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ABSTRACT

MODELING WITH BIVARIATE GEOMETRIC DISTRIBUTIONS

by
Jing Li

This dissertation studied systems with several components which were subject to

different types of failures. Systems with two components having frequency counts in

the domain of positive integers, and the survival time of each component following

geometric or mixture geometric distribution can be classified into this category.

Examples of such systems include twin engines of an airplane and the paired organs

in a human body. It was found that such a system, using conditional arguments,

can be characterized as multivariate geometric distributions. It was proved that

these characterizations of the geometric models can be achieved using conditional

probabilities, conditional failure rates, or probability generating functions. These new

models were fitted to real-life data using the maximum likelihood estimators, Bayes

estimators, and method of moment estimators. The maximum likelihood estimators

were obtained by solving score equations. Two methods of moments estimators

were compared in each of the several bivariate geometric models using the estimated

bias vectors and the estimated variance-covariance matrices. This comparison was

done through a Monte-Carlo simulation for increasing sample sizes. The Chi-square

goodness-of-fit tests were used to evaluate model performance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Most statistical models and methods for lifetime data are used to describe continuous

nonnegative lifetime variables. However, it is sometimes more appropriate or convenient

to measure lifetime using discrete random variables, as for instance, the incubation

period of diseases such as AIDS, the remission time of cancers, and the time-to-failure

of engineering systems. Discrete lifetimes should be used when either the clock time is

not the best scale for measuring lifetime or the lifetime is measured discretely. In most

cases, the lifetime data under study is not determined by a univariate distribution.

Discrete multivariate distributions provide a natural answer to measure lifetime data.

In particular, bivariate discrete distributions can be a useful way to study lifetime

data involving a mixture of two discrete random variables. When a bivariate study

is of sufficient duration so that multiple events may occur, within-subject correlation

may be present and require special statistical consideration. Bivariate geometric

distributions are such models which can retain within-subject correlation, while the

marginal distributions are simple geometric or mixture geometric distributions.

1.2 Background

A variety of bivariate models have been proposed in statistics to represent lifetime

data. Freund (1961) constructed his model as a bivariate extension of two exponential

distributions. Marshall and Olkin (1985) studied a family of bivariate distributions

generated by the bivariate Bernoulli distributions. Nair and Nair (1988) studied the

characterizations of the bivariate exponential and geometric distributions. Basu and

Dhar (1995) proposed a bivariate geometric model (BGD (B&D)) which is analog to

1
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the bivariate distribution of Marshall and Olkin (1967). Dhar (1998) derived a new

bivariate geometric model (BGD (F)) which is a discrete analog to Freund's model.

In this dissertation, the bivariate fatal shock model derived by Basu and Dhar

(1995) has been studied. However, this model is a reparameterized version of the

bivariate geometric model of Hawkes (1972) and in contrast the BGD (B&D) random

vector takes values in the set of cross-product of positive integers with itself. The other

bivariate geometric model studied is the BGD (F) which deserves more explorations.

Thus, this research derives several characterizations of BGD (F) and the other models.

Some of these characterizations are through conditionally specified distributions.

The characterization for BGD (F) is studied in Chapter 3, while that of the BGD

(B&D), has been done by Sreehari (2005) through Hawkes' model. Cox (1972)

introduced conditional failure rate (CFR) in the area of reliability. Sun and Basu

(1995) derived the characterization result based on this CFR for the BGD (B&D)

model. Sreehari (2005) used a revised version of conditional failure rate to derive

the characterization theorem for the BGD (B&D) through Hawkes' (1972) model. The

present research derives characterization for the BGD (F) using CFR from Sreehari

(2005) in Chapter 4. In Chapter 5, the joint probability generating function (p.g.f.)

of the random variables (X, Y) from BGD (F) is derived, and verified, using the

relationship between joint probability mass function and p.g.f. in terms of repeated

partial derivatives (Kocherlakota Kocherlakota, 1992).

In the context of reliability, we use the concept of CFR function introduced

by Cox (1972). Two methods are discussed in the process of characterizing BGD

(B&D) model, and BGD (F) model through CFR. The characterization theorem for

BGD (B&D) model was derived by Sreehari (2005) through BGD (H) model. Kotz

and Johnson (1991) gave a new definition of CFR. The relation between these two

conditional failure rates will be examined as future work. Using the new conditional

failure rate, more characterization results will be explored. Roy (1993) considered



3

another bivariate failure rate and bivariate mean residual life function. Their usage

will also be explored to derive characterization results for the various other bivariate

geometric models.

In Chapter 6, application of modeling is performed to a real data set based on

the BGD (B&D) model. The three estimation methods described in Chapter 2 are

applied and compared on this data set. A Monte Carlo simulation is generated to

study and compare different estimation methods. Bias vector and variance covariance

matrix of the estimated parameter vector are estimated from this simulation. Chi-

square goodness-of-fit tests are used to obtain the best fitted model based on different

estimation methods.



CHAPTER 2

ESTIMATION METHODS USED IN BGD'S

In this chapter, the bivariate geometric model BGD (B&D) derived by Basu and Dhar

(1995), and BGD (F) model derived by Dhar (1998) have been studied, and three

methods of estimation are described, respectively, in the context of these models.

2.1 Estimation Methods Used in BGD (B&D)

2.1.1 Maximum Likelihood Estimation

The bivariate geometric distribution derived by Basu and Dhar (1995) (BGD (B&D))

is recalled in this section. A two-component system fails due to three types of failures:

failure of component 1 only, failure of component 2 only, and simultaneous failure of

the two components. The three processes are treated to be independent binomial

with different failure rates. Let B(x, 1 - p1), B(y, 1 - p2 ), and B(x V y, 1 - p12 )

denote the three failure binomial processes. Suppose X and Y have discrete lifetime

distributions of components 1 and 2 with support on Z+ x Z+, respectively. Then

the lifetime of the system is represented in terms of bivariate random variables. The

system survival function is given by:

where 1 ≤  x, y E Z+ , 0 < p1 < 1, 0 < p2 < 1, and 0 < p12 ≤  1. Here, x V y=

max (x,y) and Z+ is the set of positive integers. It is seen that the survival function

satisfies the loss of memory property without any additional parameter restrictions,

namely,

4



1 ≤ s1 , s2 , t E Z + .

