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ABSTRACT

NOVEL MICRON- AND NANO-SCALE ENERGETIC MATERIALS FOR
ADVANCED GUN PROPULSION, THEIR MATERIAL PROPERTIES, AND

THEIR EFFECTS ON BALLISTIC PERFORMANCE

by
Thelma Gatuz Manning

This dissertation focused on the investigation of novel materials that are both energetic

and inert in their micron- and nano-scale crystalline form. The characterization of the

materials properties and its effects on the ballistic performance when incorporated into a

composite material were evaluated as a gun propellant for application in a future weapon

system for the US Army. Some of these materials may find dual use in civilian

applications. Applications in small and medium arms, artillery, tank, aircraft, and

shipboard gun systems will all benefit from these advancements. Not only will gun

system performance be improved for greater stand-off range and accuracy, but the ability

to perform consistently across a broad temperature range. Additionally, an improved

performance and longer gun barrel life achievable by tailoring the combustion products,

lowering the propellant flame temperature, minimum sensitivity of burning velocity to

pressure, temperature and gas velocity (erosive burning) and with munitions that are

insensitive to outside stimulus attack will give such systems a significant advantage

during military use. In addition, "green" chemistry and lower lifecycle cost were taken

into consideration during this research.

The approach to be taken was to incorporate these novel materials into a gun

propellant formulation by using nitramine-based micron scale cyclotrimethylene



trinitramine (RDX) explosives in combination with synthesized novel ingredients in

nanoscale crystalline form, characterize the material properties and predict the ballistic

performance across the ballistic temperature range. The nano-scale crystalline materials

evaluated consisted of polymeric nitrogen stabilized in single wall carbon nanotubes

(SWNTs), nitrogenated boron nanotubes / nanofibers (BNNTs/BNNFs), nano-aluminum,

and titanium dioxide. The polymeric nitrogen and the nitrogenated boron nanotubes /

nanofibers (BNNTs/BNNFs), should provide an enhancement in the propellant burn rate

by achieving the burn rate differential goal of 3:1 between the fast and the slow burning

propellant and at the same time improve the gun propellant performance by lowering the

CO/CO2 ratio and raising the N2 / CO ratio for mitigating gun bore wear and erosion,

respectively.

For the synthesis approaches of polymeric nitrogen stabilized in carbon

nanotubes, the following synthesis method were performed, optimized and compared:

Electrochemical Reactions, Microwave Induced Electrochemical Chemical Reactions and

Plasma Enhanced Chemical Vapor Deposition (PE-CVD). The Electrochemical Reaction

process has proven to be the most efficient synthesis approach for the polymeric nitrogen

based on analytical results obtained through Raman Spectroscopy, Laser Ablation Mass

Spectroscopy, Scanning Electron Microscope, Fourier Transform Infrared-Attenuated

Total Reflectance (FTIR-ATR) and Differential Scanning Calorimeter/Thermal

Gravimetric Analysis (DSC/TGA). The PE-CVD is the second recommended synthesis

approach to synthesize the polymeric nitrogen although a cost benefit economic analysis

has to be performed which is beyond the objectives of this research work.



For the synthesis of the nitrogenated boron nanotubes, the use of the magnesium

borohydride to initiate the reaction has proven to be the most optimized process due to a

much lower reaction temperature which is approximately 500 °C when compared with the

reaction temperature of 950 °C when using Magnesium Boride (MgB2) in the thermally

induced CVD process. The small scale synthesis of boron nanotubes /nanofibers carried

out using MgB2 powder, Nickel Boride (Ni2B) powder catalysts and mesostructured

hexagonal framework zeolite powder was successfully achieved at 950C. The quality of

the nanotubes produced was checked by Raman spectroscopy and transmission electron

microscope analysis. The TEM data shows the production of 10-20 nm boron nanotubes

using the MgB2, Ni2B and Mobile Crystalline Material (MCM-41) in the synthesis

process.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Two key objectives of this dissertation are to achieve an optimized synthesis approach to

stabilized polymeric nitrogen in single wall carbon nanotubes and a process to synthesize

pure nitrogenated boron nanotubes/nanofibers.

The polymeric nitrogen and nitrogenated boron nanotubes/nanofibers

(BNNTs/BNNFs), should provide an enhancement in the propellant burn rate by

achieving the burn rate differential goal of 3:1 between the fast and the slow burning

propellant in fast core propellant configurations and at the same time improve the gun

propellant performance by lowering the CO/CO2 ratio and raising the N2 / CO ratio for

mitigating gun bore wear and erosion, respectively.

For synthesis approaches to polymeric nitrogen, the following synthesis

methodwere performed, optimized and compared: Electrochemical Reaction, Microwave

Induced Chemical Reaction and Plasma Enhanced Chemical Vapor Deposition (CVD).

Electrochemical Reaction process proved to be the most effective synthesis approach for

polymeric nitrogen based on results obtained using Raman Spectroscopy and Laser

Ablation Mass Spectroscopy. The results obtained were also consistent with Fourier

Transform Infrared Attenuated Total Reflection (FTIR-ATR) and Scanning Electron

Microscope (SEM) results. The Plasma Enhanced CVD is the second recommended

approach to synthesize polymeric nitrogen based on similar characterization results.

1
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Cost analysis that is beyond the scope of this dissertation, needs to be performed

to determine which process is most cost effective.

For the nitrogenated boron nanotubes/nanofibers (BNNTs/BNNFs), the use of the

magnesium borohydride (Mg (BH 4 ) 2) to initiate the reaction has proven to be the most

scaleable process. The smaller scale synthesis of boron nanotubes/nanofibers carried out

using Magnesium Boride (MgB2 ) as the boron precursor instead of Magnesium

Borohydride (Mg(BH 4 ) 2 ) , Nickel Boride (Ni2B) powder as catalyst and the

mesostructured hexagonal framework of Mobile Crystalline Material (MCM-41) zeolite

powder as template, was successfully achieved. The quality of the nanotubes produced

was checked by Raman spectroscopy and transmission electron microscope and Electron

Energy Loss Spectroscopy (EELS). The TEM data shows high quality 10-20 nm diameter

pristine boron nanotubes prepared as described above.

The other key objectives of this dissertation is the use of nano-scale crystalline

materials, such as nano-aluminum, titanium dioxide, nano-boron, and nano-carbon

incorporated in micron-scale hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-based

propellant formulations to enhance propellant performance, have demonstrated burn rate

increase resulting in a burn rate differential between the slow and the fast burning

propellant of 1.7:1. The predicted muzzle velocity using the IBHVG2 code was a 6%

increase with the 1.7:1 burn rate differential.

1.2 Background Information

The US Army has currently fielded high performance ammunition systems for

large caliber guns to meet the needs of achieving longer-range munitions. As a result,

gun propellants with more energy and higher flame temperatures have been introduced.



3

These propellants generate combustion products containing elements and

compounds that can reduce the life of a gun barrel. Additionally, to achieve increased

gun performance, high energy propellants with high flame temperatures and erosive

combustion products are often utilized, the undesirable consequences of which are often

increased gun bore wear and erosion, blast and flash. These characteristics are dependent

on the propellant formulation thermochemistry and can be tailored to a certain extent by

adjusting component compositions and incorporating specific additives. In order to

achieve high performance with these currently produced gun propellant ingredients,

propellant developers are forced to use ingredients that raise the flame temperatures of

these propellants by several hundreds of degrees over the current legacy propellant

systems. As seen in the Figure 1.1 below, calculations of barrel wear due solely to

thermal effects using the Smith-O'Brasky [1,2] model, propellants that have higher flame

temperatures and higher impetus values, barrel wear values increase dramatically.

Figure 1.1 Barrel wear and impetus as a function of propellant flame temperature [2,3 ].

Source: C. Leveritt, P. Conroy and A. Johson, "Characterization of the Erosivity of Advanced Solid Gun
Propellants", Proceedings of the 37 th JANNAF Combustion Subcommittee Meeting, Monterey, CA,
November 2000
Walsh, C. and Knott, C., "Gun Propellant Formulations with High Nitrogen Modifiers", Proceedings of the
31 St JANNAF Propellant Development and Characterization Subcommittee Meeting, Charlottesville, VA.
March 2003.
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Based on his model, we can conclude, gun wear and erosion can be minimized if

the propellant flame temperature can be lowered while increasing the energy density of

the propellant.

Over the years, the Army has funded research and development programs

dedicated either to improve the performance of existing weapon systems or to develop

higher performance weapon systems. Recent Army studies have shown that the

chemistry of the propellant combustion products plays an important role in wear and

erosion as well as shown in table 1. The primary driving reaction of the chemical

mechanism is the dissociation of the carbon monoxide and subsequent

adsorption/absorption of the carbon into the steel [4, 5, 6].

Table 1.1 Examples of erosion related chemical reactions

Major propellant gas

Products

CO, CO2, H2, H20, and N2,

H2S from additives ( e.g., K2SO4 )

Water gas reaction CO2 + H2 = CO + H20

Carbon deposition 2C0 = C + CO2

Iron Oxide formation Fe + CO2 = FeO + CO

Carbide formation 3Fe +2 CO = Fe3C + CO

Iron sulfide formation Fe + H2S = FeS + H2

Sources: S. Sopok, C. Rickard, G. Pflegl, P. Vottis, P. O'Hara, S. Dunn, and D. Coats, "Erosion
Predictions for the Final Configuration of the M829E3 Round, Technical Report ARAEW-TR-04001, U.S.
Army ARDEC, Armaments Engineering & Technology Center, Weapon Systems & Technology, Benet
Laboratories, Jan 2004.
S. Sopok, P. Vottis, P. O'Hara, G, Pflegl and C. Rickard, " Comprehensive Erosion Model for the 120-
mm M256/M829A2 Gun System, Technical Report ARCCB-TR-98018, U.S. Army ARDEC, Armaments
Engineering & Technology Center, Weapon Systems & Technology, Benet Laboratories, Oct

Methods to mitigate erosion would include methods to suppress this dissociation
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or suppress the production of carbon monoxide. Ponec and Barneveld [7] suggest that

the surface dissociation of CO on an iron surface is spoiled by nitrogen intrusion on the

surface. This leads to the possibility that increasing the nitrogen content of the propellant

products may diminish the CO dissociation and thereby the wear/erosion.

Leveritt et al [2, 8 ] has discovered that some advanced propellants that contain

large amounts of nitrogen in the combustion products, but with even higher flame

temperatures than older double base propellants such as JA2, are not as erosive as those

propellants. Complicating matters is the fact that these advanced propellants have a

much higher CO/CO2 ratio in the combustion products than that of the double base

propellants. One would expect these higher ratios to exacerbate the carburization

mechanism. Ponec and Barnevelkd explanation may be applied to these new propellants

because their nitrogen content is approximately three times that of conventional

propellants. Studies by Leveritt have indicated that reducing CO and increasing N2 in the

combustion products can be beneficial in reducing erosivity. The current high

performance guns have operating peak pressures as high as 414 MPa (60,000 psi) for 155

-mm guns and 690 MPa (100,000 psi) for 120-mm guns. In the high pressure regime, the

heating rates from the high flame temperature of the propellant is also high, and as a

result, there is insufficient time for heat to be conducted away from the bore surface.

Propellant flame temperatures range from 2500 to 3600K with the 155-mm propellants

and 120-mm propellants, respectively. In this case, the bore surface temperature can

exceed the melting point of gun steel (1400-1900 °C). The action of high-pressure hot

combustion gases flowing across the surface wipes away any molten steel. The major

contributors to wear/erosion damage are thermal effects and chemical attack by
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propellant gases. Gas —metal reactions from combustion products with high flame

temperatures are major factors in erosion. As was listed in table 1.1, steel oxidation is a

common high temperature reaction in erosion. Nitrocellulose (NC) is the major

ingredient in most conventional gun propellants with Nitroglycerine and Nitroguanidine

added for higher energy formulations. Other additives may be used such as potassium

sulfate as a flash suppressant, magnesium oxide as an extrusion processing aid and other

minor ingredients added to improve the propellant ballistics properties. The combustion

products consist of CO, CO2, H20, H2, and N2. Other gases that are highly reactive such

as H2S, are generated from the potassium sulfate flash suppressants, primers and igniters.

The white layers on the bore surfaces, Figure 1.2, are known to represent fine grained

retained austenite stabilized by carbon and nitrogen with precipitates, primarily carbides,

distributed throughout the retained austenite [ 9, 10, 11 ]. Their universal occurrence,

mostly in greatly eroded areas, indicates that carbon is another important chemical factor

in gun bore erosion. The formation, melting, and removal of low melting temperature

carbide are known as the most erosive mechanism in carbon attack because of the low

melting point of Fe3C (2075K).

Recent gun firings of M31 type propellants have caused major spiral wear and

erosion damages downbore of the M777 howitzer resulting in the comdemnation of 12

gun tubes. Large amount of ceramic type particulates/grits like residues were found at the

downbore surface of the M777 tube. The obturator rotating band was found to be 60%

worn down and contaminated with ceramic type residues that felt like rough sand. It is

still unkown what the chemical composition of the residues found on the M77 bore

surface were. During the firing of rounds, the gun bore surfaces are usually subjected to
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short (5-10 ms) pulses of high thermal energy. These include among the harmful thermal

effects, melting, metallurgical transformations, thermal and transformational stresses, and

surface cracking. Figure 1.2 shows a typical macro-photo of the peak-eroded bore area

of the latest condemned M256 cannon that fired a final configuration of M829E3 rounds

and a firing mix of less erosive rounds. The cannon was condemned on numerous pits as

shown in Figure 1.2. It is common to see hundreds of pits condemnation, attributable to

the M829E3 round resulting in condemnation.

Figure 1.2 Typical M829E3 macro-photo. Typical M829E3 M256 substrate exposure;
some damaging slug and HEAT erosion rounds.

Source: S. Sopok, P. Vottis, P. O'Hara, G, Pflegl and C. Rickard, " Comprehensive Erosion Model for the
120-mm M256/M829A2 Gun System, Technical Report ARCCB-TR-98018, U.S. Army ARDEC,
Armaments Engineering & Technology Center, Weapon Systems & Technology, Benet Laboratories, Oct
1998.

Figure 1.3 shows a typical 360 °C macro-photo of the latest peak— eroded bore

area that was taken from the same gun shown in figure 1.2. The bore region shown in

figure 1.2 fired M829E3 rounds. This peak eroded bore area is the 1.4- to 1.6-m (57- to

63-in) RFT region and it was condemned on erosion based on numerous pits shown in

this photo.
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Figure 1.3 Typical M829E3 M256 macro-photo; 360 0 view of 0.9-to 2.0-m erosion
band.

Source: S. Sopok, C. Rickard, G. Pflegl, P. Vottis, P. O'Hara, S. Dunn, and D. Coats, "Erosion Predictions
for the Final Configuration of the M829E3 Round, Technical Report ARAEW-TR-04001, U.S. Army
ARDEC, Armaments Engineering & Technology Center, Weapon Systems & Technology, Benet
Laboratories, Jan 2004.

The first contribution of the proposed dissertation effort to the Army's mission

will be to enable the use of high energy and high flame temperature propellant while

concurrently lowering the barrel wear and erosion of the gun. During gun firing, the

mircocracks grow, and the surface micro cracks, especially propagate through the

chromium to the steel substrate. The original chromium deposit becomes, in effect, an

assembly of individual, isolated islands as shown in Figure 1.4. By Fick's law of

diffusion, a nano additive such as boronized ( BNNT /BNNF sublimate) chrome plated

steel would result after every gun firing of each round. This phenomena is brought about

by the propellant high flame temperatures. In addition, the nitrogenated BNNT/BNNF

additives lower the bore temperature and heat transfer. Boronizing is a diffusion process

which causes boron to strongly adhere to base metals. Boronizing can offer improved

wear and erosion resistance, high-temperature use and lower friction values than many

traditional coatings.
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Chemical Attack
Through Major
Chromium
Cracks

Chemical Attack
Through Minor
Chromium
Cracks

Figure 1.4 Chemical Attack Through Major Chromium and Minor Chromium Cracks.

Source: S. Sopok, C. Rickard, G. Pflegl, P. Vottis, P. O'Hara, S. Dunn, and I). Coats, "Erosion Predictions
for the Final Configuration of the M829E3 Round, Technical Report ARAEW-TR-04001, U.S. Army
ARDEC, Armaments Engineering & Technology Center, Weapon Systems & Technology, Benet
Laboratories, Jan 2004.

As described above, the Army is interested in reducing the barrel erosion, blast

and flash characteristics of ammunition in large caliber gun systems by incorporating

selected nano-size additives in propellant formulations. These characteristics are

dependent on the propellant formulation thermochemistry and can be tailored to a certain

extent by adjusting component compositions and incorporating specific additives. A

great deal of work has been devoted to developing the class of materials known as nano-

materials. A number of propellant formulations with new nano-scale crystalline form

additives will be designed to reduce gun barrel wear and erosion through both decreased

flame temperature and favorable propellant chemistry. Characterized by extremely small

particle size, these materials have been found to exhibit interesting unique properties that

are beneficial for many applications.

The second contribution of the proposed dissertation to the Army's mission will

be to enchance the concept of high performance high energy density gun propellant

through the use of the co-layered configuration. ARDEC developed a gun propellant that

would meet future high performance ballistic requirements of a 120 mm direct fire



10

armament system. A layered propellant consisting of a fast inner burning layer and a

slower outer burning layer, as shown in figure 1.5, was selected to achieve the

requirements.

Figure 1.5 Schematic Diagram of a Typical Layered Propellant Geometry

Specific technical goals included the following: impetus levels, of 1250 J/g and

1075 J/g for the fast layer and slower layer, respectively; a burning rate ratio of 3:1; an

average flame temperature of 3450K or less; vulnerability and sensitivity characteristic

similar to or better than those of JA2 and mechanical properties similar to or better than

those of JA2 from -32C to 63C. The advantage of utilizing co-layered propellant is its

progressive burning relative to pressure generation. A well designed and fabricated co-

layered propellants can impart a "double hump" in the ballistic pressure-time plot, as

shown in Figures 1.6 and 1.7, consequently increasing the muzzle velocity without

significantly increasing the maximum pressure in the chamber. As the slow burning layer

burns first the pressure in the chamber rises slowly and moves the projectile forward.

The increasing volume in the chamber due to moving projectile decreases the pressure in

the gun. However, when the slow layers are burnt out the fast burning inner layer begins

to burn more quickly. Therefore, the pressure in the gun can be built for the second time

transferring more kinetic energy to the projectile as shown Figure 1.6. The area under the
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curve translates to the velocity of the projectile. So, by inducing the second hump, the

area under curve can be increased. The shaded region in Figure 1.6 depicts that larger

area under the curve, which can in turn increase the projectile velocity[12].

Figure 1.6 Double Hump in the Ballistic Pressure-Time Plot.

Source: T.G. Manning, D. Chiu and D. Park, Characterization and Ballistic Properties of High Energy
High Performance ETPE Gun Propellant for Future Large Caliber Applications" , Proceedings of the 2005
JANNAF 40 th Combustion Sub-Committee/28 th APS/22nd PSHS/ 4 th MSS Joint Meeting at Charleston
Convention Center & Charleston AFB, Charleston, S.Carolina, 13-17 Jun 2005.
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Figure 1.7 A sample of pressure —time date. Typical P-t curves from 60mm ETC firings.

Source: T.G. Manning, D. Chiu and D. Park, Characterization and Ballistic Properties of High Energy High
Performance ETPE Gun Propellant for Future Large Caliber Applications" , Proceedings of the 2005
JANNAF 40 th Combustion Sub-Committee/28 th APS/22nd PSHS/ 4 th MSS Joint Meeting at Charleston
Convention Center & Charleston AFB, Charleston, S.Carolina, 13-17 Jun 2005.

