Caramia et al (2001) presented an iterative scheme based on GA to evaluate and improve

the performance of existing bus networks by reducing the average travel time and

management cost. Numerical results for a real world problem indicated that GA might be

more effective in terms of computational time compared with classical assignment

methods.

GA can solve almost any type of objective function (e.g. linear, nonlinear, integer,

mix-integer, logical or discontinuous) subject to a set of constraints (Dandy and

Engelhardt, 2001). Chien et al.(2001) developed a GA to search for the optimal bus route

including route generator and genetic operators. The developed GA started with an initial

population size and street pattern of a service area, which consists of three genetic

operators (e.g. reproduction, crossover, and mutation). The function of the crossover

operator was to generate new routes based on existing routes. Since certain segments of

the different routes would be desirable for optimal operation, by combining these

segments, a better route can be obtained.

Chakroberty (2003) demonstrated the effectiveness of GAs in solving the transit

network design problem by using a Swiss transit network, which was first used by Mandl

(1979) and subsequently used by other researches such as Baaj and Mahmassani (1991)

and Kidwai (1998). He presented a GA-based procedure to effectively handle the transit

network problems which cannot be solved using traditional optimization methods.



25

2.5 Summary

Transit network design studies were mainly focused on finding the optimal network and

route structure with associated service frequencies that minimize the operator and user

costs; maximize service coverage, user benefits and number of direct trips; minimize user

travel time; and maximize the number of direct trips.

Local (all-stop) service is considered for every optimized route and none of the

previous studies considered different SPs (e.g., all-stop, short-turn, and express services)

in transit network optimization. Service frequencies on the route level were calculated

using the maximum demand in a specific time period and location (or route segment).

Minimum frequencies were obtained dividing the maximum demand by the vehicle

capacity considering a desired occupancy. However, on other route segments where

demand is low, the transit operation may not be effective because of insufficient seat

utilization. Integrated (e.g., all-stop, short-turn and express) services can be a solution for

underutilized operations.

Integrating different service patterns and setting associated service frequencies

can be a large combinatorial problem especially for long corridors with a large number of

stops. The solution space increases exponentially as the number of stops increases.

Genetic Algorithms (GAs) were found very efficient and effective in terms of

computational time in solving combinatorial optimization problems.

In the following chapter, two models are developed to address the planning, and

designing of various SPs which operate in the same transit route in different segments

and with different frequencies. An exhaustive search method and a genetic algorithm

approach are implemented in Chapter 4 for the solution of the developed models.



CHAPTER 3

METHODOLOGY

The two models proposed to optimize various transit services presented in Chapter 1 are

discussed in this chapter. The development of Model I is discussed in Section 3.1, which

minimizes the total cost for integrated all-stop and short-turn service for a generalized

transit route with heterogeneous demand, subject to three constraints to ensure frequency

conservation, sufficient capacity and operable fleet size. Model II enhances Model I by

considering an express service in the modeling and optimization processes, and is

presented in Section 3.2. Model II minimizes the total cost, subject to the same

constraints considered in Model I. Various performance measures discussed in Section

3.3 can be used to analyze the effectiveness of the optimized solutions to the system

operation. Finally, a brief summary of the methodology is given in Section 3.4.

3.1 Model I - All-Stop and Short-Turn Service Patterns

Model I attempts to minimize the total cost of integrated all-stop and short-turn transit

services generated by the optimized service frequencies. Note that the service pattern (SP)

defined in this study is equivalent to overlapped bus routes which share some stops along

the route. An all-stop SP serves all stops from the beginning stop to the end stop of the

studied route. A short-turn SP, ,j is considered as an all-stop service, which serves all

intermediate stops between stops i and j.

26



27

3.1.1 System Assumptions

The following assumptions are made for formulating the objective total cost function and

constraints:

1. The studied route shown in Figure 3.1 has n stops. The origin-destination (OD)
demand and the spacing between stops are given, which may be obtained from a
demand analysis that considers demand elasticity and the relative attractiveness of
alternative modes. The definitions of model parameters are summarized in Appendix
A.

2. Passenger arrivals at stops are uniform within a given time period, and vehicle
arrivals are deterministic. Thus, the average passenger wait/transfer time may be
assumed to be half the headway.

3. A SP originating from stop i and terminating at stop j, denoted as SP, j , serves every
stop in between. The inbound and outbound frequencies for a SP are even (f ,. fj,i),

and the sizes of vehicles running for all SPs are identical in units of spaces/vehicle.

4. The number of passengers who would make transfer between SPs are negligible.

5. When required, eligible turn-back stops, denoted as g, can be pre-determined by the
supplier, depending on the layout of stop location.

3.1.2 Model Formulation

3.1.2.1 Total Cost (TC)

The objective function considered here is the total cost, denoted as TC, incurred by the

users and the service provider as shown in Figure 3.2. Thus, TC is defined as the sum of

user (Cu ) and supplier (Co ) costs. The model parameters include the distances between

stops, user's value of time, vehicle operating speed, vehicle capacity and vehicle

operating cost. The decision variables to be optimized include SPs and the associated

frequencies which yield the minimum cost operation. Note that all cost components

considered in this study are on an hourly basis and are discussed next.
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Figure 3.1 Service patterns in Model I.

Total Cost

Supplier Cost

♦ Stopped Stop

--> Service Pattern (SP)

User Costs

Figure 3.2 Cost structure for Model I.
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3.1.2.2 User Cost (Cu )

The user cost, denoted as Cu , is defined as the sum of passenger access, wait, in-vehicle

and transfer costs. The access cost to stop is constant in this study because the length of

the route and the locations of the stops are known and as defined above in assumption 1,

the number of passengers who would transfer between SPs are negligible. Thus, access

and transfer costs are therefore excluded from Cu and not considered in the optimization

processes. Thus,

Cu = CW + 	 (3.1)

where CW , and C, represent wait, and in-vehicle costs, respectively.

Wait Cost (Cm )

The wait cost is the product of hourly demand, average wait time, and the value of user's

time. The average wait time for passengers traveling from stop i to j, denoted as t
PV
 , is

formulated in Equation 3.2. Generally, twi,j is a fraction of headway denoted as αw. Note

that the average headway is the inverse of the service frequency of all SPs. Thus,

where n is the number of stops, and fs,t represents the frequency of SP,, from stop s to t.

The right hand side of Eq. 3.2 is the inverse of the total frequency (also the average
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headway) multiplied by αw  for approximating the average wait time. For outbound

traffic (i < j) the index of the origin stop s varies from 1 to i, and the index of the

destination stop t varies from j to n. Eq. 3.2 ensures that the average wait time is based

on passengers from stop i to j using a service connecting stops i and j. The total wait cost

CW is the sum of wait costs incurred by passengers of all origin-destination (OD) pairs

multiplied by the corresponding wait times and the value of time p . Thus,

(3.3)

In-vehicle Cost (C1 )

The in-vehicle cost is defined as the product of demand, travel time and the value of

user's time of all OD pairs. Thus,

(3.4)

where t , the average in-vehicle time from stop i to j, is the average travel distance

divided by average speed. Thus,

(3.5)

where vd is the average vehicle operating speed from stop d to d+1; /d represents the

spacing between stops d and d+1; and wd+1 is the average dwell time at stop d+1.
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3.1.2.3 Supplier Cost (C0 )

The supplier cost, denoted as Co , is incurred by vehicles operating for all SPs. In general,

for a SP serving from stop i to j, the supplier cost is the product of vehicle travel time

from stop i to j, denoted as T,, , vehicle frequency, denoted as f , and hourly vehicle

operating cost, denoted as b . Thus, the total supplier cost is

(3.6)

T is defined as the vehicle travel time from stop i to j plus the layover time, denoted as

to . Thus,

(3.7)

Finally, the total cost (TC), is the sum of Cu and Co , derived as

(3.8)

3.1.3 Constraints

In this section, considering realistic limitations in planning transit services, three

constraints, including frequency conservation, capacity, and fleet size constraints are

formulated and discussed.
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3.1.3.1 The Frequency Conservation Constraint

The frequency conservation constraint is formulated to ensure that the hourly vehicle

inbound and outbound service frequencies at any SP are even. Thus,

(3.9)

where f, represent the frequency of SP from stop i to j. The frequency conservation

avoids the number of vehicles exceeding the garage capacity at end stops in all time

periods (i.e. peak or off-peak).

3.1.3.2 The Capacity Constraint

The capacity constraint formulated in Eq. 3.10 is to ensure that there are always sufficient

spaces available to satisfy the demand. The average headway on link m, denoted as hm ,

must be less than or equal to Hm  to guarantee that the service capacity is greater than the

demand. Thus,

(3.10)

Note that the headways for both directions ( ) are identical and equal to the

inverse of total frequency of all SPs serving through link m. Thus,

(3.11)

The maximum headway on link m, denoted as H„„ is determined by the maximum

demand on link m for both inbound and outbound directions, which is equal to the vehicle

capacity, denoted as C, divided by the maximum demand. Thus,
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(3.12)

where O m and Im represent the outbound and inbound demand on link m and can be

obtained by Eqs. 3.13 and 3.14, respectively.

(3.13)

(3.14)

3.1.3.3 The Fleet Size Constraint

The fleet size constraint as formulated in Eq. 3.15 ensures that the optimal service

frequency does not exceed the maximum service frequency due to the operable fleet size.

Given that the operable fleet size is denoted as F, it must be greater than or equal to the

sum of required fleet sizes for all SPs. The round trip vehicle travel time divided by

headway (inverse of frequency) is the fleet size. Thus,

(3.15)

where T represents the vehicle round trip travel time for SP,,; and has been discussed

while formulating Eq. 3.7.

3.2 Model II - Integrated All-Stop, Short-Turn, and Express SPs

Model I would be beneficial for conditions especially where demand is concentrated on

certain links of the route. For the majority of demand involving local travel, all-stop and

short-turn services discussed in Section 3.1 would be sufficient. However, for demand
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concentrating at certain OD pairs (e.g., intercity travel pattern), introducing an express

service (e.g., stop-skipping) strategy may be beneficial.

The purpose of this part is to develop a model which optimizes all-stop, short-turn,

and express transit SPs and associated service frequencies that yield the minimum cost

operation considering heterogeneous demand. Model II is developed by considering the

integration of an express SP into the all-stop and short-turn SPs. Transfering of

passengers is also considered from express to all-stop (including short-turn) service and

vice versa. Note, that express service serves only to the designated stops along the route,

which is optimized to yield the minimum total cost. For a transit line with given locations

of stops and OD demand, Model II consists of an objective total cost function and three

constraints to ensure frequency conservation and sufficient capacity subject to operable

fleet size.

3.2.1 System Assumptions

The assumptions discussed below are made for formulating the objective total cost

function and associated constraints for Model II:

1. There are n stops allocated on the studied route as shown in Figure 3.3. The stop
locations and OD based demand are given, which may be obtained from a demand
analysis that considers demand elasticity and the relative attractiveness of alternative
modes. The ridership of all SPs is estimated by a logit-based model, considering
travel times including wait, transfer and in-vehicle times. The average passenger
wait/transfer time is approximately half the headway.

2. Three types of SPs (e.g., all-stop, short-turn and express SPs) are considered in Model
II. All-stop and short-turn SPs are considered as local SPs. An all-stop SP serves all
stops from the beginning stop to the end stop of the studied route. A short-turn SP i, j is
considered as a smaller scale all-stop service, which serves all intermediate stops
between stops i and j. An express SP, denoted as SPE, serves both end stops while a
number of intermediate stops may be skipped.
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3. Fares are identical for all SPs, and there is no transfer charge. Passengers may transfer
from an express service to a local (an all-stop or a short-turn) SP or vice versa. No
transfer is available between local SPs. The demand with more than one transfer per
trip is negligible. The choice of transfer stop used by passengers is determined by the
shortest travel time among the eligible transfer stops.

4. All intermediate stops can be used as turn-back points to configure short-turn services.
However, if necessary, eligible turn-back stops may be pre-determined by the
supplier, dependent on the layout of the stops over the studied route.

Potential skipped stop by express service
Served stop
Candidate all-stop and short-turn SP
Express service pattern

Figure 3.3 Service patterns in Model II.

3.2.2 Demand Estimation

Every passenger has two choices to begin their journey: Local (e.g, all-stop or short-turn)

SP and express SP (SPE) as shown in Figure 3.4. Since the fares are identical for all

services, the travel time per passenger trip, defined as the sum of wait, transfer and in-
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vehicle times, is used to determine the demand of each service. For instance, the demand,

denoted as Di j , k , from station i to j can be classified into k categories, where

k =1: Begin with SPE and reach the destination without transfer

k= 2 : Begin with SPE and reach the destination with transfer

k = 3: Begin with local (i.e., all-stop or short-turn) SP and reach the destination

without transfer

k= 4 : Begin with local SP and reach the destination with transfer

Figure 3.4 Classification of demand.

The percentage of demand selecting SP E from stop i to j, denoted as	 , can be

estimated by a logit-based model as

(3.16)
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where OW , 0, and 0, are positive parameters, indicating the sensitivity of demand to the

length of wait time (twi,j,k ), transfer time (t/, ), and in-vehicle time ( t I i,j,k). As defined in

Equation 3.17, the variable indicating whether stop i is skipped by the SPE, is denoted as

. Thus,

(3.17)

In Eq. 3.17, A,, = 0 represents that station i is skipped by SPE, which ensures that

no passenger will board on SPE at stop i. Considering the demand from stop i to j,

denoted as the ones using SPE is the product of and qi,j · The demand of SP E

from stop i to j without transfer (i.e., k = 1) is denoted as 	 . Thus,

(3.18)

Passengers who board on SPE at stop i and need to transfer (e.g., k= 2 and =0)

to reach stop j, denoted as 	 can be formulated as2

(3.19)

Passengers who start the journey from stop i with the local SP to reach destination

stop j do not transfer (i.e., k = 3) if the origin station is already served by SPE (e.g.,

= 0 or 1). However, some passengers transfer to SP E to reach destination stop j

(i.e., k= 4) if /1, = 0 and Ai, =1. In this regard, the percentage of demand q11 which starts

with the local SP at origin stop i, transfers to the SPE at stop y, and then reach a

destination stop j, denoted as R ./ , is



38

(3.20)

where y is the index of transfer stop and passenger transfer station choices based on the

shortest travel time [e.g., min (tI + 	 +tI y,j,l J
.
 In Equation 3.20, the transfer time

from local vehicles to SPE vehicles is t 4 and in-vehicle time with SPE is t, 	 while
"Y 1 3

tIy,j,3represents the in-vehicle time of the local SP from stop y to stopj.Considering the

demand from stop i to j (i.e., q,,), and the percentage of demand using local SP (1— v, j ),

the demand of local SPs from stop i to stop j without transfer, denoted as A 3 is

R J,3 =qi,j(1—ψi,j)λi +qi,j(1—ψi,j)(1—λj)(1—ψi,j)+qi,j(1—ψi,j)(1—λi).1,j(1—λj ) Vi,j (3.21)

In Equation 3.21, the first term on the right hand side determines the local SP demand

that will not transfer to SPE as the origin stop is already served by SPE (e.g.,

/1,, =1, = 0 or 1); the second term ensures that the demand of local SP cannot transfer

to SPE as the origin and destination stops are not served (e.g., Ai = 0, 2, = 0); and the third

term calculates the demand of local SPs who have the option for, but are not willing to

transfer to SPE.

Passengers who start their journey with the local SP may transfer to SPE, if SP E

serves destination stop (e.g., /11 =1). Thus, Di 1,4 is formulated as

(3.22)
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3.2.3 Model Formulation

3.2.3.1 Total Cost (TC)

The objective function considered in Model II is Total Cost (TC), which includes user

( Cu ) and supplier ( C, ) costs as shown in Figure 3.5. The decision variables to be

optimized are the service frequencies of integrated SPs that minimize the total cost. Note

that, as defined in Model I, all cost components are formulated on an hourly basis and are

discussed next.

Total Cost

Figure 3.5 Cost structure for Model II.

3.2.3.2 User Cost (Ca )

The user cost, denoted as Cu , is defined as the sum of wait, transfer, and in-vehicle costs.

Thus,

(3.23)

where	 C,? and C, represent wait, transfer and in-vehicle costs, respectively.
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Wait Cost (CW )

The wait cost is the product of hourly demand, average wait time, and the user's value of

time. In general, the average wait time is a fraction of headway, denoted as 	 and the

headway is the inverse of service frequency. The average wait time, denoted as tW.. , for

passengers who use SPE from stop i to stop j is

(3.24)

Note that SPE may skip certain stops. Similarly, the, average wait time for

passengers who use the local SP at stop i is

(3.25)

The total wait cost CW is the sum of wait costs incurred by passengers using local

and express SPs multiplied by the corresponding wait time and the value of time u . Thus,

(3.26)

Transfer Cost (CR)

For passengers who use SPE from stop i and transfer to the local (all-stop or short-turn)

SP via stop z to destination stop j, the transfer time denoted as tRi,j,2 is the inverse of the
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total frequency (=average headway) multiplied by α„, the ratio of average transfer time

to headway. Thus,

(3.27)

where n is the number of stops, z is the index of the transfer station, and f",, represents

the frequency of SP from stop s to t. For outbound traffic (i.e. ( i < z < j ) the index of

origin stop s varies from 1 to i, and the index of destination stop t varies from z to n. Note

that z is determined by the shortest travel time of a passenger starting with SPE,

transferring to the local SP via stop z, and getting off at destination stop j. Similarly, the

transfer time for passengers from stop i beginning with the local SP, transferring to SPE

via stop y, denoted as t Ri,j,4 be formulated as

(3.28)

where tRi,j,4 is a fraction (a,) of SPE ' s headway (the inverse of frequency denoted as fE ).

The transfer cost C, is incurred by all transfer passengers, which is equal to the product

of transfer demand, average transfer time and value of user's time. Thus,

(3.29)
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In-vehicle Cost (CI)

The in-vehicle cost is defined as the product of hourly demand of all OD pairs, the

corresponding in-vehicle time and the value of user's time. The in-vehicle time, denoted

as t, , is a weighted average of the demand using the local SPs and SPE from the origin

stop i to the destination stop j. The in-vehicle time of passenger with SPE is shorter than

that with the local SP due to reduced stop delays (i.e., dwell time and

acceleration/deceleration delay) from skipped stops.

