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ABSTRACT

COUPLED SIMULATION OF LOADING AND RESPONSE OF
COLUMNS UNDER EXTREME EVENTS

by
Navid H. Allahverdi

Forces imparted to structural columns during blast-induced loading depends on the

shape and size of columns as well as on the intensity of the blast. Column's geometry

— i.e., shape and size — influences the flow field around the column and consequently

the flow field determines forces experienced by the column. The main objective of

this research is to estimate the forces imparted to columns in a blast event through

studying the air flow field around columns.

In this study, the physics of shock wave reflection and rarefaction waves are

reviewed with application to describing the air flow around columns with circular

and square cross sections. Then, simulations will be performed to determine the flow

field around columns with different geometries. Based on the simulation results, force

and impulse experienced by columns with different cross-sectional shapes and varying

sizes are estimated. Finally, through curve-fitting techniques, correlations of variables

are investigated and proper equations are proposed to estimate the force on columns

based on shape, and size for a range of blast intensities.

Also, it is attempted to approximate the response of columns with an equiv-

alent single-degree of freedom (SDOF) model. The parameters of the equivalent

single-degree of freedom are calibrated via simulation results. Due to the relatively

short duration of blast loading in comparison with columns' natural period, column

responses are mainly impulse-sensitive. The proposed equations in conjunction with

SDOF model can be beneficial tools in blast design practices. Furthermore, the

damage and failure modes of columns are studied. For columns that prove insufficient,

the efficacy of retrofitting measures such as steel jackets have been investigated.



COUPLED SIMULATION OF LOADING AND RESPONSE OF
COLUMNS UNDER EXTREME EVENTS

by
Navid H. Allahverdi

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Civil Engineering

Department of Civil and Environmental Engineering

May 2010



Copyright © 2010 by Navid H. Allahverdi

ALL RIGHTS RESERVED



APPROVAL PAGE

COUPLED SIMULATION OF LOADING AND RESPONSE OF
COLUMNS UNDER EXTREME EVENTS

Navid H. Allahverdi

Ala Saadeghvaziri, 	 sertation Advisor 	 Date
Professor, Departrnentt6f Civil and Environmental Engineering, NJIT

Bruce Bukiet, Committee Member 	 Date
Associate Professor, Department of Mathematical Sciences, NJIT

C.T. Thomas Hsu, Committee Member 	 Date
Professor, Department of Civil and Environmental Engineering, NJIT

I. Joga Rao, Committee Member 	 Date
Associate Professor, Department of Mechanical Engineering, NJIT

Methi Wecharatana, Committee Member 	 Date
Professor, Department of Civil and Environmental Engineering, NJIT



BIOGRAPHICAL SKETCH

Author: 	 Navid H. Allahverdi

Degree: 	 Doctor of Philosophy

Date: 	 May 2010

Undergraduate and Graduate Education:

• Doctor of Philosophy in Civil Engineering,
New Jersey Institute of Technology, Newark, NJ, 2010

• Master of Science in Structural Engineering,
Sharif University of Technology, Tehran, Iran, 2003

• Bachelor of Science in Civil Engineering,
Sharif University of Technology, Tehran, Iran, 2000

Major: 	 Civil Engineering

Presentations and Publications:

A. Joghataie, N. Allahverdi, "Iterative Univariate Optimization of Nonlinear Trusses
with Fuzzy Strain Constraints," Engineering Optimization, Vol. 36, No. 6,
December 2004, pp.677-690.

N. Allahverdi, X. Wang, M.A. Saadeghvaziri, B. Bukiet, "On Interaction of Strong
and Weak Shock Waves with Flexible Plates," 1st International Workshop
on Performance, Protection, and Strengthening of Structures under Extreme
Loading, Whistler, Canada, August 20-22, 2007.

N. Allahverdi, M.A. Saadeghvaziri, "The Effects of Column Shape on Blast-induced
Loadings," under preparation.

iv



To the memory of my uncles

v



ACKNOWLEDGMENT

I would like to express my sincere gratitude to my mentor and advisor, Professor

M. Ala Saadeghvaziri. This work wouldn't have been possible without his support

and supervision. His scholarly enthusiasm has been the driving force in all stages of

this work. I am also thankful for his trust in me to let me pursue different research

interests.

Also, my appreciation extends to my committee members. Professors Bruce

Bukiet, Thomas Hsu, I. Joga Rao, and Methi Wecharatana showed interests in this

work and critically reviewed it. Professor William Spillers served in the committee,

but sadly left us just weeks before final defense. May he rest in peace.

I have attended lots of graduate level courses offered at NJIT. I have really

enjoyed them and they have been instrumental in my research. Among them, I

should mention classes offered by Professor Rao. His articulation in making hard-

to-grasp subjects understandable is unique. I also benefitted from courses offered by

Professors Michael Siegel, David Horntrop, Robert Miura and Peter Petropoulos in

the Department of Mathematical Science. Professor Bukiet spent a great deal of time

teaching me gas dynamics.

When I came to NJIT, little did I know that I am destined to meet a couple

of great friends; Dr. Max Roman, Dr. Amit Banerjee, Dr. Kamyar Malakuti and

Bakhtiar Feizi. You are great and I will treasure your friendship. I am also thankful

to Dr. Verya Nasri at AECOM. I have been fortunate to have wonderful officemates,

Shabnam Darjani, Nick Carlson and Shilan Motamedvaziri - though she is not offi-

cially in our office.

Finally, my "infinite" thank goes to my parents, Hana, and Parisa. I am

receiving your love, encouragement, and support each and every minute. I can not

say enough thank you.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION  	 1

1.1 Motivation 	 1

1.2 Objectives and Methodology of The Present Work 	 3

1.3 Scope of The Work 	 6

1.4 Blast Loading 	 9

1.4.1 	 Free Air Blast 	 9

1.4.2 	 Reflection 	 10

1.4.3 	 Diffraction-	 17

1.5 Blast Scaling 	 18

1.6 Manuals and Design Aids 	 21

2 COMPRESSIBLE FLUID 	 26

2.1 Introduction 	 26

2.2 Kinematics of Motion, Strain and Stress Measures 	 26

2.3 Constitutive Equations 	 31

2.4 Balance Laws 	 32

2.4.1 	 Conservation of Mass 	 33

2.4.2 	 Conservation of Momentum 	 33

2.4.3 	 Conservation of Energy 	 34

2.5 The Euler's Equations 	 35

2.5.1 	 Strong Form of the Euler's Equations 	 35

2.5.2 	 Euler's Equations in One-dimension 	 37

2.5.3 	 Characteristic Form of the Euler Equations 	 38

2.6 Thermodynamical Aspects of Euler Equation 	 39

3 EXPLICIT AND IMPLICIT FINITE ELEMENT 	 41

3.1 	 Burger's Equation 	 41

vii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.1.1 	 Linearizing Weak Form and Newton-Raphson Method  	 42

3.1.2 	 Spatial Finite Element Discretization  	 43

	

3.2 	 Temporal Discretization  	 44

	

3.3 	 The Euler's Equations  	 47

4 ASSESSING AUTODYN RESULTS ACCURACY AND LIMITATIONS . 50

4.1 Spherical Blast Simulation with Autodyn 	 50

4.2 ConWep Program 	 51

4.3 Comparing Autodyn and ConWep 	 55

4.4 Conclusion 	 58

5 BLAST LOAD CHARACTERIZATION ON COLUMNS 	 60

5.1 Fluid Forces on Solid Objects 	 60

5.2 Fluid Flow Around a Solid Object 	 62

5.2.1 	 Supersonic Flow Over a Corner 	 64

5.3 Flow Field Around Column Sections 	 67

5.3.1 	 Qualitative Discussion 	 67

5.3.2 	 Quantitative Discussion 	 71

5.4 Characterizing Blast Loads on Columns 	 83

5.4.1 	 Three-Dimensional Simulations 	 85

5.4.2 	 Three-Dimensional Simulation Results 	 86

5.4.3 	 Proposed Equations 	 94

6 SINGLE DEGREE-OF-FREEDOM MODEL FOR COLUMNS 	 100

6.1 Elastic Response of a SDOF to Dynamic Loading 	 100

6.2 Elastic-Plastic Response of a SDOF to Dynamic Loading 	 104

6.3 Equivalent SDOF 	 106

6.4 Elastic Response of Columns 	 113

7 PERFORMANCE EVALUATION AND RETROFITTING OPTIONS . . 121

viii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

7.1 Background 	  121

7.2 Damage Assessment 	  122

7.3 Retrofitting Measures 	  127

7.4 Material Models 	  130

7.4.1 Steel Constitutive Model 	  130

7.4.2 Concrete Constitutive Model 	  131

7.5 Summary 	  133

8 CONCLUSIONS 	  134

8.1 Conclusion 	  134

8.2 Future Research Directions 	  137

REFERENCES 	  139

ix



LIST OF TABLES

Table Page

1.1 Computer Programs Used in Blast Simulation [19] 	 6

1.2 Comparing Parameters for Two Similar Blast Waves 	 20

1.3 Blast Loading Categories 	 24

3.1 Newton-Raphson Iteration 	 43

3.2 The 0 Family of Time Integration Methods 	 45

3.3 Newmark Method 	 47

4.1 JWL Parameters for TNT 	 52

5.1 Peak Overpressure and Impulse for Circular Column 	 73

5.2 Peak Overpressure and Impulse for Square Column 	 77

5.3 Peak Overpressure and Impulse for Rotated Square Column 	 77

5.4 Parameter Values for Force Equation f 	 95

5.5 Parameter Values for Impulse Equation i 	 95

5.6 Simulation Results and Equation Prediction for Circular Section. 	 . . . . 97

5.7 Simulation Results and Equation Prediction for Square Section 	 98

6.1 Deflection Results for Circular Section. 	 116

6.2 Deflection Results for Square Columns. 	 118

7.1 Comparing Elastic and Inelastic Deflections and Impulses 	 125

x



LIST OF FIGURES

Figure Page

1.1 Typical Pressure History for Free Air Blast 	 9

1.2 Normal Reflection of a Plane Wave 	 11

1.3 Reflected Pressure Ratio Cp versus Incident Pressure p, (TM5-1300)	 . . 14

1.4 Regular Reflection of Incident Shock I 	 14

1.5 Irregular Reflection 	 16

1.6 Oblique Reflected Pressure Ratio for Different Incident Angles αI  . . . . 16

1.7 Oblique Reflected Scaled Impulse versus Incident Angle αI 	 17

1.8 Diffraction of Shock Wave around a Rectangle 	 18

1.9 Self-Similar Blast Waves 	 20

1.10 Free Air Blast Parameters versus Scaled Distance 	 22

1.11 Free Air Burst (top), Air Burst (middle), and Surface Burst (bottom) . . 25

2.1 Motion of A Body 	 27

2.2 Polar Decomposition of Deformation Gradient F 	 28

4.1 Free Air Blast Model 	 51

4.2 Pressure versus Specific Volume in JWL 	 51

4.3 Peak Pressure as a Function of Scaled Distance 	 53

4.4 Scaled Impulse as a Function of Scaled Distance 	 53

4.5 Scaled Arrival Time and Scaled Duration versus Scaled Distance 	 . . . . 54

4.6 Overpressure versus scaled distance. 	 56

4.7 Scaled Arrival Time versus Scaled Distance 	 57

4.8 Scaled Positive Impulse versus Scaled Distance 	 59

4.9 Autodyn and ConWep Pressure Time Histories 	 59

5.1 Subsonic and Supersonic Flow Field Around a Rectangular Object [1] . . 63

5.2 Flow Over Concave(a) and Convex(b) Corners. 	 64

5.3 61 — 13 — M Curves 	 66

xi



LIST OF FIGURES
(Continued)

Figure 	 Page

5.4 Circular Column and Square Columns in 0 and 45° angles-of-attack . . . 68

5.5 Qualitative Flow Field Around a Square Column and Idealized Pressure
Distribution 	 69

5.6 Qualitative Flow Field Around a Rotated Square Column and Idealized
Pressure 	 70

5.7 Circular Column(A), Square Column(B), and Rotated Square Column(C) 72

5.8 Gauge Locations in Circular Column 	 73

5.9 Shock Wave Propagation Around Circular Column 	 74

5.10 Shock Wave Propagation Around Circular Column (Continued) 	 75

5.11 Gauge Locations in Rectangular Column 	 76

5.12 Shock Wave Propagation Around Square Column 	 78

5.13 Shock Wave Propagation Around Square Column (Continued) 	 79

5.14 Gauge Locations in Rotated Square Column 	 80

5.15 Locations of point a, b, c, d, and e 	 80

5.16 Pressure and impulse histories at point "a" 	 81

5.17 Pressure and impulse histories at point "b" 	 81

5.18 Pressure and impulse histories at point "c" 	 82

5.19 Pressure and impulse histories at point "d" 	 82

5.20 Pressure and impulse histories at point "e" 	 83

5.21 3D Modeling of Circular Column 	 84

5.22 3D Modeling of Square Column 	 84

5.23 Force f (top) and Impulse i (bottom) for Circular Sections with Diameter
of 500 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s, m,
and h respectively.)  88

5.24 Force f (top) and Impulse i (bottom) for Circular Sections with Diameter
of 750 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s, m,
and h respectively.)  89

xii



LIST OF FIGURES
(Continued)

Figure 	 Page

5.25 Force f (top) and Impulse i (bottom) for Circular Sections with Diameter
of 1000 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s,
m, and h respectively.)   90

5.26 Force f (top) and Impulse i (bottom) for Square Sections with Diameter
of 500 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s, m,
and h respectively.)   91

5.27 Force f (top) and Impulse i (bottom) for Square Sections with Diameter
of 750 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s, m,
and h respectively.)   92

5.28 Force f (top) and Impulse i (bottom) for Square Sections with Diameter
of 1000 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s,
m, and h respectively.) 	  93

6.1 Impulsive Loading Compared with Resistance Function [16] 	  102

6.2 Quasi-Static Loading 	  103

6.3 Shock Spectrum for Triangular Load 	  104

6.4 Idealized Resistance-Deflection Curve [16] 	  105

6.5 Actual and SDOF representation 	  107

6.6 Transformation Factors for Elastic and Plastic Behaviors 	  110

6.7 Stiffness for beams k = II 	  111

6.8 Circular Column Deflection 	  115

6.9 Square Column Deflection 	  117

7.1 Damage Assessment for Different Structural Elements 	  123

7.2 Damage Index for Square Column for Loading with z = 0.561 (top),
z = 0.413 (middle), and z = 0.328 (bottom) 	  126

7.3 Retrofitted Columns with Plates(A) and Jacket(B) 	  128

7.4 Deflection for Plate Retrofitted (dash-dot) and Jacket Retrofitted (solid)
Compared with Bare Column (grey) 	  129

7.5 RHT Concrete Model 	  132

xiii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Designing structures to withstand sudden shock loads becomes imperative while more

structures are exposed to accidental or deliberate blast loads. Although a great body

of work and knowledge has been acquired in designing hardened military structures

[2, 5], blast design practice still is not fully comprehended and embraced in civil

engineering community; and the need for appropriate codes and guidelines are not

fulfilled [10].

In this research, it is attempted to understand and clarify aspects of blast

loading and provide practical blast design recommendations. It is understood that

following areas need to be further investigated:

• A methodology for designing blast resistant structures

• Estimating blast load for a specific level of threat

• Improving blast response of structures

To better understand blast loading, it is instructive to compare blast loading

with earthquake loading which is better known by structural engineers. At first look,

both earthquake and blast loads are dynamic loads; however, each has its own time

scale. Earthquakes duration is usually in orders of seconds; while blast loads fade in

couple of milli-seconds. Accordingly when an earthquake strikes a structure, usually

the earthquake lingers enough to engage the entire structure into motion. On the

other hand, blast load works in an impulsive manner and the structure may begin

reacting while the load has well disappeared.

1
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Secondly, earthquakes most often excite the whole structure no matter how tall

or large the structure is; every part of the structure gets affected by inertial forces.

On the other hand, blast loads usually have a finite zone of influence and they work in

a local manner; i.e., the blast load may exert force on a limited number of structural

elements. It is noteworthy to mention that the concept of modal analysis and mode

shapes - which is extensively useful in earthquake analysis - is not well suited for

shock type loading analysis [6].

The local nature of blast loads as compared with global nature of earthquakes

suggests a member (local) approach for blast design methodology. As the first step of

member approach, the adequacy of members located in the influence zone of loading

should be assessed. If there is any likelihood of failure of members, then progressive

collapse analysis should be performed to evaluate global stability of the structure.

In this research, the emphasis is mostly on the blast loading of isolated structural

members and more specifically on column members. In buildings, columns are the

most vital element in stability of the whole structure and failure of columns may

jeopardize the integrity and load-path redundancy of the building. Specifically, in

this research, emphasis has been put on facade columns located on the perimeter of

tall buildings. These facade columns do not have any bracing or lateral supports.

Another lesson that can be learned from earthquake design methodology is the

idea of protection (shielding) rather than hardening (strengthening). The notion

of protection is quite established in earthquake design. For instance, using base

isolation in reducing the seismic demand of structures is pretty common. Similarly,

the idea of protecting structural members against blast has been pursued through

using sacrificial or protective layers. For example, metal foams have been placed in

front of concrete plates as a protective measure; however, there is no definite answer

on the ability of metal foams in protecting structures. Ironically, some experimental
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tests show metal foams have in fact amplified the energy and impulse imparted to

the structure [9, 20]. The efficacy of using metal foams is still under research and it

remains to be answered.

The avenue which seems more practical to pursue in mitigating the blast load

is to dissect the blast wave nature and its interaction with structural members and

accordingly to come up with members that are more blast resistant. As it is shown,

columns cross-sectional shape and size can markedly affect the pressure and impulse

experienced by columns [18, 21]. So, we will examine different column shapes under

similar scenarios of blast and evaluate blast wave reflection and diffraction around

columns in order to find the column with less amount of pressure and impulse.

1.2 Objectives and Methodology of The Present Work

The main objectives of this study can be summarized as following:

Estimating Blast Load on Columns: pressure and impulse distributions on

columns with different cross section and size will be quantified through simulations.

The results of this task serve two purposes; 1) determining blast loading as a function

of member cross section shape and size and 2) comparing and finding cross sectional

shapes that experience less amount of force.

In characterizing the blast intensity on members, scaled distance z = R1w 113

is employed. R and w are stand-off distance and weight of the charge, respectively;

smaller z represents the more intense blasts. Based on the results of this task, proper

equations will be suggested to approximate blast force and impulse acting on columns

for a range of scaled distances.