When designing a co-layered propellant, several parameters must be considered

such as the burn rate ratio of fast to slow burning layers, thickness of individual layers,

the configurations, and the manufacturability of the propellants. Usually the increasing

burn rate ratio will yield better gun performance, and the ratio of 3:1 is desired [12].

Several configurations such as disc, cord, scroll, concentric wrap, and radial strip have

been studied. Figure 1.8 shows a co-layered disks configuration. The purple layer is the

slow burning propellant formulation and the inner white layer is the fast burning

propellant formulation.
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Figure 1.8 Embossed 2" co-layered disks.

Source: T.G. Manning, D. Chiu and D. Park, Characterization and Ballistic Properties of High Energy
High Performance ETPE Gun Propellant for Future Large Caliber Applications" , Proceedings of the 2005
JANNAF 40 th Combustion Sub-Committee/28 th APS/22" PSHS/ 4" MSS Joint Meeting at Charleston
Convention Center & Charleston AFB, Charleston, S.Carolina, 13-17 Jun 2005.

T.G. Manning, E. Rozumov, D. Park, S.Moy, and D. Chiu, Army Advanced Gun Propellant Formulations,
Proceedings of the 55th JANNAF Propulsion Meeting/42nd Combustion Subcomittee/30th Airbreathing
Propulsion Subcommittee/30th Exhaust Plume Technology Subcommittee /24th Propulsion Systems
Hazards Subcommittee/12th Spectral and In-band Radiometric Imaging of Targets and Scenes User Group
Joint Meeting, U.S. Army RDECOM-ARDEC, Boston Marriott Newton Hotel, MA, May 12-16, 2008.

The fastcore configuration through the use of micron—scale crystalline energetic

materials such as 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)

and RDX in the fast burning formulation and Nitroguanidine in the slow burning

formulation, respectively provided a burn rate differential of 1.7:1 which is well below

the 3:1 goal. In order to achieve high performance high energy density muzzle energy of

45% increase from the 3:1 burn rate differential, an investigation of nano-scale crystalline

materials were conducted. The nanoscale crystalline materials investigated consisted of

nano-aluminum, nitrogenated boron nanotubes/nanofibers, and polymeric nitrogen

stabilized in single wall carbon nanotubes with the hope of achieving the 3:1 burn rate

differential goal for high performance high energy density gun propellant. A great deal

of work has been devoted to developing the class of materials known as nano-scale

crystalline materials, e.g. nano-aluminuin, functionalized carbon nanotubes, and

nitrogenated boron nanotubes/ nanofibers. Characterized by extremely small particle

size, these materials have been found to exhibit interesting unique properties that are
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beneficial for many applications. Recent advances in novel energetic materials and

formulations have allowed the development of high performing propellants that are also

less sensitive with lower flame temperature and less erosive combustion products.

Therefore, new propelling charges for these systems can be developed that would achieve

compliance with Insensitive Munitions (IM) requirements and can also meet ballistic

performance requirements, lower life cycle cost and green ammunitions that will be

environmentally friendly.



CHAPTER 2

LITERATURE REVIEW

2.1 Solid Propellants

A solid propellant is a combustible solid that is capable of self-deflagration (or

burning). A solid propellant consists of a binder, fuel and an oxidizer. Propellant

burning is a propagating chemical process where the initial constituent substances near

the propellant surface decompose and the fuel species are oxidized releasing heat. Some

of the released heat is transferred back into the unburned propellant further decomposing

the unburned propellant continuing the combustion front. The remainder of heat elevates

the generated combustion products.

The ingredients and types of solid propellants vary greatly. The products of

combustion depend on the type of solid propellant formulations but in most cases are

predominantly H20, CO, CO2, H2  and N2 . For rocket propellants, combustion products

include significant quantities of Al 203 (or other oxidized metals), HC1 and in rare cases

HF. Combustion temperatures range from several hundred degrees for gas generating

propellants up to 3,800 K or more.

Most solid propellants burn as a function of pressure that is as pressure increases

so does the propellant's burning rate (r b). Generally, propellants follow Saint Robert's

Law:

n
rb = a * P

2.1)

15
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Since the burning rate is an exponential function of pressure, generally burn rate

is plotted as a dependent variable against pressure on a log-log graph. This type of curve

plots is a straight line on a log-log set of axis.

2.2 Types of Solid Propellants

There are two types of solid propellants: homogeneous and heterogeneous (also

known as double and triple base and composite propellants). In homogeneous

propellants fuel and oxidizer are chemically joined by mixing with a solvent and a binder.

Nitroglycerin/nitrocellulose (NGNC) propellants are the classic homogeneous

propellants. Homogeneous propellant are processed with and without solvents and ram

extruded into granular propellants either as a chord, single, seven or 19 perforated grains.

In heterogeneous propellants such as rockets, fuel and oxidizer species are physically

distinct. In a heterogeneous propellant, a crystalline oxidizer, such as ammonium

perchlorate (AP), is cast and cured into a polymer binder matrix that acts as the fuel

species.

2.2.1 Double and Triple Base Propellants

A double base propellant consists of a nitrocellulose binder and a plasticizer processed

with and without solvents and finally ram extruded for a chord, single, seven or nineteen

perforated granular shapes. Conventionally, a nitrocellulose binder is colloided by using

a solvent while plasticized with nitroglycerin or other nitrate esters such as triethylene

glycol dinitrate (TEGDN), trimethylolethane trinitrate (TMETN) orbutanetriol trinitrate

(BTTN) plasticizers. Nitrocellulose is nitrated to contain a 12.6 % nitrogen or 13.15 %
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nitrogen depending on the applications. A double base propellant is modified by adding

a nitroguanidine which makes it a triple base propellant. A triple base propellant had

been used for indirect fire applications such as the artillery. A double base propellant is

commonly used for direct fire applications such as tanks.

2.2.2 JA2 and M30 Propellant

JA2 Propellant is a modified double base propellant consisting of three major ingredients

nitroglycerin (NG), nitrocellulose (NG) and diethylene glycol dinitrate (DEGDN). JA2

has found extensive use in gun propulsion applications because it

Figure 2.1 Burning Rate of JA2 as a function of pressure'.

Source: Mench, M.M., Yeh, C.L., Kuo, K.K., "Propellant Burning Rate Enhancement and Thermal
Behavior of Ultra-Fine Aluminum Powders (ALEX)" Energetic Materials Materials Production, Processing
and Characterization, 29th International ICT Conference, June 30—July 3, 1998, 301-305.
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provides a fairly high impetus for propulsion without causing barrel erosion and because

the propellant grains have a high resistance to fracture especially at extremely cold

temperatures. Due to its wide use as a gun propellant, the burning rate of JA2 is shown in

Figure 2.l. The burn rate at low pressure shows a slope break[13].

M30 and M31A2 are triple base propellants currently used for the 155mm

M232A1 howitzer. The ingredients consist of the Nitrocellulose, Nitroglycerine,

Nitroguanidine plus some additives. It is processed using the solvent as a processing aid,

ram extruded into seven perforated grains and forced air dried.

2.2.3 Nitramine Based Composite Propellants

Different types of solid ingredients are held together by a polymer binder. M43

propellant is an example of a composite propellant manufactured by a solvent process. It

is highly filled with an RDX crystalline material held together by a nitrocellulose and

cellulose acetate butyrate binders after the process solvents had been air dried. Other

energetic binders are quickly becoming viable binder alternatives for nitrocellulose. Such

binders include Glycidyl Azide Polymer (GAP), PolyGlynn (PGN), Bis-azido methyl

oxetane copolymer of 3,3-bis(azidomethyl) oxetane and 3-azidomethyl-3-methyloxetane

(BAMO/AMMO), copolymer of 3,3-bis(azidomethyl) oxetane and 3-nitratomethyl-3-

methyloxetane (BAMO/NMMO), and others. Energetic binders contain some oxidizing

species that add some additional energy resulting in increased performance.

More recently, composite propellants based on nitramine organic oxidizers RDX

and HMX have become increasingly attractive. Originally these compounds were

developed for blasting. Their multiple nitro (-NO 2) groups balance the molecule's

decomposition products almost ideally for gun propulsion. The physical structure of RDX
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and cyclotetramethylene-tetranitramine (HMX) based propellants is very similar to that

of Ammonium Perchlorate (AP) based composite propellants. However, like double base

propellants the burning is homogeneous and there exists a dark zone between the

propellant surface and the luminous flame. This dark zone decreases in size with

increasing pressure and increased burning rate.

2.3 Ingredients Investigated

In this dissertation, several nano-scale crystalline materials were investigated for

possible utilization in the current military ammunition systems. Many of the ingredients

utilized are new or not fully understood yet. Some of these, nano-scale crystalline form of

materials such as nano-aluminum, titanium dioxide, nitrogenated boron nanotubes/

nanofibers and polymeric nitrogen in single wall carbon nanotubes.

2.3.1 Aluminum/Nano Aluminum

Aluminum particles have been added to solid rocket propellants since the mid 1950s

when it was found that aluminum combustion could raise the temperature of combustion

and by consequence, the specific impulse of solid propulsion systems. It was also found

that aluminum particles incorporated into a solid propellant motor can also improve

combustion instabilities. Aluminum utilization also increases the propellant density.

Since first utilized in the 1950s single aluminum particle combustion and aluminized

propellant combustion have been studied extensively.

Research has primarily been limited to micron-sized particle combustion as nano-

sized aluminum particles are still in the infancy of development. Many of the principles

of micron-sized particle combustion apply to nano-sized particle combustion. It is found
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that every aluminum particle has an impervious oxide shell. The melting point of the

solid aluminum core is 933 K. As the particle is heated, the aluminum core is melted and

induces egg-like stresses on the still solid oxide shell. Full-fledged ignition is thought to

occur when the aluminum oxide shell is damaged exposing the molten aluminum core to

the oxidizing environment.

Exposure of the aluminum core can happen by one of two mechanisms; the oxide

shell can be ruptured by the phase changing process occurring in the aluminum core,

otherwise, the shell itself may melt at 2,300 K. In either case, as the temperature reaches

the oxide melting point, surface tension draws the molten oxide to a lobe to one side of

the aluminum particle. The aluminum is found to evaporate readily above 2,000 K, well

below its boiling point of 2,737 K. Figure 2.2, adopted from Mench [14] depicts the

mechanism of aluminum ignition. As depicted in the figure, the aluminum particle core

is first melted; next, either by rupture or by melting, the oxide skin forms an oxide lobe;

finally the evaporating aluminum forms a combustion envelope around the burning

particle. Mench aluminum particle combustion model describes the existence of

aluminum sub- oxides occurring beneath the primary diffusion flame. The final product

of aluminum combustion is alumina, Al 203 . The flame has been characterized at

approximately 3,800 K, the saturation temperature of alumina.
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Figure 2.2 Aluminum combustion mechanism.

Source: Mench, M.M., Yeh, C.L., Kuo, K.K., "Propellant Burning Rate Enhancement and Thermal
Behavior of Ultra-Fine Aluminum Powders (ALEX)" Energetic Materials Production, Processing and
Characterization, 29th International ICT Conference, June 30—July 3, 1998, 301-305.

Mench compared aluminum particle combustion times from a host of

experimental investigations. He correlated particle combustion time to aluminum particle

diameter and found good agreement. His presentation of others' data is shown in Figure

2.3. Figure 2.3 also shows that an extrapolation of the wealth of data implies very short

combustion times for 300-400 nm particles (one of the several reported sizes for ALEX

aluminum). The extrapolated combustion times are three orders of magnitude smaller

than any previously observed combustion times.
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Figure 2.3 Aluminum burning times as a function of particle diameter.

Source: Mench, M.M., Yeh, C.L., Kuo, K.K., "Propellant Burning Rate Enhancment and Thermal Behavior
of Ultra-Fine Aluminum Powders (ALEX)" Energetic Materials Production, Processing and
Characterization, 29th International ICT Conference, June 30—July 3, 1998, 301-305.

2.3.2 Boron/Nano-Boron

Boron has also been utilized as a metallic additive to composite propellants. Boron is

attractive as a propellant fuel because of its extremely high gravimetric and volumetric

heat of oxidation. Like aluminum particle combustion, most studies to date have focused

on micron-sized particles rather than nano-sized particles. Also like the aluminum

particles, each boron particle is surrounded by a thin oxide layer. Ulas and Kuo[15]

found that the combustion of boron takes place in a two-stage process. The first stage of

combustion is an oxide layer stripping process, as the oxide layer melts at the relatively

low temperature 722 K. This process is slow and is kinetic or diffusion- limited process

and constitutes a significant portion of the boron combustion time. Above this time the

liquid boria forms islands on the neat boron surface. Boron melts at —2,300 K, availing
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the boron for combustion. However, boron combustion is slow due to the low vapor

pressure of boron below its boiling point of 4,000 K. Boron combustion is further

hampered by the thermodynamic preference to form HOBO below 2,400 K. This

preference prevents the boron from achieving full heat release by oxidation. The

conversion to form B203 from HOBO is slow in an oxygen/hydrogen environment again

limiting the success of boron combustion [15]. It is expected that the utilization of nano-

sized boron will assist boron combustion by addressing slow evaporation with significant

increase in surface area. As described in the previous section 1, by Fick's law of

diffusion, a nano additive such as boronized (BNNT/BNNF sublimate[16]) chrome plated

steel would result after gun firing of each rounds. This phenomena is brought about by

the propellant high flame temperatures. In addition, the nitrogenated BNNT/BNNF

additives would lower the bore temperature because of high thermal conductivity and

provide sufficient heat transfer. Boronizing is a diffusion process which causes boron to

strongly adhere to base metals Boronizing can offer improved wear-resistance, high-

temperature operation and lower friction values than many traditional coatings.

Additionally, as has been described previously in Chapterl section 1.2, increasing the

N2/CO ratio and lowering the CO/CO2 ratio in a gun propellant formulation, wear and

erosion can be mitigated as shown in table 2.l.

Table 2.1 Nitrogen Doped Boron Nanotubes in a Propellant

Formulation Temp
(K)

Impetus
(J/g)

N2/CO Wear
(mg)

JA-2/RPD351 3743 1172 0.487 251 [ ]
IHGP-300 3723 1332 0.893 114 [1
M43 3004 1155 0.662 27[3]
M30 3022 1078 0.996 21[3 ]
TGD-009 2570 1070 0.668 21[3]



M30 with Nitrogenated Boron
Nanotubes/ Nitride (calculated using
Cheetah 5 code)

<210.77512976 1064
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Source: Walsh, C. and Knott, C., Gun Propellant Formulations with High Nitrogen Modifiers, Proceedings
of the 31 st JANNAF Propellant Development and Characterization Subcommittee Meeting, Charlottesville,
VA, March 2003.

2.3.3 Polymeric Nitrogen Stabilized on Carbon Nanotubes: A Highly Energetic
High Density Green Energetic Material

This section will discuss the different synthesis method of single wall carbon nanotubes

with Ng and N4. For synthesis approaches to polymeric nitrogen, the following synthesis

method were performed, optimized and compared: Electrochemical Reaction,

Microwave Induced Chemical Reaction and Plasma Enhanced Chemical Vapor

Deposition (CVD).

Nitrogen, the major constituent of air, consists of inert molecule nitrogen where

two atoms are strongly triple-bonded. Now, Eremets et al [17, 18] have synthesized a

polymeric cubic form of nitrogen where all atoms are connected with single covalent

bonds, similar to carbon atoms in diamond. This cubic phase has not been observed

previously in any element. It possesses unique properties such as energy capacity: more

than five times that of the most powerful explosives.

Single-bonded nitrogen was postulated theoretically two decades ago. It was

predicted that at high pressure, solid molecular nitrogen would transform to an atomic

solid with a single-bonded cubic gauche (cg-N) structure.

There have been extensive experimental searches for this polymeric form of

nitrogen at high pressures and various temperature ranges. Several new nitrogen phases
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have been found, including a non-molecular semi-conducting phase, but production of

polymeric nitrogen has failed until now. The cg-polymeric nitrogen structure has been

formed in minute quantities by compression of azide ions in sodium azide. Attempts to

recover the solid polymeric nitrogen phase at ambient conditions from high pressure

experiments were unsuccessful, but catalytically forming the polymeric nitrogen phase at

high pressures on a platinum substrate produced a Pt-N material which is stable at low

pressures and temperatures, with a Raman line that can be assigned to a N-N vibration

corresponding to that of the pure polymeric nitrogen phase extrapolated to low pressures .

Initial theoretical simulations by Abou-Rachid showed that a poly-nitrogen Ng cluster

and a polymeric nitrogen structure can be formed and stabilized on the sidewalls of

carbon nanotubes [19, 20]. More detailed ab-initio molecular dynamic simulations by

Abou-Rachid et al further confirmed that a polymeric nitrogen Ng cluster and a polymeric

nitrogen structure can be formed and stabilized at ambient conditions inside a carbon

nanotube.

Researchers of the High Pressure Group at the Max Planck Institute for Chemistry

in Mainz have now been successful: they synthesized polymeric nitrogen directly from its

molecular form at temperatures above 2000 K and pressures above 110 GPa ( l.1x106

atm using a novel arrangement of the laser-heated diamond cell (Figure 2.4). X-ray

diffraction measurements and Raman spectra of a transparent crystal confirm the

formation of polymeric nitrogen with the theoretically predicted cubic gauche structure

(cg-N) shown in Figure 2.5 (a) and (b). The phase is a stiff substance with a bulk

modulus above 300 GPa, characteristic of strong covalent solids. Therefore, it is called

" nitrogen diamond", says Mikhail Eremets [17].
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Figure 2.4 Schematic view of a diamond anvil press. The sample in the centre is
contained by a metallic gasket and an inert gas pressure medium. The sample is heated
with high power IR laser (yellow) and the pressure is measured using the shift of the ruby
fluorescence line which is excited with a blue argon-ion laser.

Source: Eremets, M.I., Gavriliuk, A.G., Trojan, I.A., Dzivenko, D.A., Boehler, R., Single-bonded form of
nitrogen, Nature Materials, 3 (2004) 558.

a
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Figure 2.5 (a) Theoretically predicted cubic gauche structure (cg-N);(b) Raman
scattering from cg-N. a. Raman spectra of nitrogen before and after heating at 110 GPa.
The starting sample (at 300 K) is in the molecular phase as evident from the vibron peaks
at 2,400 cm-¹ .The band at 1,300 cm-¹-1,550 cm-¹  is Raman signal from the stressed
diamond adjacent to the sample. As a result of laser heating to l,990 K, the sample
transformed to a new phase: the vibron peaks disappeared while a pronounced peak at
840 cm-¹ appeared. Small peaks at 470 cm-¹ and 2,400 cm ¹ are from the untransformed
molecular phase. Note that heating also improved hydrostatic conditions in the sample
resulting in sharpening of the high-frequency edge of the diamond Raman band. b,
Comparison of the pressure dependence of the Raman peak from the new phase (color
points from four different runs) with calculations of zone-centre phonon modes for cg-N
shown by solid lines.

Source: Eremets, M.I., Gavriliuk, A.G., Trojan, I.A., Dzivenko, D.A., Boehler, R., Single-bonded form of
nitrogen, Nature Materials, 3 (2004) 558.

A lot more energy is stored in the single-bonded polymeric nitrogen than in the

known stable form of triple-bonded molecular nitrogen. Therefore, a large amount of

energy would be released under the transformation from the single-bonded to the

molecular form, much more than that of the most powerful energetic materials. Since the

only product of this transformation would be just common non-polluting molecular
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nitrogen, the new polymeric nitrogen could be used as an explosive replacement for

Trinitrotoluene (TNT) or HMX.