For passengers who start the journey with SPE from stop i to destination stop j

without transfer, the in-vehicle time denoted as tI l can be formulated as

(3.30)

where vd is the vehicle speed from stop d to d+1; /d represents the spacing between stops

d and d+1; and wd+1 is the average delay per stop. Similarly, in-vehicle time for

passengers with local SP from stop i to destination stop j, without transfer, denoted as

t i , is

(3.31)

However, a transfer at station z to the local SP is needed for passengers (i.e., k = 2)

who use SPE from stop i to stop j which is not served by SPE. In this case, the in-vehicle

time can be formulated as
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(3.32)

where t li,z,ltcan be obtained using Equation 3.30 and t,3,the in-vehicle time of the local

SP from stop z to destination stop j, can be obtained from Equation 3.31. Passengers (i.e.,

k= 4) who use the local SP from stop i, may transfer to SPE via stop y to expedite their

trips to destination stop j. Thus,

(3.33)

where t, , is formulated as Eq. 3.30.
y,j,1

Finally, C, is the sum of in-vehicle costs incurred by passengers using SP E and

the local (i.e., all-stop and short-turn) SP multiplied by the corresponding in-vehicle

times and the value of user's time p . Thus,

(3.34)

3.2.3.3 Supplier Cost (CO

The supplier cost, denoted as Co , is incurred by vehicles operating for all SPs. In general,

for SP,, , the supplier cost is the product of vehicle travel time from stop i to j, denoted as

T,,, vehicle frequency denoted as fi,j, and hourly vehicle operating cost, denoted as b .

Similarly, for SPE, the supplier cost is the product of vehicle travel time denoted as TE,

frequency denoted as fE , and hourly vehicle operating cost b. Thus, the total supplier

cost is

(3.35)
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Ti,j and TE are defined as the vehicle travel time for local and express SP, respectively,

and the layover time at the end stop of each SP is denoted as to . The vehicle travel time is

the sum of moving time along the route and dwell time at stops. Thus,

(3.36)

(3.37)

Finally, the total cost (TC), is defined as the sum of Co and Co , and is derived as

The decision variables in the objective total cost function formulated above

include the service frequencies of all service patterns, f,. and f, for all pairs of stops i

and j. The minimum total cost is yielded by the optimal service frequencies. An SP

whose frequency is equal to zero indicates that the SP is not part of the optimized

integrated service.

3.2.4 Constraints

Considering realistic limitations of vehicle operations, three constraints, including

frequency conservation, capacity, and fleet size constraints, are formulated and discussed

next.
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3.2.4.1 Frequency Conservation Constraint

The frequency conservation constraint is designed to ensure that the number of vehicles

will be even at the end stops. Thus,

(3.39)

where f i,. represents the frequency of SP from stop i to j.

3.2.4.2 Capacity Constraints

The capacity constraints formulated in Eqs. 3.40 and 3.41 are designed to ensure that the

service capacities from local (all-stop and short-turn) and express SPs are sufficient for

the demand. For local SPs, the average headway of link 1, denoted as 1/L , must be less

than or equal to the maximum headway denoted as HL r of the link, so that the service

capacity is capable of satisfying the demand. Thus,

(3.40)

where link 1 connects stops / and 1+1. Similarly, Eq. 3.41 is formulated for the SPE. Thus,

(3.41)

where hE,l represents the headway of SPE of link l which must be less than or equal to the

maximum headway of the SPE, denoted as HE,l.

Note that hL,I (hE,l) is equal to the inverse of the total frequency of local SPs (SPE)

serving in link 1. The headways for both directions in hL , and hE,I are identical, which are

(3.42)
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(3.43)

It is worth noting that 1-1L,l (HE,I) is determined by the maximum demand using local SPs

(SPE) traveling on link 1, which is equal to the vehicle capacity, denoted as C, divided by

the demand on the maximum load link. Thus,

(3.44)

where OL,I and To represent the outbound and inbound demand for local SPs in link 1

and can be obtained by Eqs. 3.45 and 3.46, respectively.

(3.45)

(3.46)

where k is the index for the demand categories which was described in section 3.2.2.

OL,I,k and IL , k are the outbound and inbound demand for local SP in demand category k

and formulated in Eqs. 3.47-49 and Eqs. 3.50-52 for k = 2, 3 and 4, respectively.

Eq. 3.47 is formulated to calculate the demand transferring from SP E to local SP

(z 1) at stop z, through link 1 to destination stop t. Demand in category 2 (k = 2)

travelling from stop s to t is denoted as Ds,t 2 and formulated using Eq. 3.19. Demand for

category 3 (k = 3) in link 1 using local SP without any transfer is formulated in Eq. 3.48.

Demand starting with a local SP and using link 1 before transferring at stop y (1 < y) to

SPE is given in Eq. 3.49.

(3.47)
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(3.48)

(3.49)

where s and t represent the indices of origin and destination stops, respectively. Ds,t,3 and

Ds,t,4 represent the demand from category 3 (k = 3) and 4 (k = 4) travel from stop s to t,

respectively. Note that demand for k = 2, 3, and 4 in Eq. 3.46 is formulated in Eqs. 3.50,

3.51 and 3.52, respectively.

(3.50)

(3.51)

(3.52)

Similar to Eq. 3.44, the maximum headway for SPE, denoted as H E,I, is

(3.53)

where 0,) and IE,I represent the outbound and inbound demand for SP E in link land can

be formulated similar to OL,l and ./L,l discussed above. Thus

(3.54)

(3.55)

Eqs. 3.56 to 3.58 are formulated to determine the outbound (O E) ) and Eqs. 3.59 to 3.61

are formulated to calculate the inbound (IE,I ) demand for SPE.
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(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

3.2.4.3 Fleet Size Constraint

The fleet size constraint formulated as Equation 3.62 ensures that the optimized service

frequency does not exceed the maximum service frequency due to limited operable fleet

size, denoted as F. Given that F must be greater than or equal to the total fleet size for

operating all SPs, the fleet size can be obtained from the product of vehicle round trip

travel time and its service frequency. Thus,

(3.62)

where 7;, and TE represent the vehicle round trip travel times for the local SPs and the

SPE, respectively, and have been discussed while formulating Eqs. 3.36 and 3.37.
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3.3 Performance Measures

Various performance measures (Vuchic, 2007) have been used in this study to analyze

the effectiveness of the optimized solution to the system operation. In this section, a

number of equations are formulated for vehicle miles traveled, passenger miles traveled,

average load factors, average costs, average vehicle miles traveled per vehicle, average

number of passenger per bus, average number of passenger per vehicle mile, etc.

3.3.1 Vehicle Miles of Travel

Vehicle miles of travel denoted as VMT, is the sum of distances travelled by all vehicles

of a transit fleet during an hour. Thus,

(3.63)

3.3.2 Passenger Miles of Travel

Passenger miles of travel denoted as PMT, is the product of the number of passengers

carried and the average trip length. Thus,

(3.64)

3.3.3 Load Factor

One of the important indicators of system productivity is the utility level of transit service

or load factor (LF), which can be defined as the total passenger-miles traveled divided by

the total space-miles provided. Thus,
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(3.65)

Note that the total passenger-miles traveled (the nominator) in Eq. 3.65 considers

both inflow and outflow demand, and the denominator reflects total space-miles provided

for both inbound and outbound trips.

3.3.4 Average Vehicle Miles of Travel

The average vehicle miles of travel denoted as VMTa is defined as the ratio of VMT to

fleet size. Thus,

(3.66)

3.3.5 Average Passengers per Vehicle Mile of Travel

The average passengers per VMT (P,) is defined as the ratio of the total number of

passengers to the vehicle miles of travel. Thus,

(3.67)

3.3.6 Average Passengers per Vehicle

The average passengers per vehicle also known as the system efficiency, denoted as P, is

defined as the ratio of the total number of passengers to fleet size, which indicates how

efficiently vehicles are used in terms of the number of trips per vehicle. Thus,
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(3.68)

3.3.7 Average Cost per Vehicle Mile of Travel

One of the common consumption indicators is the average cost per vehicle mile of travel,

denoted as C„,,, which is defined as the supplier cost divided by the VMT. It indicates the

cost per unit of transit service offered. Thus,

(3.69)

3.3.8 Average Cost per Passenger

The average cost per passenger, denoted as Cp, is the ratio of supplier cost to the total

number of passengers served. Thus,

(3.70)

3.3.9 Average Cost per Passenger Mile of Travel

The average cost in dollars per passenger mile of travel, denoted as Cpm, is defined as the

supplier cost divided by the total passenger miles traveled. Thus,

(3.71)
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3.3.10 Average Passenger Travel Time

The average passenger travel time, denoted as T a, is defined as the ratio of the sum of the

total passenger wait, transfer and in-vehicle time to the OD demand. Thus,

(3.72)

where Dij,k is the demand from stop i to j in category k and formulated in the demand

estimation section. The tW i,j,k , tRi,j,k k and t,, k represent wait, transfer and in-vehicle timeof k

passengers, respectively.

3.4 Summary

In this chapter, the objective total cost functions and sets of constraints (e.g., capacity,

fleet size, frequency conservation) for Models I and II were formulated. Model I was

developed to minimize the total cost of integrated all stop and short-turn SPs yielded by

the optimized service frequencies. Model I would be beneficial for conditions especially

where demand is concentrated on certain segments of the route. However, for demand

concentrating at certain OD pairs, such as intercity travel pattern, an express service

strategy would be beneficial, and it was introduced in Model II. Model II was developed

by considering the integration of an express SP into the all-stop and short-turn SPs.

Transfering of passengers is also considered in Model II. Various performance measures

(e.g., vehicle miles travel, load factor, average passenger per vehicle, etc.) were also

formulated in this Chapter to analyze the effectiveness of the optimized solutions.
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The combination and the interdependent relations among the decision variables

(e.g., SPs, service frequencies and stops skipped by SPE) form a combinatorial

optimization problem that is difficult to optimize analytically. Therefore, solution

algorithms are developed in the following chapter to search for the optimal solution.



CHAPTER 4

SOLUTION ALGORITHMS

As discussed previously, the objective of this dissertation is to develop models which

optimize transit service patterns and associated service frequencies to minimize the total

cost functions. The decision variables of the developed models include service patterns

(SPs), associated frequencies and stops skipped by an express service (Model II only).

The combination and the interdependent relations among these decision variables form a

combinatorial optimization problem that is difficult to optimize analytically. Therefore,

solution algorithms are developed in this chapter to search for the optimal solution.

In Section 4.1, an Exhaustive Search Algorithm (ESA) is presented to optimize

the local (all-stop and short-turn) SPs and associated service frequencies (Model I) as

well as the express service pattern (SPE), its service frequency and stops skipped by SPE

(Model II). Due to increasing computation time for a large number of stops, ESA may not

be the best approach to optimize the objective function for routes with a large number of

stops. Therefore, a Genetic Algorithm (GA) based on an integer string representation is

developed in Section 4.2 to search for the optimal decision variables, simultaneously. A

brief summary of the solution algorithms is given in Section 4.3.

54
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4.1 Exhaustive Search Algorithm (ESA)

ESA is programmed to find frequencies for the local (i.e., all-stop and short-turn) SPs for

Model I, and local, express SPs as well as the stops skipped by the SP E for Model II. ESA

is described below and shown in Figure 4.1. It is used to search for optimized local

service frequencies, which minimize total cost for Model 1:

Step 1: Input all baseline values (e.g., vehicle capacity, operating cost, user value,

number of stops, stop spacing's, vehicle operating cost, etc.) and set upper and

lower boundaries of service frequencies. Input 0/D demand and compute

maximum headway (11,0 using Eq. 3.12.

Step 2: Select a set of initial solutions for all service frequencies (k) and Calculate the

average headway (hm) using Eq. 3.11.

Step 3: Check capacity constraint using Eq. 3.10. If it satisfies condition hm1-1m

continue to next step, otherwise set new combination of fi,j values and repeat

Step 3.

Step 4: Calculate wait	 ) and in-vehicle ( ) times.

Step 5: Calculate all cost components (i.e., Cw, CI, Co and TC)

Step 6: Check all combinations of service frequencies. If all combinations were

considered continue to next step, otherwise select new frequencies and go to Step

3.

Step 7: Determine the minimum total cost and Stop.



Input baseline values
Set upper and lower boundaries of fi,j

Input O-D demand and compute Hm  (Eq.3.11)
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All combinations
of fi,j  is

considered?

Determine minimum Total Cost (TC)

Figure 4.1 Flow chart of the exhaustive search algorithm in Model I.

Similar to the Model I, ESA is used to search for optimized service frequencies

for minimized total cost in Model II, which is explained below and shown in Figure 4.2.

Step 1: Input all baseline values (e.g., capacity, operating cost, user value, number of

stops, stop spacing's, vehicle operating cost, etc.) and set upper and lower

boundaries of service frequencies. Input origin-destination (OD) demand and

compute maximum headways ( H,, and HE t) using Eqs. 3.44 and 3.53. Set initial

configuration of skipped stops (2).
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Step 2: Select a set of initial solutions for all decision variables (e.g., fi,j and fE , skipped

stops by SPE, etc.)

Step 3: Calculate the average hL,l and hE,l using Eqs. 3.42 and 3.43, respectively.

Step 4: Check capacity constraints. If conditions hL,I H L,I and hE,I H E1 are satisfied

continue to next step otherwise set new f,, and fE values and repeat step 3.

Step 5: Calculate wait 	 ), transfer	 ), and in-vehicle	 ) times. Re-determinek

transfer stops for transfer passengers.

Step 6: Check transfer stops. If transfer stops remain the same continue to next step,

otherwise go to Step 5.

Step 7: Determine ψ , , i,j  and Di,j,k and calculate all cost components.

Step 8: Check all possible service frequencies. If all combinations are considered

continue to next step, otherwise select new frequencies and go to Step 3.

Step 9: Check all possible skipped stop configurations. If all combinations are not

considered set new configuration of skipped stops and go to Step 4, otherwise

report the minimum cost and optimal solution and Stop.
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Re-determine transfer stops (y, z)

Is the transfer stops
(y and z) altered?

All combinations off'
and fE considered?

All possible configurations
for skipped stops

considered?

Determine Minimum Total Cost (TC)

Figure 4.2 Flow chart of the exhaustive search algorithm in Model II.
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Integrating three different SPs and setting associated service frequencies are a

large combinatorial problem especially for long corridors with large number of stops. The

solution space increases exponentially as the number of stops increases. A Genetic

Algorithm (GA) is implemented in the following section to solve Model II for routes with

a large number of stops.

4.2 Genetic Algorithm (GA)

GA is a stochastic algorithm which mimics the natural phenomena of genetic inheritance

and Darwinian strife for survival (Michalewicz, 1999) to search for the optimal solution.

A GA includes five major components:

• A criterion for evaluating the performance of a solution. The objective total cost
function developed in Equation 3.38 in Chapter 3 is the criterion.

• A genetic representation for encoding feasible solutions. An efficient genetic
representation needs to accommodate all decision variables and reduce the
difficulties of encoding and decoding a solution, which is a key component of a
GA. An efficient data structure can also facilitate the process of generating new
valid solutions and reducing computation time. In this study a string
representation is developed to transform the optimization problem into a GA.

• Reproduction processes to produce offspring solutions. Crossover and Mutation
operators are developed in the integer string genetic representation to generate
new solutions in the potential solution space, and are discussed in Section 4.2.2.

• A selection mechanism for promoting the evolution of good solutions. The elitist
selection method is utilized for developed genetic representation and is discussed
in Section 4.2.4.

• A constraint handling method is used to search the feasible solution space. A
penalty value is added for solutions which violate constraints as defined in
Section 4.2.5, which is applicable to the generic representation.

The step procedure to implement the developed GA is summarized below and depicted in

Figure 4.3.
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Step 1: Generate the initial group of random feasible solutions. The GA starts from the

initial group of solutions as first generation, called population pool.

Step 2: Translate binary codes into real numbers for each corresponding chromosome.

Calculate service frequencies and determine skipped stops by express service.

Step 3: Apply the capacity and fleet size constraints to verify that each solution satisfies

the constraints.

Step 4: Calculate the objective value (i.e., total cost) for each chromosome based upon

the service frequencies of all SPs and skipped stops by express service.

Step 5: Elect the solutions with good performance to produce new solutions (i.e.,

offspring) in accordance with the elitist selection method discussed in Section

4.2.4.

Step 6: Obtain the new generations by re-combining the preceding chromosomes (i.e., the

solutions selected in Step 5) using crossover and mutation. Thus, a new

population pool is formed for the next generation.

Step 7: Use the constraint handling method discussed in Section 4.2.5 to verify that each

new solution satisfies the capacity and fleet size constraints.

Step 8: The new solution will replace their parent solutions in the population pool. A new

population pool is formed for the next generation.

Step 9: Terminate the GA process and output the optimized solutions, if the predefined

stop criteria (i.e., maximum iterations or minimum total cost) is satisfied.

Otherwise go to Step 3.
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Generate Initial Solution PoolGA Starts

Translate binary codes into real numbers

Constraints
Satisfied?

Calculate the Objective
Value for Each Chromosome

Implement the Elitist Selection

Reproduce New Chromosomes by
Crossover and Mutation

Penalty Function to Handle Constraints

Update Solution Pool and Best Solution

Stop
Criteria?

Output the Best Result

Figure 4.3 Flow chart of the genetic algorithm

GA Ends

4.2.1 Encoding and Decoding Schemes

This section introduces the encoding and decoding scheme of the genetic representation.

Moreover, the procedures of reproduction, (i.e., crossover and mutation) are discussed in

Sections 4.2.2. In order to apply the GA to the developed model, a chromosome, denoted

as G, consisting of two parts of genes is encoded as shown in Figure 4.4. Every one cell
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represents one gene. An integer string consisting of a series of cells is designed to

represent various service frequencies denoted as Part 1, the information of whether stops

are skipped by SPE, denoted as Part 2.

Figure 4.4 Encoding scheme of a chromosome representation.

The genes decoded in Part 1 correspond to the value of service frequencies including all-

stop, short-turn and express services. The service frequency is a positive integer number,

and in this study maximum value of the service frequency is considered to be no more

than 60 bus/hr. Six cells are required for coding the service frequency in binary mode. As

shown in Figure 4.3, every six cells represent one service frequency. The total number of

local SPs for all-stop and short-turn services is ( n2 ) . Considering the frequency

conservation constraint (Eq. 3.39) there will be —1 x ( 12 ) different service frequencies for
2

all-stop and short-turn SPs. The last six genes represent the express service frequency.

The total number of genes in Part 1, denoted as p1, can be calculated as

(4.1)

For a six-stop transit route, there are 31 SPs with 16 different service frequencies

for all-stop and short-turn services and one for express service. Therefore, a total number

of 16 genes are designed to search for optimal service frequencies with GA. The service

frequency encoded in Part 1 of the chromosome shown in Figure 4.4 can be decoded
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based on binary, six-digit genes illustrated in the first row of Table 4.1, in which the

value of the third row is the product of the encoding factor, denoted as 2" and the value

of the rth binary gene, denoted as An example given in Table 4.1 represents two sets

of genes, 4 2 (101000) and 43 (000000), which can be translated into decimal numbers

using Eq. 4.2. This equation can be used for all 16 services, including the express service.

