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ABSTRACT

VARIANCE-REDUCTION TECHNIQUES
FOR ESTIMATING QUANTILES AND VALUE-AT-RISK

by
Fang Chu

Quantiles, as a performance measure, arise in many practical contexts. In finance, quan-

tiles are called values-at-risk (VARs), and they are widely used in the financial industry to

measure portfolio risk. When the cumulative distribution function is unknown, the quantile

can not be computed exactly and must be estimated. In addition to computing a point esti-

mate for the quantile, it is important to also provide a confidence interval for the quantile

as a way of indicating the error in the estimate. A problem with crude Monte Carlo is that

the resulting confidence interval may be large, which is often the case when estimating

extreme quantiles. This motivates applying variance-reduction techniques (VRTs) to try to

obtain more efficient quantile estimators. Much of the previous work on estimating quan-

tiles using VRTs did not provide methods for constructing asymptotically valid confidence

intervals.

This research developed asymptotically valid confidence intervals for quantiles that

are estimated using simulation with VRTs. The VRTs considered were importance sam-

pling (IS), stratified sampling (SS), antithetic variates (AV), and control variates (CV). The

method of proving the asymptotic validity was to first show that the quantile estimators

obtained with VRTs satisfies a Bahadur-Ghosh representation. Then this was employed to

prove central limit theorems (CLTs) and to obtain consistent estimators of the variances in

the CLTs, which were used to construct confidence intervals. After the theoretical frame-

work was established, explicit algorithms were presented to construct confidence intervals

for quantiles when applying IS+SS, AV and CV. An empirical study of the finite-sample be-

havior of the confidence intervals was also performed on two stochastic models: a standard

normal/bivariate normal distribution and a stochastic activity network (SAN).
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CHAPTER 1

INTRODUCTION

Many systems and processes exhibit complex behaviors and operate in uncertain environ-

ments. Examples include computer networks, database systems, telecommunication net-

works, transportation systems, and financial markets. Random events, such as failures of

components, unknown future demands and prices, and natural disasters, are inherent to

these systems. A system designer must determine the performance of a proposed system

before implementing it, and an operator needs to estimate the effect of management deci-

sions on future performance, To better understand how such a system or process behaves,

one often will build a mathematical model. When the studied process or system includes

randomness, the model is often a stochastic process.

Discrete-event stochastic simulation and Monte Carlo simulation (e.g., Law (2006))

are powerful tools in science and engineering for studying the behavior of stochastic sys-

tems that are too complicated to allow for direct mathematical analysis. While analytical

methods often require simplifying and unrealistic assumptions when applied to complex

systems or processes, the simulation approach allows the user to incorporate as much detail

and uncertainty as needed to model accurately the system or process under study. Simu-

lation of the model entails generating random samples from the probability distributions

in the model to imitate the stochastic behavior of the system or process over time. The

simulation produces output data, which is collected and analyzed.

Because a simulation includes randomness, its output is also random, thus necessi-

tating the use of statistical methods to analyze the output. Most previous work on statistical

analysis of simulation output focuses on estimating the mean performance of the system

under study. When considering the mean performance of the system over a finite time hori-

zon, the standard approach is to run independent and identically distributed (i.i.d.) replica-

tions of the system over the finite time horizon, and then use classical statistical methods

1



2

(e.g., Hogg et al. (2004)) to analyze the outputs from the replications.

More specifically, let X be a random variable denoting the (random) performance

of a stochastic system over a finite time horizon, and suppose that we are interested in

computing the mean performance a = E[X], where E denotes expectation. For example,

in project planning, X may represent the (random) time to complete a project, which is

modeled as a stochastic activity network, and we are interested in computing the mean

time to complete the project. Running n i.i.d. replications of the system then yields i.i.d.

samples X1 , X2, , Xn . The sample average In = (1/n) Σn i=1 X, is then an estimate of the

true mean a.

To provide an estimate of the error in Xn , we can also give a confidence interval for

a, which is typically derived from a central limit theorem (CLT); e.g., see Section 1.9 of

Serfling (1980). Specifically, a CLT for the sample average Xn  roughly states that n(Xn

D —
α)/σ = N(0,1) for large sample sizes n, where 62 is the variance of X, N(0,1) denotes

a normal random variable with mean 0 and variance 1, and means approximately equal

in distribution. Thus, since P(N(0, 1) < 1.96) = 0.975 and by the symmetry of the normal

density function, the CLT implies

(1.1)

which gives (X, 1.96c/ n ) as an approximate 95% confidence interval for a. However,

the variance constant 6 2 in the CLT is typically unknown, so we replace it with an estima-

tor, the sample variance S2,,, = (1/(n — 1 )) Σni=1 (Xi —X0 2 . This then leads to an approximate

95% confidence interval for a as (In + 1.96Sn/ n . In fact, since S, is a consistent estima-

tor of a (i.e., Sn converges in probability to a as n co; e.g., see p. 69 of Serfling (1980)),

we can show that the above approximate 95% confidence interval is asymptotically valid



Figure 1.1 0.95-quantile of a distribution.

3

Figure 1.2 Inverting the CDF.

in the sense that P{a E (In ± 	 -+ 0.95 as n 00.

In some situations, one may be interested in performance measures that are not

simply means. One such measure is a quantile. For 0 < p < 1, the pth quantile of a con-

tinuous random variable X is defined as the smallest constant 4p such that P {X < gp } = p.

Figure 1.1 gives an example of the 0.95-quantile of a distribution. In terms of the cumula-

tive distribution function (CDF) F of X, we can express the pth quantile as 413 = F -1 (p),

where F -1 (p) is the smallest value of x such that F(x) > p; see Figure 1.2. For example,

the 0.5-quantile is the median. Quantiles arise in many practical contexts and are some-

times of more interest than means. For example, some internet service providers charge a

user based on the 0.95 quantile of the user's traffic load in a billing cycle (Goldenberg et al.

2004). In project planning, a planner may want to determine a time t such that the project

has a 95% chance of completing by t, so t = 40 .95 is the 0.95-quantile. In finance, where
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a quantile is known as a value-at-risk, an analyst may be interested in the 0.99-quantile

'o.99 of the loss of a portfolio over a certain time period (e.g., two weeks), so there is a

1% chance that the loss over this period will be greater than 4199. Value-at-Risk (VaR)

is widely used in the financial industry as a measure of portfolio risk; e.g., see Duffle and

Pan (1997). In a broader sense, VaR is also a preferred approach to compute market risk,

one of the three components of the first pillar of Basel II, the second of the Basel Accords

(recommendations on banking laws and regulations) issued by the Basel Committee on

Banking Supervision. The Basel II Framework describes a more comprehensive measure

and minimum standard for capital adequacy. Generally speaking, quantile estimation is of

great interest to the financial industry, which motivates our exploration in how to estimate

a quantile and measure the "accuracy" of quantile estimators by constructing confidence

intervals.

Often in practice, the CDF F is unknown or cannot be computed explicitly, but we

still may be able to collect samples from F. We thus seek a sampling-based estimator of

4. One complication arises from the fact that a quantile is not a mean (nor a function of

a mean) of a random variable, so we cannot estimate a quantile using a sample average.

Instead, the following approach (e.g., see Section 2.3 of Serfling (1980)) can be applied.

First collect i.i.d. samples X, ,X2,... ,X, from distribution F, and use these to construct

an estimator of F. One such estimator of F is the empirical CDF Fn , where Fri (x) is

the fraction of the n samples less than or equal to x. Then the fact that 4/3 = F -1 (p)

suggests constructing a quantile estimator as 4Thn = Fn— 1 (p). We can alternatively compute

the quantile estimator 4,, in this case as follows. Sort the samples X1,X2,. into

ascending order as X( 1 ) < X(2) < • • • < X( n), where X( i) is the ith smallest of the samples.

Then 4 ,n = Xo-npl), where H is the round-up function. Figure 1.3 illustrates an example

of this. When applying simulation to generate the i.i.d. samples of X used to construct Fn ,

we call the method crude Monte Carlo.

In addition to computing a point estimate for a quantile, it is important to also pro-
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Figure 1.3 Inverting the empirical CDF.

vide a confidence interval for the quantile as a way of indicating the error in the estimate.

A common approach to developing a confidence interval is to first show that the quantile

estimator satisfies a CLT, and then replace the variance constant in the CLT with a con-

sistent estimator of it to construct a confidence interval. For crude Monte Carlo, one can

appeal to the CLT for quantile estimators formed from i.i.d. samples; e.g., see Section 2.3.3

of Serfling (1980). More specifically, let 4,, = Fp I (p) be the estimator of the p-quantile

4p . A CLT for 4,,„ roughly states that ji(41,, 12 — 4p )/(p(1 — p)I f (4)) N(0.1) for large

sample sizes n, where f is the density function of F. Using a similar derivation to (1.1),

we then obtain 1.96p(1 — p) 1 (f (4)in)) as an approximate 95% confidence in-

terval for 4p . Typically, f (41,) is unknown and must be estimated. Bloch and Gastwirth

(1968), Bofinger (1975) and Babu (1986) provide consistent estimators of f (41,) that are

applicable for crude Monte Carlo, which we can then use to construct an approximate 95%

confidence interval for as (4,, t 1.96p(1 — p) I (f„A).

A problem with crude Monte Carlo is that the resulting confidence interval may be

large, which is often the case when estimating extreme quantiles (i.e., when p is close to 0

or 1). This motivates applying variance-reduction techniques (VRTs) to try to obtain more

efficient quantile estimators; see Chapter 4 of Glasserman (2004) for an overview of VRTs

for estimating a mean. VRTs often increase efficiency by collecting additional data not or-
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dinarily used or by generating samples in a different way. Even with today's high-powered

computers, VRTs are still useful (and in certain settings essential) because complex sim-

ulation models, especially high-dimensional ones with many sources of randomness and

complicated transition mechanisms, may take an extremely long time just to complete a

single replication. Examples of VRTs include importance sampling, stratified sampling,

antithetic variates, and control variates, and we briefly review these methods below.

In importance sampling (Glynn and Iglehart (1989)), which is typically used in rare-

event simulations, the probabilistic dynamics of the system are changed to make the rare

event of interest (e.g., system failures or extreme portfolio losses) occur more frequently.

Unbiased estimates are recovered by multiplying the samples by a correction factor known

as the likelihood ratio. When applied properly, importance sampling can lead to variance

reductions of orders of magnitude; e.g., see Heidelberger (1995). However, if not appro-

priately used, importance sampling can actually increase variance (or even lead to infinite

variance).

Stratified sampling (e.g., Sections 4.3 and 9.2.3 of Glasserman (2004)) constrains

the proportion of samples of the output X into different strata of the sample space. The

samples in each stratum are averaged, and the sample averages across strata are combined

to form an overall estimator. This can lead to a variance reduction when the sampling

proportions are chosen appropriately.

Antithetic variates (e.g., Section 11.3 of Law (2006)) generates sample outputs in

pairs, where the outputs within a pair are negatively correlated. The basic intuition is that if

one output is generated by "favorable" random fluctuations, then this is paired with another

output with "unfavorable" fluctuations. Averaging the two negatively correlated outputs

then smooths out the "good" and "bad" outputs, which leads to a reduction in variance.

Control variates (e.g., Section 11.4 of Law (2006)) reduces variance by taking ad-

vantage of the correlation between an auxiliary variable C, whose mean v is known, and

the output X, whose mean a we want to compute. We call C a control variate, and CV
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uses the known error C — v in C to correct for the unknown error of X as an estimate of

the unknown a. For example, in a stochastic activity network, we know the distributions

of the times for each of the edges, so we would also likely know their means. Then we

can determine the path through the network with the largest mean, and then set C to be the

random length of that path.

There has been some previous work on applying VRTs to estimate a quantile. Hsu

and Nelson (1990) and Hesterberg and Nelson (1998) develop quantile estimators using

control variates. Avramidis and Wilson (1998) consider quantile estimation with a general

class of correlation-induction techniques, which includes antithetic variates and Latin hy-

percube sampling (LHS). Jin et al. (2003) establish exponential convergence rates for quan-

tile estimators, including those using LHS, and also develop a type of combined stratified-

LHS quantile estimator. Glynn (1996) uses importance sampling for quantile estimation,

and Glasserman et al. (2000b) combine importance sampling with stratified sampling to

estimate value-at-risk. Variance reduction for quantile estimation typically entails applying

VRTs to estimate the CDF F and then inverting the resulting CDF estimator Fn .

Most previous work on estimating quantiles using VRTs does not provide meth-

ods for constructing asymptotically valid confidence intervals. (An exception is Hsu and

Nelson (1990), who generalize an interval estimation technique based on the binomial dis-

tribution for their control-variate estimator.) One approach to constructing a confidence

interval is to first establish a CLT for the quantile estimator. Specifically, suppose that

= Fri 1 (p) is the estimator of the p-quantile ξp formed by inverting En , the VRT esti-

mator of the CDF F. Then a CLT for 4,, roughly states that n (ξp,n ξp)/κp C■-% N(0, 1)

for large n, for some constant κp. We can then unfold this to obtain an approximate

95% confidence interval for 4 to be (4,n + 1.96κp / n). For this interval to be use-

ful, we need to provide a consistent estimate of κp. It turns out that κp = ψp/f (4),

where yip is the variance constant in the CLT for Fn(ξp ) (i.e., yip is defined in the CLT

n (Fn  (4) F (ξp )) / yip N(0, 1))and f (4) is the density function of the (unknown)
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CDF F evaluated at the (unknown) quantile. Glynn (1996) notes that to construct confi-

dence intervals, "the major challenge is finding a good way of estimating" f (41,), "either

explicitly or implicitly," but he does not provide a method for doing this. Indeed, Glasser-

man et al. (2000b) state (p. 1357) that estimation of f (ξp) "is difficult and beyond the scope

of this paper." The consistency proofs of previously developed methods (e.g., Bloch and

Gastwirth (1968), Bofinger (1975), and Babu (1986)) for estimating f(ξp) (or 1/f(ξp))

when using crude Monte Carlo do not generalize when using VRTs. (Viewed as a func-

tion of 0 < p < 1, 11 f (4) is sometimes called the sparsity function (Tukey (1965)) or the

quantile -density function (Parzen (1979)), and these two references discuss its usefulness,

apart from quantile estimation, in analyzing data and distributions.)

In our dissertation we provide a way to consistently estimate 1/f (4) and 16, when

using VRTs, and taking the product of these estimators yields a consistent estimator of κp .

This enables us to construct an asymptotically valid confidence interval for the quantile

when applying VRTs, which is the main contribution of our work. We establish our results

within a general framework for VRTs specified by a set of assumptions on the resulting

CDF estimator. We first prove the quantile estimator resulting from inverting the CDF es-

timator satisfies a weaker form of a so-called Bahadur (1966) representation established

by Ghosh (1971), and we call this a Bahadur-Ghosh representation. Also of independent

interest, this result shows that the quantile estimator can be approximated by a linear func-

tion of the CDF estimator evaluated at 4, with a remainder term vanishing in probability

as the sample size grows. We then apply the Bahadur-Ghosh representation to prove a CLT

and to derive a consistent estimator for the asymptotic variance in the CLT. We show that

different VRTs, including a combination of importance sampling and stratified sampling,

antithetic variates, and control variates, fit in our framework, and we provide algorithms

for constructing confidence intervals for quantiles estimated using these VRTs.

As an alternative approach, one could divide all the data into batches (also known

as subsamples), and then produce a confidence interval by constructing a quantile estimate
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from each batch and computing the sample variance of the (i.i.d.) quantile estimates; e.g.,

see p. 491 of Glasserman (2004). However, a drawback of hatching is that accurate quantile

estimation often requires large sample sizes; e.g., see Avramidis and Wilson (1998). Thus,

it is preferable to have methods that use all of the sampled data to construct a single quantile

estimator, as we do.

The rest of the dissertation has the following organization. Chapter 2 reviews

variance-reduction techniques for estimating a mean. In this chapter, a few financial ex-

amples are chosen to demonstrate a wide range of applications of Monte Carlo methods to

estimate the "mean performance" in finance. Chapter 3 discusses quantile estimation and

provides the background on the Bahadur-Ghosh representation for crude Monte Carlo. In

Chapter 4 we establish a general framework for proving a Bahadur-Ghosh representation

and for developing asymptotically valid confidence intervals for quantiles when applying a

generic VRT. We then employ this framework in Chapters 5-7 to examine specific VRTs

(combined importance sampling and stratified sampling, antithetic variates, and control

variates). Chapter 8 presents experimental results. All proofs within a chapter are collected

at the end of that chapter.



CHAPTER 2

REVIEW OF TECHNIQUES FOR ESTIMATING MEANS

Before presenting techniques for estimating quartiles in the later chapters, we first review

methods for estimating means, which is the most common use of simulation. We discuss

different Monte Carlo techniques for estimating the mean a = E[X] of a random variable

X having CDF F. We start by reviewing estimating a using crude Monte Carlo, and then

we discuss how to apply VRTs to estimate a. We also review some convergence concepts

from probability.

Although the discussion here focuses on estimating means, the techniques presented

also apply to estimating the CDF F of X. Recall that F(x) = {X < x} for each x, and we

can write F(x) = E[I (X < x)], where 1(A) is the indicator function of the event A, with

1(A) = 1 if A occurs and / (A) = 0 otherwise. Thus, F (x) is the mean of 1(X < x). As noted

in Chapter 1, we estimate a quantile by first estimating the CDF and then inverting the CDF

estimator. We will specialize the techniques developed here to estimate a CDF in Chapters

3 and 5-7. To simplify notation, we will use a, to denote the estimator of a for all of the

different VRTs rather than develop different notation for each method.

2.1 Crude Monte Carlo

To implement crude Monte Carlo to estimate a = E [X] where X is a random vari-

able with CDF F, we draw n i.i.d. observations X1, X2, . from F, and then compute

the sample average

(2.1)

as a point estimator of a. The estimator αn is unbiased since for all n> 0,

10
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because the Xi are i.i.d. with E[Xi] = a. As the sample size n gets larger, an gets closer

to a, and this concept can be made precise through the (weak or strong) law of large

numbers. Specifically, the weak law of large numbers (WLLN) states that if a is finite,

then P(| an — al > E) 0 as n 00 for every ε > 0. We often write this as an 4 a as

n 00, which is also known as convergence in probability, and we say that an is a (weakly)

consistent estimator of a. The strong law of large numbers (SLLN) states that if a is finite,

then P(limn-->∞ an = a) = 1, which is also written as an a almost surely (a.s.). For more

details on the weak and strong laws, see Section 22 of Billingsley (1995).

Although the WLLN and SLLN guarantee that a n will be close to a when the

sample size n is large, we would like to get a sense of how close they are for a large but

fixed n. The central limit theorem (CLT) provides a way of doing this. Specifically, let

a2 = Var[X] = E[(X — a) 2 ] denote the variance of X. The CLT states that if 0 < 0' 2 < 00,

then

as n on for all x, where N(a, b2) denotes a normal random variable with mean a and

variance b2 . We often denote this as n (αn — α)/σ N(0,1) as n 00, where 4" denotes

convergence in distribution; see Section 25 of Billingsley (1995) for details.