The nanostructured polynitrogen systems of N8 and N4 promise a factor of 10

theoretical increase performance when compared to TNT [21,22]. The thermochemical

properties are tabulated in table 2.3. The research work will create a TNT replacement

that can provide a factor of 10 theoretical increase in several performance metrics; (a)

Nitrogen is unique in that diatomic molecule is bound by triple bond ( 954 kJ/mole) as

shown in Figure 2.5. (a) The decomposition of single bonded (160 kJ/mole) polymeric

nitrogen into N2 is highly exothermic. As shown in table 2.3, CNT- N4/N8 is much more

powerful as compared to TNT. High energetic materials made of pure nitrogen, are not

only environmentally friendly but also have the highest power and energy release rates of

monomolecular energetic materials.

The synthesized CNT -N8 and N4 will be compared with TNT performance

characteristics as listed in table 2.3.

Table 2.3 Theoretical Performance Values for TNT versus N4/N8

Thermochemical Properties TNT N4/N8 (FCC)

AHd( cal/g) 1100 6673

p0 (g/ cc) l.63 3.l

DCJ (km/s) 6.93 19.74

PCJ (Mbar) 0.210 3.14

Source: Kuhl, A. L., Ullrich, G.W., Gurtman, G., McFarland, C., "Disruptive Energetics", 4th Advanced
Energetics Technical Exchange, Jan 22-25, 2008, Fort Belvoir, VA
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Kuhl, A.L., Fried, L.E. Howard, Michael W. and Seisew, M.R., et al, Detonation of Meta-stable Clusters,
39th ICT Conference on Energetic Materials, 24-27, 2008, Karlsruhe, Germany

Kuhl and coworkers have performed theoretical work and was able to determine

the detonation properties of N4/N8[20,21] using the equation of state —JWL fit. The

N4/N 8 [21] has single-bonded polymeric phase (cubic gauche) of nitrogen with diamond

like structure as described by Eremets, previously shown in Figure 2.5. Most of his work

to date has been theoretical. Furthermore, a modelling and simulation performed by

Ullrich et al on the N4/N8 molecule using targets such as a two story vented bunker and

an open tunnel have demonstrated a bunker pressure of 200 bars from CNT-N4/N8 as

compared to 2 bars from TNT in 7 msec.

The introduction of N4/N8 species into carbon nanotubes ( CNT) has been studied

theoretically [23, 24,25,26,27] using molecular simulations based on first principles. The

electronic structures, thermodynamics properties and chemical stability have been

studied. It was also predicted that doped N4 and encapsulated N8 in CNTs should be

stable as shown in Figures 2.6.

Figure 2.6 (a) N4 polynitrogen doped CNT (10,10) (b) Cubane nitrogen compound
encapsulated in (6,6) carbon nanotube

Source: Abou-Rachid, H., Hu, A., Timoshevskii, V., Song, Y., Lussier, L-S., Nanoscale High Energetic
Materials: A Polymeric Nitrogen Chain N8 Confined inside a Carbon Nanotube Phys. Rev. Lett. 100
(2008)196401.
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A novel approach to the isolation of a polymeric nitrogen phase that would be

stable at ambient conditions is suggested by the work of Abou-Rachid et a /[27]. They

showed by ab initio molecular dynamics simulations that such a polymeric nitrogen

phase can be stabilized at ambient conditions inside a carbon nanotube, as shown

schematically in Figure 2.7 (a)-(b). Figure 2.7 (c) shows the calculated electron density of

a N8 cluster of a polymeric nitrogen phase inside a (5,5) single wall carbon nanotube

(SWNT). Bonding between the carbon atoms on the SWNT framework and nitrogen is

also likely to occur and may further stabilize the cluster structure.

(b) (c)

Figure 2.7 (a) N24 cluster inside a (5,5) single wall carbon nanotube ( SWNT) with 9 unit
cells, (b) Ng cluster inside a (5.5) SWNT with 3 unit cells, and (c) The electronic density
of a Ng cluster indise a (5,5) SWNT ,system, minus the electron densities of a stand alone
carbon nanotube and nitrogen chain. The red (inside the SWNT) and blue colors denote
the effective positive and negative charges, respectively.

Source: Abou-Rachid, 11., Hu, A., Timoshevskii, V., Song, Y., Lussier, L-S., Nanoscale High Energetic
Materials: A Polymeric Nitrogen Chain N8 Confined inside a Carbon Nanotube Phys. Rev. Lett. 100
(2008)196401.

Experimental synthesis confirmed nitrogen doping onto carbon nanotubes as

shown in Figure 2.8, but details of doping sites and structures are not clear from the
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experimental point of view. Therefore, further experimental studies on synthesis to

encapsulate and dope into and onto carbon nanotubes are necessary at this time.

(a)

Figure 2.8 N-doped CNTs (a) SEM image of aligned N-doped nanotubes (b) TEM
image of N-doped nanotubes.

Source: Abou-Rachid, H., Hu, A., Timoshevskii, V., Song, Y., Lussier, L-S., Nanoscale High Energetic
Materials: A Polymeric Nitrogen Chain N8 Confined inside a Carbon Nanotube Phys. Rev. Lett. 100
(2008)196401.

2.3.4 Nitrogenated Boron Nanotubes and Nanofibers

Boron and its compounds occupy a unique place within chemistry and physics because of

the complexity of their uncommon structures associated with their unusual three-center

electron —deficient bonds[28]. The existence of quasiplanar sheets boron clusters

suggests that boron nanotubes and /or boron fullerenes can be formed. Experimental

studies to synthesize the boron nanotubes (BNT) were therefore undertaken. Boron has a

low density but a high melting point of around 2300 ° C, as well as hardness close to that

of a diamond. The Boron nanotubes (BNT) have been synthesized using similar methods

to those used to grow carbon nanotubes (CNT). CNT synthesized primarily by methods

such as arc-discharge[29], laser ablation[30] and chemical vapor deposition (CVD)[ 3¹ ]

are also applicable for the BNT synthesis. One of the objective of this dissertation is to
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synthesize a novel BNT by using thermal CVD process. The synthesis of BNT

nanotubes are desired and have attracted intense research interest[28].

Figure 2.9 (a) Construction of boron tubes from 2D hexagonal boron layers. The fat
dashed lines mark the direction of the finite horizontal cut, as well as the direction of the
infmite vertical cuts. (b) tubular B60 cluster composed of five 12 membered rings. (c)
B60 cluster composed of three 20 membered rings and characterized by a buckled
surface.

Because of the similarity of the chiral structure of carbon nanotubes and boron

nitride (BN), it is just as convenient to discuss the properties and formation mechanism of

BN nanotubes in terms of carbon nanotube models. The BNT clusters can be constructed

via cut and paste procedure using the basic building 2D honeycomb lattice shown in

Figure 2.9(a). It follows the same procedure used in constructing a CNT from graphene

sheets. Two tubular segments of B60 are shown in Figures 2.9(b) and 2.9(c). Both

figures show remarkable structural stability. This type of structure indicates low strain

energy, which is defined as the difference in energy per atom in a tube of a given

diameter and that of the corresponding flat sheet. This fact is an indication that a BNT

can be grown experimentally. The carbon nanotubes are known to be either metallic or

semiconducting, depending on the tube diameter, wrapping angle, twisting and

topological defects while BN nanotubes have a wide band gap that is insensitive to tube
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diameter and chirality that can be controlled by chemical composition. This phenomenon

is due to the ionic origin of the band gap. The strong ionic B-N bonding has an influence

on the formation of BN nanotubes. Furthermore, the existence of quasiplanar boron

clusters implies the formation of boron nanotubes and boron fullerenes, because during

synthesis, a growing quasi-planar cluster tends to remove dangling bonds by forming

closed tubular or polyhedral modifications[32].

2.4 Gun Propellant Formulation Optimization

Gun propellant formulation optimization is performed by using the thermochemical code,

Cheetah version 5, developed by Lawrence Livermore National Laboratory. This code

solves thermodynamic equations between product species to find chemical equilibrium.

Cheetah solves the equilibrium of the reaction at a specified pressure and temperature.

The gun propellant formulations impetus, flame temperature and theoretical maximum

density are determined to be used in the interior nballistic code determination of the

theoretical muzzle velocity. The combustion products such as CO, CO, etc. are obtained

and determined in the liquid, vapor or solid phase. The combustion products from the

Cheetah run can also determine if the propellant formulation is erosive or not. Chapman —

Jouget ( C-J) theory indicates that the detonation point is a state of thermodynamic and

chemical equilibrium that predicts properties of state. From these come the detonation

velocity and other performance indicators such as impetus, flame temperature and

density.
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2.5 Motivation

The novel energetic and nanoscale crystalline materials when incorporated into gun

propellant formulations will clearly have the great potential of meeting the objectives of

previously discussed above, for example, longer gun barrel life, high performance high

energy density, insensitive munitions properties, low life cycle cost and green munitions

properties.



CHAPTER 3

PREDICTIVE TOOLS

3.1 Modelling Tools

The purpose of this section is to briefly describe the modeling tools used that are related

to the experimental studies and synthesis of nano-scale crystalline materials discussed in

this thesis. The tools described facilitate understanding the theoretical energy content of

advanced gun propellants with incorporated nanoscale energetic materials. For example,

the thermochemical equilibrium computer code used to predict the composite propellant's

energy content when nano-scale crystalline materials are incorporated.

3.1.1 Chemical Equilibrium Codes

Several chemical equilibrium codes were utilized to predict the energy content of

propellant formulations. These codes, using thermodynamic properties (such as

molecular weight and heat of formation) of ingredients as well as reactor conditions

(constant volume, constant pressure, etc) as their inputs, output the state (temperature,

pressure, etc) and chemical species of the products that would result from an infinite time

for thermal equilibrium to be achieved. These codes rely on an internal library of product

species and their corresponding molecular weight, heat of formation, specific heat

capacity, and other properties to determine the products of the reactor. The constant

volume of chemical equilibrium, while a simplification, is a suitable approximation to the

final state that will be observed in a gun chamber for ballistic purposes. Many of the

35
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major product species, H20, N2 , I-12 , and CO form rapidly; the thermal equilibrium

calculations can closely predict the energetics of the composition. The most significant

deviation between equilibrium and reality will exist for metal combustion. Metal particles

may have significant ignition delays or may agglomerate such that these materials may

burn incompletely, failing to yield their expected heat release or predicted products. All

the thermochemical equilibrium calculations results presented in this writing are

performed under constant volume, constant internal energy conditions.. A discussion of

the treatment of this phenomenon will be addressed later. All the thermochemical

equilibrium calculations results presented in this thesis were performed under constant

volume, constant internal energy conditions. The constant volume of chemical

equilibrium, while a simplification, is a suitable approximation to the final state that will

be observed in a gun chamber for ballistic purposes

3.1.1.1 CHEETAH 5.0 Code

This analysis utilized Cheetah 5.0 developed by Energetic Materials Center of the

Lawrence Livermore National Laboratory. CHEETAH has many functions and

capabilities. It has built in gun propellant analysis and computes impetus directly.

CHEETAH has many product libraries built in as well as several equations of state.

These non-ideal equations of state accurately predict high-pressure results and

combustion products. The chemical equilibrium results stated in this writing are

computed using CHEETAH 5.0 unless otherwise specified. Since CHEETAH[34] is

export-controlled software, no example inputs and output files are included here.
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3.1.2 MCVECP Code

Propellant development began using the Hunter version 3.04 of the MCVECP[33]

equilibrium code, developed by the US Navy. Work using this equilibrium code was very

limited because it was found to be unstable when some elements such as boron were

added into propellant formulation. Since MCVECP is also export controlled software, no

inputs and output files are included here. The Heat of Explosion of the propellant

formulation was determined by using this code.

3.1.3 Interior Ballistics Code

IBHVG2, which stands for Interior Ballistics of High Velocity Guns, version 2, is

a lumped-parameter, interior ballistic computer code. The code, which was developed at

the Ballistic Research Laboratory [see report 34]. is an updated version of the classic

Baer Frankle interior ballistic code. IBHVG2 is used for calculation of interior ballistic

trajectories, including gas pressure, projectile displacement and projectile velocity as a

function of time. The code treats both regular and deterred propellants. It contains

powerful variational and searching capabilities, so that it can, for example, search and

find the best propellant dimensions, given the maximum allowable gas pressure. This

report thoroughly documents IBHVG2, so that all of its many features can be used

effectively. The report contains a detailed description of the range of possible user input

and description of both the algorithms embodied along with the FORTRAN subroutines

which implement them. There are also complete examples of input and output from the

code. Although the code has been written to be as generally applicable as possible, the

report has a short section describing modifications that are necessary to enable the code
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to run on various computers and compiler combinations. A machine-readable copy of the

code can be obtained by contacting the authors of this report [34].

3.2 Gun Propellant Formulation Optimization

Gun propellant formulation optimization is performed by using the thermochemical code,

version 5, developed by Lawrence Livermore National Laboratory. This code solves

thermodynamic equations between product species to find chemical equilibrium.

Cheetah solves the equilibrium of the reaction at a specified pressure and temperature.

The gun propellant formulations impetus, flame temperature and theoretical maximum

density are determined to be used in the interior ballistic code determination of the

theoretical muzzle velocity. The combustion products such as CO, CO, etc. are solved

and determined in the liquid, vapor or solid phase. The combustion products from the

Cheetah run can also determine if the propellant formulation is erosive or not. Chapman —

Jouget ( C-J) theory indicates that the detonation point is a state of thermodynamic and

chemical equilibrium that predicts properties of state. From these come the detonation

velocity and other performance indicators such as impetus, flame temperature and density

can be determined.



CHAPTER 4

SAMPLE PREPARATION

4.1 Propellant Preparation

The RDX based propellant formulations incorporated with nano-scale materials such as

nano-aluminum, nano-titanium dioxide, nano-boron and carbon nanotubes were prepared

using the conventional solvent process. The energetic ingredients, solvents and additives

are weighed out individually following the propellant composition optimized using the

Cheetah Code version 5. These ingredients are mixed in a horizontal sigma blade mixer

until the mix becomes homogeneous followed by evaporation of the solvents to

approximately 30% by weight. The propellant mix is then extruded into shapes that were

determined by using the interior ballistic code, IBHVG2.

4.2 Preparation of Carbon Nanopaper

A new processing method to produce self-assembled reinforced nanopaper by using

single wall nanotubes (SWNT) was utilized. The electrochemical and PECVD synthesis

experiments used SWNT nanopaper as electrodes and substrates placed on quartz boat,

respectively. Highly SWNTs obtained from Southwest Nanotechnologies Inc (SWeNT)

and Cheap Tubes Incorporated were used in these experiments. The Cheap Tubes

SWNTs have an outer diameter of l-2 nm and fiber length of 5-30 pm. SWNTs from

SWeNT Inc have an outer diameter of l.12 nm and average fiber length of about l.02

pm. The SWNT nano paper is an entangled mat of SWNTs, which is a highly

39
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porous mesh structure. To successfully produce SWNT nano paper, it important

toprepare a uniform SWNT dispersion. This was done as follows. The powders of

SWNTs were mixed with the deionized water , and then about two drops of a surfactant

Triton-Xl00 was added. The suspension was subsequently dispersed using an ultrasonic

horn sonicator (FISHER SCIENTIFIC Sonicator 3000) at 300 W to achieve a uniform

dispersion of SWNTs. The high-energy sonication times ranged from 15 to 60 min.

Finally, the suspension was vacuum filtrated through a 10 LC-MILLIPORE MITEX ™

membrane filter to produce the final nano paper. The preliminary nano paper was further

cut into '/4 inch x '/2 inch small sheets for used as substrate for the polymeric nitrogen

synthesis. Figure 4.l shows the ambient room temperature dried SWNT nanopaper after

vacuum filtration.

Figure 4.1 Ambient temperature dried SWNT nanopaper.

Realization of the applications potential of SWNT paper has been hindered by the

many difficulties associated with their processing. Fabricating low-density carbon
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nanotube powder into functional macroscale structures has been a major challenge.

Some progress has been made recently with the fabrication of one-, two-, and three

dimensional bulk nanotube material in the form of fibers, sheets, and Bucky Pearls™

pellets. However, while individual SWNTs display impressive Young's moduli and

strengths of approximately 640 and 40 GPa, respectively, the mechanical properties of

the bulk materials remain disappointing. These low bulk mechanical properties are in part

because the individual SWNT usually forms 10-50nm-diameter bundles that are only

weakly bound by van der Waals interactions at junction points. Both carbon multiwalled

nanotubes (MWNTs) and SWNTs have been used as reinforcing agents in polymer and

epoxy composites [35]. Ideally, any load applied to the polymer matrix is transferred to

the nanotubes. This load transfer relies on effective interfacial stress transfer at the

polymer—nanotube interface, which tends to be polymer dependent. This reinforcement

technique has met with some success, providing increases in Young's modulus by a

factor of l.8 for 1 wt% loading of MWNTs in polyvinyl alcohol, and increases in

hardness by a factor of 3.5 for 2 wt% loading of SWNTs in epoxy [36]. In this work, we

showed that the reverse procedure of polymer intercalation can be used to reinforce bulk

nanotube SWNT materials. Binding agents such as polystyrene were intercalated into the

porous internal structure of nanotube SWNT sheets —Buckypaper[37]. Intercalation was

performed by simply washing the nanotube sheets in l% to 5% polystyrene polymer in

toluene solutions at the end of the vacuum filtration process. The resulting polymer-

intercalated sheets display improvements in Young's modulus and tensile strength[38].

The nanotube sheets, referred to as Buckypaper or nanopaper, used in this work

were prepared by filtration of SWNTs dispersed in water and Triton X-100, as previously
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described. The SWNTs containing small amount of metal catalyst were obtained from

CHEAP Tubes Inc. The carbon nanotube sheets were annealed under flowing ammonia

or nitrogen at up to 1000 °C before use, in order to remove residual surfactant, solvents,

and contaminants. Under these conditions the metal particle impurities are also

vaporized. These sheets were then cut into rectangular strips (40 mm x 2 mm x 2 cm).

Buckypaper strips were washed in polystyrene (PS) solution once, and then dried in

ambient conditions for 8 hours.

Raman spectroscopy was used study the nature of the insertion or infiltration of

the polymer into the SWNT bundles. In the low-frequency region of the Raman

spectrum, a number of features associated with the radial breathing modes of the SWNT

are observed for all the nanopaper sheets. These features are slightly downshifted by

approximately 2 cm-¹ for all polymer coated sheets compared to the pristine sheets as

shown in figures 4.2 and 4.3. The small frequency shift suggests the environment of the

individual SWNT has not dramatically changed. However, the presence of a downshift

may suggest a weakening of the intertube van der Waals interaction, indicating that

polymer chains are beginning to diffuse into the ropes, hence debundling the nanotubes

[39]. The DSC data found in Appendix A, Figure A.4-A.6 for unanealed from Cheap

Tubes SWNT show changes in the melt transition consistent with crystallization of the

polymer chains onto the nanotube ropes on infiltration. This is in good agreement with

previous studies showing nanotubes acting as nucleation sites for polymer crystal

growth[40].
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-PRSITINE CHEAP
BUCKYPAPER

CHEAP 5%PS
BUCKYPAPER

Figure 4.2 Raman spectra using 735 nm laser excitation for pristine SWNT nanopaper
and 5% polystyrene coated nanopaper.

•PRSITINE CHEAP
BUCKYPAPER

CHEAP 5%PS
BUCKYPAPER

POLYSTYRENE

Figure 4.3 Raman spectra using 735 nm laser excitation for pristine SWNT (red), 5%
polystyrene coated nanopaper ( green) and polystyrene ( blue).
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SEM images are shown in Figures 4.4 (a) and (b) from the surface of a pristine

nanopaper sheet and a PS coated SWNT sheet, respectively. For the pristine sheet, a

porous mat of SWNT ropes is seen on the surface shown on Figure 4.4 (a). For the PS

coated sheet, however, it is clear on Figure 4.4 (b), that the surface has been coated with

polymer, although this coating is relatively thin as pores can still be seen. More

importantly, Figure 4.4(c) shows that not just the outer region, but the entire surface of

the nanotube sheet, has been coated with a thin layer of polystyrene suggesting extensive

intercalation. that sizable infiltration of PS between the individual SWNTs may have

occurred.