Response of Columns to Blast Loading: In this task, three dimensional re-

sponse of columns with elastic behaviors as well as true nonlinear inelastic behavior
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have been investigated. Different type of damage or failure including shear and

flexural modes have been examined. Additionally, for elastic range of response,

an equivalent single-degree-of-freedom model has been presented to approximate

the response of columns to blast loading. Furthermore, the efficacy of retrofitting

measures for blast response mitigation of columns has been evaluated.

The main tool in this study is using numerical modelings. Computer simu-

lations can be useful in blast design. While computer simulations can not replace

experiments, they can provide valuable insights on the physics of blast loading.

Performing blast tests is very difficult and expensive. It needs considerable amount of

expertise, and requires special facilities. Instrumentations and measurements of blast

parameters and structural responses necessitate high performance sensors. Also, the

very abrupt nature of blast phenomenon (a couple of milli-seconds) makes visual

observation of events in any given test virtually impossible, unless using high-speed

cameras. All mentioned reasons render numerical simulation of blast loading very

appealing.

Also, There are not analytical methods for problems involving complicated

geometries where multiple reflection, or diffraction occurs; the only way to study

such problems is to resort to computational methods.

Computational methods in the area of blast effects prediction are generally

divided into: (1) those used for prediction of blast loads (2) those for determining

structural response to the loading. The former is achieved through computational

fluid dynamics (CFD) codes, while the latter is carried out by computational solid

mechanics (CSM) codes. A current trend is to couple CFD and CSM codes in order

to obtain simulations which consider the mutual interactions between two physics.

By accounting the motion and deformation of structures, a more accurate prediction

of blast wave is achieved and vice versa.
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A number of computer programs used in blast prediction and structural response

simulations is reported in Table 1.1 [19]. Most of these programs use a first-principle

approach which they solve conservation laws in conjunction with material constitute

models. On the other hand, there a number of programs that employ a semi-empirical

approach. These programs usually contain equations based on data fitting of a

collection of data obtained from experimental tests.

As seen in Table 1.1, commercially available codes that can couple solid and

fluid solvers are Autodyn and LS-DYNA. Blast simulations in this research will be

performed with Autodyn. "Autodyn is an explicit analysis tool for modeling nonlinear

dynamics of solids, fluids, gas, and their interaction" [12]. Autodyn is part of Ansys

Workbench suite. Explicit time integration - which is used in Autodyn - is very

suitable for wave propagation phenomena; however, the numerical stability of explicit

schemes requires satisfying CFL condition for each element [11].

Explicit programs once used to be known as hydrocodes [23]; since they were

used mostly to model fluids without shear strength; i.e. only equation of state were

included. However, current explicit programs including Autodyn, and LS-Dyna [8]

have an extensive library for strength and failure of solid materials in addition to

equation of state models. For instance, Autodyn is capable of simulating material be-

haviors such as strain-rate hardening, pressure hardening, tensile failure and material

erosions.

For simulating blast wave propagation in air Euler equation should be solved

[15]. Euler equation governs the behavior of inviscid compressible fluids like air.

Autodyn has two different solver to handle Euler equation. They are namely Euler

Multi-Material solver and Ideal-gas solver. Euler Multi-Material (MM) uses Godunov

method and Ideal-gas solver adopts "Flux Corrected Transport" (FCT) technique

which was first introduced by Book and Borris [14].
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In Autodyn both Eulerian and Lagrangian meshes can be used. Also, it is

possible to make models which contain both Eulerian and Lagrangian parts. This

option is very useful in modeling solid parts with Lagrangian mesh which are coupled

with Eulerian mesh for air.

Table 1.1 Computer Programs Used in Blast Simulation [19]

Name Purpose Type Corporate Author
BLASTX Blast prediction Semi-empirical SAIC
ConWep Blast prediction Semi-empirical US Army Corps of Engineers
CTH Blast prediction First-principle Sandi National Laboratories
FEFLO Blast prediction First-principle SAIC
FOIL Blast prediction First-principle Applied Research Associates,
HULL Blast prediction First-principle Orlando Technology, Inc.
SHARC Blast prediction First-principle Applied Research Assocaites
ABAQUS Structural response First-principle Simulia
DYNA3D Structural response First-principle Lawrence Livermore National Lab.
FLEX Structural response First-principle Weidlinger Associates
ALE3D Coupled analysis First-principle Lawrence Livermore National Lab.
ALEGRA Coupled analysis First-principle Sandia National Laboratories
AUTODYN Coupled analysis First-principle ANSYS, Inc.
LS-DYNA Coupled analysis First-principle Livermore Software Tech. Corp
FUSE Coupled analysis First-principle Weidlinger Associates

1.3 Scope of The Work

In the remainder of this chapter, a brief review of the blast loading has been presented.

This review covers the current state of practice on blast load estimation. This also

includes methods and tools such as formulas, or graphs used in estimating blast

loading. Also, available technical manuals on the subject has been mentioned.

Chapter 2 covers the theory of compressible fluids. This chapter explains the

balance laws of mechanics including conservation of mass, momentum, and energy

to derive Euler's equations. Euler's equations govern the behavior of compressible

and inviscid fluid flows. Different forms of the Euler's equations have been discussed.
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This chapter serves as a reference for most of the nomenclatures and symbols used in

the manuscript.

Chapter 3 documents the finite element techniques used in solving differential

equations like Euler's equations. The chapter discusses methods for spatial and

temporal discretization of equations. In temporal discretization, implicit and explicit

time integration methods are discussed. The model equation which is discretized

in this chapter is Burger's equation. Burger's equation is very similar to Euler's

equations. In fact, Euler's equations is a combination of three Burger-like equations.

Chapter 4 reports the results of one-dimensional free air blast simulations per-

formed with Autodyn. The results include blast parameters like peak overpressure,

impulse, and arrival times. The results obtained with Autodyn are compared with

other benchmark results. In this chapter, capabilities and limitations of the Autodyn

in modeling detonation as well as its subsequent wave propagations are mentioned.

Chapter 5 continues the blast load simulations when solid obstacles like struc-

tural columns are present in the flow field. The ultimate goal of this chapter is to

estimate the force and impulse experienced by columns in blast events and to propose

appropriate equations that can predict force and impulse. Before estimating force and

impulse on columns, first a qualitative discussion on the pressure distribution around

columns with circular and square shapes is presented. In the discussion, it is tried to

explain the pressure distribution around different column's section via using concepts

of shock wave reflection and expansion wave. The qualitative discussion is followed

by a quantitative Autodyn simulations on pressure distribution.

At the end of the chapter 5, the results for a set of three-dimensional simulations

on columns with circular and square sections are presented. The force and impulse

experienced by columns are obtained from the simulation results. Next, proper

equations are derived for both force and impulse on columns as functions of the column
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size (section size and height) as well as blast intensity. Scaled distance z is used to

represent the blast intensity. The proposed equations are obtained via performing

curve-fitting techniques on the simulation results. The proposed equations can be an

indispensable tool in blast design practices.

Chapter 6 has been devoted to study the elastic structural behavior of columns

in blast events. In this chapter, the concept of reducing a column to an equivalent

single-degree-of-freedom mass-spring system is discussed. This is done through using

transformation factors which were introduced by Biggs [3]. Biggs proposed the

transformation factors through assuming arbitrarily shape functions or mode shapes.

In his work, load factors for concentrated load as well as uniformly distributed

loads are mentioned and the designer should make assumptions on the blast load

distributions. The work on this chapter builds upon the Biggs work in the way that

the transformation factors has been refined by using the deflection results obtained

from simulations performed in previous chapter. The transformation factors have

been back calculated from actual simulation results. Once, the factors are obtained,

the structural response of columns (deflection) can be estimated. The proposed trans-

formation factors are customized for blast load distribution and no load distribution

assumptions need to be made, since simulations consider the actual blast loading.

Chapter 7 concludes this research through assessing the actual performance of

concrete columns in blast events. In this chapter true nonlinear behavior of concrete

materials is used to evaluate the potential damage or failure sustained by columns. For

the case of under-performing or insufficient columns, suitable upgrade or retrofitting

measures are discussed to mitigate the response of such columns.
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1.4 Blast Loading

Here, the basic nature of blast wave propagation is mentioned with reference to blast

loading. Common phenomena such as Free Air Blast, Reflection and Diffraction of

blast waves will be explained. This section summarizes current available tools and

methods for estimating blast loading.

1.4.1 Free Air Blast

When a spherical or point explosion occurs in atmosphere, the characteristics of

blast wave including pressure, and impulse at an arbitrary location are functions of

standoff distance R from the center of the charge and time t. If employing a pressure

transducer and measuring the pressure history, the typical pressure reading is very

similar to Figure 1.1.

Figure 1.1 Typical Pressure History for Free Air Blast

At the beginning, before any pressure disturbance reaches to the transducer,

it reads the ambient pressure pc, . It will take time To, for the shock wave to travel

the distance R with shock velocity of U s . Upon arrival time of Ta , pressure jumps

to po + ps+ in no time; this is the instant which the point is shocked-up. Afterwards,

pressure starts to decay during positive phase T+ until transducer reads ambient
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pressure once again. Next, pressure drops below the ambient pressure to p o — ps- and

causes a relative vacuum in negative phase duration T- . At the end, pressure returns

to ambient pressure once again.

The maximum positive overpressure p s+ is referred to as peak incident over-

pressure or just the peak overpressure· Usually, ps+ is larger than p; by orders of

magnitude and we are more concerned about positive overpressure. For convenience,

the ± signs will be omitted and positive overpressure will be shown as ps unless

otherwise noted.

It is useful to define incident impulse is (t) as the area under overpressure p,

time history shown in Figure 1.1:

The maximum amount of incident impulse corresponds to the end of the positive

phase; afterwards the negative overpressure reduces the impulse·

Free air blast is usually obstructed by objects such as buildings. When a

shock wave encounters any solid objects or dense media, it reflects from the object

as well as diffracts around it· It is imperative to study shock wave reflection and

diffraction patterns in order to evaluate the amount of pressure experienced by the

object (structure)· In the following sections, a brief review of reflection and diffraction

of blast wave is presented.

1.4.2 Reflection

When a shock wave impinges on a rigid (fixed) wall, the forward-moving air particles

are brought to rest at the face of the wall· As the velocity of each arriving layer of air
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is arrested; they are stacked up on each other and resulted in a highly compressed air

layers adjacent to the wall. Compressed air, in turns, fires back and generates a re-

flected shock wave that propagates away from the wall with velocity Ur . The reflected

overpressure pr on the wall has higher magnitude than the incident overpressure.

Normal Reflection of A Plane Wave: the simplest type of reflection is normal

or head-on reflection in which the shock wave front is parallel to the wall. As depicted

in Figure 1.2, the incident wave I is approaching the wall with velocity U, and leaving

behind the shocked state pressure ps , density ps , and particle velocity us ; s subscripts

denote the shocked state while zero subscripts refer to ambient state which are p o ,

Po, and u0 = 0. The shocked state variables are identical and equal to those of free

air shock wave propagation. As incident shock wave hits the wall and consequently

reflects away, the reflected state contains reflected pressure pr , density pr , and velocity

ur = 0. Figure 1·2 on the right side shows the reflected wave· Reflected shock wave

front R moves away from the wall with velocity Ur into the flow field which has been

previously compressed with the incident front. The particle velocity ur in reflected

region is zero; however, the pressure, density, and temperature of reflected region are

considerably magnified as compared to the incident shocked state.

Figure 1.2 Normal Reflection of a Plane Wave

In normal reflection, it is possible to obtain peak reflected overpressure Pr in



12

terms of peak incident overpressure Ps and ambient pressure P o in air:

(1·1)

in which -y is the specific heats ratio for air. In order to derive the above equation,

conservation of mass, momentum, and energy have been utilized between the two

states of air as detailed in [7]. For air at sea level, -y is equal 1.4. Substituting for

7 = 1.4 in Equation 1.1 results in following:

(1.2)

Also, it is convenient to define reflected impulse 4(0 as time integration of

reflected overpressure pr :

In general, one can define reflected pressure ratio Cp and reflected impulse ratio C i as

following:

These ratios are very useful when reflected pressure pr and reflected impulse i t are

sought for design purposes. For the special case of normal reflection the theoretical

value for Cp can be derived from Equation 1·2 as:

(1.3)

Finding limits of above equation for extreme cases of very large and very small

overpressure p, is easy. For the strong incident overpressure, i·e· large p, relative to
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po , reflected pressure ratio Cp tends to an upper-bound of 8; while for weak incident

pressures, Cp approaches 2·

(1·4)

The lower-bound of 2 for Cp clearly represents the linear reflection which cor-

responds to acoustic fluid model· The upper bound of 8 is due to the compressibility

of air as discussed in [13]· It is worth mentioning that higher values of Cp , up to 20,

have been measured in experiments. In Equation 1.2, the specific heats ratio -y for

air has been assumed as a constant value of -y = 1.4; however in reality 'y can change

in high temperature and pressure· In fact in high temperatures -y start decreasing

as a result of dissociation and ionization of gas molecules [16]. TM5-1300 manual [2]

provides reflected pressure ratio Cp for a wide range of incident pressure ps for normal

reflection which is also shown in Figure 1.3· Based on this graph Cp can reach up to

12 in extreme pressures.

Oblique Reflection of A Plane Wave When the shock front is impinging on a

wall at angle al with respect to the wall, depending on the angle ar two different

reflection scenarios may happen, namely regular reflection and irregular reflection.

Detailed accounts of each type of reflections are described in following sections·

Regular Reflection Regular reflection happens when ai is smaller than a specific

critical angle air · In regular reflection three different regions can be identified as

shown in Figure 1.4· The incident shock front I and reflected shock front R meet

on the surface of wall and they distinguish three regions· The three regions are

un-shocked (ambient), incident shock region, and reflected shock regions· Reflected

shock front makes an angle of aR which is not necessarily equal to aI and depends

on the strength of the incident shock. Following facts hold for regular reflections:



Figure 1.3 Reflected Pressure Ratio Cp versus Incident Pressure p, (TM5-1300)
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Figure 1.4 Regular Reflection of Incident Shock I



15

1. Normal reflection is a special case of regular reflection in which al = 0.

2. For an incident shock with infinite strength, a, =- sin -1 (1/-y); in the limit

of vanishing shock strength acr = 90° , i·e· all reflections are regular for low

strength shocks.

3. The angle of reflection aR is an increasing monotonic function of the ar .

The properties of oblique shock reflection listed above are quite different than cor-

responding characteristics of acoustic wave reflection· In acoustic limits, regular

reflection occurs regardless of the angle of incidence ar ; also, reflected pressure is

twice the incident pressure for all values of a1 ; i·e· Cp = 2· Finally, reflected shock

angle is equal to incident shock angle ar aR

Irregular Reflection (Mach Reflection): As discussed in preceding section,

regular reflection occurs when al is smaller that acr . In situations where ar is larger

than acr irregular reflection develops. In regular reflection, there are three shock

fronts, namely incident I, reflected R, and Mach stem M as well as one slipstream

ST as shown in Figure 1·5. This is different with regular reflection in which only

two shocks are discernible namely incident and reflecting· In addition to incident and

reflecting shocks, irregular reflection gives rise to another shock which is called Mach

stem M· The point of intersection of shock fronts is called triple point "T". Triple

point is not necessarily located on the reflecting surface. Whether the triple point is

approaching or retreating or moving parallel to the reflecting surface, different types

of irregularity can be identified [7]· In Figure 1·5 triple point moves along path "AB"·

Reflected pressure and reflected scaled impulse for different values of incident

angle have been shown in Figures 1.6, and 1·7 respectively·



Figure 1.5 Irregular Reflection
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Figure 1.6 Oblique Reflected Pressure Ratio for Different Incident Angles al
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Figure 1.7 Oblique Reflected Scaled Impulse versus Incident Angle ay

In reflected pressure diagram, it can be observed that there is a change in the

trend of curves approximately between 40° to 50°· This can be assigned to the

transition from regular reflection regime to irregular reflection as incident angle ay

increases. Critical reflection angle a„ for air with specific heats ratio 'y = 1·4 is

acr = sin-1 (1/1.4) ti 45° for strong shocks·

1.4.3 Diffraction:

When a shock front encounters a body with finite size, in addition to reflection, the

shock front also diffracts around the object. Diffraction is a very complicated process

and it directly depends on the shape of the object· In order to explain the diffraction,

a very simple case of impinging of a plane wave on a rectangle is depicted in Figure 1·8.

At the two corners of the rectangular object, shock wave goes through expansion fans

and loses its strength considerably· Also, relief waves (rarefaction waves) propagate to

the front of the rectangular object and decrease high reflected pressures experienced

in the front·
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Figure 1.8 Diffraction of Shock Wave around a Rectangle

Diffraction becomes imperative when determining pressure experienced by struc-

tural members with finite sizes including slabs, walls, and columns. Unlike reflection,

there are not available formulas or charts to determine blast parameters for diffraction.

In Chapter 5, blast loading for columns with different cross sectional shape and size

has been elaborated.

1.5 Blast Scaling

The idea of scaling or dimensional analysis is to obtain dimensionless quantities and

reduce the number of parameters that a physical model depends on· Experimental

studies of blast wave are often difficult, and expensive — particulary when conducted

on a large scale· As a result, blast scaling is an appealing way to widen or extend the

applicability of a limited number of tests to other cases using the idea of similarity

of tests·

Performing a dimensional analysis for blast parameters including pressure p,
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and a stand-off distance R for a specific explosives which contains stored chemical

energy E, it is possible to get a non-dimensionalized pressure parameter 7F as:

or it is possible to express pressure p as a function of E/R³ , or p = f(E/R³). The

quantity R/Ei is known as scaled distance z; so pressure can be expressed as a

function of inverse of scaled distance p g(*). It is worthy to mention the smaller

the scaled distance is, the stronger the blast wave is· This scaling of parameters is

known as cube-root scaling· It was first formulated by B· Hopkinson in 1915 and

hence sometimes it is referred to as Hopkinson scaling. Cube-root scaling reads as:

"Self-similar blast (shock) waves are produced at identical scaled distances

z, when two explosive charges of similar geometry and the same explosive

composition, but of different size, are detonated in the same atmosphere."