From the CLT, we can use the derivation in (1.1) to obtain an approximate 95%

confidence interval for a as

(2.2)

(Of course, we could also construct an approximate confidence interval for any other con-

fidence level 100(1 — 3)% by replacing 1.96 with the critical value z8 = φ-¹(1 — 5/2),

where 4) is the CDF of a N(0,1) random variable.) However, since o is typically unknown,

we need to estimate it for the above confidence interval to be useful. An estimator of c 2 is

the sample variance
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As noted in Chapter 1, 6n2 4 a2 as n 00 (e.g., see p. 69 of Serfling (1980)), so an
is a consistent estimator of a 2 . The continuous-mapping theorem (p. 334 of Billingsley

(1995)) then ensures that σn 4 a as n 00, so à, is a consistent estimator of a. Hence,

since σ / σn 4 1 as n 00 by the continuous-mapping theorem, Slutsky's theorem (p. 19

of Serfling (1980)) implies

as n 00. As a consequence, for large sample sizes n,

Thus, an approximate 95% confidence interval for a is

(2.3)

2.2 Variance Reduction

From (2.2) and (2.3), we can use 1.96σ / n or 1.96σn / n as a measure of the error

n the estimator an of a. Thus, for a given confidence level of 95%, there are two ways

n which we can reduce the error: increase the number of samples n, or try to decrease

7. Although a = /Var[X] is fixed and cannot be changed, suppose that there is another

random variable Z with the same mean a = E[Z] = E[X] as X and with Var[Z] < Var[X].

Thus, rather than collecting samples of X, we could instead sample Z to estimate a and

) obtain a variance reduction. Specifically, we draw i.i.d. samples Z1 , Z2, ... of Z, and

'orm the sample average an = (1/n) Σn i=1 Zi. Let r2 = Var[Z], and assume that 0 < -c2 <00,
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so the CLT implies

(2.4)

as n -4 00. Hence, using an analogous derivation to (1.1) yields another approximate 95%

confidence interval for a as

(2.5)

We can replace T2 with the sample variance in = (1/(n — 1)) 	 (Zi — 	 Then we get

an approximate 95% confidence interval for a as

(2.6)

If Var[Z] < Var[X], then we see that the estimator 6c11 has smaller error than à, for

the same size n. Hence, the goal of many (but not all) variance-reduction techniques is to

identify another random variable Z with the same mean as X but with smaller variance.

Another way to describe the benefit of applying VRTs is in terms of the number of

samples needed to achieve a certain precision. Suppose we want a 95% confidence interval

with half width of e; i.e., αn f ε or -641 e. Thus, for crude Monte Carlo, we require the

96asample size n to satisfy 1.  = E, or n = (1.966/E) 2 . Similarly, when applying a VRT, we

need a sample size n = (1.96τ/ε)². Hence if -c < c, then the VRT estimator requires fewer

samples than crude Monte Carlo to achieve the same precision.

Not all VRTs we consider can be applied where a is estimated via i.i.d. samples

of a random variable Z. More generally, we may start with an estimator an of a, where

E[αn ] = a but an is not necessarily just a sample average. If the estimator an satisfies

the CLT (2.4) for some constant 0 < < 00 and in is a consistent estimator of T, then we

obtain the approximate 95% confidence intervals in (2.5) and (2.6). In the next sections,

we examine specific VRTs.

Since generating an estimator using a VRT often requires more computational effort

than for crude Monte Carlo, a VRT should only be applied if the reduction in variance out-



14

weighs the additional computational effort. For our problems, the additional work needed

to apply a VRT is often negligible, so this is not an issue. For more details on the more

general setting, see Glynn and Whitt (1992).

2.2.1 Antithetic Variates

The basic idea of implementing antithetic variates (AV) (e.g., Section 11.3 of Law

(2006)) to estimate a = E[X] is to generate samples from CDF F in pairs (X ,X'), where

X and X' are negatively correlated, and then average the samples within the pair as Z =

(X +X')/2. Since X and X' have the same distribution, we have E[Z] = a and Var[Z] =

(1/4) (Var [X] Var [X i] 2Cov [X , X i ] ) = (1/2) (Var [X] + Cov [X , X I]) , where Cov [A ,B] de-

notes the covariance of random variables A and B defined by Cov[A,B] E [(A — E [A]) (B —

E[B])] = E[AB] — E[A]E[B]. If Cov [X, XI < 0, then Z = (X +X')/2 has smaller variance

than the average of two independent copies of X.

There are various ways in which we can generate negatively correlated X and X'

with the same marginal distribution F. For example, suppose that the output X can be

expressed as X = h(U1, , Ud) for some function h, where U1, ... , Ud are i.i.d. uniform

random variables on the unit interval. Then X' = h(1 — U1, . , 1 — Ud) has the same distri-

bution as X since 1— Ui is also uniform on [0,1]. If h is monotonic in each of its arguments,

then X and X' are negatively correlated; e.g., see Section 8.1 of Ross (1997).

Suppose some implementation of antithetic sampling produces n pairs of observa-

tions (X1 , X'1), (X2, XD, . , (Xn, X'n ) that have the following properties:

1. the pairs are i.i.d.;

2. in each pair i, Xi and 	 each have marginal CDF F, and Xi and X: are negatively

correlated.
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The AV estimator an is the average of all 2n random variables:

where an is defined in (2.1) and O = (1/n)Σn i=1 Thus, we see that an is the sample

average of i.i.d. samples of Z = (X + X') / 2. The estimator an satisfies Wen] = a since

E[Xi] = E[X'i] = a because X, and XI each have marginal CDF F. Also, we have the CLT

in (2.4) holds when 'r2 = Var[Z] satisfies 0 < T 2 < oo. Letting Z1 = (Xi +X1)/2, we then

obtain an estimator of T2 as

which we can use in (2.6) to obtain an approximate 95% confidence interval for a.

2.2.2 Control Variates

The key idea of control variates (CV) is to leverage knowledge of known quantities

to reduce the error in an estimate of an unknown quantity; e.g., see Section 11.4 of Law

(2006). Let (X, C) be a pair of correlated random variables, where we are interested in

estimating the mean a of X, and suppose that we know the mean v of C. We call C a

control variate. For example, in a queueing system, we might take C as the average of the

first 5 customers' service times, and we would typically know the mean v of the service-

time distribution. Define Z = X — (C — v), and note that E[Z] E[X] — (E[C] — v) = a, so

we can collect samples of Z to estimate a.

The intuition behind control variates is as follows. Suppose that X and C are pos-

itively correlated. Then X > a and C > v tend to occur together. Hence, if C > v, then

Z = X — — v) < X, so Z corrects for the fact that X is likely larger than its mean a.
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Similarly, X < a and C < v tend to occur together when X and C are positively correlated.

Hence, if C < v, then Z = X — (C — v) > X, so Z corrects for the fact that X is likely smaller

than its mean a. If the correlation between X and C is strong enough, then we can obtain a

variance reduction from sampling Z rather than X.

More generally, we can define Z = X — p (C — v) for any constant p, so E[Z] = a.

To implement CV, we generate n i.i.d. samples (Xi, Ci), i = 1, 2, ... , n, of (X, C), and let

Zi = Xi — β(Ci—v). We then form an estimator of a as

(2.7)

The variance of Z is

(2.8)

and Var[Z] < Var[X] when 2P Cov(X, C) > β²Var(C). In other words, CV yields a variance

reduction when X and C have sufficiently strong correlation.

The variance of Z (and do) depends on the choice of the constant p. Since 'V2

in (2.8) is a quadratic function of 0, it takes the minimum value (1 — p 2 )Var(X) at

Cov(X,C) /Var(C), where p = Cov(X,C) / Var(X)Var(C) is the correlation of X and C.

However, Cov(X,C) and Var[C] are typically unknown and must be estimated, and we

estimate 8,, via

(2.9)

where en = (1 /n) Σni=1 Ci. We then substitute Ai for p in (2.7) to obtain the CV estimator

of a as

(2.10)

One complication of the estimator an is that it is no longer the average of i.i.d. observa-

tions since each summand in (2.10) includes fa n , which induces dependence among the
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summands. However, it can be shown (e.g., pp. 195-196 of Glasserman (2004)) that an

still satisfies the CLT in (2.4) with "c2 defined in (2.8), and

is a consistent estimator of 'r2 . Thus, (2.6) provides an approximate 95% confidence inter-

val for a.

2.2.3 Stratified Sampling

Stratified sampling (SS) (e.g., see Sections 4.3 and 9.2.3 of Glasserman (2004))

constrains the proportion of samples of the output X into different strata of the sample

space. Samples from each stratum are taken to estimate the mean in that stratum, and the

resulting estimates from each stratum are combined to obtain an overall estimator.

Let (X ,Y) be a pair of dependent random variables, where we are interested in

estimating the mean a of X . We will use Y as a stratification variable, which is sometimes

an auxiliary quantity that is generated in the process of generating output X. Partition the

support of Y into k < 00 strata Si , S2, Sk; i.e., Si Si =0 for i j and P(Y E Uki=1Si) = 1.

For example, the Si may be disjoint intervals, and Sections 4.3 and 9.2.3 of Glasserman

(2004) describes other possible choices for the strata. Define Ai = P(Y E Si), which we

assume is known. Then a = E [X] can be written as

(2.11)

This motivates estimating a by separately estimating each E [X |Y ES i] in (2.11)

using a fraction of our total sampling budget n and combining the resulting estimators with

the weights Xi. To do this, we first specify positive constants y , i = 1,... , k, such that

= 1. Then let n i yin be the number of samples used to estimate E [X IY E Si]. (We
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discuss later possible choices for yi.) To implement stratified sampling, for the ith stratum,

we generate ni samples Y1, j = 1, , ni, from Si. Then for each j 1, . , ni, we generate

Xi./ given Y = Yip This then results in n i i.i.d. pairs (Xij, Yij), i = 1, . . . , ni, from stratum Si.

Then, the SS estimator of a is

(2.12)

Because Xi .] has the distribution of X given Y E Si, the estimator is unbiased since

by (2.11). Let y be the variance of Xij in the ith stratum, and we assume each σ²i < 00.

Then the variance of an is

(2.13)

It can shown (e.g., pp. 215-216 of Glasserman (2004)) that the SS estimator an satisfies the

CLT in (2.4), with T2 = V 1 λ²iσ²i / γi /y. We can then consistently estimate 'V2 using

which we can then put in (2.6) to obtain an approximate 95% confidence interval for a.

Whether or not the SS estimator an achieves a variance reduction depends on the

stratification weights y. With proportional allocation, we set yi = Xi, so that the sam-

pling variability across strata is eliminated without affecting sampling variability within

strata, and this is guaranteed to result in the SS estimator an in (2.12) having no greater
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variance than the crude Monte Carlo estimator 64, in (2.1); e.g., see p. 217 of Glasser-

man (2004) Other allocation rules can also be adopted that are at least as effective as

proportional allocation. The choice of yi that minimizes the variance in (2.13) is given

by yi = λiσi / Σj  2,j σj), i.e., proportional to the product of the stratum probability and the

stratum standard deviation.

2.2.4 Importance Sampling

Importance sampling (IS) (Glynn and Iglehart 1989) is a VRT that is often used

in rare-event simulations, such as estimating the mean time to failure of a highly reliable

system or estimating the buffer-overflow probability in a queueing system with a large

but finite buffer (Heidelberger 1995). The basic idea of IS is to change the probability

distributions governing the stochastic system under study to cause the rare event of interest

(e.g., system failures or buffer overflows) to occur more frequently. Unbiased estimates are

recovered by multiplying the samples by a correction factor known as the likelihood ratio.

Suppose X has CDF F with probability density function f, and let E be the ex-

pectation operator under F. We want to estimate a = E[X] = f x f (x) dx. Let F* be an-

other CDF with density function f* having the property that for every x, f (x) > 0 implies

(x) > 0. Let E* denote the expectation operator under F*, and define the likelihood ratio

L(x) = f (x) f*(x). A change of measure can be carried out by writing the expectation

value a of X as

(2.14)

with L L(X).

This then suggests estimating a by averaging outputs XL generated using F* rather

than sampling output X from the original CDF F. Specifically, let Xi, ... ,X, be i.i.d. sam-
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pies generated using F., and let Li f (Xi) / (X1) be the likelihood ratio for the ith sample.

Then the IS estimator of a is

which is unbiased by (2.14), i.e., E.[66,2] = a. Thus, the variance of XL under F. is

(2.15)

where Var, is the variance under IS distribution F. Assuming that 0 < i2 < 00, the IS

estimator 5c, satisfies the CLT in (2.4). We can estimate the variance r2 via

which we can then use in (2.6) to obtain an approximate 95% confidence interval for a.

The key to applying importance sampling is choosing F. appropriately so that 'L2

in (2.15) is smaller than Var[X]. Since E.[(342] = a, IS achieves a variance reduction when

E*[X² L2] < E [X2].

Suppose f (x) = 0 for all x < 0, so X is a nonnegative random variable and a > 0.

Define f* such that

(2.16)

for all x > 0, and f (x) = 0 for x < 0. Then f* (x) > 0 for all x > 0 since a > 0 and f (x) > 0

because f is a density function. Also,

Thus, f, is a density function. If we use this f* to implement IS, each sample output is
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so every sample output is exactly a. Therefore, the IS estimator of a has zero variance,

and we require only one sample to estimate a without any error! Unfortunately, the density

f* in (2.16) is not implementable because it depends on a, which we do not know since

we are trying to estimate it. However, f* in (2.16) provides us with some insight into how

to choose a good change of measure. Specifically, note that the optimal IS density f, (x)

in (2.16) is large when xf (x) is large, so we should try to choose a change of measure that

gives more weight to values of x for which xf (x) is large.

One way of obtaining an IS distribution F* is to apply exponential tilting or twisting

(Glynn and Iglehart 1989). To develop this approach, we first define the moment generating

function (MGF) m(0) of the random variable X under the original distribution F with

density f as

Then for any 0 for which m(0) < 00, we define the exponentially tilted density

(2.17)

The key is choosing 0 to obtain a variance reduction. This choice for the change of measure

is especially effective for estimating buffer-overflow probabilities in a queue with a large

but finite buffer; e.g., see Heidelberger (1995).

2.3 Applications

We now provide examples illustrating how the estimation techniques just described

can be applied. Our examples, which are all from finance, examine how to obtain a fair

price of a financial product known as a derivative. A derivative is a contract that depends

on the price of one or more underlying assets, such as stocks. One example of a derivative

is an option, which grants the holder the right rather than the obligation to buy (call option)

or sell (put option) an underlying asset at a fixed price K by a fixed time T in the future.
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Options have different types. For example, one of the simplest forms is called a European

call option when the underlying asset is a stock paying no dividends and this option can

only be exercised at (and not before) time T. Suppose the stock price is ST at time T = mAT

(the expiry time is m days with AT as one day) and the predetermined price in the contract

is K (also known as strike price). At time T, if the price of the underlying asset is ST and

ST > K, then the holder of the contract will exercise the option to purchase one share of

the underlying asset at price K and then immediately sell it at the current market price ST

to gain a profit ST - K; if ST < K, the option will not be exercised and there is zero payoff.

Then the payoff to the European call option holder at time T is

We need to make some assumptions about some market participants, such as large

investment banks, to evaluate the value of options.

I. There are no transaction costs.

2. All trading profits are subject to the same tax rate.

3. Borrowing and lending are possible at the risk-free interest rate r.

In a risk-neutral world, investors require no compensation for risk. Under the risk-neutral

measure the expected return on all securities is the risk-free interest rate, which means

the present value of the option is its expected payoff in a risk-neutral world discounted at

the risk-free rate. This is an important principle in option pricing known as risk-neutral

valuation, which states the price we obtain is correct not only in a risk-neutral world but

also in the real world as well; see Hull (2003) for a more general discription of risk-neutral

valuation. Thus, the expected present value of the payoff to this European call option is

a = E [e-rT (ST — K)+] , where E is the expectation under the risk-neutral measure, and

e -rT is a discount factor with r a continuously compounded risk-free rate. Thus, a is the
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fair price of the option.

We assume the price of the underlying stock follows a geometric Brownian mo-

tion, namely a continuous-time stochastic process in which the logarithm of the stock price

follows a Brownian motion; see Section 10.3.2 of Ross (2007) for a basic description of ge-

ometric Brownian motion and an introduction to continuous-time stochastic processes and

stochastic differential equations (SDE). The well-known Black-Scholes model proposed by

Black and Scholes (1973) describes the evolution of the stock price through the SDE

(2.18)

where c is the volatility of the stock price and W is a standard Brownian motion. The

Brownian motion W has the property that the change ΔW during a period of length AT

satisfies AW = ε ΔT, where e is a random variable having standard normal distribution

N(0, 1). This indicates AW itself has a normal distribution with E [A141 = 0 and Var(ΔW) =

AT. Suppose St, is the stock price at ti = iΔT for i = 0,1, 2, .... For this European call option

in a multi-period time interval T mAT, solving (2.18) leads to

St, = Sti-1  6'4+ ψZi = So n di+ ψZj , (2.19)
j=1

where Z1 , Z2, . ,Zm  are i.i.d. standard normals N(0, 1), p. = (r — σ²/2)ΔT is the risk-

free rate of return under the risk-neutral measure, So is the present price of the stock, and

= 620T. From (2.19), a closed-form solution for a, the expected discounted payoff

of the European call option, can be computed (Black and Scholes 1973), which indicates

Monte Carlo methods are not needed for this case.

Valuing more complex options, however, may require various Monte Carlo methods

to be applied. Next, we will use different types of Monte Carlo techniques to evaluate

complex options.
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2.3.1 Using Crude Monte Carlo to Price an Asian Option

An Asian option is an average value option different from the usual European option

and American option. The payoff of an Asian option depends on the average price level

of the underlying asset over the life of the contract. For an Asian call option, the payoff at

time T is (g — Kr with

(2.20)

This means the option is exercised at T if and only if g > K, and the payoff is the amount

by which S exceeds K. To evaluate the expected discounted payoff

(2.21)

we first need to generate samples of

(2.22)

by simulating the paths St1 St2 ,	 St„, based on (2.19). Then for the ith simulated path, the

discounted payoff of the Asian call option is Xi = e -rT - K)+ , where Si is the average

price level defined in (2.20) on the ith path. After simulating n such paths, calculate the

sample average of the X, as αn = 1/nΣi=1 1 Xi, which is a consistent estimator of the fair price

of this call option. Computing the sample variance of the Xi then leads to a confidence

interval for the fair price a. Section 1.1 of Glasserman (2004) provides more details on

pricing an Asian call option with crude Monte Carlo.

2.3.2 Using CV to Price an Asian Option

Kemna and Vorst (1990) suggest an effective approach to price Asian options with

CV. To evaluate a defined in (2.21), we can define a CV C to be the discounted payoff of a
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geometric average option:

where SG mi=1 Sti)¹/m We can analytically compute v = E [C] in closed-form by using

the fact that

see an explanation of pricing a geometric average option in Section 3.2.2 in Glasserman

(2004). Then, we can establish a CV estimator of a as

where fin is computed according to (2.9) and Ci is the discounted payoff of the geometric

average option on the ith replication. Glasserman (2004) makes comparisons to indicate

applying a CV C can result in an approximate fifty-fold speed-up in simulation due to a

dramatic variance reduction.

2.3.3 Using AV to Price a Knock-out Option

A knock-out option is an option with a specified barrier and its payoff ceases to exist

if the underyling asset price crosses the barrier before the expiry T. Suppose a prespecified

lower barrier price is A < co, and the option is "knocked out if the price of the underlying

asset goes below the barrier A at any time ti, i = 1, 2, ... , m. (We could also specify an upper

barrier, but we do not to simplify the discussion.) Thus, the payoff at T is defined as
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Using (2.19), the discounted payoff of a knock-out option is

(2.23)

Now we want to compute the fair price a = E[h(Zi,Z2, ,Zm)] of this knock-out option.