In conclusion, polymer chains can be infiltrated into porous nanotube sheets in

near equilibrium conditions by soaking in polymer solutions. SEM measurements show

that the infiltrated polymer adsorbs onto the internal surface of existing free volume

within the sheets. In all cases, Raman spectroscopy shows that polymer strands have

partially diffused between individual nanotubes within the ropes. Overall, infiltration

results in the enhancement of inter-rope stress transfer, which strongly modifies the

mechanical properties, providing increases in Young's modulus, strength, and toughness

by factors of 3, 9, and 28, respectively[ 41].
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Figure 4.4 SEM images of some of the CHEAP SWNT bundles from sample obtained
from Cheap Tubes Inc used in this study. (a) Surface of pristine nanotube sheet. Prepared
from these SWNT , (b) Surface of polystyrene infiltrated nanotube sheet (c) Surface of
nanotube sheet, showing a thin coating of PS polymer indicating sizable infiltration had
occurred.

4.3 Synthesis of Polymeric Nitrogen and Boron/Nitrogenated Boron Nanotubes

As previously discussed in section 2.3.3, there were four different synthesis methods of

single wall carbon nanotubes encapsulated and doped with Ng and N4 investigated.

Novel nanoscale synthesis performed by thermal and plasma enhanced chemical vapor

deposition methods followed by ultraviolet light induced electrochemical and microwave

induced electrochemical reactions.

4.3.1 Thermal Chemical Vapor Deposition Method (T-CVD)

Encapsulation and doping of N4 and Ng and related clusters into and on the sidewalls of

carbon nanotubes involves the initial synthesis of carbon nanotubes followed by
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deposition of N4 and N8 and polymeric nitrogen clusters using either thermal enhanced

chemical vapor deposition. Ethanol and acetylene mixed with argon were used as carbon

sources, while melamine was used as the source for nitrogen doping and ferrocene as the

precursor compound for the floating iron catalyst needed for carbon nanotube growth.

Melamine has a chemical structure with nitrogen atoms arranged in the 2,4,6-triamino-

l,3,5-triazine nitrogen conformation. The thermal enhanced methods ( schematic of

apparatus is shown in Figure 4.5) was initially evaluated for synthesis and eventual scale

up because of its relatively low cost. However, this synthesis method was not pursued

due to extensive work already performed by Abou-Raschid et al [24,25] using thermal

chemical vapor deposition to form bamboo-shaped multiwall carbon nanotubes where

nitrogen doping was observed but no evidence for polymeric nitrogen clusters was found.

A plasma chemical vapor deposition approach using pre-synthesized SWNT with

high surface areas was considered to a better approach to forming polymeric nitrogen

clusters on and inside the nanotube sidewalls. Plasma are also known to provide a non-

equilibrium environment for the synthesis of metastable species.

Alcohol

Figure 4.5 Experimental Set-Up: Schematic for Thermal Chemical Vapor Deposition
Process.
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4.3.2 Plasma Enhanced Chemical Vapor Deposition Method ( PECVD)

Synthesis apparatus for plasma-enhanced Chemical Vapor Deposition (PECVD) shown

in figure 4.6, set up by Yu et al [45]. was used in this investigation. PECVD synthesis

shows distinct advantages in nitrogen doping of the nanotubes[42, 43. 44, 45, 46 ].

Conventionally, melamine is a nitrogen-containing organic compound which will

evaporate in the plasma to nitrogen radicals that will then dope, carbon nanotubes being

formed or nanotubes used as a substrate, with nitrogen groups [47, 48, 49, 50].

The deposition chamber in the PECVD system is a quartz tube 78 cm in length

with an inner diameter of 3.8 cm for deposition carried out under radio frequency (RF)

plasma conditions. Heating of the SWNT nanopaper substrate, which was placed in a

quartz glass boat, was accomplished by placing the deposition/reaction tube in a

temperature-controlled tube furnace. Argon or hydrogen carrier gas mixed with the

nitrogen precursor gas were used at a flow rate of 25-50 standard cubic centimeters per

minute (sccm). Three SWNT nanopaper substrates were placed in boats located in the

front, middle and back of the reaction zone about 40 mm apart. A thermocouple that was

isolated from the grounded anode was kept in contact with only the middle substrate

during plasma reaction with nitrogen on the nanopaper substrate.
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Figure 4.6 Experimental set-up for plasma-assisted synthesis: a) Schematic of Plasma-
Enhanced Chemical Vapor Deposition ( PECVD) apparatus, and b) Photograph of the
PECVD set-up used in this work.

4.3.3 Electrochemical Method

Prior to reaction by the electrochemical method, a chemical vapor deposition process

with ammonia was used to dope the SWNT nanopaper used as the working electrode. As

discussed previously in section 4.2, the SWNT nanopapers were prepared as follows: The

SWNT powder was de-agglomerated and suspended in water by sonication in the
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presence of Triton X-100 surfactant. The suspension was vacuum-filtered through 0.5-5

micron pore size Teflon coated membranes. After washing with de-ionized water, a self-

assembled, free-standing sheet of nanopaper consisting entirely of SWNT bundles was

peeled off the filtration membrane. The nanopaper sheets were annealed for 1 hour at

800° C in flowing argon, to remove water, remnants of surfactant and functional groups

formed during the acid reflux before doping with ammonia.

An electrochemical cell filled with 0.50M, 1M, and 2M aqueous solution of

sodium azide, NaN 3 , as electrolyte was used for the electrochemical nitrogenation

experiments. A free standing SWNT nanopaper was used as the working electrode,

platinum foil was used as the counter electrode, and a saturated calomel electrode (SCE)

as the standard electrode. Experiments for cyclic voltammetry were carried out for

approximately 3 hours under cyclic voltammetric conditions using an Elchema computer-

controlled potentiostat-galvanostat unit.

Cyclic Voltammetry (CV) is one of the most effective and versatile

electroanalytical techniques for the mechanistic study of redox systems [51, 52, 53 ]. It

enables the electrode potential to be rapidly scanned in search of redox couples. Once

located, a couple can then be characterized from the potentials of peaks on the cyclic

voltammogram and from changes caused by variation of the scan rate. CV is often one of

the first experiments used in an electrochemical study[ 54, 55, 56].

The repetitive triangular potential excitation signal for CV (Figure 4.7) causes the

potential of the working electrode to sweep back and forth between two designated

values (the switching potentials). To obtain a cyclic voltammogram, the current at the

working electrode is measured during the potential scan as shown in Figure. 4.8.



Figure 4.7 Typical excitation signal for cyclic voltammetry.

Source: http://www.chem.uic.edu/chem421/cv.PDF viewed Feb 25, 2010.

50
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POTENTIAL, V vs SCE

C-x PROFILES

2+

Figure 4.8 (Top)Cyclic voltammogram of Fe in lM H2SO4 . (Bottom) Concentration
profiles C-x discussed in the text.

Source: http://www.chem.uic.edu/chem421/cv.PDF, accessed Feb 28, 2010.

During the scan +250 to +750 mV, the applied potential becomes sufficiently

2+

positive at 400 mV to cause oxidation of Fe to occur at the electrode surface. This

oxidation is accompanied by an anodic current, which increases rapidly until the surface

2+

concentration of Fe approaches zero, as indicated by a peak in the current at point c in

Figure 4.8. The current then decays (after c) as the solution surrounding the electrode is

2+ 	 3+ 	 2+

depleted of Fe due to its oxidation to Fe . This depletion of Fe and accumulation of

3+

Fe near the electrode is depicted by concentration-distance profiles a-e as shown in

2+

Figure 4.8. The magnitude of the current is related to the slope of the c-x profile for Fe ,

as described by where:

(4.l)
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It = Current at time t, (Amperes).

n = Number of electrons, eq/mole.

F = Faraday's constant, 96,485 e/eq.

2

A = Electrode area, cm .

3

C = Concentration of oxidized species, mol/cm . (not mol/L!)

2

Do = Diffusion coefficient of oxidized species, cm /s.

t = Time (s).

X = Distance from the electrode (cm).

The product Do (aCo/aX) at x = 0, t is the flux or the number of moles of

2

oxidized species diffusing per unit time to unit area of the electrode in units of mol/cm² S.

2+ 	 3+ 	 2+

During the positive scan in which Fe is oxidized to Fe , the depletion of Fe in the

3+

vicinity of the electrode is accompanied by an accumulation of Fe . This can be seen by

the concentration distance profiles at various potentials in the shown figure. After the

direction of the potential scan is switched at 750 mV to a negative scan, oxidation

continues (as is evident by the anodic current and the C-x profile, (e), as seen in Figure

4.8, until the applied potential becomes sufficiently negative to cause reduction of the

3+ 	 3+

accumulated Fe . Reduction of Fe is signaled by the appearance of cathodic current.

Once again, the current increases as the potential becomes increasingly negative until all

3+ 	 3+

of the Fe near the electrode is reduced. When the concentration of Fe is significantly

depleted, the current peaks, and then decreases. See f, g, and h in Figure 4.8. Thus the

physical phenomena that caused a current peak during an oxidation cycle also cause a
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current peak during the reduction cycle. This can be seen by comparing the

concentration-distance profiles for the two scans.

Simply stated, in the forward scan Fe ³+ is electrochemically generated, as

³+	 2+
indicated by the anodic current. In the reverse scan, this Fe is reduced back to Fe , as

indicated by the cathodic current. Thus, CV is capable of rapidly generating a new

species during the forward scan and then probingits fate on the reverse scan. The

important parameters of cyclic voltammetry are the magnitude of the peak currents, Ipa

and Ipc, and the potentials at which peaks occur, Epa and Epc. Difficulty in obtaining

accurate peak currents is perhaps the biggest liability of CV.

A redox couple in which both species rapidly exchange electrons with the

working electrode is termed an electrochemically reversible couple. The following

equation applies to a system that is both electrochemically and chemically reversible:

(4.2)

The values of 'pa and 'pc are similar in magnitude for a reversible couple with no

kinetic complications. In most CV experiments there is little advantage to be gained by

carrying on the potential scan for more than two to three cycles (Note: The first

voltammogram is not always quite the same as the reproducible curves obtained after

several cycles.)
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4.3.4 Synthesis of Nitrogenated Boron Nanotubes

A schematic view of the structures involved in the synthesis of boron nanotubes

using a CVD-type decomposition process is shown in Figure 4.9. First boron nanotubes

(BNTs) are grown by this new process and the BNTs are then doped with nitrogen using

ammonia or melamine as dopant precursors to form nitrogenated boron nanotubes

(BNNTs).

Figure 4.9 (a) Structure of MgB2 from which magnesium would de-intercalate due to
decomposition; (b) Model of a tubular structure of boron leading to boron nanotubes.
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During the thermal CVD-type process, MgB 2 is decomposed to its elements:

magnesium and boron (reaction 4.3):

MgB2 	Mg + 2B	 (4.3)

at a temperature of 900 - 950 °C

The magnesium ions then intercalate between the initially formed boron sheets to

catalyze the formation of tubular BNTs without being substantially incorporated into the

final product. While carbon nanotubes permit each carbon to be bound to three other

carbons, in BNT, each boron can bind to six other borons. However, BNT formed freely

in this fashion are highly irregular in diameter, and the main product is actually boron

nanowires.

Figure 4.10 The micro-porous molecular structure of a zeolite, ZSM-5 with the chemical
formula Na2Al2Si3O10-2H2O. The maximum size of the molecular or ionic species that
can enter the pores of a zeolite is controlled by the diameters of the tunnels. These are
defmed by the ring size of the aperture, where a "8 or 10 ring" refers to a closed loop that
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is built from 8 or 10 tetrahedrally coordinated silicon (or aluminum) atoms and 8 or 10
oxygen atoms.

However, to generate BNTs of a near-constant diameter, a template is necessary

to guide the growth of tubes and minimize defect formation. Zeolites, with their arrays of

constant pore size (as depicted in figure 4.10) have proven to be excellent templates for

producing BNTs. The CVD method of Pfefferle and Ciuparu[57] uses a highly reactive

BCl3³ gas mixed with hydrogen as the boron source, and the BNTs are grown in a Mg-

derivatized MCM-41, a zeolite with pores of 3-4 nm in diameter. However, the BNTs

produced appeared to have many defects. MCM-41 was also used in this work, but

MgB2 alone or mixed with Ni2B as co-catalyst was employed to provide both the boron

and catalyst source. Intimate mixing of MgB2 alone or mixed with Ni2B in different

atomic ratios with MCM-41 modifies the zeolite to contain the Mg catalyst without the

need for chloride atoms present in Pfefferle and Ciuparu's method, thus limiting the

number of chemical species and contaminants. The reaction is carried out at 950 °C under

flowing argon to keep the reaction atmosphere weakly reducing or neutral to propagate

the formation of BNTs as shown in Figure 4.11. The BNTs produced via this method

were smooth and defect free as evident from Figure 4.12.
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Figure 4.11 Schematic representation of a nanotube aided by Mg catalyst growing out of
the pores of a zeolite.

Figure 4.12 SEM images of boron nanotubes growing on the zeolite pores by the CVD
method used in this work.

As seen in Figure 4.12, not all of the pores had BNTs growing out of them. This

is surprising, since all of the pores contained the catalyst and some boron to initiate

growth. The effect of temperature, pressure, catalyst type (as mentioned earlier, the use

of Ni2B may be better), and zeolite pore diameter on the BNT growth process will be
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examined. Furthermore, upon closer examination it may be determined that there exists

an optimal BNT diameter, whereby deviation from this diameter could prohibit growth of

the BNTs and/or cause defects. Another variable to consider is the boron source added to

the mixture, which in our case also contains magnesium. An alternative would be to use

diborane (B2H6) gas as the boron source but use a magnesium modified MCM-41. Yet

another alternative would involve the use of Mg(BH4)2 which decomposes more

efficiently and at lower temperature to Mg and boron can be used in a scaled up process

as discussed below.

With the success of the templated CVD method the formation of nitrogenated

BNTs or BNNTs was explored. This could readily be achieved by annealing the

previously synthesized BNTs in flowing partial pressure of ammonia. As shown in

equation 4.4, ammonia readily decomposes to nitrogen radicals. These would react with

the BNTs formed in equation 4.3 to form nitrogenated BNTs or BNNTs (equation 4. 5).

2NH3 2N . (radicals) + 3142 at a temperature of 900°C	 (4.4)

2N . (radicals) + 2 B B(N) nanotubes 	 (4.5)

The effect of nitrogen incorporation into the BNTs is examined for the effects of

temperature, pressure, gas flow rate, catalyst type, and zeolite pore diameter using other

zeolites with both larger and smaller pore sizes, to obtain the optimal template conditions

for producing BNNT of constant diameter. Finally, the zeolite is rapidly removed by

dissolution in dilute sodium hydroxide to give pristine BNNTs.
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A more cost-effective approach mentioned earlier was performed using a scaled-

up CVD apparatus and using Mg(BH4)2 as the boron precursor. A small scale ball mill is

used to mechanochemically (by milling) react MgCl2 with NaBH4 to form Mg(BH4)2

according to the following reaction.

(4.6)

The reaction is carried out in alcohol in which NaC1 is partly soluble for removal

or in diethyl ether in which Mg(BH4)2 is soluble. Grinding magnesium chloride with

sodium borohydride up to 24 hrs is explored to ensure complete mechanochemical

reaction.

4.4 Characterization of Functionalized SWNT Nanopaper Substrates

Characterization was performed using Scanning Electron Microscopy (SEM), Raman

spectroscopy, attentuated total reflection-Fourier transform infrared (ATR-FTIR)

spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry

(DSC) and laser ablation mass spectrometry to determine the presence of N4/N8 and other

nitrogen clusters onto and in the SWNTs. Some details of the Raman, SEM and ATR-

FTIR methods are described below.

4.4.1 Raman Spectroscopy

Two different Raman instruments at the New Jersey Institute of Technology were used to

collect Raman spectra: (a) Mesophotonics SE 1000 Raman spectrometer with a 250 mW

near-infrared laser operating at 785 nm, a 130 [tin diameter spot size and calibrated to 2
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-¹cm ; and (b) EZRaman-LE Raman Analyzer System from Enwave Optronics with a

HRP-8 high throughput fiber probe and a 250 mW 785 nm laser focused at a working

distance of 6 mm. Raman scattering or the Raman effect is the inelastic scattering of a

photon and were discovered by Sir Chandrasekhara Venkata Raman in liquids and by

Grigory Landsberg and Leonid Mandelstam in crystals in the 1920's. When light is

scattered from an atom or molecule, most photons are elastically scattered (Rayleigh

scattering), such that the scattered photons have the same energy (frequency) and

wavelength as the incident photons. However, a small fraction of the scattered light

(approximately 1 in 10 million photons) is scattered by an excitation, with the scattered

photons having a frequency different from, and usually lower than, the frequency of the

incident photons. In a gas, Raman scattering can occur with a change in vibrational,

rotational or electronic energy of a molecule as shown in Figure 4.13. For materials

characterization purposes, chemists are concerned primarily with the vibrational Raman

effect.

Figure 4.13 Virtual energy level.

Source: Professor Z. Iqbal lecture, MtSE 748:Nanomaterial, NJIT, Fall 2009.
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There are two components of conventional spontaneous Raman scattering, Stokes

scattering and anti-Stokes scattering. The interaction of light with matter in a linear

regime allows the absorption or simultaneous emission of light precisely matching the

difference in energy levels of the interacting electrons. The Raman effect corresponds to

the absorption and subsequent emission of a photon via an intermediate electronic state,

having a virtual energy level shown in Figure 4.13. Following possibilities can occur:

• No energy exchange between the incident photons and the molecules (and

hence no Raman effect)

• Energy exchanges occur between the incident photons and the molecules.

The energy differences are equal to the differences of the vibrational and

rotational energy-levels of the molecule. In crystals only specific phonons are

allowed (solutions of the wave equations which do not cancel themselves) by the

periodic structure, so Raman scattering can only appear at certain frequencies. In

amorphous materials like glasses, more phonons are allowed and thereby the

discrete spectral lines become broad.

• Molecule absorbs energy: Stokes scattering. The resulting photon of lower

energy generates a Stokes line on the red side of the incident spectrum.

• Molecule loses energy: anti-Stokes scattering. Incident photons are shifted

to the blue side of the spectrum, thus generating an anti-Stokes line.

These differences in energy are measured by subtracting the energy of the mono-

energetic laser light from the energy of the scattered photons. The absolute value,
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however, does not depend on the process (Stokes or anti-Stokes scattering), because only

the energy of the different vibrational levels is of importance. Therefore, the Raman

spectrum is symmetric relative to the Rayleigh band. In addition, the intensities of the

Raman bands are only dependent on the number of molecules occupying the different

vibrational states, when the process began. If the sample is in thermal equilibrium, the

relative numbers of molecules in states of different energy will be given by the

Boltzmann distribution equation 4.7:

(4.7)

No: number of atoms in the lower vibrational state

N1: number of atoms in the higher vibrational state

go: degeneracy of the lower vibrational state (number of orbitals of the same

energy)

g1: degeneracy of the higher vibrational state

AE„: energy difference between these two vibrational states

k: Boltzmann's constant

T: temperature in kelvins

Thus lower energy states will have more molecules in them than will higher (excited)

energy states. Therefore, the Stokes spectrum will be more intense than the anti-Stokes

spectrum.
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A typical Raman spectrum for SWNTs is shown in Figure 4.14. The spectrum

has three important features namely, low frequency lines assigned to radial breathing

modes ( RBM) of the nanotubes, intermediate frequency disorder-induced mode due to

defects and/or amorphous carbon on the nanotube sidewalls ( D-peak), and a higher

energy tangential mode (G-peak). One should note that in the G peak region there is

shoulder also labeled as the G" peak due to the breakdown of the degeneracy of the G

mode in graphite via roll-up of the graphene sheet. The Raman are Lorentzian except for

the G' peak in metallic, which has a Breit-Wigner-Fano lineshape due to electron-phonon

coupling.