The chemical energy E stored in explosives release during detonation phase

and is proportional with the weight of explosive; it is very common to use equivalent

weight of TNT w instead of energy E in defining scaled distance z:

As an example of two self-similar blasts, two different charges with diameter d

and kd will be detonated and blast parameters are monitored at stand-off distance R

and kR as shown in Figure 1·9· It is easy to show that scaled distances are equal for

both cases;

blast parameters for each test are shown in Table 1.2. As seen, pressure and velocity



Figure 1.9 Self-Similar Blast Waves

Table 1.2 Comparing Parameters for Two Similar Blast Waves

Blast parameters Case 1 Case 2
Charge diameter d kd
Stand-off distance R kR
Scaled distance, z R/w¹/³ kR/kw¹/³
Peak pressure p, ps

Time of arrival Ta kTa
Duration T, kT,
Impulse IS kI,
Shock velocity
particle velocity

U,
up

Us
up

quantities are self-similar (unchanged) in both cases; however, temporal parameters

and impulses have been changed by a factor k· Note that k = kd/d = w2 1w1 ·

The validity of cubic-root scaling law has been demonstrated through experi-

mental tests. It has been reported that there has been a very good agreement between

blast data obtained during field tests with 5-, 20-, 100-, and 500-ton TNT detonation

when scaled to 1-lb TNT charge [5]·

20
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Blast Parameters The most common way to represent blast parameters is through

adopting cube-root scaling law· In this way scaled parameters are:

z = R/w¹/³. ; scaled distance

T = Ould ; scaled time

e = I/wi; scaled impulse

As mentioned, temporal parameters like time of arrival and duration are not

similar in a self-similar blast. However, scaled time and scaled impulse will be similar

(unchanged). Based on cube-root scaling, pressure p, scaled time T, scaled impulses

e and velocities become only a function of scaled distance z·

P = p(z)

T = T(Z)

= (Z)

U = U(z)

In Figure 1.10, blast parameters for positive phase of free air blast are shown

as a function of scaled distance z.

1.6 Manuals and Design Aids

In this section, a quick overview of the manuals and design aides which are available

in public domain is presented·



Figure 1.10 Free Air Blast Parameters versus Scaled Distance
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UFC 3-340-01 (TM5-855-1) This manual is on "Design and Analysis of Hardened

Structures to Conventional Weapons Effects" · It contains chapters on air blast, fire,

incendiary and chemical agents, loads on structures, and auxiliary systems (piping,

air ducting, and electrical cable); in its appendix, graphs are provided to determine

blast parameters versus scaled distances; ConWep program adopts these graphs for

blast parameter calculations.

UFC 3-340-02 (TM5-1300) Among first technical blast design manuals is "Structures

to Resist the Effects of Accidental Explosions" · This manual was prepared by "Joint

Departments of the Army, the Navy, and the Air Force" and is known as TM5-1300.

This manual serves structural engineers in estimating blast loading as well as ana-

lyzing and designing of concrete and steel military protective structures under blast

loads.

TM5-1300 was originally published in 1969 and later revisions released in 1971,

and 1990· Finally, TM5-1300 was incorporated in Unified Facilities Criteria (UFC)

with minor modifications in 2008 and is now referred to as UFC 3-340-02·

This totally contains six chapters on items including (1) blast, fragment, and

shock-loading; (2) principles of dynamic analysis; (3) reinforced concrete and struc-

tural steel design; and (4) a number of special design considerations, including infor-

mation on connections, shock motion tolerances and fragility, shock isolation devices,

design criteria for glazing, and design loads for underground structures·

This manual recognizes two types of explosions namely, confined (internal) and

unconfined (external) explosions based on wether the explosive is located in a confined

area or an open area. Furthermore, confined explosion is divided to fully confined,

partially confined, and fully vented· Herein, we are only concerned about unconfined

explosions since usually buildings are more exposed to outdoor threats rather indoor



24

explosions·

Unconfined explosion is further divided to free-air burst, air burst and surface

burst depending on the location of explosive charges with respect to ground and

whether ground reflection occurs· Figure 1·11 shows all three types of unconfined

explosions·

In free air burst, the propagating shock wave strikes the target structure without

intermediate amplification from ground reflections. Air burst happens when ground

reflections of the initial shock wave occurs prior to the arrival of the blast wave· Air

burst is usually limited to an explosion which occurs at two to three times the height

of a one or two-story building.

Surface burst explosions will occur when the detonation is located close or on

the ground so that the initial shock is amplified at the point of detonation due to the

ground reflections·

For each type of explosions appropriate loading graphs are presented in the

manual· These graphs provide blast wave parameters including pressure, impulse,

time-of-arrival, duration time for a range of scaled distances. Table 1.3 summarizes

different types of blast environments along with applicable pressure loads·

Table 1.3 Blast Loading Categories

Explosion Confinement Pressure

Unconfined
1. Free Air Burst Unreflected
2. Air Burst Reflected
3. Surface Burst Reflected

Confined
4. Fully Vented Internal Shock, Leakage
5. Partially Confined Internal Shock and Gas, Leakage
6. Fully Confined Internal Shock and Gas
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Figure 1.11 Free Air Burst (top), Air Burst (middle), and Surface Burst (bottom)



CHAPTER 2

COMPRESSIBLE FLUID

2.1 Introduction

In this chapter, motion of a body along with the balance laws of mechanics are

described. The balance laws are used to obtain the Euler's equations. Euler's

equations governs the wave propagation in a compressible and inviscid medium like

air· It is attempted to introduce most of the nomenclatures used throughout the script

in current chapter· It is tried to reserve bold capital letters for tensorial quantities;

while bold small letters usually denoting vectorial quantities.

2.2 Kinematics of Motion, Strain and Stress Measures

As shown in Figure 2.1, let a material body occupy space no at time t = 0; and

't at a later time like t = t. The motion x = X(X, t) is a one-to-one mapping for

each particle X and its current location x = (x 1 , x2 , x³ ) in Euclidean space· Usually,

particle X is labeled with its Cartesian coordinates at t = 0 which is X = (X1, X2, X³).

(2.1)

There are two ways to describe the motion of the body in terms of basic inde-

pendent variables· First, when X and t are selected as variables then the Lagrangian

description or material or referential description is used; however, adopting x and

t as independent variables, results in spatial or Eulerian description. For example,

velocity and acceleration in Lagrangian description is defined as:

(2.2)

(2·3)

26
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x=x(X,t)
Deformed

Configuration, t = t

KO)Undeformed
Configuration, t = 0

1C0(g3)

Figure 2.1 Motion of A Body

while, in Eulerian description, velocity and acceleration are:

(2·4)

(2·5)

The deformation gradient tensor F is defined as the gradient of the motion:

(2·6)

Using polar decomposition theorem, it is possible to decompose F into product of a

proper orthogonal tensor R and a symmetric positive-definite tensor U, or V as:

F = RU = VR 	 (2·7)

the physical interpretation of Equation 2·7 is motion can be locally seen as a pure

stretch followed by a rotation or equivalently a rotation followed by a pure stretch.

A pictorial representation of the polar decomposition is shown in Figure 2·2.
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Undeformed
configuration

KO(B)

Deformed
configuration

Kt( 13)

Figure 2.2 Polar Decomposition of Deformation Gradient F

Left Cauchy-Green stretch tensor B as well as Right Cauchy-Green stretch

tensor C are defined as:

B = V 2 = FFT 	(2·8)

C = U2 = FTF 	 (2·9)

It is useful to define the spatial velocity gradient tensor as:

(2·10)

velocity gradient is related to deformation gradient through following:

(2.11)

L can be decomposed into its symmetric part D which represents deformation-rate
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tensor and its skew-symmetric part W called spin tensor.

L = D + W 	 (2.12)

The deformation rate, D characterizes the instantaneous rate of distortion. The spin

tensor, W represents the instantaneous rate of rigid-body rotation· Motions in which

W = 0 are called irrotational.

Strain tensor: The Green-St Venant or Green-Lagrange strain in Lagrangian de-

scription is defined as:

(2.13)

(2.14)

(2.15)

where, I is the identity tensor; and dX is an infinitesimal material filament in reference

coordinate, while dx is its corresponding deformed filament in the current coordinate;

note that dx = F dX in limits. Similarly, the Almansi-Hamel strain, which is an

Eulerian description of strain measure, is defined as:

(2.16)

(2.17)

(2·18)

Left and right Cauchy-Green stretch tensors, B, and C only contain stretch

information, then the effect of rigid body rotation will not be taken into account

in strain — As seen in Equation 2·8, and 2.9 the rotation tensor R diminishes by

multiplying F and FT·
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Stress tensor: Based on Cauchy's fundamental lemma, stress is a tensor T(x, t)

such that the traction t is a linear homogeneous function of the outer normal n in

the current configuration X(X, t):

t(x, t, n) = T(x, t) n·

It is possible to decompose the stress tensor T into a volumetric part —p I and

a deviatoric part like s; i.e·

T = -p1+

where, p is the mean pressure and defined as p = AT : I. Symbol : denotes the

tensorial internal product, i·e. A : B =

Stresses are physical quantities and hence there are certain invariants associated

with them independent of the coordinate system chosen to represent them. There are

three invariants associated with Cauchy's stress:

in which, tr() denotes the trace of a tensor which is the sum of the diagonal elements.

Note, tr(T) = T : I = —3p· Similarly, it is possible to define the three invariants of

the deviatoric stress as:
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Stress invariants are widely used in defining failure or yield surfaces in material

strength models; Specifically, / 1 , J2 and J³. In strength of materials, the von-Mises

stress Te is defined as Te = V3J2 ; hence, von-Mises yield criterion is based on only

J2 invariant. Also, pressure hardening failure criteria include / 1 ; note that /1 = —3p·

On a different note, since the first invariant of the stress deviator is zero J 1 = 0,

then no change in volume occurs due to deviatoric stress and deviators only causes

pure shear state·

2.3 Constitutive Equations

A constitutive equation is a relation between forces and motions; or in continuum

mechanics terms, it is a function relates stress and motion (or strain) for a material.

For example, stress in elastic materials, only dependes on deformation gradient F, or

more precisely only on B or C tensors:

T = g(F)

or in linearly viscous material, stress is a function of the symmetric part of the velocity

gradient D. This class is also referred to as Navier-Stokes fluid and takes the form:

T (—p + AtrD) I + 2µD (2.19)

in which, A and are viscosity parameters; and pressure p is a function of density p·

In the case of an incompressible Navier-Stokes it will be shown that trD = 0 - refer

to Equation 2·22 - hence, the constitutive equation takes the following form:

T= —p I + 2/1 D

here, p is a Lagrange multiplier to enforce the incompressibility constraint.
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In dynamic explicit analysis for highly dynamic phenomena like high speed

impacts, it is usual to adopt two constitutive models; the constitutive model that

governs the volumetric part of stress is called equation of state and it is in the

form of p f(p,e)· where specifies that pressure depends on density and specific

energy· In this study, Ideal-gas equation of state is used for air. Also, for high

energetic materials like explosives, Jones-Wilkins-Lee (JWL) equation of state have

been adopted. Constitutive model for stress deviator is described via a strength model.

Strength model is often related to the first stress invariant 1 -1 and the second deviatoric

stress invariant J2 and sometimes the third deviatoric stress invariant J³. In chapter

7, dynamic material models for concrete and steel have been described based on yield

surfaces expressed as functions of deviatoric stress invariants.

2.4 Balance Laws

Balance laws in mechanics describe conservation of mass, momentum, and energy

and they can be derived via general transport theorem. Transport theorem governs

the material rate of change of a scalar like f (x, t) in a time-evolving volume like S2 t

and bounded by surface 0S21 where n denotes its unit outward normal vector. The

general form of the transport theorem can be presented in following forms:

where, the dot represent material time derivative· ❑ = dc43 The transport theorem

is employed in deriving mechanics' balance laws; namely, conservation of mass, mo-

mentum and energy·
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2.4.1 Conservation of Mass

Conservation of mass or continuity equation stipulates that mass can not be created

nor destroyed in a time varying material volume.

substituting f (x, t) with density p in transport theorem, one can get conservation of

mass in integral form as following:

since the above integral holds for any arbitrary choice of the volume 52 t , the integrand

must be identically zero at each point. Hence, conservation of mass or continuity

equation is obtained as:

(2·20)

(2.21)

In a volume preserving motion or isochoric motion, the density p is constant or ,b = 0;

then based on Equation 2.20, in such a motion div v = 0. Also, it can be shown that

div v = trL = trD; Hence, in an isochoric motion following holds:

div v = trL = trD = 0 	 (2.22)

2.4.2 Conservation of Momentum

The momentum equation relates the rate of change of momentum in a material volume

Sgt to the sum of all forces acting on that volume; forces include body force b (force
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per unit mass) and traction t.

(2.23)

(2·24)

In the above, traction t has been substituted by t = Tn; in next, using the transport

theorem equation in vector form, the left-hand side of equation 2·24 is equivalent to:

(2.25)

in which, [v v] = vivi ; furthermore, using continuity equation it can be shown the

left-hand side of Equation 2.25 is equal to:

(2·26)

After substituting for left-hand side of Equation 2·24 from Equation 2.26, the integral

form of momentum equation is derived as:

(2·27)

Again, due to arbitrary choice of material volume v t , two above integrands must be

identically equal, which yields the momentum equation in its differential form as:

(2·28)

(2·29)

2.4.3 Conservation of Energy

Conservation of energy in its general form is:

(2.30)
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where, e is internal energy; and q denotes the heat flux and r stands for radiational

heat· If defining total energy as sum of the internal energy and kinetic energy as:

(2.31)

then the material time derivative of total energy is:

(2.32)

pre-multiplying both sides of above by p and using momentum equation to substitute

for pV then, it can be shown the following holds:

(2·33)

using the above relation, the energy equation in terms of total energy E can be re-cast

as:

(2·34)

(2.35)

2.5 The Euler's Equations

This section is devoted to derivation of Euler equations of gas dynamics which govern

compressible flow· Euler equations are categorized as nonlinear hyperbolic equations.

Hyperbolic equations may give rise to discontinuities (shocks) in the solution even

starting from continuous initial data· This is due to the directional propagation of

characteristics with different propagation speeds·

2.5.1 Strong Form of the Euler's Equations

The Euler equations express conservation of mass, momentum and energy in a com-

pressible, inviscid ,u A = 0 and non-conducting fluid q = 0· In inviscid fluid, the
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Cauchy stress T only contains the pressure term —pI - refer to Equation 2·19· In the

absence of the body force b, Euler equations read as following:

(2.36)

(2.37)

(2·38)

Euler equations can be recast in vector form as:

(2.39)

where u is the vector of the conservation variables, and f i is the associated flux vector

in i — th spatial dimension:

(2·40)

(2.41)

The vector form of Euler equations in 2.39 can be further compacted using the

divergence of the flux vector

(2.42)

(2·43)
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Then, the Euler equations along with appropriate boundary conditions and initial

condition reduce to:,

(2·44)

(2.45)

(2.46)

where, fin denotes the boundary condition only for the inflow portion of the boundary·

In hyperbolic equations only inflow components of the flux vector can be prescribed.

In order to close above equations, also we need to define the equation of state· The

equation of state relates pressure p to internal energy e and density p, i.e. p =- f (e, p)·

In an ideal gas, internal energy is only a function of temperature; specifically, for a

polytropic gas, the internal energy is proportional to temperature: e = cOT , where ct,

is constant and known as the specific heat at constant volume·

(2.47)

where R is the gas constant per unit mass, which is equal to the universal gas constant

R. divided by the molecular mass of the fluid.

2.5.2 Euler's Equations in One -dimension

In one-dimensional geometry, Euler's equations reduce to:

(2.48)

(2·49)

(2.50)



also, in conservative form, they can be shown as:
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(2.51)

(2.52)

(2.53)

in which, conservative variables u and flux vector f are:

2.5.3 Characteristic Form of the Euler Equations

In one-dimensional Euler Equations, it is possible to define the Jacobian A of the

flux f as following:

using the chain rule, it is possible to show that:

using above, the Euler Equations in quasi-linear form is:

It can be shown that the above form of Euler Equations in conservative form can

be transformed to equivalent Equations through diagonalization of Jacobian A; this

form of Euler Equations is called characteristic form:

(2·54)



in which the characteristic variables w and A are:

39

(2.55)

(2.56)

in above s denotes the entropy and a represents the wave speed. The characteristic

form is very appealing since it decouples the basic variables; The physical inter-

pretation of characteristic form is Euler equations give rise to the propagation of

three signals in characteristic directions· These three signals travel with velocities of

v, v + a, and v — a· Values of characteristic variables w along their corresponding

characteristics are constant. The three characteristics are dx vdt and dx = (v±a)dt.

2.6 Thermodynamical Aspects of Euler Equation

While balance laws ensures equilibrium of mass, momentum, and energy in macro-

scopic level, equations-of-state (EOS) satisfies the equilibrium of thermodynamical

properties in molecular level· For example in an ideal gas law, the thermal equation-

of-state:

p = pRT (2.57)

satisfies the conservation of momentum providing that large numbers of molecules

interact only upon direct collision; and caloric equation-of-state satisfies the conser-

vation of energy on the microscopic level:

e = auT 	 (2·58)
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where cs is the constant volume specific heat. An equivalent expression is as following:

h = cpT 	 (2·59)

where h is enthalpy being defined as h = e + plp and cp is the constant pressure

specific heat. A fluid that satisfies both thermal and calorical equations-of-state is

called a perfect gas. In this work, air has been assumed to behave like a perfect

gas. In following a number of useful definitions or identities for perfect gas have been

mentioned:

• The ratio of specific heats is defined as 7 = cp/c,,,· For sea-level air, cp =

1004N·m/kg·K and = 717N·m/kg·K; then -y = 1·4 at sea-level·

• The gas constant and specific heats are related by cp = R+ c„ or c„ = R/ (-y —1)·

• The thermal equation-of-state can be recast in other useful forms p = pRT =

(-y — 1)pe (-y — 1 )(pE — pv2 )·

• The speed of sound is the speed at which small disturbances propagate through

a medium measured relative to the movement of the medium· For a perfect

gas, it can be shown that a 2 = '-yRT = 22p . In a linear elastic solid, the speed of

sound is a2 = E / p where E is the Elastic Modulus.

• The shock front velocity U, that overpressure ps propagates relative to the

medium is U, = a0 	1*(pao — 1) where a0 = \pi-2-m°· Subscript 0 denotes

ambient air properties.

• Mach number M = u/a is defined as the ratio of particle velocity to the speed

of sound. When M > 1, the flow known as supersonic· In supersonic flows,

particles travel with velocities faster than the speed of sound·



CHAPTER 3

EXPLICIT AND IMPLICIT FINITE ELEMENT

In the previous chapter, the Euler's equations were discussed. In this chapter,

the technology to solve the Euler's equations with finite element methods will be

presented. In doing so, the concepts of spatial and temporal discretization of the

linearized weak form of the equations will be elaborated. The model equation that

will be used in describing different methods is Burger's equation which is a scalar

equation that is very similar to Euler's equations.