From the survival function, we see that

5

The likelihood function for this model is:

and the log-likelihood function is:

To obtain the maximum likelihood estimators (MLE), the following score equations

are to be solved:
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In order to simplify the expression, let a = Σni=1, xi - n, b =Σn i=1 yi - n,

c = Σn i=1I[y

i

 < x

i

], d = Σn i=1 I[xi < yi], e = Σni=1 ((yi - 1)I [x

i

 < y

i

] +

Σn i=1 (xi -

1)I[yi ≤  xi]) , and g = Σn i=1I[xi = yi].

Then the score equation set is rewritten as:
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The equation set is not easy to solve in a closed form due to the complex calculation.

However, it is possible to obtain the explicit expression for the equation set if a data

set (x, y) is given, since the values of a, b, c, d, e, and g are only related to the data

set itself. Thus the equation set becomes easy, and obtaining the MLE's for p i , p2

and p 12 is less challenging. An example will be given to illustrate this method in

Chapter 6.

2.1.2 Bayes Estimation

The likelihood function (2.2) for the model expressed using notation "a—g" is given

by:

Krishna & Pundir (2009) did Bayes estimation for some bivariate geometric

distribution using a bivariate Dirichlet distribution (BDD) as the prior distribution

whose posterior distribution is also BDD. However, using BDD as prior for BGD

(B&D) to solve the Bayes estimator is not used here because the posterior distribution

for BGD (B&D) is not BDD any more.

Note that this method of using uniform prior on the BGD (B&D) would be

different from that of Krishna & Pundir's Bayes estimation using uniform prior on

the BGD of Hawkes's (1972) model, due to its different parameters.

Accordingly, instead of using BDD as prior, a uniform prior distribution on

(Pi P2 P12) is considered here with probability density function (pdf)
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Thus, the posterior distribution of (p i , p2 , p 12 ) is in the form of

where 0 < p i , p2 < 1, 0 < /312 < 1, and C is the constant obtained by integrating the

likelihood function (2.7) with respect to P1, 2)2 , p12 each from zero to one.

However, it is again not easy to obtain a closed form of the Bayes estimators of

P1) P2, P12 due to the complex form of the posterior distribution (2.9). Nevertheless,

the expression of (2.9) can be simplified because the posterior distribution is similar to

the likelihood function in MLE computation. The process to obtain Bayes estimator

is now described as follows.

Using mean square error with Euclidean norm as the risk function, namely,

E||p-p||2 , where vector p is the estimator of the vector of parameters p = (p 1, p 2, p 12 )

the Bayes estimate of the unknown parameter is simply the conditional mean of the

posterior distribution.

where pi = pi , p2 , p 12 , and f (pi Ix, y) is the marginal posterior distribution of p

1, p 2, p 12

respectively, i.e,

where i, j, k = 1, 2, 12, and i ≠ j ≠ k. The application of this method is also

illustrated in Chapter 6.

2.1.3 Method of Moments

Method of moments was used in Dhar (1998) to estimate the parameters by fitting

a discrete bivariate geometric distribution to practical data sets. In this subsection,
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this method is used to evaluate the parameters for the BGD (B&D) model as defined

in equality (2.1). Let us first derive the marginal survival functions of X and Y for

model (2.1):

where x, y = 0, 1, 2....

Then the marginal distributions of X and Y are:

where x, y = 1, 2....

In order to apply method of moments, we have to find moments.

and

Three parameters need to be estimated in this case. Thus, a second moment for X

and Y is chosen as:

Replacing the population moments by their sample equivalents, we have



where x = 1/nΣni=1xi ,y = 1/nΣn i=1  yi , and z =1/nΣn i=1  xi yi represent the sample

moments. These equations are solved to yield the method of moments estimators forp

1, p 2

,  and p

12

. Let's denote this method as MOM1.

An alternative moment considered here is E[min(X , Y)] instead of E(XY),

which is found to be (1 - p

1

p

2p 12

) -1 . Then, an equation set can be constructed as:

where x = Σn i=1xi/n, y = Σni=1yi/n, and w =

Σn i=1min(xiyi)/n.

Then the alternative set of method of moments estimators are
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where x = Σn i=1x

i

/n , y =Σn i=1yi/n, and w =Σn i=1 min(x

i

y

i

)/n Let us denote this method as

MOM2.

2.2 Estimation Methods Used in BGD (F)

The BGD (F) model discussed here was derived and motivated by Dhar (1998, 2003).

Part of this bivariate geometric distribution was motivated based on the idea of Freund

reliability models for the continuous case. The model is given by:

where 0 < p

i

 < 1, p

i

 + q

i

 = 1, i = 1, 2, 3, 4, 0 < P12 < 1, p12 + q12 = 1, p1p2 < p3, and

p1p2 < p4 .

2.2.1 Maximum Likelihood Estimation

The likelihood function for the BGD (F) under the assumption p12 = P1P2 in the

region {(x, y) : x, y = 1, 2,	 } can be written as:
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Under the assumption p 12 = p1p2 , the same process was executed to derive the

MLE of pi , p2 , p3 , and p4 .

2.2.2 Bayes Estimation

Likewise, the Bayes estimation was applied on the BGD (F) using the uniform prior

distribution on (p1 , p2 , p3 , p4) with the additional assumption p12 = p1p2.

The posterior distribution of (p1

, 

p2

, p

3

, p

4 ) is in the form of

where 0 < pi < 1, i = 1, 2, 3, 4, p 1p2 <

p

3 , p1p2 <

p

4 , and C is the constant obtained by

integrating the likelihood function (2.24) with respect top1

, 

p2

, p

3

, p

4  each from zero

to one. Using the same risk function, the Bayes estimators can be obtained as follows:
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2.2.3 Method of Moments

For method of moments estimation on BGD (F) under the assumption p 12 = p1p2 ,

the moments EX, EY, EX2 , and EZ were considered, where Z = min(X,Y). Then,

Equating the four equations EX = x, EY = y, EX2 = x2 =Σn i=1x2i/n and EZ = z =
Σn i=1min(xi ,y

i

)/n, one can generate the method of moments estimators:



and

14

An alternative method of moments was developed by using EX, EY, EY2 , and EZ,

where

Equating the four equations, EX = x, EY = y, EY2 = y2 = Σni=1y2i/n, and EZ =

z = Σni=1min(xi,yi)/n, one can solve for the alternative set of method of moments

estimators.

and

In this chapter, three estimation methods have been explained under both

the BGD (B&D) and the BGD (F) models. Some expressions do not have closed
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forms and thus, the procedures to derive these estimators are explained step by

step. Moreover, to study their behavior in terms of unbiasedness and efficiency, the

expectation and variance should be investigated. In view of the complex nature of

bivariate geometric distributions, Monte Carlo simulation method is used to achieve

this goal and is illustrated in Chapter 6.