Since Zj has a standard normal distribution N(0,1), we know —Z1 also has a standard nor-

mal distribution N(0,1) with negative correlation to Zj due to its symmetry with respect to

the origin. Then, it is natural to build an AV pair (h(Z1 , Z2, ,Zm), h(—Z1, —Z2, , —Zm) )

with

where D= denotes equal in distribution. By (2.23), we see that h is mononotonic in each Z.]

because

1. ψ is positive, so for each k > j, Stk defined in (2.19) increases as Z.] increases;

2. indicator functions are monotonically increasing.

and h(Zk,1,Zk,2, ,Zk,m ) is defined by (2.23) with Zk,j being the jth independent sample

of a standard normal in the kth replication.



27

2.3.4 Using IS to Price a Knock-in Option

A knock-in option is similar to a knock-out option as an option with barriers, but a

knock-in option requires that the underlying asset price hits a barrier before the expiration

T; see Boyle et al. (1997) for a general desciption of knock-in options. Let H be a lower

barrier, and let K be the strike price. The knock-in option pays ST - K at time T if ST > K

and Sr; < H for some i < m. In some contracts, the lower barrier is specified to be much

smaller than the initial price and the specified strike price is much larger than H. In this

case, it is a rare event for the underlying asset price to drop below the lower barrier and

then move up to exceed the strike price to generate a positive payoff at time T. Therefore,

most paths of a crude Monte Carlo simulation will result in a zero payoff and crude Monte

Carlo is not efficient. However, IS can potentially make knock-in less rare.

Set H = S0e—b <00 as the lower barrier, where a constant b > 0 is given. Suppose

the strike price is K = S0eC where constant c > 0. We can write (2.19) as

where 1/, = Xj with Xj i.i.d. normal having mean p and variance 'I?. Let t = inf(i :

St, < H), which is the first time to drop below H, or equivalently U, < —b for the first time.

Let z = min(τ, m). Then the probability of a positive payoff is Per < m, Um > c), which is

close to zero if b and c are both large.

Let κ(0) be the cumulant generating function of Xj, where κ(8) = lnm(θ) and

m(0) = E [eθXj] is the moment generating function of Xi. For the exponentially tilted

distribution defined in (2.17) with tilting parameter 0, it turns out its mean is κ'(8), the

derivative of κ(0); e.g., see p.261 of Glasserman (2004). When the tilting parameter 0 <

0 (resp., 0 > 0), then the mean of the exponentially tilted distribution is smaller (resp.,

larger) than the original mean p of X,. We will design an IS to apply a change of measure

in the following manner: use some 81 < 0 to exponentially twist the distribution of Xi
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until the barrier H is hit and then twist the sequence {Xτ +1 	...} by some 82 > 0 to

subsequently push the price towards K. This means Ui is given a drift of

(2.24)

until i = z and then the drift is

(2.25)

where pi < 0 and p.2 > 0 to increase the chances that the option payoff is positive. By a

change of measure, we have

where it can be shown that the likelihood ratio

with f (X) as a density function of N(µ, y!2) and κ(0) = 	 + ψ²/2). This change of

measure process is done by changing the mean p of the original measure to pi and p2 in

the new measure as described above.

Now we explain how to choose pi and p2. Most of the variability in L comes from

T, the barrier-crossing time. Thus, we will try to choose 01 < 0 and 82 > 0 so that 'r cancels

out in L, thereby lowering the variability of L. For large b and c, the typical way a positive

payoff occurs is the underlying asset price drops down from the initial price to barely hit

the lower barrier and then move up to barely hit the strike price at the mth step. This implies

Per < m; > c) P(Uτ —b,Um c). If we choose pi and p2 so that κ(01) = κ(02),

then the likelihood ratio L reduces to L exp(—(θ1 — 02)U, — 82Um + mκ(θ2)), which
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depends on T only through UT —b and thus eliminates the variability resulting from T.

Since κ(01) = κ(92), it can be shown that = —p„ due to (2.24) and (2.25). To

select 01 and 02, we consider the trajectory of Ui with drift µ1 from the initial point until

—b is hit for the first time, and then the drift is ,u2 thereafter. Then, it can be shown that we

need to select to satisfy

which results in µ* = (2b + c)/m.

Boyle et al. (1997) present empirical results from simulations of a knock-in option

with various parameters, and they obtain variance reductions of up to a factor of 1124.

Glasserman (2004) obtains a similar result, and also notes that the variance ratio depends

primarily on the rarity of the payoff and not otherwise on the maturity.



CHAPTER 3

QUANTILE ESTIMATION FOR CRUDE MONTE CARLO

We now turn our discussion to estimating a quantile. Let X be a real-valued random variable

with CDF F. For a real-valued function G, define G-¹ (a) = inf{x : G(x) > a}. For a fixed

0 < p < 1, we want to compute the pth quantile 4/9 = F -¹ (p). Suppose F is differentiable

at andand f (4) > 0, where f (x) = dF (x) I dx.

We will estimate ξp using simulation. Crude Monte Carlo estimation of 4p entails

first generating i.i.d. samples X1 , X2, ... , Xn from distribution F. Then we compute the

empirical distribution function Fn as

(3.1)

as an estimator of F (x), where /(A) is the indicator function of a set A that assumes value 1

on A and 0 on AC. We then compute the p-quantile estimator 4,, = Fn-¹ (p). An alternative

way of computing 4,, is in terms of order statistics. Sort the samples Xi ,Xn into

ascending order as X( 1 ) < X(2) < • • • < X(n) , where X( i) is the ith smallest of the samples.

Then 4p,„ =X([np]) , where H is the round-up function.

Roughly speaking, we have that Fn (x)F(x) for all x for large sample sizes n, so

41, ,n 4p Thus, since p = F(4), a Taylor approximation gives

—
since F(ξp ) ti Fn (ξp ) . Hence, ξp,n 4p (Fn(ξp) P) I f (4) •

Bahadur (1966) makes rigorous the above heuristic argument. Specifically, assum-

ing that f (4) > 0 and that the second derivative of F is bounded in a neighborhood of 41,

30
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he proves the following, which has become known as a Bahadur representation:

(3.2)

where almost surely (a.s.),

(3.3)

The notation "Yn = O(g(n)) a.s." means that there exists a set n0 such that P(520) = 1

and for each co E D0, there exists a constant B(ω) such that |Yn ( o)) | < B(ω)g(n), for n

sufficiently large. Kiefer (1967) shows the exact order for Rn is O(n-³/4(log log n) 3 /4 ).

It is well known (e.g., Section 2.3.3 of Serfling (1980)) that j/( 4 ,n 4) converges

in distribution as n to a normal random variable with mean 0 and variance p(1 -

p)1 f2 (4), and so does n(p - Fn (4))/f(4) since Fn(ξp) is the average of i.i.d. indicator

functions. But Bahadur's representation goes further by showing the difference between

these two quantities approaches 0 a.s. and provides the rate at which the difference vanishes.

For pn p 0(n -112), define 4„,n	 1 (pn ). Assuming only that f	 > 0,

Ghosh (1971) shows that

(3.4)

with R'n in (3.4) satisfying

(3.5)

where 	 denotes convergence in probability (p. 330 of Billingsley (1995)). This weaker

form of the Bahadur representation in (3.4) and (3.5), which we call a Bahadur-Ghosh

representation, suffices for most applications, including ours.

One consequence of the Bahadur-Ghosh representation for crude Monte Carlo is

that it implies a CLT for the quantile estimator ξp,n Fn-¹ (p), as shown in Theorem 10.3
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of David and Nagaraja (2003). Taking pn = p in (3.4), we can write

(3.6)

Let 	 denote convergence in distribution (Billingsley (1995), Section 25), and define

N(a,b² ) as a normal distribution with mean a and variance b² . That Fn (ξp ) is the sample

average of /(Xi < ξ1)), = 1,2, ... , n, which are i.i.d. with mean p and variance p(1 — p),

implies that the first term in the right-hand side (RHS) of (3.6) converges in distribution

to N(0, p(1 —p)1 f² (ξp)) as n co. Moreover, the second term on the RHS of (3.6) van-

ishes in probability as n by (3.5). Hence, n(ξp,n —) N (0,p(1 — p)/f²(ξp)) as

n	 by Slutsky's theorem (Serfling (1980), p. 19).



CHAPTER 4

BAHADUR-GHOSH REPRESENTATION WHEN APPLYING VRTS

Because crude Monte Carlo is sometimes inefficient for estimating quantiles, we may try

to obtain improved quantile estimators by applying a variance-reduction technique (VRT).

VRTs often change the way samples are generated, or collect additional data, and this leads

to different estimators of the CDF. We then invert the resulting estimated CDF to obtain

a quantile estimator. We now establish a general mathematical framework that will allow

us to show that a Bahadur-Ghosh representation holds when applying different VRTs. We

will then apply this framework in subsequent chapters to examine importance sampling

(IS), stratified sampling (SS), antithetic variates (AV), control variates (CV) and certain

combinations of them.

Let Fn denote a generic estimator of the CDF F obtained when using a VRT, where

n is the "computational budget," which we define differently for various simulation meth-

ods. For example, when applying IS, n is the number of samples generated from a new

distribution F* obtained from a change of measure (see Chapter 5 for details). When em-

ploying AV, n denotes the number of antithetic pairs (Chapter 6). For CV, n is the number

of pairs of output and control collected (Chapter 7).

Now set = Fri 1 (pn) as the VRT estimator of the pn -quantile for pn = p

0(n- 11² ). Analogous to the Bahadur-Ghosh representation in (3.4) for crude Monte Carlo,

we write

(4.1)

To obtain a result similar to (3.5), we require that Fn satisfies the following assumptions.

Assumption Al P(Mn ) --> 1 as n co, where Mn is the event that Fn(x) is monotonically

increasing in x.

This assumption allows for the estimated CDF to not necessarily be monotonically

33
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increasing in x, but the probability of this occurring must vanish as n increases. For many

(but not all) VRTs, Fn (x) will always be monotonically increasing in x for each n, so As-

sumption Al will trivially hold.

Assumption A2 For every an = 0(n -11² ),

as n --> 00.

This assumption requires that the scaled difference in the actual CDF and the CDF

estimator, both evaluated over an interval of length of order n -11² with an endpoint ξp , van-

ishes in probability as n 00. We provide a set of sufficient conditions for Assumption A2

in Section 4.1.2.

We also require that a CLT holds for the CDF estimator at ξp.

We will show in the later chapters that Al-A3 hold for the VRTs we consider. In

the case of crude Monte Carlo, where Fn in (3.1) replaces Fn , Assumption Al holds since

Fn (x) is monotonically increasing in x for each n. Moreover, Ghosh (1971) (also see David

and Nagaraja (2003), p. 287) shows that Assumptions A2 and A3 hold by exploiting the

fact that nFn (x) has a binomial distribution with parameters n and F(x). Also, for crude

Monte Carlo, ψ²p = Var[I(X < ξp)] = p(1 - p) in Assumption A3.

The following theorem shows that for a CDF estimator obtained when applying

VRTs and satisfying our assumptions, a Bahadur-Ghosh representation holds for the re-

sulting quantile estimator.

Theorem 1 Suppose fn satisfies Assumptions A1-A3. If f (ξp) > 0 and pn - p = 0(n-11² ),

then (4.1) holds with

(4.2)
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A simple consequence of Theorem 1 is that 4,n Fn-¹ (p) is a consistent estimator

of ξp, which we can see as follows. Assumption A3 implies 11(ξp) 4 F(ξp) p by

Theorem 2.3.4 of Lehmann (1999). Hence, (4.1) ensures

(4.3)

as n 00 by Theorem 1 and Slutsky's theorem. Moreover, Theorem 1 also implies the

following CLT for the VRT estimator of the quantile.

Theorem 2 Suppose Fn satisfies Assumptions AI A3. If f (ξp) > 0, then

(4.4)

as n 00, where κp = 	 ψp is defined in Assumption A3, and O p = f (ξp ).
•

For crude Monte Carlo or any VRT, the parameter κp in (4.4) always has the same

basic form of ψpφp. The value of ψp from Assumption A3 depends on the particular

VRT used (and equals .09(1 - p) for crude Monte Carlo), but Op does not change. Thus,

efficient quantile estimation typically focuses on applying a VRT to reduce ψp

The CLT in Theorem 2 provides a way to construct confidence intervals for a quan-

tile estimated using VRTs, provided we have consistent estimators of ψp and Op. To handle

Op, we first note that (±F-¹ (p) = 1/ f ξp = Op by the chain rule of differentiation, and wedp

propose below some finite-difference estimators (e.g., Section 7.1 of Glasserman (2004))

of (1) p . Let c 0 be any constant, and define pn = p+ cn-¹/² and p,2 = p - cn-¹/². Then

define the estimators

(4.5)

(4.6)
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Note that φp,n,1 (c) is a forward (resp., backward) finite-difference estimator of Op when

c > 0 (resp., c < 0) since p,n,1 (c) = [F„-¹ (p + cn -¹/²²) —Fri ¹(p)]/(cn-¹/²). Similarly,

p,n,2(C) is a central finite difference. To define additional estimators of Op, let C1,... , cr

and WI , , w r be any nonzero constants (some possibly negative) with Σrj=1  W J• = 1. Thenj 

define estimators

(4.7)

which are weighted combinations of the previous finite-difference estimators. The follow-

ing theorem shows that all of our estimators of Op are consistent. In addition, if we also

have a consistent estimator ψp,n of ψp in Assumption A3, then we can consistently estimate

= 16,0p in (4.4) by taking the product of the consistent estimators of 16, and Op , and the

CLT in (4.4) still holds when κp is replaced by its consistent estimator.

Theorem 3 Assume the conditions of Theorem 2 hold. Then for any nonzero constants c

and ch... ,cr ,

(4.8)

(4.9)

(4.10)

Hong (2009), Liu and Hong (2009) and Fu et al. (2009) develop consistent estima-

tors for derivatives of quantiles with respect to certain model parameters, but their methods

do not apply for estimating Op = 4,F-¹ (p) and/or when using VRTs. When applying crude
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Monte Carlo (i.e., i.i.d. sampling), Bloch and Gastwirth (1968) and Bofinger (1975) show

that estimators analogous to φp,n,i(c), i = 1,2, in (4.5) and (4.6) consistently estimate Op.

Moreover, Babu (1986) considers estimators that are weighted combinations as in (4.7) for

i.i.d. sampling. All of their consistency proofs rely on representing each i.i.d. sample Xi as

Xi = F-¹(Ui), where Ui is uniformly distributed on the unit interval. However, these argu-

ments do not generalize when applying VRTs such as importance sampling, so we require

a different approach to establish (4.8) and (4.9). In particular, Corollary 2.5.2 of Serfling

(1980) provides a method that exploits the a.s. Bahadur representation from (3.2) and (3.3)

for i.i.d. sampling to consistently estimate O p , and we modify this idea to work instead with

a Bahadur-Ghosh representation and VRTs.

We now provide an algorithm that shows how to use (4.10) to construct an asymp-

totically valid confidence interval for the quantile ξp when applying a generic VRT.

Algorithm

Goal: Construct a point estimate and 100(1 — a)% confidence interval for ξp.

Given: CDF estimator Fn based on a computational budget of n; r > 1 nonzero constants

c1,c2, , Cr and w1 , w2, , w r with Σrj=1 wj = 1; and a consistent estimator f 6 n of yip .

Steps:

1. Compute the point estimator ξp,n = Fn 1 (p) of ξp.

2. Compute κp,n = p,nφp,n,i(c1,..cr) for either i = 1 or i = 2, where φp,n,i(..c1, • • • ,..cr)

is defined in (4.7).

3. An asymptotically valid 100(1 — a)% confidence interval for ξp is then (4,n

Z1_ a/2 κpn/ n), where zβ = φ-¹  ((3) and (I) is the CDF of a N (0, 1) random variable.

In the following chapters we present explicit formulae for the estimators Fn and

ψp ,n in the above algorithm for different VRTs, and these estimators can then be used to
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compute 4,n and φp,n,i (C1	 cr). To simplify notation, we will continue to use the same

variables Fn ,	 p,n, ψp,n and	 , , cr) in each case rather than develop new

notation for each different VRT.

4.1 Proofs

4.1.1 Proof of Theorem 1

To prove Theorem 1, we will first use the following lemma established by Ghosh

(1971); also see pp. 286-287 of David and Nagaraja (2003) for more details. We then

transform Rn  in (4.1) in terms of the two sets of variates described in the lemma to complete

the proof as required.

(4.11)

(4.12)

and note that (4.1) implies

(4.13)
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We now show that (V„, WO satisfies conditions I and 2 of Lemma 1 to establish our theo-

rem.

First, Assumption A3 implies condition 1 of Lemma 1 by Theorem 2.3.2 of Lehmann

(1999). We next prove condition 2(a) of Lemma 1 holds. Recall Mn is the event that Fn (x)

is monotonically increasing in x, and let Mcn be its complement. Then

where

Fix E > 0, and since

(4.14)

establishing condition 2(a) of Lemma 1 is equivalent to proving the first term on the RHS

of (4.14) approaches 0 as n 00 because of Assumption Al. Since F is assumed to be

differentiable at 4/3 Young's form of Taylor's theorem (Hardy (1952), p. 278) implies
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since F(ξp) p. It is thus clear that yn y as n 00 since pn - p = 0(n- ¹/²²). Therefore,

there exists n0 such that ly - yn | < e/2 for all n > n0, so taking the difference of the two

inequalities in the first term of the RHS of (4.14) gives

Hence, to show the left-hand side of (4.14) vanishes as n 	 00, it suffices to prove

(4.15)

Note that

and we have pn - p = 0(n- ¹/²²) by assumption, so Tin +yn-¹/² = 0(n-¹/²²). Consequently,

(4.15) holds by Assumption A2. Thus, the (Vn , Wn ) pair satisfies condition 2(a) in Lemma 1;

condition 2(b) of the lemma may be similarly established, so (4.11) holds. Recalling (4.13)

then completes the proof.

4.1.2 Sufficient Conditions for Assumption A2

As an alternative to directly showing Assumption A2 holds, we now provide a set

of sufficient conditions for the assumption.

This condition requires the expectation of the difference in the CDF estimator at ξp and a

perturbation from ξ19 of order n -11² to equal the difference of the CDF at the two values,
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plus a bias term that goes to 0 sufficiently fast. Note that Condition C1 holds when Fn (x)

is an unbiased estimator of F (x) for all x.

Condition C2 For every an = 0(n -¹/²²), E [Fn(ξp + an ) — (ξp )] ² = [F(ξp + an ) — F (ξp) ]² +

Sn (an )/ n, where sn (an ) --> 0 as n 	 00.

This condition considers the second moment of the difference in the CDF estimator at ξp
and a perturbation from ξ p of order n-¹/²². The condition requires that the second moment

can be expressed as the square of the difference in probabilities due to this perturbation

with a remainder approaching 0 sufficiently fast.

Proposition 1 Conditions C1 and C2 together imply Assumption A2.