3.1 Burger's Equation

One of the basic nonlinear partial differential equations (PDE) that provides a reach

introduction to nonlinearity is Burgers equation. In fact Euler's equations are a set

of three Burger's-like equations· Similar to Euler's equations, Burger's equation can

can develop nonlinear phenomena such as shocks, wave-breaking, as well as multi-

valuedness even from smooth initial values.

In one dimensional setting, x E C2 and CZ C R, Burger's equation reads:

Ot + kb, = 0 in St h 10, 71 	 (3·1)

0(x,0) = 00 	(3·2)

0(0,0 = OD on Fii3, h10, 71 	 (3·3)

It should be mentioned the Dirichlet boundary condition should be prescribed only

on inflow part of boundary (rt)·
From conservation point of view, Burgers equation governs the conservation

of a flux in the form of AO = W2 · Applying flux conservation in the vicinity
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of shock/discontinuity results in Rankine-Hugoniot jump condition. From Rankine-

Hugoniot condition, the velocity for shock propagations in Burger's Equation is:

(3·4)

where R, and L subscripts denote right and left side of the discontinuity.

3.1.1 Linearizing Weak Form and Newton-Raphson Method

In this section, weak (variational) form of the Burgers equation is established· Then,

it is tried to solve the weak form via using Newton-Raphson method. The weak form

is obtained through multiplying the governing equation by a weighting (test) function

like w and then integrating over the computational domain· For example weak form

for Burger's equation is:

We wish to solve the weak form for for any admissible test function w· The weak

form is a nonlinear equation and a widely used method to solve nonlinear equations

is Newton-Raphson (N-R) method. Newton-Raphson method require to linearize the

weak form. The linearization can be done via Taylor expansion.

where k is the iteration number· After having linearized form, steps in Table 3·1

should be done to get an acceptable approximation like 0*·

The Newton-Raphson method in above is presented in a quite general context.

For the Burgers problem at hand, linearization of the weak form is:

(3.5)
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Table 3.1 Newton-Raphson Iteration

1. set iteration counter k 	 0,

2. initialize 0° ,

3. linearize 51/17(w , 0+1 ) 0 about 0,

4. solve for increment ,A.0 from step 3,

5. update 0k+1 with 0k +

6. check convergence criterion I I0k+ 1 — 0k I I < to/.,

7· if converged, 0* = 0k+ 1 and stop; otherwise, k 	 k + 1 and go to step 3.

3.1.2 Spatial Finite Element Discretization

Here, Galerkin finite element spatial discretization is performed for the linearized

weak form of the Burger's equation. Adopting appropriate shape function NA for

node such as A, then trial solution 0 can be approximated with the piece-wise finite

element approximation Oh as following:

(3· 6)

where, OA denotes the unknown nodal value at node A and OD are known nodal values

at Dirichlet boundaries· Also, choosing the test function as:

(3.7)

In above, it is implied that domain 11 is discretized with non-overlapping elements like

Ste, where 1 < e < n el· Furthermore, substituting the finite element approximations

— Equations 3·6, and 3.7 — in the weak form — Equation 3·5 — yields following semi-

discretized equation:

(3.8)
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in which, (1. lists all unknown nodal values like OA; M is the generalized mass matrix;

C is the convective matrix, and P is the generalized force vector. All previous matrices

are formed through element assembly:

where superscript e denotes element-wise contribution of matrices and E represents

assembly procedure. Element matrices are calculated as following:

(3·9)

(3.10)

(3·11)

where, matrix N contains all nodal shape functions for all of the nodes in element

e· Matrix B contains the spatial derivatives of N. All above integrations can

be evaluated via numerical methods like Gauss quadrature. In Gauss quadrature

method, the integrand is evaluated at Gauss points and the integral is approximated

by appropriate weighting of the integrand at Gauss points· For example for ngp Gauss

points, the integration is done as:

in which, wi is the weighting coefficient for the gauss point like i·

3.2 Temporal Discretization

So far, the spatial discretization of the weak form has been performed as shown

in Equation 3.8. To fully solve semi-discretized equation, we should also perform

temporal discretization· In order to get accurate results, the accuracy order of



45

Table 3.2 The 0 Family of Time Integration Methods

0 	 Method 	 St ablity 	 Order of Accuracy

= 0 	 Euler 	 conditionally stable 	 first order

= 1/2 Crank-Nicolson unconditionally stable second order

= 3/2 Galerkin 	 unconditionally stable first order

= 1 	 Backward Euler unconditionally stable first order

temporal discretization needs to be at least of that of spatial discretization. The

schemes for solving first order differential equations in Equation 3·8 include the 0

family of methods, and the Lax-Wendroff method. Also, for second-order differential

equations, Newmark scheme is one of the most popular time integration methods.

The 0 family of methods: This family of methods is highly used in integrating

the first-order differential equations. The value of the time derivative is approximated

by a weighted average of 01 1 and 011+ 1 :

(3·12)

The parameter 0 is in the interval [0, 1]· For some specific values of 0, some well-known

methods will be recovered as summarized in Table 3.2. For B = 0, the well-known

Euler's scheme will be recovered. Euler's scheme is conditionally stable. The stability

condition is known as Courant-Friedrichs-Lewy or CFL condition. The CFL condition

for Euler's method is '4' < 1, in which a is the speed of sound· Based on the CFL

condition, time step At should be small enough that the wave signal travel at most

one element Ax· CFL condition should be respected for all explicit time integration

schemes·
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Other schemes in Table 3.2 such as Crank-Nicolson, Galerkin, and Backward

Euler, are unconditionally stable regardless of the size of time step At· These methods

are implicit.

Lax-Wendroff Method: This method is based on a truncated Taylor series ex-

pansion. It is second order accurate like Crank-Nicolson; however, it is explicit.

(3.13)

the first and second derivative O t , Ott are substituted from the differential equation.

Newmark Methods: One of the widely used time integration methods for first

and second order ordinary differential equations is the Newmark methods. Providing

values of a scalar at instance t, i·e·, OM as well as its first and second time derivatives,

i·e· O t (t) , and 0 tt (t) are known, then it is possible to estimate values of 0(t + At)

and 0 t (t + At) according to following Taylor-like approximations:

If one introduces an increment in O tt (t+At) in the above equation, following equalities

can be obtained:

(3.14)

(3.15)

It is easy to observe following equation when dividing each side of above equations

respectively:

(3.16)
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At this point, we proceed to temporally discretize Equation 3·8· Substituting for cbt

from Equation 3·16, following linear system of equations is obtained:

Above linear system may be solved with direct or iterative methods depending on t]

size of the unknowns· It is noted that the resulting coefficient matrix is not symmeti

since C is not symmetric·

Following Table summarizes procedures should be carried out in solving Burg

equation. If the time domain is sampled at n equal time span At, then we dent

time at the end of the step i as t i = i At which i = 1, n:

Table 3.3 Newmark Method 

1. initialize q)(t = 0),

2. set time step counter i 4— 1,

3. call Newton-Raphson routine to solve ((3/(ozAt)M C) 0.13 = P

4. get 6..T.* from Newton-Raphson routine

5. assign 43(ti) = (4_ 1 ) +

6. if i < n then i 4— i 1 and go to step 3; otherwise stop.

3.3 The Euler's Equations

As discussed, Eulers's equations are a collection of mass, linear momentum, and

energy conservation for an inviscid and compressible fluid with no heat-conduction

involved. As shown in Chapter 2, in one-dimensional geometry, Euler's equations

reduce to:

au(x,t) 	 af(x,t) 	0
aat 	 ax where x E [0, L] 	 (3·18)
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In which,

Defining the Jacobian of the Flux vector f as A(u) =-- au, the Euler equations can be

written in the quasi-linear form:

Substituting for conservative variables u in the above equation will give rise to the

following expanded form of the Euler's equations:

In order to solve Euler's equation with finite element methods, weak form should

be obtained for above equations· Next, spatial and temporal discretization should

be performed for the linearized weak form. The procedure is very similar to the

one explained for Burgers equation· Also, numerical stabilization techniques such as

artificial viscosity should be employed in order to remove un-physical oscillations that

occur in the vicinity of shocks. One of the techniques to damp the un-physical oscil-

lations is Flux Corrected Transport (FCT) method which is being used in Autodyn·

This method was introduced by Book and Borris [14]·

This chapter concludes the theoretical discussion on the procedures to solve

Euler's equations. From the next chapter, the results of solving Euler's equation for



different problems of blast wave loading with Autodyn are presented·
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CHAPTER 4

ASSESSING AUTODYN RESULTS ACCURACY AND LIMITATIONS

In this chapter, spherical blast detonation and its propagation in free air is discussed·

Detonation and propagation of shock waves are simulated with Autodyn and results

are compared with ConWep program as the benchmark. ConWep is calibrated based

on extensive number of tests and used frequently in engineering practice. Capabilities

and limitations of Autodyn in capturing accurate results will be discussed.

4.1 Spherical Blast Simulation with Autodyn

Here, the detonation of a spherical charge and its propagation in open air is modeled

in Autodyn· In doing so, a wedge shaped geometry is filled with air and the explosive

charge is positioned at the vertex with a proper radius. It is possible to take advantage

of axi-symmetric nature of the geometry and only model a slice as shown in Figure

4·1· The two dimensional wedge (slice) will be discretized with only one cell in

circumferential direction and very fine size cell in radial direction· The detonation

starts at the vertex and energy gets released and propagates in the air in form of

shock waves·

In terms of materials, air is considered as ideal gas and explosive charges are

modeled with Jones-Wilkins-Lee (JWL) equation of state. The JWL equation of state

is used to calculate the pressure of the detonation products of explosives. A typical

pressure-specific volume p — v curve for JWL equation of state is shown in Figure 4·2.

When the charge detonates the specific volume v increases and pressure drops in the

expanded detonated materials· The JWL equation of state is expressed as following:

gyp )
Rl  

exp( ) B (1 (.4.) p  pR2
) + w Pe (4·1)p(p, e) = A (1  ) exp( 

Po 	 R2 PO	 PO
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Figure 4.1 Free Air Blast Model 

In above, JWL contains five parameters A, B, R1 , R2 , W which have to be determined 

log P 

Total pressure 

/ 

'\ 
Bv -{1+w1 

tog V 

Figure 4.2 Pressure versus Specific Volume in JWL 

for different materials experimentally. For example, these parameters for TNT are 

reported in Table 4.1. 

4.2 Con Wep Program 

Con Wep is a software developed to calculate the blast parameters in different blast 

environments; i.e. internal or external explosions. Con Wep does not solve for gov-



Table 4.1 JWL Parameters for TNT
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Density, Po

Parameter, A

Parameter, B

Parameter, R1

Parameter, R2

Parameter, w

C-J Detonation Velocity,

C-J Energy / unit volume,

C-J Pressure,

1630 [kg/m3]

3.74e8 [kPa]

3.75e6 [kPa]

4.15

0.90

0.35

6.93e3 [m/s]

6·00e6 [kJ/m3]

2·10e7 [kPa]

erning physics equation; however, it is based on a compilation of results of extensive

number of blast tests· ConWep contains polynomial equations for blast parameters

which are derived from curve-fitting of scaled explosive test using charge weights from

less than 1 kg to over 400,000 kg·

The pressure-time history curve in ConWep has been taken as a combined linear

and exponential decay form as following:

The blast parameters in above, namely peak pressure 133 , time-of-arrival Ta , duration

Ts and the decay parameter a are determined from experimental equations or graphs

available in manual TM-855-1 [?]· All four parameters (or scaled form of them) are

functions of scaled distance z. For example peak overpressure p s , and scaled impulse

i/w 3 versus scaled distance z are shown in Figure 4·3 and Figure 4·4, respectively.

Also, scaled arrival time Ta/w 3 and scaled duration Ts /w 3 are depicted in Figure 4.5.



All the mentioned graphs are prepared from ConWep results.
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Figure 4.3 Peak Pressure as a Function of Scaled Distance

Figure 4.4 Scaled Impulse as a Function of Scaled Distance
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Figure 4.5 Scaled Arrival Time and Scaled Duration versus Scaled Distance

As it is seen in Figure 4·3, peak pressure decreases uniformly as scaled distance

increases· However, the impulse trend in Figure 4·4 is not uniformly decreasing and

there is a local maximum around z = 0.8· Scaled arrival time keeps longer for larger

scaled distances; also, scaled duration increases as scaled distance increases.

To explain these facts, it should be noted in large scaled distances - i·e· less

intense shock waves - the shock front velocity is smaller comparing with small scaled

distances· In fact shock front velocity Us as shown in chapter 2 reads:

(4.3)

It takes longer for less intense shocks, i·e· smaller ps , to travel a certain distance as

well as it takes longer for them to get cleared at a point· This translates to larger

arrival time and longer durations·

Impulse as the area under pressure history depends not only on peak pressure
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but also on duration time T,. As scaled distance z increases the peak pressure de-

creases; on the other hand, duration time increases as scaled distance z increases· This

means the pressure disturbance linger longer despite the decrease of peak pressure.

The opposite effects of variation of pressure and duration time result in the impulse

trend shown in Figure 4·4·

4.3 Comparing Autodyn and ConWep

As mentioned, blast parameters for characterizing pressure history profile include

peak overpressure ps , positive-phase duration T,, time-of-arrival Ta , and positive

impulse i 5 · For verification purpose of Autodyn, the above parameters are calcualted

with Autodyn and they are compared with ConWep program·

In designing simulations, three different TNT charge weights w are selected;

namely, 0·454 kg, 4.54 kg, 45.4 kg· Blast parameters are measured at 0.5, 1·0, 1·5,

2·0, 2·5 meter standoff distances R· Based on standoff distances R and charge weights

w, a range of scaled distances between z 0.140 m/kg¹/³ and z = 3.255 m/kO- are

considered· Each model is discretized with three different grid sizes; namely 5, 10, 20

mm· Totally 9 simulations (3 different charge weights h 3 different mesh sizes) are

performed and in each simulation, parameters are obtained for 5 stand-off distances

(or equivalently scaled distances).

It is noteworthy to mention the above range for scaled distance z is quite in

practical range. It has been documented in [17] that for blasts in scaled distance

ranges smaller than z = 0·2 m/kg the shock is such intense that it can cause the

total brisance of concrete columns· In scaled distances larger than z = 4·0 m/kg¹/³,

the overpressure is less than 0·05 MPa (around 7 psi) and insignificant· In following

sections, blast parameters are compared for Autodyn and ConWep.
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Peak Overpressure: The overpressures obtained from Autodyn are overlaid on the

graph obtained from ConWep as shown in Figure 4.6· Comparison between Autodyn

and ConWep overpressures shows that Autodyn is able to predict overpressures with

less than 20% error even for the coarsest mesh. Autodyn predictions generally

underestimate those of ConWep. To explain this, in general, numerical methods

smear the shock over at least one element· The smaller the element is, the better the

peak pressure is resolved. The true peak overpressure can be resolved at the limits

when element sizes and time-steps tend to infinitesimal values.

Figure 4.6 Overpressure versus scaled distance·

Time of Arrival: Time-of-arrival Ta represents elapsed time for shock wave to

travel the stand-off distance· Scaled arrival times Ta/w ¹/³ are shown in Figure 4·7 for

results obtained from Autodyn· Autodyn is successful in predicting correct arrival

times.
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The success of Autodyn in predicting correct times of arrival is a proof that

Autodyn Multi-Material Euler solver is able to capture shock front velocity correctly·

As shown in Equation 4·3, shock front velocity U, depends on the sound-speed ao as

well as on the intensity of the shock ps ·

In order for a numerical scheme to correctly capture shock wave velocities, it

should be numerically conservative in terms of fluxes; i.e· mass, momentum and en-

ergy fluxes. Non conservative numerical methods consistently under- or overestimates

the shock velocities. [15]

Figure 4.7 Scaled Arrival Time versus Scaled Distance·

Positive Impulse: Scaled positive impulses i/w1 versus scaled distance z are

shown in Figure 4·8. As observed, Autodyn impulses is less conforming with ConWep

results comparing with previous blast parameters·

As mentioned, ConWep adopts an idealized profile for pressure time history
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as shown in Equation 4.2. This curve is the product of a linear decay as well as

exponential decay functions· Specifically, the exponential decay contains a decay

parameter a which is provided by the ConWep. The impulse in ConWep has been

determined through integrating the idealized profile·

In reality, wave reflections at the interface of explosive materials and air occur

due to different impedance properties of air and explosive materials· As a results, a

portion of the overpressure propagates into the air at the interface and some reflects

back into the explosive materials. Pressure travels back into the explosives till gets

reflected from the center of the wedge· It is understood that the reflections at the

interfaces modify the idealized pressure history and hence affecting the impulse which

is the area under pressure history profile·

A sample pressure history at standoff distance 2·00 m and charge weight 45·4

kg is shown in Figure 4·9· As seen, Autodyn profile clearly bulges out at two instants

as compared with Idealized profile of ConWep· These pressure bulges are due to

pressure reflections at the interface·

4.4 Conclusion

Blast parameters obtained from Autodyn one-dimensional simulations are discussed

and compared with ConWep results· For peak overpressures and arrival times, a fairly

good agreement between results are observed. For impulse, it is believed that the

idealized pressure history profile adopted in ConWep might be over simplifying and

neglecting some aspects of the physics of the problem including pressure reflections

at the interface between the explosive materials and air·

Clearly, more experimental research is needed to assess the pressure history

profile· On the other hand, due to the inherent uncertainties and erratic nature of

blast loading, current approximations can be tolerated·



Figure 4.8 Scaled Positive Impulse versus Scaled Distance

Pressure history at standoff 2·00 meter and weight 45.4 kg (grid 5 mm)
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Figure 4.9 Autodyn and ConWep Pressure Time Histories



CHAPTER 5

BLAST LOAD CHARACTERIZATION ON COLUMNS

In Chapter 4, the free air blast modelings are discussed. In this chapter, it is intended

to study loading experienced by columns in blast events. To this end, the shock

wave reflection and expansion fans phenomena are used to qualitatively explain the

pressure distribution around columns with different shapes. The discussion is further

confirmed by Autodyn simulations. The pressure distribution study is performed with

two dimensional models. Next, to estimate the total force and impulse on columns,

three dimensional models are prepared. Based on the results of the three dimensional

simulations, equations have been suggested to estimate force and impulse loads on

columns as functions of their size as well as the intensity of the blast load for both

circular and square columns.