CHAPTER 3

CHARACTERIZATIONS BY CONDITIONALLY SPECIFIED

DISTRIBUTIONS

The problem of characterizing a bivariate distribution of two random variables by

properties of its conditional distributions was studied in Arnold, Castillo, and Sarabia

(2001). In this chapter, some sufficient conditions to characterize two bivariate

geometric models using their corresponding conditional distributions are considered.

3.1 Characterization of BGD (F) Model

Using the conditional distributions g(m|n) of X given Y = n and h(n|m) of Y given

X = m obtained from the BGD (F) model (2.23) and loss of memory property of the

model mentioned in Dhar (1998). The following characterization result for bivariate

geometric model BGD (F) can be established.

Theorem 3.1.1 Suppose that the conditional distributions g(m|n)=P(X  = m|Y =

n) of X given Y = n and the conditional distributions h(n|m) = P(Y = n|X = m)of

Y given X = m are given by

16



17

and

where 0 < p2 < p4 <1, 0 < p1 < p3 < 1, and p2  = p1p2, m, n = 1, 2... Then the joint

distribution of (X, Y) is BGD (F).

Proof : Let P(X = m) = fl(m) and PDT = n) 12(n). Then the fact

gives us for m > n,

In the above equation, isolate f2 (n) and then sum over n = 1, 2, ... to get that for

m= 1, 2, ...,

Therefore,
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In case m < n, by similarly summing equation (3.1) over m = 1, 2, ..., we can obtain

f2 (n). Therefore,

In case m = n, substitute f1(m) as shown in (3.2) into the following

It can be then observed that the joint distribution of (X, Y) is BGD (F) with p12 =p1p2.

3.2 Characterization of BGD (B&D) Model

Characterization statement similar to that made in Section 3.1 can be made for BGD

(B&D) model. Suppose that the following conditional distributions are given:

1 < x, y E Z+ , 0 < p1 < 1, 0 < p2 < 1, 0 < p12 ≤  1, and 1- p1p12- p 2p12+ p1p 2p12 > 0.

Then, the joint distribution of (X, Y) is BGD (B&D).



19

However, this work has been done by Sreehari (2005) for Hawkes bivariate

geometric distribution (BGD (H)) which is theoretically equivalent to BGD (B&D)

except for the domain and parameters.

Sreehari (2005) proved that if the conditional distribution g(m|n) of X given

Y = n and conditional distribution h(n|m) of Y given X = m are given by:

and

where m, n = 0,1, 2..., αδ  = βγ , 0 < α, β, γ, δ S < 1, and α + γ  < 1 + γβ . Then the

joint distribution of (X, Y) is BGD (H).

Letting α = p1p12 , β = p1 , γ = p2p12, and δ = p2 , one gets exactly the

same conditional distributions as shown in equation (3.3) and equation (3.4). The

parameter constrains:

• αδ = βγ implies p1p12*p2 = p1*p2p12;

• 0 < α, δ ,β ,γ < 1 implies 0 < p1p12 < 1, 0 < p1 < 1, 0 < p2p12 < 1, and

0 < p2 < 1;

• α + γ < 1 + γβ implies 1 - p1p12 - p2p12 + p1p2p12 > 0.

Note: Hawkes bivariate geometric model takes value starting with zero, while BGD

(B&D) model takes value starting with one.



CHAPTER 4

CHARACTERIZATIONS BY CONDITIONAL FAILURE RATE

In this chapter characterizations for both of the bivariate geometric models based

on the conditional failure rates are studied. The characterization theorem generated

by Sreehari (2005) regarding BGD (H) is considered. Some slight changes in the

parameters and domains are made to this theorem to accommodate the BGD (B&D)

model. Also, we state the results of Sun and Basu (1995) who derived the characterization

results based on conditional failure rates for BGD (H) model in order to derive the

same for BGD (B&D) model.

4.1 Conditional Failure Rate for BGD (F) Model

Several versions of CFRs have been used to characterize different bivariate geometric

distributions. One of these, defined by Cox (1972), is given by:

r(t) = P (min(M N) = t) I P(M ≥  t, N ≥  t),

with (M, N) taking values in the set {0, 1, 2, ...} x {0, 1, 2, . . .}, and t E {0, 1, 2, ...}.

Notice that r(t) is the failure rate of min(M , N) and r i (min) is the conditional failure

rate of M, given N = n for m > n. The quantity r2 (n1m) can be similarly interpreted.

A characterization of BGD (F) can be found in Dhar and Balaji (2006). Asha

and Nair (1998) considered this CFR as given in (4.1) and discussed its roles in

characterizing the Hawkes model (BGD (H)), and extended the domain of r i (m|n)

20
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and r2 (n|m) to the entire region {0, 1, 2, ...} x {0,1,2, ...} which includes the region

m = n, m, n = 0,1,2, .... Using different constant CFRs with loss of memory property

(Dhar, 1998), the specified geometric nature of the BGD (F) density at (n, n), n ≥  2,

as the sufficient conditions, the BGD (F) is derived.

Theorem 4.1.1 Suppose X and Y are random variables with probability mass function

f(m,n) satisfying the following conditions:

and

where 0 < qi < 1, pi + qi = 1, i = 1,2,3,4, then the joint distribution of (X, Y) is

BGD (F) with p 12 = p

2

 •p

2

.

Proof : Using the given r1(m|n) and induction on k,

is derived first as follows. Suppose



where 0 < ql , q3 < 1. The equality in (4.3) implies that

22

Thus,

In the region m > n, when m = n + 1,

if m = n + 2,



Using induction on k, the following equation is shown to be true. The equation

is now obviously true for k = 2, 3. Now assume that the above equation is true for k.