The RBM lines usually appear in the low frequency region, between 120-280 cm -¹

and correspond to the atomic vibrations of the carbon atoms in the tube's radial direction.

RBM line frequencies are diameter-dependent and can be use to determine the average

individual SWNT diameters following the relationship in equation 4.8 [58].

(4.8)

Where ωRBM (cm-¹  ) indicates the RBM peak position and d t (nm) is the diameter of the

nanotube. The D line is the second important feature. It indicates disorder-induced,

defect bands at —1300 cm" ¹ for 785 nm laser excitation. Although it is usually referred to

as disorder line no definitive studies have concluded that these features can be attributed

to kinks, heptagons and other defects on the tube walls. However, by empirical

observation between the D-peak and G-peak intensity ratio one can monitor the quality of
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the SWNT sidewalls. The G+ line similar in frequency to the main line in graphite is also

referred to as tangential mode because it corresponds to the C-C stretching eigenvector

parallel to the tube axis. As pointed out earlier, a second lower frequency G - component

is observed in SWNT due to curvature-induced softening and removal of the degeneracy

of the C-C graphene mode.

Figure 4.14 Raman spectrum for SWNTs showing the RBM, D-peak and G-peaks
discussed in the text.

Source: Professor Z. Iqbal lecture, MtSE 748:Nanomaterial, NJIT, Fall 2009.

4.4.2 Scanning Electron Microscope ( SEM )

Field emission Scanning Electron Microscopy is one of the most sophisticated techniques

used in the characterization of SWNTs. In this work, a LEO (Carl Zeiss) 1530 VP

microscope was used at the NJIT Material Characterization Laboratory. This SEM

provides a three dimensional image of the SWNT bundles in nanopaper substrates, a
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direct result of the larger depth of field, as well as the shadow relief effect of the

secondary and backscattered electron contrast.

4.4.3 Fourier Transform Infrared Radiation-Attenuated Total Reflectance (FTIR-

ATR)

Mid-Infrared spectroscopy is an extremely reliable and well recognized fingerprinting

method. Many substances can be characterized, identified and also quantified. One of the

strengths of IR spectroscopy is its ability as an analytical technique to obtain spectra from

a very wide range of solids, liquids and gases. However, in many cases some form of

sample preparation is required in order to obtain a good quality spectrum. Traditionally

IR spectrometers have been used to analyze solids, liquids and gases by means of

transmitting the infrared radiation directly through the sample. Where the sample is in a

liquid or solid form the intensity of the spectral features is determined by the thickness of

the sample and typically this sample thickness cannot be more than a few tens of microns.

The technique of Attenuated Total Reflectance (ATR) has in recent years revolutionized

solid and liquid sample analyses because it combats the most challenging aspects of

infrared analyses, namely sample preparation and spectral reproducibility. The two most

common forms of sample preparation for solids both involve grinding the material to a

fine powder and dispersing it in a matrix. The ground material can be dispersed in a

liquid to form a mull. The most commonly used liquid is mineral oil (nujol). Typically no

more than 20 mg of solid is ground and then one or two drops of nujol are used to create

a paste which is then spread between two mid-infrared transparent windows e.g. NaCl,

KBr, CaF2. The sample is now ready to be placed in the spectrometer for analysis by

transmission.
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Sample in contact
with evanescent wave

To Detector

Infrared	 ATR
Beam	 Crystal

Figure 4.15 Schematic of the optics involved in attentuated total reflection.

Source: 59http://las.perkinelmer.com/content/Technicallnfo/TCH_FTIRATR.pdf,  February 28, 20I0.

An attenuated total reflection accessory operates by measuring the changes that

occur in a totally internally reflected infrared beam when the beam comes into contact

with a sample (indicated in Figure 4.15 ). An infrared beam is directed onto an optically

dense crystal with a high refractive index at a certain angle. This internal reflectance

creates an evanescent wave that extends beyond the surface of the crystal into the sample

held in contact with the crystal. It can be easier to think of this evanescent wave as a

bubble of infrared that sits on the surface of the crystal. This evanescent wave protrudes

only a few microns (0.5 - 5 p.m) beyond the crystal surface and into the sample.

Consequently, there must be good contact between the sample and the crystal surface. In

regions of the infrared spectrum where the sample absorbs/energy, the evanescent wave

will be attenuated or altered. The attenuated energy from each evanescent wave is passed

back to the IR beam, which then exits the opposite end of the crystal and is passed to the

detector in the IR spectrometer to generate an infrared spectrum. There are a number of

crystal materials available for ATR. Zinc Selenide (ZnSe) and Germanium are by far the

most common used for HATR sampling. Germanium has a much better working pH

range and can be used to analyze weak acids and alkalis. Germanium has by far the



67

highest refractive index of all the ATR materials available which means that the effective

depth of penetration is approximately 1 micron. For most samples this will result in a

weak spectrum being produced, however, this is an advantage when analyzing highly

absorbing materials, such as carbon black filled rubbers, which are typically analyzed

using a Germanium ATR accessory. Diamond is by far the best ATR crystal material

because of its robustness and durability.



CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Synthesis of Polymeric Nitrogen Stabilized on Single Wall carbon

NanotubesThree different methods were used to synthesize polymeric nitrogen and its

precursor clusters:

1. Electrochemical reaction of sodium azide aqueous solution with in-situ uv-
irradiation.

2. Microwave-assisted reaction of sodium azide aqueous solution with and without
uv pre-irradiation.

3. Radio-frequency plasma-assisted reaction of nitrogen mixed with argon or
hydrogen.

5.1.1 Electrochemical Reaction

A modified version of a scalable electrochemical process that was used to nitrate the

sidewalls of single wall carbon nanotubes is shown schematically in Figure 5.l. In the

modified process, the carbon nanotubes employed as the working electrode were pre-

doped with nitrogen via annealing in ammonia, and the reaction was carried out under

ultraviolet irradiation in sodium azide solution in water at different concentrations and pH

values. The nature of the chemistry taking place on the nanotube sidewalls and the

nanotube morphology were characterized by in-situ cyclic voltammetry, Scanning

Electron Microscopy (SEM), Raman spectroscopy, laser ablation mass spectroscopy,

Fourier Transform Infrared-Attentuated Total Reflection (FTIR-ATR), and differential

scanning calorimetry (DSC).
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SWNT nanopaper was used as the working electrode. Nanopapers were prepared

as discussed in Chapter 4 section 4.2. Prior to use, the nanopapers were heat-treated in

argon to remove water, remnants of the surfactant and carbonize the polystyrene coating

added to improve their mechanical strength by pouring a polystyrene solution in toluene

during the final drying step using vacuum filtration (see chapter 4, section 4.2). The

nanopaper shown in Figure 5.2 (top) was no longer brittle during handling. Nanopapers

using nanotubes from both sources discussed in chapter 4 were electrochemically reacted

in lM and 2 M sodium azide solution in deionized (DI) water under ultraviolet

irradiation. A photograph of the experimental set-up for electrochemical reaction where

the SWNT nanopaper functions as the working electrode (WE) are shown in Figure

5.3(a) and (b), respectively. A platinum wire is used as the counter electrode (CE) with a

standard calomel electrode as the reference electrode (RE) and in-situ computer

controlled cyclic voltammetry data were collected during electro-functionalization of the

nanopaper working electrode. SEM images of the working SWNT nanopaper electrode

using SWNTs from Cheap Tubes prior to electrochemical reaction are shown in Figure

5.2 (bottom).

Potentlostat

Figure 5.1 Schematic of the 3-electrode electrochemical cell.
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Figure 5.2 At the top, peeled-off nanopaper mechanically improved by polystyrene
infiltration; At the bottom, SEM images of as-prepared (a) and annealed (b) SWNT
nanopaper prepared using SWNTs from Cheap Tubes Inc. Some contamination by
particles from the reactor of the furnace is observed in the annealed sample. SEM images
of as prepared (c) and annealed (d) nanopaper using SWNTs from SWeNT Inc.
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Figure 5.3 Set-up for the electrochemical functionalization route to the synthesis of
polymeric nitrogen in carbon nanotubes showing: (a) Galvanostat-potentiostat system,
and (b) Beaker on the right containing lM NaN 3 aqueous solution, SWeNT nanopaper as
the working electrode, SCE as the reference electrode, and Platinum foil as the counter
electrode.

The electrochemical oxidation reactions at the working electrode would occur as

follows:

(5.l)

Oxidation would create radicals of the nitrogen cluster radicals and reduction

would involve conversion of the radicals back to cations. If active sites are present on the

nitrogen-doped SWNTs and excess radicals are present in solution, N4 radicals will

convert to N8 and N2 radicals will form N4 and then Ng clusters, which will be

encapsulated on the SWNT sidewalls by covalent bonding between carbon on the SWNT

sidewalls with the cluster nitrogen atoms. Oxidation reactions would then predominate.

A secondary reaction is likely to involve oxidation of carbon on the SWNT sidewalls

followed by bonding with the nitrogen clusters. Sodium formed during the reduction

cycle will dissolve in water to increase the solution pH. In-situ ultraviolet radiation will
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generate additional N3 radicals to increase the production of N8 clusters according to

reaction (5.l) above. Cyclic voltammograms (CVs) using SWNTs from Cheap Tubes

shown in Figure 5.4 indicate a 2 step oxidation process to form radicals according to

equation (5.l) followed by oxidation of the nanotube sidewalls to bond the nitrogen

clusters to the SWNT sidewalls.

Figure 5.4 Cyclic voltammetry scans recorded using nanopaper working electrodes
using SWNTs from Cheap Tubes in 1M sodium azide aqueous solution (a) and 2M
sodium azide aqueous solution (b).

Raman spectroscopy was used to check for N4 and Ng clusters and polymeric

networks on the SWNT sidewalls, and FTIR-ATR spectroscopy was used to check for C-

N bond vibrations. Micro-Raman experiments were carried out using an Enwave

Optronic Lab Raman system, cooled CCD (charge coupled device) detection and 785 nm

emitted wavelength. In order to verify proof of success, the micro-Raman data reported

were checked at about 20 spots in different regions of the sample. FTIR-ATR spectra

were measured directly on the pristine and functionalized SWNT nanopaper using a

Perkin-Elmer/Nicolet Model 470 FTIR—ATR spectrometer equipped with a Pike

Technologies single reflection ATR attachment. Thermogravimetric analysis (TGA) and
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differential scanning calorimetry were performed with a Perkin Elmer Pyris Diamond

TGA / DSC instrument. Continuous cyclic voltammogram (CV) sweeps were carried out

from -l.0 to +l.5 V at a scan rate of 15 mV/s in 1 M NaN3 with the pH held at 5.5 using a

phosphate buffer. CVs shown in Figure 5.5 below for nanopaper using SWNTs from

SWeNT are similar to the CVs shown in Figure 5.4 for nanopaper using SWNTs from

Cheap Tubes. Two peaks are observed corresponding to the step-wise oxidation of N3 -

anions followed by their chemisorption on defects and dangling bonds on the SWNT

sidewalls and tube ends. At voltages above +l.0 V (versus SCE) decomposition resulting

in oxygen evolution causes the CVs to become noisy.

Figure 5.5 The cyclic voltammogram from -600 to +1000 mV versus a saturated
calomel electrode (SCE) of a SWNT nanopaper working electrode made using SWeNT
nanopaper and Pt counter electrode in lM NaN3 aqueous solution with 0.l M phosphate
buffer (pH 7.4). The scan rate used is 15 mV/s.

CV experiments using nanopapers of single wall carbon nanotubes (SWNTs)

from two sources — SWeNT and Cheap Tubes — were used for the experiments with and

without polystyrene infiltration [60]. Both sets of nanopapers were annealed in ammonia

mixed with argon at 500° C for 30 minutes. Field emission scanning electron microscope

(SEM) images [Figures 5.6 (a) and (b)] for the two types of nanopapers show that the
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SWeNT sample has a distribution of much shorter nanotubes than the Cheap Tubes

SWNT sample. This is likely to be the result of the greater sensitivity of the SWeNT

nanotubes to sonication-induced dispersion in water required for nanopaper synthesis,

resulting in a relatively higher density of tube-tip sites where functionalization with

nitrogen can occur. The nanopapers were electrochemically reacted in lM sodium azide

solution under ultraviolet-irradiation.

Figure 5.6 Scanning electron microscope images of nanopapers from: (a-left) SWeNT
single wall carbon nanotubes and (b-right) Cheap Tubes single wall carbon nanotubes.

A schematic of the experimental arrangement for electrochemical synthesis where

the SWNT nanopaper functions as the working electrode is shown in Figure 5.7. A

platinum wire is used as the counter electrode and in-situ computer controlled cyclic

voltammetry data (referenced to a standard calomel electrode) were collected during

electro-functionalization of the carbon nanopaper working electrode. Since

electrochemical deposition is a widely used industrial process, the set up used can be

readily scaled up for larger scale production. Key Raman and laser desorption mass

spectrometry results is presented below which show that polymeric nitrogen clusters are

being indeed produced by the electrochemical process. Details of the reaction
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mechanism found in equation 5.l of formation of the polymeric nitrogen inferred from

the cyclic voltammetry data are shown in Figure 5.7 (a ) and (b).

Figure 5.7 Cyclic voltametry data for the (a-left) SWeNT nanopaper (b-right) CHEAP
nanopaper.

A representative micro-Raman spectrum excited with 785 nm laser radiation of

the charged nanopaper electrode displayed in Figure 5.8. The spectrum shown in Figure

5.8 (a) and (b) is closely similar to spectra taken from at least 20 spots across the sample.

The overall intensity of the Raman spectrum after charging is reduced by a factor of 6-7,

indicating a reduction in resonance enhancement due to the quasi-one dimensional

structure of the SWNTs. The decrease in resonance-enhancement may result from an

increase in structural dimensionality and disorder due to the formation of functional

groups on the sidewalls and tube ends. Moreover, the intense line at 1580 cm-l assigned

to the C—C tangential mode after functionalization. The resulting downshift of the line at

1580 cm-l relative to unfuntionalized nanotube may indicate electron donation to the

tubes by nitrogen species.

Figure 5.8 (a) and (b) respectively show the Raman spectra excited with 785 nm

laser radiation of the pristine nanopaper from Cheap Tubes and the same nanopaper after
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electrochemical reaction in lM sodium azide solution and under uv-irradiation. One clear

feature is the dramatic enhancement of intensities of the SWNT nanopaper Raman lines

relative to that of the pristine sample by an order of magnitude. In addition there is a

small (of the order of 5 cm -¹ ) downshift of the main Raman lines which suggests

electron-doping of the SWNT backbone as a result of functionalization by nitrogen-

containing groups[61.

(a)

Figure 5.8 Raman spectra excited with 785 nm laser from: (a) Pristine SWNT carbon
nanopaper from Cheap Tubes Inc; and (b) Same nanopaper as (a) that was
electrochemically functionalized in l.0M sodium azide solution under uv-irradiation, and
(c) in 2M sodium azide solution, at pH of 5, respectively.

The intensity enhancement can be tentatively attributed to electron doping-

induced change in the electronic density-of-states which modulate the Raman cross-
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section via the associated one-dimensional van Hove singularities. Other remarkable

changes are also observed in the intrinsic G mode at 1590 cm -¹ (due to the tangential

carbon-carbon stretching motion) and the G' mode near 2600 cm-¹ which has nothing to

do with the G mode but is really the 2nd harmonic of the disorder mode at 1300 cm -¹ , and

therefore more appropriately referred to as the 2D mode rather than its conventional

notation as the G' mode. Most remarkably the 2D mode is enhanced in single layer

graphene and is a factor of 4 stronger than the G line [62 , 63]. The G mode in SWNTs

splits into so-called G+ and G- modes due to the curvature of the tubes and resulting

quantum confinement that lifts the double degeneracy of the Egg symmetry of this mode

in graphite. The 2D mode near 2600 cm -¹ is observed in Figure 58(a) in the pristine

nanopaper and like the G modes is enhanced and downshifted. In addition, a broad

feature (mowed in Figure 5.8b) centered near 2460 cm -¹ and close to the 2D line

emerges in the Raman spectrum of the electrochemically functionalized nanopaper

sample. It is likely that it is due to a distribution of nitrogen cluster doped sites on the

nanotube walls. It is worth noting however that the fundamental D mode itself, which

senses overall disorder in the nanotubes, does not change in intensity as a result of

electrochemical functionalization. This broad feature becomes particularly strong for a

sample that was electrochemically functionalized in 2M sodium azide and shows a

second broad feature centered at about 850 cm -¹ (Figure 5.8c). These broad lines are

likely to be associated with the growth of a disordered polymeric nitrogen network on

and inside the SWNT framework (see more detailed discussion below in sub-section on

Plasma-assisted Reactions on Carbon Nanotubes). Two other relatively weak but

important Raman lines appear in this sample at 1485 cm -¹ (shown with an asterisk in
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Figure 5.8(b)) and at 1878 cm -¹ . The former can be assigned to a C-N frequency based on

a simple calculation based on the frequency expected on replacing carbon with the

heavier nitrogen atom. The line at 1878 cm-¹ corresponds fairly closely to the calculated

(using ab initio self consistent field, coupled cluster and many perturbation theory

methods [64 ,65]) Raman frequency of a C2„ Y-shaped N4 cluster, which can link up to

form N8 and higher oligomers.

The laser desorption mass spectra taken from the nanopaper made using Cheap

Tubes SWNTs depicted in Figure 5.9 clearly show the formation and cracking pattern of

Cx-N8 clusters consistent with the Raman data discussed above and the presence of a C-N

Raman feature. Stabilization of the nitrogen cluster occurs via the bonding with carbon in

agreement with the predictions of Abou-Rachid et al [66].

The corresponding Raman and laser desorption mass spectra for an

electrochemically functionalized nanopaper made using SWeNT nanotubes are shown in

Figures 5.10 and 5.11, respectively. The overall features in the Raman spectrum are

similar to those for the nanopaper made using Cheap Tubes discussed above. However,

relatively strong new peaks appear at 1752 and 1858 cm -¹ corresponding to weaker lines

at 1754 and 1878 cm -¹ in the Cheap Tubes sample, and the broad scattering near the 2D

line around is 2600 cm-¹ is about a factor of two weaker. The line at 1754 cm -¹ is a

second order mode of the SWNT whereas the feature at 1878 cm -¹ is assigned to N4. In

the SWeNT sample the 1878 cm -¹ line is downshifted probably due to the formation of a

larger cluster. The desorption mass spectra taken from the SWeNT sample shown in

Figure 5.11 does indeed indicate the formation of larger C25N20 clusters with mass of 580

amu in addition to Cx-N8 clusters. The relatively strong line at 1858 cm -¹ can therefore be
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assigned to C x-N20 where N20 can be considered to be comprised of five N4 clusters or

1858 cm -¹ associated with N20 which can be considered to be (N4)5.

Figure 5.9 Laser desorption time of flight mass spectrum in the (a) 100 to 300 amu and
(b) 280 amu region region from the electrochemically functionalized SWNT nanopaper
made from Cheap SWNTs.
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Figure 5.10 Raman spectra excited with 786 nm laser from : (a) Pristine SWeNT SWNT
nanopaper, and (b) Same bucky paper as (a) that was electrochemically functionalized in
l.0 M sodium azide solution under uv-irradiation.

Figure 5.11 Laser desorption time of flight mass spectrum in the (a) 200 to 450 amu
region and (ab 580 amu region and from the electrochemically functionalized SWNT
nanopaper made from SWeNT SWNTs. A drop of C60 solution is added to calibrate the
mass spectra.