To establish Assumption A2, it suffices to prove E[(Zn — Wn)²] 	 0 as n 	 on; e.g., see

Theorem 2.1.1 of Lehmann (1999). Let do = F( p + an ) — F (ξp) and Dn Fn(ξp + an) --

Fn(ξp). Then

(4.16)

Conditions C1 and C2 imply E[D n] = do + rn (an ) I 	 and E [132n] = 	 sn(an)/n. Putting

these into (4.16) yields

(4.17)

According to Young's form of Taylor's theorem, F( + an) — F (ξp) = (f (ξp) + 0 ( 1 ))an •

Since an = 0(n -¹/²²), we have do = F(ξp + an) — F (ξp) = 0(n-¹/²²). Now we use the

properties of rn and sn in Conditions C1 and C2, which ensure (4.17) converges to 0 as

n 00, so Assumption A2 holds.
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4.1.3 Proof of Theorem 2

By (4.1), we have

(4.18)

The first term on the RHS of (4.18) converges in distribution to a standard normal by

Assumption A3, and the second term converges in probability to 0 by (4.2). Thus, the

result follows from Slutsky's theorem.

4.1.4 Proof of Theorem 3

By Theorem 1 and (4.1), we have

as n	 00, which completes the proof of (4.8) for i = 1. We can similarly prove (4.8) for

i = 2. Also, (4.9) then follows from Slutsky's theorem since Σkj=1 	= 1.

To prove (4.10), we only consider when k . ψp,nφp,n,i(c1,...) • • • ,..cr)since κpn
P

ψp,nφp,n,i(c) is just a special case with r = 1. Recall ψp,n 	 ψp by assumption, and also

(4.9) holds, where in both cases the limits are deterministic. Hence, Slutsky's theorem

implies κp,n 4 κp as n 00, where κp is deterministic. Then combining this with (4.4)

using Slutsky's theorem establishes (4.10).



CHAPTER 5

QUANTILE ESTIMATION USING IS+SS

IS and SS are two VRTs used to improve the efficiency of simulations, and combining them

may further enhance the effect. Before describing a combined IS+SS quantile estimator

developed by Glasserman et al. (2000b), we start by applying just IS alone without SS, as

in Glynn (1996).

We first explain how to apply IS in the simple case when the output X has CDF F

and density function f . Let F* be another CDF, and let f* be the density function of F*

with the property that for each t, f (t) > 0 implies that f* (t) > 0. For example, if F is

normal with mean a and variance σ2 , then we can choose F* to also be normal but with

different mean a, and variance σ,2 . Define E* to be expectation under CDF F. Also,

define L(t) = f (t) I f*(t) to be the likelihood ratio at t. Then we can write

The above suggests that to estimate F (x) using IS, we generate i.i.d. samples X_	 ,Xn of

X from CDF F* and average /(Xi < x)L(Xi), i = 1, , n.

As explained in Glynn and Iglehart (1989), IS applies more generally than the situ-

ation we just described. Let P be the original probability measure governing the stochastic

system or process being studied, and let P* be another probability measure such that for

each (measurable) event A, P(A) > 0 implies P, (A) > 0; i.e., P is absolutely continuous

(p. 422 of Billingsley (1999)) with respect to P. Define E* as the expectation operator

under the IS probability measure P*, and define the likelihood ratio L = dP/dP*, which is

also called the Radon-Nikodym derivative of P with respect to P* (p. 423 of Billingsley
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(1999)). Then we have

(5.1)

which is known as applying a change of measure. This motivates estimating F (x) as fol-

lows. Generate i.i.d. samples (Xi , Li ), , (Xn ,Ln ) of (X,L) using P*, and the IS estimator

of F is then

(5.2)

Inverting Fos results in the IS quantile estimator.

Recall the crude Monte Carlo estimator of F is given in (3.1), where the Xi in

(3.1) are generated using the original measure P induced by CDF F. By Theorem 2, the

key to applying IS for estimating ξp is choosing P* so that Val. ,. [/(X < ξp ) L] <Var[I(X <

ξ/3 )] = p(1 — p) to achieve a variance reduction (relative to crude Monte Carlo), where Var *

denotes variance under measure P. Glynn (1996) and Glasserman et al. (2000b) present

particular choices of P* for various settings.

To additionally incorporate stratified sampling, we identify a stratification variable

Y such that X and Y are dependent. We partition the support of Y into k < 00 strata Si , . , Sk

such that each P* {Y E Si} > 0 is known and Σki=1 . For example, the strata may

be disjoint intervals, and Sections 4.3 and 9.2.3 of Glasserman (2004) discuss several other

choices for selecting the strata. Therefore, by (5.1), we can write

Note that we derived (5.3) by first applying IS and then using stratification, so Y is dis-

tributed under the IS measure P. (Instead applying SS first and then IS leads to a different

representation for F and thus a different estimator; see Glasserman et al. (2000a) for de-



45

tails.)

IS+SS estimation of F entails replacing each conditional expectation in (5.3) with

an average of samples from the corresponding stratum. We now provide details on this

approach as developed in Glasserman et al. (2000a). Define the sample size in each stratum

i as ni = nyi, where the yi > 0 are user-specified constants satisfying = 1. (We later

discuss possible choices for yi.) For simplicity, we assume that ni is always an integer, so

the total number of samples across all strata is EliL i ni = n. For each stratum

i = 1, . ,k, we use the IS measure /3* to draw ni samples Yid, j =1,... ,ni, of Y conditioned

to lie in Si. Then for each j = 1, . . . , ni, generate Xij as a sample of X having the conditional

IS distribution of X given Y = Yij, and let Lij be the corresponding likelihood ratio. We thus

have ni i.i.d. samples (Xj, Lij), j = 1,... ,ni, of (X, Y,L) from stratum i. (Glasserman

et al. (2000b) employ a "bin tossing" method to generate samples of the triple (Xij, Yij,Lij).)

The (X 1, Yij,Lij) sample triples across strata are generated independently. Then the IS+SS

estimator of the CDF is

(5.4)

We allow for Ps: = P, in which case the likelihood ratio LEE 1 and we do not apply IS. Also,

the number of strata may be k = 1, in which case there is no stratified sampling. Hence, the

following results for IS+SS encompass crude Monte Carlo, IS-only and SS-only as special

cases.

Theorem 4 Suppose f (ξp) > 0, and for each stratum i, suppose there exists E> 0 and

3 > 0 such that E*[I(Xij < p + δ)L²ij+ε] < 00. Let Fn be the IS+SS estimator of F defined

in (5.4). Then Fn satisfies Assumptions AI A3, where yip λ²iζ²i / γi is the variance

constant in Assumption A3 with

(5.5)
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. 	 -

Thus, Theorem 1 implies ξpn,n = Fri  (pn ) with pn — p = 0(n -¹/²2) satisfies the Bahadur-

Ghosh representation in (4.1) and (4.2).

We recently found out that independently of our work, Sun and Hong (2010) es-

tablish that the IS-only quantile estimator obtained by inverting Fn ,is in (5.2) satisfies an

a.s. Bahadur representation analogous to (3.2) and (3.3) using a different proof technique

and under a stronger set of assumptions than we use. Specifically, they further assume that

the density f is positive and continuously differentiable in a neighborhood of 4p and that

the likelihood ratio L(x) is bounded in a neighborhood of ξp. Also, they do not consider

IS+SS (nor AV and CV), as we do. Moreover, they examine only the case of fixed p and

not perturbed pn , the latter of which is essential for our approach for developing confidence

intervals for ξp.

The next result shows that the IS+SS quantile estimator satisfies a CLT.

Theorem 5 Suppose f (ξp) > 0, and for each stratum i, suppose there exists ε > 0 and

3 > 0 such that E*[I(Xij < ξp δ) L²ij+ε] < CC. Then 4 ,„ = (p) with Fn defined in (5.4)

satisfies

(5.6)

(5.7)

as n 00, where κp = ψpφp, Op = f (ξp), 16 is defined in Theorem 4, the estimator

κp,n = 	 ,cr), 	 ,..cr) is from (4.7) with nonzero constants	 , cr

and	 ,wr satisfying Σrj=1wj = 1 for i =1 or 2, ψ²p,n = Σki=1  λ²iζ²i,n yi, and

(5.8)

We now discuss possible choices for the stratum allocation weights y. Setting

= Ai for each stratum i guarantees that the CDF estimator Fn (x) in (5.4) has no greater
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variance than Fos (x) in (5.2), which implies the IS+SS quantile estimator has no greater

variance than the IS quantile estimator does; e.g., see p. 217 of Glasserman (2004). We

v2 	 A. 	 / yican do even better by choosing y to minimize	 λ²ζ²i / yi. subject to E,_ 1 y = 1

and yi > 0. The stratum allocation weights solving this optimization problem are given by

y*i= λiζi /Ekj=1λjζj);e.g., see p. 217 of Glasserman (2004). Since the ζi are typically un-

known, we might first estimate them from pilot runs, and then use these values to estimate

the yi* .

The right tail of Fn,IS in (5.2) may not behave as a proper CDF since it is possible

(and indeed likely) for limx—> Fn,IS (x) = a with a <1 or a > 1. To avoid such a situation,

Glynn (1996) also proposes another IS estimator of the CDF, F' n,IS (x) 1 — 1/nEni=1 I (Xi >

x)L(X1), which can be more effective when estimating a quantile for p ti 1. (However, we

may instead have limx-->F/n,IS  (x) = b with b < 0 or b > 0, so may not be appropriate

when estimating a quantile for p ti 0.) Glasserman et al. (2000b) develop the corresponding

IS+SS estimator of F:

(5.9)

The following two theorems, in which primed variables replace non-primed variables from

before, show that quantile estimators based on inverting F'n satisfy a Bahadur-Ghosh repre-

sentation and CLTs. They can be shown by straightforward modifications of the proofs of

Theorems 4 and 5.

Theorem 6 Suppose f (ξp) > 0, and for each stratum i, suppose there exists c > 0 and

3 > 0 such that E*[I(Xij > ξp - 8)4+E ] < 0°. Let Fn be the IS+SS estimator of F defined

in (5.9). Then F'n satisfies Assumptions Al—A3, where 162 = Σki=1 1 A,7 yi is the variance

constant in Assumption A3 with 1!2 = >p)L²ij ] - P2 (X > ξp | Y E Se). Thus,

Theorem 1 implies 41 n = F'n-¹(pn) with pn — p = 0(n -¹/²2) satisfies the Bahadur-Ghosh

representation in (4.1) and (4.2).
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Theorem 7 Suppose f(ξp) > 0, and for each stratum i, suppose there exists E > 0 and

> 0 such that E*[I(Xij > ξp - σ)L²ij+ε] < °C. Suppose	 = F'n-¹(p) with F'n, defined in

(5.9) satisfies

(5.10)

(5.11)

as n	 co, where κ'p = ψ'pφp, Op = 1/f (ξp), ψ'p is defined in Theorem 6, the estima-

tor κ'p,n = 	 nφ'p,n,i n,i(c1, • • • ,cr), Op, 	 • • ,Cr) uses I" n' in (4.7) with nonzero constants

	

,cr and	 ,wr satisfying Σrj=1 wj = 1 for i = 1 or 2, ψ'²p,n = 	 A.7 ζ²i,n/yi, and
2

= n, E 7n! 1 I(Xij • > ξ'p,n ),0.) — (jn, Σnij=1 I(Xij • > p,n )Li •i,n 	 = 	 p 	 J) •

Glasserman et al. (2000b) also prove that the quantile estimator 13' n obtained using

IS+SS satisfies the CLT in (5.10) (but they do not consider the CLT in (5.11) with estimated

variance). Also, Glynn (1996) establishes CLTs analogous to (5.6) and (5.10) (but not (5.7)

and (5.11) with estimated variance) for the IS-only quantile estimator 4,n equal to Fn-¹,IS (p)

or Ft" (p). Both Glasserman et al. (2000b) and Glynn (1996) apply the Berry-Esséen

theorem (e.g., p. 33 of Serfling (1980)) in their proofs, and consequently, they require

the likelihood ratio Lit to have a finite third moment (under the IS measure). Our proof

of (5.6) uses a different approach employing the Bahadur-Ghosh representation, which

allows us to relax the moment condition on the likelihood ratio to instead require E*[I(Xij <

ξp + 4:5)a7£ ] < CO for some E > 0 and S > 0. Moreover, under the stronger assumptions

discussed earlier, Sun and Hong (2010) establish that the IS-only quantile estimator Fn¯¹n, IS(p)

obeys the CLT in (5.6), but they do not consider (5.7) with estimated variance nor IS+SS.

We now explain how to invert the estimated CDF Fn in (5.4). We are given Ai, ni,

and Li j, and recall the total number of samples across all strata is n. For each i = 1, . . . , k,

and j = 1, . , ni, define Am = Xij and Bm = Lijλi/ni, where m =	 j. Then sort

Ai , A2, ... ,An in ascending order as A( 1) < A(2) < • • • < A (,) , and let B(i) correspond to A( i).
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For fixed 0 < q < 1, define the qth quantile estimator 4,n to be Fri 1 (q) = AN ) , where i q is

the smallest integer for which Σiqm=1 B(m) > q. Similarly, for the estimated CDF inin (5.9),

we compute the qth quantile estimator 41 n to be F'-¹ (q) = AK), where is the smallest

integer for which Σm=u, +1 B(') < 1— q.

5.1 Proofs

5.1.1 Proof of Theorem 4

Recall the IS+SS estimator Fn (x) of F (x) given in (5.4). Since Lid, I(Xij < x), ni and

Al are all nonnegative, Fn(x) is monotonically increasing in x for each n, so Assumption A1

is satisfied.

Now we will show that Assumption A2 holds by verifying Conditions C1 and C2

and applying Proposition 1. For all x E 91, we have

(5.12)

by (5.3), so Fn (x) is unbiased for all x. Hence, Condition C1 is satisfied with rn (• ) = 0 in

this case.

We now show Condition C2 holds. Let an = 0(n-¹/²2), and define Dn = 11(ξp +

an ) — En ( ). Set ρn = min( ξp , ξ13 + an ) and ρ'n = max ( p , ξp + an ), SO

(5.13)

where



and by the independence of (Xij,Yij,Lij) and (Xi'j',Yi',y',Li'j') for i i',

We can then express A = A1 +A2, where
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(5.14)

and by the independence of (Xij,Yij,Lij) and (Xij',Yij',Lij') for j j',

We then write A2 = A21 -A22, where

(5.15)

Then, (5.1) and (5.3) imply

= E,2 [I(ρn < X < ρ'n)L] = P2 (ρ, < X < ρ'n). 	 (5.16)
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Hence, substituting (5.14)—(5.16) into (5.13) yields

(5.17)

Now we need to check if sn (an) nA1 — nA22 	 0 as n	 as required by

Condition C2. We assumed Di E*[I(Xij < p + )L²ij+ε - '] < 00 for each stratum i, and

ilet -c = maxi=1,..,k vi¹/(¹+ε)   which is finite since k < co. Recall ni = yin, and note that

I²(•) I( • ) . Then applying a change of measure and Holder's inequality to (5.14) yield

for n sufficiently large since then I(ρn < X1j <	 <	 < ξp + σ) because ρ'n =max(ξp,ξp+

an ) and an 0(n-¹/²2). Similarly, we rewrite (5.15) as

which leads to
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sn (an ) 	 0 as n --> 00 because yi > 0, < 1 and z < co, and then Condition C2 follows

from (5.17). Consequently, Assumption A2 holds by Proposition 1.

Lastly, we need to show Assumption A3 holds. Recall that ni = nyi, so

(5.18)

where G1,n =	 I	 < ξp )Lij P(Xi1 ξp)]. Also, I (Xis < ξp)Lij, j = 1, 2, . . . 	 , ni,

are i.i.d. with finite variance under P* since vi < 00. Hence, Gi,n N(0, V) Ni as n 	 °(3

for each i, where V = Var*[I(Xij < ξp )Lij] , which equals (5.5) from a change of measure.

The samples across strata are independent, so the independence of Gi,n , i = 1, . . . ,k,

implies the independence of Ni, i = 1, . . . , k. It follows that (Gi,n ,i = 1, • • • , k) (Ni =

1 , . , k) as n co by Theorem 11.4.4 of Whitt (2002). Then apply the continuous mapping

theorem to (5.18) and obtain (Fr( F (ξp)) L- >" N (0 ,Σki=1 A.7 I yi), which com-

pletes the proof.

5.1.2 Proof of Theorem 5

By applying Theorem 2, we see that (5.6) follows from Theorem 4. To establish

(5.7), we will show

(5.19)

as n co so that we can apply (4.10) from Theorem 3. Recall that ψp = / yi

with V defined in (5.5). Also, we defined ζ ²i,n in (5.8) as an estimator of V. Now define

Zi ,n (x) =	 < x)4 and zi(x) = E*[I(Xij < x)4], so Zi ,n (p,n) )1 the first term in (

i2,1,1 and zi (ξp) is the first term in V. To prove (5.19), we first show that for each i =1, . . . , k,

(5.20)
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as n 00 under the IS measure P. Fix an arbitrary a0 > 0, and establishing (5.20) requires

proving that /3* 	(4,0 zi( p)| > a0} 	 0 as n 00. Because we assumed that vi

< ξp + 6)4+£ ] 	 (Xi < ξp + 45).14r] < °° for some positive ε and 6 and also

that F is differentiable at ξp , there exists 0 < 6' < 6 such that

(5.21)

where we recall A., = P* [Y E Si] > 0. Then

(5.22)

so we want to show qi,n 	 0 and q2,n 	0 as n co to establish (5.20). Since 4,n -4 ξp

by (4.3).

(5.23)

We now handle q1,n in (5.22). Because Zi,n (x) is monotonically increasing in x, we

have that |ξp,n  — ξp | < 6' implies max(|Zi,n(ξp + 6') — zi(ξp)|,|Zi,n(ξp — 3') — zi(ξp)I) >

|Zi,n(ξp,n) 	 zi(ξp)|. Hence,

(5.24)
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(5.25)

by the triangle inequality. Also, a change of measure and the fact / 2 ( • ) = I(.) yield

(5.26)

where the third step follows from Hölder's inequality, the fourth step holds because I(4 <

Xij < ξp + 5') < I(Xij < p + 5) as 5' < 5, and (5.21) implies the last step. Thus, using

(5.26) in (5.25) gives

(5.27)

In the definition of 4,17(ξp + 59, the summands I(Xij < ξp δ')L²ij, j = 1, 2, ... ,ni, are

i.i.d., and each summand has mean

by Holder's inequality. Thus, the weak law of large numbers implies the RHS of (5.27)
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converges to 0 as n 	 co, so r1,n 	0 as n 	 00. We can similarly prove that r2,„. in (5.24)

satisfies r2,n 	0, so q1,n 	0 by (5.24). Using this together with (5.22) and (5.23) then

establishes (5.20). For the second term in (5.8), similar arguments show that 1/ni 	 I(Xij <

< )Lij] 	 .13{X < 	 Y E Si} as n 	 00, so (5.19) holds by thep

continuous-mapping theorem and Slutsky's theorem, completing the proof.