(4.2)

where is the value of the rth gene of SPi,j where r = 1,2,...,6.

As discussed in the model formulation in Chapter 3, SPE may skip some of the

stops along the route. The variable indicating whether stop i is skipped by the SPE,

denoted as , is encoded in Part 2 of the chromosome as shown in Figure 4.4. In Part 2,

an integer attribute is assigned to define the genes corresponding to each station, while

"1" indicates that SPE serves the stop and "0" is for a skipped stop. Considering the 1 st

and nth stops are always served by the express service, there will be a total of (n-2) genes

required in Part 2.
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Table 4.1 Representation of the Genes in Part 1

i = 1, j = 2

1 Genes ( gr,i,j ) 1 0 1 0 0 0 Total

2
Encoding Factor

(2)
2° 21 22 23 24 25 63

3
Value

(gr,i,j )(2r-1 )
1 0 4 0 0 0 5

i = 1, j = 3

1 Genes ( gri,j) 0 0 0 0 0 0 Total

2
Encoding Factor

( 
20 21 22 23 24 25 63

3
Value

(gr,i,j)(2r-1)
0 0 0 0 0 0 0

4.2.2 Reproduction: Crossover and Mutation

During the processes of reproduction, the classic genetic operators (i.e., crossover and

mutation) are adopted to produce new solutions by altering their parent solutions (i.e.,

solution strings in a previous population pool). Since GA is a stochastic algorithm, the

probabilities of performing the crossover and mutation operations are defined as

crossover and mutation ratios, denoted as rx and rM  respectively, and are pre-determined

model parameters. The procedures of crossover and mutation are illustrated in Tables 4.2

and 4.3, respectively, for the twelve-digit genes of a chromosome.

The crossover operation generates chromosomes by exchanging genes from their

parents. It is used to gestate better offspring by inheriting good genes (i.e., lower total

cost in the fitness evaluation) from their parents. The often-used crossovers are one-point,

two-point, and multipoint crossovers. The criteria of selecting a suitable crossover
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depend on the length and structure of chromosomes. In this study, two-point crossovers

were adopted by selecting crossover points from each part of the chromosome.

Table 4.2 One-Point and Two-Point Crossovers

One-Point	 Point 1	 Two-Point	 Point 1	 Point 2

Before	
Chromosome A	 101100	 010101	 Chromosome A	 1011	 0001	 0101

Crossover
Chromosome B	 001000	 111001	 Chromosome B	 0010	 0011	 1001

After	
Chromosome A	 101100	 111001	 Chromosome A	 1011	 0011	 0101

Crossover
Chromosome B	 001000 010101	 Chromosome B	 0010 0001	 1001

The mutation operation randomly selects a chromosome from the population and

change the rth bit. It is used to generate new chromosomes. The mutation is usually

performed with a probability p (0<p<1), meaning that only a portion of the genes in a

chromosome will be selected to be mutated. The two-point mutation is adopted in this

study for each part of the chromosomes.

Table 4.3 One-Point and Two-Point Mutations

One-Point Two-Point

Before Chromosome A 101100010101 Chromosome A 101100010001

Crossover T T 	 T

After Chromosome A Chromosome A101000010101 10100001401
Crossover 't T 	 T

4.2.3 Evaluation Criterion

The performance of each solution is evaluated by a fitness function (i.e., minimum total

cost in this study). For total cost minimization problems, the solution with a minimum
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cost is identified as a better solution with greater probability to be selected to reproduce

new solutions in the next generation. Better solutions have higher probabilities to evolve

into the next generation of the population pool by implementing the elitist selection as

discussed in the next section.

4.2.4 Elitist Selection

The elitist selection, developed by Michalewicz (1999), is utilized to guarantee that the

current generation solutions with good performance can always evolve into the next

generation.

Figure 4.5 illustrates the process of selection of better solutions, where the

population size and the ratio of selection are denoted as P and rs, respectively, and are

two pre-determined GA parameters. Prior to the selection process, the solutions in the

current generation (e.g., tth generation) are sorted in an ascending order based on their

objective values. The first solution in the generation represents the best optimized SPs,

associated service frequencies and optimized skipped stops by SPE in terms of the lowest

total cost. As shown in Figure 4.5, the top (P)(rs) parent solutions in the tth generation are

chosen to reproduce identical (P)(rs) new offspring in the (t+1)th generation, and the

worst (P)(rs) solutions with higher costs in the tth generation are discarded. Then, the

original top (P)(rs) and the remaining (P)(1-2r s) solutions are replicated to the population

pool of the (t+1)th generation to maintain a constant population size P. The elitist

selection is used in each generation until the proposed GA reaches the criteria of

terminating the search process.
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Discard

Figure 4.5 The elitist selection mechanism.

4.2.5 Constraint Handling

The objective total cost function formulated in Eq. 3.38 is optimized subject to capacity,

fleet size and frequency conservation constraints. A penalty value is applied to handle the

constraints. A large penalty value is added to the objective value of the solutions

violating the constraint(s). Thus, infeasible solutions may be discarded during the

evaluation process. Using this approach the constrained problem is transformed into a

non-constraint one. The total cost function is transformed as follows:

feasible region

feasible region

4.3 Summary

In this chapter, two solution algorithms were developed to solve the optimization

problems discussed in Chapter 3. First, an exhaustive search method is used to optimize
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the developed models. The exhaustive search algorithm is capable and efficient to deal

with smaller scale transit routes with limited number of stops. On the other hand, the

genetic algorithm is developed to search for optimal solutions in reasonable time periods

for transit routes with many stops. In the following chapter, two case studies will

demonstrate the applicability of the solutions algorithms developed here.



CHAPTER 5

CASE STUDY

This chapter demonstrates the applicability of the models developed in Chapter 3 and the

solution algorithms developed in Chapter 4 to optimize the transit service pattern

problem. Two transit routes, including a hypothetical six-stop and a real world bus routes,

are discussed. In Section 5.1, a six-stop bus route is used to demonstrate the applicability

and effectiveness of the developed models for a small scale bus route and investigate the

relationships among the model parameters and decision variables. Three scenarios are

evaluated and sensitivity analyses are conducted and the results of these scenarios are

compared and discussed. In Section 5.2, a real world bus route (New Jersey Transit

Springfield Avenue Line) is used to test the applicability of the developed models and

algorithm for a large scale transit corridor with many stops. The results of three scenarios

for the real world bus route are also compared and discussed in this section. Finally, the

summary of this chapter is presented in Section 5.3.

5.1 Case I - A Six-Stop Bus Route

The purpose of this section is to demonstrate the applicability and effectiveness of the

developed models to a small scale bus route and investigate the relationships among the

objective function, model parameters and decision variables. A hypothetical six-stop bus

transit route is utilized, while the peak OD demand matrix and feasible SPs are illustrated

in Table 5.1 and Figure 5.1, respectively.
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Table 5.1 OD Demand Matrix of a Six-Stop Bus Route (pass/hr)

TOW

From(
1 2 3 4 5 6

1 0 10 97 21 92 202

2 10 0 12 14 17 38

3 85 10 0 42 91 211

4 15 9 66 0 78 93

5 21 11 61 63 0 72

6 199 21 214 10 21 0
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	110" Candidate All-stop and Short-turn SP (Scenario A, B and C)

Served Stop (Scenario A, B and C)

"4111— 	'-111"" Candidate Express SP (Scenario C only)

44> Potential Skipped Stop by Express SP (Scenario C only)

Figure 5.1 Configuration of a six-stop bus route and candidate service patterns.
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The study bus route has a length of 5.4 miles, on which passengers are able to

access the service only at designated stops, of which Stops 3 and 4 are potential turn-back

points for short-turn services. The average bus travel speed is assumed to be 25 mph

(miles/hour), and the vehicle capacity is 50 pass/bus with hourly operating cost of 120

$/bus-hr. The weight factors of headway used to approximate wait and transfer times,

denoted as αy, and αR , respectively, are identical and equal to 0.5. The user's value of

time is assumed to be 10 $/pass-hr. The operable fleet size is assumed to be 21 buses, and

it acts as the upper bound of the fleet size during the optimization processes. All baseline

values of the model parameters are summarized in Table 5.2.

Table 5.2 Baseline Values of the Model Parameters

Parameters Descriptions 	 Baseline Values
b
C
n

Ffi,j

fE

ld

g

to

Vd

0R

Ow

Wd

aR
a„

Bus operating cost
Bus capacity

Total number of stops

Maximum operable fleet size

Frequency of all-stop and short turn SP from stop i to j
Frequency of express SP

Distance from stop d to d+1
Eligible stops for turn-back

Demand from stop i to j

Layover time at the end stop

Average vehicle speed from stop d to d+1
Sensitivity parameter of demand to the length
of in-vehicle time
Sensitivity parameter of demand to the length
of transfer time
Sensitivity parameter of demand to the length
of wait time
Average stop delay and dwelling time at stop d
Ratio of the average transfer time to headway

Ratio of the average wait time to headway

User's value of time

120 $/bus-hr
50 pass/bus

6 stops

21 buses

To be determined

To be determined

See Figure 5.1

Stops 3 and 4

See Table 5.1

0.1 hr

25 miles/hr

1.33

2.00

2.00

0.06 hr

0.5

0.5

10 $/pass-hr
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The exhaustive search algorithm developed in Chapter 4 is used to minimize the

objective total cost function (Eq. 3.13), considering frequency conservation, service

capacity, and fleet size constraints. Three scenarios are defined as illustrated in Table 5.3,

through which the applicability of the developed model and the solution algorithm are

examined. For Scenario A, an all-stop SP serving every stop from the beginning to the

end of the route is considered. In addition to the all-stop SP, the effectiveness of the

integrated all-stop and short-turn SPs are investigated in Scenario B. Finally, the

integrated operation of all-stop, short-turn and express SPs are analyzed in Scenario C.

Table 5.3 Scenarios of Study Service Patterns

Scenarios Service Patterns

A All-stop

B All-stop + Short-turn

C All-stop + Short-turn + Express

5.1.1 All-Stop SP — Scenario A

The all-stop SP denoted as SP1,6 and SP6,1 shown in Figure 5.2 is considered under

Scenario A. Based on the OD demand of the study route illustrated in Table 5.1, the

optimized service frequency is 17 bus/hr that achieves the minimum cost of 8,582 $/hr

The associated performance measures (e.g., fleet size, vehicle miles travel, average load

factors, etc.) and all cost components are calculated and shown in Table 5.4.



-411 • " '	 All-stop SP

Served stops

Figure 5.2 Optimized frequency of the all-stop SP in Scenario A.

Table 5.4 Optimal Results of Scenario A

Variables Units Optimal Values

f16 (./6,1) buses/hr 17

Outbound LF - 0.68

Inbound LF 0.53

Average LF - 0.61

Fleet Size buses 21

VMT bus-mile/hr 184

PMT pass-mile/hr 5574

V, mph 8.77

VMT„ miles/bus 8.74

PV,i, pass/bus-mile 10.38

P, pass/bus 90.76

Cp $/pass 1.32

C,,,i, $/pass-mile 0.45

C,,i,, $/bus-mile 13.69

Ta hr/pass 0.32

CW $/hr 561

C„ $/hr 0

C, $/hr 5,508

C0 $/hr 2,513

Total Cost $/hr 8,582
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The performance measures defined and formulated in Chapter 3 are used here to

evaluate the service under Scenario A. The passenger miles traveled denoted as PMT, the

product of the number of passengers carried and average trip length, is 5574 pass-mile/hr.

The vehicle miles traveled, denoted as VMT, the sum of distances traversed by buses per

hour, is 184 bus-miles/hr. The average bus speed, denoted as Va, is 8.77 mph, which

yields an average passenger travel time (L) of 0.32 hr/pass.

The efficiency of bus usage, denoted as VMTa, is 8.74 miles/bus, which is defined

as VMT divided by the fleet size. Considering the intensity of bus service usage, the ratio

of hourly demand to VMT, denoted as Pvm, is 10.38 pass/bus-mile. A higher Pvm

represents a more efficient service. The average cost per passenger, per PMT, and per

VMT, denoted as Cp, Cpm and Gym are 1.32 $/pass, 0.45 $/pass-mile and 13.69 $/bus-mile,

respectively.

The service from Stop 1 to 6 is defined as the outbound direction and vice versa

for the inbound direction. As shown in Figure 5.3, the link and average load factor (LF)

for both outbound and inbound services are 0.68 and 0.53, respectively. It was found that

the highest occupancy rate is at the outbound direction between Stops 4 and 5 with a LF

of 0.97, while the LF between Stops 1 and 3 are less than the average LF for each service

direction. The performance measures of Scenario A will be utilized to make comparisons

with those derived under Scenarios B and C.
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Figure 5.3 Load factor under optimal operation in Scenario A.

5.1.2 Sensitivity Analysis — Scenario A

In this section, the relationship between decision variables (e.g., SP, service frequency)

and model parameters (e.g. bus operating cost, user value of time, bus capacity, bus

speed, etc.) are investigated. For instance, costs (i.e., total, user and supplier costs) versus

service frequency are illustrated in Figure 5.4, in which the minimum total cost of 7,882

$/hr is achieved at the optimized service frequency of 8 buses/hr. However, this solution

violates the capacity constraint. The dotted lines in Figure 5.4 indicate infeasible

solutions due to insufficient service capacity. Thus, the optimized service frequency is 17

buses/hr, which yields the minimum total cost of 8,582 $/hr.
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Figure 5.4 Costs vs. service frequency in Scenario A.

The optimized frequency versus the bus operating cost with and without capacity

constraint are illustrated in Figure 5.5. As the bus operating cost increases from 20 to 200

$/bus-hr under constraint optimization, the optimized service frequency first decreases

from 20 to 17 buses/hr and stays on 17 buses/hr when the bus operating cost is over 28

$/bus-hr, while it decreases from 20 to 6 buses/hr as the capacity constraint is removed

and a smaller number of passengers is served.

The dotted line in Figure 5.6 indicates that the optimized service frequency is

significantly affected by the user's value of time, which increases as the user's value of

time increases to reduce the increased user's cost. As discussed earlier, the service

frequency must be equal to or greater than 17 buses/hr to satisfy the capacity constraint.

Under constrained optimization, the optimized frequency remains constant as the user's

value of time stays below 43 $/hr.



SP 16 (SP6 1) with capacity const.

SP 16 (SP6 1) without capacity const,

Bus Operating Cost ($/bus-hr)

Figure 5.5 Optimized service frequency vs. bus operating cost in Scenario A.

5 	 10 	 20 	 30 	 40 	 43 	 50 	 60

User's Value of Time ($/pass-hr)

Figure 5.6 Optimized service frequency vs. user's value of time in Scenario A.
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To investigate the relationship between optimized frequency and different

demand, Figure 5.7 is developed by varying the demand from 20% to 140%. A solid line

shows the optimized service frequency with bus capacity of 50 bus/hr while in the dotted

line bus capacity increased to a large positive number (e.g., > 500 pass/bus) to optimize

service frequency without the capacity constraint. Both optimized frequencies with and

without considering the capacity constraint increase proportionally as the route demand

increases.

Bus capacity is an important parameter which influences the optimized service

frequency. While fixing the bus operating cost, the optimal bus capacity and optimized

service frequency by varying the demand are illustrated in Figure 5.8. As discussed

earlier, a bus capacity of 50 pass/bus requires a service frequency of 17 buses/hr which

satisfies the capacity constraint and yields a total cost of 8,582 $/hr. However, using a bus

capacity of 103 (instead of 50) pass/bus, decreases the optimized service frequency from

17 to 8 buses/hr which satisfies the capacity constraint and yields a minimum total cost of

7,882 $/hr for the study route in Scenario A.



ASP 16 (SP61) with capacity const.

...ttre SP 16 (SP61) without capacity const.
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Demand Multiplier (%)

Figure 5.7 Optimized service frequency vs. demand multiplier in Scenario A.

Demand Multiplier (%)

Figure 5.8 Optimized service frequency and bus capacity vs. demand multiplier in
Scenario A.
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As the bus capacity increases in Figure 5.9, the optimized f1,6 and f6 , 1 decrease and

a lower supplier cost as well as total cost may be expected. However, increasing bus

capacity may reduce the optimized service frequency (increase the optimized headway),

which increases passenger wait time. As discussed earlier, Figure 5.9 also shows that bus

capacities over 103 pass/bus yield the same minimum total cost of 7,882 $/hr.

Figure 5.10 shows the impact of bus capacity on optimal fleet size and average

load factor. Decreasing bus capacity increases the optimal fleet size because more

frequent service is needed to satisfy the capacity constraint. It is found that the average

LFs vary between 0.59 to 0.63 for buses with a capacity of 60 and less while the variation

range of average LF increases (e.g., 0.55-0.62) as the bus capacity increases. A bus

capacity of 103 pass/hr achieves the lowest fleet size of 10 buses and yields the highest

average LF of 0.63.

The effect of bus capacity on average passenger travel time denoted as Ta is

indicated in Figure 5.11. More frequent service is needed when bus capacity decreases,

which may decrease the passengers' travel time because of reduced wait time.
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Total Cost

Supplier Cost

 User Cost

—A— SP16 (SP61)
Minimum Total Cost of
$7,882 is achived at the
Bus Capacity of 103

Bus Capacity (pass/bus)

Figure 5.9 Costs and optimized service frequency vs. bus capacity in Scenario A.

Bus Capacity (pass/bus)

Figure 5.10 Optimal fleet size and average load factor vs. bus capacity in Scenario A.
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Figure 5.11 Average passenger travel time vs. bus capacity in Scenario A.

The impact of bus capacity on the average cost per VMT (G m?) and average cost

per PMT (Cpm) in Scenario A is illustrated in Figure 5.12. Bus capacity is increased

without increasing the bus operating cost. It is found that Cpm decreases as the bus

capacity increases because of the reduced supplier cost as shown in Figure 5.9. However,

the bus capacity variation does not impact the C vm due to the proportional change in

supplier cost and VMT.

The impacts of average bus speed on cost components (i.e., user and supplier

cost) and optimized frequency; and impacts on optimized fleet size and average

passenger travel time are demonstrated in Figures 5.13 and 5.14, respectively. In this

case, increasing the bus speed has no impact on optimized service frequency due to the

capacity constraint. However, the optimal fleet size is reduced due to the reduction in bus

round trip travel time as the speed increases. Therefore, reduction in bus travel time

decreases the supplier cost. In addition, the buses in higher speeds decrease the average

travel time of passengers and lower user costs.
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Bus Capacity (pass/bus)

Figure 5.12 Average cost per vehicle miles travel (Cvm) ) and per passenger miles travel
(Cpm) vs. bus capacity in Scenario A.