5.1.2 Microwave Induced Electrochemical Reaction Synthesis Method

Carbon nanopapers were prepared using single-walled carbon nanotubes (SWNTs) from

two sources—SWeNT and Cheap Tubes as described in Chapter 4. The SWNTs were
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dispersed in deionized water in the presence of about 1% Triton Xl00 under horn

sonication for 15 to 30 minutes. The suspension was then vacuum filtered at 0.2 atm

pressure through 0.45 11,M Teflon membrane filter paper from Millipore, washed

successively with water and methanol, followed by successive washing with water and

methanol again. The residue on the filter was dried in air for 24 his [67] and then peeled

off as free-standing nanopaper. Both sets of nanopapers were used without further

annealing in ammonia.

For the microwave synthesis experiments, the carbon nanopapers were pretreated

by immersion in 5mM sodium tetrachloroplatinate II hydrate (Na2PtCl4) for 5 min to

provide catalytic nanoparticles of platinum on the carbon nanotube sidewalls. The

pretreated nanopapers were placed in 20ml glass vials each of 0.5M, 1 M, and 2M sodium

azide aqueous solutions and irradiated with ultra-violet radiation at 254 nm for 30 min

and transferred to 100 ml capacity Teflon reaction vessels in a microwave oven (CEM

Digestion System MDS-2100) shown in Figures 5.12.
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Figure 5.12 Mircowave Assisted Synthesis (a) UV irradiation of SWNT in 20m1
vials containing 0.5M, 1M, 2M aqueous solution of NaN3.(b) SWNT nanopaper inside
the reaction vessel prior to microwave reaction (c) SWNT in 2 reaction vessels, one
vessel as control and 4 th one that is part of the venting mechanism arrange in carousel for
loading inside the microwave oven (d) Reaction vessels inside the microwave oven
undergoing microwave assisted reactions.

Pure deionized water was used as the control in a separate vessel. Both reaction

and control vessels were subjected to microwave radiation for 15 min under RAMP

conditions and 5 min under HOLD to reach 150 °C, with approximately 950 watts of

microwave energy at a frequency of 2450 MHz at full power and the pressure set at 200

psi. After completion of the reaction it was observed that the higher concentration, 2M, of

the sodium azide solution has less volume of solution left inside the reactor. The

nanopapers were carefully removed from the vessels, washed with deionized water and

dried at room temperature and then characterized by Raman spectroscopy. Carbon

nanopaper samples made of SWeNT nanotubes broke into many pieces under microwave

irradiation in sodium azide solution. Most of the nanopapers made from SWeNT

nanotubes did not have good mechanical properties and tended had to break apart even

during handling. Characterization of these samples is therefore more time-consuming.

Only nanopaper samples made from Cheap SWNT were analyzed using the Raman

spectroscopy.
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From Figures 5.13 and 5.14 it can be seen that there are no significant new peaks

and decrease intensity after microwave reaction in lM NaN3 (aq) solution with and

without uv-irradiation pre-treatment. However, when the concentration of sodium azide is

doubled, the Raman spectrum (Figure 5.15) exhibits a substantial increase in intensity

and appearance of new feature lines similar to observations depicted in Figure 5.8. for

nanopaper samples that were electrochemically reacted with uv irradiation. The Raman

features are however relatively weaker than those observed in the electrochemical

reaction and are likely to be due to functionalization of the SWNT with polymeric

nitrogen as discussed in the previous section.

C-Paper no UV in ¹M So¹n MW

C-Paper +UV in 1M So¹n MW

Figure 5.13 Raman spectra of microwave reacted nanopaper from Cheap Tubes in lM
NaN 3 (aq) solution with (green) and without (red) uv- pretreatment.
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Figure 5.14 (a) Raman spectra of pristine nanopaper from Cheap Tubes before (black)
and after (red) microwave reaction in 1M NaN 3 (aq) solution; and (b) Raman spectra of
pristine nanopaper from Cheap Tubes before (black) and after (green) microwave and uv-
irradiation in lM NaN3 (aq) solution.
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Figure 5.15 Raman spectra of pristine nanopaper from Cheap Tubes before (black) and
after (red) uv-treatment and microwave reaction in 2M NaN 3 (aq) solution.
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Prior work has shown that microwave synthesis of a carbon nanotube composite

[68] can be achieved with decreased number of by-products. Moreover, rapid microwave-

assisted purification of drugs using sodium azide has been achieved [69]. Microwave-

assisted reaction has been shown to shorten the time to produce triazines (3 nitrogen

hexagonal ring compounds) or tetrazoles (4 nitrogen pentagonal ring compounds) from

sodium azide [70]. There are several reports in the literature indicating fast surface

modification by sodium azide using low power (20-75W) microwave irradiation [71].

Most of the experiments performed in this research were performed using 100W

microwave irradiation.

5.1.3 Plasma Enhanced Chemical vapor Deposition ( PECVD) Synthesis for the
Polymeric Nitrogen

Carbon nanopapers were prepared using single-walled carbon nanotubes (SWNTs) from

Cheap Tubes as described in Chapter 4. The Cheap Tubes SWNT powders were

dispersed in deionized water in the presence of about 1% Triton Xl00 under horn

sonication for 15 to 30 minutes. The suspension was then vacuum filtered at 0.2 atm

pressure through 0.45 µm Teflon membrane filter paper from Millipore, washed

successively with water and methanol, followed by successive washing with water and

ethanol again. The residue on the filter was dried in air for 24 hrs [49 , 72, 73, 74] and

then peeled off as free-standing nanopaper. The Cheap Tubes SWNT nanopapers were

used without further annealing in ammonia.

The plasma enhanced chemical vapor deposition (PE-CVD) synthesis

experiments were carried out on SWNT nanopaper substrates using SWNT from Cheap
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Tubes in the plasma deposition system previously shown schematically in Figure 4.6. The

reaction chamber of the plasma deposition system was a quartz tube 78cm in length with

an inner diameter of 3.8 cm. Deposition was carried out with a radio frequency (rf)

plasma at 50-70 watts power. Heating of the nanopaper substrate, which was placed in a

quartz glass boat, was accomplished if required by placing the deposition tube in a

temperature-controlled tube furnace. The experiments were run at a pressure of 1 Torr to

l.4 Torr. Argon and Hydrogen carrier gases were mixed with the precursor nitrogen at a

flow rate of 25 to 50 standard cubic centimeters per minute (sccm) depending on the

percentage of nitrogen and hydrogen or nitrogen and argon ratio utilized during the

experiment. It was observed that at 50 sccm using 100% to 50% nitrogen, intensity of

the broad Raman line centered near 2280 cm -¹ was much lower when compared to

experiments ran at 25% nitrogen/75 % argon. In the latter sample however the broad line

at 750 cm-¹ assigned to single bonded N-N stretching is more intense than the broad line

at 2200 cm-¹ (shifted down from 2280 cm-¹ ) assigned to N=N and N=N stretching modes.

Three CHEAP nanopaper substrates were placed on boats located in the front, middle and

back of the plasma in the reaction zone and approximately about 40mm apart from each

other as shown in Figure 5.16. A thermocouple that was isolated from the grounded

anode was kept in contact with the substrates during nitrogen deposition.

The PECVD experiments were run for one hour with 3 nanopaper substrates

samples. The quartz boats containing the substrates were positioned on the front, middle

and back position in the reaction tube as shown in Figure 5.16(b). The experimental runs

consisted of 100%, 25% and 50% nitrogen with 0%, 75% and 50% argon gas as the

carrier medium, respectively. The SWNT nanopaper treated in 100% nitrogen plasma
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showed essentially no change in the Raman spectrum compared to the spectrum of the

pristine material, indicating very little reaction. Samples that were placed in the back

postion showed changes in in the Raman spectra due to plasma-induced reaction (Figure

5 . 1 7).

Figure 5.16 Photographs of experimental PECVD set up used to carry out plasma-
assisted reaction on SWNT nanopaper samples. Panel (a) shows three quartz boats
containing nanopaper samples inside the PECVD quartz tube deposition chamber before
the experiment; panel (b) shows on-going PECVD experiment with the location of the
samples indicated; panel(c) shows a typical on-going plasma experiment; and panel (d)
shows an overview of the laboratory scale PECVD set-up.

When the nitrogen was mixed with argon to raise the plasma temperature and

hydrogen was added to induce catalytic effects, extensive reaction occurred as evident
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from the Raman spectra shown in Figure 5.21 and the SEM images in Figure 5.27. The

results shown in Figures 5.17.5.18 and 5.19 indicate that nanopapers treated in

nitrogen/hydrogen plasma have more intense Raman spectra compared with those treated

in a -nitrogen/argon plasma. Two broad Raman lines emerge on plasma treatment—one

centered near 2250 cm -¹ and the other near 750 cm -¹ . The former lies below the stretching

frequency of triply bonded nitrogen in pure nitrogen and the latter near the stretching

frequency of singly bonded nitrogen in cg-polymeric nitrogen at high pressure and

temperature reported by Eremets et al. These broad features were also weakly evident,

particularly in the Raman spectra of electrochemically reacted nanopaper shown in

Figure 5.20 comparing the Raman spectra for electrochemically- and plasma- reacted

nanopaper samples. The broad lines can therefore be assigned to a disordered network of

polymeric nitrogen consisting of small and large clusters bonded to the carbon framework

of the nanotube. The higher frequency line can be assigned to doubly bonded nitrogen

and the lower frequency line to singly bonded nitrogen. SEM images in Figure 5.27

clearly show the formation of a coating on the sidewalls. In addition, ball-like

dodecahedral structures of nitrogen inserted into the nanotubes would give rise to bulbous

nanostructures that are clearly evident in Fig. 5.27 (a) and (f). The laser ablation mass

spectrum depicted in Fig. 5.25 from a plasma-treated sample show the appearance of a

strong signal assignable to C51\1¹2 (where N¹2 can be comprised of N8 and N4) and a clear

signal due to N8 clusters consistent with this picture of a polymeric nitrogen network built

of nitrogen clusters bonded to the carbon framework. Advanced optimization of the

plasma process to give ordered polymeric nitrogen would require in-situ annealing during

reaction and nanopaper substrate pre-treatment. Such a material would have a Raman
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spectrum similar but more intense than the spectrum shown in Figure 19 (b) for a sample

treated in 25% nitrogen-75% argon plasma, where the line assigned to single bonded

nitrogen is enhanced. Processing conditions to narrow the width of the Raman line

centered near 750 cm -¹ as a result of ordering would be the next step in obtaining an

ordered polymeric structure on the carbon nanotube sidewalls.

An attempt was made to duplicate the plasma-reaction experiments using

nanopapers from Cheap Tubes SWNTs that were pre-annealed in a similar manner as the

nanopaper working electrodes from Cheap Tubes SWNTs used in the electrochemical

reaction experiments. The Raman spectra of the plasma-treated, pre-annealed nanopaper

subtrates with nitrogen as precursor, and hydrogen and argon as the carrier gases are

shown in Figures. 5.21 and 5.22, respectively. The Raman spectra are similar to those

obtained for the plasma-treated unannealed nanopaper substrates shown in Figures 17 and

18 except that the relative intensity for the broad line centered at 750 cm -¹ does not

exceed that of the line at 2250 cm-¹ as it does for unannealed nanopaper substrates treated

in 25% nitrogen-75% argon plasma (shown in Figure 5.17 and 5.18). The spectra in

Figure 5.21 and 5.22 are also similar to those observed for the electrochemically treated

samples depicted in Figures 5.8 and 5.10. The FTIR-ATR spectra for annealed and

unannealed nanopaper using SWNTs from Cheap Tubes that were plasma-treated in 25%

nitrogen:75% hydrogen, are shown in Figs. 5.23(a) and (b), respectively. The spectra

taken directly from the nanopaper surfaces are relatively weak but show clear lines. In

the annealed sample, lines assignable to C=N (around 2000 cm -¹ ) and C-11 stretching

(around 3000 cm -¹ ) vibrations are observed, whereas lines associated with C-N and —

C=OOH stretching vibrations between 1000 and 2000 cm-¹ are observed in the
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unannealed sample. For the electrochemically treated sample, only a line assignable to

the C=N vibration is observed. The observation of carbon-nitrogen stretching lines

indicates bonding of the nitrogen atoms on the polymeric nitrogen with the carbon

framework, consistent with the laser ablation mass spectral data. There are, however,

differences between the infrared spectra for the annealed and unannealed nanopapers that

would need further study (also see Appendices C-D).

14000

Figure 5.17 Raman spectra of nanopaper using SWNTs from Cheap Tubes reacted in:
50% nitrogen and 50% argon and 50%nitrogen and 50% hydrogen and (B) 50% nitrogen
and 50% hydrogen, 25% nitrogen and 75% hydrogen, 50% nitrogen and 50% argon and
25% nitrogen and 75% argon.

Figure 5.18 Raman Spectra from nanopaers using SWNTs from Cheap Tubes reacted in
nitrogen/ hydrogen plasma with composition indicated on the figure.
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Figure 5.19 Overlay of Raman spectra of plasma-treated unannealed Cheap Tubes
nanopaper samples: (A) Raman spectra from nanopapers treated in 50% nitrogen/50%
argon and hydrogen plasmas and placed at the back of the reaction zone, and (B) Raman
spectra from nanopapers treated in: 50% nitrogen/50% hydrogen (black), 25%
nitrogen/75% hydrogen (purple), 50% nitrogen/50% argon (red) and 25% nitrogen and
75% argon (green) plasmas.

SWNT-Sheet: CV vs. PECVD

Raman Shift (cm -1 )

Figure 5.20 Overlay of Raman spectra of plasma-treated (in PECVD reactor)
nanopapers in 50% nitrogen-50% hydrogen (black) and 50% nitrogen-50% argon
(orange) compared with spectra from electrochemically-reacted during cyclic
voltammetry (CV) nanopapers in lM sodium azide (red) and 2M sodium azide (blue).
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Figure 5.21. Raman spectra of annealed nanopaper from Cheap Tubes SWNTs in
different reactor locations indicated in the figure reacted in 25% nitrogen/75% hydrogen
and 50% nitrogen/50% hydrogen plasmas.

Figure 5.22 Raman spectra of annealed nanopaper from Cheap Tubes in different
reactor locations indicated in the figure reacted in 25% nitrogen/75% argon and 50%
nitrogen/50% argon plasmas.
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SAMPLE 2- CHEAP SWNT 25N75H
BACK ANNEALED PECVD 160C 1.3

TORR"

Sample 10- CHEAP NH3 ANNEALED
5%PS UV-PPI ANNEALED 1mASAMPLE 7- CHEAP SWNT 25N75H

BACK PECVD NOT ANNEALED

Figure 5.23 FTIR-ATR of: (a) 25% nitrogen:75% hydrogen plasma-treated, annealed
Cheap Tubes nanopaper, (b) 25% nitrogen:75% hydrogen plasma-treated unannealed
Cheap Tubes nanopaper, (c) Electrochemically reacted annealed Cheap Tubes nanopaper.

The same experiments were performed using annealed nanopaper using Cheap

Tube SWNTs. These nanopapers were annealed at 500° C in a CVD furnace for 1 hour in

an inert atmosphere and then reacted in 25% nitrogen with 75% argon, and 50% nitrogen

and 50% argon plasmas. A second set of experiments were performed using hydrogen as

the carrier gas. The Raman spectra are shown in Figures 5.21 and 5.22. The intensity of

the Raman spectra were five times stronger than from unannealed nanopaper made using

SWNTs from Cheap Tubes. Substrates located in the back had more polymeric nitrogen

than those in the middle location as shown in Figures 5.21 and 5.22. The key features of

the spectra are the enhancement of the broad scattering previously seen at 2350 cm -¹ in

Figures 5.8 and 5.10 for electrochemically reacted samples and the growth of a broad line

centered at 800 cm* Moreover, the broad line at 800 cm -¹ shows a further increase in

relative intensity and shifts down to 700 cm -¹ for the sample treated in a 25%

nitrogen/75% argon from the PE-CVD in Figure 5.22. It is worth noting that the center

of the broad line at 2350 cm -¹ is close to the narrow line at 2328 cm -¹ of molecular

nitrogen assigned to the stretching mode of the nitrogen-nitrogen triple bond [75, 76, 77],
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whereas the center of the broad band at 700 cm-¹ is close to the frequency of the Raman

line of single-bonded nitrogen in the cg-polymeric nitrogen phase reported by Eremets et

al. The two broad Raman lines observed can therefore be assigned to a polymeric

nitrogen network with bond order ranging from 1 (for ideal polymeric nitrogen) to

between 2 (for nitrogen clusters) and 3 (for molecular nitrogen). The broadening of the

line centered at 2350 cm-¹ extends to below 2000 cm-¹ where the double bonded nitrogen

stretching mode frequencies of N4 clusters occur. The broad lines are particularly

enhanced in samples treated in the nitrogen/hydrogen plasma (where the plasma-induced

temperature is measured to be 100 °450 °C and the relative intensities of the SWNT G

modes are substantially masked. The Raman spectrum in Figure 5.17 for the sample

treated in 25% nitrogen/75% hydrogen plasma with reaction temperature in the 400 °

-450°C range shows a reversal of the intensities of the two broad Raman lines, indicating

the formation of a polymeric network with greater number of single N-N bonds. A

similar plasma-synthesized amorphous phosphorous-nitrogen network has been

previously reported by Veprek et al [78'79].
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Figure 5.24 FTIR-ATR spectrum of a 50% nitrogen-50% hydrogen plasma
processed nanopaper prepared with Cheap Tubes SWNTs.

FTIR and laser ablation mass spectra shown in Figures 5.24 and 5.25 respectively,

provide insights into the structure of the material produced on the SWNTs after plasma-

treatment. The FTIR-ATR spectra (Figure 5.24) taken directly from the rough nanopaper

surface shows relatively weak but well resolved lines centered at 1744 cm -¹ , at 1372 cm -¹

and at 1220 cm* The line at 1744 cm -¹ can be assigned to —COON groups formed on the

SWNTs sidewalls via oxygen adsorbed on the nanotube walls. The lines at 1372 cm -¹ and

at 1220 cm -¹ can be assigned to the C-N stretching modes of C yNx clusters [80]. Lastly,

the line at 2000 cm -¹ can be assigned to C-N bond.

The laser ablation mass spectrum from a plasma-treated sample in Figure 5.25

and 5.26 shows N8 clusters and a C5N12 cluster where N12 is comprised of three N4

clusters. Typical FE-SEM images for a 50%/50% nitrogen-hydrogen plasma-treated

sample show a dramatic change in morphology and thickening of the nanotubes due to

plasma-assisted deposition of the polymeric-nitrogen phase. The changes are associated
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with coating of the SWNT sidewalls with the polymer network and in some regions

formation of the polymer nitrogen within the nanotubes to form bulb-like structures and

curved tubes.

Figure 5.25 Laser ablation mass spectrum from a nanopaper reacted in 50%
nitrogen/50%hydrogen plasma.
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4

Figure 5.26 (a-b) Laser ablation mass spectrum from a nanopaper reacted in a 50%
nitrogen-50% argon plasma.
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Further characterization of the PE-CVD samples by the FE-SEM images (Figure

5.27 (a),(b),(c),and (d) provide insights into how the three-dimensional architecture of the

composite is formed. As indicated by Figure 5.27 (a) and (b), the nucleation of nitrogen

followed by bonding to carbon occurs on the SWNT bundles at the onset of the reaction.

Then, the polymeric nitrogen clusters randomly crosslink (Figures 5.27 (a)-(b) and grow

into the macroscopic architecture shown in Fig. 5.27 (c). As shown in Figure 5.27 (d), in

certain areas of the nanopaper, the SWNTs are completely covered by the polymeric

nitrogen coating. The image shown in Figure 5.27 (d) is from the surface of SWNT fiber

region, and the nanotubes that form the underlying framework of the structure are still

embedded indicating strong interfacial binding of the SWNTs to the polymeric nitrogen.