CHAPTER 6

QUANTILE ESTIMATION USING AV

In the case of estimating the mean of a random output X having CDF F, the basic idea of

AV is to generate two copies X and X' of the output having CDF F in such a way that X

and X' are negatively correlated, and we average the two outputs. Since Var((X + X') /2) =

[Var(X) Cov(X, X')] /2 < Var(X)/2 when Cov(X, X') < 0, AV reduces variance com-

pared to when X and X' are independent. There are various ways in which we can gen-

erate negatively correlated X and X' with the same marginal distribution F. For exam-

ple, suppose that the output X can be expressed as X = h(111,. , Ud) for some func-

tion h, where U1, , Ud are i.i.d. uniform random variables on the unit interval. Then

X' = h(1 — U1, ,1 — Ud) has the same distribution as X since 1 — Ui is also uniform on

[0,1]. If h is monotonic in each of its arguments, then X and X' are negatively correlated;

e.g., see Section 8.1 of Ross (1997).

In general, we implement AV to estimate a quantile of output X by generating

(Xi,X'1), i = 1,2, ... , n, as i.i.d. antithetic pairs, where Xi and X! each have marginal dis-

tribution F and Xi and are negatively correlated. Then the AV estimator of the CDF F

is

(6.1)

where Fn is defined in (3.1) and F'n = (1/n) 	 I(X1 < x). Inverting En yields the CV

quantile estimator, which the following shows satisfies a Bahadur-Ghosh representation.

Theorem 8 Suppose f (ξp) > 0, and let Fn be the AV estimator of F defined in (6.I). Then

En satisfies Assumptions AI A3, where

(6.2)

is the variance constant in Assumption A3 and (X ,X') is an antithetic pair. Thus, Theorem 1

56
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implies 4n,n Fn (pn) with pn — p = 0(n-¹/²2) satisfies the Bahadur-Ghosh representa-

tion in (4.I) and (4.2).

The next result shows that the AV quantile estimator satisfies a CLT.

Theorem 9 If f (ξp) > 0, then 4,n Fn-¹ (p) with Fn defined in (6.I) satisfies

(6.3)

(6.4)

as n co, where κp=ψpφp , Op =1/ f (ξp), ψp is defined in (6.2), k-*p,n = ψp,n,i(c , • • • ,Cr ),

φp,n,i(c 	 ,c r) is from (4.7) with nonzero constants	 ,cr and	 ,wr satisfying

Σrj=1 w j = 1 for i = 1 or 2, and

(6.5)

We now describe how to invert the AV CDF estimator Fn in (6.1). For each i =

1, . ,n, define A2i-1 = Xi and Ali = XI. Then sort A1 ,A2, ,A2n in ascending order as

A(1) < A (2) < • • • < ForFor fixed 0 < q < 1, define the qth quantile estimator ξq ,n to be

Fn 1 (q) = A( [2nq where [·] denotes the round-up function.

6.1 Proofs

6.1.1 Proof of Theorem 8

Recall the AV estimator Fn (x) of F(x) given in (6.1). Since both I(Xi < x) and

I(XI < x) are nonnegative, Fn (x) is monotonically increasing in x for each n, so Assump-

tion A1 holds.

Next we will show Assumption A2 is satisfied by verifying Conditions C1 and C2

and applying Proposition 1. Observe that Fn (x) is a special case of the IS+SS estimator
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with a single stratum (i.e., no SS) and IS measure ./3* P (so the likelihood ratio L 1,

which means no IS). Also, F'n (x) =D Fn (x) since each XI g_ Xi, where E denotes equality in

distribution, so

by (5.12). Therefore, the AV CDF estimator is unbiased, which implies Condition C1.

We now show Condition C2 holds. Set an = 0(n-¹/²2), and (6.1) implies

(6.6)

where

As a special case of the IS+SS CDF estimator, Fn (x) also satisfies Condition C2, as shown

in the proof of Theorem 4. Therefore, since F,21 (x) D Fn (x) for all x, we have

(6.7)

with sn (an ) 	 0 as n 	 00, where do = F (ξp + an) — F (ξp). To handle A3, let ρn =

min(ξp , ξp + an ) and ρ'n = max (ξp, ξ/9 + an ). Then

(6.8)
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where

(6.9)

with (X,X') an antithetic pair and

(6.10)

since Xi and X'j are independent for i j. Then, (6.6)—(6.10) imply

Since P(ρn < X < ρ'n, ρn < X' < ρ'n ) 5 P(ρn < X < 	 ldn |, the triangle inequality yields

Because the differentiability of F at ξp implies F is continuous at ξp, it follows that do 0

as n since ρn ξ/9 and ξp as n 00 . Thus, tn --> 0 as n --4 00 since s sn(an) 0,

which shows Condition C2 is satisfied. Hence, Assumption A2 follows by Proposition 1.

Lastly, we need to show Assumption A3 holds. We can rewrite (6.1) as Fn(ξp) =

(1/n) 	 A , where A = (Xi < ξp) + I (Xi < ξp)] /2, i = 1,2, ... , n, are i.i.d. since

i = 1,2, ... ,n, are i.i.d. Since E[Mi] = F(ξp), the CLT in Assumption A3 holds,
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and the variance ψ²p in the CLT is given by

which completes the proof.

6.1.2 Proof of Theorem 9

By applying Theorem 2, we see that (6.3) follows from Theorem 8. To establish

(6.4), we will show that ψp,n in (6.5) satisfies

(6.11)

as n —-> 00 so that we can employ (4.10) from Theorem 3. Now we define Zn(x) = n Σn1=1I(Xi  <

x, X'i < x) and z(x) = E (Xi < x,X'i < x)], so Zn(ξp,n) is the only random term in ψp Ton

prove (6.11), we just need to show that Zn(ξp,n) 4 z(4) as n 00. But we can establish

this by applying arguments similar to those used to show (5.20), so the proof is complete.



CHAPTER 7

QUANTILE ESTIMATION USING CV

In many simulations, one often knows the mean of an auxiliary random variable that is

generated in the process of generating the output random variable. For example, in a sim-

ulation of a queueing system, one knows the distributions (and typically also the means)

of the interarrival times and service times. The method of control variates (CV) reduces

variance by exploiting this knowledge.

Suppose that (X,C) is a correlated pair of random variables, where we are inter-

ested in estimating the pth quantile of X. We assume that C has known mean v and finite

variance, and we will use C as a control variate. To avoid trivialities, we assume that

Var[C] > 0. Since X' I(X < x) — /3 (C — v) has mean F(x) for any constant p, we can

average i.i.d. samples of X' to obtain an unbiased estimator of F(x). Specifically, we gen-

erate i.i.d. samples (Xi, CI), i = 1,2, ... , n, of the pair (X, C). Letting /3 be any constant, we

can define an unbiased estimator of the CDF F of X as

(7.1)

(7.2)

where Fri is the empirical CDF defined in (3.1) and On = (1/n)

Clearly, the variance of F'n,β (x) depends on the value of p . It can be shown (e.g.,

p. 186 of Glasserman (2004)) that the choice of 13 that minimizes the variance is

which depends on x. However, one typically does not know the value of Cov[I(X < x) , C],
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so it must be estimated. We thus estimate (x) via

(7.3)

Replacing p in (7.2) with 130 (x) gives us the CV estimator of the CDF F as

(7.4)

which is typically no longer unbiased because of the correlation of βn(x) and On . We

obtain the CV quantile estimator by inverting Fn in (7.4), and the following result shows

the quantile estimator satisfies a Bahadur-Ghosh representation.

Theorem 10 Suppose f (ξp ) > 0, and let C be a control variate with 0 < Var[C] < 00. Let

Fn be the CV estimator of F defined in (7.4). Then Fn satisfies Assumptions A1—A3, where

(7.5)

is the variance constant in Assumption A3. Thus, Theorem 1 implies ξp, ,,n =	 (pn) with

pn — p = 0(n -112 ) satisfies the Bahadur-Ghosh representation in (4.1) and (4.2).

The CV quantile estimator satisfies a CLT, as shown next. We omit the proof since

it can be established by applying arguments similar to those employed in the proof of

Theorem 5.

Theorem 11 Under the assumptions of Theorem 10, ξp,n = 11-1 (p) satisfies

as n	 00, where κp =ψpφp, Op = 1 1 f (ξp), ψp is defined in (7.5), κp,n= ψp,nφp,n,i(c1,, 	 ,cr),
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φp,n,i (c1,...,cr ) is from (4.7) with nonzero constants c1,...,cr and w1,...,wr satisfying

Σrj=1 w =1 for i =1 or 2, and

Inverting .F„ in (7.4) initially appears complicated by the fact that J3, (x) depends on

x. However, Hesterberg and Nelson (1998) show that F, (x) can be rewritten as

(7.6)

where

(7.7)

which does not depend on x. If Ti > 0 for each i, then it is clear from (7.6) that Fn (x)

is monotonically increasing in x. (It is possible for Ti to be negative, but Hesterberg and

Nelson (1998) note that is unlikely, in a sense they make precise.) The advantage of the

representation of Fn in (7.6) is that it allows evaluating Fn (x) at different values of x without

needing to recompute βn(x) in (7.3) each time. Also, we can invert Fn as follows. We first

sort Xi , X2, . ,Xn in ascending order as X( 1) < X(2) < • • • < X(„), and let T (i) correspond to

X( 1). Then for 0 < q < 1, we can compute the qth quantile estimator ξ- ,n as Fn-¹(q)= X(iq),

where i q = min { j : Σ 1 T(i) > q}

We now discuss a particular choice for a control variate C. Suppose that Y is a

random variable correlated with the output X, and let G be the marginal CDF of Y. We

can then define C = I(Y < y) for some constant y when G(y) is known with 0 < G(y) < 1.

Thus, we collect i.i.d. pairs (Xi, Yi), i = 1, . , n, and define Ci I(11i < y). It is straight-

forward to show in this case that Ti> 0 always holds, ensuring that I (x) is monotonically

increasing in x for each n. Moreover, Hesterberg and Nelson (1998) note that Ti in (7.7)

becomes Ti= P(Y <y)/Σni=1 1 1(11i < y) if Yi < y, and Ti=P(Y > I(Yi > y) if Yi > y.
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When estimating the pth quantile ξp = F-¹ (p) of X, a natural choice for y is y = G- ¹ (p)

(assuming that this is known), but this is not required.

We can also apply CV with multiple controls C( 11 , C(21 , ,C(m), where each CU)

has known mean; see Hesterberg and Nelson (1998) for details. One possible choice is to

specify constants y1, , ym for which each G(y j) is known and set CU ) = I(Y < y j).

7.1 Proofs

7.1.1 Proof of Theorem 10

The alternative representation of Fn in (7.6) shows that Fn (x) is monotonically in-

creasing in x when the weights T, in (7.7) are nonnegative. As noted by Hesterberg and Nel-

son (1998), the probability of any Ti being negative is o(n-¹ ) since we assumed Var[C] < 00,

so Assumption A1 holds.

To establish Assumption A2, let an = 0(n- ¹/²2), and define

so we need to verify Zn - Wn 4 0 as n co. Recalling (3.1) and (7.4), we can write

(7.8)

Since Fn is a special case of the IS+SS CDF estimator in (5.4) with ./3* = P (so the likelihood

ratio L 1, which means no IS) and only k = 1 stratum (i.e., no SS), Theorem 4 shows that

Fn satisfies Assumption A2, which is exactly that An 4 0 as n no. By Slutsky's theorem,



it then suffices to show that Bn 4 0 as n 00 to verify that Assumption A2 holds for CV.

Let cvl. = Var[C]. Since we assumed 0 < 6C < co, the CLT then implies

(7.9)

as n co. Thus, if we prove that Qn Et- 13n(4p + an) — (gp) 	 0 as n 00, then Bn 4 0

by Slutsky's theorem since f (L) > 0 by assumption. Note that (7.3) implies

and Dn 	6j > 0 as n 	 00; e.g., see p. 69 of Serfling (1980). Thus, to establish that

Qn 4 0, it is sufficient to prove that Nn ' 0 as n co by Slutsky's theorem. We accomplish

this by next verifying that E(INn I) 0 as n co and applying Theorem 1.3.2 of Serfling

(1980).

Let pn = Inin(p,4p + an) and Pn = max( p , 4p + an ), so the triangle inequality

yields

by the Cauchy-Schwarz inequality. Using the facts that the C1, i = 1, , n, are i.i.d. and

that E[C2] = 61,-+ v2 , we can show that E[(C1 — en ) 2] = (n — 1)001n < 61,, so E(INn I) <

P I/2 (Pn < Xj < Pni )ac. Since pn and pn 41) as n cc, we have that P(p, < X <

p,C)	 0 as n 	 co because F is differentiable at 4p. Hence, E(INn I) -4 0 as n 	 co since

ac < 00. Consequently, Bn 14 0 as n 00, showing that Assumption A2 is satisfied by (7.8).

To prove Assumption A3 holds for CV, note that fl n (gp) /4 ( 4) as n cc by the
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weak law of large numbers and Slutsky's theorem. Thus,

as n 0 by (7.9) and Slutsky's theorem, so n[Fn(ξp) P* (ξp)(Cn — v)] and n[Fn (ξp) —
βn(ξp)(Cn— v)] have the same weak limit as n —-> 00 by the converging-together lemma (e.g.,

Theorem 25.4 of Billingsley (1995)). Since the summands in (7.1) with )3 replaced with

J3* (ξp) are i.i.d. with finite variance (because we assumed Var[C] < 00), the CLT gives the

weak limit as N(0,14), with 162 = Var[I(X <) — p* (ξp)(C - v)], which works out to be

(7.5).



CHAPTER 8 

EMPIRICAL STUDY 

The previous chapters developed confidence intervals for a quantile of a random variable 

X having CDF F, and we established the asymptotic validity of the intervals as the com

putational budget n --+ 00. However, in practice, only finite sample sizes can be used, so 

we now carry out an empirical study to see how well the confidence intervals perform with· 

finite n. In particular, we ran simulations building confidence intervals having nominal 

confidence level I - ex and observe how close the estimated coverages of the intervals are 

to 1 - ex for different values of n. (The coverage of a confidence interval in for a parameter 

y based on a computational budget of n is defined to be P( y E in). In an ideal situation, the 

coverage equals the nominal level 1 - ex for any n, but when in is asymptotically valid, this 

is only achieved as n --+ 00. In practice, for finite n, the coverage often differs from 1 - ex, 

sometimes significantly.) 

Our experiments entail applying crude Monte Carlo (CMC), IS, IS+SS, AV, and CV 

on two stochastic models: a normal distribution (described in Section 8.1), and a stochastic 

activity network (Section 8.2). The goal is to study how the computational budget nand 

the "smoothing parameter" c used in the finite-difference estimators in (4.5) and (4.6) affect 

the coverage of the intervals. 

8.1 Normal Distribution 

The first set of experiments involves estimating the pth quantile ~p of a standard 

normal random variable X, so F is the standard normal CDF <P. For IS, we obtain the 

IS distribution F* by exponentially tilting F with tilting parameter e, defined by F*(dx) = 

e8x-t;(8) F(dx), where S"( e) = In(E[e8X ]) = e2/2 is the cumulant generating function of X. 

It is straightforward to show that F* is also normal with unit variance and mean S"'(e) = e, 

the derivative of S" ( e). To choose a value for e, consider the following approximation 

67 
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applied by Glynn (1996): P(X > x) exp(—xθx ζ(00) for x >> 0, where Ox is the root of

the equation ζ'(0,) = x, so θx = x. Since we are interested in x satisfying P(X > x) =1— p

(i.e., the p quantile), we arrive at the equation -02 +02/2= ln(1 — p). Solving for 0 gives

ζ'( 0) = -21n(1 — p) as the mean of F.

For IS+SS, consider a bivariate normal pair (X, Y), where the goal is to estimate the

p-quantile of X and Y is used as a stratification variable. Under the original distribution,

both X and Y have standard normal marginals, and the correlation is ρ. Under the IS

measure, (X, Y) is again bivariate normal with marginal means C(0), unit variances, and

the same correlation ρ.

For AV, the distribution of X is F = 413, and the antithetic pair is (X, X') = (X, —X).

For CV, define (X, Y) as a bivariate normal pair with standard normal marginals and corre-

lation ρ, and define the control C = I(Y < G -¹ (p)) when estimating the pth quantile of X,

where G = (13 is the marginal distribution of Y.

8.2 Stochastic Activity Network

The other model we considered is a stochastic activity network (SAN). SANs are

often employed to model the time to complete a project and are useful in project planning.

We consider a simple SAN with 5 activities, which was previously considered in Hsu and

Nelson (1990). Figure 8.1 illustrates the model.

Figure 8.1 Stochastic activity network.
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Let A1,A2, 	 ,A5 be the durations of the five activities, which are i.i.d. exponentials

with mean 1. Let fi denote the density function of Ai, so fi(t) = e — t for t > 0 for each i =

1,2,...,5. There are 3 paths in the network. Let B1 = {1,2}, B2 =11,3,51 and B3 =

where Bj is the set of activities on path j. Let mj = |Bj |, the number of activities on path

j. Let Tj = ΣieBj A i be the length of path j, which has mean mj . Let X max(T1 , T2, T3)

be the length of the longest path. Our goal is to estimate and construct confidence intervals

for the pth quantile ξp of X. As noted by Hsu and Nelson (1990), the CDF of X is given

by, for x> 0,

and the density function of X is

which is positive for all x> 0. Thus, we have f(ξp) > 0 for any 0 < p < 1.

In the following sections, we provide details on how IS, IS+SS, and AV are applied

for the SAN. For CV, we chose the control variate C as follows. Note that path 2 has the

longest expectation, and we let Y T2 be the (random) length of this path. Let G denote

the CDF of Y, which is Erlang-2. We then take C = I(Y < G-¹(p)) when estimating the

pth quantile of X.

8.2.1 IS for SAN

We apply IS as in Juneja et al. (2007) by using a mixture of exponentially tilted

distributions. Define toto be the exponentially tilted version of fi under tilting parameter

6, so fie (t) = eθt—xi(θ) fi(t), where zi(θ) lnE[eθAi] = —1n(1 — 0) is the cumulant gen-

erating function of Ai, which exists for 0 < 1. Note that fie (t) = (1 — (1-θ)e—(¹—θ)t for t > 0,
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and 0 otherwise; i.e., fie is the density of an exponential with rate 1 — 0.

We will define the IS distribution to be a mixture of 3 distributions, each defined

by exponentially tilting one path length Tj and not changing the distribution of activities

not on that path. To do this, define positive constants al , a², a3 such that al + a² + a3 =

1; these will be the mixture weights, and we will later discuss how we choose specific

values for aj. Let 01, 0², 93 be positive constants, and O will be the tilting parameter under

the jth distribution in the mixture; we will define 0j later. For each j = 1,2, 3, define

probability measure Pj such that Ai has density fie' when i E Bj and density fi when i Bj,

and A1, ,A5 are mutually independent. Now define the IS measure P* to be the mixture

of the Pj using weights αj ; i.e., 13*(A) αjPj (A) for any event A. The likelihood ratio

is then

(8.1)

where cj (0) = ΣiєB J Xi (9) = -mj ln(1 — 0) is the cumulant generating function of T.

We now discuss how to choose each tilting parameter 0j using an approach de-

scribed in Glynn (1996). Large-deviations theory suggests that under certain conditions

(8.2)

for x >> E[7)] mj, where θx is the root of the equation ζ;(00 = x and prime denotes

derivative, so (0) = mj/ (1— 0). Setting the RHS of (8.2) equal to 1—p yields —0 (0) +

ζj(0) ln(1 — p), or

(8.3)

We then take 0j to be the root of (8.3). Thus, we obtain ζ'j (0) = mj/(1 — 0j) as a (crude)

approximation for the pth quantile of Tj (under the original measure) when p 1.