Figure 5.13 Costs and optimized service frequency vs. bus speed in Scenario A.
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Bus Speed (miles/hr)

Figure 5.14 Optimal fleet size and average passenger travel time vs. bus speed in
Scenario A.

5.1.3 All-Stop and Short-Turn SPs — Scenario B

In addition to the all-stop SP described in Scenario A, short-turn SPs are introduced in

this section as shown in Figure 5.15. As described earlier, Stops 3 and 4 are eligible as

the turn-back stops of the short-turn services. Therefore, 5 different short-turn SPs are

available (e.g., SP1,3 (SP3,1), SP1,4 (SP4,i), SP3,4 (SP4,3), SP 3 ,6 (SP6 ,3 ) and 5P4,6 (SP6,4)) for

the six-stop bus route described in Section 5.1. Based on the OD demand illustrated in

Table 5.1, the optimized service frequencies of SP 1 ,6 (SP6 , 1 ), SP3 , 6 (SP6 ,3) and SP4 ,6 (SP6,4),

are 10, 5 and 2 buses/hr respectively, and 0 buses/hr for SP 1 ,3 (SP3 , 1 ), SP1,4 (SP4,1), SP3,4

(SP4,3). This operation has a minimum total cost of 8,354 $/hr. The associated measures

(e.g., fleet size, VMT, average LFs, etc.) and all cost components derived from the

optimized frequencies are calculated and shown in Table 5.5. Note that, the model is able
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to optimize the turn-back stops, while the determination of the eligible stops may be

based on the bus supplier's discretion due to the stop layout.

Figure 5.15 Optimized service patterns and service frequencies in Scenario B.

The performance measures are used to evaluate the system performance under

Scenario B. The passenger miles traveled (PMT) and vehicle miles traveled (VMT) are

5574 pass-mile/hr and 141 bus-miles/hr, respectively. The average route speed (Va) is

8.26 mph, which yields an average passenger travel time (Ta) of 0.33 hr/pass. The

efficiency of bus usage (VMTa) and intensity of bus service usage (P„m) are 7.82

miles/bus and 13.55 pass/bus-mile, respectively. The average cost per passenger (C p), per

PMT (Cpm) and per VMT are 1.09 $/pass, 0.37 $/pass-miles and 14.76 $/bus-miles,

respectively.
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Table 5.5 Optimal Results of Scenario B

Variables Units Optimal Values

f1,3 ( f31) buses/hr 0

1,4 ( f4,1 ) buses/hr 0

46(40 buses/hr 10

f3,4 (f4,3) buses/hr 0

f3,6 (f6,3) buses/hr 5

f4,6( f6,4) buses/hr 2

Outbound LF - 0.89

Inbound LF - 0.70

Average LF - 0.79

Fleet Size buses 18

VMT bus-mile/hr 141

PMT pass-mile/hr 5574

Va mph 8.26

VMTa miles/bus 7.82

Pvm pass/bus-mile 13.55

Pv pass/bus 105.89

Cp $/pass 1.09

$/pass-mile 0.37

CV,,, $/bus-mile 14.76

Ta hr/pass 0.33

Cw $/hr 769

CR $/hr 0

Cr, $/hr 5508

Co $/hr 2077

Total Cost $/hr 8,354

Figure 5.16 shows the link and average LF for both outbound and inbound

services are illustrated. The average LF's of outbound and inbound services are 0.89 and

0.70, respectively. It was found that the highest occupancy rate is at the outbound
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direction between Stops 2 to 5 with LF of 0.99 between Stop 2 and 3 and decreasing to

0.97 after Stop 3, while the LF between Stops 1 to 2 and 5 to 6 are less than the average

LF of each service direction.

Figure 5.16 Load factor under optimal operation in Scenarios B.

5.1.4 Sensitivity Analysis — Scenario B

In this section, the relationships among decision variables (e.g., SPs, service frequencies),

performance measures (e.g., fleet size, VMT, LF, T a, etc.) and model parameters (e.g. bus

operating cost, user value of time, bus capacity, bus speed etc.) are investigated. For

instance, optimized short-turn service frequencies and costs (i.e., total, user and supplier

costs) versus the all-stop service frequency (f i,6 and f6, 1 ) are illustrated in Figure 5.17 and

5.18, respectively. When the f1,6 and f6,1 is more than 17 buses/hr, all demand can be

satisfied by an all-stop service and all optimized short-turn service frequencies become 0
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buses/hr. The optimized value of fi,6 (and f6,1) is 10 buses/hr and increasing f1,6 and f6,1

above 10 buses/hr, increases the supplier cost. However, increasing f1,6 (and f6,1)

decreases the user cost due to the passenger waiting time decrease. Therefore, the

optimized service frequencies of f1,6 f3,6 (f6,3), and f4,6 (f6,4) are achieved as 10, 5,

and 2 buses/hr, respectively, which yields a minimum total cost of 8,354 $/hr.

The sensitivity of optimized service frequencies versus the bus operating cost is

illustrated in Figure 5.19. As the bus operating cost increases from 40 to 100 $/bus-hr, the

optimized service frequency of all-stop SPs (i.e., SP 1 ,6 and SP6,1) decreases from 17 to 10

buses/hr, while the optimized service frequencies of short-turn SPs (e.g., SP3,6 (SP6,3) and

SP4,6 (SP6,4)) increase to balance the increased supplier cost. However, all service

frequencies remain the same when the bus operating cost is over 100 $/bus-hr due to the

capacity constraint.

Figure 5.20 shows the impact on optimal VMT and average LF by increasing the

bus operating cost from 40 to 200 $/bus-hr and the user's value of time and other baseline

variables are fixed. VMT decreases as the operating cost increases and reaches the

minimum value of 141 bus-miles/hr when the bus operating cost is 100 $/bus-hr which

yields the maximum LF of 0.79.
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Figure 5.17 Optimized short-turn service frequencies vs. service frequency of
SP1,6 (SP6, 1 ) in Scenario B.
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Figure 5.18 Costs vs. service frequency of SP1,6 (SP6,1) in Scenario B.
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Figure 5.19 Optimized service frequency vs. bus operating cost in Scenario B.

Figure 5.20 Optimal vehicle miles travel and average load factor vs. bus operating cost
in Scenario B.
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Figure 5.21 shows the impact on optimized service frequencies by varying the

user's value of time from 5 to 50 $/pass-hr. The all-stop service frequency increases and

the short-turn service frequencies decrease as the user's value of time increases to

balance the increasing user costs. In other words, increasing the user's value of time

increases the need of more buses, which yields the supplier cost increase.

Figure 5.22 shows the impact of user's value of time on the optimal fleet size and

average load factor. Increasing the user's value of time increases the optimal fleet size

due to the replacement of the short-turn services by the all-stop service. Using the full

route service instead of short-turn services also decreases the average LF and increases

the supplier cost because more buses are needed to satisfy the increasing vehicle miles

traveled.

In Figure 5.23, the impact of user's value of time on Cvm and Cpm is demonstrated.

Gym decreases as the bus capacity increases because of VMT increases proportionally

higher than supplier cost. However, increasing the user's value of time increases the

average cost per PMT (Cpm) because of the supplier cost increase while the PMT remains

the same.

Figure 5.24 shows that the average passenger per bus (Pp) and per VMT (Pvm)

decrease as the user's value of time increases, due to the increase of the optimal fleet size

as discussed earlier in Figure 5.22.



User's Value of Time ($/pass-hr)

Figure 5.21 Optimized service frequencies vs. user's value of time in Scenario B.

User's Value of Time ($/pass-hr)

Figure 5.22 Optimal fleet size and average load factor vs. user's value of time in
Scenario B.



User's Value of Time ($/pass-hr)

Figure 5.23 Average cost per VMT (C,m) and average cost per PMT (Cpm) vs. bus
operating cost in Scenario B.
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User's Value of Time ($/pass-hr)

Figure 5.24 Average number of passengers per bus (PO and average number of
passengers per VMT (.1),m) vs. users value of time in Scenario B.
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To investigate the relationship between optimized all stop and short-turn service

frequencies and different demand, Figure 5.25 is developed, in which the demand

multiplier varies from 20% to 140%. All the optimized service frequencies increase to

satisfy the capacity constraint.

The optimal bus capacity and associated optimized service frequency are

illustrated in Figure 5.26. As discussed before, the fixed bus capacity of 50 pass/bus

requires that f1,6 KO, f3,6 (6,3) and f4,6 V6,4), are 10, 5 and 2 buses/hr, respectively. As

illustrated in Figure 5.26, using a bus capacity of 103 pass/bus for the given route

demand (i.e., demand multiplier is 100%), eliminates all short-turn SPs and decreases the

f1,6 (f6J) from 10 to 8 buses/hr which satisfies the given OD demand and yields a

minimum total cost of 7,882 $/hr. It is worth to note that, only f1,6 and f6 , 1 is used as the

optimized frequency to achieve the minimum total cost when vehicle capacity is grater

than the optimal bus capacity.

Figure 5.25 Optimized frequency vs. demand multiplier in Scenario B.
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Demand Multiplier ("/0)

Figure 5.26 Optimal bus capacity and relevant optimized service frequency vs. demand
multiplier in Scenario B.

As shown in Figure 5.27, as the bus capacity increases, the optimized service

frequencies decrease. Higher bus capacity also lowers supplier as well as total cost as

shown in Figure 5.28. However, increased bus capacity may reduce service frequency

because of increased headway, which increases passenger wait time. Figure 5.28 also

shows that bus capacities over 103 pass/hr satisfy the capacity constraint and yield the

lowest minimum total cost of 7,882 $/hr.

Figure 5.29 shows the impact on Cvm and Cpm by varying the bus capacity from 20

to 200 pass/bus. The average cost per VMT decreases because of the need of less

frequent service which yields lower fleet size and VMT. Average cost per PMT

significantly decreases because of the constant PMT as supplier cost decreases.
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Bus Capacity (pass/bus)

Figure 5.27 Optimized service frequencies vs. bus capacity in Scenario B.

Bus Capacity (pass/bus)

Figure 5.28 Costs vs. bus capacity in Scenario B.
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Figure 5.29 Average cost per VMT (C,m) and per PMT (Cpm,,) vs. bus capacity in
Scenario B.

The impacts of average bus speed on cost components (i.e., user and supplier

cost) and optimized frequencies; and impacts on optimal fleet size and average passenger

travel time are demonstrated in Figures 5.30 and 5.31, respectively. In Scenario B,

increasing the bus speed up to the 50 miles/hr has no impact on optimized service

frequency. However, optimal fleet size is reduced due to the reduction in bus round trip

travel time as the speed increases. Therefore, a reduction in bus travel time decreases the

supplier cost. In addition, the buses in higher speeds decrease the average travel time of

passengers, which lowers user costs.
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Figure 5.30 User and supplier costs and optimized frequencies vs. bus speed
in Scenario B.

Bus Speed (miles/hr)

Figure 5.31 VMT and average passenger travel time (TO vs. bus speed in Scenario B.
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5.1.5 Integrated All-Stop, Short-Turn and Express SPs — Scenario C

In addition to all-stop and short-turn SPs described in Scenario B, an express SP denoted

as SPE is introduced in this section as shown in Figure 5.32. SP E may skip some of the

stops which are determined during the optimization process. Considering the OD demand

illustrated in Table 5.1 and baseline values given in Table 5.2, it was found that Stops 2,

4 and 5 are skipped by express services and the optimized service frequencies of SP1,6

(SP 6 , 1 ), SP3,6 (SP6,3), SP4,6 (SP6,4) and SPE are 4, 2, 2 and 9 buses/hr, respectively. This

operation achieves the minimum total cost of 7,317 $/hr. The associated measures (e.g.,

fleet size, VMT, VMTa Pv, Pvm, Ta, and LF etc.) and all cost components derived from the

optimized frequencies are calculated and shown in Table 5.6.

▪ All-stop and Short-turn SPs

' Served Stops

11" Express SP
• Skipped Stops by Express SP

Figure 5.32 Optimized SPs in Scenario C.

In scenario C, PMT and VMT are calculated as 5574 pass-miles/hr and 141 bus-

miles/hr, respectively. The average route speed (Va) is 10.75 miles/hr which yields an

average passenger travel time (Ta) of 0.29 hr. VMTa and Pm is 9.83 miles/bus and 13.55

pass/bus-mile, respectively. Average hourly supplier costs per passenger (Cpm), per PMT
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(Cpm) and per VMT (Cvm), are 1.09 $/pass/hr, 0.37 $/pass-miles/hr and 14.76 $/

bus-miles/hr, respectively.

Table 5.6 Optimal Results of Scenario C

Variable Units Optimal Values

f1,3 ( f3,1) buses/hr 0

44(f4,1) buses/hr 0

46(4,1) buses/hr 4

f3,4 ( f4,3) buses/hr 0

f3,6 ( f6,3 ) buses/hr 2

4,6(4,4 ) buses/hr 2

f. buses/hr 9

Outbound LF - 0.79

Inbound LF - 0.62

Average LF - 0.71

Fleet Size buses 16

VMT bus-mile/hr 157

PMT pass-mile/hr 5574

Va mph 10.75

VMTa miles/bus 9.83

P ym pass/bus-mile 12.12

Pv pass/bus 119.13

Cp $/pass 0.97

$/pass-mile 0.33

Cvm $/bus-mile 11.79

Ta hr/pass 0.29

CW $/hr 1,275

CR $/hr 143

C/ $/hr 4,045

Co $/hr 1,854

Total Cost $/hr 7,317
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The link and average LFs for both outbound and inbound services are illustrated

in Figure 5.33. The average LF's of outbound and inbound services are 0.79 and 0.62,

respectively. It was found that the highest occupancy rate is at the outbound direction

between Stops 3 and 4 with LF of 0.97, while the LF between Stops 1 to 3 and 5 to 6 are

less than the average LF of each service direction.

Figure 5.33 Load factor under optimal operation in Scenario C.

5.1.6 Sensitivity Analysis — Scenario C

The previous section discussed the minimized total cost and optimized service

frequencies considering three SPs (i.e., all-stop, short-turn and express) while utilizing

the baseline values of the input parameters shown in Table 5.2. In this section, the

relationship between decision variables (e.g., SPs, service frequencies, skipped stops by
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express service, etc.) and model parameters (e.g. bus operating cost, user's value of time,

bus capacity, bus speed, etc.) are investigated.

The optimized service frequencies (i.e., all-stop, short-turn and express) versus bus

operating cost are illustrated in Figure 5.34. Increased bus operating costs encourage the

short-turn SP (e.g. SP3,6) but discourage the full route SPs (e.g., SP 1 ,6 and SPE) to reduce

the supplier cost.

Figure 5.35 shows that the VMT decreases as the bus operating cost increases due

to the increase of short-turn services and the decrease of full route service frequencies to

balance the increasing supplier cost.

Figure 5.36 shows how average passengers per bus (P„) are affected by bus

operating cost. P„ increases as the bus operating cost increases due to the decrease of

VMT as well as fleet size. It is also found that average cost per VMT increases

proportionally as the bus operating cost increases.

The impact on optimized service frequencies by varying the user's value of time

from 5 to 50 $/bus-hr is illustrated in Figure 5.37. The full route service (i.e., all-stop and

express) frequencies increase and short-turn service frequencies decrease as the user's

value of time increases to minimize the passenger's wait, transfer and in-vehicle times.

Figure 5.38 shows how the VMT and LF are affected by the user's value of time.

VMT increases as the user's value of time increases due to the decreased short-turn

service frequencies and increased all-stop and express service frequencies. The increased

VMT and fleet size reduce the average LF.
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Bus Operating Cost ($/bus-hr)

Figure 5.34 Optimized service frequency vs. bus operating cost in Scenario C.

Bus Operating Cost ($/bus-hr)

Figure 5.35 Vehicle miles travel and average load factor vs. bus operating cost in
Scenario C.
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Figure 5.36 Average number of passenger per bus and average cost per VMT vs. bus
operating cost in Scenario C.
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User's Value of Time ($/pass-hr)

Figure 5.37 Optimized service frequency vs. user's value of time in Scenario C.
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User's Value of Time ($/pass-hr)

Figure 5.38 Vehicle miles travel and average load factor vs. user's value of time in
Scenario C.

Figure 5.39 shows the calculated total wait and transfer time of passengers under

various user's value of time. Increasing the user's value of time from 10 $/hr to 50 $/hr

decreases both the total wait and transfer times by almost 32%.

Figure 5.40 and 5.41 illustrate the impact on P P v,  vm and Cvm, Cpm, respectively by

varying the user's value of time from 5 to 50 $/bus-hr. The average number of passengers

per bus (Pp), and per vehicle miles traveled (Pvm)) decrease as the user's value of time

increase due to the increased VMT as previously showed in Figure 5.38. Figure 5.41

shows that Cvm, decreases as the user's value of time increases because VMT increases

more than supplier cost. However Cpm increases as the user's value of time increases due

to the fact that PMT remains fixed as the supplier cost increases.
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Figure 5.39 Total wait and transfer time of passengers vs. user's value of time in
Scenario C.
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User's Value of Time ($/pass-hr)

Figure 5.40 Average number of passengers per bus (Pr) and number of passengers per
vehicle miles travel (P„m) vs. user's value of time in Scenario C.
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User's Value of Time ($/pass-hr)

Figure 5.41 Average supplier cost per passenger and average supplier cost per passenger
miles traveled vs. user's value of time in Scenario C.

To investigate the relationship between optimized all-stop, short-turn and express

service frequencies and different demand, Figure 5.42 is developed, in which the demand

multiplier varies from 20% to 140%. In general, all service frequencies increase to satisfy

the capacity constraint. However, the express service frequency increases faster

compared to the local (i.e., all-stop and short-turn) service frequencies.

The optimal bus capacity and associated service frequencies are illustrated in

Figure 5.43. The minimum total costs are achieved at the optimal bus capacities while

satisfying the given demand. It is found that the optimal bus capacity for the OD demand

of the studied route is 76 pass/bus which yields a f1,6 (f6,1), f3,6 (f6,3) and fE, of 4, 1 and 8

buses/hr, respectively with a minimum total cost of 7,249 $/hr,
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Figure 5.42 Optimized frequencies vs. demand multiplier in Scenario C.

Express SP
SP16 (SP61)

..0•• S P 3 6 (SP63)
S P46 (SP64)

--*--Bus Capacity

Demand Multiplier (%)

Figure 5.43 Optimized bus capacity and relevant optimized service frequencies vs.
demand multiplier in Scenario C.
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As shown in Figures 5.44 and 5.45, as bus capacity increases, optimized service

frequencies of all-stop, short-turn and express SPs decrease and a lower supplier cost as

well as total cost may be expected. However increasing bus capacity may increase the

headway (or reduce the optimized service frequency), which increases passenger wait

time. It is also found that bus capacities over 76 pass/bus yield the same minimum total

cost of 7,249 $/hr.