A mechanism for the growth of the polymeric nitrogen-SWNT composite can be

proposed based on the SEM images shown in Figure 5.27. More details will be provided

by a future high resolution TEM study. The growth appears to be initiated by the reaction

of —N at the—C sites on the SWNT sidewalls, locally forming NxC. The N„C thus formed

was further decomposed by the plasma to produce randomly growing N xC nanoparticles,

which covered the nanotube surface and lead to the formation of a heterogeneous N xC —

SWNT network with spherical growths (Figure 5.27(c)).
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Figure 5.27 Series of FE-SEM images of plasma-reacted SWNT nanopaper discussed in
the text.

5.2 Thermal Properties of Nanopaper Samples from Electrochemical and Plasma
Reactions

In order to determine if the polymeric nitrogen clusters and networks prepared on the

carbon nanotubes are indeed energetic as predicted, differential scanning calorimetric

(DSC) data were obtained to evaluate the thermal properties of the electrochemically

functionalized nanopaper relative to that of a pristine nanopaper from the same batch[81].

For energetic materials, the guidelines taken from STANAG 4147[82] is stated as ," A

decomposition peak temperature shift of 4 degrees Celsius or less is deemed compatible.

Any shift towards a lower peak temperature of the explosive has some degree of

incompatibility. The greater the shift towards lower temperatures, the greater the degree
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of incompatibility. A peak temperature shift of more then 20 degrees indicates

incompatibility. Peak temperatureshifts between 4 and 20 degrees indicate partial or

potential incompatibility in which case Vacuum Stability testing is required to confirm. "

In this research work, we are not testing the CHEAP SWNT and the Polymeric Nitrogen,

but actually what we are testing is a SWNT doped with N, an explosive material which is

our baseline explosives. We are determining the endothermic onset and exothermic

peaks of an explosive material to see how thermally stable it is. It is important to know

the energetic polymeric nitrogen thermal stability and IM properties especially for

response to hot spalls or hot conductive fragments ignition ( HCFI) stimuli. It is also

important to know especially for the fast Cook-off or slow cook-off IM test requirements

whether it will pass the IM standards before fielding to the soldiers. In our case, our

control, baseline explosive is the energetic polymeric nitrogen not the CHEAP SWNT.

The CHEAP SWNT does not cause a shift towards a lower temperature nor caused a

temperature shift of more than 20 degrees to cause incompatibility on both cases as

stated in the STANAG 4147. It was observed that a DSC scan at a heating rate of 20 ° C
per minute for a pristine nanopaper does not show an endothermic onset nor an

exothermic peak [Figure 5.28(a)]. On the other hand, an electrochemically functionalized

SWNT nanopaper exhibits an endothermic onset at 300 ° C [Figure 5.28(b)] associated

with endothermic dissociation similar to that seen by Wang et al in nitrated SWNTs

[83,84]. This is followed by a exothermic peak at 350 °C similar to what is typically seen

in an energetic material like cyclotetramethylene-tetranitramine (also referred to as

HMX). The HMX weak endothermic onset (Tm=185 ° C) is due to the transformation of

HMX from the low temperature phase ((3) to the high temperature phase (8) [85, 86]. The
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sharp endothermic onset at 281.95 ° C corresponds to melting which is followed by a

strong exothermic peak. The sharp peak (T=286.86 ° C) immediately after the melting is

due to the self-decomposition of HMX. However, for HMX, the sharp endotherm onset is

281.3 °C and the exotherm peak is 286.86 °C as shown in Figure 5.29(b). This is an

indication that the polymeric nitrogen is more thermally stable and less sensitive when

compared to HMX [87,88,89]. Similar observations have been made by Lee et al in p

HMX where an endothermic melting process precedes the exothermic reaction [90].

Figure 5.28 (a) DSC scan for Cheap Tubes SWNT nanopaper before electrochemical
reaction, and (b) DSC scan for electrochemically functionalized Cheap Tubes SWNT
nanopaper.

Similar thermal behavior was observed for the CHEAP SWNT ammonia annealed

prior to the Plasma-assisted synthesis using the PE-CVD process equipment. The DSC of

the pre-annealed CHEAP SWNT nanopaper synthesize with 25% Nitrogen and 75%

Hydrogen shown in Figure 5.28(a) exhibits endotherm onset at 250.79 ° C [Figure 5.28(b)]

associated with endothermic dissociation similar to that seen by Wang et al in nitrated

SWNTs [91,92]. This is followed by a rapid exothermic peak at 316.59 °C similar to what
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is typically seen in an energetic material like cyclotetramethylene-tetranitramine (also

referred to as HMX). HMX has an endotherm onset of 281.3C and an exotherm peak at

286.6 C [93, 94, 95, 96, 97]. The polymeric nitrogen substrate shows a broad endotherm

onset and exotherm peak similar to the Reduced Sensitivity (RS) HMX, RDX and

M30A1 propellant shown in Figures 5.29 (b), (c) and (d), respectively. As can be seen in

Figure 5.29 (a), the functionalized SWNT have a higher exotherm onset of 316.59 0 C.

Figure 5.29 (a) DSC scan for Cheap Tubes SWNT Back nanopaper after plasma
enhance CVD with 25% nitrogen and 75% hydrogen at 20 0C min-¹ and (b) DSC curves of
HMX decomposition (15 to 25 °C min-¹ (c) Advanced DSC analysis of RS-RDX (IM
behaviour) (d) DSC scan for M30Al propellant.

Source: G.F.M. Pinheiro, V.L.Lowurenco and K.Iha, Influence of Heating Rate in the Thermal
Decomposition of HMX, Journal of Thermal Analysis and Calorimetry, Vol. 67, (2002)445-452
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Additional Differentail Scanning Calorimetry and Thermal Gravimetric Analysis

(DSC and TGA ) analysis of the bukypaper substrates can be found in Appendix A and

B for both the electrochemical and PE-CVD synthesized buckypapers, respectively. All

the results are depicting a trend of thermally stable properties for the synthesizes

polymeric nitrogen when compared to HMX and RDX explosives [98, 99,100, 101 ].

5.3 Fourier Transform Infrared Radiation-Attenuated Reflectance Transmission
( FTIR-ATR)

Electrochemical functionalization of the nanopapers prepared from Cheap Tubes

and SWeNT nanotubes was further confirmed by FTIR-ATR spectroscopy.

Representative examples of these spectra are shown in the Figures 5.30 and 5.31

FTIR-ATR spectral scans from the pristine nanopapers prepared from Cheap Tubes and

SWeNT annealed in ammonia, respectively, are featureless consistent with the absence of

strong infrared-active vibrations in SWNTs. Figure 5.30 (b) shows the spectrum of the

electrochemically fuctionalized nanopaper made using SWNTs from Cheap Tubes. The

infrared lines in the region around 2100 cm-¹ can be assigned to the C-N double bond

stretching vibrations of C yNx clusters linked to the SWNT sidewalls. In Fig. 5.30 (b) from

functionalized nanopaper made using SWeNT nanotubes, only lines below 2000 cm -¹ are

observed. The peak at 800 cm -¹ can be assigned to C—N single bond stretching vibrations

associated with CyNx clusters. The lines near 1500, 1600 and 1800 cm -¹ belong to the

C=C stretching and C=O stretching of CyNx clusters, respectively.
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Figure 5.30 (a) left shows the FTIR-ATR results for the pristine CHEAP SWNT after
NH3 annealing (b) right shows the FTIR-ATR result for the electrochemically
functionalized SWNT nanopaper made from CHEAP SWNTs.

Figure 5.31 (a) FTIR-ATR spectra for the pristine nanopaper made using SWeNT
SWNTs after ammonia annealing, and (b) FTIR-ATR spectra for electrochemically
reacted nanopaper using SWeNT SWNTs.

An FTIR-ATR analysis of the pre-annealed CHEAP SWNT annealed

prior to PE-CVD using 25% Nitrogen with 75% Hydrogen carrier gas was perfomed.

Figure 5.32 shows the spectrum of the PC-CVE functionalized nanopaper made using

SWNTs from Cheap Tubes. The infrared lines in the region around 2000-2200 cm -¹ can

be assigned to the C-N double bond stretching vibrations of CyNx clusters linked to the

SWNT sidewalls. The resulting line 2000-2200 cm -¹ shown in Figure 5.32 indicate a C-N
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bond which is similar from Figures 5.30 and 5.31 for CHEAP SWNT and SWeNT

synthesized by electrochemical reactions., respectively.

Figure 5.32 CHEAP SWNT annealed prior to PE-CVD using 25% Nitrogen with

755 Hydrogen carrier gas.

Additional FTIR-ATR data for the electrochemically reacted, and annealed and

unannealed nanopapers prior to PE-CVD can be found in Appendices C and D,

respectively.

5.4 Effect of Nano-sized Aluminum, (4% and 8% Addition), Nano-Titanium
Dioxide, Carbon Nanotubes and Boron Nanotubes Particle Addition

Addition of nano-sized aluminum particles as an energetic ingredient is highly desirable

in propellant formulations because their small dimensions and high surface area-to-

volume ratio enables the propellant to achieve the higher burning rates and impetus.



106

Aluminum has a relatively high gravimetric heat of oxidation (31.06 kJ/gm) and high

volumetric heat of oxidation (83.86 kJ/cm 3). Aluminum also has a high density of 2.7

gm/cm³. Mench[14] showed that by replacing 9 % of regular aluminum powder with

nano-sized Alex® particles in an 18 % aluminized Ammonium Perchlorate (AP)-based

propellant, the burning rate could be doubled. One advantage of utilizing Al particles in

nanoscale dimension is that they have a short ignition delay and combustion time. If the

particles burn close to the propellant surface, the heat feedback rate into the propellant

surface can be increased, causing an increase in the burning rate as discussed by Mench.

However, addition of nano-sized Al particles to the High Energy (HE) propellant did

modify the burning rate as expected. Figure 5.33 shows a comparison between the

burning rates of the HE and HE/Al propellants as a function of pressure. The addition of

nano-sized Al particles increased the propellant burning rate by 20%.

It is well known that under hot-gas environments, the nano-sized Al particles have

much shorter ignition delay and combustion time than the micron-sized particles. If nano-

sized Al particles are contentiously supplied in an oxidizing environment, they could

react to a high degree of completion in the close vicinity to the propellant surface.

However, nitramine-based propellants have much less oxygen available for aluminum

oxidation than do AP-based propellants. Both RDX and CL-20 have negative oxygen

balance (OBRDX= —21.61 % and OBCL-20= —10.95 %) while AP has a positive oxygen

balance of (OBAp=+34.04 %). Also, the AP-based propellants decomposed to generate

oxygen-rich species that diffuse into the fuel-rich region, while RDX decomposition does

not generate an oxygen-rich region around the reacting particles. Thus, in the nitramine-
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based propellant flame, the nano-sized Al particles combustion would be delayed until

conventional aluminum oxidizing species, H2O and CO2, are produced

°
	 rb,8296 : rb,8297 = l.2, that is, a 20% burn rate enhancement was gained from a

3% increase of nano-Al.

Figure 5.33 (a) and (b): Burn Rate of PAP-8297 and PAP -8296 Propellants with
BAMO-NMMO binder and Nano-sized Aluminum Particles compared with the
baseline PAP-8194.

Both nano sized TiO2 and nano sized aluminum produced a slight increase in

burning rate (2% to 4% at 40 ksi) when compared to the baseline propellant, TGD-035.

As shown in Figure 5.34, the change in burning rate produced by the addition of TiO2

was virtually identical to the change produced by the addition of nano sized aluminum.

Examination of the vivacity plots for these tests indicated all propellants were burning in

a reasonable fashion. Representative burning versus pressure plots for several mixes in

this matrix are shown in Figures 5.34 (a-b) and 5.35(a-b). Closed bomb burning rate tests

were conducted on lots TGD-041 and TGD-042 propellants and indicated that the higher

levels of nano additive significantly increased propellant burning rate. The measured

burning rate of both propellants was found to be approximately 25% higher than that of
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the baseline propellant, lotTGD-035. These burning rates for the 0.5% and l.0% nano

aluminum and TiO2 additive propellants are shown graphically in Figures 5.34, and 5.35.

Figure 5.34 Burn rates of propellant with BAMO AMMO binder with and without nano
additives.

Figure 5.35 Burning rates of propellant with BAMO AMMO binder with the % level of
nano additives.

The effect of adding 2.3% carbon nanotubes did not show a significant increase

in burn rates when compared to the 4.5% ( lot PAP-8297) and 7.8% ( lot PAP-8296)

nano-aluminum added to the propellant., respectively. Figure 5.36 shows a comparison

of the burn rates when 2.3% of carbon nano-tubes, 4.8% and 7.8% nano-aluminum were

added to the propellant. Figures 5.37 and 5.38 shows the burning behavior of the carbon
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nanotubes in the propellant formulation at a pressure of 5,000 psi.and 9,500 psi,

respectively. The propellant was burning two times faster at higher pressure.

Figure 5.36 Comparison of Burn Rates when nano-aluminum and carbon nanotubes
were added.

Figure 5.37 Burning behavior of propellant with 2.3% carbon nanotubes at a pressure of
5,000 psi.
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Figure 5.38 Burning behavior of propellant with 2.3% carbon nanotubes at a pressure of
9,500 psi.

Boron has a high gravimetric heat of oxidation (58.74 kJ/gm) and high volumetric

heat of oxidation (137.45 kJ/cm 3 ), the highest of all common fuels. Boron also has a

density of 2.34 gm/cm 3 , which is lower than aluminum and should increase the mass

burning rate of the propellant. In a hybrid rocket motor, using 13 % of nano-boron

particles in Hydroxy terminated polybutadiene (HTPB)-based solid fuels, Risha[102]

observed an increase of mass burning rate of 44 % for nano-sized boron particles and 111

% for nano-sized B4C particles.

Figure 5.39 shows the burning rate of the HE/B propellant as a function of

pressure. The effect of addition of boron nano-particles to the HE propellant is a

noticeable decay of the burning rate rather than an enhancement of the burning rate. This

can be expained by the "energy-sink" effects. Figure 5.39 reveals that boron particles

have stronger effect on the reduction of the burning rate of the HE propellant. This can be

attributed to three reasons. First, the specific heat capacity of boron is greater than that of



111

aluminum on a mass basis. Therefore, boron particles are a more effective thermal energy

sink than aluminum particles. Second, the boron particles are harder to ignite than

aluminum particles, thus the energy release due to their combustion occurs at even larger

distances away from the propellant surface. Third, the HE/B propellant is more fuel-rich

than the HE/Al propellant with the same weight percentage of B and Al in the propellant.

This results in less oxidizing species for the boron oxidation reactions.

At low P, the boron nano-sized particles
reduce the burning rate of the HE propellant

At higher P (>9,000 psi), rb converges with
that of baseline HE propellant

Large amount of ash observed

Boron particles have long ignition delay,
resulting in their energy release away from
the burning surface

On a molar basis, boron concentration is
much higher than that of Al at similar wt.%
due to much lighter molecular weight of B
(wt.% may be too high for optimum
combustion)

5.5 Characterization of Nano Particles

5.5.1 Atomic Force Microscopy (AFM)

The nano aluminum used for the propellant formulation was characrterized by AFM . As

shown in Figure 5.40a the nano aluminum particle size varied from 5 nm to 130 nm but

the average particle size distribution appears to be 70 nm. The AFM showed many 70

nm but associates into >300 nm clusters that look somewhat like "popcorn balls" which
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are readily observed in the 3µ2 height image shown in Figure 5.40(b) and somewhat

reminiscent of the nano-boron shown in Figure 5.42. The 700 nm images of the nano-

aluminum shows apparent "seams" about 10 nm wide that exist between quite a few of

the particles that are fused together. Many of the particles appear "lumpy". The 1 µ 2

image shows connected particles with < 10 manometer pores between them as shown in

Figure 5.41(a) and (b). A few are indicated but many more can be identified in this

image.

Figure 5.40 (a)Nano —aluminum particle size. 	 (b): Nano-aluminum clusters
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Figure 5.41 Nano-aluminum pores in the 1 1.12 images.

The nano-boron AFM analysis used in the propellant is shown in Figure 5.42 (a)

and (b). Most of the individual particles within the clusters are —50-60 nm in diameter ,

but the clusters can be several hundreds nanometer in diameter.

Figure 5.42 Nano-Boron Particle size;(a) Nano—Boron arranged in clusters(b).
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5.5.2 Scanning Electron Microscope (SEM) and Transmission Electron Microscopy
(TEM) of Multi-Wall Carbon Nano-Tubes (MWCNT)

The SEM of the multi —wall carbon nanotubes is shown in Figure 5.43(a). The carbon

nanotubes appear to be prevalent in hallow fiber shape. The MWCNT was used in the

propellant lot PAP-8410. The SEM image is of 10,000X magnification, and 1 micron

scale. The TEM image scale is 100 nm as shown in Figure 5.43(b).

Figure 5.43 Multi wall carbon nanotubes SEM, image is of 10,000X magnification, and
1 micron scale (a) MWCNT TEM Image, Scale: 100 nm(b) made at NJIT and used in the
propellant lot PAP-8410.

5.6 Synthesis and Nitrogenation of Boron Nanotubes/Boron Nanofibers

Boron nanotubes (BNTs) and boron nanofibers (BNFs) were synthesized by thermal-

treatment of MgB 2 or Mg(BH4)2 precursors with catalytic Ni 2B in zeolite MCM-41 in a

CVD reactor system. The Mg formed acts as a co-catalyst. The pristine nanotubes and

nanofibers are then doped using ammonia or alternatively using melamine.
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In order to optimize the synthesis temperature where the boron nanotubes (BNTs)

and nanofibers (BNFs) are formed, several experiments were performed with

temperatures from 875C° to 930C° with the same starting nominal composition by

weight which was as follows:

30% MgB2, 50% Ni 2B (roughly l:l atomic ratio of MgB2 to Ni2B) and 20%
MCM41	 (5.2)

The samples prepared were evaluated by scanning electron microscopy (SEM).

Very little BNT/BNF formation is observed below 900 °C. BNTs and BNFs start growing

at 910°C with large production occurring between 920 °C and 930 °C as shown by the

SEM images in Figure 5.44(a) and (b).

Figure 5.44 SEM image of a sample of BNTs/BNFs prepared at 920 °C (a) and at 930°C
(b).

The detailed structural characterization of the highly purified BNT/BNF samples

obtained after successful removal of MCM-41 used as template and catalyst support for

the growth of the nanotubes and nanofiber were completed. The Raman spectra (typical

one displayed in Figure 5.45 show a number of lines with frequencies of peaks at 274,
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382, 538, 640, 1274 and 1379 cm -¹ in the 200-1500 cm -¹ region using 785 nm laser

excitation. These lines correspond to those observed by the Yale University group of

Pfefferle et al at 210, 450, 500, 580, 1080 and 1180 cm -¹ using 532 nm laser excitation

and assigned by them to BNTs. The frequency differences are likely to be due to

differences in the diameter and the fact that the nanotubes produced in this work are

possibly multiwalled. The assignment of the lines at 274, 400 and 538 cm -¹ in our data to

BNTs, while the features at 640 and 1274 cm -¹ can be assigned to BNFs. The strong

feature at 1379 cm -¹ is due to a B-O mode resulting from the oxidation of the BNT

surfaces by oxygen during purification. Due to the electron deficiency of boron, boron

sidewall surfaces become susceptible to oxidation as they are released from MCM-41

pores during the purification process.

Figure 5.45 Raman spectrum intensity (counts/sec) versus frequency in cm -¹ of purified
BNT/BNF sample taken using Mesophotonics Raman system with 785 nm laser
excitation. The peak at 1379 cm -¹ is due to the glass substrate on which the sample
powder is placed.