5.1 Fluid Forces on Solid Objects

There are two mechanisms by which fluid forces are transmitted to a solid object sub-

merged in the fluid flow; they are namely pressure p and shear stress T. Considering an

infinitesimal surface area da on which pressure p in normal direction n (nx ,ny ,nz )

and shear T in tangential direction m (mx ,my , mz ) are present, the total force

acting on the area is:

df = —pnda + τmda

In other words, df is the infinitesimal force due to traction t = Tn on the area da.

The total force f on the object is the sum of the elemental forces df over the object's
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surface aΩ:

Assuming the fluid flows in x-direction, in aerodynamics terminology, the component

of the force f along the wind (flow) direction (fx) is called drag D; while lift L is the

component perpendicular to the wind (flow) direction (say fy ):

In above equation for drag D, both contributions from pressure drag and friction drag

are present· However, in lift, the major contribution comes from pressure lift and

contribution from shear stress on lift is usually negligible in engineering applications·

For inviscid fluid with viscosity p, = 0, shear stress vanishes and drag and lift contain

only pressure components:

(5· 1)

(5 ·2)

Drag force in practical applications is approximated with following:

in which ρ∞ , u„,, are free-stream density and velocity measured in far upstream and

A is a reference area for the object which is the planform area i·e· the projected area

as seen by the flow· CD is drag coefficient
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In compressible flow context, it can be shown via dimensional analysis that drag

coefficient only depends on free-stream Mach number Moo and specific heat ratios 7

[1].

Drag coefficient does not depend on the size of the body (not shape), nor the

free-stream density, pressure, or velocity·

5.2 Fluid Flow Around a Solid Object

The flow field - streamlines - in the presence of a solid object will vary depending on

the flow regime, i.e· subsonic or supersonic· Different regimes affect the flow field

around the body· A comparison between flow fields in subsonic and supersonic flow

streamlines is shown in Figure 5·1·

As observed, in the subsonic flow, i·e· where Mach number is smaller than unity

M = u/a < 1, the presence of the body propagates everywhere in the flow, including

upstream through sound waves· The disturbance due to presence of the object can

propagate in all directions including upstream since sound speed a is larger than

fluid particle velocity u· Consequently, streamlines in a subsonic flow regime are

forewarned of the disturbance and they prepare to conform to the body's geometry

in advance.

On the other hand, in a supersonic flow where Mach number is larger than

unity M = u/a > 1, sound waves can no longer propagate upstream, since flow

particles travel toward down-stream faster than sound waves; as a result, streamlines

at upstream are not aware of the disturbance. Fluid particles continue their path

as though no disturbance is present until a short distance ahead of the body; then



(a) Subsonic flow

(b) Supersonic flow
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Figure 5.1 Subsonic and Supersonic Flow Field Around a Rectangular Object [1]
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streamlines are forced to change their path abruptly to conform to the body· The

abrupt change (discontinuity) in the flow field happens via a thin layer of shock wave·

It should be noted that the flow renders subsonic after passing through the shock·

5.2.1 Supersonic Flow Over a Corner

The main thrust of this chapter is to investigate the flow field around columns in

supersonic regime· Before studying the flow around an object with arbitrary shape

like columns, it is helpful to examine the supersonic flow over a corner· Depending

on whether the corner is bent upward or downward, two very different flow fields are

observed over the corner as depicted in Figure 5·2.

Figure 5.2 Flow Over Concave(a) and Convex(b) Corners·

In a concave corner, when a supersonic flow is turned into itself, an oblique

shock develops and pressure, density and temperature of the flow increases· Different

types of oblique shock reflection (regular and irregular reflections) have been discussed

exhaustively in Courant [7]·

Conversly, when a supersonic flow is turned away from itself through a convex

corner, an expansion, fan occurs and consequently pressure, density and temperature
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decrease smoothly through the expansion fan.

Since shock waves increase the intensity of the flow, they are more of concern

rather than expansion fans in blast loading context. On the other hand, expansion

waves are imperative when blast waves reach the convex corner of the columns.

Expansion waves considerably decrease the strength of the shock waves. In following,

a brief review of the theory of oblique shocks and expansion fans are presented·

Oblique Shock: When a supersonic flow sweeps over a concave corner with a

deflection angle of 0, following observations can be made: (subscripts 1, and 2 denote

states of fluid before and ahead of the shock wave respectively)

• Mach number of the flow decreases through an oblique shock· M2 <

• Pressure, density, and temperature increase through a shock wave. p2/p1 >

1 , ρ2/ρ1 > 1, T2 /7). > 1

specifically, it can be shown the pressure increases as following:

where, Mil = M1 sin 0, and denotes the obliquity of the reflected shock; it is

possible to prove the following relation holds among 0 — — M:

The 8 — — M curves for a number of values of M l is depicted in Figure 5·3; as

observed, for a specific value of MI , there is a maximum deflection angle 8,,,, x • If

> ()max , then no solution exists for a straight oblique shock wave; in contrast the

shock will be curved and detached. It should be mentioned that closed form solution

does not exist for detached shocks to obtain the flow properties; the only resort to
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calculate the flow properties and obtain the curved geometry of the shock including

the detachment length is via employing numerical simulations·

Figure 5.3 0 — )3 — M Curves.

Expansion Waves: When a supersonic flow is turned away from itself via a convex

corner with deflection angle of 0, an expansion wave is formed as shown in Figure 5·2.

An expansion wave is directly in contrast with a shock wave. Some distinguishing

features of flow through an expansion wave are:

• Mach number of the flow increases through an expansion wave· M2 > M1

• Pressure, density, and temperature decrease through an expansion wave· p2/p1 <

1 , ρ2/ρ1 < 1 , T2/T1 < 1
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Due to the work of Prandtl and Meyer on developing theory on the subject of

expansion waves, expansion waves are also referred to as Prandtl-Meyer expansion

waves· When an expansion wave originates from a sharp convex corner, it is called a

centered expansion fan.

The properties of the flow downstream the expansion fan P2) ρ2) T2, M2 are

obtained provided the upstream flow properties are known· The downstream Mach

number M2 is implicitly calculated from

v(M2) = v(M1 ) + 0 (5.3)

where v(M) is the Prandtl-Meyer function:

After solving for M2 from Equation 5·3, obtaining other quantities is straight-forward,

for instance pressure can be obtained from:

(5·4)

5.3 Flow Field Around Column Sections

5.3.1 Qualitative Discussion

Based on the discussions on oblique shock and expansion fans mentioned in the

preceding sections, it is possible to qualitatively describe the flow field around columns

with different cross-sectional shape· Here, columns with square and circular shapes

are considered· The orientation of the square column to the blast source will affect the

flow field· Hence, two different orientations or angles-of-attack will be discussed for

square column as shown in Figure 5·4· In first case, column is oriented side-wise with

regard to the charge; while in second case, vertex of the column is facing the charge·
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The former square column represents zero angle-of-attack and the latter represents

the 45° angle-of-attack·

Figure 5.4 Circular Column and Square Columns in 0 and 45° angles-of-attack

Flow Field Around Square Columns: A sketch of the square column with zero

angle-of-attack is shown in Figure 5.5. As the incident shock wave encounters the

column, a reflected shock bounces off the column; the front face of the column continue

experiencing high reflected pressures, until the shock front reaches the two corners·

Afterwards, shock wave fans out at the corners and substantially loses its strength·

Relief waves (or rarefaction waves) propagates back to the front side and alleviate

pressure on the front side·

While the pressure on the lateral sides are much less intense compared with front

side, they also cancel out each other· It is worth mentioning that the lateral dimension

of the rectangular column is not affecting forces experienced by the column· Those

simulations performed for square columns can be extended to rectangular columns

with similar front side dimension. At the back corners, again expansion fans develop

and the pressure on the back side is very small. The idealized pressure load on the

square column is depicted in Figure 5·5.
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Figure 5.5 Qualitative Flow Field Around a Square Column and Idealized Pressure
Distribution

Flow Field Around Rotated Square Columns: A sketch of the 45° rotated

square column is depicted in Figure 5·6· In this situation, as incident wave impinges

on the column, oblique reflections develop· Comparing oblique reflection with normal

reflection occurred in zero angle-of-attack orientation, the pressure on the two sides

are less intense; hence the rotated column experience less intense pressures relatively·

The shock waves are trapped before the column, until they sweep the two front sides

and find their ways to the two back sides· Afterwards, expansion waves develop at the

corners and the pressure decrease on two back sides markedly· The idealized pressure

on rotated square is shown in Figure 5·6.

Although, pressures are expected to be less intense comparing with zero angle-

of-attack orientations, the reference area for rotated square is times larger than

the area of that of the column with zero angle-of-attack· In terms of total force

experienced by the column, the larger area considerably offsets the reduction in

pressure and forces on the two cases are almost comparable·

The reflected pressure ratio for different angles of incidents was shown in Figure
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1·6· As seen, the reflected pressure ratio for normal reflection (αI = 0) for the most

intense incident pressure reads slightly larger than 12. Also, for angles-of-attack

around 45°, reflected pressure ratio varies from 8 to 9· The reduction in reflected

pressure for rotated square is about 30% which is well compensated with 40% larger

area when comparing force on square and rotated square columns.

Figure 5.6 Qualitative Flow Field Around a Rotated Square Column and Idealized
Pressure

Flow Field Around Circular Columns: Due to the unique geometry of the cir-

cular columns, the wave reflections and expansions at each point occur simultaneously.

After shock wave reaches the crown of the circular section, then wave expansion is the

dominant phenomenon. In all circular and rectangular columns, the reflected shocks

are expected to be detached and consequently using numerical modeling is the tool

at our disposal.
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5.3.2 Quantitative Discussion

In the previous section, flow field developed around column sections were discussed

qualitatively. In this section flow fields around different cross sections are further

studied with numerical simulations· The objective of simulations are to understand

the pressure distribution around column sections; hence, modelings are performed

in two-dimensional domain. However, in the next section, the simulations will be

performed in three-dimensional domain to study the effects of the height of columns

on the force and impulse imparted to the columns.

Cross sectional shape of a column determine the flow field and pressure distri-

bution around the column perimeter. To evaluate the effects of shape on shock wave

loading of columns, two-dimensional simulations of circular and square columns under

similar scenarios of explosion — i·e· similar scaled distance z — have been performed

and pressure distribution over cross sections are monitored.

Here, the charge is assumed as a point and the incident shock will propagate

as concentric circles. In theories that mentioned in preceding sections, the incident

shock wave are assumed as planar wave for simplicity. In following simulations, the

results of the one-dimensional blast detonation of w 45·4 kg of TNT are mapped

into two-dimensional domain as initial condition· The clear stand-off distance in

all simulations is R = 2000 mm which corresponds to a scaled distance of z =

0·561 m/kg⅓.

In terms of geometry, the diameter of the circular column is 1000 mm; and the

dimension of the square is 1000 h 1000mm. A sketch of column sections is shown in

Figure 5.7

Since the charge is located on the symmetric axis of columns, it is possible to

model only half of the domain provided appropriate symmetry boundary condition is

prescribed. The air domain is discretized with Eulerian grids as small as 20 h 20mm.
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Figure 5.7 Circular Column(A), Square Column(B), and Rotated Square 
Column(C) 

In order to record pressure history in different locations adjacent to the columns, 

a number of gauge points are embedded in each simulation. The number and location 

of gauges are reported for each model. 

Flow Field Around Circular Columns: Here, blast wave loading on a circular 

column with diameter of 1000 mm is simulated. A sketch of the domain along 

with locations of gauges is presented in Figure 5.8. Also, Table 5.1 shows the peak 

overpressure and impulse at gauge points for circular section. Based on these results, 

the front points of the section - gauge 1, 2, and 3 - are experience high reflected 

pressure values, while the points on the back side are experiencing relatively low 

pressures due to the expansion fans starting to occur at point 5. The isobar contours 

at different time instants are depicted in Figure 5.9, and 5.10. The reflected shock 

front are well captured. Also, it is worth noting that it takes less than 2 ms for the 

shock wave to completely engulf the column. 

Flow Field Around Square Column In this simulation, the flow around a square 

column with dimensions of 1000 by 1000 mm is calculated. The geometry of the 

problem is depicted in Figure 5.11. 

To obtain history of the quantities that we are interested in, seven gauges have 
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Figure 5.8 Gauge Locations in Circular Column 

Table 5.1 Peak Overpressure and Impulse for Circular Column 

Gauge no. Pressure [MPa] Impulse [kPa-s] 

1 17.904 5.288 

2 14.277 3.955 

3 7.713 1.815 

5 1.934 0.472 

7 0.836 0.243 

8 0.440 0.258 

9 0.822 0.481 



Circular Section
time: 0·1 ms

Circular Section
time: 0.4 ms

Circular Section
time: 0·6 ms
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Figure 5.9 Shock Wave Propagation Around Circular Column



Circular Section
time: 0·9 ms

Circular Section
time: 1·3 ms

Circular Section
time: 1.6 ms

75

Figure 5.10 Shock Wave Propagation Around Circular Column (Continued)
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Figure 5.11 Gauge Locations in Rectangular Column 

been embedded in cells adjacent to the column; gauge locations are shown in Figure 

5.11. Gauges labeled as 1 to 3 are located on windward side of the column; gauges 

4 and 5 are on lateral side and on leeward side, gauges 6 and 7 are placed. Peak 

overpressure and impulse are reported for square column in Table 5.2. As observed, 

the pressure considerably drops on the lateral side due to expansion fan occurs at the 

corner. The isobar contours around the square columns are depicted in Figure 5.12, 

and 5.13. 

Flow Field around Rotated Square Column: In Figure 5.14, locations of 

embedded gauges in the 45° degree rotated square column is shown. Overpressure 

and impulses in gauge points around the 45° rotated square is shown in Table 5.3. 

Two-dimensional Simulation Results In order to compare distributions of pres­

sure and impulse on columns surface, five geometrically related points on the surface 

of the circular and square columns have been picked; pressure and impulse histories 

at these points are monitored. A sketch of these points is shown in Figure 5.15. 

As shown, these locations are labeled with a, b, c, d, and e which geometrically 

correspond to the front, mid front, lateral side, mid rear and rear of each column. The 



Table 5.2 Peak Overpressure and Impulse for Square Column

Gauge no Pressure [MPa] Impulse [kPa-s}

1 18.065 6·375

2 17.782 6.095

3 15.842 4·048

4 1.977 0.541

5 0.425 0·036

6 0.275 0.236

7 0.618 0·398

Table 5.3 Peak Overpressure and Impulse for Rotated Square Column

Gauge no. Pressure [MPa] Impulse [kPa-s]

1 11.696 4·572

2 11·380 2.988

3 3·269 0·268

4 0.555 0.163

5 0.686 0·401
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Square Section
time: 0·1 ms

Square Section
time: 0.4 ms

Square Section
time: 0·6 ms
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Figure 5.12 Shock Wave Propagation Around Square Column



Square Section
time: 1.3 ms

Square Section
time: 1·6 ms

Square Section
time: 1·9 ms
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Figure 5.13 Shock Wave Propagation Around Square Column (Continued)
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Figure 5.14 Gauge Locations in Rotated Square Column 

maximum reflected pressure occurs at point a, while point c represents the pressure 

values corresponding to expansion waves. The Pressure and impulse histories for 

points a, b, c, d, and e are shown in Figures 5.16,5.17,5.18,5.19, and 5.20 respectively. 

c bed 

a e O
d aDe e 

Figure 5.15 Locations of point a, b, c, d, and e. 

It is clearly seen that the cross sectional shape and geometry of a column consid-

erably affects the blast wave propagation pattern. Based on the current simulation, 

following conclusions can be made. 

• Peak reflected pressure experienced at the point immediately in front of the 

blast (point a) by circular and square sections are almost equal; however, there 

is a 20% reduction in impulse experienced by circular column relative to square . 

• Comparing square and rotated square shows that orientation of the column 



Figure 5.16 Pressure and impulse histories at point "a"
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Figure 5.17 Pressure and impulse histories at point "b"



Figure 5.18 Pressure and impulse histories at point "c"
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Figure 5.19 Pressure and impulse histories at point "d"
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Figure 5.20 Pressure and impulse histories at point "e"

toward the blast has significant effect on pressure and impulse distribution.

Rotated square column experiences less pressure and impulse by amounts of

35% and 28% in comparison with square section·

• pressure and impulse built up in rear of columns are negligible in comparison to

the front side pressure and impulse as a result of pressure drops due to occurring

expansion fans

5.4 Characterizing Blast Loads on Columns

Force and impulse imparted to a column during a blast accident vary with the shape

and size of the column as well as with the intensity of the blast· In this section, it

is attempted to quantify force and impulse· To achieve this end, a set of simulations

with different input parameters are designed to study correlations of force and impulse

with shape, size, and intensity· It is tried to propose approximate equations for the

force and impulse based on simulation results.
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Figure 5.21 3D Modeling of Circular Column 
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Figure 5.22 3D Modeling of Square Column 
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5.4.1 Three-Dimensional Simulations

Sketches of typical simulations are shown in Figure 5.21, and Figure 5·22 for circular

and rectangular columns respectively. As seen, the column is exposed to a blast

wave located at its mid-height level with a specific stand-off distance· The objective

is to calculate the force exerted on the column due to the air blast· Assuming the

detonation point and column are located on x-axis, the components of the drag h

and lift fy at time t are:

in which aΩ represents the outer surface of the column with outward normal vector

n(x, y)· The lift force is zero fy = 0, due to symmetry in the loading with respect to

the y-axis. So, the only component of force will be the drag force h· From now on,

the x-subscript will be omitted for sake of simplicity in the notations and drag force

will be denoted by f ·

Also, another quantity of interest is the impulse i(t) experienced by the column·

The impulse is defined as:

(5·5)

Impulse will be only due to drag force h. In all simulations, the total net force and

impulse imparted to the column is calculated via integration of pressure over the wet

surfaces, i.e. column's element surfaces that are in contact with the air domain·

Columns are discretized with Lagrangian hexahedral brick elements as small

as 75 mm in size· Columns material is concrete and linear elastic model is used for

concrete behavior. The results relevant to structural response of column is studied in
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next chapter; here, it suffice to mention that the flexibility of columns has been taken

into account in simulations. The air domain is dicretized with Eulerian elements as

small as 75 mm in size· The Flux Corrected Transport (FCT) algorithm is used.

Blast intensity is again represented through scaled distance z, which is a pa-

rameter that combines the weight of explosives and stand-off distance in one single

number· As mentioned, the explosives are located in the mid-height level of columns

with a clear stand-off distance of 2000 mm in all simulations. However, the weight of

explosives are varying to change scaled distances for each simulation. The weight of

explosives used are equivalent of 22·7 kg (50·0 /b) of TNT, 45·4 kg (100.0 /b) of TNT,

and 113·5 kg (250.0 /b) of TNT which correspond to scaled distances of z = 0.706

z = 0.561 m/kg⅓, and z = 0·413 m/kg1/3 respectively· equal to a car/truck...