It can be shown that the above equality holds true for k + 1, k = 1, 2, 3...,

23

Thus, one proves that
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by induction. Similarly, suppose that

where 0 < q2 , q4 < 1, we can show that

In addition, from supposition

Since .f (m, n) must add over Z +  x Z+  up to 1, gives f (1,1) = P(X = 1, Y = 1) = q1 q2 .

Substituting the equation (4.7) into equations (4.4) and (4.6), one can see that the

joint distribution of (X, Y) is BGD (F) with p12 = pi •p2 as defined in equation (2.23).

The proof of the above characterization of BGD (F) model is analogous to that of

Sreehari (2005).

4.2 Conditional Failure Rate for BGD (B&D) Model

Using the CFR definition in (4.1), some characterization results for BGD (B&D) are

also obtained here.

It is known that the BGD (B&D) is the reparameterized version of BGD (H).

Sun and Basu (1995) already proved a characterization result for BGD (H). We thus

easily see the analog statement for BGD (B&D):
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where x, y = 1, 2, .... Total failure rate (1 - p 1p2 ,1- p1p12, - p2p12) in this case is

a constant, and the marginal distributions of X and Y are geometric, as given in

equation (2.12) and equation (2.13). Then (X, Y) is BGD (B&D).

Sreehari (2005) proved a characterization result of BGD (H) from a different

point of view. Likewise, this result can also be translated to BGD (B&D) since they

are equivalent except for the domain and the parameters. We thus have the following

result.

Suppose X and Y are random variables with probability mass function f (m, n)

satisfying the following conditions:

and

then the joint distribution of (X, Y) is BGD (B&D).



CHAPTER 5

CHARACTERIZATIONS VIA PROBABILITY GENERATING

FUNCTION

In this chapter probability generating functions are developed for both forms of

these bivariate geometric models. The probability generating functions are used to

determine the probability mass functions.

5.1 Probability Generating Function for BGD (F) Model

The joint probability generating function (p.g.f.) of the paired random variables

(X, Y) for the BGD (F) can be derived as follows:

Here 0 < pi < 1, i = 1, 2, 3, 4, 0 < p12 < 1,

p

1p2 <

p

2, p1p2 <

p

4| t1 |≤

min{p4/p1p2, 1/p3 }, |t1| ≤ min{p3/p1

p

2 , 1/p4 }, and |t 1 t2| ≤ min{

1/p1p2, 1/p12

}.

It is well known that the probability generating function has a one-to-one

relationship to the probability mass function. In order to determine the probability

mass function f (m, n) of the BGD (F), as given in equation (2.23) using the p.g.f.,

26
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it is required that one differentiate π (t1 , t2) partially with respect to t 1 , x times, and

with respect to t2 , y times at (0,0).

In the remaining part of Section 5.1, equation (5.1) is validated using the fact:

Note that BGD (F) given in equation (2.23) can be characterized by equation (5.1).

The equation (5.1) can be verified by expressing π(t

1

,t2 ) = A(t

1

, t2) +B(

t 1

,

t

2 ) +

C(t1 , t2 ), where A, B, and C are the first three terms on the right hand side of

equation (5.1), respectively. Thus,

and

Then,

The expressions A, B, and C can be written as geometric power series. Also, using

the fact that the derivatives of the power series can be obtained by term-by-term

differentiations within the summation sign, the following expressions can be derived.

In the domain |t2p4| < 1 and |t

1t2p1

p2| < 1, A can be rewritten as
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Differentiating A partially with respect to t 1 , x times, and evaluate it at t 1 = 0,

results in

This partial derivative is further differentiated partially with respect to t 2 , y times

and evaluated at t 2 = 0, giving

Thus

Analogously, B can be derived for |t1p3| < 1 and |t

1t2p 1

p2| < 1.

Differentiating B partially with respect to t2 , y times, and evaluating its result at

t2 = 0, yields

Partial derivatives are again applied to the above expression with respect to t 1 x times

and evaluated at t 1 = 0, yielding

Thus,
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Also, C can be rewritten for |t1t2p 12| < 1 as:

Differentiating C partially with respect to t 1 , x times, and evaluating it at t 1 = 0,

yields

This partial derivaive is further differentiated partially with respect to t 2 , y times,

and evaluated at t2  = 0, to give

Thus,

The three equations (5.2), (5.3), and (5.4) added together yield the joint probability

function of the BGD (F) as given in equation (2.23).
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5.2 Probability Generating Function for BGD (B&D) Model

The probability generating function of the paired random variables (X, Y) for the

BGD (B&D) is given below:

Here 0 < pi < 1, i = 1, 2, 3, p3 = p 12, |t

1

| 1 < 1/p

1

 , |t2| < 1/p2 , and |t

1t

2| < 1/p1p2p3.

The same p.g.f. is obtained from the most natural generalization of the geometric

distribution of Hawkes (1972, equation 3). Using an analogous method as in Section

5.1, we derived equation (5.5). Let (X, Y) be a bivariate random vector in the support

of Z+ x Z+  and the probability generating function of the pair of the random variables

(X, Y) is in the form of equation (5.5). Then, (X, Y) has the BGD (B&D) given in

(2.1).



CHAPTER 6

DATA ANALYSIS WITH MODELING

The applications of bivariate geometric models can be widely used in the analysis of

sports data, engineering systems, and biostatistics data. For instance, the following

set of sports data was taken from Dhar (2003) to exemplify the usage of the BGD

(B&D) model.

The estimation methods introduced in Chapter 2 are applied to this data set.

In the meanwhile, Monte-Carlo simulations are also generated in order to identify the

best estimation method.

6.1 A Real Data Example

In this section, the BGD (B&D) model is fitted to a real data set from Dhar (2003)

for demonstration purposes. This data set consists of scores given by seven judges

from seven different countries in the form of a video recording. The score given by

each judge is a discrete random variable taking positive integer values and also the

midpoints of consecutive integers between zero and ten. The data given in Table 1

displays the scores which have been converted into integer valued random variable.

The score corresponding to the dive of Michael Murphy Of Australia (item number

3) was not displayed by NBC sports during the recording.

In this case, one would be interested in comparing the scores given by the judges

from different regions. In other words, we need to find out the probabilities P(X > Y)

and P(X < Y). These probabilities can be obtained from their joint distribution as
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given in (2.1) with respect to the corresponding domains.