Figure 5.46 shows the impact of bus capacity on the optimal VMT and average

LF. Decreasing bus capacity increases the optimal VMT because more frequent service is

needed to satisfy the route demand. It is found that the highest average LFs are obtained

at the smaller bus capacities and increasing bus capacity decreases the LF.

Figure 5.47 shows the impact of bus capacity on average costs. Average costs

decrease as bus capacity increases. Minimum average cost per VMT and per PMT is

achieved as 11.28 $/bus-mile and 0.27 $/pass-mile, respectively if the bus capacity is

over 76 pass/bus. Note that for the analysis of bus capacity illustrated in Figures 4.43

through 4.47, the unit bus operating cost is assumed constant regardless of vehicle

capacity.



Bus Capacity (pass/bus)

Figure 5.44 Optimized service frequency vs. bus capacity in Scenario C.
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Bus Capacity (pass/bus)

Figure 5.45 Costs vs. bus capacity in Scenario C.
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Figure 5.46 Vehicle miles of travel and load factor vs. bus capacity in Scenario C.

Bus Capacity (pass/bus)

Figure 5.47 Average cost per VMT and per PMT vs. bus capacity in Scenario C.
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The impacts of average bus speed on optimized frequencies, optimal VMT and

average passenger travel time, and on cost components (i.e., user and supplier cost), are

demonstrated in Figures 5.48, 5.49 and 5.50, respectively. In Scenario C, increasing the

bus speed encourages the full length SPs which yields increased VMT. As shown in

Figure 5.49, faster buses decrease the average travel time of passengers which yields a

lower user costs. The bus round trip travel time is reduced because of the increasing bus

operating speed, which yields a lower supplier cost.

)
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Figure 5.48 Optimized service frequencies vs. bus speed in Scenario C.
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Figure 5.49 Vehicle miles travel and average passenger travel time vs. bus speed in
Scenario C.
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Figure 5.50 User and supplier costs vs. bus speed in Scenario C.
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One of the decision variables in Scenario C is the skipped stops by the SPE . Table

5.7 shows the impact on all costs and the optimized service frequencies by varying the

stops skipped by SPE . By comparing total and in-vehicle costs of a local (1 st row) and a

SPE configuration serving Stops 1 and 6 (2nd row), total cost and in-vehicle cost are about

409 $/hr and 930 $/hr higher than those without a SPE configuration. However, wait and

supplier costs are 275 and 246 $/hr less because of reduced frequencies in inner stops and

the increased fleet size needed for the express service.

Similarly, different configurations of served stops by express service (e.g., Stops

1, 3, 6; Stops 1, 4, 6; Stops 1, 3, 4, 6; etc.) are evaluated, and optimized results are given

in Table 5.7. Among all alternatives, it was found that the optimal integrated service (3 rd

row) achieves the lowest total cost because the lowest values of in-vehicle and supplier

costs are obtained in this configuration.
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Table 5.7 Optimized Services with Alternative Skipped Stops

Stops Served
by Express

Service
(stops)

Transfer
Stops

(stops)

Optimized SPs
(Frequency)

(buses/hr)

Wait
Cost

($/hr)

Transfer
Cost

($/hr)

In-
Vehicle

Cost
($/hr)

Supplier
Cost

($/hr)

Total Cost

($/hr)

NA -
SP1,6-SP6 , 1 (10)
SP3,6-SP6,3 (5)
SP4 ,6 —SP6 ,4 (2)

769 0 5,508 2,077 8,354

1, 6 -

SP 1 ,6-SP6, 1 (6)
SP3,6-SP6,3 (6))
SP4 ,6 -SP6 ,4 k 1 )

SPE (9)

1,044 0 4,578 2,323 7,945

1, 3 and 6 3

SP 1,6-SP6 , 1 (4)
SP3 , 6 -SP6 ,3 (2)
SP4,6 -SP6,4 (2)(2)

SPE (9)

1,275 143 4,045 1,854 7,317

1, 4 and 6 4
SP1,6-SP6,1 (7)
SP3,6-SP6,3 (6)

SPE (6)
1,121 88 4,597 2219 8,025

1, 2, 3 and 6 2, 3

SP 1 ,6 -SP6 , 1 (4)
SP3,6-SP6,3 (2)
SP4 ,6 -SP6 ,4 v.)(2)

SPE (9)

1,198 167 4,464 1,983 7,812

1, 3, 4 and 6 3, 4
SP 1 ,6 -SP6 , 1 (4)
5133,6 -SP6 ,3 (2)

SPE (12)
1,037 201 4,496 2,205 7,939

1, 3, 5 and 6 3, 5
SP 1 ,6 -SP6 , 1 (4)
SP3,6-SP6,3 (1)

SPE (13)
1060 78 4,406 2232 7,776

5.1.7 Results Comparison

The optimal results of decision variables (e.g., SPs, frequencies, etc.), minimized costs

(e.g., wait, transfer, in-vehicle, supplier costs, etc.), and associated performance measures

(e.g., fleet size, load factor, Pv, Pvm, Va, VMTa, Cp, Cpm, Ta, etc.) obtained from previous

sections in Scenarios A, B and C are compared and discussed in this section. The optimal

results for service frequencies and minimized costs are shown in Table 5.8.
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Table 5.8 Optimized Solutions and Minimized Costs of Scenarios A, B and C

Parameters Units Scenario A Scenario B Scenario C

.4,3(f3,1) buses/hr N/A 0 0

f1,4( f4,1) buses/hr N/A 0 0

f1,6(f6,1) buses/hr 17 10 4

f3,4 ( f4,3) buses/hr N/A 0 0

f3,6 ( f6,3) buses/hr N/A 5 2

f4,6( f6,4) buses/hr N/A 2 2

fE buses/hr N/A N/A 9

c,,, $/hr 561 769 1,275

CR $/hr 0 0 143

CI $/hr 5,508 5,508 4,045

Co $/hr 2,513 2,077 1,854

Total Cost $/hr 8,582 8,354 7,317
N/A: Not applicable.

In Scenario A, the optimized service frequency of 17 buses/hr yields a total cost

of 8,532 $/hr and comparing Scenario B to Scenario A, two short-turn SPs (e.g., SP36

(SP63) and SP46 (SP64) reduces the total cost about 2.7% (228 $/hr). The major benefit of

introducing the short-turn SP is the reduction of the supplier cost by almost 8% (436

$/hr). However, the wait cost of passenger is increased from 561 to 769 $/hr due to the

decreased service frequencies in some segments of the route.

Comparing the optimal results of Scenarios B and C, introducing the SP E to the

study route reduces the in-vehicle cost of passengers from 5,508 to 4,045 $/hr and the

supplier cost from 2,077 to 1,854 $/hr. However some passengers may have the option to

transfer, which generates a transfer cost of 143 $/hr. Also the wait cost of passengers is

raised to 1,275 $/hr because the express service skips some of the stops and it may not be

available to all passengers.
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The performance measurers under Scenarios A, B and C are presented in Table

5.9. The minimum total cost of 7,317 $/hr is achieved in Scenario C. It indicates that the

optimal integrated all-stop, short-turn, and express service is recommended to achieve a

minimum cost operation. Scenario C yields the lowest average costs per passenger (0.97

$/pass), per passenger miles traveled (0.33 $/pass-mile), and per vehicle miles traveled

(11.79 $/bus-mile)

Comparing the results of Scenario B to that of Scenario A, VMT is reduced from

184 to 141 miles/hr due to the encouragement of short-turn services instead of an all-stop

service. However, introducing the express service in Scenario C increases the VMT to

157 miles/hr because of the replacement of some short-turn services with express service

which serves the full length of the route.

The express service also increases the average route speed (Va) in Scenario C

because the stop delays are eliminated by the express buses at the skipped stops (e.g., 2, 4

and 5). Thus, Va of Scenario C is 1.98 and 2.49 mph higher than Va of Scenario A and

Scenario B, respectively.

Due to the decrease of VMT of Scenario B in comparison with Scenario A, Pvm ,

increases from 10.38 to 13.55 pass/bus-mile. As discussed earlier, VMT is increased in

Scenario C (comparing to Scenario B) due to the integration of express service which

decreases Pvm to 12.12 pass/bus-mile. However, the maximum value of 119 passengers

per bus (P,) occurs in Scenario C due to the lowest optimum fleet size of 16 buses.

Introducing the short-turn service into the all-stop only service may slightly

increase the average passenger travel time (TO from 0.32 to 0.33 hr/pass because of the

increased wait time of passengers in some parts of the route where the short-turn SPs are
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not available. However, integrating the express service to the study route may

significantly reduce the Ta (0.29 hr/pass) due to the eliminated stop delays at skipped

stops.

Table 5.9 Performance Measures under Optimal Operation of Scenarios A, B and C

Parameters Units Scenario A Scenario B Scenario C

Outbound LF - 0.68 0.89 0.79

Inbound LF - 0.53 0.70 0.62

Average LF - 0.61 0.79 0.71

Fleet Size buses 21 18 16

VMT bus-mile/hr 184 141 157

PMT pass-mile/hr 5574 5574 5574

Va mph 8.77 8.26 10.75

VMTa miles/bus 8.74 7.82 9.83

Pvm pass/bus-mile 10.38 13.55 12.12

Pv pass/bus 91 106 119

Cp $/pass 1.32 1.09 0.97

Cpm $/pass -mile 0.45 0.37 0.33

Cvm $/bus-mile 13.69 14.76 11.79

Ta hr/pass  0.32 0.33 0.29

The LFs at each link for both outbound and inbound services between Stops 1 and 6 in

Scenarios A, B and C are illustrated in Figure 5.51. Comparing to Scenario A, the

average LFs in Scenario B increased 30% for the outbound and 32% for the inbound

directions because short-turn SPs serve the high demand segments of the route and some

all-stop services are eliminated which decrease the number of buses serving the full

length of the route.
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Compared to Scenario B, the average LFs in Scenario C decreased by 13% at both

outbound and inbound directions because integrating the express service increases the

number of buses serving the full length of the route.

Figure 5.51 Load factors under optimal operation in Scenarios A, B and C.

It was found that the average LFs in Scenario A are less than those in Scenario B

between Stops 1 and 4 because the available service in Scenario A requires all buses to

serve the full length of the route and short-turn SPs (SP3,6 and SP4,6) in Scenario B

balance the loads by serving the high demand segments.

The average LFs between Stops 1 and 3 in Scenario C are less than those in

Scenario B because the total number of service frequencies between these stops is almost

30% more in Scenario C compared to Scenario B.
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5.1.8 Number of Decision Variables and Solution Algorithms

The number of decision variables in Scenarios B and C can be estimated based on the

equations summarized in Table 5.10, which increase exponentially in Scenario C as the

number of stops increases. Note that n and g represent the total number of stops and the

total number of eligible turn-back stops, respectively.

Table 5.10 Number of Decision Variables in Three Scenarios

Scenario A Scenario B Scenario C

Total Number of
Decision Variables 1 (2g )

(2(n-2) - 1 )( g
-Li k 2 )

As shown in Figure 5.52, it can be found that more than 10,000 decision

variables, consisting of the combinations of SPs, service frequencies and configurations

of stops skipped by express service need to be generated when the number of stops is 10.

It is worth to note that, increasing the stops from 10 to 15 (i.e., 50% increase), increases

the decision variables from 10,000 to 1,000,000 (i.e., 10,000% increase).

All intermediate stops on the studied route may not be eligible as a turn-back

point for short-turn services due to the location and demand limitations of the stop.

Eligible turn-back stops may be pre-determined by the transit supplier as initial input

parameters in the model and the developed model may optimize the turn back stops

among these stops. This process may significantly reduce the total number of decision

variables as demonstrated in Figure 5.53.
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Figure 5.52 Number of decision variables vs. number of stations.
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Figure 5.53 Number of decision variables vs. number of eligible turn-back stops.
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The total number of decision variables is 15 for Case I (6-stop bus route with two

intermediate turn-back stops) in Scenario C. The developed exhaustive search algorithm

computes the optimum solution in about 14 minutes with an Intel Core 2 Duo 2.4 MHz

processor and 4GB Ram. The total number of decision variables is 11,475 for a 10-stop

bus route (see Figure 5.52) considering all intermediate stops are eligible as turn back

points which yields a computation time of more than 7 days and 11 hours to find the

optimum solution. Due to the exponential increase of the decision variables the

calculation time becomes unreasonable as the number of stops increases. Therefore, a

heuristic approach is required to handle Case II (69-stop bus route) which is optimized

using a Genetic Algorithm (GA). The developed GA optimizes the 69-stop route (number

of decision variable is about 4.13E+21) in 14 hours.

To verify the reliability of the developed GA, Model II is optimized with 30

different runs for Scenario C using Case I. The minimized total costs achieved by the GA

range from 10,124 to 10,952 $/hr as illustrated in Figure 5.54. The dotted line in Figure

5.54 represents the global optimum solution which is obtained from the exhaustive search

algorithm. All 30 samples are in the 8% range of the global optimum solution, and most

of the samples (23 out of 30) are within a 3% range of the global optimum solution.
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Figure 5.54 Minimized total costs using GA over 30 separate runs for Case I.

5.2 Case II — New Jersey Transit Springfield Avenue Line

The purpose of this section intends to demonstrate the applicability and effectiveness of

the developed Model II and GA for a large scale bus route with many stops.

The New Jersey Transit Springfield Avenue Line is approximately 10 miles long

serving 71 stops as shown in Figure 5.55. It connects Maplewood, Irvington, and Newark

along Springfield Avenue. Detailed stop information such as stop numbers and stop

spacing is given in Appendix B. It is worth to note that the bus line branches out at three

different locations (Essex County Correction Center, NJ Transit Bus complex and

Firmenich Way) at the Newark side of the route as shown in Figure 5.55 and these three

locations are assumed to be one stop. Thus, the Springfield Avenue Line is adopted into

the developed model as a 69-stop bus route. The peak OD demand matrix for the bus line

is estimated using on-off NJ Transit on-site survey data and is presented in Appendix C.
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Eight intermediate stops (i.e., stops 12, 20, 34, 38, 42, 46, 50 and 53) are selected as

eligible turn-back points for short-turn service, if there is a need. The average bus travel

speed is 25 miles/hr with capacity of 50 pass/bus and hourly operating cost of 120 $/bus-

hr. The factors used to approximate wait and transfer times, denoted as αw  and a,, are

identical and equal to 0.5, while the user's value of time is assumed to be 10 $/pass-hr.

The operable fleet size for the studied route is 48 buses, which will act as the upper

bound of the optimal fleet size for minimum cost operation. All baseline values of the

model parameters are summarized in Table 5.11.

5.2.1 All-Stop SP — Scenario A

Scenario A is considered in Case II, in which a single SP serving every stop from the

beginning to the end of the study bus route, denoted as SP1,69(SP69,1)• Based on the OD

demand given in Appendix C, the optimized service frequency is 15 bus/hr that achieves

the minimum cost of 14,621 $/hr, and the associated measures (e.g., fleet size, VMT, LF,

Cp, Cpm, Cum and cost components, etc.) are calculated and shown in Table 5.12.
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Table 5.11 Baseline Values of Model Parameters in Case II

Parameters Descriptions	 Baseline Values

126

b	 Bus operating cost
C	 Bus capacity

n	 Total number of stops

F	 Maximum operable fleet size

f,,j 	 Frequency of all-stop and short turn SP from stop i to j
fE 	 Frequency of express SP
/d 	Distance from stop d to d+1

g	 Eligible stops for turn-back

Demand from stop i to j
to 	Layover time at the end stop
Vd 	 Average vehicle speed from stop d to d+1
191 	Demand parameter associated with in-vehicle time

OR 	Demand parameter associated with transfer time

Ow 	Demand parameter associated with wait time

Wd 	 Average stop delay including dwell time at stop d
aR 	Ratio of the average transfer time to headway

Ratio of the average wait time to headway

User's value of time

P	 Population size

rs	 Selection ratio in GA

rx 	 Crossover ratio in GA

rM 	 Mutation ratio in GA

120 $/bus-hr
50 pass./bus

69 stops

48 bus

To be determined

To be determined

See Appendix B
1,12,20,34,38,
42,46,50,53,69
See Appendix C

0.2 hr

25 miles/hr

1.33

2.00

2.00

0.015 hr

0.5

0.5

10 $/pass-hr

250

0.3

0.3

0.3

The performance measures defined and formulated in Chapter 3 are used here to

evaluate the system performance under Scenario A. PMT and VMT are 4860 pass-

miles/hr and 274 bus-miles/hr, respectively. The average speed of the route (Va) is 5.75

mph, which yields an average passenger travel time (TO of 0.5 hr/pass. The VMTa and

Pvm are 5.70 miles/bus and 6.52 pass/bus-mile, respectively. The average costs per

passenger, per PMT and per VMT are 3.20 $/pass, 1.17 $/pass-mile and 20.85 $/bus-

mile, respectively. The average LFs of outbound and inbound services are 0.44 and 0.27,

respectively, which yield an average route LF of 0.36.



Table 5.12 Optimal Results of Scenario A in Case II

Variable Units Optimal Values

469 (f69,1) bus/hr 15

Outbound LF - 0.44

Inbound LF - 0.27

Average LF - 0.36

Fleet Size buses 48

VMT bus-mile/hr 274

PMT pass-mile/hr 4860

Va mph 5.75

VMTa miles/bus 5.70

Pvm pass/bus-mile 6.52

Pv pass/bus 37

Cp $/pass 3.20

Cpm $/pass-mile 1.17

Cvm $/bus-mile 20.85

Ta hr/pass 0.50

CW $/hr 595

CR $/hr 0

CI $/hr 8,321

Co $/hr 5,705

Total Cost Sib r 14,621

127



128

5.2.2 All-Stop and Short-Turn SPs — Scenario B

In addition to the all-stop SP, short-turn SPs are introduced in this section. Eight

intermediate stops (i.e., Stops 12, 20, 34, 38, 42, 46, 50 and 53) are eligible as the turn-

back stops of the short-turn services. Therefore, 44 different short-turn SPs are available

for Case II. Based on the OD demand illustrated in Appendix C, the optimized service

frequencies of SP1,69 (SP69,1), SP12,53 (SP53,12), SP12,69 (SP69,12), SP20,38 (SPAN) and SP20,46

(51346,20), are 4, 5, 2, 1 and 3 buses/hr respectively, and 0 buses/hr for the rest of the SPs.

This operation achieves the minimum total cost of 13,525 $/hr. The associated measures

(e.g., fleet size, VMT, average LFs, etc.) and all cost components derived from the

optimized frequencies are calculated and shown in Table 5.13.

The performance measures are used to evaluate the system performance under

Scenario B. The passenger miles traveled (PMT) and vehicle miles traveled (VMT) are

4,860 pass-mile/hr and 168 bus-miles/hr, respectively. The average route speed (K g) is

5.14 mph, which yields an average passenger travel time (TO of 0.54 hr/pass.