Three dimensional modelings are performed to consider the effect of columns'

length on loading· In doing so, circular and square shape columns with heights of

3000, 4500, and 6000 mm and cross sectional size of 500, 750, 1000 mm are studied

under the above three scenarios of blast explosions· In total, 54 simulations have been

performed (2 shapes h 3 sections h 3 heights h 3 scaled distances·)

5.4.2 Three-Dimensional Simulation Results

In order to investigate the effect of column heights, the results for net force and

impulse for similar section size but different height length are shown in Figures 5·23,

5·24, and 5.25 for circular columns and in Figures 5.26, 5·27, and 5.28 for square

columns· These results presents the net force and impulse imparted to columns

during the blast intensity of z = 0·561 m/kg1/3 · In each Figure, top graph corresponds

to net force experienced by columns of different lengths; however, the bottom graph

corresponds to net impulse imparted to the mentioned columns. Based on presented

simulation results, following observations can be made :
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• Maximum force imparted to the columns with similar cross sections in terms

of shape and size is not sensitive to column heights for the range of heights in

this study· This means that height is not a factor in determining the maximum

force experienced by the column. Maximum force occurs while certain length

of columns are swept by the pressure wave· Apparently, even for the shortest

column with height of 3000 mm, the length has been enough for the maximum

force to develop·

• Maximum impulse experienced by the columns increases as the height of columns

increases. In taller columns, pressure wave can sweep larger area and hence more

impulse would be experienced by columns.

• In the next chapter, it has been shown the structural response of columns

depends on the maximum impulse and not the maximum force. Also, it will

be mentioned how the total net force and impulse can be used to predict the

maximum deflections·
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Figure 5.23 Force f (top) and Impulse i (bottom) for Circular Sections with
Diameter of 500 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s, m,
and h respectively·)



Figure 5.24 Force f (top) arid Impulse i (bottom) for Circular Sections with
Diameter of 750 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s, m,
and h respectively·)
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Figure 5.25 Force f (top) and Impulse i (bottom) for Circular Sections with
Diameter of 1000 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s,
m, and h respectively.)
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Figure 5.26 Force f (top) and Impulse i (bottom) for Square Sections with
Diameter of 500 mm and Lengths of 3000, 4500, arid 6000 mm (denoted as s, m,
and h respectively·)
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Figure 5.27 Force f (top) and Impulse i (bottom) for Square Sections with
Diameter of 750 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s, m,
and h respectively·)
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Figure 5.28 Force f (top) and Impulse i (bottom) for Square Sections with
Diameter of 1000 mm and Lengths of 3000, 4500, and 6000 mm (denoted as s,
m, and h respectively·)
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5.4.3 Proposed Equations

In this section, it is tried to find correlations among variables in order to propose

equations for force f, and impulse i. The variables include height h, cross-sectional

size a, and blast intensity z.

Any formulas proposed for force and impulse values should have certain prop-

erties· For instance, force and impulse should diminish while either height or width

approach zero; also, as scaled distance z tends to zero (corresponding to very intensive

blast), then force and impulse should blow up·

The functional form considered for force f(h, a, z), and impulse i(h, a, z) are

assumed to be in the form of multiplication of effects of height, width, and scaled

distance· Specifically, it is presumed that force and impulse are proportional to a

power of h, and a but inversely proportional to a power of z· For convenience,

results are normalized with arbitrary data corresponding to f 0 f(h0 , a,z0 ), and

i0 = i(h0, a,z0):

(5·6)

(5·7)

in which , values of exponents a, 0, -y as well as a', -y' should be found from

fitting the best curve from the results obtained from simulations· The optimal values

for exponents represent the fittest formula for simulation results· For curve-fitting

purpose, the sum of squares of errors has been minimized with respect to exponents·

The detail of curve-fitting technique has been presented in Appendix A·

The optimal values of exponents for force and impulse equations are shown in

Table 5.4, and Table 5.5 respectively. Each table shows optimal exponents for both

circular and rectangular sections. As mentioned before, force f, is not sensitive to



95

Table 5.4 Parameter Values for Force Equation f

cross-section a 0 -y

Circular

Rectangular

0.

0.

0.9558

0.9283

2.3059

2.4538

Table 5.5 Parameter Values for Impulse Equation i

cross-section 	 a' 	 13' 	 7'

Circular 	 0·4775 	 1·1576 	 2·1332

Rectangular 	 0.5024 	 1.2387 	 2.1822

column height; accordingly, the exponent for height effects a should be taken as zero.

Comparing the force and impulse experienced by circular and square columns,

the square columns usually attract at least 60% more force and impulse compared

to the column of circular section· However, when it comes to deflection, rectangular

columns benefits from larger section moment of inertia. It will be shown in next

chapter that rectangular columns can make up the higher force and impulse with

benefiting from better section properties in terms of deflection· This will be elaborated

in next chapter·

After obtaining the optimal values for exponents, the simulation results and

equation prediction are compared in Table 5.6 for circular sections and in Table 5·7

for square sections· In each Table, the first three columns show the input parameters

of height h, cross section size a, and scaled distance z· The fourth and fifth columns

report the force f and impulse i obtained from simulations· In the last two columns

the f/f0 and are compared for both simulation and equation predictions· For
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circular column, the results are normalized with f0 and i0 which are corresponding

to:

f0 = f (h0 = 3000, a0 = 500, z0 = 0·706) = 2·88e9 mN

i0 = i(h0 = 3000, a0 = 500, z0 = 0·706) = 1·18e9 mN-ms

also, for square columns, the results are normalized with f0 and i0 which are corre-

sponding to:

f0 = f (h0 = 3000, a0 = 500, z0 = 0.706) = 4·62e9 mN

i0 = i(h0 = 3000, a 0 = 500, z0 = 0.706) = 1·81e9 mN-ms

The proposed equations for impulse yield good predictions with an error around

5% or less· The difference between simulations and predictions from equations can

reach up to 10%. It will be shown in next chapter that the structural response is

impulse-sensitive rather than pressure-sensitive.

For convenience purposes, it is possible to further simplify the equations and

substitute for normalizing quantities (those with 0 subscripts) as well as rounding

exponents. In doing so, following exponents are proposed for force f on circular

column a = 0, /3 = 1, and 7 = 2·3 . Additionally for force on square columns,

following values are proposed: a = 0, = 1, and 7 = 2·4. Based on these values

both for circular and square column, following approximate equations are suggested

for force:

fo 2.41e6 a z -2.3 mN 	 (5.8)

f = 3·87e6 a z-².4 mN 	 (5·9)



Table 5.6 Simulation Results and Equation Prediction for Circular Section.

h a z f i _
ho

_a
ao

a.
z

sim

f
fn
prdct sim

_
i
i
0

prdctmm mm m/kgt- mN mN - ms
3000 500 0·706 2·88E09 1.18E09 1.0 1.0 1.0000 1.00 1.00 1.00 1.00
3000 500 0.561 4.89E09 1.92E09 1·0 1·0 1·2599 1·70 1·70 1·63 1.64
3000 500 0.413 9.97E09 3.93E09 1·0 1·0 1·7100 3·47 3·45 3·33 3·14
4500 500 0·706 2·54E09 1·43E09 1·5 1.0 1.0000 0.88 1.00 1.22 1.21
4500 500 0.561 4·49E09 2·33E09 1·5 1·0 1·2599 1·56 1·70 1·98 1·99
4500 500 0.413 9·29E09 4·64E09 1·5 1·0 1·7100 3·23 3·45 3·93 3.81
6000 500 0·706 2·54E09 1.57E09 2.0 1·0 1.0000 0.88 1.00 1.33 1.39
6000 500 0·561 4·49E09 2·61E09 2·0 1·0 1·2599 1.56 1.70 2·21 2.28
6000 500 0·413 9·29E09 5·25E09 2·0 1.0 1.7100 3.23 3.45 4.45 4.37
3000 750 0.706 4.15E09 1.79E09 1.0 1·5 1·0000 1·44 1·47 1.51 1·60
3000 750 0·561 6·96E09 2·87E09 1.0 1.5 1.2599 2.42 2.51 2.43 2.62
3000 750 0·413 1·45E10 5·62E09 1.0 1·5 1·7100 5·03 5.08 4·76 5·02
4500 750 0·706 3·94E09 2·33E09 1.5 1·5 1.0000 1·37 1·47 1·97 1.94
4500 750 0.561 7.06E09 3.71E09 1.5 1.5 1·2599 2·45 2·51 3.14 3.18
4500 750 0·413 1·49E10 7·22E09 1·5 1·5 1.7100 5.16 5.08 6.12 6.09
6000 750 0·706 3·97E09 2·55E09 2·0 1·5 1.0000 1.38 1.47 2.16 2.23
6000 750 0.561 7.12E09 4.19E09 2.0 1·5 1·2599 2·48 2·51 3·55 3·64
6000 750 0·413 1·49E10 8·21E09 2·0 1.5 1.7100 5.19 5.08 6.96 6.99
3000 1000 0·706 5·62E09 2·68E09 1.0 2.0 1.0000 1.95 1.94 2.27 2.23
3000 1000 0.561 9.67E09 4.29E09 1·0 2·0 1·2599 3·36 3·30 3·64 3.65
3000 1000 0·413 2·04E10 8·15E09 1·0 2.0 1.7100 7.09 6.68 6.91 7.01
4500 1000 0.706 5·27E09 3.39E09 1.5 2·0 1·0000 1·83 1·94 2·87 2.71
4500 1000 0.561 9.62E09 5·37E09 1.5 2·0 1·2599 3·34 3·30 4·55 4.43
4500 1000 0·413 2·05E10 1·01E10 1·5 2.0 1.7100 7.12 6.68 8.56 8.50
6000 1000 0.706 5.27E09 3.78E09 2·0 2·0 1·0000 1·83 1·94 3·20 3·11
6000 1000 0.561 9.62E09 6.06E09 2.0 2·0 1·2599 3·34 3·30 5·14 5·08
6000 1000 0·413 2·05E10 1·15E10 2·0 2·0 1.7100 7.12 6.68 9·77 9·76

97



Table 5.7 Simulation Results and Equation Prediction for Square Section.

h a z f i h
Ito

a
ao

zo.
z

f
fo

mm mm m/kgA mN mN - ms sim prdct sim prdct
3000 500 0·706 4.62E09 1.81E09 1·0 1.0 1.0000 1.00 1·00 1·00 1.00
3000 500 0.561 7·65E09 2·92E09 1.0 1·0 1·2599 1·66 1.76 1.61 1·66
3000 500 0.413 1.67E10 5·82E09 1.0 1·0 1·7100 3·61 3.73 3.21 3.22
4500 500 0·706 4·08E09 2.30E09 1·5 1.0 1.0000 0.88 1·00 1·27 1·23
4500 500 0.561 7·38E09 3·74E09 1.5 1·0 1·2599 1·60 1.76 2.06 2.03
4500 500 0.413 1.63E10 7·41E09 1.5 1·0 1·7100 3.53 3.73 4.09 3.95
6000 500 0·706 4.08E09 2·51E09 2·0 1.0 1.0000 0.88 1·00 1·38 1.42
6000 500 0.561 7·38E09 4.14E09 2.0 1·0 1·2599 1.60 1.76 2.28 2·35
6000 500 0·413 1·63E10 8.29E09 2.0 1·0 1·7100 3.53 3.73 4.57 4·57
3000 750 0.706 6.94E09 3·07E09 1.0 1.5 1·0000 1·50 1·46 1.69 1.65
3000 750 0·561 1.18E10 5.02E09 1·0 1.5 1·2599 2.56 2·57 2·77 2·74
3000 750 0.413 2.74E10 1·01E10 1.0 1·5 1·7100 5·93 5.43 5.55 5.33
4500 750 0.706 6·34E09 3.92E09 1.5 1·5 1·0000 1·37 1.46 2.16 2·03
4500 750 0·561 1.17E10 6·37E09 1·5 1.5 1.2599 2·54 2·57 3.52 3.35
4500 750 0.413 2·63E10 1.22E10 1·5 1·5 1·7100 5·70 5.43 6·71 6·53
6000 750 0·706 6·34E09 4.40E09 2·0 1·5 1·0000 1.37 1.46 2.43 2·34
6000 750 0.561 1.17E10 7·15E09 2.0 1·5 1·2599 2·54 2·57 3.94 3.88
6000 750 0·413 2·63E10 1.38E10 2·0 1·5 1·7100 5.70 5.43 7·61 7·55
3000 1000 0·706 9.34E09 4.37E09 1·0 2·0 1.0000 2.02 1.90 2·41 2·36
3000 1000 0.561 1.59E10 7·00E09 1.0 2.0 1·2599 3·45 3·35 3.86 3.91
3000 1000 0·413 3.51E10 1.37E10 1·0 2·0 1.7100 7.58 7.10 7·57 7·61
4500 1000 0.706 8·13E09 5·27E09 1.5 2·0 1·0000 1·76 1.90 2.90 2.89
4500 1000 0.561 1·50E10 8·45E09 1.5 2·0 1·2599 3·25 3.35 4.66 4.79
4500 1000 0·413 3·34E10 1.64E10 1·5 2.0 1·7100 7.22 7·10 9·03 9·33
6000 1000 0.706 8.13E09 5·95E09 2.0 2·0 1·0000 1·76 1·90 3.28 3.34
6000 1000 0.561 1.50E10 9·59E09 2.0 2·0 1·2599 3·25 3·35 5.29 5.53
6000 1000 0·413 3·34E10 1.86E10 2·0 2·0 1·7100 7·22 7.10 10.24 10·78
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Furthermore, for impulse imparted to the circular and square columns following

equations have been suggested:

iO = 5780 h" a1.2 z-2·1 mN-ms 	 (5.10)

i❑ = 8870 h" a1·2 z-2·2 mN-ms 	 (5.11)

Comparing the force and impulse imparted to the square and circular columns,

it can be observed from above equations that square columns absorb 60% more force

and almost 50% more impulse comparing with a circular column with similar size,

i·e· height, and section size·



CHAPTER 6

SINGLE DEGREE-OF-FREEDOM MODEL FOR COLUMNS

In this chapter, the procedure to approximate structural members like a column

with an equivalent single degree-of-freedom (SDOF) or lumped mass-spring model

is discussed with reference to the pioneering work of Biggs [3]· Next, the deflection

results of simulations done in Chapter 5 is employed to fine-tune the transformation

factors for blast loading·

6.1 Elastic Response of a SDOF to Dynamic Loading

Assuming a SDOF system with mass m and spring stiffness k subjected to a dynamic

load f (t); then the equation of motion for position of the mass v(t) reads as following:

my + kv = f (t) (6.1)

In blast context, the load f (t) may be idealized by a triangular pulse with positive

phase of T+ = td , i·e· f (t) = fmax (1 — for t < td · In Equation 6.1, the left-hand

side represents the total structural resistance which consists of inertial term my as well

as the elastic restoring force kv. Generally speaking, restoring force may represent a

nonlinear inelastic behavior. Restoring force is also known as resistance function and

denoted with R· So, in Equation 6.1 resistance function is assumed as linear elastic

force R = kv.

The vibration damping is not included in Equation 6.1 due to the fact that in

impulse type loading, the maximum displacement will be reached in a very short time

and the damping force can not absorb much energy accordingly.

The response of SDOF described in Equation 6·1 can be divided into two phases·
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In phase one, while force is present t < td the response is forced vibration. However,

in second phase, the response will be free vibrations. Provided at-rest state for initial

conditions is assumed, then the response v(t) in phase one is:

where, w = \k/m; If loading is of very short duration, say td/T < 0.4, the maximum

response occurs during the free vibration phase. Otherwise, maximum response is ob-

served in phase one. The ratio of maximum displacement vmax to static displacement

vst is known as dynamic magnification factor D:[4]

Dynamic magnification factor depends only on the ratio of the positive phase td to

natural period T. Based on td/T, three different loading regimes can be identified.

Namely, they are impulsive loading, dynamic loading, and quasi-static loading.

Herein, the maximum deflection for each type of loading will be discussed.

Impulsive loading: This happens when the loading is such quick comparing with

the structure's period that the structure does not significantly respond to the loading

until the loading is well expired. In Figure 6.1, a schematic representation of impulsive

loading and resistance function is included. As seen, it takes much longer time for

the resistance function to respond to the loading.
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Figure 6.1 Impulsive Loading Compared with Resistance Function [16]·

In impulsive loading, the loading changes the momentum of the structure and

consequently the structure acquires a velocity of v = i/m, where i is the impulse·

This initial velocity delivers a kinetic energy equal to:

the strain energy II stored during maximum displacement vmax is:

equating the kinetic energy with the strain energy, maximum displacement is obtained

as:

(6·2)

As observed, in impulsive regime, displacement is a function of the impulse i· The

peak of the force "max does not appear explicitly· Equation 6.2 can be specialized for

triangular pulse· In this case, impulse is i = 2 fmaxtd t and Equation 6·2 reduces to:

accordingly, dynamic magnification factor for triangular loading in impulsive regime
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will be:

D = 	
vmax	1

fn../ k 
= 

2ωtd

Quasi-static loading: This occurs when positive phase is much longer than natural

period T. In the extreme case, load may be considered as almost constant while the

structure displaces to its maximum as shown in Figure 6·2, i.e f (t) fmax·  Here,

work done on the structure due to the load f is approximated as:

WD = fmax vmax

the strain energy is also H = 2 kv²max; equating the work done on the mas with the

strain energy and solving for vmax :

fmax
vmax = 2 

 k

As seen, the peak deformation is only a function of the peak force f = fmax and

stiffness k· Also, dynamic magnification factor D for quasi-static loading will be:

max
D =  v = 2

J max I k

Figure 6.2 Quasi-Static Loading
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Dynamic loading: This is observed when the order of the positive impulse is

comparable with the period T. The response under dynamic loading depends on

the whole time history of the applied load f (t) . In this regime, the response can be

determined from shock spectrum graphs· The shock spectrum for triangular pulse is

shown in Figure 6·3 [16]· Shock spectrum provides dynamic magnification factor D

for a range of loading durations or w td·

Figure 6.3 Shock Spectrum for Triangular Load

As it was discussed, the dynamic magnification factor D for an impulsive loading

is ½ωtd· Similarly, for quasi-static response the D would be simply 2. The asymptotes

for the two limiting cases are shown in Figure 6·3· In between the limiting cases, the

region which is known as dynamic response loading, the whole time history of loading

will affect the response; however, the magnification factor D is always less than 2·

6.2 Elastic-Plastic Response of a SDOF to Dynamic Loading

In the preceding section, it was assumed the spring behaves elastically; however, in

reality the spring loses its stiffness in relatively large displacements· To consider this

issue, an elastic-plastic resistance function R will be adopted, as depicted in Figure

6·4· As seen, after certain elastic displacement v E , the resistance remains constant
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Idealized resistance
deflection function

x,„

Figure 6.4 Idealized Resistance-Deflection Curve [16]

R„ = KEvE ; also, after certain ultimate deformation v u , failure occurs· The ratio of

Fr = vu /vE is known as ductility·

It is again possible to find the response of an elastic-plastic system in limiting

cases of impulsive and quasi-static loadings· The only difference in derivation of

response compared with elastic response is the strain energy which is calculating the

area under the resistance function. For elastic-plastic resistance function, the strain

energy is

Impulsive response: here, by equating the kinetic energy with strain energy, one

can obtain the required ductility ,u to withstand a certain amount of impulse.

or equivalently, the required resistance Hu for design purpose is:

Based on the above, following observations can be made:

• For a system to respond elastically (p, = 1), resistance Ru = Iω should be
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provided.