32

and

where 0 < p

1

< 1, 0 < p2 < 1, and 0 < p12 ≤ 1.
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Item Diver X: max score,

Asian &

Caucasus

Y: max score,

West

1 Sun Shuwei, China 19 19

2 David Pichler, USA 15 15

3 Jan Hempel, Germany 13 14

4 Roman Volodkuv, Ukraine 11 12

5 Sergei Kudrevich, Belarus 14 14

6 Patrick Jeffrey, USA 15 14

7 Valdimir Timoshinin, Russia 13 16

8 Dimitry Sautin, Russia 7 5

9 Xiao Hailiang, China 13 13

10 Sun Shuwei, China 15 16

11 David Pichler, USA 15 15

12 Jan Hempel, Germany 17 18

13 Roman Volodkuv, Ukraine 16 16

14 Sergei Kudrevich, Belarus 12 13

15 Patrick Jeffrey, USA 14 14

16 Valdimir Timoshinin, Russia 12 13

17 Dimitry Sautin, Russia 17 18

18 Xiao Hailiang, China 9 10

19 Sun Shuwei, China 18 18

Table 6.1 Scores taken from a video recorded during the summer of 1995 relayed
by NBC sports TV, IX World Cup diving competition, Atlanta, Georgia.

It is reasonable to assume that the maximum scores (X, Y) follow the BGD

(B&D) model since the marginal distribution of the scores from either region can
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be considered as following a univariate geometric distribution. Using the estimation

methods discussed in Chapter 2, one can calculate the estimators of parameters pi ,

P2, and p12 using Mathematica. The results are summarized in Table 6.2 below.

Estimator MLE Bayes MOM1 MOM2

p1 0.961605 0.957713 0.9343997 0.9968594

P2 0.985481 0.979849 0.9365146 0.9991156

P12 0.940199 0.939019 0.9934730 0.9312265

Table 6.2 Estimated parameters by fitting the BGD (B&D) model to the data set
shown in Table 6.1.

After comparing the results in Table 6.2, we see that the estimators obtained

through maximum likelihood estimation, Bayes method, and MOM2 are close, while

the MOM1 estimators are slightly off by about 0.06. Furthermore, the above estimates

helped us to identify the judges from which particular region tend to give higher scores

than the other region. By substituting the above estimates into equations (6.1) and

(6.2), we find the following results.

Method MLE Bayes MOM1 MOM2

P(X > Y) 0.1204 0.1525 0.4511 0.0113

P(X < Y) 0.3263 0.3275 0.4672 0.0403

Table 6.3 Comparisons of probabilities reflecting which group tends to give higher
scores for data set given in Table 6.1.

From Table 6.3, it can be seen that the probability P(X < Y) is higher than

the probability P(X > Y) for each column (estimation method), which shows that

judges from West tend to give higher scores than judges from Asia and Caucasus. This

conclusion is consistent with the empirical estimates P(X > Y) = 2/19 = 0.1053 and

P(X < Y) = 9/19 = 0.4737.
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6.2 Simulation Results

A Monte Carlo simulation study is performed by generating 500 simulations each

from the BGD (B&D) of sizes n = 20, n = 50, and n = 100. To simulate observations

from this model, the marginal distribution of Y and the conditional distribution of

X given Y are used.

An observation from the marginal distribution of the random variable Y is

generated using the inverse-transformation method. Using this realization of y, a

value of X is generated using the inverse-transformation method again based on the

conditional distribution of X given Y=y as given in equation (3.3). The R codes to

realize this simulation are attached in Appendix A.1.

In view of the complicated nature of the probability function for the BGD

(B&D), only two methods of moments as introduced in Section 2.1.3 are examined

here for comparison through simulation. Using

p 1 = 0.95, p2 = 0.96, p12 = 0.97,

as the true values, the following 500 simulations each for different sample sizes (20,

50, 100) are generated. From these simulated observations, the mean of the 500

estimated vectors of the parameter p = (P1, P2, p12) and the estimated variance-

covariance matrices based on these 500 vectors are computed. The performances

of the two estimation methods are assessed based on estimated expected value of the

estimator vector and their estimated variance covariance matrix for different sample

sizes. To measure and compare the magnitudes of the estimated mean vectors p

and the estimated variance covariance matrices of p, the Euclidean norm ||A|| =

√Σmi=1Σnj=1|aij|2  is used. The results of this simulation for sample size n = 20,

n = 50, and n = 100 are described as follows.
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MOM1 MOM2

True parameters bias variance bias variance

pi = 0.95 -0.011958 0.0008984997 -0.0051045 0.0005899290

P2 = 0.96 -0.0092005 0.0008798356 -0.0022724 0.0005287179

P12 = 0.97 0.0067059 0.0007443059 -0.0007186 0.0004115899

Table 6.4 Estimated bias and variances of 15 for the samples from BGD (B&D)
using methods of moments when n=20.

The estimated mean vector and the estimated variance-covariance matrix of f)

for sample data with sample size n = 20 using MOM1 are:

E(p1, p2,p12) = [0.9380420, 0.9507995, 0.9767059],

and

where the estimated mean vector of p contains the arithmetic averages of the estimates

of three parameters when n = 20. Using the difference between the mean vector and

the vector of true values of the parameters, the corresponding bias is estimated as

shown in Table 6.4. The Euclidean norm of the estimated bias vector and that of the

estimated variance-covariance matrix are reported in Table 6.7.

The estimated mean vector and the estimated variance-covariance matrix of p

for the sample data when n = 20 using MOM2 are given by:

E(p1, p2, p12) = [0.9448955, 0.9577276, 0.9692814],
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The Euclidean norm of the estimated bias vector and that of the estimated variance-

covariance matrix of p are reported in Table 6.7.

The results when n=50 are given below.

MOM1 MOM2

True parameters bias variance bias variance

p1 = 0.95 -0.0035407 0.0003825174 -0.0012051 0.0001947459

p2 = 0.96 -0.0039660 0.0003583178 -0.0016015 0.0001758509

p12 = 0.97 0.0026561 0.0003086988 0.0000670 0.0001277123

Table 6.5 Estimated bias and variances of 15 for the samples from BGD (B&D)
using methods of moments when n=50.