The efficiency of bus usage (VMTa) and intensity of bus service usage (P„,) are

4.94 miles/bus and 10.63 pass/bus-mile, respectively. The average cost per passenger

(Cp), per PMT (Cpm) and per VMT (C,m), are 2.24 $/pass, 0.82 $/pass-miles and 23.82

$/bus-mile, respectively. The average LF's of outbound and inbound services are 0.64

and 0.44, respectively, with an average LF of 0.54 for Case II.



Table 5.13 Optimal Results of Scenario B in Case II

Variables Units Optimal Values

11,69 ( f69,1 ) buses/hr 4

.42,53 	 53,12 )
buses/hr 5

.42,69 ( 49,12 )
buses/hr 2

.f20,38 ( .f38,20 )
buses/hr 1

./i0,46 ( f46,20 )
buses/hr 3

Outbound LF - 0.64

Inbound LF - 0.44

Average LF - 0.54

Fleet Size buses 34

VMT bus-mile/hr 168

PMT pass-mile/hr 4860

Va mph 5.14

VMTa miles/bus 4.94

Pvm pass/bus-mile 10.63

Pv pass/bus 52

Cp $/pass 2.24

Cm, $/pass-mile 0.82

Cvm $/bus-mile 23.82

Ta hr/pass 0.54

CW $/hr 1,204

CR $/hr 0

C $/hr 8,321

Co $/hr 3,999

Total Cost $/hr 13,525
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5.2.3 Integrated All-Stop, Short-Turn and Express SPs — Scenario C

In addition to all-stop and short-turn SPs described in Scenario B, an express SP denoted

as SPE is introduced in this Section. SPE may skip some of the stops which are

determined during the optimization process. Considering the OD demand given in

Appendix C and the baseline values given in Table 5.11, it was found that 62 stops are

skipped and only stops 1, 12, 20, 38, 50, 53 and 69 are served by express service with a

service frequency of 5 buses/hr. The optimized all-stop and short-turn service frequencies

of 5P1,53 (5P53,1), SP1,69 (5P69,1), SP12,46 (SP46,12) SP12,53 (SP53,12), SP12,69 (SP69,12) and

SP20,42 (5P42,20) are 1, 3, 2, 2, 3 and 3 buses/hr, respectively. This operation achieves the

minimum total cost of 13,030 $/hr. The associated measures (e.g., fleet size, VMT, VMTa

P v, Pvm, Ta, and LF, etc.) and all cost components derived from the optimized frequencies

are calculated and shown in Table 5.14.

In scenario C, PMT and VMT are calculated as 4860 pass-miles/hr and 235

bus-miles/hr, respectively. The average route speed (V a) is 8.55 miles/hr which yields an

average passenger travel time (Ta) of 0.49 hr. VMTa and Pvm is 6.53 miles/bus and 7.59

pass/bus-mile, respectively. Average hourly supplier costs per passenger (Cp), per PMT

(Cpm) and per VMT (Cvm ), are 2.36 $/pass/hr, 0.87 $/pass-miles/hr and 17.92 $/bus-

miles/hr, respectively. The average LF of outbound and inbound services are 0.46 and

0.29, respectively, with an average LF of 0.38 for Case II.



Table 5.14 Optimal Results of Scenario C in Case II

Variable Units Optimal Values

f1,53 ( f53,1 ) buses/hr 1

469 (f69,1) buses/hr 3

12,46 ( f46,12) buses/hr 2

f12,53 (1'53,12 )
buses/hr 2

12,69 ( f69,12 )
buses/hr 3

120,42 ( f42,20)
buses/hr 3

fE buses/hr 5

Outbound LF - 0.46

Inbound LF - 0.29

Average LF - 0.38

Fleet Size buses 36

VMT bus-mile/hr 235

PMT pass-mile/hr 4860

Va mph 8.55

VMTa miles/bus 6.53

Pvm pass/bus-mile 7.59

Pv pass/bus 50

Cp $/pass 2.36

Cpm $/pass-mile 0.87

C vm $/bus-mile 17.92

Ta hr/pass 0.49CW $/hr 1,492

CR $/hr 352

C, $/hr 6,976

Co $/hr 4,209

Total Cost $/hr 13,030
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5.2.4 Results Comparison

The optimal results of decision variables (e.g., SPs, service frequencies etc.), minimized

costs (e.g., wait, transfer, in-vehicle, supplier costs, etc.) and associated performance

measures obtained from previous sections in Scenarios A, B and C are compared and

discussed in this section. The optimal results for service frequencies and minimized costs

are shown in Table 5.15.

In Scenario A, the optimized service frequency of 15 buses/hr yields the total cost

of 14,621 $/hr and comparing Scenario B to A, 4 short-turn SPs (e.g., SP12,53 (SP53,12),

SP12,69 (5P69,12), SP20,38 (SP38,20) and SP20,46 (SP46,20) reduce the total cost about 7.5%

(1,096 $/hr). The major benefit of introducing the short-turn SP is reducing the supplier

cost by almost 30% (1,706 $/hr). However, the wait cost for passengers is increased from

595 to 1,204 $/hr due to the decreased service frequencies in some segments of the route.

Comparing the optimal results of Scenarios B and C, by introducing the express

SP to the study route reduces the in-vehicle cost of passengers from 8,321 to 6,976 $/hr.

However some passengers may have the option to transfer, which generates a transfer

cost of 352 $/hr. Also the wait cost of passengers is increased to 1,492 $/hr because the

express service skips some of the stops and it may not be available all of the passengers.

The performance measurers under Scenarios A, B and C are presented in Table

5.16. The minimum total cost of 13,030 $/hr is achieved in Scenario C which indicates

that the optimal integrated all-stop, short-turn, and express service is preferable for

minimum cost operation. Scenario C only yields the lowest average cost per vehicle mile

traveled (17.92). The lowest average costs per passenger (2.24 $/pass), and per passenger

mile traveled (0.82 $/pass-mile) are generated by Scenario B.
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Table 5.15 Optimized Frequencies and Minimized Costs in Scenarios A, B and C

Parameters Units Scenario A Scenario B Scenario C

1,53 ( f53,1) buses/hr NA 0 1

469 ( f69,1) buses/hr 15 4 3

A2,46 (f46,12 ) buses/hr NA 0 2

f2,53 (f3,12) buses/hr NA 5 2

f12,69 ( f69,12) buses/hr NA 4 3

f20,38 ( f38,20 ) buses/hr NA 1 0

f20,42 ( f42,20) buses/hr NA 0 3

f20,46 ( f46,20) buses/hr NA 3 0

f. buses/hr NA NA 5

Cry $/hr 595 1,204 1,492

CR $/hr 0 0 352

C/ $/hr 8,321 8,321 6,976

Co $/hr 5,705 3,999 4,209

TC $/hr 14,621 13,525 13,030

Comparing the results of Scenario B to that of Scenario A, VMT is reduced from

274 to 168 miles/hr due to the encouragement of short-turn services instead of an all-stop

service. However, introducing the express service in Scenario C increases the VMT to

235 miles/hr because of the replacement of some short-turn services with express service,

which serves the full length of the route.

The express service also increases the average route speed (Va) in Scenario C

because the stop delays are eliminated by the express buses at the skipped stops. Thus, Va

of Scenario C is 2.80 and 3.41 mph higher than Va of Scenario A and B, respectively.

Due to the decrease of VMT in Scenario B comparing it to Scenario A, Pvm

increases from 6.52 to 10.63 pass/bus-mile. As discussed earlier, VMT is increased in
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Scenario C (compared to Scenario B) due to the integrated operation of express service

which yields a lower Pr. (12.12 pass/bus-mile). However, the maximum value of 52

passengers per bus (Pr) occurrs in Scenario B due to the lowest optimum fleet size of 34

buses.

Introducing the short-turn service into the all-stop only service may increase the

average passenger travel time (Ta) from 0.50 to 0.54 hr/pass because of the increased wait

time of passengers in some parts of the route where the short-turn SPs are not available.

However, integrating the express service to the studied route may significantly reduce the

Ta (0.49 hr/pass) due to the eliminated stop delays at skipped stops.

Table 5.16 Performance Measures in Scenarios A, B and C

Parameters Units Scenario A Scenario B Scenario C

Outbound LF - 0.44 0.64 0.46

Inbound LF - 0.27 0.44 0.29

Average LF - 0.36 0.54 0.38

Fleet Size buses 48 34 36

VMT bus-mile/hr 274 168 235

PMT pass-mile/hr 4860 4860 4860

Va mph 5.75 5.14 8.55

VMTa miles/bus 5.70 4.94 6.53

Pvm pass/bus-mile 6.52 10.63 7.59

Pv pass/bus 37 52 50

Cp $/pass 3.20 2.24 2.36

Cpm $/pass-mile 1.17 0.82 0.87

Cvm $/bus-mile 20.85 23.82 17.92

Ta hr/pass 0.50 0.54 0.49
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5.3 Summary

In this chapter two case studies were used to demonstrate the applicability of the

developed models, in which three scenarios are evaluated and optimal results are

compared. The relationships among the objective function, model parameters and

decision variables were investigated in a small scale (e.g., six-stop bus route) transit route.

Also the applicability of Model II to a large scale bus route was demonstrated using a

Genetic Algorithm in a real world example.

Compared to a traditional all-stop only service, adding short-turn services reduced

operating costs and vehicle miles travelled. However, the wait cost of passengers

increased because of the reduced service frequency on low demand segments. Integrating

SPE into local (e.g., all-stop and short-turn) SPs significantly reduced the in-vehicle time

of passengers and supplier cost. This benefit was sufficient to compensate for the

increases in wait and transfer cost. The findings and conclusions from this chapter and

future expansions of this research are presented next.



CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

While many studies (Furth, 1987 and 1988; Ceder 1988 and 1989, Delle Site et al, 1998)

concentrated on transit service optimization by maximizing the utilization of vehicles

and/or minimizing supplier cost, only few involved the optimizing of integrated service

patterns (SPs) considering a heterogeneous demand. In this research, an integrated

service (e.g., all-stop, short-turn and express) and associated frequencies have been

defined, formulated, optimized and analyzed. A logit-based model was used to calculate

transfer passengers from one SP to another. The solutions that minimize total cost (i.e.,

the sum of user and supplier cost) of a real world transit route were found by algorithms

(i.e., an Exhaustive Search Algorithm and a Genetic Algorithm).

A hypothetical six-stop bus route was introduced in Case I, which demonstrated

the applicability of the developed models for a small scale bus route. Three scenarios

were evaluated and sensitivity analyses were conducted, in which the optimized results

and performance measures were compared and discussed. The relationship among the

objective function, model parameters, and decision variables was explored. In Case II, a

real world transit route, the New Jersey Transit Springfield Avenue Line, was introduced

to demonstrate the applicability and the efficiency of the developed models in a large

scale bus route.

6.1 Findings

The purpose of this section is to discuss the results and the relationship among decision

variables and model parameters (e.g., value of time, vehicle operating cost, skipped
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stations, transfer stations, etc.) for the case studies introduced in Chapter 5. The major

findings are summarized as follows:

(1) Case I:

• By comparing the optimal results among all scenarios, the minimum total cost of
7,317 $/hr was achieved in Scenario C. It indicates that the optimal integrated all-
stop, short-turn, and express service is capable of minimizing the total cost subject
to a set of constraints and given an OD demand distribution.

• S13 1,6 (SP6,1), SP3,6 (SP6,3), SP4,6 (SP6,4) and SPE achieved the optimal solution in
Scenario C with the service frequencies of 4, 2, 2 and 9 buses/hr, respectively. It
was also found that, SPE skipped stops 2, 4 and 5, and Stop 3 was used as a
transfer location.

• The optimal solution under Scenario C also yielded the lowest average cost per
passenger (0.97 $/pass), average cost per passenger-mile traveled (0.33 $/pass-
mile), and average cost per vehicle-mile traveled (11.79 $/bus-mile).

• The lowest vehicle-miles traveled (VMT) were achieved by the optimal solution
under Scenario B, which also yielded the highest average load factor of 0.79 and
average passenger travel time (T a) of 0.33 hr/pass.

• Integrating the express service into all-stop and short-turn services significantly
increased the average travel speed (Va). It was found that Va of Scenario C is 23%
and 30% faster than those of Scenarios A and B, respectively.

• As bus operating cost increased, the optimized service frequencies decreased to
reduce the increase of supplier cost, and increased user wait and transfer time.

• As user's value of time increased, the optimized service frequencies increased,
which decreased wait and transfer time, but increased the supplier cost.

• As bus capacity increased, the optimized service frequencies of all SPs decreased,
reducing the supplier cost as well as total cost. However increased bus capacity
reduced the optimized service frequency, which increased the passenger wait time
and user cost.

• The computation time needed for the exhaustive search algorithm (ESA)
implemented in Case I to search for the optimal results was 14 minutes with an
Intel Core 2 Duo 2.4 MHz processor and 4GB Ram. However, the complexity of
the problem, in terms of the number of decision variables, was exponentially
increasing (see Figure 5.52), ESA needed more than 7 days to solve a similar
problem with 10 stops.
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• The global optimal result obtained via ESA was guaranteed because it was found
from the results of all feasible solutions. This result was applied to compare the
optimal result obtained via GA. It was found that the solutions from both
algorithms were fairly close (see Figure 5.54), while the computation time needed
for the GA in Case Ito search for the optimal results was less than 2 minutes with
the same computer specifications. Therefore, the GA was used to search for the
optimal solutions in a large scale bus route discussed in Case II.

(2) Case II:

• By comparing the optimal results among all Scenarios, the minimum total cost of
13,030 $/hr was achieved in Scenario C. It indicates that the optimal integrated
all-stop, short-turn, and express service is preferred for a minimum cost operation
subject to a set of constraints and given an OD demand distribution.

• SP 1 ,53 (SP53 , 1 ), SP1,69 (SP69,1), SP12,46 (SP46,12), SP12,53 (SP53,12), SP12,69 (SP69,12),
SP20,42 (SP42,20) and SPE achieved the optimal solution in Scenario C with the
frequencies of 1, 3, 2, 3, 2, 3 and 5 buses/hr, respectively. It was also found that,
SPE served only Stops 1, 12, 20, 38, 50, 53 and 69 along the route.

• The optimal solution under Scenario C also yielded the lowest average cost per
vehicle-mile traveled (17.92 $/bus-mile). However the average lowest costs per
passenger (2.24 $/pass) and per passenger-mile traveled (0.82 $/pass-mile) is
obtained by the optimal solution under Scenario B.

• The lowest VMT was achieved by the optimal solution under Scenario B, which
also yielded the highest average load factor of 0.54 and average passenger travel
time (TO of 0.54 hr/pass.

• Integrating the express service into local (e.g., all-stop and short-turn) services
significantly increased the average travel speed (Va). It was found that Va of
Scenario C is 49% and 66% faster than those of Scenario A and B, respectively.

• The computation time needed for the GA implemented in Case II to search for the
optimal result was 14 hours with an Intel Core 2 Duo 2.4 MHz processor and 4GB
Ram.

6.2 Conclusions

The conclusions and recommendations for this study based on the findings from the case

studies and sensitivity analyses are summarized as follows:
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• This study presented an approach to optimize the integrated transit SPs and
associated service frequencies for a transit route with heterogeneous demand,
which minimized the total cost subject to capacity, fleet size and frequency
conservation constraints. The developed method intends to fill a gap in the area of
transit network modeling by considering integrated SPs into the optimization
processes.

• By considering aggregate effects (e.g., alternative travel options, transfer
conditions, etc.) of various SPs and stop/station-based OD demand distributions,
the developed method offered a practical and efficient approach to quantify the
costs savings and improved system performance.

• The modeling approach suggested in this study is very flexible, and can be
utilized to optimize a generalized transit route as soon as the OD demand
distribution and the route/stop locations are available. Transit agencies may easily
adopt the developed model and solution algorithms with minor modification to
estimate costs (e.g., user and supplier) and evaluate system performance.

• Passenger transfer is an important concept for integrated transit services. In both
Cases I and II, the user cost of the route was improved by transfer demand due to
the reduced travel time of transfer passengers to/from an express service when
available. Therefore, increasing transfer options (such as timed transfers) may
improve the passenger's travel time as well as reduce the supplier costs.

• Compared to a traditional all-stop only service with heterogeneous demand,
operating short-turn service may reduce the supplier cost. However, the wait cost
of passengers increased because of the reduced service frequency on the segments
with light demand. Integrating an express service may significantly reduce the in-
vehicle time of passengers, albeit the wait and transfer cost may increase. This
saved in-vehicle cost seemed sufficient to compensate for the increased wait and
transfer costs. In the cases given in this research, it was found that integrated
service should be encouraged to reduce supplier cost with the least impact to user
benefits.

• The studied transit service optimization problem is non-linear, mixed-integer, and
combinatorial, which was difficult to solve by using any classical optimization
methods due to the interdependent relationships among the decision variables and
the non-differentiable objective function. Thus, special solution algorithms (e.g.,
exhaustive search and genetic algorithms) were developed to search for the
optimal solutions.

• The total number of decision variables increased exponentially as the number of
stops increased. Therefore, exhaustive search algorithms would not be a practical
approach for routes with large numbers of stops. A heuristic algorithm (e.g.
genetic algorithm) was introduced to improve the search speed of the optimal
solution in Case II.
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6.2 Future Research

In this section, several possible extensions are suggested to enhance the models

developed and analyses conducted in this research. It should be noted that some

extensions may complicate the processes to enhance the developed models. Future

research for the transit service design and optimization problem can be extended but not

be limited to the following aspects:

• An immediate extension of this study will be integrating express short-turn SPs in
which the express services can make short-turn trips. Throughout this extension
the new model may have more options to demonstrate the advantages of
integrated SPs.

• The developed models in this study were designed especially for bus operation,
and may easily be extended to rail operations considering some specific
conditions, such as track alignment, and for other service providers, such as parcel
service and airline operations.

• An assumption of constant unit vehicle operating cost was made for developing
the model in this research, regardless of the vehicle capacity. This assumption can
be relaxed to improve the accuracy of supplier cost estimation.

• By considering the number of passengers boarding at stops and average vehicle
operating speed along the route, dwell time and stop delays may be calculated.
Therefore, estimation of the in-vehicle cost of passengers as well as the supplier
cost may be improved.

• Developed GA adds a penalty value to eliminate the results which violate the
capacity and fleet size constraints. The GA can be enhanced by generating a new
repair strategy for these solutions to improve the search for the optimal solution.

• The developed model may be enhanced by considering an elastic demand in
which passengers may be attracted to/from other routes and/or modes. This
extension may increase the functionality of the model for practical use.