• For very ductile systems (large p,), required resistance Ru approaches zero·

Quasi-static response: here, the work done on the system WD fv u should be

equal to the strain energy. Doing so results in the required amount of ductility or the

required amount of resistance·

(6.3)

(6·4)

Based on above, following points are obtained:

• For a system to respond elastic (µ = 1), resistance R, should be twice of the

loading Hu = 2f·

• For very ductile systems (large ,u,), required resistance Ru  can be equal to the

load.

6.3 Equivalent SDOF

Responses of complex structures can be approximated with an equivalent SDOF.

Complex structures with multiple degrees of freedom (MDOF) or distributed mass

and stiffness properties like structural members (beam-column, slabs, etc·) can be

reduced to an equivalent SDOF in terms of a specific response quantity like maximum

deflection· Figure 6·5, shows the SDOF representations of a beam and a one bay

frame·

In Clough and Penzien [4], the concept of equivalent SDOF is elaborated under

generalized SDOF systems and it has been discussed rigorously with general appli-

cation· However, in blast context, the pioneering work of John M· Biggs (1964) on
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equivalent SDOF is well known [3]· Biggs discusses the procedure to transform a

member to its equivalent SDOF via defining transformation factors·

Figure 6.5 Actual and SDOF representation

The equation of motion for the equivalent system is shown as:

where me , Ice and f e are equivalent mass, stiffness and load respectively· In order

to find these parameters, the energy components (KE, H, WD)of the actual structure

are equated with those of equivalent SDOF· Next, in order to be able to reduce the

actual structure into a SDOF, an approximate shape function or mode shape like 0(x)

for deformed shape should be adopted. The deflection of actual system is related to

the SDOF via:

Shape functions represent the deflected shape of the actual structure· Also, shape
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functions should satisfy geometrical boundary conditions. Moreover, shape function

should yield unit displacement at the point of interest which is usually point of

maximum deflection like x = L*, i.e. 0(L*) = 1:

v(L*, t) = φ(L*)y(t) = y(t)

The shape function can be adopted for example from statically deformed shape·

Having shaping function, then the equivalent quantities can be estimated as:

where, m(x) is mass per unit length; E/ (x) is bending stiffness; and q(x) is uniformly

distributed load per unit length on the member.

Transformation Factors It is possible to express the equivalent quantities as a

ratio of the total/gross quantities of the distributed system via transformation factors

as:

where KM , KK and KL are mass, stiffness and load factors· For a presumed mode

shape 0(x) and known mass, stiffness and load distributions, the transformation

factors become a dimension-less number and hence very convenient to use.

Stiffness ke being defined as the force required to introduce a unit deflection

at the equivalent system, then Biggs assumes that the stiffness transformation factor



109

KK is equal to load factor KK = KL. However as shown in Equations 6.5, this is not

completely true; since Ke is related to 0.112 but fe depends on 0. Nevertheless, Kr,

usually provide an acceptable approximation of KK.

Biggs calculates the transformation factors for a fixed-end beam under uniform

pressure f, via presuming a fourth degree polynomial for the mode shape:

Similarly, for other type of loading and end conditions, the transformation factors are

tabulate in Figure 6.6. Also, stiffness is reported in Figure 6.7; as observed, stiffness k

can be approximated as k = κEI/h³, where n depends on support conditions as well

as the load distribution. Biggs proposed these factors based on simple yet relatively

accurate assumptions and tools available in his time. For example, he approximated

the deformed shape with a single polynomial for the whole column, however, it is now

possible to get better approximations via using piece-wise connected polynomials (or

finite elements) approximations.

In selecting appropriate stiffness and transformation factors, not only assump-

tions should be made on support conditions but also valid presumption on the blast

load distribution should be made. Although Biggs provides transformation factors

for concentrated and uniform loading, blast load distribution does not corresponds to

either of them. In practice, usually blast load is considered as uniformly distributed

over columns or beams. Uniformly distributed assumption underestimates the deflec-

tion. On the other hand, assuming blast load as concentrated load at the mid-span

proves conservative. For example comparing load factor KL for columns with both

end fixed shows the range of variation of load factors; for concentrated load KL = 1,

while, for distributed load KL = 0.53. It is expected that KL  corresponding with



Figure 6.6 Transformation Factors for Elastic and Plastic Behaviors
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Figure 6.7 Stiffness for beams k = κE I/L³
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blast loading falls in between of that of for concentrated and uniform loading.

Regarding mass factor KM , since distribution of mass is known, it does not pose

any difficulties in selecting proper mass factor. In following sections, it is tried to get

more accurate approximations for blast loading distribution based on the results of

simulations reported in chapter 5.

After describing transformation factors, it is now possible to express the fre-

quency and response of equivalent SDOF specialized for column or beams. First,

frequency of the equivalent SDOF can be expressed as w = ke/me based on

equivalent parameters; also, the frequency may be recast based on total parameters

via using transformation factors as:

where, KLM	 KM/KL is the load-mass factor. For beams and columns, elastic

stiffness can be written as k = κEI/h ³ and total mass as m = mh = pAh; after

substituting for k and m, frequency reads as:

(6.5)

For response of SDOFs in impulsive-sensitive regime, maximum displacement

vmax  = ie/meω can be rewritten based on column's parameters via using transforma-

tion factors as

Substituting for elastic stiffness as k= κEI/h ³ and total mass as m =
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(6.6)

pAh in above, maximum deflection vmax reads as:

where, 1/√ρEρE  term accounts for material properties, the h term represents the ge-AI

ometrical properties (section and height); and   term contains transformation

factors and it does not depend on geometrical properties. The κ and KL  factor can be

determined through end support conditions as well as load distribution pattern. Mass

factor KM is not difficult to approximate, since usually mass is uniformly distributed

along columns. In next section, it is attempted to back calculate κKLM  K1 through

using simulation results for vmax .

The factors calculated from simulation results give better approximations. The

merits of using simulation results in getting transformation factors are two folds.

First, the deflected shape in simulations is estimated through calculating true de-

flected shape not prescribing an arbitrarily mode shapes. Secondly, the distribution

of the blast load is not arbitrarily decided but it will be determined through solving

air domain.

In next section, it will be shown the response of columns to blast is impulsive

sensitive and not pressure-sensitive. However, in pressure sensitive regimes, maximum

displacement for a beam/column is:

(6.7)

6.4 Elastic Response of Columns

As a part of chapter 5, results of a number of 3-dimensional column simulations

were presented with the focus on quantifying load and impulse on circular and

rectangular columns. In those simulations, columns were modeled with linear elastic

behavior. In this section, the responses of columns in previous simulations are
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presented· Also, results have been used to propose specific transformation factors

for blast load distributions·

If assuming the response of columns to blast loading is impulse-sensitive, then

one should see the linear dependence between vmax and i /√ρE x h/√AI as detailed in

Equation 8.1. Actually, this line is very similar to the impulsive asymptote shown in

Figure 6.3 . The slope for the linear dependence is 1/√KKLM  · As it was mentioned, this

slope does not depend on the geometry of columns.

The graph of vmax versus i/√ρE x *1 will be plotted both for circular and

square columns· By inspecting these graphs, the impulse-sensitivity of deflection

can be verified. If the points follow a linear pattern, then the SDOF factors can

be determined through determining the slope. The slopes determined for circular

and square columns should be similar since they should not depend on geometrical

properties including section shapes or sizes·

The support conditions for columns in all simulations is fixed support, since all

degrees of freedom of boundary nodes are restricted· Considering fixed-end boundary

condition in all simulations, the coefficient should remain constant.

In simulations, concrete properties are assumed with density of p = 2400 kg/m³

and Young's Modulus of E = 27·8 GPa.

Circular Column: Maximum deflections at mid-height level of all 27 circular

columns are reported in Table 6·1· Also v max is plotted versus 1/√ρE x hin Figure 6·8·

As observed, the simulation results follow a linear trend which proves that column

response are impulsive sensitive· Also, the slope of the line which corresponds to

  is equal to 0.0787. For circular columns the term equals , where a is
KKLM h/√AI 16 a

the diameter and h is the column height.
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Figure 6.8 Circular Column Deflection

Square Column: Maximum deflections at mid-height level of all 27 square columns

are reported in Table 6·2· Also Vmax is plotted versus 7  h/√AI in Figure 6·9·

As observed, the simulation results follow a linear trend which proves that column

response are impulsive sensitive· Also, the slope of the line which corresponds toκKLM

1   is equal to 0·078· For square columns the "Al term equals  
a3 

, where a
Lm	 A/1 /12 

is the section size and h is the column height·

Comparing the section properties \tit for square and circular columns, square



Table 6.1 Deflection Results for Circular Section·

h a z i h/AI i/1/ Amax
mm mm m/kg1/3 mN - ms m-² mm
3000 500 0.706 1.18E+09 122.23 1.300
3000 500 0.561 1.92E+09 122.23 2.145
3000 500 0.413 3.93E+09 122·23 4.440
4500 500 0.706 1·43E+09 183.35 2·247
4500 500 0·561 2·33E+09 183.35 3.739
4500 500 0.413 4.64E+09 183·35 7·863
6000 500 0·706 1·57E+09 244.47 NA
6000 500 0.561 2.61E+09 244.47 NA
6000 500 0.413 5.25E+09 244·47 NA
3000 750 0.706 1.79E+09 36.22 0.776
3000 750 0·561 2·87E+09 36·22 1·255
3000 750 0·413 5·62E+09 36.22 2·451
4500 750 0.706 2.33E+09 54·33 1.406
4500 750 0.561 3·71E+09 54.33 2·281
4500 750 0.413 7.22E+09 54.33 4.579
6000 750 0.706 2.55E+09 72·44 NA
6000 750 0.561 4.19E+09 72.44 NA
6000 750 0.413 8.21E+09 72.44 NA
3000 1000 0·706 2·68E+09 15·28 0·448
3000 1000 0.561 4.29E+09 15.28 0.722
3000 1000 0·413 8·15E+09 15·28 1·382
4500 1000 0·706 3·39E+09 22·92 0·791
4500 1000 0.561 5.37E+09 22.92 1.254
4500 1000 0·413 1·01E+10 22·92 2·381
6000 1000 0·706 3·78E+09 30·56 1·133
6000 1000 0.561 6.06E+09 30.56 1.797
6000 1000 0·413 1·15E+10 30·56 3·486

NA: Not Available· Maximum deflection did not developed during simulation

duration·
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columns are  ,-1 / 1-` = 1 . 47 times stiffer than similar circular columns· In the previous
12 16 

chapter, it was shown that square columns absorbs almost 50% more impulse com-

paring with circular columns· Putting together these two piece of information, we

can conclude the elastic deflection of square and circular columns are almost similar

in a blast scenario·

Figure 6.9 Square Column Deflection

Results Discussion: So far, the 1/√κKLM1  	 term is evaluated for fixed end columns.

It was seen that this term is about 0·078 both for circular and rectangular columns·



Table 6.2 Deflection Results for Square Columns·

h a z i h/AI Amax
mm mm m/kg1/3 mN - ms m-2 mm
3000 500 0.706 1.81E+09 83.14 1.374
3000 500 0.561 2.92E+09 83.14 2.231
3000 500 0·413 5.82E+09 83.14 4.467
4500 500 0.706 2·30E+09 124.71 2.463
4500 500 0.561 3.74E+09 124.71 4·081
4500 500 0·413 7.41E+09 124.71 8.487
6000 500 0.706 2·51E+09 166.28 NA
6000 500 0.561 4.14E+09 166.28 NA
6000 500 0·413 8.29E+09 166.28 NA
3000 750 0.706 3·07E+09 24.63 0.780
3000 750 0·561 5·02E+09 24.63 1.287
3000 750 0.413 1.01E+10 24·63 2·575
4500 750 0·706 3.92E+09 36.95 1.419
4500 750 0.561 6.37E+09 36·95 2·322
4500 750 0.413 1·22E+10 36.95 4.465
6000 750 0.706 4.40E+09 49.27 2·084
6000 750 0·561 7·15E+09 49.27 3.398
6000 750 0.413 1·38E+10 49.27 6.683
3000 1000 0.706 4.37E+09 10·39 0·523
3000 1000 0·561 7·00E+09 10.39 0.855
3000 1000 0·413 1·37E+10 10.39 1.671
4500 1000 0.706 5.27E+09 15·59 0·878
4500 1000 0·561 8.45E+09 15.59 1.407
4500 1000 0.413 1.64E+10 15·59 2·750
6000 1000 0.706 5.95E+09 20·78 1·295
6000 1000 0·561 9·59E+09 20.78 2.084
6000 1000 0.413 1.86E+10 20·78 4·061

NA: Not Available· Maximum deflection did not developed during simulation

duration·
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Here, this value is compared with corresponding values for uniformly distributed load

as well as concentrated load in the mid-span. Assuming blast loading as concentrated

in mid-span will be over estimating the deflection; however, uniformly distributing the

load might be un-conservative in estimating the deflection· Based on transformation

factors reported in Biggs [3], it can be shown the uniform loading and concentrated

loading will provide lower and upper bounds for 1/√κKLM = 0.078 that was calculated

for blast loading based on simulation results·

• For concentrated loading IC = 192, and KLM = 0·37 yields 1/√κKLM = 0·1186·

• For uniform loading IC = 384, and KLM = 0·77 yields v 1
/√κKLM n„1

Lm 
= 0·0582·

In fact, calculated value of 0.078 based on the simulation is less than the average

of the factor for concentrated and distributed loading which are 0.1186 and 0.0582

respectively·

In current simulations, support conditions were taken as fixed-end. Consequently

	

   = 0·078 is only applicable for fixed-end supports· Proposing appropriate1/√κKLM

factors customized for blast loading for other boundary conditions needs further

simulations. From current results, it is reasonable to suggest using the average of

the factors for concentrated and uniform loading obtained from the Biggs transfor-

mation factors. For example, if assuming two ends are hinged, then the factors for

concentrated and distributed load will be:

• For concentrated loading IC = 48, and KLM = 0·49 yields  1   = 0·2062·

• For uniform loading κ = 384/5, and KLM = 0·78 yields 	 1 	= 0·1292. 1/√κKLM

Accordingly, the proposed value for the factor  1/√κKLM 1/√κKLM 1/√κKLM would be the average of the

above factors which is 1 /√κKLM1 	 = 0.1677 for blast loading· As compared with fixed1/√κKLM

end boundary condition, the factor is more than twice for the simply supported case;
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hence, deflections for simply supported columns would be more than twice of that of

fixed-end case.

We need just to have the product of κ and KLM in order to calculate deforma-

tion; however, it is possible to approximate κ and KLM separately· One way would be

to find natural frequency from simulation results and then approximate the κ/KLM

coefficient in w κ/KLM (EI/mL4), say the coefficient is A. Again, assume κ /KLM

equals B. Then simply c and KLM can be evaluated via solving the following two

equations; ,1/√ κKLM Lm = A, and κ/KLM = B· The values for n and KLM would be a and

4,- , respectively·



CHAPTER 7

PERFORMANCE EVALUATION AND RETROFITTING OPTIONS

In this chapter, inelastic response of concrete columns under blast loading will be

evaluated and the performance and adequacy of columns in surveying blast events

will be assessed. In doing so, the true nonlinear and inelastic behavior of concrete and

reinforcing steel is considered. The performance of columns will be evaluated based

on the maximum deformation as well as sustained level of damage in materials. In the

cases of under-performing or insufficient columns, appropriate retrofitting measures

will be discussed in order to upgrade the response columns.

In the previous chapter, the elastic response of columns was discussed· This

requires columns to be strong enough to withstand the blast loading in elastic range

without any damage; however, in reality, structural members may undergo different

levels of damage and failure· They might even get disintegrated and shattered on

the instant that blast strikes· In this chapter three dimensional response of columns

with true nonlinear material behaviors will be examined to study different types of

damage and failure such as flexural and shear damage modes·

7.1 Background

Columns exposed to lateral blast loading are prone to different types of failures.