The estimated mean vector and the estimated variance-covariance matrix of p

for the sample data when n = 50 using MOM1 are given by:

E(p1, p2, p12) = [0.9464593, 0.9560340, 0.9726561],

The Euclidean norm of the estimated bias vector and that of the estimated variance-

covariance matrix of p are reported in Table 6.7.
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The estimated mean vector and the estimated variance-covariance matrix of p

for the sample data when n = 50 based on MOM2 are:

E(p1, p2, p12) = [0.9487949, 0.9583985, 0.9700670],

The Euclidean norm of the estimated bias vector and that of the estimated variance-

covariance matrix of p are reported in Table 6.7, both of which are less than those

obtained by using MOM1.

The results for n = 100 are given below.

True parameters	 bias	 variance	 bias	 variance

p1= 0.95 -0.0020813 0.0001763506 -0.0000126 0.00008880826

p2 = 0.96 -0.0021517 0.0001768563 -0.0000633 0.00008399345

p12 = 0.97 0.0016712 0.0001439446 -0.0005366 0.00005659574

Table 6.6 Estimated bias and variances for the samples from BGD (B&D) using
methods of moments when n=100.

Using MOM1, the estimated mean vector and the estimated variance-covariance

matrix of p for the sample data when n = 100 are:

E(p1, p2, p12) = [0.9479187, 0.9578483, 0.9716712],
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and

The Euclidean norm of the estimated bias vector and that of the estimated variance-

covariance matrix of p are reported in Table 6.7.

Finally, the estimated mean vector and the estimated variance-covariance matrix

of p for the sample data when n = 100 using MOM2 are:

E[p1, p2, p12) =  [0.9499874, 0.9599367, 0.9694634],

and

The Euclidean norm of the estimated bias vector and that of the estimated variance-

covariance matrix of p are reported in Table 6.7. In all cases, the norms computed

using MOM2 are less than those computed using MOM1.

ENEB ENVC ENEB ENVC

n=20 0.016510970 0.002160502 0.005633481 0.001184099

n=50 0.005943112 0.000922994 0.002005382 0.000380280

n=100 0.003428488 0.0004286696 0.0005404676 0.0001670376

Table 6.7 Summary of Euclidean norms of the estimated bias vectors (ENEB) and
that of the estimated variance-covariance matrices (ENVC).
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The above results in Table 6.7 show that the Euclidean norms of the estimated

bias vectors using MOM2 are less than those computed using MOM1 with respect

to different sample sizes. This is also true for the norms of the estimated variance-

covariance matrices. Hence, MOM2 (using score equation corresponding to E[min(X ,Y)]

instead of E[XY]) provides more accurate estimations for the parameters than MOM1

(using score equation corresponding to E[XY] instead of E[min(X,Y)]). Also, as

should be the case, the magnitude of the estimated bias and that of the estimated

variance-covariance matrix decrease as sample size increases.

6.3 A Random Sample Example

A chi-square goodness-of-fit test was performed to assess the performances of different

estimation methods using one random sample from BGD (B&D).

X Y X Y X Y X Y

41 38 14 6 2 24 9 3

12 12 1 10 4 2 65 3

14 21 14 14 50 10 2 10

2 11 42 12 11 11 23 81

2 2 7 7 10 19 5 5

Table 6.8 A randomly simulated sample from BGD (B&D).

Using the estimation methods introduced in Chapter 2, the following results in

Table 6.9 were obtained through Mathematica. Let H 0 : the data follows BGD (B&D)

distribution; H1 : negation H0 .

The degree of freedom of a chi-square goodness-of-fit test is one less than the

number of classes under a given multinomial distribution. Thus, considering there
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Method p1 p2 p12

MLE 0.9647230 0.9606100 0.9746760

Bayes 0.9616000 0.9573000 0.9728000

MOM1 0.9595252 0.9535610 0.9790196

MOM2 0.9514900 0.9455758 0.9872872

Table 6.9 Estimated parameters for the BGD (B&D) for the sample data given in
Table 6.8.

are three parameters in the BGD (B&D) distribution, it seems plausible to divide the

region Z+ x Z+ into seven cells:

1. 0 < x ≤ 5, 0 < y ≤  5,

2. 0 < x ≤  5, 5 < y ≤ 15,

3. 5 < x ≤ 15, 0 < y ≤ 5,

4. 5 < x ≤  20, 5 < y ≤  15,

5. 0 < x ≤  20, 15 < y ≤  25,

6. 20 < x ≤  65, 0 < y ≤ 15,

 7.otherwise.

The chi-square goodness-of-fit test value is calculated by

where oi is the number of the observations in region i and ei is the expected observations

in the region i. The maximum likelihood estimators, Bayes estimators, and the

methods of moments estimators shown in Table 6.9 are assumed to be the true values

of the parameters then the corresponding x2 goodness-of-fit statistics and p — values
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are computed and compared with degree of freedom 7-1=6 and 7-1-3=3, respectively.

The R codes to implement the x 2 goodness-of-fit tests using one of the estimation

methods (MLE) are attached in Appendix A.2.

For example, the x 2 goodness-of-fit statistic using maximum likelihood estimators

is 5.834179 with 6 degrees of freedom having a p-value of 0.4420, and with 3 degrees

of freedom having a p-value of 0.1199. Both of these p — values are higher than an

alpha value of 0.05. This suggests that the fit is good. These results for different

estimators are summarized in Table 6.10.

Method x2	goodness-of-fit

statistic

p-value (cif = 6) p-value (df = 3)

MLE 5.834179 0.4420 0.1199

Bayes 4.704356 0.5822 0.1947

MOM1 4.863244 0.5614 0.1820

MOM2 4.633646 0.5916 0.2007

Table 6.10 Comparisons of Chi-square goodness-of-fit statistics and p-values using
different estimates. (df: degree of freedom)

From this table, it is observed that the chi-square goodness-of-fit statistics

calculated using Bayes estimation, methods of moments estimation are close. The

result obtained using maximum likelihood estimators is slightly off by about 1.00 in

the computed x2 test statistic value. All the results are consistent with each other

since all the p-values are greater than the alpha value of 0.05. The best fit based on

largest p — value here is obtained from MOM2 for both degrees of freedom 6 and 3.