The new boron nanotube CVD synthesis apparatus modified with a new

temperature controller-microprocessor and improved vacuum system, has produced well-
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grown, clearly visible nanotubes that are about 30 nm in diameter (and hence likely to be

multiwalled), as is seen in the SEM images in Figures 5.44 (a) and (b). The samples were

purified to remove the zeolite MCM-41 template by sonication in dilute sodium

hydroxide. These samples were analyzed by transmission electron microscopy (TEM)

and Electron Energy Loss Spectrum (EELS) measurements to determine how much Mg

and Ni catalysts are incorporated into the nanotubes as shown in Figures 5.46 and 5.47.

In addition, further detail on whether the tubes are single walled were determined by

TEM and EELS although Raman data suggest that the nanotubes are single walled. In

Figure 5.48, Boron nanotubes are shown lying on a holey carbon TEM grid obtained by

process using MgB. Measured nanotube diameter is 10-20 nm. Nanotubes have larger

diameter but are extremely straight compared with the more curvy boron nanotubes

obtained by the Yale group[103].

Figure 5.46 TEM images of boron nanotubes are shown lying on a holey carbon TEM
grid.
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Figure 5.47 Boron nanotubes (a) EELS-(b) TEM images from boron nanotube edges.

In Figure 5.47 b, the EELS scan clearly shows the boron edge proving that the

nanotube comprises purely of boron.

The first synthesis of MgBH4 was completed using the thermal reaction of MgCl 2

and NaBH4 below the melting temperature of the borohydride near 500 °C. The reaction,

however, did not appear to go to completion based on initial chemical analysis by Raman

spectroscopy. A chemical metathetical synthesis approach according to the following

reaction in tetrahydrofuran (THF):
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MgCl2 + 2MBH 4 = Mg(BH4)2 + 2MC1	 (5.3)
with M = Li, Na

In this reaction NaCl or LiCl will precipitate out and the Mg borohydride will

remain in THE solution and will be recovered by solvent evaporation. A small ball

milling system was used to conduct the mechano-chemical reaction which may be the

most efficient method to produce MgBH 4 based on our results and survey of the

literature.

Further experiments using the first level optimized process for producing BNTs

and BNFs were conducted using the optimized process using MgB 2 as the primary

precursor to refme the two key parameters; the reaction temperature and grinding of the

constituents of the reaction. The reaction temperature is as determined in the first level

optimization. However, a fine level of grinding of the constituents is necessary to obtaine

the quality of BNTs/BNFs shown in Figure 5.48, a representative SEM image taken from

these optimally ground samples. It is clear that the BNTs/BNFs grow out of the MCM-41

template particles.

Figure 5.48 BNTs/BNFs growing out of MCM-41 particles in optimally ground
precursor mixture of MgB 2 and Ni 2B with MCM-41.
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Ball mill synthesis to prepare scaled up quantities of Mg(BH4)2 has been utilized.

Ball milling will mechanochemically react MgCl2 with NaBH4 to form Mg(BH4)2

according to the following reaction:

MgCl2 + 2NaBH4 = 2NaC1 + Mg(BH4) 2 (5.4)

The reaction has been conducted in alcohol in which NaCl is partly soluble and

can be therefore removed. However, the reaction product obtained has not been pure.

Experiments was performed by the grinding in pure diethylether in which Mg(BH4)2 is

completely soluble and can be extracted in pure form.

Synthesis of BNTs/BNFs using Mg(BH4)2 initially with Aldrich's newly

commercialized material has been carried out successfully. In addition to its application

in the production of BNTs/BNFs, magnesium borohydride will have major commercial

potential as a lightweight hydrogen storage material for automotive fuel cells. Figure 5.50

shows an SEM image of BNTs/BNFs from Mg(BH4)2 prepared at 900 °C. Lower

temperature preparations was also successfully achieved at at 650 0C as shown in Figure

5.49. The nanotubes appear to grow in spider web out of and on the MCM-41. For the

higher temperature preparation of BNTs/BNFs, it is evident that some of the BNTs/BNFs

produced have thinner diameters(down to a few nanometers) than BNTs/BNTs from

samples prepared using MgB2 (typically 10-20 nm ).. This could be due to the fact that

magnesium borohydride decomposes more readily to create catalytic Mg particles in the
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Figure 5.49 Field-emission SEM images of BNTs/BNFs prepared at 650 °C with
Mg(BH4)2 prcursor. The nanotubes grow in spider web out of and on MCM-41.Arrows
indicate a straight BNT growing on spherical particles which we believe to be Mg
catalyst particles.

form of spheres in Figure 5.50 out of which boron nanotubes grow much as carbon

nanotubes do out of transition metal catalyst particles. By optimizing the temperature to

control the size of the magnesium particles it may now be possible to grow primarily

single wall BNTs and very thin BNFs.

Figure 5.50 Field-emission SEM images of BNTs/BNFs prepared at 900 °C with
Mg(BH4)2 prcursor. Arrows indicate a straight BNT growing on spherical particles which
we believe to Mg catalyst particles.



CHAPTER 6

SUMMARY AND CONCLUSIONS, RECOMMENDATIONS FOR FUTURE
WORK

We have used an electrochemical process to functionalize the inner and outer

sidewalls of single wall carbon nanotubes with polymeric nitrogen clusters. In this

process, the carbon nanotubes were employed as the working electrode and were pre-

doped with nitrogen, and the reaction was carried out under ultraviolet irradiation in

sodium azide solution at different pH values. The nature of the chemistry and changes in

morphology taking place on the nanotube sidewalls were characterized by in-situ cyclic

voltammetry. Raman spectroscopy, laser ablation mass spectroscopy, scanning electron

microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform

infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. The results obtained

have consistently shown the formation of N4 to N20 polymeric nitrogen clusters

immobilized on the nanotube sidewalls. Differential scanning calorimetry on

electrochemically functionalized SWNT nanopaper exhibits an endothermic onset at 300 °

C associated with endothermic dissociation similar to that seen by Wang et al in nitrated

SWNTs. This is followed by a rapid exothermic onset at 350 ° C similar to what is

typically seen in an energetic material like cyclotetramethylene-tetranitramine (also

referred to as HMX). Similar results were also obtained using Raman spectroscopy,

SEM, laser ablation mass spectrometry, DSC and FTIR-ATR for samples prepared by
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the PE-CVD process using nitrogen gas as the precursor mixed with either argon or

hydrogen. Although somewhat similar results were obtained using a microwave-assisted

process on aqueous solutions of sodium azide, the reaction efficiency was much lower

than using the electrochemical and plasma methods. Scale-up of both the electrochemical

and plasma synthesis processes are recommended for near-future work.

Initial studies have been performed to evaluate the impact of adding nano-

aluminum, nano-titanium dioxide (TiO 2), nano-boron and multiwall carbon nanotubes to

propellant formulations. The results of this study indicate that the addition of both nano-

sized additives to two different gun propellants produce an increase in propellant burning

rate. The fact that the nano-sized additives produced identical burning rates at the 2.35%

to 7.4% by weight level was somewhat surprising, especially when the predicted impetus

and flame temperature of the subject propellants are markedly different. This ability to

make significant changes in burning rate is important and provides the propellant

formulator a powerful tool to use in achieving a desired burning rate.

For propellants with oxygen deficient oxidizers (such as RDX, CL20), the

addition of nano-sized boron particles cannot increase the burning rate of the propellant

because the reaction of these fuel particles can only occur at a distance away from the

propellant burning surface. However, for propellants containing oxidizers with positive

oxygen balance, the addition of nano-sized Al particles can greatly enhance the

propellant burning rate because the reaction of the particles can occur in close proximity

to the propellant's burning surface. Therefore, the addition of both carbon nanotubes and

nano-sized aluminum particles can be used to substantially increase the propellant

burningrate
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The primary objectives of this dissertation to realize an optimized synthesis

approach to a stable polymeric nitrogen on and in single wall carbon nanotubes, and to

synthesize pure nitrogenated boron nanotubes/nanofibers (BNNTs/BNNFs), have been

achieved. The polymeric nitrogen should improve the ballistic performance of guns by

making it easier to achieve a burn rate differential of 3:1 between the fast and slow

propellants in a fast core configuration. In addition, the polymeric nitrogen should be

capable of increasing gun propellant performance by lowering the CO/CO2 ratio of the

combustion gases , and should reduce gun barrel wear and erosion by increasing the N2

/CO ratio of these same combustion gases.

Future work recommended related to this research will be to scale up the

synthesis methods developed and further enhance the properties of the high energy, high

density energetic polymeric nitrogen and nitrogen-containing BNNT/BNNF through

optimization.



APPENDIX A

DIFFERENTIAL SCANNING CALORIMETRY DATA FOR
ELECTROCHEMICAL SYNTHESIS SAMPLES

Figure Al to Al0 show the DSC of CHEAP SWNT Pristine and Dope with Nitrogen

-0.04908 I 	 I 	 I 	 	 i
10.11 	 50 	 100 	 150 	 200 	 250 	 300 	 350 	 400 418.1

Temperature (°C)

Figure A.1 DSC for SWeNT SWNT, NH3 annealed, 110mA, no PS.

Figure A.2 DSC for SWeNT, NH 3 annealeed, no PS, no electrochem.
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Figure A.3 DSC for CHEAP SWNT , NH3 annealed, 5%PS, 10mA.

Figure A.4 DSC CHEAP SWNT, NH3 annealed, 5%PS, no electrochem.



SWCNT sample 5
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Figure A.5 DSC CHEAP SWNT, 5%PS, No Electrochem.

SWCNT sample e6

Figure A.6 DSC SWeNT SWNT, NH3 Annealed, No Electrochem.
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SWCNT sample 7

Figure A.7 DSC of CHEAP SWNT, NH3 annealed.

SWCNT sample 8

Figure A.8 DSC of CHEAP SWNT, 5%PS, NH3 Annealed, 1hr UV (Anitha's), 10mA.
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SWC NT sample 9

Figure A.9 DSC of CHEAP SWNT, 5%PS, 1Ma, l,495V, NH3 Annealed.

Figure A.10 DSC of CHEAP SWNT, NH3 Annealed, 1 Ma, 1597V, UV from PPI and

no PS used.



APPENDIX B

DIFFERENTIAL SCANNING CALORIMETRY DATA FOR PE-CVD SAMPLES

Figures B1 to B23 DSC and TGA for Nitrogen :Argon and Hydrogen Treatment of
Cheap SWNT that were not annealed and annealed.

Figure B.1 Overlay of DSC for not annealed CHEAP SWNT substrate from the Nitrogen
Argon PE-CVD process.

Figure B.2 Overlay of DSC for not annealed CHEAP SWNT substrate treated with
Nitrogen Hydrogen using the PE-CVD	 ess.
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Figure B.3 DSC for not annealed and pristine CHEAP SWNT powder.
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Figure BA DSC for not annealed PRISTINE CHEAP SWNT BUCKYPAPER.
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E, UP 	 Temperature(Cr thims.1 V4.EA TN anw:nt;

Figure B.5 DSC for not annealed CHEAP SWNT substrate from 25%Nitrogen 75%
Argon PE-CVD process.

Figure B.6 DSC for not annealed CHEAP SWNT substrate from 50%Nitrogen50%
Argon PE-C'VD process. Location at Back quartz boat.
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Figure B.7 DSC' for not annealed
Argon PE-CVD process. Location at

CHEAP SWNT substrate from 50%Nitrogen50%
Back quartz boat.

Figure B.8 DSC for 25N75H treated by PECVD process not annealed, located at Back
quartz boat.
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Temperature (T) 	 VA vv. , V4 SA TA I-5,

Figure B.9 DSC' for not annealed CHEAP SWNT substrate front 25%Nitrogen75% Hydrogen
PE-CVD process. Location at Middle quartz boat.

Figure B.10 DSC for not annealed CHEAP SWNT substrate from 50%Nitrogen 50% Hydrogen
PE-CVD process. Location at Back quartz boat
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Figure B.11 DSC for not annealed CHEAP SWNT substrate from 50%Nitrogen50%Hydrogen
PE-CVD process. Location at Wayback quartz boat.

Figure B.12 DSC for annealed CHEAP SWNT substrate from 50% Nitrogen50% Argon
PE-CVD process, Location at Back quartz boat.



Figure B.13 DSC' for annealed CHEAP SWNT substrate from 50%Nitrogen50% Hydrogen PE-
CVD process. Location at Back quartz boat.

136

0 	 100 	 I00 	 210 	 20 	 100 	 100 	 400

Temperature CC)	1:11.(1.11Vit.11 IA 1.41.44,

Figure B.14 DSC for annealed CHEAP SWNT substrate from 25%Nitrogen75% Hydrogen PE-
CAI) process. Location at Back quartz boat.



Figure B.15 DSC for annealed CHEAP SWNT substrate from 50%Nitrogen50% Hydrogen
PE-CVD process, Location at Back quartz boat.
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Figure B.16 Overlay of TGA for not annealed CHEAP SWNT substrate from the Nitrogen
Argon PE-CVD process.



Figure B.17 TGA for pristine CHEAP SWNT nanopaper.
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Figure B.18 TGA for pristine CHEAP SWNT buckypaper substrate after the 25%N 75% H
PECVD located at Back quartz boat from the plasma.
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Figure B.19 TGA for not annealed CHEAP SWNT buckypaper substrate after the 509'0N 50%
H PECVD located at back quartz boat.

Temperature ('C) 	 Universal V=•: 

Figure B.20 TGA for PRISTINE CHEAP SWNT nanopaper substrate after the 25%N 75% H
PECVD located at back quartz boat from the plasma.
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Figure B.21 TGA for not annealed CHEAP SWNT substrate from 50%Nitrogen50% Argon
PE-CVD process. Location at Back quartz boat.
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Figure B.22 TGA for not annealed CHEAP SWNT substrate from 50%Nitrogen50% Argon
PE-CVD process. Location at Back quartz boat.
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Figure B.23 TGA for annealed ('HEAP SWNT nanopaper prior to electrochent



APPENDIX C

FTIR-ATR DATA FOR THE ELECTROCHEMICAL SYNTHESIS SAMPLES

Figure C.1 to C.11 show the FTIR-ATR analysis of SWeNT SWNT annealed .

Sample 1 - SWeNT NH3 ANNEALED 110mA

Figure C.1 Sample number l-SWeNT ammonia annealed , electrochem with 110mA.
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Sample 2-SWeNT SWNT NH3 ANNEALED
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Figure C.2 Sample number 2-SWeNT ammonia annealed, no electrochem.



SAMPLE 3- CHEAP SWNT NH3 ANNEX ED 10mA
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Figure C.3 Sample number 3-CHEAP SWNT ammonia annealed , electrochem with
10mA.



SAMPLE 4- CHEAP SWNT 5% PS NH3 ANNEALED
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Figure C.4 Sample number 4-CHEAP SWNT ammonia annealed , no electrochem.



SAMPLE 5-CHEAP 5%PS 2 HR SONICATION
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Figure C.5 Sample number 5 - CHEAP SWNT with 5%polystyrene.



SAMPLE 6- SWeNT SWNT NH3 ANNEALED
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Wavenumber, (cm-¹ )

Figure C.6 Sample number 6 - SWeNT SWNT ammonia annealed.



SAMPLE 7- CHEAP SWNT NH3 ANNEALED
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Figure C.7 Sample number 7 - CHEAP SWNT ammonia annealed.



SAMPLE 8- CHEAP SWNT 5%PS UV(Anitha's)
NH3 ANNEALED 10mA
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Figure C.8 Sample number 8 CHEAP SWNT with 5% polystyrene, ammonia
annealed and UV treated.at 10mA current.



SAMPLE 9- CHEAP UV 5%PS NH3
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Figure C.9 Sample number 9 - CHEAP SWNT ammonia annealed with 5%polystyrene ,
electrochem reaction at 1mA current.



Sample 10- CHEAP NH3 ANNEALED
5%PS UV-PPI ANNEALED 1mA
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Figure C.10 Sample number 10 - CHEAP SWNT ammonia annealed , 5%polystyrene,
UVduring electrochem reaction at 1mA current.



SAMPLE 12- CHEAP NH3 ANNEALED NO PS UV
PP! 100mA
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SAMPLE 12- CHEAP NH3
ANNEALED NO PS UV PPI
100mA

Figure C.11 Sample number 12 — CHEAP SWNT ammonia annealed, no polystyrene,
UV electrochem with 100mA current.



APPENDIX D

FTIR-ATR DATA FOR PE-CVD SAMPLES

Figure D.l to D.11 show the FTIR- ATR analysis of PECVD Cheap SWNT annealed
and not annealed substrates.

SAMPLE 1-25N75H CHEAP MIDDLE PECVD
160C 1.3 TORR

SAMPLE 1-25N75H CHEAP

MIDDLE PECVD 160C 1.3
TORR

Figure D.1 Sample 1 for 25N75H annealed Cheap SWNT Middle boat from the plasma.
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SAMPLE 2- CHEAP SWNT 25N75H BACK
ANNEALED PECVD 160C 1.3 TORR"

SAMPLE 2- CHEAP SWNT

25N75H BACK ANNEALED

PECVD 160C 1.3 TORR"

Wavenumber, (cm-1)

Figure D.2 Sample 2 for 25N75H annealed Cheap SWNT Back boat from the plasma.
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SAMPLE 3- CHEAP SWNT 50N50H ANNEALED
PECVD BACK

SAMPLE 3- CHEAP SWNT

50N50H ANNEALED PECVD

BACK

Figure D.3 Sample 3 for 25N75H annealed Cheap SWNT Back boat from the plasma.



SAMPLE 4- 5014 50 Argon CHEAP BACK
PECVD ANNEALED 350C 1 TORR

SAMPLE 4- 50N 50 Argon

CHEAP BACK PECVD

ANNEALED 350C 1 TORR
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Figure D.4 Sample 4 for 25N75H annealed Cheap SWNT Back boat from the plasma.



SAMPLE 5 - 25 N 75 Argon ANNEALED
CHEAP MIDDLE PECVD 350C 1 TORR

SAMPLE 5 - 25N 75 Argon

ANNEALED CHEAP MIDDLE

PECVD 350C 1 TORR
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Figure D.5 Sample 5 for 25N75H annealed Cheap SWNT Middle boat from the plasma.



SAMPLE 2- CHEAP SWNT 25N 75 A MIDDLE
PECVD NOT ANNEALED

.SAMPLE 2 CHEAP SWNT 25N
75 A MIDDLE PECVD NOT
ANNEALED

Figure D.6 Sample 2 for 25N75A unannealed Cheap SWNT Middle boat from the
plasma.
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SAMPLE 5- CHEAP SWNT 50N 50H BACK
PECVD NOT ANNEALED

SAMPLE 5- CHEAP SWNT
50N 50H BACK PECVD NOT
ANNEALED
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Figure D.7 Sample 5 for 50N50H unannealed Cheap SWNT Back boat from the plasma.
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SAMPLE 6- CHEAP SWCNT 25N 75H MIDDLE
PECVD NOT ANNEALED

SAMPLE 6- CHEAP SWCNT 25N

75H MIDDLE PECVD NOT

ANNEALED

Figure 1).8 Sample 6 for 25N75H unannealed Cheap SWNT Middle boat from the
plasma.



SAMPLE 7- CHEAP SWNT 25N75H BACK
PECVD NOT AN

SAMPLE 7- CHEAP SWNT

25N75H BACK PECVD NOT

ANNEALED
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Figure D.9 Sample 7 for 25N75H unannealed Cheap SWNT Back boat from the plasma.



SAMPLE 8- CHEAP SWNT 50N 50H BACK
PECVD NOT ANNEALED

-SAMPLE 8- CHEAP SWNT

50N 50H BACK PECVD NOT

ANNEALED
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Figure D.10 Sample 8 for 50N50H unannealed Cheap SWNT Back boat from the
plasma.



SAMPLE 9- CHEAP SWNT SUN 50H
WAYBACK PECVD NOT ANNEALED

SAMPLE 9-- CHEAP SWNT

50N 50H WAYBACK PECVD

NOT ANNEALED
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Figure D.11 Sample 9 for 50N50H unannealed Cheap SWNT WayBack boat from the
plasma.
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