Since we will be estimating the pth quantile	 ofof X for p 1, we will use the IS

CDF estimator F'n,IS (x) = 1	 (Xi > x). The resulting quantile estimator
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We now describe how to choose the IS mixture weights αj by modifying a heuristic

in Juneja et al. (2007). Let Ej denote expectation under measure Pj , and let E, be ex-

pectation under measure P. Since ζ'j(θj) is roughly equal to the pth quantile of Tj and

X = maxj Tj, we now approximate ξp via ξ; EE maxj ζ:(0j), which leads to approximating

the first term (the second moment) in 16² by E*[I²I(X > 4)]. Now we develop an upper

bound for this quantity. On the event {Ti > we have that L < Kj I αj for > 0 by

(8.1), where Kj = exp(— 0jξp + çj (0j )). Hence, since {X > p)} = U³j=1	 > ξp1, we get

Choosing αj > 0 to minimize the above bound subject to Σ .1=1 as = 1 gives a = Kj/ ΣL I K1.

We now put this all together in the algorithm below, in which all samples are gen-

erated independently and where Exp(η) denotes an exponential distribution with rate n .

IS algorithm for SAN example:

1. For each j 1,2, 3, define θj to be the root of (8.3), and define aj = Kj/Σ³l=1Kl,

where K1 = (1 — θl)—ml exp(-θl ξp) and ξp maxrmr/(1 — θr). Also, define ηj =
1 - O. Set N = 0, which is the total number of samples collected thus far.

2. Let N = N 1, and generate UN ~  unif[0, 1].

3. If UN < al, then generate A1 ~ Exp(η1 ), A² Exp(η1), A3 Exp(1), A4 Exp(1),

A5 ~Exp(1).

4. If al < UN < al + a², then generate A1 ~ Exp(η²), A2 Exp(1), A3 Exp(η2),

A4 ~ Exp(1), A5 Exp(η²)•
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5. If al + a2 < UN < al + a2 + a3, then generate A1 ti Exp(1), A2 Exp(1), A3~

Exp(1), A4 Exp(η3), A5 ~ Exp(η3)•

6. Compute T1 =A1 +A2, T2 = A1 +A3 +A5, T3 = A4 +A5, XN max(T1 , T2, T3), and

the likelihood ratio LN as in (8.1).

7. If N < n, then goto step 2. Otherwise, compute the IS estimator and confidence

interval, and stop.

8.2.2 IS+SS for SAN

We will use Y = T2 as a stratification variable, so we now want to compute the CDF

G* of Y under IS measure First let Gj be the CDF of Y under measure Pj, and define

ηj= 1 —O.Under measure P1, we have that A1 is exponential with rate η1 whileA3and

A5 are both exponential with rate 1, with A1,A3,A5 mutually independent. Thus, for t > 0

we have

Similarly, we can show that

Finally, under measure P2, we have that A1,A3,A5 are i.i.d. exponential with rate T12 , so T2

has an Erlang-3 distribution with scale parameter 772 ; i.e., G2(t) = 1 — e -7121 — η2te -η2t  —
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(1120 2 e -11272 . Thus, the CDF of Y under IS measure P* is given by Gs (t) =	 αjGj(t).

Define k strata 51, 52,	 , Sk for the stratification variable Y, and let Ai = P* {Y E Si} .

Also, define yi > 0 with Σki  = 1, and let ni = nyi. In our experiments, we generate

stratified samples using the "bin tossing" method of Glasserman et al. (2000b).

Let Exp(η) denote an exponential distribution with rate n. We then have the fol-

lowing algorithm, in which all generated samples are independent.

IS+SS algorithm with bin tossing for SAN:

1. For each j = 1,2,3, define θj to be the root of (8.3), and define aj = Kj/Σ³l=1&

where K1 = (1 - 01) -"1/ exp(--θ1 ξp) and ξp = maxr mr/ (1 — Or). Also, define

1 - θj. Set Ni = 0 for i = 1, . , k, where Ni is the number of samples in stratum i

collected thus far. Let N = 0, which is the number of strata that have enough samples

collected.

2. Let N = N + 1, and generate UN ~ unif[0, 1].

3. If UN < al, then generate A1 Exp(η1), A2 Exp(η2), A3 Exp(1), A4 Exp(1),

A5 ~ Exp(1).

4. If al < UN < α1 + a2, then generate A1 ~ Exp(η2), A2 Exp(1), A3 Exp(η2),

A4 Exp(1), A5 ~ ExP(η2)•

5. If a1 + a2 < UN < a1 + a2 + a3, then generate A1 Exp(1), A2 v Exp(1), A3 ~

Exp(1), A4 r•-■ Exp(η3), A5 ~ Exp(η3)•

6. Compute T1 -A1 +A2, T2 = A 1 +A3 +A5, T3 = A4 -+ A5, X = max (T1, T2, T3), Y = T2,

and L as in (8.1).

7. Find i such that Y E Si, and let Ni	 + 1. If Ni < ni, then set Xi,Ni, = X , i,Ni = 	 Y,

and L i ,Ni = L; otherwise, discard (X, Y,L).
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8. If N < n, then goto step 2. Otherwise, compute the IS+SS estimator and confidence

interval, and stop.

8.2.3 AV for SAN

To apply AV, we generate each sample X as follows. Let U1, , U5 be i.i.d. unif[0, 1]

random numbers, and for each i = 1, , 5, set Ai = —1n(1 — Ui) and = — ln(Ui). Then

for j = 1,2, 3, set 7) = Σ iєB j Ai and TI = ΣieB j 4 Finally, set X = max (T1 , T2 , T3) and

X' = max(T'1, T2, TD as the antithetic pair of outputs. Since X is monotonic in each Ui, we

have that X and X' are negatively correlated; see p. 181 of Ross (1997).

8.3 Choosing the Smoothing Parameter c

Recall φp  ,n,2 \C( 1 from (4.6), the centered finite-difference estimator of Op, where

n is the computational budget. The estimator φp,n,2 (c) scales the difference of quantile

estimators at p+c / n and for some smoothing parameter c 0, and we can use

φp,n,2(C) in the last step of the algorithm on p. 37 in Chapter 4 to construct a 100(1 — a)%

confidence interval for ξp.. We now discuss some recommendations for choosing c.

One possible goal guiding the selection of c is to minimize the mean-square error

(MSE) of p ,n,2(C) as an estimator of Op. Alternatively, we can choose c to minimize the

coverage error of the resulting confidence interval for ξp. In the case of crude Monte Carlo,

there has been some previous work carrying out asymptotic expansions to study these two

problems. Bofinger (1975) shows that under certain regularity conditions, the MSE of

φp,n,2(c) as n co takes the form

where Q(p) = F -¹ (p) and Q"' is its third derivative. Since the second term in (8.4) shrinks

more slowly than the first, selecting c as large as possible will maximize the rate (to first
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order) at which MSEn (c) decreases as n grows. As for the coverage error, define the

100(1 - a) % confidence interval for ξp as Jn (c) ((ξp,n±z1-α/2 09(1 - p) p n2 (c)

with 21_a/2 = 4) -¹ (1 - a/2). Under certain regularity conditions, Hall and Sheather

(1988) show that the coverage of Jn (c) for large n satisfies

where u2(x) = -x3 /4, u3(x) = ax with a = [3f' (ξp )2 - f (ξp)f" (ξp)] [6f (ξp)4]-¹ , and 9 is

the standard normal density function. The bracketed term in (8.5) represents the first-order

error term in the coverage. The first summand in this decreases more slowly than the other,

so we should choose c as large as possible to maximize the rate at which the first-order

error shrinks as n co.

When combining different values of c as in (4.7), we can use the following idea

from Glasserman (2004). Again let Q(x) = F -¹ (x), so Op = (p), where prime denotes

derivative. Let h = cn- ¹/²2, and a Taylor expansion of Q(p) yields

where odd powers of h cancel out. Similarly,

so we can cancel out the order h2 term by combining the two above results as

This suggests that when combining r = 2 values of c in (4.7), selecting c1 and c2 with

c2 = 2c1, w1 = 4/3 and w2 = -1/3 may lead to the estimator φp,n,2(c1 , c2) having low
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bias. 

8.4 Discussion of Empirical Results 

In our experiments, we constructed confidence intervals for the pth quantile ~p 

using CMC, IS, IS+SS, AV and CV, where the intervals have a nominal confidence level 

of 1 - a = 0.9. In each case, we constructed a confidence interval using the algorithm on 

p. 37 in Chapter 4, which consistently estimates the variance constant 1(2. This requires 

specifying a value for the smoothing parameter c of the finite-difference estimators of cjJp in 

(4.5) and (4.6), or values for CI, ... ,Cr and weights WI, ... , wr for the combined estimator 

in (4.7). We experimented with different values for these parameters and the computational 

budget n to study their effect on the coverage. 

The experiments used n = 50 and n = 100 x 4j for 0 :s; j :s; 4. Also, we took C = 2t 

for -4 :s; t :s; 2. In all cases we estimated coverage levels using m = 103 independent 

replications. Also, we applied common random numbers (CRN) when possible, which can 

lead to sharper comparisons. For example, in tables containing results for both CV and 

crude Monte Carlo, the simulated output (X, C) for CV shares the same value of X used in 

crude Monte Carlo. In our IS+SS experiments, we used k = 5 equiprobable strata defined 

by the intervals Si = (G- 1 ((i -1 )lk),G-1 (ilk)] for i = 1, ... ,5, where G is the CnF of the 

stratification variable Y, so each Ai = 11k. Also, we let '}1 = Ai. 

We first discuss how coverage converges as n increases for different values of c. 

Figures 8.2 and 8.3 are for IS-only on a normal for p = 0.8 and p = 0.95, respectively. 

Figures 8.4-8.7 are for IS+SS on the bivariate normal for p = 0.5 and 0.9 and for p = 0.8 

and p = 0.95. Figures 8.8 and 8.9 are for AVon the normal for p = 0.8 and p = 0.95. 

Figures 8.1 0-8.13 are for CV on the bivariate normal with p = 0.5 and p = 0.9 for p = 0.8 

and p = 0.95. Figures 8.14 and 8.15 are for CMC on the normal for p = 0.8 and p = 0.95. 



Figure 8.2 Coverage for IS-only for the normal for p = 0.8.
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Figure 8.3 Coverage for IS-only for the normal for p = 0.95.

Figure 8.4 Coverage for IS+SS for p = 0.8 for the bivariate normal with ρ = 0.5.



Figure 8.5 Coverage for IS+SS for p = 0.95 for the bivariate normal with ρ = 0.5.

78

Figure 8.6 Coverage for IS+SS for p = 0.8 for the bivariate normal with ρ = 0.9.

Figure 8.7 Coverage for IS+SS for p = 0.95 for the bivariate normal with ρ = 0.9.



Figure 8.8 Coverage for AV for p = 0.8 for the normal.
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Figure 8.9 Coverage for AV for p = 0.95 for the normal.

Figure 8.10 Coverage for CV for p = 0.8 for the bivariate normal with ρ = 0.5.



Figure 8.11 Coverage for CV for p = 0.95 for the bivariate normal with ρ = 0.5.
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Figure 8.12 Coverage for CV for p = 0.8 for the bivariate normal with ρ = 0.9.

Figure 8.13 Coverage for CV for p = 0.95 for the bivariate normal with ρ = 0.9.



Figure 8.14 Coverage for CMC for p = 0.8 for the normal.
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Figure 8.15 Coverage for CMC for p = 0.95 for the normal.

In general we see that as n increases for a fixed c and method, the coverage levels

converge to the nominal level of 0.9 in each case. Also, for fixed n, larger values of c

seem to lead to coverages that are closer to 0.9 than the smaller c for CMC and all of the

VRTs. Moreover, as n increases, the convergence appears to be faster for large c. Thus, the

observations in Section 8.3 for CMC that choosing large c is better appear to also be valid

for VRTs.

Figures 8.16-8.20 are for IS-only, IS+SS, AV, CV and CMC on the SAN for p =

0.95. The same patterns appear in the results for the SAN that were previously exhibited

for the normal case.



Figure 8.16 Coverage for IS-only for p = 0.95 for the SAN.
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Figure 8.17 Coverage for IS+SS for p = 0.95 for the SAN.

Figure 8.18 Coverage for AV for p = 0.95 for the SAN.



Figure 8.19 Coverage for CV for p = 0.95 for the SAN.
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Figure 8.20 Coverage for CMC for p 0.95 for the SAN.

Tables 8.1-8.40 provide more detailed results about coverage and average half-

widths, where Tables 8.1-8.20 are for the normal or bivariate normal model, and Ta-

bles 8.21-8.40 contain results for the SAN. In each table the first column gives the com-

putational budget n. The next three columns give the results for the centered, forward and

backward finite-difference (FD) estimators of Op from (4.6) and (4.5).

Two boundary conditions of pn in (4.6) and (4.5) need to be satisfied while esti-

mating Op : 1) p c/ < 1, when c > 0; 2) |n x c/ > 1, which, equivalently, means

the perturbation position needs to be at least one. If one of them is not satisfied, then cor-

responding coverages and half-widths will display "NaN". For instance, when p= 0.95,

c = 1 and n < 400, the coverages and half-widths display "NaN".
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Table 8.1: Coverages for IS with c = 0.1 for the Normal when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.901 0.845 0.193

100 0.842 0.820 0.742 0.887 0.881 0.253
400 0.870 0.855 0.819 0.889 0.894 0.393

1600 0.881 0.874 0.854 0.896 0.901 0.525
6400 0.892 0.887 0.876 0.902 0.902 0.614

25600 0.897 0.896 0.893 0.899 0.904 0.705

Table 8.2: Average Half-Widths for IS with c = 0.1 for the Normal when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	Mean
50 NaN NaN NaN 0.271 0.161 0.757

100 0.119 0.120 0.129 0.185 0.119 0.661
400 0.061 0.062 0.064 0.074 0.061 0.636

1600 0.031 0.031 0.032 0.034 0.031 0.477
6400 0.016 0.016 0.016 0.017 0.016 0.337

25600 0.007 0.008 0.007 0.008 0.008 0.229

In terms of coverage, the backward FD estimator appears to do worse than the other

two, and the centered FD estimator might perform slightly better than the forward estimator.

This complements the MSE analysis in Section 7.1 of Glasserman (2004) showing that

centered finite-difference estimators of the derivative of a mean have asymptotically smaller

MSE than forward estimators.

Table 8.3: Coverage for IS with c = 0.5 for the Normal when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.881 0.861 0.203

100 1.000 1.000 0.727 0.873 0.860 0.281
400 0.912 0.959 0.809 0.884 0.889 0.381

1600 0.912 0.924 0.869 0.884 0.902 0.499
6400 0.903 0.917 0.885 0.898 0.897 0.628

25600 0.890 0.894 0.888 0.900 0.892 0.725



Table 8.4: Average Half-Widths for IS with c = 0.5 for the Normal when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.271 0.161 0.815

100 0.452 0.816 0.090 0.183 0.119 0.828
400 0.066 0.080 0.051 0.073 0.061 0.622

1600 0.031 0.035 0.028 0.036 0.031 0.444
6400 0.016 0.016 0.014 0.017 0.016 0.366

25600 0.008 0.008 0.007 0.008 0.008 0.243

Table 8.5: Coverages for IS+SS with c = 0.5 on the Bivariate Normal Distribution with p = 0.9
when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.782 0.867 0.184

100 1.000 1.000 0.756 0.848 0.873 0.250
400 0.915 0.953 0.812 0.884 0.890 0.407

1600 0.909 0.930 0.872 0.899 0.904 0.531
6400 0.888 0.904 0.871 0.894 0.885 0.611

25600 0.902 0.909 0.892 0.906 0.908 0.684

Table 8.6: Average Half-Widths for IS+SS with c
When p = 0.95

=  0.5 for the Bivariate Normal with p = 0.9

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.271 0.146 0.971

100 0.411 0.741 0.081 0.166 0.107 0.798
400 0.059 0.072 0.047 0.064 0.055 0.619

1600 0.028 0.031 0.026 0.031 0.028 0.545
6400 0.014 0.015 0.013 0.015 0.014 0.296

25600 0.007 0.007 0.007 0.008 0.007 0.233
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Table 8.7: Coverages for IS+SS with c = 0.25 on the Bivariate Normal Distribution with p = 0.9
when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	Mean	 C1
Combining

= 0.25 and c2 = 0.5
50 0.915 0.965 0.731 0.782 0.867 0.184 NaN

100 0.898 0.927 0.779 0.848 0.873 0.250 0.236
400 0.882 0.910 0.822 0.884 0.890 0.407 0.870

1600 0.906 0.914 0.884 0.899 0.904 0.531 0.902
6400 0.890 0.895 0.877 0.894 0.885 0.611 0.887

25600 0.905 0.909 0.897 0.906 0.908 0.684 0.903

Table 8.8: Average Half-Widths for IS+SS with c 0.25 for the Bivariate Normal with p = 0.9
When p = 0.95

n
Centered Forward Backward

FD 	 BD 	 FD Batching Exact Op
Estimating 	 Combining

Mean 	 c1 = 0.25 and c2 = 0.5
50 0.174 0.235 0.113 0.271 0.146 0.971 NaN

100 0.115 0.139 0.090 0.166 0.107 0.798 0.016
400 0.056 0.062 0.050 0.064 0.055 0.619 0.055

1600 0.028 0.030 0.025 0.031 0.028 0.545 0.028
6400 0.014 0.014 0.013 0.015 0.014 0.296 0.014

25600 0.007 0.007 0.007 0.008 0.007 0.233 0.007

Table 8.9: Coverages for AV with c = 1 for the Normal when p = 0.95

n
Centered

FD
Forward

FD
Backward

FD Batching Exact Op
Estimating

Mean
50 NaN NaN NaN 0.850 0.791 1.000

100 NaN NaN NaN 0.459 0.853 1.000
400 0.994 1.000 0.751 0.746 0.886 1.000

1600 0.932 0.967 0.827 0.859 0.910 1.000
6400 0.911 0.946 0.875 0.889 0.909 1.000

25600 0.905 0.923 0.897 0.894 0.907 1.000



Table 8.10: Average Half-Widths for AV with c = 1 for the Normal when p = 0.95

n
Centered

FD
Forward

FD
Backward

FD Batching Exact Op
Estimating

Mean
50 NaN NaN NaN 0.315 0.252 0.000

100 NaN NaN NaN 0.310 0.211 0.000
400 0.227 0.370 0.086 0.123 0.116 0.000

1600 0.063 0.077 0.050 0.064 0.059 0.000
6400 0.030 0.036 0.027 0.032 0.030 0.000

25600 0.015 0.016 0.014 0.016 0.015 0.000

Table 8.11: Coverages for AV with c = 0.5 for the Normal when p = 0.95

n
Centered

FD
Forward

FD
Backward

FD Batching Exact Op
Estimating

Mean
50 NaN NaN NaN 0.850 0.791 1.000

100 0.943 0.979 0.696 0.459 0.853 1.000
400 0.896 0.950 0.804 0.746 0.886 1.000

1600 0.909 0.936 0.859 0.859 0.910 1.000
6400 0.909 0.929 0.885 0.889 0.909 1.000

25600 0.907 0.913 0.895 0.894 0.907 1.000

Table 8.12: Average Half-Widths for AV with c =- 0.5 for the the Normal when p = 0.95

n
Centered

FD
Forward

FD
Backward

FD Batching Exact Op
Estimating

Mean
50 NaN NaN NaN 0.315 0.252 0.000

100 0.321 0.493 0.149 0.310 0.211 0.000
400 0.123 0.150 0.096 0.123 0.116 0.000

1600 0.060 0.066 0.054 0.064 0.059 0.000
6400 0.030 0.032 0.028 0.032 0.030 0.000