• Optimizing integrated service for a transit network with several transit routes
share a bus terminal with known stop/route locations and OD demand distribution
will be a challenging extension of this study, which also involves the issues of
scheduling and routing transit vehicles. In addition, vehicle capacity, the
composition of vehicle fleet, and timed transfer may be considered in the context
of the problem, so the optimized network-wide system performance may be
assured.
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• Another extension of this study may focus on integrating intermodal transit
services such as rail and bus services for the same corridor. Moreover,
optimization of timed transfer may also be considered which yields increased
route performance, in terms of user and supplier costs.



APPENDIX A

DEFINITIONS OF MODEL PARAMETERS

Parameters Descriptions 	 Units
b 	 Vehicle operating cost	 $/veh-hr
C 	 Vehicle capacity 	 spc/veh
C1 	User in-vehicle cost	 $/hr
Co 	Supplier cost	 $/hr
Cp 	Average cost per passenger	 $/pass
C R 	User transfer cost	 $/hr
Cu 	Total user cost	 $/hr
Cvm 	 Average cost per vehicle mile of travel	 $/veh-mile

CW 	User wait cost	 $/hr
Di,j,k 	 Demand from i to j in category k 	 pass/hr

i	 Index of origin stop 	 -
j 	 Index of destination stop 	 -
k	 Index of demand categories	 -

Im 	Inbound demand on link m 	 pass/hr

IL,/	 Inbound demand for express services in link / 	 pass/hr
IE,I,k 	 Inbound demand for express services in link l using category k 	 pass/hr

IL,/	 Inbound demand for local services in link l 	 pass/hr
Inbound demand for local services in link l using category k	 pass/hr

F 	 Maximum operable fleet size	 vehicle
fi,j 	Frequency of SP, ;	veh/hr

fE 	 Frequency of express service pattern 	 veh/hr

HE,l, 	 Maximum headway on link l for express services 	 hr/veh

hE,I 	 Average headway of link l for express services 	 hr/veh

HL,I 	 Maximum headway on link 1 for local services	 hr/veh
h,,,, 	 Average headway of link / for local services 	 hr/veh
Hm 	 Maximum headway on link m 	 hr/veh

lb, 	 Average headway on link m 	 hr/veh
/	 Link between stops / and /+1	 -
LF	 Load factor	 -

ld 	Distance between stop d and d+1	 mile

n	 Number of stops -

g 	 Eligible stops for turn-back	 stop
O m 	Outbound demand on link m 	 pass/hr

°E,/	 Outbound demand for express services in link l 	 pass/hr

°E,I,k	 Outbound demand for express services in link / using category k 	 pass/hr
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Parameters Descriptions	 Units 
OL,I 	 Outbound demand for local services in link / 	 pass/hr
OL,I,k 	 Outbound demand for local services in link 1 using category k	 pass/hr

q11 	 Demand from stop i to j	 pass/hr

SPs,t 	Service pattern serving from stop s to t	 -

P Population size in genetic algorithm	 -

PMT	 Passenger miles of travel	 pass-mile/1m-

Pv 	 Average passengers per vehicle	 pass/bus

Pvm	 Average passengers per vehicle mile of travel	 pass/bus-mile

Bs 	 Selection ratio in GA	 -

TX 	Crossover ratio in GA	 -
TM 	Mutation ratio in GA	 -
t,,,,,,	 Transfer time for demand from stop i to j using category k	 hr

to 	Layover time at the end terminal 	 hr
t,,,

•,
	Wait time for demand from stop i to j 	 hr

twi,j,k k 	Wait time for demand from stop i to j using category k	 hr
t,,,, 	In-vehicle time for demand from stop i to j 	 hr

tI i,j,k 	 In-vehicle time for demand from stop i to j using category k	 hr

Ta	Average passenger travel time	 hr

TE	 Vehicle travel time for express services	 hr

T.,	 Vehicle travel time for local services from stop i to j 	 hr

2,	 Variable indicating whether stop i is served by express service	 -

aR 	Ratio of the average transfer time to headway 	 -

T,,j	 Vehicle travel time from stop i to j 	 hr

/1,	 Variable indicating whether stop i is served by express service	 -

aR 	Ratio of the average transfer time to headway 	 -

VMT	 Vehicle miles of travel 	 veh-mile/hr

VMTa	Average vehicle miles of travel	 miles/veh

Va	 Average speed of the route	 mph
vd 	Average vehicle speed from stop d to d+1	 mile/hr

Wd 	 Average stop delay and dwelling time at stop d	 hr
y	 Index of transfer stops from all-stop to express service	 -

z	 Index of transfer stops from express to all-stop service	 -
a,,, 	 Ratio of the average wait time to headway 	 -
Of 	Sensitivity parameter of demand to the length of in vehicle time	 -
BR 	Sensitivity parameter of demand to the length of transfer time 	 -
OW 	Sensitivity parameter of demand to the length of wait time	 -

R.,	 Percentage of demand using transfer from all-stop to express service 	 %
iii,,,	 Percentage of demand selecting express service first 	 %

P	 User's value of time	 $/pass-hr



APPENDIX B

BUS STOP INFORMATION FOR CASE II

Stop ID Stop Location
Distance from
previous stop

(mile)

Eligible for
turn-back

1 Maplewood Loop 0.000 Yes
2 Raymond Terrace 0.199 No
3 Mildred Terrace 0.095 No
4 Springfield Ave. 0.189 No
5 Laurel Ave. 0.057 No
6 Indiana St. 0.189 • 	 No
7 Princeton St. 0.227 No
8 Tuscan St. 0.341 No
9 Burnett Ave. 0.199 No
10 Boyden Ave. 0.189 No
11 Chancellor Ave. 0.133 No
12 Prospect Ave. 0.170 Yes
13 38th St. 0.246 No
14 Sanford Ave. 0.152 No
15 Lyons Ave. 0.123 No
16 Stuyvesant Ave. 0.142 No
17 Lincoln P1. 0.180 No
18 New St. 0.161 No
19 Union Ave. 0.095 No
20 Irvington Bus Terminal 0.038 Yes
21 Bruen Ave. 0.265 No
22 Maple Ave. 0.076 No
23 Grove St. 0.076 No
24 Harrison P1. 0.095 No
25 Ellis Ave. 0.095 No
26 Avon Ave. 0.076 No
27 South 20th St. 0.095 No
28 South 18th St. 0.114 No
29 South 17th St. 0.057 No
30 South 15th St. 0.114 No
31 South 14th St. 0.057 No
32 Pierce St. 0.104 No
33 South 11th St. 0.076 No
34 South 10th St. 0.066 Yes
35 18th Ave. 0.038 No
36 Muhammad Ali Blvd. 0.170 No
37 Fairmount Ave. 0.142 No
38 Bergen St. 0.114 Yes
39 West Kinney St. 0.095 No
40 Sayre St. 0.123 No
41 Boyd St. 0.057 No
42 Irvine Turner Blvd. 0.114 Yes
43 Prince St. 0.133 No
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Stop ID Stop Location
Distance from
previous stop

(mile)

Eligible for
turn-back

44 Broome St. 0.066 No
45 West St. 0.085 No
46 Martin Luther King Blvd. 0.189 Yes
47 Branford Pl. 0.038 No
48 Washington St. 0.265 No
49 Halsey Street 0.076 No
50 Broad St. 0.095 Yes
51 Mulberry St. 0.152 No
52 McCarter Hwy. 0.152 No
53 Penn Station - Alling St 0.057 Yes
54 Edison Pl. 0.152 No
55 Union St. 0.038 No
56 Congress St. 0.114 No
57 Madison St. 0.104 No
58 Adams St. 0.095 No
59 Van Buren St. 0.095 No
60 Polk St. 0.047 No
61 Patterson St. 0.170 No
62 Ann St. 0.142 No
63 Garrison - Barbara St. 0.142 No
64 Jabez St. 0.114 No
65 Avenue K 0.170 No
66 Avenue L 0.152 No
67 Hyatt Ave. 0.322 No
68 Avenue P 0.341 No
69 Doremus Ave./ NJT Bus Complex 0.275 Yes
70 Firmenich Way / 0.833 No
71 Essex Co. Correction Center 0.252* No

* Distance from Stop #69
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APPENDIX C

OD DEMAND MATRIX FOR CASE II
(Dass/hr

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23
S1 0 0 0 0 0 0 0 0 1 0 0 2 0 1 1 0 1 0 0 1 0 0 0
S2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 3 0 0 0
S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
S4 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
S5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S6 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0 1 0 0 1
S7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 0 0 0
S10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
S11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S12 5 4 1 2 2 0 0 0 2 0 0 0 0 0 0 1 0 1 0 2 0 0 0
S13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1 0 0
S14 3 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
S16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0
S17 2 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
S18 3 2 1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
S19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
S20 4 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
S21 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S22 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S23 2 2 2 0 0 0 2 0 2 0 0 2 0 2 0 0 0 0 0 0 0 0 0

S24 1 0 1 0 1 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0

S25 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0

S26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S27 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

S28 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

S29 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

S30 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

S31 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

S32 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S34 2 0 0 1 0 0 0 1 0 0 1 0 2 0 1 1 0 0 0 0 0 0 0

S35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46
S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 2
S2 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0
S5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
S6 0 0 0 0 0 0 0 0 0 0 2 0 1 2 2 0 1 1 1 1 0 0 0
S7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
S8 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
S9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _0 0 2
S10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
S12 0 0 0 1 0 0 0 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 3
S13 0 0 0 1 1 0 1 0 0 0 1 0 0 0 2 0 1 1 4 0 0 0
S14 0 0 1 0 1 1 2 2 0 0 1 0 0 1 4 0 1 0 5 1 1 0 6
S15 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 2 0 0 0 3
S16 1 0 1 1 1 1 2 1 1 1 3 0 1 1 3 0 1 1 5 1 0 0 8
S17 0 0 0 1 0 0 1 1 0 0 2 1 1 0 0 0 0 2 4 0 0 1 5
S18 0 0 0 1 0 0 1 0 0 1 2 2 1 0 0 0 0 0 6 3 0 0 2
S19 0 0 0 0 0 0 2 0 0 0 0 3 2 0 4 2 1 0 4 2 3 1 8
S20 0 1 0 1 0 1 4 3 1 2 6 2 1 2 6 2 3 4 5 1 2 2 9
S21 0 0 0 0 0 0 0 1 0 0 1 1 0 0 2 1 0 0 0 1 0 0 2
S22 0 0 0 0 1 0 1 1 0 1 2 1 2 1 2 0 1 3 3 1 0 0 4

S23 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 1 1 0 0 0 0 0 3
S24 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 4 1 0 0 2
S25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S26 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 3 2 2 5 0 0 0 0
S27 0 0 0 0 0 0 0 0 0 0 0 1 1 0 6 2 2 2 5 0 2 1 5
S28 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 2
S29 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
S30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 4 2 2 0 7
S31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2 1 2
S32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2
S33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2
S35 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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S47 S48 S49 S50 S51 S52 S53 S54 S55 S56 S57 S58 S59 S60 S61 S62 S63 S64 S65 S66 S67 S68 S69

S1 0 0 1 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S4 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S7 0 0 0 4 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S8 0 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S9 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S10 0 0 2 2 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
S11 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S12 0 0 0 5 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S13 0 1 1 5 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
S14 0 0 0 9 0 0 4 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 3
S15 1 1 0 4 0 1 2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1
S16 1 1 0 9 0 1 3 0 0 0 0 0 0 5 1 1 1 1 0 1 1 1 3
S17 1 1 2 6 0 0 4 2  0 0 0 0 0 1 1 0 0 0 0 0 1 0 2
S18 0 0 1 8 1 0 3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 3
S19 1 2 4 12 1 1 9 1 0 0 0 0 0 1 2 1 0 1 0 2 1 2 6
S20 1 3 1 19 1 1 14 0 1 0 0 0 2 4 1 0 1 0 0 1 0 2 8
S21 1 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S22 0 0 0 14 0 0 15 2 0 2 0 0 2 0 2 0 0 0 0 1 0 0 1
S23 1 0 0 3 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S24 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S25 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 3
S27 1 4 0 10 0 0 7 1 0 3 0 0 2 0 0 1 0 0 1 0 0 0 3
S28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S29 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
S30 1 1 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S31 1 0 0 3 0 0 4 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1
S32 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S33 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S34 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 2
S35 0 0 0 4 0 0 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23

S36 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

S37 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0

S38 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

S39 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

S40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

S41 2 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 2 1 1 0 2 2 3

S42 2 2 0 0 0 0 0 4 0 5 0 4 0 3 2 3 1 2 1 2 2 0 0

S43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

S44 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

S45 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

S46 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

S47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S50 3 0 0 0 0 0 0 1 1 0 3 0 0 0 3 0 0 3 0 2 0 0 2

S51 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 3

S52 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2

S53 3 0 0 0 0 0 0 0 7 5 8 11 9 6 5 8 0 7 0 10 6 0 4

S54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

S60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 2

S61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

S62 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0

S63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S64 0 0 0 0 0 2 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0

S65 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

S66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

S68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46
S36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S39 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

S40 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
S41 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S42 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
S43 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S44 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S45 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S46 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S49 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

S50 0 3 0 0 3 2 5 3 3 3 4 3 2 3 11 3 0 3 0 0 0 0 0

S51 0 3 0 0 0 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S52 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S53 0 0 5 0 0 0 4 0 7 3 3 0 0 0 4 0 0 0 4 0 0 0 3

S54 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0

S55 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

S56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
S57 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0

S58 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

S59 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1

S60 1 0 2 2 2 2 1 0 1 2 2 0 0 0 1 0 0 2 1 0 0 0 2

S61 0 0 2 0 0 0 2 0 0 2 0 0 0 2 0 0 0 2 1 0 1 2 2

S62 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 2 0 0 0 2

S63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S64 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

S65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
S66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
S68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
S69 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
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S47 S48 S49 S50 S51 S52 S53 S54 S55 S56 S57 S58 S59 S60 S61 S62 S63 S64 S65 S66 S67 S68 S69
S36 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S37 0 0 0 2 0 0 2 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 1

S38 0 0 0 0 0 0 7 1 3 2 0 0 3 0 _0 0 3 0 0 0 0 0 5

S39 0 0 0 3 0 0  2 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 2

S40 0 0 0 2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S41 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 1 0 0 2 0 0 0 3

S42 0 0 0 7 1 1 5 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 4_

S43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S44 0 0 0 3 1 1 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

S45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S48 0 0 0 0 0 0 3 0 2 1 0 1 1 0 2 0 0 0 0 0 0 0

S49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S50 0 0 0 0 0 0 12 0 0 0 1 1 0 0 2 0 0 0 0 3 3 4 35

S51 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S53 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 2 0 3 3 3 25

S54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S56 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S57 1 0 1 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3

S58 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S59 0 0 0 3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S60 0 0 0 4 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4

S61 0 0 0 4 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S62 0 0 0 5 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S63 0 0 0 3 3 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S64 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S65 . 0 0 0 1 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S66 0 0 0 4 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S67 0 0 0 1 0 0 7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

S68 0 0 0 2 0 0 6 0 0 2 1 0 0 1 0 0 0 0 0 0 0 0

S69 0 0 0 3 0 0 6 0 0 2 1 0 0 2 0 0 0 0 0 0 0 0 0



APPENDIX D

MATLAB CODE FOR CASE II

Binary Genetic Algorithm
Case II: 69-stop example
Minimize the objective function designated in TotalCost.m
Set the parameters in parts A and B

Disnlav start time

% objective function
% number of SPs to be optimized
% number of stops to be skipped/stopped initial and final stops excluded

max number of iterations
% set population size
% set minimum cost to stop GA
% set mutation rate
% fraction of population kept
% number of bits in each parameter
% total number of bits in a chromosome

% demand;
% stop spacing
% stop delay+ dwell time
% eligible turn back stops
% vehicle speed
% total number of stops
% capacity

Create the initial population
% generation counter initialized
% random population of 1s and Os
% convert binary to integer values
% stations skipped condition

(,alfaR,uservalue,operatorcost,layover,c,tertW,tetR,tetV):
% min cost in element 1
% sorts population with lowest cost first
% minc contains min of population
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Iterate through generations

% increments generation counter
% #population members that survive

% number of matings
% weights chrom. based upon position in list
% probability distribution function
% mate #1
OZ. mate  ±E1

%	#2 2

ma and pa contain the indices of the chromosomes that will mate

Performs mating using double point crossover
% index of mate #1

crossover point 1
crossover point 2

% first offspring
% second offspring

% total number of mutations
% row to mutate
% column to mutate

% toggles bits



Stopping criteria
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gadecode4.m
Decode binary to integer values
chrom: population
bits: number of bits/parameter

% number of variables

% each column contains one variable
% DA conversion and un-normalize variables

% reassemble population

TotalCost.m
GA Fitness Function
x: vehicle frequency
par2: Stopped/Skipped stops
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%



End of mintravel.m

perexp.m
Percentage of demand selecting express service



vehtraveltime.m
Calculate vehicle travel time
Tloc: local vehicles travel time
Texp: express vehicles travel time
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End of vehtraveltime.m

constraints.m
Capacity constraints in Model II
hdwL: local service headway
hdwE: express service headway
HmaxL: maximum local service headway
HmaxE: maximum express service headway
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End of constraints.m

162



REFERENCES

Agrawal, J. and T. V. Mathew. (2004) "Transit Route Network Design Using Parallel
Genetic Algorithm" Journal of Computing in Civil Engineering ASCE, Vol.18,
No.3 pp. 248-256.

Axhausen, K.W. and Smith R. L. (1984) "Evaluation of Heuristic Transit Network
Optimization Algorithms," PBesented at Annual Meeting of TranspoBtation
Research Board, Washington, D.C.

Baaj, M. H., and Mahmassani H.S. (1990) "TRUST: A Lisp Program for the Anaysis of
Transit Route Configurations", TBanspoBtation Research RecoBd 1283 pp.125-
135.

Baaj, M.H. and Mahmassani, H.S. (1991) "An AI-Based Approach for Transit Route
System Planning and Design," JouBnal of Advanced Transportation, Vol. 25, No.
2, pp.187-210.

Baaj, M. H., and Mahmassani H.S. (1995) "Hybrid Route Generation Heuristic
Algorithm for the Design of Transit Networks.", Transportation Research C
Vol.3 No.1, pp.31-55.

Bookbinder, J. H., and Desilets, A. (1992) "Transfer Optimization in a Transit Network",
TranspoBtation Science, Vol.26, No. 2, pp.106-118.

Byrne, B. F., and Vuchic, V. R., (1972) "Public Transportation Line Positions and
Headways for Minimum Cost", TBaffic Flow and Transportation, pp.347-360.

Byrne, B. F. (1976) "Cost Minimizing Positions, Lengths and Headways for Parallel
Public Transit Lines Having Different Speeds", TranspoBtation Research, Vol.
10, pp.209-214.