CHAPTER 7

CONCLUSION

In this dissertation, modeling of two bivariate geometric distributions have been

developed to study discrete lifetime data. One of them is the bivariate geometric

model BGD (B&D), which is a reparameterized version of the bivariate geometric

model of Hawkes (1972). It can be used to study two-component systems with the

lifetime of each component having frequency counts in the domain of positive integers,

and the survival time of each component following geometric distribution. The other

bivariate geometric model BGD (F) is a discrete analog to Freund's model (1961),

which can be used to describe rare events of simultaneous failures. These bivariate

geometric models have wide applications in the fields of medical and biological sciences.

The parameter estimations of the two bivariate geometric models have been

formulated in Chapter 2. Maximum Likelihood Estimations, Bayes Estimations, and

Methods of Moments Estimations are discussed for these two models, respectively.

In view of the complexity arising from the parametric estimation of the BGD (B&D)

model, the procedures to compute the maximum likelihood estimates and the Bayes

estimates are explained step-by-step in this study. Two methods of moments are also

derived for each of these two bivariate geometric models.

Conditional probabilities are used to characterize the BGD (F) model in this

research. Similar characterization is stated for the BGD (B&D) model since this

work has been done by Sreehari (2005) for Hawkes bivariate geometric distribution

(BGD (H)) which is a reparameterized version of the BGD (B&D) except for the

domain and the parameters. To further find the meaningful characterizations for

these bivariate geometric models, specific conditional failure rates are considered

and used to characterize these bivariate geometric models in Chapter 4. Probability
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generating functions can uniquely determine the probability mass functions. Using

this relationship, the joint distribution of two random variables from the BGDs is

validated in Chapter 5.

The BGD (B&D) model is used to fit a real data set taken from Dhar (2003)

for demonstration purposes. The estimation methods developed in this study are

applied on this sports data set to find meaningful probabilities arising from this

problem. A Monte-Carlo simulation study is performed by generating simulations

from the BGD (B&D) model for increasing sample sizes in order to compare two

Methods of Moments estimations. MOM2 shows to be the more promising method

compared to MOM1 based on the Euclidean norm of the estimated bias vector and

that of the estimated variance-covariance matrix. Finally, Chi-square goodness-of-fit

tests are used to obtain the best fitted model based on different estimation methods.



APPENDIX

R CODES

The R codes used for simulation studies and modeling are given in this appendix.

Ad R Codes for Generating Estimated Mean Vectors and Estimated
Variance-Covariance Matrices of p Using Two Methods of Moments

p1 = 0.95

p2 = 0.96

p3 = 0.97

n = 2 m = 10

as < —array(0, dim = c(m, 3, n))

bb < —array(0, dim = c(n, 3))

bbb < —array(0, dim = c(n, 3))

cc < —array(0, dim = c(n, 3)) ccc < —array(0, dim = c(n, 3))

for (1 in 1:n){

u < —runif (m)

u < —array(u, dim = c(m, 1))

x < —r geom(m, 1 — p1 * p3) + 1

x < — arr ay (x, dim = c(m, I))

y < —array(c(0), dim = c(m, 1))

min_xy < —array(c(0), dim = c(m, 1))

a < —array(c(u, x, y), dim = c(m, 3))

for (i in 1 : m) {

if (x[i] == 1 && u[i] < 1 — p2*p3 * (1 — p1)/(1 — pl *p3)) {y[i] = 1} else
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if (x[i] == 1) {for (s in 2:1000) if (u[i] >= 1— (1 — p1)* (p2 *p3)(s —1)/(1—p1*p3)

&& u[i] < 1 — (1 — p1) * (p2 *p3)s/(1 — p1 * p3)) {y[i] = s}}

else

for (j in 1 : x[i] — 2) if (u[i] >= 1 — p23 	u[i] <1— p2 (3 +1) ) {y[i] = j + 1} else

if (u[i] >= 1— p2 (x [j]-1) && u[i] < 1— (p2x[i]) *p3* (1 — pl)/(1 —p1 *p3)) { y[i] = x[i] }

else

if (u[i] >= 1— (p2x[i])*p3* (1 —p1)/(1 —p1 *p3) && u[i] < 1— (1 —p1)* (p2(x[i]+ 1 )) *

p32 /(1 — p1 * p3)) {y[i] = x[i] + 1} else

if (u[i] >= 1 — (1 — p1) * (p2 (x[i]+1)*p32 /(1 — p1 * p3)) {

for (k in 1 + x[i] : 1000) if

(u[i] >= 1— (1 — p1) * (p3(-x[i]+1))* ((p2 *p3)0/(1 —p1 *p3) && u[i] < 1 — (1 —p1)*

(p3(-x[i]+1))* ((p2 *p3)(k+1))/(1 —p1*p3)) {y[i]	 k	 1}}}

for (i in 1 : m){

min_xy[i] < —min(x[i],y[i])

}

xbar < —mean(x)

ybar < —mean(y)

zbar < —mean(min_xy)

pp1 < —(ybar — ybar * zbar)/(zbar — ybar * zbar)

pp2 < —(xbar — xbar * zbar)/(zbar — xbar * zbar)

pp3 < —(zbar — xbar * zbar — ybar * zbar + xbar * ybar * zbar)/(xbar * ybar * zbar —

xbar * ybar)

bias_p1 < —pp1 — p1

bias_p2 < —pp2 — p2

bias_p3 < —pp3 — p3

bias_p1

bias_p2
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bias _p3

zbarl < —mean(x * y)

pp1_sec < —ybar * (zbar1 — xbar — ybar + 1)/(zbar1 * (ybar — 1))

pp2_sec < —xbar * (zbar1 — xbar — ybar + 1)/(zbar1 * (xbar — 1))

pp3_sec < —zbar1 * (xbar —-1) * (ybar — 1)1 (xbar * ybar * (zbar1 — xbar — ybar +1))

bias_p1_sec < —pp1_sec — p1

bias_p2_sec < —pp2_sec — p2

bias_p3_sec < —pp3_sec — p3

bias_p1_sec

bias_p2_sec

bias _p3_sec

for (ii in 1:m)

aa[ii, 1, l] < —x[ii]

aa[ii, 2, l] < —y[ii]

aa[ii, 3, l] < —u[ii]