Columns supporting lateral loading such as blast may undergo flexural failure due

to the formation of excessive plastic hinges. In addition, diagonal shear failure is

another possibility in the picture. Nevertheless, the presence of axial loads in columns

increases the shear strength of columns· It should be noted that in short-duration

dynamic loading like blast, the more common form of the shear failure is direct
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shear which is caused by the high shear inertia forces that are not associated with

flexure. Direct shear failure occurs in very localized zone as opposed to diagonal

shear which happens under static or slow dynamic loads. The damage in columns

due to blast loading can be a combination of flexural and direct shear failure· When

excessive lateral deformations occur in columns, then p-delta instabilities can causes

further damage and can cause total failure· In p-delta effect, secondary moments are

generated due to the combined effect of axial load and lateral bending deflections· The

secondary moments can further increase the lateral deflection and cause the collapse

of the column·

In order to quantify the damage sustained by structural members, there are

a couple of parameters that can be employed to identify the extent of the damage·

For example in TM5-1300 [2], the extent of the damage is described for different

element types· As shown in Figure 7·1, for beams with the ratio of lateral deflection

to span smaller of 4% the flexural damage is light; while for ratios of larger than

15% flexural damage is considered severe· For ratios around 8% moderate damage

is expected. This evaluation can be combined with simulation results to assess the

level of flexural damage sustained by columns· Additionally, for shear damage, shear

strains of 1%, 2%, and 3% would be considered light, moderate, and severe shear

damage, respectively·

7.2 Damage Assessment

In this section, the performance of square columns to different intensities of blast

load is discussed· In doing so, the largest and tallest square column considered in

previous simulations has been selected to be further studied. The selected column is

6000 mm high and has a square cross section of 1000 mm h 1000 mm· This column is

exposed to three different blast intensities, namely 45·4 kg, 113.5 kg, and 227·0 kg of
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S

Beams Reinforced
Concrete (p >
0.5%/face)
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Bending/
Membrane
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OIL

4% 8% 15% 	 '

Shear Average
Shear
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Across
Section, y,

1% 	 1 2% 3%

Steel Bending/
Membrane

80. 5% 12%a 25%

Shear S// ,	 2% 4% 8%

Slabs 'Reinforced
Concrete (p >
0.5%face)

Bending!
Membrane

011 4% 8% Is%

Shear y, 1% 2% 3%

Columns Reinforced
Concrete (p >
0 , 5%/face)

Compression Shortening/
Height

I% 2% 4%

Steel Compression Shortening/
Height

2% 4% 8%

Load-
Bearing
Walls

Reinforced
Concrete (p >
0.5%face)

Compression Shortening/
Height

1% j 	 2% 4%

Shear
Walls

Reinforced
Concrete (p >
0.5%/face)

Shear Average
Shear
Strain
Across
Section

1% 2% 3%
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Figure 7.1 Damage Assessment for Different Structural Elements
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TNT in a stand-off distance of 2000 mm· These charges translate to scaled distances

equivalent of z = 0·561, 0.413, and 0·328 m/kg1/3 · Similar to previous simulations, the

charge is located at the mid-height level of the column. Here, the inelastic response

of the column will be studied and the level of the damage that the column sustains

will be identified for each scenario.

In order to accurately model the inelastic behavior of the concrete column, both

the longitudinal (bending) and lateral (shear) reinforcement have been included in

the model to account for strength and confinement effects that they are providing to

the concrete. In current simulations, the amount of the longitudinal reinforcement

ratio provided is around 1·13% of the concrete gross area· In addition to longitudinal

reinforcements, two different types of shear reinforcements — ties — have been provided·

In type one, shear reinforcement includes ties with size of 016 mm at 300 mm spacing

and type two includes ties with 016 mm at 600 mm spacing·

The yield strength of steel rebars is taken as 410 MPa (60 ksi)· The uniaxial

compressive strength of concrete is taken as 35 MPa (5 ksi). For concrete, RHT

concrete material model is adopted. For rebars, Johnson-Cook plasticity model is

used.

Results for the mid-height deflection for the two types of shear reinforcement are

shown in Table 7·1· The elastic deflections that were discussed in Chapter 6, are also

included in the table for comparison purposes. The results for elastic responses of the

column to the first two blast intensities were simulated in the previous chapter· The

elastic response to the third loading has been estimated via the SDOF transformation

factor that discussed in the previous chapter. Also, impulses experienced by the

column for inelastic and elastic cases are included·

Here, the results in the Table 7·1 are assessed for each blast loading intensities·

First, for z=0.561, the column sustain very small damages only at its two supports·
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Table 7.1 Comparing Elastic and Inelastic Deflections and Impulses

Inelastic Response

016 @ 300 c/c

Inelastic Response

016 @ 600 c/c

Elastic Response

No Shear Reinf·

zm/kg¹/³ vmax

mm

1

mN-ms

vmax

mm

i

mN-ms

vmax

mm

1

mN-ms

0·561

0.413

0.328

1·951

5.477

45.975

9.59E9

1·86E10

3·23E10

1.962

5.810

64.720

9.59E9

1.86E10

3·23E10

2.084

4.061

7.037*

9·59E9

1.86E10

3.08E10*

* denotes that values estimated with the proposed equations.

Hence, inelastic and elastic deflections are expected to be very close· In fact as it

is observed, inelastic deflections Are slightly smaller due to the contribution from

the rebars. Note that in elastic simulations, rebars were not modeled. For z=0.413,

some small damages occur at the center in addition to the supports. The plastic

deflection is 35% to 40% more than the elastic deflection· Finally, for z=0·328, column

undergoes fair damages and the inelastic deflection is approximately 7 times larger

than that of elastic response· The elastic deflection for the latter case is calculated

through proposed transformation factors since no simulation for this case has been

done. Also, the elastic impulse is approximated via proposed equations in Chapter

6· It is interesting to note that proposed formula yields very good approximations

even for ranges not covered in the simulation data. Also, it can be added that the

impulse experienced by the columns is not affected even when columns undergo large

deformations. The damage index for each loading scenario is shown in Figure 7·2 for

the column with ties spaced at 300mm·
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Figure 7.2 Damage Index for Square Column for Loading with z - 0.561 (top) , 
z = 0.413 (middle), and z = 0.328 (bottom) 
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7.3 Retrofitting Measures

When an existing column deems insufficient to withstand a specific level of threat,

there are ways to retrofit or 'upgrade its performance through providing more resis-

tance or strength· For a column to survive a blast event, in addition to strength,

enough ductility is also required to accommodate lateral deformations.

Any measures that can improve the resistance and ductility of columns will be

considered beneficial to the blast response mitigation· There is a wealth of knowledge

on seismic upgrading of members prepared by the Federal Emergency Management

Agency (FEMA) that can be used also for blast mitigation· Efficacy of the idea of

covering reinforced concrete columns with steel jackets or fiber reinforced polymer

(FRP) wraps has been tested and used for seismic retrofitting. Also, use of these

measures have been recommended for blast loading·

Steel jackets or composite wraps provide additional bending and shear strength

to the columns· More importantly, these measures offer increased ductility to the

columns in surviving blast loads. The ductility is provided through effective confine-

ment to the concrete core and mobilizing the confined ductility of concrete.

Concrete expands and dilates on the onset of damage initiation· Steel jackets

or composite wraps inhibit lateral expansion of the concrete columns via their rela-

tively large stiffness through applying hoop stresses to the concrete· When designing

retrofitting measures, the jacket or wrap must be capable of deforming within their

elastic response region in order to ensure their elastic stiffness is available· This can

be achieved through properly designing the thickness of the jacket or the number of

layers.

In the last section on damage assessment, it was observed that a fair amount

of damage is sustained by the square column when exposed to a blast loading of

z=0·328 m/kg¹/³· Here, it is tried to study the jacket retrofitted behavior of the
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column to the same scenario of loading· The bare column studied is 6000 mm high

with square cross-section of 1000 h 1000 mm and it has 300 mm spacing lateral

(shear) reinforcement. The thickness of retrofitting plates are from steel with only 5

mm thickness·

To better understand the interaction of the steel jackets with concrete columns,

a set of simulations has been performed and their responses have been compared with

the bare column. In these simulations, two different retrofitting measures have been

studied· In the first case, only front and back faces of the column are covered with

plates. In second case, the four faces of the column are covered with the jacket· The

jacket can provide confinement and resistance to the column· However, the former

case only offers resistance without any effective confinement· A sketch of the columns

are shown in Figure 7·3· This comparison helps to provide insights on the amount of

the contribution of the jackets through confinement and resistance·

A) Steel Plate B) Steel Jacket

Figure 7.3 Retrofitted Columns with Plates(A) and Jacket(B)

For comparison, the mid-height deflection of the jacket retrofitted and plate

retrofitted are compared with the deflection of the bare column as shown in Figure
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7.4· While the calculated deflection for the plate-retrofitted column (41.4 mm)is

slightly smaller than that of the bare column (46·0 mm); the jacket retrofitting is able

to reduce the deflection to 14·4 mm· This shows significant response mitigation can

be achieved through confining concrete columns with jackets· The plate-retrofitted

column can slightly mitigate the response through providing more strength to the

column.

Figure 7.4 Deflection for Plate Retrofitted (dash-dot) and Jacket Retrofitted (solid)
Compared with Bare Column (grey)
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7.4 Material Models

In this section, a brief review has been presented for the materials employed in

the simulations. For steel rebars, Johnson-Cook material model has been used.

Additionally, for concrete, Riedel-Hiermaier-Thoma (RHT) model has been employed.

These two material models are based on plasticity formulations.

When an explosion impinges on a structure or a hyper-velocity object impacts

a target, dilatational and shear shock waves are transmitted internally at high speeds

in the material. Reflection and refraction phenomena quickly occur and depending

on the material properties, major disintegrations including fragmentation, spalling,

and scabbing happen· For example, concrete as a relatively brittle material, tends

to undergo multiple fractures which can lead to fragmentation· In steel, yielding and

fracture can be expected [19]. In order to perform a reliable simulation, a proper

dynamic material model should be used. In following, the material models that have

been used for steel and concrete will be reviewed. For steel Johnson-Cook model has

been employed, while for concrete Riedel-Hiermaier-Thoma (RHT) model has been

adopted·

7.4.1 Steel Constitutive Model

In modeling dynamic loading behavior of steel, Johnson-Cook plasticity model will

be used. Johnson-Cook model considers rate-effects, strain-hardening and high tem-

perature effects· The yield surface Y is defined:

where Єp is effective plastic strain, Є*p = 	q() is the normalized effective plastic strain

rate for Eo = 1s -1 , TH = (T — T„,2 ) / (Tmelt  — Troom)· Material parameters include

A, B, C, n, and m· The first term accounts for the strain-dependent yield stress in
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which A is the basic yield stress at low strains and B, and n represent the effect of

strain-hardening. The second and third terms represent the effects of strain-rate and

temperature, respectively·

7.4.2 Concrete Constitutive Model

Riedel-Hiermaier-Thoma (RHT) concrete model was developed as an enhancement

to the Johnson-Holmquist (JH) model. JH model is a dynamic concrete model

which adopts a linear elastic response until a prescribed failure (yield) criterion, oI.; is

reached. Afterwards, damage will accumulate as loading increases until total failure

occurs· From the instant that damage initiates then the post-failure yield surface,

fσ*pfwill be used. Thenormalized equivalent stress, o-* = fcwill be compared

with the failure and post-failure surfaces in order to determine failure· The initial

failure surface and post-failure surfaces account for pressure-dependency as well as

strain-rate effect as:

where, p* = p/ fc represents normalized pressure, and E* is the equivalent plastic

strain rate normalized by a reference strain rate. Additionally, A, B, C, and N are

material properties· In post-failure surface, the parameter A is reduced by a factor of

(1-DI), where DI is the damage index· Johnson-Holmquist defined the damage index

as the accumulation of the ratio of equivalent plastic strain over a pressure-dependent

fracture strains as:
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where dEp is the sum of the equivalent plastic strain increment, dEp and the plastic 

volumetric strain increment dJ-Lp, i.e. dEp = dEp + dJ-Lp. Also, FS(p*) is the pressure 

dependent fracture strain defined as: 

FS(p*) = Cl (P* + T*y2 for FS(p*) > FSMIN 

FS(p*) = FSMIN for FS(p*) < FSMIN 

in which T* is the normalized concrete uniaxial tensile strength T* = ft! fe. 

It is noteworthy that strain-rate increase factor [l+Cln E*] does not differentiate 

between tensile or compressive strains; however, in RHT different strain-rate increase 

factors have been adopted for tensile or compressive strains. 

Additionally, in RHT model, strain hardening effect and the third invariant 

13 dependence are considered in defining yield surfaces. Aso, in RHT four different 

strength surfaces have been defined, namely elastic Ye , failure Yf , residual Yr, and 

post-failure "Ypf as depicted in Figure 7.5. 

y 

p 
Softening/Fractured. 

Failure Suttaee 

Figure 7.5 RHT Concrete Model 

After failure surface is exceeded, then post-failure or fracture surface Ypf would 

be determined by interpolation between the failure surface and the residual surface 
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(7.1)

Where, failure Yf and residual Y. yield surfaces are:

In the above equations, p*spall = ft/fc; Frate(є) represents the dynamic increase factor

for strain rate effects· Fcap introduces a cap on the elastic surface to limit unreal

elastic responses in high pressures. Fejastic specifies the range of elastic response as a

percentage of the yield surface. Also r ³ (0) is evaluated as following:

in which = rt/rc and cos 30 =3 3/2 J³/J2³/²The material properties used in RHT model

are adopted from Tu et. al. [22].

7.5 Summary

In this chapter, the inelastic response of concrete columns to blast loading has been

studied· The order of deflection of columns to blast scenarios has been evaluated·

Also, the efficacy of steel jackets in providing confinement to the concrete columns

was simulated· In an example, the deflections around 46 mm was reduced to 14 mm

through using a steel jacket with thickness of 5 mm·
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CONCLUSIONS

This chapter summarizes the findings and results obtained in this study· Also, it

provides suggestions and directions for future researches on the subject·

8.1 Conclusion

Chapters 1 provides an introduction to the current state of knowledge and practice

on blast loading· It surveys the literature including available technical manuals in

the public domain.

Chapter 2 studies the motion of a body in conjunction with the balance laws

of mechanics· The balance laws are used to obtain the Euler's equations· Euler's

equations govern wave propagation in a compressible and inviscid medium like air.

Chapter 3 discusses the finite element procedures used in solving differential

equations and particularly Burger's and Euler's equations· This chapter explains

spatial and temporal discretization· In temporal dicretization, explicit and implicit

time integration methods are explained.

Chapter 4 compares blast load parameters obtained with two different programs;

namely Autodyn and ConWep. The former solves the governing Euler's equations

while the latter is based on a semi-empirical approach· In ConWep, the peak over-

pressure and duration of the blast are determined from experiments. However, the

pressure decay profile will be presumed as a combination of exponential and linear

functions· Based on the findings in chapter 4, peak pressure and arrival time obtained

from Autodyn and ConWep agree favorably. On the other hand, impulses obtained

with the two approaches are less conforming· The impulse calculated in ConWep is

134
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the area under the idealized pressure decay profile· This profile is oversimplifying

some aspects of the detonation· For example, due to the disparity in the impedance

properties of air and explosive materials, there are wave reflections at the interface of

air and explosive materials· These reflections change the pressure profile and hence

affect the impulse· Clearly, further research can provide more insights on verifying

the results obtained for impulse with both ConWep and Autodyn.

In chapter 5, appropriate equations have been proposed to estimate the force

and impulse imparted to columns in a blast accident. The equations for force are

expressed as functions of cross section size a and scaled distance z for circular and

square columns as:

= 2·41e6 a z -2.³ mN

fn = 3.87e6 a z-².4 mN

In above a is in mm and z is in m/kg¹/³. The proposed equations for force do not

depend on the height of columns for the height range considered in the simulations.

As explained, the blast load can only affect a certain portion of height of the column

when maximum load is developed; and this is regardless of the extra remaining height

of the column· In fact, increasing the height of columns only results in higher impulses

(not forces), since the blast wave sweeps and stays on the column for extended time·

Based on the proposed equation for impulse, the amount of experienced impulse is

proportional with the square root of column's height in addition to cross section size

a and scaled distance z:

i0 = 5780 h" a1·2 z-2·1 mN-ms

in = 8870 h" a1.2 z-2.2 mN-ms

In blast design practice, usually maximum force or impulse are considered as di-
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rectly proportional with the height of column. Based on the findings of this study,

the assumption that blast loads are directly proportional to the height proves very

conservative.

In chapter 6, it has been discussed how to use the total force and impulse

estimated from equations in predicting the response of columns. The procedure to

reduce the response of a column to an equivalent SDOF is described· This has

been done via using transformation factors proposed by Biggs· In his work, the

transformation factor for mass, stiffness, and force are provided only for uniformly

distributed loading as well as concentrated loading; however, blast load distribution

is neither uniform nor concentrated· Chapter 6 builds upon the work of Biggs to

propose transformation factors for blast load distribution. The Biggs factors are back

calculated from the simulation results for deflection·

In doing so, the slope of impulse asymptote line in shock response spectrum has

been calculated from the simulation results for both circular and square column· As

proved in the text, the impulse asymptote is:

The fact that the deflections obtained from simulations follow the impulse asymptote

line proves that the response of columns to blast loading is impulse-sensitive rather

that pressure-sensitive. The value calculated for the slope 1/ \// KLM both for circular

and square columns are 0.078· This value lies in between of slopes calculated for

uniform and concentrated loading. Based on this observation, it is recommended

the transformation factors for blast loading to be taken as the average values for the

uniform and concentrated loading values from Biggs tables·

Also, it is possible to compare the circular and square columns both in terms

of loading and response· In spite of the fact that square column absorbs 50% more
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impulse comparing with circular columns with similar size, the elastic deflection of

square and circular columns are almost comparable. The reason is due to the better

sectional properties of square columns. The larger area and second moment of inertia

for square columns make up for the extra impulse experienced by square columns. A

more meaningful comparison would be comparing circular and square columns with

similar cross section area. In order for a circular and square section to have similar

area, the diameter of the circular section needs to be 1.13 times larger than the size

of the square. Using impulse equations, the square column experience 32% more

impulse as shown in following:

iO = 5780 0•5(1.13a)1.2 z-2·1

= 6693 0•5 a1·2 z-2.1 mN-ms

i❑= 8870 h"a1·2 z-2·2mN-ms

Hence, the deflection of square column would be 32% more than that of circular

column. Note that second moment of inertia for circular and square column with

similar area are almost equal· In terms of deflection, circular columns outperform

square columns provided both columns have equal areas.

Chapter 7 investigates the inelastic response of columns to blast loading· In this

chapter the true nonlinear and inelastic response of materials have been utilized to

evaluate the level of damage sustained by columns· It has been shown that employing

steel jackets improves the response of columns considerably. Jackets improve the

response by providing passive confinement to the core of concrete columns·

8.2 Future Research Directions

Upon examining Autodyn pressure history results in chapter 4, it was found that pres-

sure reflection occurs at the interface of explosive materials and air· As a result, the
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pressure history obtained from Autodyn will not be identical with idealized pressure

profile obtained from ConWep· Further research can provide a better understanding

of the reflection and consequently a better estimation of the impulse·

In chapter 5, simulations were performed to quantify blast induced loads on the

column. The location of the charges were taken at the mid height of the columns. It

is understood that this orientation is more critical that others; however, quantifying

loading for other orientations can be also useful.

Chapter 6 discussed the equivalent SDOF for elastic response of columns. It

can be advantageous to further develop the equivalent SDOF for inelastic range of

response. Equivalent SDOF's can be developed for different modes of damage in

columns.

In chapter 7, the efficiency of employing steel jackets as a retrofitting measure

was discussed· Also, It will be useful to quantify the efficiency of retrofitting measures

in column response and propose a simplified model for retrofitting measures· This

model can be used in estimating the contribution of retrofitting measures in improving

the response of a bare column· The simplified model will be adopted in designing

proper retrofitting measures·
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