25600 0.015 0.015 0.015 0.016 0.015 0.000

Table 8.13: Coverages for CV with c = 1 for the Bivariate Normal with p = 0.9 when p = 0.95

n
Centered Forward Backward

FD 	 FD	 FD
Estimating

Batching Exact Op 	Mean
50 NaN NaN NaN 0.113 0.728 0.913

100 NaN NaN NaN 0.169 0.740 0.905
400 0.982 0.999 0.758 0.777 0.889 0.906

1600 0.918 0.969 0.827 0.908 0.908 0.908
6400 0.905 0.927 0.865 0.903 0.905 0.892

25600 0.900 0.918 0.882 0.903 0.905 0.892
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Table 8.14: Average Half-Widths for CV with c = 1 for the Normal with p = 0.9 when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.799 0.360 0.108

100 NaN NaN NaN 0.671 0.263 0.074
400 0.238 0.373 0.103 0.178 0.137 0.036

1600 0.073 0.086 0.058 0.078 0.068 0.018
6400 0.035 0.038 0.031 0.037 0.034 0.009

25600 0.017 0.019 0.016 0.019 0.017 0.005

Table 8.15: Coverages for CV with c 0.5 for the Bivariate Normal with p = 0.9 when p = 0.95

n
Centered Forward Backward

FD 	 H.) 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.113 0.728 0.913

100 0.825 0.850 0.675 0.169 0.740 0.905
400 0.890 0.918 0.800 0.777 0.889 0.906

1600 0.897 0.917 0.851 0.908 0.908 0.908
6400 0.901 0.912 0.875 0.903 0.905 0.892

25600 0.903 0.906 0.891 0.903 0.905 0.892

Table 8.16: Average Half-Widths for CV with c = 0.5 for the Bivariate Normal with p = 0.9 when
p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.799 0.360 0.108

100 0.329 0.468 0.190 0.671 0.263 0.074
400 0.145 0.174 0.116 0.178 0.137 0.036

1600 0.069 0.076 0.062 0.078 0.068 0.018
6400 0.034 0.036 0.032 0.037 0.034 0.009

25600 0.017 0.018 0.016 0.019 0.017 0.005



Table 8.17: Coverages for CMC with c = 1 for the Normal when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.333 0.910 0.878

100 NaN NaN NaN 0.832 0.914 0.891
400 0.987 0.998 0.788 0.663 0.907 0.894

1600 0.916 0.958 0.818 0.811 0.901 0.911
6400 0.904 0.933 0.875 0.889 0.905 0.894

25600 0.909 0.922 0.888 0.891 0.916 0.890

Table 8.18: Average Half-Widths for CMC with c = 1 for the Normal when p 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.376 0.492 0.232

100 NaN NaN NaN 0.330 0.347 0.164
400 0.304 0.448 0.129 0.171 0.174 0.082

1600 0.092 0.111 0.073 0.091 0.087 0.041
6400 0.044 0.049 0.039 0.046 0.043 0.021

25600 0.022 0.023 0.020 0.023 0.022 0.010

Table 8.19: Coverages for CMC with c = 0.5 for the Normal when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.333 0.910 0.897

100 0.939 0.968 0.711 0.832 0.914 0.891
400 0.903 0.926 0.828 0.663 0.907 0.894

1600 0.886 0.900 0.841 0.811 0.901 0.911
6400 0.901 0.907 0.885 0.889 0.905 0.894

25600 0.906 0.914 0.897 0.891 0.916 0.890

Table 8.20: Average Half-Widths for CMC with c = 0.5 for the Normal when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.376 0.492 0.232

100 0.455 0.668 0.242 0.330 0.347 0.164
400 0.181 0.215 0.147 0.171 0.174 0.082

1600 0.088 0.097 0.079 0.091 0.087 0.041
6400 0.043 0.046 0.041 0.046 0.043 0.021

25600 0.022 0.022 0.021 0.023 0.022 0.010
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Table 8.21: Coverages for IS with c = 1 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	Mean
50 NaN NaN NaN 0.844 0.842 0.885

100 NaN NaN NaN 0.838 0.891 0.903
400 1.000 1.000 0.696 0.880 0.897 0.897

1600 0.958 0.997 0.789 0.903 0.895 0.895
6400 0.913 0.954 0.840 0.903 0.901 0.898

25600 0.906 0.931 0.871 0.912 0.901 0.887

Table 8.22: Average Half-Widths for IS with c = 1 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.823 0.536 1.003

100 NaN NaN NaN 0.536 0.400 0.708
400 1.475 2.819 0.157 0.235 0.207 0.354

1600 0.132 0.185 0.089 0.114 0.104 0.178
6400 0.055 0.065 0.048 0.057 0.052 0.089

25600 0.026 0.029 0.025 0.029 0.026 0.045

Table 8.23: Coverages for IS with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.844 0.842 0.885

100 1.000 1.000 0.727 0.838 0.891 0.903
400 0.914 0.961 0.807 0.880 0.897 0.897

1600 0.892 0.937 0.844 0.903 0.895 0.895
6400 0.906 0.919 0.879 0.903 0.901 0.898

25600 0.901 0.909 0.889 0.912 0.901 0.887

Table 8.24: Average Half-Widths for IS with c = 0.5 for the SAN when p = 0.95

11

Centered Forward Backward
FD 	 FD 	 FD Batching Exact Op

Estimating
Mean

50 NaN NaN NaN 0.823 0.536 1.003
100 3.444 6.609 0.278 0.536 0.400 0.709
400 0.226 0.282 0.170 0.235 0.207 0.356

1600 0.106 0.120 0.093 0.114 0.104 0.178
6400 0.053 0.056 0.050 0.057 0.052 0.089

25600 0.026 0.029 0.025 0.029 0.026 0.045
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Table 8.25: Coverages for IS+SS with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.849 0.825 0.845

100 1.000 1.000 0.742 0.876 0.881 0.866
400 0.923 0.965 0.817 0.904 0.899 0.892

1600 0.882 0.920 0.835 0.900 0.880 0.914
6400 0.898 0.911 0.876 0.904 0.902 0.898

25600 0.890 0.899 0.883 0.893 0.895 0.910

Table 8.26: Average Half-Widths for IS+SS with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.661 0.449 0.534

100 2.909 5.578 0.241 0.425 0.338 0.391
400 0.190 0.236 0.143 0.191 0.175 0.201

1600 0.090 0.100 0.079 0.097 0.088 0.101
6400 0.044 0.048 0.042 0.048 0.044 0.051

25600 0.022 0.023 0.022 0.024 0.022 0.025

Table 8.27: Coverages for IS+SS with c = 0.25 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating 	 Combining

Batching Exact Op 	 Mean 	 c1 = 0.25 and c2 = 0.5
50 0.894 0.938 0.702 0.849 0.825 0.845 NaN

100 0.907 0.937 0.854 0.876 0.881 0.866 0.879
400 0.913 0.914 0.842 0.904 0.899 0.892 0.895

1600 0.880 0.895 0.845 0.900 0.880 0.914 0.881
6400 0.891 0.902 0.878 0.904 0.902 0.898 0.890

25600 0.893 0.890 0.885 0.893 0.895 0.910 0.890

Table 8.28: Average Half-Widths for IS+SS with c = 0.25 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 Ft) 	 FD
Estimating 	 Combining

Batching Exact Op 	Mean	 c1 = 0.25 and c2 = 0.5
50 0.583 0.734 0.343 0.661 0.449 0.534 NaN

100 0.362 0.450 0.276 0.425 0.338 0.391 0.476
400 0.177 0.198 0.157 0.192 0.175 0.200 0.173

1600 0.088 0.093 0.083 0.097 0.088 0.101 0.088
6400 0.044 0.046 0.043 0.048 0.044 0.051 0.044

25600 0.022 0.022 0.022 0.024 0.022 0.025 0.022
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Table 8.29: Coverages for AV with c = 1 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact φp 	 Mean
50 NaN NaN NaN 0.858 0.788 0.879

100 NaN NaN NaN 0.492 0.855 0.900
400 0.998 1.000 0.752 0.782 0.908 0.907

1600 0.917 0.971 0.802 0.864 0.888 0.906
6400 0.915 0.936 0.861 0.888 0.904 0.908

25600 0.892 0.909 0.879 0.893 0.895 0.910

Table 8.30: Average Half-Widths for AV with c = 1 for the SAN when p 0.95

n
Centered Forward Backward

ED 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.887 0.701 0.212

100 NaN NaN NaN 0.565 0.584 0.150
400 0.751 1.272 0.226 0.334 0.321 0.075

1600 0.178 0.222 0.134 0.176 0.164 0.038
6400 0.084 0.094 0.074 0.090 0.082 0.019

25600 0.041 0.044 0.039 0.044 0.041 0.009

Table 8.31: Coverages for AV with c 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	 Mean
50 NaN NaN NaN 0.858 0.788 0.879

100 0.961 0.989 0.670 0.492 0.855 0.900
400 0.915 0.962 0.811 0.782 0.908 0.907

1600 0.882 0.927 0.831 0.864 0.888 0.906
6400 0.905 0.922 0.875 0.888 0.904 0.908

25600 0.894 0.903 0.886 0.893 0.895 0.910

Table 8.32: Average Half-Widths for AV with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op 	Mean
50 NaN NaN NaN 0.887 0.701 0.212

100 1.016 1.632 0.400 0.565 0.584 0.150
400 0.344 0.426 0.261 0.334 0.321 0.075

1600 0.167 0.186 0.148 0.176 0.164 0.038
6400 0.082 0.087 0.078 0.090 0.082 0.019

25600 0.041 0.043 0.040 0.044 0.041 0.009
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Table 8.33: Coverages for CV with c = I for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.114 0.531 0.881

100 NaN NaN NaN 0.194 0.533 0.870
400 0.980 0.995 0.762 0.676 0.884 0.901

1600 0.908 0.956 0.806 0.877 0.886 0.890
6400 0.896 0.923 0.842 0.905 0.891 0.886

25600 0.898 0.909 0.879 0.896 0.895 0.891

Table 8.34: Average Half-Widths for CV with c = I for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.796 0.629 0.186

100 NaN NaN NaN 0.613 0.448 0.133
400 0.590 0.966 0.213 0.412 0.290 0.068

1600 0.165 0.204 0.125 0.176 0.150 0.034
6400 0.077 0.087 0.068 0.083 0.076 0.017

25600 0.038 0.041 0.036 0.041 0.038 0.008

Table 8.35: Coverages for CV with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact φ 	 Mean
50 NaN NaN NaN 0.114 0.531 0.881

100 0.640 0.641 0.593 0.194 0.533 0.870
400 0.900 0.918 0.823 0.676 0.884 0.901

1600 0.877 0.905 0.823 0.877 0.886 0.890
6400 0.878 0.901 0.852 0.905 0.891 0.886

25600 0.894 0.896 0.884 0.896 0.895 0.891

Table 8.36: Average Half-Widths for CV with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.796 0.629 0.186

100 0.649 0.925 0.375 0.613 0.448 0.133
400 0.323 0.393 0.253 0.412 0.290 0.068

1600 0.153 0.171 0.135 0.176 0.150 0.034
6400 0.076 0.081 0.072 0.083 0.076 0.017

25600 0.038 0.039 0.036 0.041 0.038 0.008

93



Table 8.37: Coverages for CMC with c = 1 for the SAN when p = 0.95

Centered Forward Backward Estimating
n FD FD FD Batching Exact Op Mean

50 NaN NaN NaN 0.420 	 0.918 0.897
100 NaN NaN NaN 0.860 	 0.905 0.886
400 0.994 1.000 0.756 0.867 	 0.908 0.896

1600 0.922 0.970 0.805 0.839 	 0.899 0.902
6400 0.898 0.927 0.855 0.893 	 0.893 0.914

25600 0.914 0.936 0.880 0.907 	 0.913 0.915
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Table 8.38: Average Half-Widths for CMC with c = 1 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact φ 	 Mean
50 NaN NaN NaN 0.933 1.346 0.392

100 NaN NaN NaN 0.920 0.952 0.279
400 0.964 1.595 0.332 0.452 0.476 0.140

1600 0.258 0.321 0.194 0.253 0.238 0.070
6400 0.121 0.136 0.106 0.129 0.119 0.035

25600 0.060 0.063 0.056 0.064 0.060 0.018
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Table 8.39: Coverages for CMC with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.420 0.918 0.897

100 0.935 0.967 0.714 0.860 0.905 0.886
400 0.915 0.940 0.798 0.867 0.908 0.896

1600 0.893 0.922 0.826 0.839 0.899 0.902
6400 0.890 0.895 0.868 0.893 0.893 0.914

25600 0.905 0.915 0.889 0.907 0.913 0.915

Table 8.40: Average Half-Widths for CMC with c = 0.5 for the SAN when p = 0.95

n
Centered Forward Backward

FD 	 FD 	 FD
Estimating

Batching Exact Op	 Mean
50 NaN NaN NaN 0.933 1.346 0.392

100 1.373 2.105 0.638 0.920 0.952 0.279
400 0.503 0.623 0.386 0.452 0.476 0.140

1600 0.240 0.250 0.211 0.253 0.238 0.070
6400 0.120 0.124 0.112 0.129 0.119 0.035

25600 0.060 0.060 0.058 0.064 0.060 0.018

We also wanted to see the "penalty" for estimating Op to construct confidence inter-

vals. To do this, we also constructed intervals using the exact value of Op. The columns in

the tables labeled "Exact Op" contain these results. In general, we see that coverage levels

are closer to the nominal level of 0.9 when the exact value of Op is used instead of being

estimated.

For comparison, we also used batching (with b = 10 batches) as an alternative ap-

proach to construct confidence intervals; see the columns labeled "Batching" in the tables.

(In batching we allocate a computational budget of n/b to each batch, with batches simu-

lated independently. We form an estimator of the quantile from each batch, and then take

the sample mean and sample variance of the resulting b quantile estimators to construct

a confidence interval for TheThe empirical results show that batching generally leads to

somewhat better coverage levels than the methods based on the finite-difference estimators

of Op. However, the confidence intervals for batching have larger average half-widths.
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We also constructed confidence intervals for the mean as another benchmark for

comparison. For AV, as shown in Tables 8.9— 8.12, the coverage rates are all 1s for different

sample sizes while the half-widths are all Os, demonstrating applying AV to the standard

normal is a special case, where the mean estimator is identical to the theoretical mean 0

and variance estimator equals to 0 after the antithetic pairs cancel out in constructing the

mean estimator and the variance estimator. For CV, the coverage rates for the confidence

intervals for the mean are close to the nominal level for all values of n, demonstrating

that for the sample means, the CLT asymptotics appear to take effect fairly quickly and in

general more rapidly than for the quantile estimators. For IS-only and IS+SS on the SAN,

coverages when estimating the mean are again close to the nominal level. However, for

IS-only and IS+SS for the normal and bivariate normal, coverage for the mean intervals are

poor. This may be because the importance-sampling distribution was chosen to estimate

the quantile, but this distribution is possibly very inappropriate for estimating the mean,

leading to coverage problems.

Finally, some of the tables present results from applying the combined estimator of

Op from (4.7). We combined r = 2 values of c, using the strategy described at the end of

Section 8.3. From Tables 8.7, 8.8, 8.27 and 8.28, it is not clear if the combining estimator

outperforms the single estimator of Op in terms of displaying a faster convergence and/or a

smaller half-width. "NaN" represents data not available due to two reasons below: the sum

of the probability and the positive perturbed term exceeds 1; the perturbed postion is less

than 1.

8.5 Program Description and Testing

8.5.1 Program Description

The empirical study is a set of simulation experiments that require extensive numer-

ical computation. Matlab, widely used by engineers and scientists for scientific computing

and prototyping as stated by Kuncicky (2004), is a natural development tool. As an inter-
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preted programming language, however, Matlab has inevitably shown low efficiency except

for matrix-heavy computations. Therefore, all the experiments were carried out on high-

performance computing clusters. Only the pilot study and some test cases were conducted

on personal computers.

To implement CRN effectively, the entire program package consists of three func-

tional components: CMC/AV/CV, IS and IS+SS applying CMC, AV, CV, IS and IS+SS to

both the normal/bivariate normal and the SAN experiments. In the following, each file and

subprogram/subroutine, whic is a Matlab m-file, will now be described in more details.

AV/CV/CMC

• AVCVCMC.m: a main program that integrates coverages and half-widths from the

SAN experiments applying AV, CV and CMC in a 1 x 222 vector.

• AVCVCMC2.m: a main program that integrates coverages and half-widths from the

normal/bivariate normal experiments applying AV, CV and CMC in a 1 x 222 vector.

• batch.m: divides a column vector into a fixed number of intervals and rearrange them

in a matrix for batching experiments.

• CII.m: an m-file that computes coverages and half-widths for the experiments using

finite difference to estimate 1 f (ξp) according to (4.5) and (4.6).

• Cl2.m: computes coverages and half-widths for the batching experiments.

• CMCBatch.m: computes the sample mean and sample variance of the quantile esti-

mators from batching while applying CMC.

• ComputeBeta.m: computes βn(x) for the experiments while applying CV according

to (7.3).

• ComputeT.m: computes Ti for the experiments while applying CV according to (7.7).
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• CV.m: computes estimators of ξ p , Op and ψp for the experiments applying CV and

integrates them in a 5 x 1 vector.

• CVBatch.m: performs batching while applying CV and computes the sample mean

and the sample variance of the quantile estimators from batching.

• Empirical.m: performs as an indicator function.

• FBV.m: computes the forward and the backward finite difference in general.

• GetAV.m: computes estimators of ξp , Op and ψp for the experiments applying AV

and integrates them in a 5 x 1 vector.

• GetCMC.m: computes estimators of ξp, Op and ψp for the experiments applying

CMC and integrates them in a 5 x 1 vector.

• GetPsi.m: computes the estimator of VIP for the experiments applying AV according

to (6.2).

• GetQt.m: computes the estimator of forfor the experiments using finite difference to

estimate 1/f (ξp) according to (4.5) and (4.6).

• sampling.m: generates CRN samples for the SAN experiments applying CMC, AV

and CV. More specifically, the output is a 1 x 3 vector with the 1st entry as the longest

path from the original distribution, 2nd entry as the longest path from the distribution

applying AV, and 3rd entry as a second path from the original distribution.

• Size.m: calls sampling.m to generate n CRN samples for the SAN experiments ap-

plying AV, CV and CMC, respectively and integrates them in a 1 x 3n vector.

• Size2.m: integrates n samples from the normal/bivariate normal experiments apply-

ing AV, CV and CMC, respectively in a 1 x 3n vector.

• SV.m: computes an intermediate result of Var[C]. in (7.5).
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• TriMax.m: returns the greatest number if inputs are three numbers; returns a vector

with the greatest number in each entry if inputs are three vectors; returns a matrix

with the greatest number in each entry if inputs are three matrices.

• WEIGHT.m: an m-file that assigns weights to Op estimators for combining experi-

ments according to (4.7).

The programs for both the SAN and the normal/bivariate normal experiments have

the following structure.