}

bb[l, 1] < —bias_p1

bb[l,2] < —bias_p2

bb[l, 3] < —bias_p3

bbb[l, 1] < —bias_p1_sec

bbb[l, 2] < —bias_p2_sec



bbb[l, 3] < —bias_p3_sec

cc[l, 1] < —pp1

cc[l, 2] < —pp2

cc[l,3] < —pp3

ccc[l,1] < —ppl_sec

ccc[l, 2] < —pp2_sec

ccc[l, 3] < —pp3_sec

}

mean_pp1 < —mean(cc[, 1])

mean_pp2 < —mean(cc[,2])

mcan_pp3 < —mean(cc[, 3])

mean_pp1_sec < —mean(ccc[,1])

mean_pp2_sec < —mean(ccc[, 2])

mean_pp3_sec < —mean(ccc[, 3])

var_p1 = var(cc[, 1])

var_p2 = var(cc[, 2])

var_p3 	 var(cc[, 3])

var_p1_sec = var(ccc[,1])

var_p2_sec = var(ccc[, 2])

var_p3_sec = var(ccc[,3])

cov_plp2 < —mean(cc[,1] * cc[, 2]) — mean_pp1 * mean_pp2

cov_plp3 < —mean(cc[,1] * cc[, 3]) — mean_pp1 * mean_pp3

cov_p2p3 < —mean(cc[, 2] * cc[, 3]) — mean_pp2 * mean_pp3
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cov_p1p2_sec < -mean(ccc[,1] * ccc[, 2]) - mean_pp1 _sec * mean_pp2_sec

cov_p1p3_sec < -mean(ccc[,1] * ccc[, 3]) - mean_pp1_sec * mean_pp3_sec

cov_p2p3_sec < -mean(ccc[, 2] * ccc[, 3]) - mean_pp2_sec * mean_pp3_sec

cov _mat < - arr ay (c(var _p1, cov_p1p2, coy _p1p3, cov_p1p2, var_p2, cov _p2p3,

cov _p1p3, cov _p2p3, var_p3), dim = c(3, 3))

cov_mat_sec < - array (c(var _p1_sec, cov_p1p2_sec, cov_p1p3_sec, cov_p1p2_sec,

var _p2_sec, cov_p2p3_sec, cov_p1p3_sec, cov_p2p3_sec, var_p3_sec), dim = c(3, 3))

A.2 R Codes for Implementing Chi-square Goodness of Fit Test on the
Simulated Sample from the BGD (B&D) Model by Using MLE

p1= .964723 p

2 = 0.96061

p3 = .974676

q1 = 1 - p1

q2 = 1 - p2

q3 = 1 - p3

N = 20

x < -seq(1, 100, by = 1)

x < - arr ay (x , dim = c(100, 1))

y < -seq(1, 100, by = 1)

y < -array(y, dim c(100,1))

f < -array(0, dim = c(100,100))

r1 < -array(0, dim = c(100, 100))

r2 < -array(0, dim = c(100,100))
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r3 < —array(0, dim = c(100,100))

r4 < —array(0, dim = c(100, 100))

r5 < —array(0, dim = c(100,100))

r6 < —array(0, dim = c(100,100))

for (i in 1:100){

for (j in 1:100){

if (x[i] < y[j]) { f[i, j] = (p (ix[i] - 1)) * (

p

2  *

p

3 ) ( Y[j] - 1) * q1 * (1 -

p

2  *

p

3 )} else

if (x[i] > y[j]) { f[i, j] = (

p

2 y[j] - 1)) * (p1 * p3) ( x[i] - 1) * q2 * (1 - pi * p3)} else

if (x[i] == y|j|) f[i, j] = ((

p

1  *

p

2  *

p

3 ) ( x[i] - 1)) * (1 -

p1

*

p

3  -

p

2  *

p

3  +

p1* p2

*

p

3 )}}}

sum( f )

for (i in 1:100){

for (j in 1:100){

if (x[i] <= 5 && y[j] <= 5){

r1[i, j] < - f[i, j]}}}

s1 < —sum(r1)

s1

ss1 < —N * sl

chi1 < -((3 - ss1) 2 )/ssl

chi1

for (i in 1:100){

for (j in 1:100){

if (x[i] <= 5 && y[j] > 5 && y[j] <= 15){

r2[i, j] < —f[i,j]}}}

s2 < —sum(r2)



s2

ss2 < —N * s2

chi2 < —(3 — ss2) 2 1882

chi2

for (i in 1:100){

for (j in 1:100){

if (x[i] > 5 && x[i] <= 20 && y[j] > 0 && y[j] <= 5){

r3[i, j] < —f [i, j]}}}

s3 < —sum(r3)

s3

ss3 < —N * s3

chi3 < —(1 — ss3) 2 I ss3

chi3

for (i in 1:100){

for (j in 1:100){

if (x[i] > 5 && <= 20 && y[j] > 5 && y[j] <= 15){

< - f[i,i]}}}

s4 < —sum(r4)

s4

ss4< —N * s4

chi4 < —(5 — ss4) 2 / ss4

chi4
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for (j in 1:100){



if (x[i] > 0 && x[i] <= 20 && y[j] > 15 && y[j] <= 25){

r5[i,j] < — f[i,j]}}}

s5 < —sum(r5)

s5

ss5 < —N * s5

chi5 < —(3 — 335) 2 1 885

chi5

for (i in 1:100){

for (j in 1:100){

if (x[i] > 20 && x[i] <= 65 && y[j] > 0 && y[j] <= 15){

r6[i, j] < —f[i,j]}}}

s6 < —sum(r6)

s6

ss6 < —N * s6

chi6 < —(3 — ss6) 2 1 ss6

chi6

sum1 < -sum(s1, s2, s3, s4, s5, s7 <

 -1 - sum1

ss7 < -N * s7

ss7

chi7 < —(2 — 337) 2 1 387

chi7

el < —array(c(s1, s2, s3, s4, s5, s6, s7), dim = c(7,1))

c2 < —array(c(ss1, ss2, ss3, 834, ss5, ss6, ss7), dim = c(7 ,1))
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c3 < — arr ay (c(chi1 , chi2, chi3, chi4, chi5, chili, chi7), dim = c(7 , 1))

cc < — arr ay (c(c1 , c2, c3), dim = c(7, 3))

cc

dd < — array(c(sum(c1), sum(c2), sum(c3)), dim = c(1, 3))

dd
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