Caramia, M., Carotenuto, P. and Confessore G. (2001) "Metaheuristics Techniques in
Bus Network optimization", NECTAR ConfeBence No. 6, European Strategies in
the Globalizing MaBkets; Transport Innovations, Competitiveness and
Sustainability in the Information Age, 16-18 May, Espoo, Finland.

Ceder, A. (1984) "Bus Frequency Determination Using Passenger Count Data",
TBansportation ReseaBch Part A, Vol.18, pp.439-453.

Ceder, A. and Wilson, N.H. (1986), "Bus Network Design", TranspoBtation Research
PaBt B, Vol.20, No.4, pp.331-344.

Ceder, A. (1987a) "Methods for Creating Bus Timetables" TBanspoBtation ReseaBch PaBt
A, Vol.21, pp.59-83.

163



164

Ceder, A. (1987b) "Designing Transit Short-Turn Trips with the Elimination of
Imbalanced Loads", Proceedings of the Fourth International workshop on
ComputeB-Aided Scheduling of Public TBansport. Hamburg, Germany.

Ceder, A. (1989) "Optimal Design of Transit Short-Turn Trips", TranspoBtation
ReseaBch Record 1221, pp.8-22.

Ceder, A. and Israeli, Y. (1998) "User and Operator Perspective in Transit Network
Design", 77th Annual Meeting of TRB, Paper No. 980267, Washington, DC.

Chakroborty, P. (2003) "Genetic Algorithms for Optimal Urban Transit Network Design"
ComputeB-Aided Civil and InfrastructuBe Engineering, Vol. 18, pp.184-200.

Chakroborty, P., Deb, K., and Sharma, R. K. (2001) " Network-Wide optimal scheduling
of urban transit networks Using Genetic Algorithms", Transportation Planning
and Technology, Vol.24, No.3, pp.209-226.

Chakraborty, P., Deb, K. and Subrahmanyam, S. (1995) "Optimal Scheduling of Transit
Systems using Genetic Algorithms," Journal of TBanspoBtation Engineering,
ASCE, Vol.121, No.6, pp.544-552.

Chang, S. K. (1990) "Analytic Optimization of Bus Systems in Heterogeneous
Environments", Ph.D. Dissertation, Civil & Environmental Engineering
Department, University of Maryland, College Park, MD.

Chang, S. K., and Schonfeld, P. (1991) "Multiple Period Optimization of Bus Transit
Systems", TBansportation Research PaBt B, Vol.25, pp.453-478.

Chien, S. and Shonfeld P. (1997) "Joint Optimization of a Rail Transit Line and Its
Feeder Bus System", Journal of Advanced Transportation, Vol. 32, No.3, pp.
253-284.

Chien, S. Yang, Z., and Hou, E. (2001) "Genetic Algorithm Approach for Transit Route
Planning and Design", Journal of TranspoBtation Engineering, Vol.127, No.3, pp.
200-207.

Chien, S. I, and Spasovic, L. (2002) "Optimization of Grid Bus Transit Systems with
Elastic Demand" JouBnal of Advanced Transportation, Vol.36, No.1, pp.63-91.

Chien, S. I. (2005) "Optimization of Headway, Vehicle Size and Route Choice for
Minimum Cost Feeder Service", TBansportation Planning and Technology,
Vol.28, No.5, pp.359-380.

Chien, S. I. Ulusoy, Y.Y. and Wei, C. (2009) "Analysis of Integrated Transit Service for
Minimum Cost Operation", 88th Annual Meeting of the Transportation ReseaBch
BoaBd, Washington D.C.



165

Chriqui, C. and Robillard, P. (1975) "Common Bus Lines", TBanspoBtation Science,
Vol.9, pp.115-121.

Chua, T.H. and Silcock, D.T. (1982). "The Practice of British Bus Operators in Planning
Urban Bus Services", TBaffic Engineering and ContBol, pp.66-70.

Clarens, G. C., and Hurdle, V. F. (1975) "An Operating Strategy for a Commuter Bus
System" TBanspoBtation Science, Vol. 9, pp.1-20.

Constantin, I., Florian, M. (1995) "Optimizing frequencies in a transit network: a
nonlinear bi-level programming approach". International Transactions in
Operational Research 2 (2), pp.149-164.

Dandy, G. C. and Engelhardt, M. (2001) "Optimal Scheduling of Water Pipe
Replacement Using Genetic Algorithms", Journal of Water Resources Planning
and Management, Vol.127, pp.214-222.

De Cea, J. and Fernandez, E. (1993) "Transit Assignment for Congested Public Transport
Systems: An Equilibrium Model", TBanspoBtation Science, Vol.27, No.2, pp.133-
147.

Delle Site, P. and Filippi, F., (1998) "Service optimization for bus corridors with short-
turn strategies and variable vehicle size", TBanspoBtation Research Part A,
Vol.32, No.1, pp.19-38.

Dial, R.B. (1967), "Transit Pathfinder Algorithm," Highway Research RecoBd, No.205,
pp. 67-85.

Dubois, D., G. Bel, and M. Llibre (1979) "A Set of Methods in Transportation Network
Synthesis and Analysis," Journal of the Operations ReseaBch Society, Vol.30, pp.
797-808.

Eberlein, X.-J. (1995) "Real-time control strategies in transit operations: Models and
analysis", Ph.D. DisseBtation, Department of Civil and Environmental
Engineering, Massachusetts Institute of Technology.

Ercolano, J. (1984) "Limited-stop bus operations: An evaluation", TBansportation
Research Record 994, pp.24-29.

Fan, W. and Machemehl, R. (2004) "Optimal Transit Route Network Design Problem:
Algorithms, Implementations, and Numerical Results", Technical Report
SWUTC/04/167244-1, Center for Transportation Research, University of Texas.

Fan, W. and Machemehl, R. (2006a) "Optimal Transit Route Network Design Problem
with Variable Transit Demand: Genetic Algorithm Approach", JouBnal of
TranspoBtation Engineering ASCE, Vol.132, No.1, pp.40-51.



166

Fan, W. and Machemehl, R. (2006b) "Using a Simulated Annealing Algorithm to Solve
the Transit Route Network Design Problem", Journal of Transportation
EngineeBing, Vol.132, No.2, pp.122-132.

Fawaz, M. Y. and Newell, G. F. (1976) "Optimal Spacing for a Rectangular Grid
Transportation Network", Transportation Research, V ol.10, No.2, pp.111-129.

Fu, L. and Liu, Q. (2003) "A Real-Time Optimization Model for Dynamic Scheduling of
Transit Operations", 82nd Annual Meeting of the Transportation Research Board,
Washington, DC.

Furth, P. G. and Wilson, N. H. M. (1981) "Setting Frequencies on Bus Routes: Theory
and Practice", Transportation Research Record 818, pp.1-7.

Furth, P. G., Brian, D. and Attunucci, J. (1984) "Bus Route and Service Design: An
Overview of Strategies for Major Radial Bus Routes", Final Report,
Multisystems, U.S. DOT.

Furth, P. G. and Day, F. B. (1985) "Transit Routing and Scheduling Strategies for Heavy-
Demand Corridors (Abridgement)" Transportation Research Record 1011, pp.
23-26.

Furth, P. G. (1986) "Zonal Route Design for Transit Corridors", TBansportation Science,
Vol. 20, No.1, pp.1-12.

Furth, P. G. (1987) "Short Turning on Transit Routes", Transportation Research Record
1108, pp.42-52.

Gao, Z., Sun, H., Shan, L. (2003) "A Continuous Equilibrium Network Design Model
and Algorithm for Transit Systems" Transportation Research Part B, Vol.38, pp.
235-250.

GDRC (Global Development Research Center) (2008) "Sustainable Transportation"
www.gdrc.org/uem/sustran/econ-benefits.html,  Accessed on August 29, 2008.

Gen, M., and Cheng, R. (1997) "Genetic Algorithms and Engineering Design", John
Wiley, New York, NY.

Han, A. F. and Wilson, N. (1982) "The Allocation of Buses in Heavily Utilized Networks
with Overlapping Routes", Transportation ReseaBch RecoBd B: Methodology,
Vol.16, No.3, pp.221-232.

Haupt, R. L. and Haupt, S. E. (1998). "Practical Genetic Algorithms", John Wiley, New
York, NY.



167

Hasseistrom, D. (1981) "Public Transportation Planning", Ph.D. Thesis, Department of
Business Administration, University of Gothenburg, Sweden.

Holland, J. H. (1975) "Adaptation in Natural and Artificial Systems", The University of
Michigan Press.

Holroyd, E. M. (1967) "The Optimum Bus Service: A Theoretical Model for a Large
Uniform Urban Area", Vehicular Traffic Science, pp.309-328.

Hurdle, V. F. (1973) "Minimum Cost Locations for Parallel Public Transit Lines,"
Transportation Science, Vol.7, pp.340-350.

Israeli, Y. and Ceder, A. (1991) "Transit Network Design," 70th Annual Meeting of the
Transportation Research Board, Washington, D.C.

Kidwai, F. A. (1998) "Optimal Design of Bus Transit Network: A Genetic Algorithm
Based Approach", Ph.D Dissertation, Indian Institute of Technology, Kanpur,
India.

Kocur, G. and Hendrickson, C. (1982) "Design of Local Bus Service with Demand
Equilibrium", Transportation Science, Vol. 16, No.2, pp.149-170.

Kuah, G. K. and Perl, J. (1988) "Optimization of Feeder Bus Routes and Bus Stop
Spacing", Journal of Transportation Engineering, Vol.114, No.3, pp.341-354.

Lam, W. H. K., Gao, Z. Y., Chan K. S. and Yang, H. (1999) "A Stochastic User
Equilibrium Model for Congested Transit Networks", Transportation Research
Part B, Vol.33, pp.351-368.

Lam, W. H. K., Zhou, J. and Sheng, Z. (2002) "A Capacity Restraint Transit Assignment
with Elastic Line Frequency", Transportation Research Part B, Vol.36, pp.919-
938.

Lam, W. H. K., Wu, Z. X. and Chan, K.S. (2003) "Estimation of Transit Origin-
Destination Matrices from Passenger Counts Using a Frequency-Based
Approach", Journal of Mathematical Modelling and Algorithms Vol.2, pp.329-
348.

Lampkin, W. and Saalmans, P. (1967) "The Design of Routes, Service Frequencies, and
Schedules for a Municipal Bus Undertaking: A Case Study", Operational
Research Quarterly, Vol.18, No.4, pp.375-397.

Last A. and Leak S. E. (1976) "TRANSEPT: A Bus Model", Traffic Engineering and
Control, Vol.17, No.1.



168

LeBlanc. L. J. (1988) "Transit System Network Design", Transportation Research Part
B, Vol.22, No.5, pp.383-390.

Lee, Y.J. and Vuchic, V. R. (2005) "Transit Network Design with Variable Demand",
Journal of Transportation Engineering, Vol.131, No.1, pp.1-10.

Li,Y., Rousseau, J. M. and Gendreau, M. (1991) "Real-Time Scheduling on A Transit
Bus Route: A 0-1 Stochastic Programming Model", Proceedings of the ThiBty-
Third Annual Meeting, Transportation ReseaBch Forum, pp.157-166.

Mandl, C. (1979) "Applied Network Optimization", Academic Press Inc., New York.

Mandl, C. E. (1980). "Evaluation and Optimization of Urban Public Transportation
Networks", European Journal of Operational Research, Vol.5, No.6, pp.396-404.

Michalewicz, Z. (1999) "Genetic Algorithms+ Data Structures= Evolution Programs",
Third, Revised and Extended Edition, Springer-Verlag , Berlin Heidelberg, NY.

Newell, G. F. (1979) "Some Issues Related to the Optimal Design of Bus Routes,"
Transportation Science, Vol.13, No.1, pp.20-35.

Ngamchai, S. and Lovell, D. (2003) "Optimal Time Transfer in Bus Transit Route
Network Design Using a Genetic Algorithm", Journal of TBansportation
Engineering, Vol.129, No.5, pp.510-521.

Nguyen, S. and Pallotino, S. (1988) "Equilibrium Traffic Assignment for Large Scale
Transit Networks", European Journal of Operational Research, Vol.37, No.2,
pp.176-186.

NTD (National Transit Database) (2007) "http://www.ntdprogram.gov/ntdprogram/ "
Federal Transit Administration, Accessed at December, 17 2007.

Oldfield R. H., and Bly P. H. (1988) "An Analytical Investigation of Optimal Bus Size"
Transportation Research B, Vol.22, pp.319-337.

Pattnaik, S. B., Mohan, S. and Tom, V. M. (1998) "Urban Bus Transit Route Network
Design Using Genetic Algorithm", Journal of Transportation Engineering, Vol.
124, pp.368-375.

Rapp, M.M. and Gehner, C.D. (1976) "Transfer Optimization in an Interactive Graphic
System for Transit Planning," Transportation Research Record, No.619, pp.22-
29.

Salzborn F. J. (1972) "Optimum Bus Scheduling", Transportation Science, Vol. 6, pp.
137-148.



169

Scheele, S. (1977) "A Mathematical Programming algorithm for Optimal Frequencies",
Ph.D Dissertation, Linkoping Studies in Science and Technology, Linkoping
University Institute of Technology, Linkoping, Sweden.

Scheele S. (1980) "A Supply Model for Public Transport Services", Transportation
Research B, Vol.14 No.3, pp.133-148.

Schrank, D., and Lomax, T. (2007) The 2007 Urban Mobility Report, Texas
Transportation Institute, The Texas A&M University.

Schrank, D., and Lomax, T. (2009) The 2009 Urban Mobility Report, Texas
Transportation Institute, The Texas A&M University.

Shih, M.C. and Mahmassani, H.S. (1995) "Vehicle Sizing Model for Bus Transit
Networks", Transportation Research Record 1452, pp.35-41.

Shih, M., Mahmassani, H.S. and Baaj M. (1998) "Trip Assignment Model for Timed-
Transfer Transit Systems", Transportation Research Record 1571, pp.24-30.

Silman L. A., Barzily Z. and Passy, U. (1974) "Planning the Route System for Urban
Buses", Computational Operational Research, Vol.1, pp.201-211.

Spasovic, L. N., and Schonfeld, P. M. (1993) "A Method for Optimizing Transit Service
Coverage", Transportation Research Record 1402, pp.28-39.

Spasovic, L. N., Boile, M. P., and Bladikas, A. K. (1994) "Bus Transit Service Coverage
for Maximum Profit and Social Welfare", Transportation Research Record 1451,
pp.12-22.

Spiess H., Floran M. (1989) "Optimal Strategies: A New Assignment Model for Transit
Network", Transportation Research Part B, Vol.23, pp.83-102.

Suh, W., Chon, K.-S., and Rhee, S. M. (2002) "Effect of Skip-Stop Policy on A Korean
Subway System", Transportation Research Record 1793, pp.33-39.

Sun, A., Hickman, M. (2005) "The Real-Time Stop-Skipping Problem", Journal of
Intelligent Transportation Systems, Vol.9, No.2, pp.91-109.

Tsao, S. and Schonfeld, P. (1983) "Optimization of Zonal Transit Service", JouBnal of
Transportation Engineering, Vo1.109, pp.257-272.

Tsao, S.M, and Schonfeld, P. (1984) "Branched Transit Service: An Analysis", Journal
of Transportation Engineering, ASCE, V 01.1 10, No.1, pp.112-128.

Turnquist, M. A. (1979) "Zone Scheduling of Urban Bus Routes", Journal of
Transportation Engineering, ASCE, Vol.105, No.1, pp.1-13.



170

Ulusoy, Y. Y., Chien I. J. and Wei, C. (2010-Forthcoming) "Optimal All-Stop, Short-
Turn, and Express Transit Services Under Heterogeneous Demand"
Transportation Research Record: Journal of the Transportation Research Board.

Van Nes, R., Hamerslag, R. and Immer, B.H. (1988) "Design of Public Transport
Networks", Transportation ReseaBch Record 1202, pp.74-83.

Vuchic, V. R. and Newell, G. F. (1968) "Rapid Transit Interstation Spacing for Minimum
Travel Time", Transportation Science, V ol.11, No.4, pp.359-374.

Vuchic, V. R. (1973) "Skip-Stop Operation as a Method for Transit Speed Increase"
Traffic Quarterly, Vol.27, pp.307-327.

Vuchic, V. R. (2007) "Urban Transit Systems and Technology", John Wiley and Sons
Inc., Hoboken, New Jersey.

Wilson, N., Macchi, R., Fellows, R. and Deckoff, A. (1992) "Improving Service on the
MBTA Green Line Through Better Operations Control", Transportation Research
Record 1361, pp.296-304.

Wirasinghe, S. C. (1980) "Nearly Optimal Parameters for a Rail/Feeder-Bus System on a
Rectangular Grid", Transportation Research, Vol.4A, pp.33-40.

Zhao, F., Gan, A. (2003) "Optimization of Transit Network to Minimize Transfers",
Technical Report BD015 -02, Florida DOT, Center for Transportation Research,
Florida International University.

Zhao, F. and Ubaka, I. (2004) "Transit Network Optimization - Minimizing Transfers and
Optimizing Route Directness", Journal of Public Transportation Vol.7, No.1,
pp.67-82.

Zhao, F. and Zeng, X. (2006) "Optimization of Transit Network Layout and Headway
with a Combined Genetic Algorithm and Simulated Annealing Method"
Engineering Optimization, Vol.38, No.6, pp.701-722.

Zhao, F. and Zeng X. (2008) "Optimization of Transit Route Network, Vehicle
Headways and Timetables for Large-Scale Transit Networks" European Journal
of Operational Research, Vol. 186, No.2, pp.841-855.


	Optimizing integrated service for a transit route with heterogeneous demand
	Recommended Citation

	Copyright Warning & Restrictions 
	Personal Info Statement
	Abstract 
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2) 
	Biographical Sketch (2 of 2) 

	Dedication Page
	Acknowledgment 
	Table of Contents (1 of 4) 
	Table of Contents (2 of 4) 
	Table of Contents (3 of 4) 
	Table of Contents (4 of 4) 
	Chapter 1: Introduction 
	Chapter 2: Literature Review 
	Chapter 3: Methodology 
	Chapter 4: Solution Algorithms 
	Chapter 5: Case Study 
	Chapter 6: Conclusion and Future Research
	Appendix A: Definitions of Model Parameters 
	Appendix B: Bus Stop Information for Case II
	Appendix C: OD Demand Matrix for Case II
	Appendix D: Matlab Code for Case II
	References 

	List of Tables (1 of 2) 
	List of Tables (2 of 2) 

	List of Figures (1 of 4) 
	List of Figures (2 of 4) 
	List of Figures (3 of 4) 
	List of Figures (4 of 4) 