Function AVCVCMC(lambda,p,b,n,m) includes the input lambda as the rate pa-

rameter of the exponential distribution, p as the probability of interest, b as the number of

batches, n as the sample size, and m as the replication times of the simulation experiment.

1. Preprocessing: Define the theoretical quantile qt of X, the theoretical quantile q of

the control variate C and the theoretical mean of X; preallocate memory for multiple

vectors and matrices to store intermediate and end results.

2. Use sampling.m and Size.m to generate samples for AV, CV and CMC and integrate

them in a row vector.

3. Use FBV.m to produce forward and backward finite difference of pn .

4. Use GetCMC.m, GetAV.m and CV.m to compute estimates for e , Op with centered,

forward and backward finite difference and ψp .

5. Use CII .m to construct the confidence intervals for experiments applying AV, CV

and CMC in terms of Op estimators with different c values.

6. Use WEIGHT.m and results from Step (4) to construct the confidence intervals in

terms of combining Op estimators.

7. Use CMCBatch.m, AVBatch.m and CVBatch.m to construct confidence intervals for

the batching experiment.
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8. Use the samples from Step (3) to construct confidence intervals for the mean estima-

tion.

9. Repeat Step (2)—(8) m times to complete the coverage experiment.

IS: Below are brief reviews of the Matlab m-files used for IS

• batch.m and trimax.m: same as batch.m in the AV/CV/CMC component.

• Compare.m: sets the flag of sampling for stratification.

• GetAlpha.m: computes a for the SAN experiments as specified in Section 8.2.1.

• GetK.m: computes K for the SAN experiments as specified in Section 8.2.1.

• GetL.m: computes the likelihood ratio for the SAN experiments in (8.1) as specified

in Section 8.2.1.

• GetL2.m: computes the likelihood ratio for the normal/bivariate normal experiments.

• GetPsi.m: computes ψp estimator for the normal/bivariate normal experiments.

• GetPsil.m: computes ψp estimator for the SAN experiments according to Theo-

rem 6.

• GetQt.m: computes 4p estimator for the experiments while applying IS.

• GetStr.m: performs stratification on normal/bivariate normal experiments.

• GetTheta.m: computes 0 as specified in Section 8.2.1.

• GetXi.m: computes ζj for the experiments while applying IS as specified in Sec-

tion 8.2.1.

• IS.m: computes coverages and half-widths for the SAN while applying IS.
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• ISN.m: computes coverages and half-widths for the normal/bivariate normal experi-

ments while applying IS.

The program for the SAN experiments has the following structure. The program

for the normal/bivariate normal experiments has a similar structure except for the sampling

part.

Function IS(p, j, b, n, r) includes the input p as the probability of interest, j as the

number of paths of the SAN, b as the number of batches, n as the sample size and r as the

replication times of the simulation experiments.

I . Preprocessing: Define the theoretical quantile tq of X and the theoretical mean of

X; preallocate memory for multiple vectors and matrices to store intermediate and

end results; precalculate 0, 	 and αj by using GetTheta.m, GetXi.m, GetXi.m,

trimax.m, GetK.m and GetAlpha.m for applying IS.

2. Use Matlab built-in function rand() to generate uniform random samples between 0

and 1 and then compare it with a(1, 1), a(1,1)+ a (2, 1) and 1 to decide on which

path IS should be applied.

3. Use trimax.m and GetL.m to compute the longest path for the SAN and the corre-

sponding likelihood ratio.

4. Use getQt.m to compute the ξp estimator.

5. Use GetPsi.m to compute the ψp estimator.

6. Construct confidence intervals where Op are estimated by centered/forward/backward

finite difference with different c values.

7. Construct confidence intervals for combining Op estimators.

8. Use batch.m and GetQt.m to construct intervals for the hatching experiment.
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9. Construct intervals for mean estimation.

10. Repeat (2)—(9) r times to complete the coverage experiment.

IS+SS: Below are brief reviews of the Matlab m-files used for IS+SS.

• batch.m and trimax.m: same as that in AV/CV/CMC and IS components. Com-

pare.m, GetAlpha.m, GetK.m, GetQt.m, GetXi.m: same as those in IS component.

• batch1.m: performs hatching for the experiments while applying IS+SS.

• GetL2.m: computes the likelihood ratio for the experiments while applying IS+SS as

specified in Section 8.2.2.

• GetPsil.m: computes ψp estimator according to Theorem 6 for the experiments while

applying IS+SS.

• GetVar.m: computes the sample variance of X for mean estimation while applying

IS+SS.

• strata.m: performs stratification in an equiprobable way as specified in Section 8.4.

• STR.m: computes coverages and half-widths for the SAN experiments while apply-

ing IS+SS.

• STR2.m: computes coverages and half-widths for the normal/bivariate normal ex-

periments while applying IS+SS.

The program for the SAN experiments has the following structure. The program

for the normal/bivariate normal experiments has a similar structure except for the sampling

part.

Function ST R(p, j,w,n,r,b) includes the input p as the probability of interest, j as

the number of paths of the SAN, w as the number of strata, n as the sample size in each
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stratum, r as the replication times of the simulation experiments and b as the number of

batches.

1. Preprocessing: define the theoretical quantile tq of X and the theoretical mean of X;

preallocate memory for multiple vectors and matrices to store intermediate and end

results.

2. Use strata.m to set up the stratification in an equiprobable way as specified in Sec-

tion 8.4.

3. Use GetTheta.m, GetXi.m, trimax.m, GetK.m and GetAlpha.m to compute 19, κj

and aj for applying IS.

4. Same as Step (2) in the IS component.

5. Use compare.m to decide if more samples are needed to fill up each stratum. More

specifically, a status variable flag = 1 is set initially before the loop of generating

samples starts. The only condition for the loop to stop is flag 1. If all the strata

have n samples, compare.m will update flag = 0 and then the loop stops; otherwise,

the loop continues to generate more samples.

6. Use trimax.m and GetL.m to compute the longest path for the SAN and the corre-

sponding likelihood ratio.

7. Use GetQt.m and GetPsil.m to construct confidence intervals in terms of different c

values.

8. Construct confidence intervals for the combining experiment.

9. Use batch1.m and GetQt.m to construct confidence intervals for batching.

10. Construct confidence intervals for the mean estimation.

11. Repeat Step (4) —(10) to complete the coverage experiment.



104

8.5.2 Program Testing

System verification and validation (V&V) activities take place at each stage of the

software process from requirements reviews through code inspection. Carrying out V&V

is not only to check if the software conforms to its specification both from functional and

non-functional requirements, but also to ensure that the system meets the "customer's"

expectations. The ultimate goal, concluded by Sommerville (2004), is to establish the

confidence that the system is a good fit for its intended use.

Since these programs are designed particularly for the simulation experiments, the

formal V&V processes can be simplified to program testing, which is intended to discover

and fix system defects at the program stage. Two fundamental testing activities, com-

ponent testing (testing parts of the program) and system testing (testing the system as a

whole), have been applied to test the validity of the program. Specifically, integration test-

ing is the most widely used approach in finding the source of problems and identifying the

components in the system that need to be further debugged and analyzed.

Take the AV/CV/CMC functional component as an example. Its subprograms can

be traced back to three independent programs designed to compute coverages and half-

widths for the experiments while applying AV, CV and CMC, respectively. Therefore, it is

appropriate to test each unit program first and then validate the integration, i.e., a mixture

of top -down (develop the overall skeleton of the system first and then add components to

it) and bottom-up (integrate the components that provide common services first and then

add the functional components incrementally) in this case.

For a specific function in this case, two testing methods have been heavily used:

comparison testing and scenario-based testing. Comparison testing is to compare the re-

sults generated by programs and derived from calculations when the results can be com-

puted analytically. As many intermediate results of our experiments fall in this category,

comparison testing has been widely used. Scenario-based testing is to reveal defects by

executing programs under predetermined test cases. When results can not be computed
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analytically, test cases are designed to increase the chances of exposing defects.

The following three sections are devoted to explaining in more details how these

two methods were used to debug the program.

AV/CV/CMC

Since it is a highly integrated program, none of its functions can be tested thor-

oughly by comparison testing alone.

Two functions are chosen to demonstrate how scenario-based testing is built to val-

idate their correctness.

• batch.m: batch(b,n,A), where b, n and A denotes the number of batches, the entire

sample size of A, and the column vector, respectively. The output should be a (n/ b) x

b matrix.

1. Input: b = 5, n = 10, A = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10](a column vector of size 10)

Output: [1 3 5 7 9; 2 4 6 8 10] (a 2 x 5 matrix displayed after the execution of

the program)

Conclusion: True as the column vector is divided into five batches with two

samples each.

2. Input: b 5, n = 3, A = [1;2; 3] (a column vector of size 3)

Output: Warning: Size vector should be a row vector with integer elements.

Conclusion: True as hatching cannot be operated on the column vector.

3. Input: b = 2, n = 2, A = [12]

Output:Attempted to access A(2, 1); index out of bounds because size(A)=[1,2]).

Conclusion: True as the row vector does not satisfy the requirements of the

input.
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• GetQt.m: GetQt(n,p,F), where n, p and F denotes the row size of F, the probability

of interest, and an n x 2 matrix generated from sampling.

1. Scenario(input): for the SAN experiment while applying CV, set sample size n

is 100 and the probability of interest p is 0.95 and the matrix F generated from

the first part in CV.m: F =

[0.5947 0.0103; 0.7233 0.0103; 0.7914 0.0103; 1.0875 0.0103; 1.1129 0.0103;

1.1472 0.0103; 1.3395 0.0103; 1.3549 0.0103; 1.3602 0.0103; 1.4233 0.0103;

1.4727 0.0103; 1.4869 0.0103; 1.7637 0.0103; 1.7975 0.0103; 1.9006 0.0103;

1.9047 0.0103; 1.9606 0.0103; 1.9654 0.0103; 2.0174 0.0103; 2.0329 0.0103;

2.0540 0.0103; 2.0584 0.0103; 2.0594 0.0103; 2.0847 0.0103; 2.1145 0.0103;

2.1371 0.0103; 2.1584 0.0103; 2.2212 0.0103; 2.2237 0.0103; 2.2827 0.0103;

2.2883 0.0103; 2.3110 0.0103; 2.3120 0.0103; 2.3149 0.0103; 2.3463 0.0103;

2.3803 0.0103; 2.3860 0.0103; 2.4133 0.0103; 2.4304 0.0103; 2.4354 0.0103;

2.4924 0.0103; 2.5104 0.0103; 2.5588 0.0103; 2.6414 0.0103; 2.6523 0.0103;

2.6529 0.0103; 2.6541 0.0103; 2.6836 0.0103; 2.7436 0.0103; 2.8588 0.0103;

2.8790 0.0103; 2.9375 0.0103; 2.9818 0.0103; 2.9895 0.0103; 3.0427 0.0103;

3.0672 0.0103; 3.1139 0.0103; 3.1380 0.0103; 3.1613 0.0103; 3.1695 0.0103;

3.1807 0.0103; 3.1994 0.0103; 3.2490 0.0103; 3.2779 0.0103; 3.2933 0.0103;

3.2955 0.0103; 3.2960 0.0103; 3.4983 0.0103; 3.6056 0.0103; 3.7155 0.0103;

3.8570 0.0103; 3.9112 0.0103; 3.9810 0.0103; 4.1180 0.0103; 4.3221 0.0103;

4.3346 0.0103; 4.4352 0.0103; 4.4661 0.0103; 4.5445 0.0103; 4.6258 0.0103;

4.7700 0.0103; 4.7998 0.0103; 4.9725 0.0103; 5.2302 0.0103; 5.3147 0.0103;

5.3652 0.0103; 5.3775 0.0103; 5.4297 0.0103; 5.5484 0.0103; 5.5588 0.0103;

6.2997 0.0063; 6.3262 0.0063; 6.3413 0.0063; 6.3924 0.0063; 6.5728 0.0063;

7.1792 0.0103; 7.4684 0.0063; 7.4874 0.0063; 7.9237 0.0103; 8.1971 0.0063;]

Output: 6.6528

Conclusion: True as the sum of F(:,2) (values in the second column) until the
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one corresponding 6.5728 for the first time exceeds 0.95.

IS

Running comparison testing can validate the correctness of several functions in

IS functional component: GetAlpha.m, GetK.m, GetTheta.m and GetXi.m because these

corresponding quantities can be calculated analytically as specified in the IS algorithm in

Section 8.2.1.

Specifically, 0 is the root of (8.3), which can be computed using solve(), an Matlab

built-in function to calculate the roots of equations. The result appears to be [0.7399;

0.6819; 0.7399], which can be confirmed by plugging back in the function. Then, based on

the IS algorithm as specified in Section 8.2.1, IC and a can be be computed and confirmed,

which are [0.0138; 0.0500; 0.0138] and [0.1776; 0.6449; 0.1776]. Up to this point, the

precalculation part before the sampling and quantile/mean estimation has been confirmed

to be correct.

One function is chosen to demonstrate how scenario-based testing is performed to

validate correctness.

• trimax.m: trimax(a,b,c), where a, b and c denotes three matrices or vectors the same

size or numbers.

1. Input: a = [12;34], b = [1 1 ; 22], c = [14;24] (three 2 x 2 matrix)

Output: [1 2; 3 4]

Conclusion: True as each entry in the new matrix is occupied by the greatest

number of three input matrices.

2. Input: a = [1; 3; 2; 4], b = [2;1; 2; 5], c = [2; 2; 2; 2] (three column vectors of size

4)

Output: [2;3;2;5]
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Conclusion: True as each entry of the resultant vector is occupied by the great-

est number of each position from the original vectors confirmed by observation.

3. Input: a = [12], b = [2;3] (one row vector of size 2 and one column vector of

size 2)

Output: Matrix dimensions must agree

Conclusion: True as the input vectors do not satisfy the requirements of the

function.

IS+SS

Running comparison testing can validate correctness of several functions GetAl-

pha.m, GetK.m, GetTheta.m and GetXi.m in IS+SS functional component because these

quantities can be calculated analytically. The results from executing the program can be

confirmed by that in the last section : 040.7399; 0.6819; 0.7399], κ40.0138; 0.0500;

0.0138], a-40.1776; 0.6449; 0.1776].

Two functions are chosen to demonstrate how scenario-based testing are performed

to debug the program.

• strata.m: strata(theta, alpha, w), where 0=[0.7399; 0.6819; 0.7399], and a40.1776;

0.6449; 0.1776], which are both derived from early steps for the SAN and have been

confirmed to be correct. w is the number of strata.

1. Input: w = 5

Output[3.6943;5.8424;8.3344;12.0055].

Conclusion: true as entries of the resultant vector are exactly the same as the

intervals S = (G- ¹ ((i - 1) k) , G- ¹ (i I k)] for i = 1, , 5, where G is the CDF

of the stratification variable Y as specified in the first part of Section 8.4.

2. Input: w = 1
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Output: 0

Conclusion: true as there is only one strata, the original vector.

3. Input: w = 10

Output: [2.5457; 3.6943; 4.7578; 5.8424; 7.0115; 8.3344; 9.9217; 12.0055;

15.3016]

Conclusion: true as entries of the resultant vector are exactly the same as the

intervals Si = (G-¹ ((i — 1)/k), G- ¹ (ilk)] for i = 1, ... , 10, where G is the CDF

of the stratification variable Y as specified in the first part of Section 8.4.

• Compare.m: compare(C,w.n) where C, w and n denotes the current status of sam-

ples in each strutum, the number of strata and the sample size in a "full" stratum as

specified earlier.

1. Input: C = [10;2;1], w = 3, n = 5

Output: 1

Conclusion: True as the second and the third entry of the vector are not "full"

yet.

2. Input: C = [100;100], w = 2, n = 100

Output: 0

Conclusion: True as both entries are considered "full" comparing with the pre-

determined benchmark 100.

8.6 Matlab Code
8.6.1 AV/CV/CMC Package
AVBatch.m

{
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function result=IS(p,j,b,n,r)
%main function for IS for SAN
% Set up and preprocessing
tg=6.6645;%theoretical value
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CHAPTER 9

CONCLUDING REMARKS

The main contribution is that we have developed a general framework for producing an

asymptotically valid confidence interval for a quantile ξp estimated using a VRT. Previous

research on crude Monte Carlo also produced methods of contructing confidence intervals,

but their resulting confidence intervals may be large especially for extreme quantiles and

their methods cannot be generalized for VRTs. Our method, on the other hand, addresses

this issue by providing a theoretical framework for multiple VRTs. Most previous work

on estimating ξp using different VRTs did not produce asymptotically valid confidence

intervals for ξp. Our theoretical framework can be used directly to accomodate different

VRTs to construct confidence intervals. Specifically, our framework, which requires the

CDF estimator obtained by applying a VRT to satisfy Assumptions A1—A3 in Chapter 4,

encompasses IS+SS, AV and CV. Moreover, we have also presented explicit algorithms to

construct confidence intervals for quantiles obtained using IS, IS+SS, AV and CV.

Another main contribution is that we have proved the consistency of the estima-

tors for 1/f(ξp) (i.e., the forward finite-difference, the backward finite-difference and the

central finite-difference estimators) for VRTs. According to Glynn (1996), the "major

challenge" to constructing confidence intervals for quantiles when using VRTs is estimat-

ing Op = 1/ f(ξp), which Glasserman et al. (2000b) called a "difficult" problem. We de-

rived a consistent estimator of φp by first establishing that the quantile estimator satisfies a

Bahadur-Ghosh representation, and then exploiting this to estimate Op. The quantity Op can

be expressed as d/dp F - ¹ (p), and we estimated it via a finite difference of the inverse of the

estimated CDF at points that are 01-¹/²2 apart, where c 0 is a user-specified smoothing

parameter and n is the computational budget. In the case of crude Monte Carlo, previous

analysis suggested that one should choose c as large as possible to minimize MSE and the

coverage error, and our experimental results when applying VRTs seem to confirm these
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suggestions. But how to choose c is still an ongoing topic for further research.

Other contributions are reviewed as follows. In our theoretical framework, we have

established a weaker form of the Bahadur-Ghosh representation for VRTs, which implies

CLTs and methods of developing consistent estimators of Op . In IS+SS, we have established

a weaker moment condition than that in Glasserman et al. (2000b).

The contributions of the main results in this research are subtle albeit significant to

the financial industry. So far, the most commonly used measure is still the point estimator

of the VaR, which can be replaced by another measure —the confidence interval of the

VaR— with more accuracy. Our framework provides explicit algorithms for constructing

confidence intervals for the VaRs when using VRTs. This can be very useful in estimating

extreme quantiles and/or in the high-dimensional setting, which is an interesting finance

research topic.

The limitation of this research is that we have only considered the normal distribu-

tion and the SAN to study the finite-sample behavior of the confidence intervals constructed

using the theoretical framework. We may want to explore a few more stochastic models;

e.g., those of interest to the financial industry.

It may be interesting to propose new IS+SS methods for estimating the VaR of a

portfolio. Glasserman et al. (2000b) develop IS+SS techniques when the price changes in

the porfolio's "risk factors" (e.g., interest rates, currency exchange rates, stock prices, etc.)

follow a multivariate normal distribution. However, a normal/multivariate normal distribu-

tion does not agree with the market data with higher peaks and heavier tails. Therefore,

different stochastic models for the risk factors to follow appeal to the financial industry.

Some possible extensions to investigate include mixtures of multivariate normals, a Markov

regime-switching process, (Goldfeld and Quandt (1973)) or a jump-diffusion process (Mer-

ton (1976)).
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